wo 2011/146540 A2 [0K 0O OO OO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World ntletua Property Organizacion. /85525 ||| OO0 AU
International Bureau S,/)
ANMPlS 10) International Publicati
(43) International Publication Date \'{:/_?___/ (10) International Publication Number

24 November 2011 (24.11.2011) PCT WO 2011/146540 A2
(51) International Patent Classification: Not classitied son, E.; ¢/o Microsoft Corporation, LCA - International
M I ional Application Number: Patents, One Microsott Way, Redmond, Washington
(21) International Application Num O CT/US2011/03688 98052-6399 (US). SPEYER, Richard, Z.; /o Microsoft
CT/US 7 Corporation, LCA - International Patents, One Microsott

(22) International Filing Date: Way, Redmond, Washington 98052-6399 (US).
17 May 2011 (17.05.2011) (81) Designated States (unless otherwise indicated, for every
(25) Filing Language: English kind of national protection available). AE, AG, AL, AM,
o , AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
(26) Publication Language: English CA. CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
(30) Priority Data: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
12/782,751 19 May 2010 (19.05.2010) Us EII\{T Ega I&J EDC IIEI,(H\IT:;S,L JSPafTE,LI%G,LI;MMI;N,I\I/g,
(71) Applicant (for all designated States except US): MI- ME,, Mé, Mi(, l\/iN, 1</[W, ,MX,, MS,{, M,Z, Ni’\, N&}, NI:
CROSOFT CORPORATION [US/US]; One Microsoft NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
Way, Redmond, Washington 98052-6399 (US). SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,

(72) Inventors: AUGUSTINE, Matthew, S.; c/o Microsoft TT,TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW .

Corporation, LCA - International Patents, One Microsoft (84) Designated States (unless otherwise indicated, for every

Way, Redmond, Washington 98052-6399 (US). kind of regional protection available): ARIPO (BW, GH,
BURKHARDT, John; c/o Microsoft Corporation, LCA - GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,
International Patents, One Microsoft Way, Redmond, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
Washington 98052-6399 (US). LAMBERT, Brian, M., TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
c/o Microsoft Corporation, LCA - International Patents, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
One Microsoft Way, Redmond, Washington 98052-6399 LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
(US). OZZIE, Raymond, E.; ¢/o Microsoft Corporation, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
LCA - International Patents, One Microsoft Way, Red- GW, ML, MR, NE, SN, TD, TG).

mond, Washington 98052-6399 (US). SCHLEIFER, Ja-

[Continued on next page]

(54) Title: SHARING AND SYNCHRONIZATION OF OBJECTS

(57) Abstract: Sharing of objects may be implemented in a way that al-
lows programs to use shared objects in much the same way that they
would use local objects. In one example, a program creates an object and
sets properties through normal instructions that would be used to create a
local object. The program then registers the object with a shared object
model, which may be maintained by a shared object server. For each ma-
chine on which the object may be used, a shared object runtime monitors
for changes to the objects, and notifies the server of these changes. The
server updates the object, and notifies other machines of changes to the

Machine 104 Objcet model 108

Object 102

Dara objects
Property 106 / o
Registrati
Shared object /egls ration
runtime 110

*
N

Name space 116
- state of the object. The shared object runtimes on those machines receive
T — notification of the changes, and update the local copies.
Name 120
] Name 122
X AN
+ ¥ \

Machine 124

I

‘ Machine 126

Machine 128

I

[—»

El

-
~

WO 20117146540 A2 W00) A0 0O O AR A

Declarations under Rule 4.17: Published:
— as to applicant’s entitlement to apply for and be granted — without international search report and to be republished
a patent (Rule 4.17(i1)) upon receipt of that report (Rule 48.2(g))

— as fto the applicant's entitlement to claim the priority of
the earlier application (Rule 4.17(iii))

10

15

20

25

30

WO 2011/146540 PCT/US2011/036887

SHARING AND SYNCHRONIZATION OF OBJECTS

BACKGROUND

[0001] As connectivity of computers and other devices has improved, it has
become common for different programs — often running on different computers —to
share access to the same information. In the early days of connected computing, units of
data were normally transferred between programs and/or machines through specific,
operator-directed events. For example, a file of data might be sent from one place to
another through e-mail or File Transfer Protocol (FTP). Pipes were an early mechanism
that allowed sharing of data between two running programs, but that technique is fairly
limited in that it merely allows one running program to send its output to another
running program as input. The architecture of modern programs often demands a richer
and more sophisticated sharing of data between programs.

