(19) **日本国特許庁(JP)**

(51) Int. Cl.

(12) 特 許 公 報(B2)

FL

(11)特許番号

特許第6114310号 (P6114310)

(45) 発行日 平成29年4月12日(2017.4.12)

(24) 登録日 平成29年3月24日(2017.3.24)

HO2J 50/10	(2016.01) HO2 J	50/10	
HO2J 7/00	(2006.01) HO2 J	7/00	3 O 1 D
HO2J 50/80	(2016.01) HO2 J	50/80	
B60L 11/18	(2006.01) HO2 J	7/00	P
B60M 7/00	(2006.01) B60L	11/18	C
			請求項の数 17 (全 50 頁) 最終頁に続く
(21) 出願番号	特願2014-553539 (P2014-553539)	(73) 特許権者	울 314001092
(86) (22) 出願日	平成25年1月23日 (2013.1.23)		ユタ ステート ユニバーシティ
(65) 公表番号	特表2015-511479 (P2015-511479A)		アメリカ合衆国、84341 ユタ州、ノ
(43)公表日	平成27年4月16日 (2015.4.16)		ース ローガン、1780 ノース リサ
(86) 国際出願番号	PCT/US2013/022788		ーチ パーク ウェイ、スイート 108
(87) 国際公開番号	W02013/112614	(74) 代理人	100147485
(87) 国際公開日	平成25年8月1日(2013.8.1)		弁理士 杉村 憲司
審査請求日	平成28年1月19日 (2016.1.19)	(74) 代理人	100164471
(31) 優先権主張番号	61/589, 599		弁理士 岡野 大和
(32) 優先日	平成24年1月23日 (2012.1.23)	(74) 代理人	100188307
(33) 優先権主張国	米国 (US)		弁理士 太田 昌宏
		(72) 発明者	ハンター ウー
早期審査対象出願			アメリカ合衆国 ユタ州 84322 ロ
			ーガン ノース 1200 イースト 7
			00 バレン ホール ルーム 209
			最終頁に続く

(54) 【発明の名称】無線電力伝送システム

(57)【特許請求の範囲】

【請求項1】

誘導電力伝送(IPT)システムの第1段であって、スイッチングセクションを有するインダクタ・キャパシタ・インダクタ(LCL)負荷共振コンバータ、LCL同調回路、一次レシーバパッド及び一次コントローラを含み、前記スイッチングセクションは直流(DC)電圧を前記LCL同調回路に接続し、前記スイッチングセクションは前記DC電圧を前記スイッチングセクションのスイッチングサイクル中に正極性及び負極性に接続し、前記一次レシーバパッドは負荷として前記LCL同調回路に接続され、前記一次コントローラはアーラは前記スイッチングセクションの導通角()を制御する、第1段と、

前記IPTシステムの第2段であって、二次レシーバパッド、二次共振回路、二次整流回路、二次減結合コンバータ、及び二次減結合コントローラを含み、前記二次レシーバパッドは前記二次共振回路に接続され、前記二次共振回路は前記二次整流回路に接続され、前記二次減結合コンドローラは前記二次減結合コンバータのスイッチングを制御する、第2段と、

前記IPTシステムに接続された負荷であって、前記第2段の出力に接続され、少なくとも1つのエネルギー蓄積素子を含み、前記第2段及び前記負荷は車輌に搭載され、前記第1段は固定の場所に設置され、前記二次レシーバパッドが前記一次レシーバパッドに対向するように前記車輌が位置すると、前記一次レシーバパッドは空隙を介して前記二次レシーバパッドに電力を無線伝送する、負荷と、

前記IPTシステムの効率を最大にするデュアルサイド制御アルゴリズムであって、前記デュアルサイド制御アルゴリズムは、前記IPTシステムの前記効率を最大にするために前記第1段の導通角を制御する基準及び前記第2段のデューティサイクルを制御する基準を調整する、デュアルサイド制御アルゴリズムと

を備えるシステム。

【請求項2】

前記第1段の前記スイッチングセクションは、Hブリッジスイッチングコンバータを含む、請求項1に記載のシステム。

【請求項3】

前記Hブリッジスイッチングコンバータは絶縁ゲートバイポーラトランシーバ(IGBT)を含む、請求項 2 に記載のシステム。

【請求項4】

前記一次コントローラは1以上のシンメトリックボルテージキャンセレイション(Symm etric Voltage-Cancellation)制御、アシンメトリックボルテージキャンセレイション(Asymmetric Voltage-Cancellation)制御、及びアシンメトリックデューティサイクル(Asymmetric Duty Cycle)制御を用いて前記スイッチングセクションを制御する、請求項1に記載のシステム。

【請求項5】

前記第1段内の第1の無線通信モジュール及び前記第2段内の第2の無線通信モジュールをさらに含み、前記第1の無線通信モジュール及び前記第2の無線通信モジュールは前記車輌が前記第1段の無線範囲内にあるとき無線で通信する、請求項1に記載のシステム

20

10

【請求項6】

前記第1段内に整流セクションを含み、前記整流セクションは交流(AC)電源及び前記第1段の前記スイッチングセクションに接続され、前記整流セクションは前記AC電源からのAC電圧を整流し、前記整流セクションは前記第1段の前記スイッチングセクションのための前記DC電圧を有する、請求項1に記載のシステム。

【請求項7】

前記整流セクションは、前記第1段の前記スイッチングセクションにより引き出される電流の力率及び高調波を補正する能動力率補正スイッチング電力コンバータを含む、請求項6に記載のシステム。

30

【請求項8】

前記エネルギー蓄積素子は前記車輌に搭載された電池を含み、前記電池は前記車輌の電気駆動システムに電力を供給し、前記第2段の前記二次減結合コンバータは、前記電池を充電すること及び前記電気駆動システムを駆動することの1以上のために電力を供給する、請求項1に記載のシステム。

【請求項9】

2以上の第1電力段を含み、各第1電力段は前記車輌が停止する場所に位置し、前記第1電力段は、前記車輌が位置する場所において、前記二次レシーバパッドが前記第1段の前記一次レシーバパッドと整列する間、前記第2段に電力を無線伝送する、請求項1に記載のシステム。