[0002] While some modern programs are designed to share data with each
other, the implementation of data sharing can be relatively complicated from the
programmer’s perspective. Typically, one of the program’s implementers has to write
code to perform the various tasks that make data sharing work. For example, the
program might include code to listen for incoming data and to send outgoing data. When
two programs share data in this manner, the programs generally have to agree on
mechanisms for the exchange of data. The nature of the agreed-upon mechanisms are
often specific to the type of data that is being shared. For example, if multiple programs
want to share graphical information, they typically have to implement a sharing
mechanism that takes into account the kind of information that will be exchanged
between the programs, the format in which this information will be transmitted, how
conflicts among the data will be resolved (e.g., what happens if two of the programs try
to update the same data at the same time), and other issues.

[0003] Thus, in order for programs to share data, the programs generally have
to be implemented with the sharing of data in mind, and normally have to include code

that implements the details of data sharing.

10

15

20

25

30

WO 2011/146540 PCT/US2011/036887

SUMMARY

[0004] A system of shared objects may be provided that allows programs to
create and use shared data objects in much the same way that they would create and use
local data objects. A program may contain code to create an object and to set properties
on the object. A program may register an object as being a shared object within an object
model. Programs that share a common namespace then may access shared objects in the
object model. That is, programs may read, write, and modify the shared object. From the
perspective of a program (and its programmer), accessing a shared object works like
accessing a local object.

[0005] The ability to share objects may be implemented, in one example, as
follows. An object server may maintain a registry of shared objects. The object server
also may maintain a master copy of the shared objects, which represents the “truth” of
the objects. Each machine and/or program that uses shared objects may also maintain a
local copy of the shared objects that it uses. A shared object runtime on each machine
may monitor these local copies to determine what changes have been made. If a change
is made, the runtime sends notification of the change to the object server. When the
object server receives notification of a change, it updates the truth of the object and then
notifies other machines and/or programs so that they can update their local copies of the
object.

[0006] When a shared object is created, the creator may specify various types
of controls on the object, or even on specific properties of the object. For example, an
object (or a property of an object) may be subject to a concurrency control that governs
how concurrent changes to an object are handled — e.g., last writer wins or optimisitic
concurrency wherein if a client updates the object without having had access to the
lastest truth, the change will be rejected and the client notified. Or, an object (or a
property of an object) may be subject to an access control that governs which machines
and/or programs may access the object (or property). Or, an object creator may specify
that certain properties of the object are to be shared, and others are not. Or, as another
example, an object creator may specify the ability to lock an object for exclusive write

permission for a specific period of time.

10

15

20

25

30

WO 2011/146540 PCT/US2011/036887

[0007] Use of shared objects is not limited to any particular programming
language. In one example, a programming language may allow shared objects to be used
in the same way (or approximately the same way) as local objects. Thus, in such an
example, a programmer can use a programming language to read, write, modify, add, or
delete shared objects in the same way that the programming language allows the
programmer to perform those operations on local objects. In this way, the programmer is
able to create objects that can be used by other programs or on other machines, without
having to implement the details of the sharing mechanism, and without having to write
the program in a substantially different way than the program would be written if it used
only local objects.

[0008] This Summary is provided to introduce a selection of conceptsin a
simplified form that are further described below in the Detailed Description. This
Summary is not intended to identify key features or essential features of the claimed
subject matter, nor is it intended to be used to limit the scope of the claimed subject
matter.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] FIG. 1is a block diagram of an example environment in which sharing of
object may occur.

[0010] FIG. 2 is a block diagram of detail of an example object server.

[0011] FIG. 3 is a flow diagram of an example process in which a machine may
create and use a shared data object.

[0012] FIG. 4 is a flow diagram of example actions that may be carried out by a
shared object server to facilitate the sharing of objects.

[0013] FIG. 5is a block diagram of example components that may be used in
connection with implementations of the subject matter described herein.