40

【請求項10】

1以上の整列センサを含み、当該整列センサは前記一次レシーバパッド及び前記二次レシーバパッドに対して、前記二次レシーバパッドが前記一次レシーバパッドと整列するとき、前記整列を検出するように配置される、請求項1に記載のシステム。

【請求項11】

前記一次レシーバパッド及び前記二次レシーバパッドは、

前記一次レシーバパッド又は前記二次レシーバパッドに面するほぼ平坦な表面と、

前記一次レシーバパッド又は前記二次レシーバパッドの中心から半径方向に伸び、前記平坦な表面にほぼ平行に配置されたいくつかの直線状磁性素子と

複数の直線状磁性素子内に円形パターンに巻かれ、前記平坦な表面にほぼ平行な導体であって、いくつかの層に巻かれ、各層は隣接する層に隣り合って配置され、各層は、前記一次レシーバパッド及び前記二次レシーバパッドの前記中心から半径方向に前記ほぼ平坦な表面にほぼ垂直な方向に伸び、各導体は複数のさらに小さな導体を有する、導体とを有する、請求項1に記載のシステム。

【請求項12】

前記第 2 段は、 9 0 パーセント以上の前記 I P T システムの効率で、 5 . 5 キロワット (k W) から 2 0 0 k W の範囲の前記負荷に電力を供給する、請求項 1 に記載の<u>システム</u>

【請求項13】

前記第2段の前記二次減結合コンバータはブーストコンバータであり、前記ブーストコンバータは、前記負荷の入力電圧を、前記二次共振回路からさらに高い出力電圧に引き上げる、請求項1に記載のシステム。

【請求項14】

前記車輌は、前記二次レシーバパッドが前記一次レシーバパッドを覆い、前記二次レシーバパッドの中心が前記一次レシーバパッドの中心とほぼ整列するように、前記一次レシーバパッドに対向して前記二次レシーバパッドを整列させ、前記二次レシーバパッドの前記中心を前記一次レシーバパッドの前記中心とほぼ整列させることは、ミスアライメントリミット内のミスアライメントの量を含む、請求項1に記載のシステム。

【請求項15】

誘導電力伝送(IPT)システムの第1段であって、

整流セクションと、

Hブリッジスイッチングセクションと、

インダクタ・キャパシタ・インダクタ(LCL)同調回路と、

- 一次レシーバパッドと、
- 一次コントローラとを備え、

前記整流セクションは、交流(AC)電圧を整流して、直流(DC)電圧を前記Hブリッジスイッチングセクションに供給し、前記Hブリッジスイッチングセクションは、前記DC電圧を前記LCL同調回路に接続し、前記Hブリッジスイッチングセクションは、前記DC電圧を前記Hブリッジスイッチングセクションのスイッチングサイクル中に正極性及び負極性に接続し、前記一次レシーバパッドは、負荷として前記LCL同調回路に接続され、前記一次コントローラは、前記Hブリッジスイッチングセクションのスイッチングを制御し、前記一次コントローラはスイッチングセクションの導通角()を制御する、第1段と、

前記IPTシステムの第2段であって、

- 二次レシーバパッドと、
- 二次共振回路と、
- 二次整流セクションと、
- 二次ブーストコンバータと、
- 二次減結合コントローラとを備え、

前記二次レシーバパッドは前記二次共振回路に接続し、前記二次共振回路は前記二次整流セクションに接続し、前記二次整流セクションは前記二次ブーストコンバータに接続し、前記二次減結合コントローラは前記二次ブーストコンバータのスイッチングを制御する、第2段と、

前記IPTシステムに接続された負荷であって、前記第2段の出力に接続され、車輌の電池及び電気駆動システムを有し、前記第2段及び負荷は前記車輌に搭載され、前記第1段は固定の場所に設置され、前記二次レシーバパッドが前記一次レシーバパッドに対向するように前記車輌が位置すると、前記一次レシーバパッドは、前記二次レシーバパッドに電力を無線伝送し、前記二次ブーストコンバータは、前記車輌の前記電池を充電すること及び前記電気駆動システムを駆動することの1以上のために電力を供給する、負荷と、

10

20

30

40

前記IPTシステムの効率を最大にするデュアルサイド制御アルゴリズムであって、前記デュアルサイド制御アルゴリズムは、前記効率を最大にするために前記第1段の導通角を制御する基準及び前記第2段のデューティサイクルを制御する基準を調整する、デュアルサイド制御アルゴリズムと

を備えるシステム。

【請求項16】

誘導電力伝送(IPT)システムの第1段のスイッチングを介して、前記第1段のインダクタ・キャパシタ・インダクタ(LCL)同調回路への直流(DC)電圧の接続及び切断するステップであって、前記LCL同調回路は、前記第1段の一次レシーバパッドに接続され、前記DC電圧の接続は、スイッチングセクションのスイッチングサイクル中に正極性及び負極性の双方への接続を含む、ステップと、

一次コントローラを使用して前記第1段の前記スイッチングセクションの導通角を制御 するステップと、

二次レシーバパッドが前記一次レシーバパッドに対向するように整列されると、前記第1段の前記一次レシーバパッドから空隙を介して前記IPTシステムの第2段の前記二次レシーバパッドへ電力を無線伝送するステップと、

前記第2段の前記二次レシーバパッドから前記第2段の二次同調回路に電力伝送するステップと、

前記第2段の二次整流回路により、前記第2段の前記二次同調回路からの電力を整流するステップと、

前記第2段の前記二次整流回路から前記第2段の二次減結合コンバータに電力伝送するステップと、

二次減結合コントローラを使用して前記第 2 段の前記二次減結合コンバータのデューティサイクルを制御するステップと、

前記第2段の前記二次減結合コンバータから負荷に電力伝送するステップであって、前記第2段及び前記負荷は車輌に搭載され、前記二次レシーバパッドが前記一次レシーバパッドに対向するように前記車輌が位置すると、前記一次レシーバパッドは前記二次レシーバパッドに電力を無線伝送する、ステップと、