DETAILED DESCRIPTION

[0014] In modern computing, many programs interact with each other by
sharing access to the same set of data. A software package might be built as a set of
smaller programs that operate on a common set of data. Or, programs that are otherwise
unrelated to each other may want to share data to in order to streamline some part of
the user experience. For example, an accounting software package might be built as a set

of small programs that perform different accounting functions but operate on a common

10

15

20

25

30

WO 2011/146540 PCT/US2011/036887

set of financial data (where the financial data might be distributed across several
machines). Or, in another example, an online meeting program that allows distant users
to share information in real time might provide a common whiteboard that all users can
draw on at the same time. In this case, the content of the whiteboard is, in effect, a set of
data (e.g., a set of pen strokes in some sequence) that is shared among instances of the
meeting program. Or, a user might run a desktop mail client on a desktop computer and
a mobile mail client on a smart phone, and these two mail clients may share access to the
same underlying e-mail box. Thus, if the user deletes a message on one client, the delete
operation may propagate to the underlying server copy of the e-mail box, and then to
other mail clients. There are numerous other examples of programs that interact with
each other through data sharing.

[0015] While many scenarios exist in which programs share data, the
implementations of data sharing are often complex and situation-specific. The notion
that the same underlying piece of data can be shared across different programs and/or
machines is an abstraction. The mechanisms to put that abstraction into practice are not
trivial. For example, when a change is made on one machine, the fact that the change has
been made has to be propagated to other machines. There are various different ways
that the information can be propagated. The machine on which the change occurs can
monitor the data to determine when the data has changed, and can then push the
changes out to other machines. Then the other machines can listen for notifications of
these changes, and make the changes to their local copies. If different machines change
the same piece of data at the same time, rules have to be in place to resolve conflicting
changes. In many cases, these mechanisms have to be built into the programs by the
authors of these programs. Moreover, the particular ways in which sharing of data is
managed may depend on the nature of the data. The sharing mechanisms may be
designed to share specific data structures that hold specific types of data. The frequency
and/or reliability with which data is shared may be based on the specific nature of the
data. In general, programs that want to share data have to be built to manage these
issues in some way. Often the mechanisms employed are not re-usable and have to be

tailored for each program.

10

15

20

25

30

WO 2011/146540 PCT/US2011/036887

[0016] The subject matter described herein provides a general mechanism by
which data objects can be shared across machines. The mechanism provided herein
allows a program to create a shared object and/or set properties on that object, in much
the same manner as if the object were a local object. Sharing mechanisms that are
independent of the program itself then manage the mechanics of how that object is to be
shared with other programs and/or machines. Conversely, those mechanisms can also
provide the program with access to objects that were created by other programs and/or
machines, so that the program can use and/or modify those objects. In this way, a shared
object model is created that can be used by many programs and/or machines.

[0017] The mechanisms described herein allow a program to exercise various
levels of control over the objects that it creates. For example, a program can choose
whether a particular object (or a particular property of an object) is sharable, or is to be
kept local. If the object is to be shared the program can specify which programs and/or
machines may use the object or property, and which ones may not. The program may
also specify concurrency controls that govern how many programs and/or machines may
manipulate an object or property concurrently. (The mechanisms described herein may
be used to control the sharing of a property of an object independently of whether the
object itself is sharable. This fine-grained control over properties extends not only to
whether a particular property can be shared, but also which concurrency and/or access
controls apply to the property.)

[0018] The mechanisms provided herein may allow programmers to create and
use a shared object in much the same way as if the object were purely local. Moreover,
use of the mechanisms is not language dependent, and may be used in any language that
supports the use of object models. Thus, a program may create an object and set
properties in the normal way provided by a particular programming language. The
program may then contain an instruction to register the object as a shared object.
Registration makes the object part of an object model that is available to any entity that
is in the same shared namespace as the creator (unless the program specifies access
limitations on the use of the object by specific entities, in which case use of the shared

object is restricted to those entities to which use is allowed).

10

15

20

25

30

WO 2011/146540 PCT/US2011/036887

[0019] Sharing of object may be managed by a server. The server receives
object registrations and maintains the truth of the object model. When changes are
made to an object locally, the changes may be communicated to the server, which may
then update the truth of the object model, and may communicate the changes to other
programs and/or machines that share access to the object. The sharing of the object may
be performed in a way that is not dependent on the contents of the object, thereby
allowing objects to be shared without regard to the details of what type of data is
contained in the object.

[0020] Turning now to the drawings, FIG. 1 shows an example environment in
which sharing of object may occur. In the example shown, data object 102 is created on
machine 104. Property 106 is set on data object 102. For example, if data object 102
contains data concerning a car, property 106 might contain the make, model, year, or
color of the car. Although only one property 106 is shown in FIG. 1, a data object may
have any number of properties.

[0021] Data object 102 may be created, for example, by a program that
executes on machine 104. A data object may be created using any programming
language that supports an object model, and any programming environment that
supports an object model may be configured to use the techniques described herein. The
subject matter herein is not limited to any particular programming language. Thus, in one
example, a programmer writes a program in a language such as Java or C#, and includes,
as part of that program, instructions to create data object 102 and to set property 106 on
data object 102. The instructions to create the object and set the property may be, in
effect, the same instructions that would be issued to create a local property in the
applicable programming language.

[0022] The program in which data object 102 is created may also include
instructions to register data object 102 as a shared object. The subject matter herein
allows an object to remain purely local, but also allows object to be shared. Thus, if a
programmer wants to make an object a shared object, the programmer may issue an
instruction to register the object as part of a shared object model 108. In order to
implement the sharing of objects, machine 104 may have shared object runtime 110 that
negotiates the registration of objects in the shared object model, and the

synchronization of objects across machines. (It is noted that FIG. 1 shows an object being

10

15

20

25

30

WO 2011/146540 PCT/US2011/036887

shared among machines; however the techniques described herein may also be used to
allow plural programs on the same machine to share objects.) Thus, the registration
instruction is processed by shared object runtime 110, which performs the appropriate
actions to register object 102 as part of shared object model 108. A programmer may
register an object with various controls. Examples of such controls are access controls
that govern which machines and/or programs may use the shared object (or a particular
property of the shared object), and concurrency controls that govern how many
machines and/or programs may update the shared object (or a particular property of the
shared object) at the same time. Or, an object may be registered without such controls,
thereby making the object accessible to any program and/or machine that shares a
namespace with machine 104. (Access and concurrency controls are more particularly
described below.)

[0023] Shared object model 108 may be administered by server 112. Server
112 may administer several object models, although, for simplicity, only object model
108 is shown in FIG. 1. Server 112 maintains the “truth” of an object model —i.e., the
correct information about what objects currently exist, and what their properties are. In
the example of FIG. 1, the truth of object model 108 indicates that object model 108
contains a plurality of data objects 114 (where the set of data objects 114 includes data
object 102). Additionally, properties are set on each of these data objects (such as
property 106, which is set on data object 102).

[0024] In order for different machines and/or programs to share access to an
object, the machines and/or programs share a common namespace. That is, for all of the
entities that will access shared object, the same name refers to the same object. For
example, namespace 116 may contain names 118, 120, and 122. If machines 124, 126,
and 128 are to share access to object 102 that was created on machine 104, then the
name of that object (e.g., name 118) will have the same meaning on all of machines 104,
124, 126, and 128. So, if an object has the name “ABCDE”, this name refers to the same
shared object regardless of whether the object is being accessed from machine 104,
machine 124, and so forth.

[0025] The components shown in FIG. 1 may be used in the following manner.
A program on machine 104 creates an object 102, sets a property 106, and registers

object 102 as part of a shared object model. The program may also set concurrency

10

15

20

25

30

WO 2011/146540 PCT/US2011/036887

and/or access controls on object 102 and/or on property 106. A copy of the registered
object is then stored by server 112. The copy stored by server 112 represents the “truth”
of the object, in the sense that differences between what the server copy says about the
object and what a local copy says about the object may be resolved in favor of the server
copy.

[0026] The server then propagates the truth of the object to machines other
than machine 104 — e.g., to machines 124-128. These other machines may store local
copies of the object. If a change to the object is made on any machine (e.g., by changing
an existing property on the object, setting a new property, deleting the object, etc.), the
shared object runtime on that machine notifies server 112. (Each machine may have a
version of shared object runtime 110, which notifies server 112 of changes to objects
that arise on that machine. Shared object runtime 110 may also changes the local copy of
objects on that machine when server 112 notifies that machine that state changes to the
object have arisen on other machines.) Server 112 then adjusts the truth of the object to
reflect the change that was made. If two machines make changes to the object at the
same time, conflict resolution rules may be used to resolve inconsistent changes to the
object. Once the truth of the object is determined by server 112, the machines are
notified of updates to the object’s state. If access controls have been set on the object,
then the current state of the object is provided only to machines that are allowed to
access the object. Otherwise, the current state of the object is provided to all machines
in the same namespace. Similarly access control rules might be used to reject any
updates from clients that don’t have permissions to write to the object, to delete the
object, etc.

[0027] When machines receive notification that the truth of an object has
changes, the shared object runtime on each machine updates the machine’s local copy of
the object to reflect the truth of the object.