デュアルサイド制御アルゴリズムを使用して、前記IPTシステムの効率を最大化するシステムであって、前記デュアルサイド制御アルゴリズムは、前記第1段の前記導通角を制御するために使用される基準を調整し、前記第2段の前記二次減結合コンバータの前記デューティサイクルを制御するために使用される基準を調整する、ステップとを含む方法。

【請求項17】

前記一次レシーバパッドに対向する前記二次レシーバパッドの位置を識別するステップと、

一次レシーバパッド及び二次レシーバパッドの位置情報を送信するステップと、

前記一次レシーバパッドに対向するように前記二次レシーバパッドを整列させるために前記一次レシーバパッド及び二次レシーバパッドの位置情報を使用するステップとを更に含む、請求項16に記載の方法。

【発明の詳細な説明】

【技術分野】

[0001]

〔関連出願の相互参照〕

本出願は、Hunter Wuらによる「WIRELESS POWER TRANSFER SYSTEM AND METHODS」という名称で2012年1月23日に出願された米国仮特許出願第61/589,599の利益を主張し、この仮出願は、参照により本明細書に全て組み込まれる。Hunter Wuらによる「SWITCH WEAR LEVELING」という名称で2013年1月23日に出願された米国特許出

10

20

30

10

20

30

40

50

願第13/748,074は、参照により本明細書に全て組み込まれる。

[00002]

本発明は、無線電力伝送の制御に関し、より詳しくは車輌充電用の誘導電力伝送(IPT)システムに関する。

【発明の概要】

[0003]

誘導電力伝送用システムは、誘導電力伝送(IPT)システムの第1段を含む。第1段は、スイッチングセクションを有するLCL負荷共振コンバータ、LCL同調回路、一次レシーバパッド及び一次コントローラを含み、スイッチングセクションは直流(DC)電圧をLCL同調回路に接続する。スイッチングセクションはDC電圧をスイッチングセクションのスイッチングサイクル中に正極性及び負極性に接続する。一次レシーバパッドは負荷としてLCL同調回路に接続され、一次コントローラはスイッチングを制御する。

[0004]

本システムは、IPTシステムの第2段を含み、第2段は、二次レシーバパッド、二次 共振回路、二次整流回路、二次減結合コンバータ、及び二次減結合コントローラを含む。 二次レシーバパッドは二次共振回路に接続され、二次共振回路は二次整流回路に接続され る。二次整流回路は二次減結合コンバータに接続され、二次減結合コントローラは二次減 結合コンバータのスイッチングを制御する。本システムはIPTシステムに接続された負 荷を含む。この負荷は第2段の出力に接続され、少なくとも1つのエネルギー蓄積素子を 含む。第2段及び負荷は車輌に搭載され、第1段は固定の場所に設置される。二次レシー バパッドが一次レシーバパッドに対向するように車輌が位置すると、一次レシーバパッド は空隙を介して二次レシーバパッドに電力を無線伝送する。

[0005]

一実施形態では、第1段のスイッチングセクションは、Hブリッジスイッチングコンバータを含む。別の実施形態では、Hブリッジスイッチングコンバータは絶縁ゲートバイポーラトランシーバ(IGBT)を含む。別の実施形態では、一次コントローラはスイッチングセクションの導通角()を制御する。別の実施形態では、一次コントローラは対称電圧相殺(SVC)制御及、非対称電圧相殺(AVC)制御、及び/又は非対称デューティサイクル(ADC)制御を用いてスイッチングセクションを制御する。更に別の実施形態では、IPSシステムの効率を最大にするデュアルサイド制御アルゴリズムを用いる。デュアルサイド制御アルゴリズムは効率を最大にするために第1段の導通角を制御する基準及び第2段のデューティサイクルを制御する基準を調整する。

[0006]

一実施形態では、本システムは第1段内に第1の無線通信モジュールを、第2段内に第2の無線通信モジュールを含む。第1の無線通信モジュール及び第2の無線通信モジュールは車輌が第1段の無線範囲内にあるとき無線で通信する。別の実施形態では、本システムは第1段内に整流セクションを含む。整流セクションは交流(AC)電源及び第1段のスイッチングセクションに接続され、整流セクションはAC電源からのAC電圧を整流する。整流セクションは第1段のスイッチングセクションのためのDC電圧を有する。他の実施形態では、整流セクションは、第1段のスイッチングセクションにより引き出される電流の力率及び高調波を補正する能動力率補正スイッチング電力コンバータを含む。

[0007]

別の実施形態では、エネルギー蓄積素子は車輌に搭載された電池を含む。電池は車輌の電気駆動システムに電力を供給する。第2セクションの二次減結合コンバータは電池を充電するため及び/又は電気駆動システムを駆動するために電力を供給する。別の実施形態では、本システムは2以上の第1電力段を含む。各第1電力段は車輌が停止する場所に位置し、第1電力段は、車輌が位置する場所において、二次レシーバパッドが第1段の一次レシーバパッドと整列する間、第2段に電力を無線伝送する。別の実施形態では、本システムは1以上の整列センサを含み、これらの整列センサは一次レシーバパッド及び二次レ

シーバパッドに対して、二次レシーバパッドが一次レシーバパッドと整列するときこの整列を検出するように配置される。

[00008]

一実施形態では、一次レシーバパッド及び二次レシーバパッドは一次レシーバパッド又は二次レシーバパッドに面するほぼ平坦な表面、一次レシーバパッド又は二次レシーバパッドの中心から半径方向に伸び、平坦な表面にほぼ平行に配置されたいくつかの直線状磁性素子、及び複数の直線状磁性素子内に円形パターンに巻かれ、平坦な表面にほぼ平行な導体を有する。導体はいくつかの層に巻かれ、各層は隣接する層に隣り合って配置される。各層は、パッドの中心から半径方向にほぼ平坦な表面にほぼ垂直な方向に伸び、各導体は複数のさらに小さな導体を有する。

[0009]