[0028] A shared object may be created and/or accessed in much the same
manner as a local object. The object server and the various machines’ shared object
runtimes manage the sharing and synchronization of objects by monitoring and updating
a machine’s local copy of the objects. Therefore, the local copy can be accessed by a
program in much the same manner as if the local copy were not being shared and/or

synchronized with other machines. Thus, even though a shared object runtime may

10

15

20

25

30

WO 2011/146540 PCT/US2011/036887

determine that an object has been changed and may send, to the shared object server,
notification of the fact that the object has been changed, the program may continue to
manipulate the data without regard to these actions by the shared object runtime. In
effect, by using a system built in accordance with the subject matter herein, a program
can use shared data as simply as it can use purely local data.

[0029] FIG. 2 shows detail of an example object server 112. Although object
server 112 may take various configurations, in the example shown object server 112
comprises object database 202, communication component 204, receiver 206, notifier
208, and state component 210.

[0030] Communication component 204 connects object server 112 to various
machines 124, 126, and 128. For example, communication component 204 may comprise
hardware and/or software (e.g., a network card and its driver), which allow server 112 to
communicate with the world outside of server 112. Server 112 uses communication
component 204 to send, to machines 124-128, notifications of state changes to objects
114. Additionally, server 112 uses communication component 204 to receive, from
machines 124-128, notifications of change to objects that have occurred on those
machines.

[0031] When a change to an object arises on a machine (e.g., machine 124),
the shared object runtime on that machine generates a notification to server 112. That
notification is received by communication component 204, and then passed to receiver
206. Receiver 206 provides the notification of the change to state component 210. State
component 210 maintains the truth 212 of objects 114. State component 210 determines
whether the truth 212 of the objects is to be changed based on the notifications. For
example, if an object is changed on machine 124 (e.g., by changing a property from one
value to another) and server 112 is notified of the change, state component 210 may
determine that the truth of that object has changed. State component 210 thus makes
that change to the truth of the object by making the appropriate update to the object in
object database 202. State component 210 may also implement rules to resolve conflicts.
For example, if two machines attempt to change the same object at the same time, then
state component 210 may determine which one of the changes is to be carried out. Or, if
both of the changes are to be carried out, state component 210 may determine how the

changes are to be combined to produce the new truth of the object.

10

15

20

25

30

WO 2011/146540 PCT/US2011/036887

[0032] Additionally, state component 210 may manage issues relating to
concurrency 214 and/or access control 216. Concurrency 214 determines how many
entities may access an object (or a property of an object) at the same time. Access
control 216 specifies limitations (if any) on which entities (machines or programs) may
access a given object, or a property of a given object. Concurrency and access controls for
an object and/or property may be specified at the time that the object is registered as a
shared object. (In one example, an object and/or property may be made public by
default, unless an access control is specified for that object.) Concurrency 214 may be
specified with a time limit — e.g., a concurrency control may specify that a particular
entity may claim sole write access to an object only for a limited amount of time, and
that the sole access constraint ceases to be in effect after the expiration of that amount
of time.

[0033] When the truth of an object changes, notifier 208 may generate a
notification that is sent to the machines that share access to the object. Notifier 208 may
send such messages using communication component 204. For example, if state
component 210 determines that truth 212 of an object has changed, then notifier 208
may send notifications out to machines 124, 126, and 128. Those machines may maintain
local copies 218, 220, and 222, respectively, of the objects to which they share access. In
response to notification, the machines may update their local copies 218-222
accordingly.

[0034] FIG. 3 shows an example process in which a machine may create and
use a shared data object. Before turning to a description of FIG. 3, it is noted that the
flow diagrams contained herein (both in FIG. 3 and in FIG. 4) are described, by way of
example, with reference to components shown in FIGS. 1 and 2, although these
processes may be carried out in any system and are not limited to the scenarios shown in
FIG. 1 and 2. Additionally, each of the flow diagrams in FIGS. 3 and 4 shows an example in
which stages of a process are carried out in a particular order, as indicated by the lines
connecting the blocks, but the various stages shown in these diagrams can be performed
in any order, or in any combination or sub-combination.

[0035] At 302, a data object is specified. The specification of the data object
may be performed as part of the instructions in a program. For example, if a

programming language provides a mechanism for the programmer to create a data

10

10

15

20

25

30

WO 2011/146540 PCT/US2011/036887

object and to set properties on that object, then the data object may be specified using
that mechanism. The mechanism that is used may be the same one that is used to specify
local objects.