別の実施形態では、第2段は、90パーセント以上のIPTシステムの効率で、5.5キロワット(kW)から200kWの範囲の負荷に電力を供給する。別の実施形態では、第2段の二次減結合コンバータはブーストコンバータであり、ブーストコンバータは、負荷の入力電圧を、二次共振回路からさらに高い出力電圧に引き上げる。別の実施形態では、車輌は、二次レシーバパッドが一次レシーバパッドを覆い、二次レシーバパッドの中心が一次レシーバパッドの中心とほぼ整列するように、一次レシーバパッドに対向して二次レシーバパッドを整列させる。二次レシーバパッドの中心を一次レシーバパッドの中心とほぼ整列させることは、ミスアライメントリミット内のミスアライメントの量を含む。

[0010]

誘導電力伝送用の別のシステムは、IPTシステムの第1段を含む。第1段は、整流セクション、Hブリッジスイッチングセクション、LCL同調回路、一次レシーバパッド、及び一次コントローラを備える。整流セクションは、AC電圧を整流し、DC電圧をHブリッジスイッチングセクションに供給する。Hブリッジスイッチングセクションは、DC電圧をHブリッジスイッチングセクションのスイッチングサイクル中に正極性及び負極性に接続する。一次レシーバパッドは、負荷としてLCL同調回路に接続され、一次コントローラは、Hブリッジスイッチングセクションのスイッチングを制御する。

[0011]

システムは、IPTシステムの第2段を含む。第2段は、二次レシーバパッド、二次共振回路、二次整流セクション、二次ブーストコンバータ、及び二次減結合コントローラを備える。二次レシーバパッドは二次共振回路に接続し、二次共振回路は二次整流セクションに接続する。二次整流セクションは二次ブーストコンバータに接続し、二次減結合コントローラは、二次ブーストコンバータのスイッチングを制御する。システムは、IPTシステムに接続された負荷を含む。負荷は、第2段の出力に接続し、車輌の電池及び電気駆動システムを有する。第2段及び負荷は車輌に搭載され、第1段は固定の場所に設置される。二次レシーバパッドが一次レシーバパッドに対向するように車輌が位置すると、一次レシーバパッドは、二次レシーバパッドに電力を無線伝送し、二次ブーストコンバータは、車輌の電池を充電するため及び/又は電気駆動システムを駆動するために電力を供給する。

[0012]

無線電力伝送方法は、IPTシステムの第1段のスイッチングを介して、第1段のLCL同調回路へのDC電圧の接続及び切断を含む。LCL同調回路は、第1段の一次レシーバパッドに接続する。DC電圧の接続は、スイッチングセクションのスイッチングサイクル中に正極性及び負極性の双方への接続を含む。本方法は、二次レシーバパッドが一次レシーバパッドに対向するように整列された場合における、第1段の一次レシーバパッドから空隙を介したIPTシステムの第2段の二次レシーバパッドへの電力の無線伝送を含む。本方法は、第2段の二次レシーバパッドから第2段の二次同調回路への電力伝送、第2段の二次整流回路による第2段の二次同調回路からの電力の整流、及び第2段の二次整流回路から第2段の二次減結合コンバータへの電力伝送を含む。本方法は、第2段の二次減

10

20

30

40

結合コンバータから負荷への電力伝送を含む。第2段及び負荷は車輌に搭載され、二次レシーバパッドが一次レシーバパッドに対向するように車輌が位置すると、一次レシーバパッドは二次レシーバパッドに電力を無線伝送する。

[0013]

別の実施形態では、本方法は、一次コントローラを使用した第1段のスイッチングセクションの導通角の制御、及び二次減結合コントローラを使用した第2段の二次減結合コンバータのデューティサイクルの制御を含む。別の実施形態では、本方法は、デュアルサイド制御アルゴリズムを使用した、IPTシステムの効率の最大化を含む。デュアルサイド制御アルゴリズムは、第1段の導通角を制御するために使用される基準を調整し、第2段の二次減結合コンバータのデューティサイクルを制御するために使用される基準を調整する。別の実施形態では、本方法は、一次レシーバパッドに対向する二次レシーバパッドの位置の識別、一次レシーバパッド及び二次レシーバパッドの位置情報の送信、及び一次レシーバパッドに対向するように二次レシーバパッドを整列するための一次レシーバパッド及び二次レシーバパッドの位置情報の使用を含む。

[0014]

本発明により実現されうる特徴及び利点のすべてを示唆しない、本明細書を通して使用される特徴、利点及びこれに類する用語は、本発明の任意の単一の実施形態に含まれる。むしろ、特徴及び利点に言及する用語は、一実施形態と関連して説明される特定の特徴、利点又は特性が少なくとも本発明の一実施形態に含まれることを意味するということを理解されたい。従って、本明細書に亘る特徴、利点及びこれに類する用語による説明は、必ずしもそうとは限らないが、同一の実施形態を示しうる。

[0015]

さらに、本発明について説明される特徴、利点及び特性は、1以上の実施形態において適切な方法で組み合されうる。当業者は、特定の実施形態における1以上の特定の特徴又は利点を有さずに、本発明が実施されうることを理解できるであろう。他の例では、更なる特徴及び利点が、本発明の全ての実施形態に表現されていない特定の実施形態において認識されるであろう。

[0016]

本発明のこれらの特徴及び利点は、以下の説明および添付の請求項から、より明確になり、又は、以下の本発明の実施により理解されるであろう。

[0017]

本発明の利点が容易に理解できるように、添付の図面に示された特定の実施形態を参照することにより、上記簡潔に説明された本発明の、より具体的な説明を行う。これらの図面は、本発明の代表的な実施形態のみを示しており、従って、本発明の範囲を限定するものではないことが理解されよう。本発明は、添付の図面を使用することにより、更なる特異性及び詳細が説明され、明確にされる。

【図面の簡単な説明】

[0018]

【図1】誘導性電力伝送(IPT)システムの効率を最大にするシステムの一実施形態を示すプロック図である。

【図2】IPTシステムの効率を最大にする装置の一実施形態を示すブロック図である。

【図3】最大効率装置を備えた模範的な誘導性電力伝送充電システムのブロック図を示す

- 【図4】垂直及び水平ミスアライメントに関するミスアライメント状態を示し、 h = 0トレンドはゼロ水平オフセット下での垂直ミスアライメントのプロファイルを表し、 v = 200 は 200 m m の垂直オフセット下での水平ミスアライメントのプロファイルを表す。
- 【図5】模範的なLCL負荷共振コンバータを示す。
- 【図6】選択したスイッチに対するHブリッジの損失の比較を示す。
- 【図7】Hブリッジの損失をIRG7PH42UPBFについて異なる温度に対して示す

10

20

30

40

- 【図8】模範的なスイッチヒートシンクの熱設計を示す。
- 【図9】模範的な簡略IGBTゲートドライバ回路を示す。
- 【図10】スプリットインダクタ設計を備えた模範的なLCLコンバータを示す。
- 【図11】模範的な調整可能インダクタを示す。
- 【図12】E55を用いたLCLコンバータ用のACインダクタ設計の模範的な磁束密度を示す。
- 【図13】模範的な円形パッド構造及び寸法を示す(上面図)。
- 【図14】模範的なIPTパッドに対する結合係数対垂直高さを示す。
- 【図15】異なる垂直高さに対する模範的なIPTパッドの非補償電力を示す。
- 【図16】模範的なフェライトアーム支持構造の寸法及び構造を示す。
- 【図17】模範的な鳩の尾形溝の寸法を示す。
- 【図18】一次トラック電流対導通角を示す。
- 【図19】模範的な二次減結合ピックアップ(二次回路)の等価効率モデル回路図(図23も参照)を示す。
- 【図20】模範的な一次LCLコンバータの等価効率モデル回路(図5も参照)を示す。
- 【図21】最適効率のための模範的なコントローラブロック図を示す。
- 【図 2 2 】(2 1)を使用した結合係数の算出であり、上部のグラフは k=2 k_{min} (M=6 0 μ H) の場合を示し、下部のグラフは k=1 . 1 4 k_{min} (M=3 4 . 2 μ H) の場合を示す。
- 【図23】二次共振回路、二次整流回路及び(二次減結合コンバータの形式の)二次減結合回路を有する、模範的な並列ピックアップ又は二次回路を示す。
- 【図24】Ldcに対するDC電力出力を示す。
- 【図25】Ldcに対するDCの平均値に対して正規化されたAC電流のピークトゥピークの振幅を示す。
- 【 図 2 6 】模範的な減結合回路のスイッチング周波数に対する二次減結合のピックアップ 効率を示す。
- 【図27】模範的な減結合回路のルートローカス及びボードプロットを示す。
- 【図28】 k=1. $14k_{min}$ (v=246mm、h=0mm) における模範的なシステムの効率を示し、線は分析的に算出された結果を示し、プロットは実験的に測定された結果を示し、データは、最大の Q_{2v} の負荷状態の割合に合致した場合における、異なる負荷状態で取得されたものである。
- 【図 2 9 】 k=2 . 0 k_{min} (v=1 7 2 mm、 h=0 mm) における模範的なシステムの効率を示し、線は分析的に算出された結果を示し、プロットは実験的に測定された結果を示し、データは、最大の Q_{2v} の負荷状態の割合に合致した場合における、異なる負荷状態で取得されたものである。
- 【図30】出力電圧が変化できる場合における実際のシステム全体の測定された効率を示し、DC出力が300Vのとき5kWの伝送が生じる。
- 【図31】最も悪い条件で動作する模範的な5kWのシステムにおける磁界の測定結果を示し、最高磁場強度は、200mmの垂直高さ及び150mmの水平ミスアライメントに見られる。
- 【図32】1500mmの身長の人間の女性の体における4つの測定点からの人体平均測定を示し、最高磁場強度は、255mmの垂直高さ及び0mmの水平ミスアライメントに見られる。
- 【図33】 k=1. $14k_{min}$ (v=246mm、h=0mm) における模範的なシステムの効率を示し、線は分析的に算出された結果を示し、プロットは実験的に測定された結果を示し、データは、最大の Q_{2v} の負荷状態の割合に合致した場合における、異なる負荷状態で取得されたものである。
- 【図34】 $k=2.0k_{min}$ (v=1.72mm、h=0mm)における模範的なシステムの効率を示し、線は分析的に算出された結果を示し、プロットは実験的に測定された結果を示し、データは、最大の Q_2 の負荷状態の割合に合致した場合における、異なる負

10

20

30

40

荷状態で取得されたものである。

【図35】Q $_2$ _ν = 0 . 2Q $_2$ _{ν m}及び k = 2 k m i n における i b 、 i 1 及び i 2 の 波形用の電流値を示す。

【図36】広範囲に亘る動作状態での模範的なシステムの効率の測定を示し、 v = 1 7 2 は、172mmの垂直高さ及び0mmの水平ミスアライメントであり、 v = 2 0 0 、 h = 140は、200mmの垂直高さ及び140mmの水平ミスアライメントである。

【図37】次のパラメータにおいて模範的に動作する IPTシステムの波形を示す:V=172 mm、h=0 mmにおける(a) P=2 kW、(b) P=5 kW、上部から下部へのグラフが i_b (図5)、 i_1 (図5)、 i_2 (図23)及び V_s (図23)(デューティサイクルの逆)。

【図38】次のパラメータにおいて模範的に動作する IPTシステムの波形を示す:V=246 mm、h=0 mmにおける (a)P=2 kW、(b)P=5 kW、上部から下部へのグラフが i_b (図5)、 i_1 (図5)、 i_2 (図23)及び V_s (図23)(デューティサイクルの逆)。

【図39】本発明における、デュアルサイド制御の方法の一実施形態を示す概略的なフローチャート図である。

【図40】本発明における、デュアルサイド制御の方法の他の一実施形態を示す概略的なフローチャート図である。

【発明を実施するための形態】

[0019]