[0036] At 304, the data object may be registered as part of an object model.
For example, there may be a local shared object runtime, as described above, which may
provide a programming interface that allows the programmer to issue an instruction to
register an object as part of a shared object model. Such an instruction may be given at
304.

[0037] At 306, a concurrency control may be specified on an object, oron a
property of an object. The concurrency control may specify, for example, that only a
single entity may write to a given object (or a given property of an object) at one time.
Or, in greater generality, the concurrency control may specify how many entities may
access a given object at one time. At 308, an access control may be specified on an
object, or on a property of an object. The access control may specify which entities may
(or may not) access an object.

[0038] At 310, instructions may be created that manipulate the object.
Manipulation of the object includes any change to an object — e.g., creating the object,
deleting the object, adding, deleting, or changing properties on the object, etc. These
instructions may be given through the programming language in which the program that
uses the object is written. In one example, the instructions are the same instructions that
would be used to manipulate a local object.

[0039] The process described in FIG. 3 may be performed on one machine.
However, as part of that process, at 312, other machines (which may be distinct from the
machine on which the process of FIG. 3 is being performed) may be allowed to access the
object. For example, a shared object runtime on that machine may cause the object (and
any changes to the object) to be transmitted to a shared object server. The server may
then settle on a truth of the object, and may notify other machines of changes to the
truth of the object, as described above. The use of a shared object server is one
implementation of shared objects. However, there are also peer-to-peer

implementations, which are encompassed by the subject matter herein.

11

10

15

20

25

30

WO 2011/146540 PCT/US2011/036887

[0040] Itis noted that the act of allowing other machines to access an object
created by a program may take place without that program having to implement any of
the sharing instructions. As noted above, sharing of data across machines generally
involves mechanisms to monitor data for changes, transmit the changes to other
machines, receive changes from other machines, etc. However, these mechanisms may
be implemented by a shared object runtime. Thus, from the perspective of the program
that creates a shared object, the program may treat the object as if it were a local object,
and the program itself might not contain any particular code that implements the
mechanisms to share the object. In one example, the program can share the object
simply by issuing the instruction to register the object as part of a shared object model,
and the program may otherwise treat the shared object as if it were a local object. That
is, the program may be able to share the object without containing any instructions
relating to the sharing of the object (other than the initial instruction to register the
object as a shared object). Additionally, while the schema of the object is meaningful to
the clients, the server can be agnostic to the data an object contains.

[0041] FIG. 4 shows example actions that may be carried out by a shared
object server to facilitate the sharing of objects.

[0042] At 402, the server receives a request to register an object. This request
may come, for example, from machine 104, on which data object 102 having property
106 has been created.

[0043] At 404, the server may determine that the object has been manipulated
on machine 104. For example, the shared object runtime on machine 104 may monitor
the local copies of objects on that machine. When an object is manipulated in some
manner, the shared object runtime may send the server a notification that the object has
been manipulated. This notification may be received by the server.

[0044] When the notification is received by the server, the server may
determine to update the truth of the object to reflect the locally-made change of which
the server has been notified. This update may occur at 406. At some point, machines on
which shared use of the object is being made may send listening requests to the server,
which ask that the server notify those machines of changes to a particular object or set of
objects. These listening requests are received at 408. (The receipt of listening requests is

shown as occurring between 408 and 410, although the requests to be notified of

12

10

15

20

25

30

WO 2011/146540 PCT/US2011/036887

changes to an object may be received at any point in time; the sequence shown in FIG. 4
is not limiting of the subject matter herein.) Once the truth of the object has been
determined, notification that the state of the object has been changed may be sent, at
410, to other machines (e.g., machine 124, 126, and 128) that share access to object 102.
These machines may then update their own local copies of object. If an access control is
in place for an object (or for a property of the object), then the notification may be sent
to those machines on which access to the object (or property) is permitted.

[0045] FIG. 5 shows an example environment in which aspects of the subject
matter described herein may be deployed.

[0046] Computer 500 includes one or more processors 502 and one or more
data remembrance components 504. Processor(s) 502 are typically microprocessors,
such as those found in a personal desktop or laptop computer, a server, a handheld
computer, or another kind of computing device. Data remembrance component(s) 504
are components that are capable of storing data for either the short or long term.
Examples of data remembrance component(s) 504 include hard disks, removable disks
(including optical and magnetic disks), volatile and non-volatile random-access memory
(RAM), read-only memory (ROM), flash memory, magnetic tape, etc. Data remembrance
component(s) are examples of computer-readable storage media. Computer 500 may
comprise, or be associated with, display 512, which may be a cathode ray tube (CRT)
monitor, a liquid crystal display (LCD) monitor, or any other type of monitor.