本明細書における「一実施形態」、「ある実施形態」又はこれに類似する用語は、その実施形態に関連する特定の機能、構造又は特徴が少なくとも本発明の一実施形態に含まれることを意味する。従って、本明細書において「一実施形態では」、「ある実施形態では」及びこれに類似する用語が現れた場合は、全て同一の実施形態を示しうるが、必ずしもそうとは限らない。

[0020]

更に、本発明について説明される機能、構造又は特徴は、1以上の実施形態では、任意の適切な方法により組み込まれてもよい。以下の説明において、多くの具体的詳細は、プログラミング、ソフトウェアモジュール、ユーザの選択、ネットワークトランザクション、データベースクエリ、データベース構造、ハードウェアモジュール、ハードウェア回路、ハードウェアチップ等の例により提供され、本発明の実施形態の完全な理解を提供する。しかしながら、関連する分野における当業者は、1以上の具体的詳細がなくとも、又は他の方法、構成要素、材料等を用いても、本発明が実施されうることが理解できるだろう。他の例では、周知の構造、材料又は操作は、本発明が不明瞭になることを避けるために、詳細に示したり説明したりしていない。

[0021]

本明細書に含まれる概略的なフローチャート図は、一般に論理的なフローチャート図として説明される。そのため、記載された順序及び符号が付されたステップは、本発明の一実施形態を示す。他のステップ及び方法は、記載された方法の1以上のステップ又はその一部に対して機能、論理又は効果が同等のものが想定される。更に、用いられる構成及び符号は、方法の論理的なステップを説明するために付与されており、方法の範囲を制限するものではないことを理解されたい。フローチャート図において種々の矢印の種類及び線の種類が使用されうるが、対応する方法の範囲を制限するものではないことを理解されたい。実際、いくつかの矢印又は他の結合は、方法の論理的な流れを示すためだけに使用されうる。例えば、ある矢印は、記載された方法において列挙されたステップ間における不定の長さの待機又は監視期間を示すことができる。更に、特定の方法における順序は、示された対応するステップの順序に固定されてもよく、又は固定されなくてもよい。

[0022]

I. 一次AC-DC力率段

図3は模範的な誘導電力伝送(IPT)充電システム300のブロック図を示す。図3

20

10

30

40

のIPTシステム300は、以下に記載するように、IPTシステム104内に最大効率装置102を含めることができるシステム100の一実施形態である。ここに記載するIPTシステム300は、例えば公共電力網等の電圧源304から供給される、一次交流(AC)・直流(DC)力率段のような力率段302を含むことができる。いくつかの実施形態では、一次AC・DCコンバータ段はグリッド(電力網)レベル電圧を一次同調共振コンバータのためのDCバス電圧のようなDC電圧305に変換するように構成することができる。効率の低減及び追加の複雑化を必要とする無線誘導電力伝送システムに現れる振幅変調信号を阻止するために、極めて低い出力リプルを有するDC出力電圧が、大きなリプルシステムに好まれる。

[0023]

いくつかの実施形態では、AC-DCコンバータにおける能動力率補正(PFC)がリッド電圧及び電流を同相にするのに役立つ。PFCは全体的なグリッド電流要件を低減し、典型的にはグリッド高調波を低減し得る。電力会社は一般に取り付けられる工業設備に対して所定の高調波要件を有する。しばしば電力会社は低い力率を示す工業設備に対して追加の電力料金を課す。

[0024]

ここに記載する I P T システム 3 0 0 では、 P F C のために 1 以上の適切な段を使用することができる。例えば、1以上の市販オフザシェルフ(C O T S)の A C - D C 高効率力率補正コンバータを使用することができる。グリッド電圧源 3 0 4 は、例えば単相 2 4 0 V A C、3 相 2 0 8 V A C 又は 3 相 4 8 0 V A C 等の広範囲の電圧入力とすることができる。別の実施形態では、 4 0 0 V D C 出力をこの段のために使用でき、 4 0 0 V D C は一般に 2 4 0 V A C グリッド入力の公称グリッド入力に対して効率的な出力である。 3 0 A 回路(5 k W I P T システムに好適)を有する単相 2 4 0 V A C グリッド電圧は、米国内で工業用 3 相電圧がサポートされてない米国内の地域でも一般的であり、 I P T システム 3 0 0 とともに使用できる。

[0025]

IPTシステム300において、コンバータ104は一次コントローラ308により制御されるLCL負荷共振コンバータ306を含み、一次コントローラ308はLCL負荷共振コンバータ306に送信することができる。一次コントローラ308は位置検出用整列センサ310からの情報を受信することができる。LCL負荷共振コンバータ306は、空隙を介して三次レシーバパッド316に結合される一次レシーバパッド316に結合される一次レシーバパッド316に結合される一次レシーバパッド316に結合コントローラ320により制御される二次回路318として示される並列減結合ピックアップに結合され、コンドローラ320により制御される二次回路318として示される並列減結合ピックアップに結合され、コンドローラ320は二次回路318に送信する。二次減結合コントローラ320も制御のために位置検出用整列センサ324と通信することができ、322で無線通信することができる。二次回路318は電池326なごり負荷112に接続され、電池326を充電することができる。第2段108及び負荷112は車輌328内に設置される。

[0026]

II. 一次同調共振コンバータ

ここに記載するIPTシステム300は一次同調共振コンバータを含むことができる。 いくつかの実施形態では、図5に示すLCL負荷共振コンバータ306を用いることができる。LCL負荷共振コンバータ306は、スイッチングセクション及びLCL同調セクションを含む。このコンバータは次の利点を有し得る。

・インバータブリッジは一般的に負荷 1 1 2 により要求される実電力を供給する必要があるだけで、共振タンク内では何の損失も生じない。高いトラック電流は共振タンク内で自己循環に抑制される。例えば、 $Q_1>1$ 及び $i_b<i_1$ (図 5 参照) である殆どの実際の用途では、スイッチは低い導通損を有し、高いコンバータ効率を達成できる。

10

20

30

40

・出力電流は一般的に負荷と無関係で、定電流源を形成し、IPT用途に適している。 一次レシーバパッド電流 i 1 は一般的に1つの制御変量に依存するのみであり、従って方程式(1)内の電力出力又は非補償電力(SU)は直接制御される。

[0027]

L C L 負荷共振コンバータを設計するために、一実施形態では、各分枝のリアクタンスは、M. Borageらの「Analysis and design of an LCL-T resonant converter as a const ant-current power supply」(IEEE Transactions on Industrial Electronics、第52巻、1547-1554ページ、2005年)に記載された次の通常の方程式により同調される。

[0028]

【数1】

 $X_1 = \omega L_b = \frac{1}{\omega C_1} = \omega L_1 - \frac{1}{\omega C_{1s}} = \omega L_{\text{leq}}$

(1)

[0029]

ここで、 C_{1s} はピックアップのリアクタンスを所望の動作値に低減するための直列同調キャパシタである。このシステムにおいて、タンク電流(i_1)を 1 つの制御変量()で直接制御するために移相制御又は対称電圧相殺(SVC)を使用する。SVCは、IE EE International Electric Machines & Drives Conference (IEMDC)、2011年、866-871ページのH. H. Wuらの「Design of Symmetric Voltage Cancellation Control for LCL converters in Inductive Power Transfer Systems」に詳細に記載されており、この文献は参照することによりここに組み込まれる。SVCの下でトラック電流を決定するために、基本モード解析を前提にすると、以下の方程式を用いることができる。

[0030]

【数2】

$$i_1 = \frac{2\sqrt{2}V_{dc}}{\pi X_1} \sin\left(\frac{\sigma}{2}\right)$$

(2)

[0031]

取得可能な最大トラック電流は が180°に設定されるとき決定される。LCLコンバータに対して、表1の仕様が設計方程式に基づいて計算される。全同調並列共振タンクの反射インピーダンスは次式で与えられる。

[0032]

【数3】

$$Z_r = \frac{\omega^2 M^2}{Z_2} = \omega \frac{M^2}{L_{2eq}} (Q_{2\nu} - 1 \cdot j)$$

(3)

[0033]

式(3)から、一定の反射容量性リアクタンスはトラックインダクタと直列であり、設計においてこれを直接補償する一つの方法(IEEE International Electric Machines & D rives Conference (IEMDC)、2011年、866-871ページのH. H. Wuらの「Design of Symmet ric Voltage Cancellation Control for LCL converters in Inductive Power Transfer Systems」参照)は、二次ピックアップインダクタンスをその直列同調キャパシタで短絡することにある点に類すべきである。これは磁気学の相互インダクタンスに依存する目標垂直高さレンジに対する新たな一次動作レンジを与える。

[0034]

システムの結合が変化すると、 Z_R 及び等価 L_1 の両方に複雑な現象の変化が生じる。これはブリッジ電流 i_b をその公称値を超えて増大させる。加えて、 i_b は M_2 に反比例し、二次側の負荷状態に依存する。従って、 i_b は次式となる。

[0035]

50

10

20

30

【数4】
$$i_b = \frac{(V_{ab})_1}{j\omega\Delta L_1 + Z_r}$$

(4)

[0036]

システムはその結合を 100%(k_{max} = 200% k_{min})以上に変化させることができるため、いくつかの実施形態では最大 i_{b} は最小 i_{b} の少なくとも 2 倍に設計することができる。一次自己インダクタンスの変化に対して、ブリッジ電流インダクタは結合範囲により決まる関連最大電流に対応する大きさにしなければならない。表 1 に示すシステム設計パラメータは 2 倍の結合変化を処理し得るシステムに対する模範的なパラメータである。システムは最低結合の約 3 倍又は約 4 倍以上の分散のようなもっと大きな結合範囲を収容するように変更することができる。

[0037]

いくつかの実施形態では、5 k W 出力の無線誘導電力伝送システムを設計し、実現することができ、全円錐動作体積に亘る全負荷の下で165mm~265mmの空隙で90%以上の総合システム効率が実証された。L C L コンバータに対して、表1は記載のパラメータの各々に対する模範的な選択値を示す。ハードスイッチング用の標準IGBTスイッチの性能範囲内の20kHzの周波数も選択されている。

[0038]

【表1】

LCLコンバータの設計パラメータ

パラメータ 値 パラメータ 値 400V C_{1s} 680.73nF V_{de} L₁(図4) X_1 9Ω $177 - 188 \mu H$ 40A 1 6 1 – 1 7 2 μ H L_{1_short} i 1_max 71.62 µ H スイッチ IRG7PH42UPBF Lb ダイオード C_1 884. 19nF RHRG75120 1. 257×10^{5} (1) rad/s (f = 20 k H z)

[0039]

A.スイッチングセクションのスイッチ及びダイオードの選択

一次コンバータに対してトポロジ及び制御ストラテジを選択した後、次に半導体装置を選択することができる。ここに記載する機能を実行し得る任意の半導体装置を使用することができる。模範的な半導体装置には、インターナショナルレクティフィアIGBT IRG7PH42UPBF、他の個別又はモジュールベースの絶縁ゲートバイポーラトランジスタ(IGBT)、他の個別又はモジュールベースの金属酸化物電界効果トランジスタ(MOSFET)、又は炭化シリコン(SiC)又は窒化ガリウム(GaN)型半導体装置などの類似の技術が含まれる。

[0040]

好ましい半導体装置を評価するために、様々なIGBT及びMOSFET半導体を比較に含めることができる。1つの設計基準によれば、これらの半導体装置はHブリッジ環境において400VDCでハードスイッチされたときに信頼できるとみなせる少なくとも800Vの降伏電圧を必要とする。加えて、パッドの高さを100%の結合係数変化で変化させることができるとき最良の動作点が合理的な結果をもたらさないかもしれないために、広範囲の結合状態に亘るシステムの性能を性能の比較のためにシミュレーションするこ

20

10

30

40

とができる。図6は、選択した装置の全範囲の結合状態における損失を示す。超高速外部ダイオード(フェアチャイルドRHRG75120)と結合されたインターナショナルレクティフィアIGBT IRG7PH42UPBFは他の大部分の装置、特にパワーMOSFETよりも良い特性を有する。パワーMOSFETはしばしばMOSFETパッケージ内の内部本体ダイオードによる大きなダイオード逆回復損失を受ける。これは特に導通角が大きいときに低い結合係数において真である。