[0047] Software may be stored in the data remembrance component(s) 504,
and may execute on the one or more processor(s) 502. An example of such software is
object sharing software 506, which may implement some or all of the functionality
described above in connection with FIGS. 1-4, although any type of software could be
used. Software 506 may be implemented, for example, through one or more
components, which may be components in a distributed system, separate files, separate
functions, separate objects, separate lines of code, etc. A computer (e.g., personal
computer, server computer, handheld computer, etc.) in which a program is stored on
hard disk, loaded into RAM, and executed on the computer’s processor(s) typifies the
scenario depicted in FIG. 5, although the subject matter described herein is not limited to

this example.

13

10

15

20

25

WO 2011/146540 PCT/US2011/036887

[0048] The subject matter described herein can be implemented as software
that is stored in one or more of the data remembrance component(s) 504 and that
executes on one or more of the processor(s) 502. As another example, the subject matter
can be implemented as instructions that are stored on one or more computer-readable
storage media. Tangible media, such as an optical disks or magnetic disks, are examples
of storage media. The instructions may exist on non-transitory media. Such instructions,
when executed by a computer or other machine, may cause the computer or other
machine to perform one or more acts of a method. The instructions to perform the acts
could be stored on one medium, or could be spread out across plural media, so that the
instructions might appear collectively on the one or more computer-readable storage
media, regardless of whether all of the instructions happen to be on the same medium.

[0049] Additionally, any acts described herein (whether or not shown in a
diagram) may be performed by a processor (e.g., one or more of processors 502) as part
of a method. Thus, if the acts A, B, and C are described herein, then a method may be
performed that comprises the acts of A, B, and C. Moreover, if the acts of A, B, and C are
described herein, then a method may be performed that comprises using a processor to
perform the acts of A, B, and C.

[0050] In one example environment, computer 500 may be communicatively
connected to one or more other devices through network 508. Computer 510, which may
be similar in structure to computer 500, is an example of a device that can be connected
to computer 500, although other types of devices may also be so connected.

[0051] Although the subject matter has been described in language specific to
structural features and/or methodological acts, it is to be understood that the subject
matter defined in the appended claims is not necessarily limited to the specific features
or acts described above. Rather, the specific features and acts described above are

disclosed as example forms of implementing the claims.

14

WO 2011/146540 PCT/US2011/036887

CLAIMS
1. A system for sharing data objects across a plurality of machines, the system
comprising:

a processor;

a data remembrance component;

an object database that stores, in said data remembrance component,
said data objects and properties of said data objects;

a communications component that communicatively connects said system
to a plurality of machines on which data objects are manipulated or used;

a receiver component that executes on said processor and that receives,
from said plurality of machines, indications of when and how said data objects have been
manipulated on said plurality of machines;

a state component that executes on said processor and that updates a
state of said data objects and said properties of said data objects in said database when
said receiver component receives said indications; and

a notification component that executes on said processor and that notifies
said plurality of machines when said state of said data objects and said properties of said

data objects have changed.

2. The system of claim 1, wherein said receiver component receives a concurrency
control on a first one of said data objects or on a property of said first one of said data
objects, and wherein said system determines how many of said plurality of machines can
access said first one of said data objects, or a property of said first one of said data

objects, concurrently.

3. The system of claim 2, wherein said concurrency control specifies how many of
said plurality of machines can access said property concurrently independently of how

many of said plurality of machines can access said first one of said data objects.

4. The system of claim 2, wherein said receiver component receives a time limit
on said concurrency control, wherein said concurrency control ceases to be in effect after

expiration of said time limit.

15

WO 2011/146540 PCT/US2011/036887

5. The system of claim 1, wherein said indications received by said receiver
component indicate that a first one of said data objects has been added, modified, or
deleted on a first one of said plurality of machines, and wherein said state component, in
response to said indications, updates said state of said data objects to reflect adding,

modifying, or deleting of said first one of said data objects.

6. The system of claim 1, wherein, in response to a change of said state of said
data objects to indicate that a first one of said data objects has been added, modified, or
deleted on a first one of said plurality of machines, said notification component notifies a
second one of said plurality of machines, which is distinct from said first one of said
plurality of machines, that said first one of said data objects has been added, modified, or

deleted.