[0041]

2 つの極端温度における IR G 7 P H 4 2 U P B F I G B T の動作特性が図7に示されている。図から明らかなようにH ブリッジにおける損失は弱い結合において高くなる。更に、損失は弱い温度依存性を有する。ここでは、ヒートシンクなどのシステムの熱制御システムによって最悪の場合の結合及び100 の温度に対応するグラフの最大電力損失点を提供しなければならない。

[0042]

任意の適切な熱設計を温度制御のために使用することができる。このような設計は、スイッチ及び / 又はダイオードからすべての又はほぼすべての熱を適切な大きさの熱制御システム及び / 又はヒートシンク、例えばアルミニウムヒートシンクへ取り除くことに専ったきである。ヒートシンクは、任意の適切な方法、例えば強制対流空気冷却により冷却されうる。一次電子機器に対して、いくつかの実施形態では、スイッチはプリント回路板の底面に、スイッチハウジングの全上面がプリント回路板の下のヒートシンクに熱的に接触するように配置構成することができる。電気的絶縁のために、スイッチ上面をアルミナヒートスプレッダ(例えばTO・225フットプリント製品)などのヒートスプレッダに最初に接触させることができる。次にウェハをヒートシンクに接触させることができる。各接触接合部はセラミック充填サーマルペースト又は低い熱抵抗接合代替物を含むことできる。一次側でアルミニウムヒートシンクを使用する実施形態では、アルミニウムヒートシンクは概して高い熱容量及び特に大きな表面積の押出体(模範的な部品番号はM&Mメタルから入手し得るMM60167又は等価物)とする。

[0043]

一実施形態では、二次回路 3 1 8 上に、中程度の容量及び表面積の押出体(模範的な部品番号はM & M メタルから入手し得る M M 6 0 1 6 7 又は等価物)を含むことができる。一次及び二次電子アセンブリはともにヒートシンクフィン通路に向けられた空冷ファンを含むことができる。適切なファンは、消費電力が 5 ワット以下で、1 2 ボルトDCの高い容量、低電力、低ノイズ設計のファンを含む。Sofasco社から入手し得るモデル番号D7025 V 1 2 又は等価物が適している。

[0044]

ある)。熱解析の結果は上述した模範的な設計は電子コンポーネントの温度を適度に制御することを示している。電子コンポーネントの温度を制御する他の適切な設計を使用することもできる。1つのスイッチ及び外部ダイオードにつき23ワットの平均電力消費において、ヒートシンクの温度勾配は0.8 以下であり、ヒートシンク温度の平均は約38であることが予測される。スイッチのケース温度は約45 以下であり、接合部温度は85 以下であることが予測される。これらの温度は電子コンポーネントの良好な性能及び長い寿命を促進する。一次及び二次プリント回路板上の他の全ての電子コンポーネントの電力消費は低く維持され、銅配線面積はプリント回路設計において高く設計される。他のすべてのコンポーネントの温度は約60 を超えない。

図8は、一次電子機器のための模範的な熱構成を示す(二次構成も同一もしくは同様で

要素1402 高電力消費コンポーネント(スイッチ又はダイオードの例)

要素 1 4 0 4 アルミナヒートスプレッダウェハ

要素1406 空冷ファン

要素 1 4 0 8 アルミニウムヒートシンク

[0045]

B.スイッチセクションのスイッチゲートドライブ回路

20

10

30

40

いくつかの実施形態では、各スイッチ(例えばインターナショナルレクティフィアIRG7PH42UPBF IGBT)及びダイオード対(例えばフェアチャイルドRHRG75120ダイオード)は図9に示すようなゲートドライバ、例えばInfeneon1ED020112-Fゲートドライバで駆動される。ゲートドライバは内部的に完全に絶縁するとともにプリント回路板レイアウト内に沿面及び遊隙約を提供するように適切に絶縁される。ゲートドライバ設計は脱飽和検出及びミラークランプ制御を含むことができる。加えて、一般的な状態下でのドライバの信頼性及び安全性を向上させるために、高速ツェナークランプ及びダイオード(図示せず)をゲートドライバの入力及び出力の各々で使用することができる。

[0046]

いくつかの実施形態では、フルブリッジスイッチ構成の重要部分はプリント回路板の適切なレイアウトである。いくつかの実施形態では、スイッチ入力をバウンシングすることなくスイッチングを維持するために、フルブリッジトポロジの同じレグの間及び各レグの間の漏洩インダクタンスを回路板のレイアウト設計により低減する。適切な回路板設計は漏洩インダクタンスを緩和し、きれいで効率的なスイッチング波形を生成する。

[0047]

C. LCL同調回路のブリッジインダクタンス

いくつかの実施形態では、ここで構築され特徴付けられる回路設計の特徴は、 L_b インダクタを、図10に示すようにフルブリッジスイッチング出力の各側に、それぞれ L_b /2の値を有する、2つのインダクタを備えたスプリット構成で実装することにある。これにより各インダクタのフェライト質量を小さくできるとともに、高感度測定ICで見られるスイッチング高調波を低減することができる。図10の並列タンクキャパシタンス C_1 の両端間の電圧測定はシステムのリアルタイム特性の重要部分であり得る。 C_1 間のRMS電圧は、安全のために、一般制御回路から絶縁する必要がある。いくつかの実施形態では、絶縁電圧測定は費用がかかり複雑になり、このような回路のコスト及び複雑さは主として信号の周波数及び帯域幅により決まる。高調波及び従って信号の帯域幅を低減することによって、絶縁電圧測定のコスト及び複雑さを大幅に低減することができる。

[0048]

加えて、これらのインダクタの各々は調整可能なインダクタ設計、例えば図11に示す機械的に調整可能なインダクタ設計に構成することができる。図11において、要素1はフェライトEピースのためのプラスチック位置決めボビンを含む。要素2は単軸