7. The system of claim 1, wherein said system notifies said plurality of machines

of changes to said data objects without regard to content or type of said data objects.

8. A method of sharing objects, the method comprising:

receiving a request to register a first object that comprises a first property,
said first object being part of an object model having a name that is part of a name space
shared across said first machine and a plurality of second machines that are distinct from
said first machine;

determining that said first object has been manipulated by a first program
on said first machine;

sending, to said plurality of second machines, a first notification that said
first object has been manipulated on said first machine, wherein said first program
manipulates said first object without regard to whether said determining and said
sending have occurred or will occur;

receiving, from said plurality of second machines, a second notification
that said first object has been manipulated on one of said plurality of second machines;
and

changing said first object on said first machine in accordance with said

second notification.

16

WO 2011/146540 PCT/US2011/036887

9. The method of claim 8, wherein the method further comprises:
specifying a concurrency control that governs whether said first object or

said first property can be manipulated by more than one program at a given time.

10. The method of claim 9, wherein said concurrency control governs whether
said first property can be manipulated by more than one program at a given time
independently of whether said first object can be manipulated by more than one

program at a given time.

11. The method of claim 9, wherein the method further comprises:
receiving a time limit on said concurrency control, wherein said

concurrency control ceases to be in effect after expiration of said time limit.

12. The method of claim 8, wherein properties in said first object can be made
sharable or not sharable, and wherein the method further comprises:
specifying whether said first property is to be made sharable or not

sharable.

13. The method of claim 8, wherein said first machine performs the method

without regard to a type of said first object.
14. The method of claim 8, wherein said sending to said plurality of second
machines comprises sending said first notification to a server that sends said first

notification to said plurality of second machines.

15. A computer-readable medium comprising computer-executable instructions

to perform the method of any of claims 8-14.

17

WO 2011/146540

PCT/US2011/036887

1/5
Machine 104 Object model 108 Server
¢ M 112
Object 102
Data objects
Property 106 114
l Registrati
Shared object ’/egls ration
runtime 110
i\
\\ Name space 116
TSeelL Name 118
Bbt
Name 120
R Name 122
e ®
’ ’ \\
’ / \
! ! N
II ’l \\\
/ / N\

'I ,' \

!]

1 [}

! :

4 v A

Machine 124 Machine 126 Machine 128

I

I

FIG. 1

PCT/US2011/036887

WO 2011/146540

2/5

_\ SUOTBIISISL -
“ pue sogueyo o1els ".

JO SuoOnEOynoON -
’

R e

\
\

¢ OIA

$102[qo Jo $102[qo Jo $102[qo Jo
(TZ7) Adoo TeooT (0Z7) Adoo 00T (]17) Adod 1007
QTT SUIYOBIN 9TT SUIyoeN PTT sutyoey

70 uouodwod uonedrunuwo))

-/

80¢ ISJNON

90¢ JOAIINY

TT s102[q0

<

91¢C
[OIIUOD SSAIY H]

Y1 Aouoimnouo)

I_I 012 1usuodwod [P

as J9l
— o T0C 35eqerep 199190

[PniL

11 1PAIaS 10310

WO 2011/146540

3/5

302
/_

Specify data object

l /304

Register data object as
part of object model

l /— 306

Specify concurrency
control on object and/or

property

l /- 308

Specify access control
on object and/or

property

l /—310

Create instructions that
manipulate object

l /—312

Allow machines to
access data object

FIG. 3

PCT/US2011/036887

WO 2011/146540

Machine 104

4/5

Object 102

Property 106

l /402

Receive request to
register object

l /404

Determine that object
has been manipulated
on machine 104

l /406

Update truth of object

408~ l

FIG. 4

Receive listening
request from machines

l /410

PCT/US2011/036887

Machine 124

Object 102

Property 106

Machine 126

Send notification that

Object 102

object has been
changed

Property 106

Machine 126

Object 102

Property 106

PCT/US2011/036887

WO 2011/146540

5/5

01¢S Jomdwo)

80§ AIOMISN

S OIAd

T1s Aerdsiq

B r0¢
(shusuodwod

QOUBIQUISWIAL
ereq

Ul palo}s

706 (8)10882201g

00S fonduio))

9(S 2JBMOS
Suwreys 102[(q0O

UO SAINOIXF

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - claims
	Page 18 - claims
	Page 19 - claims
	Page 20 - drawings
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings

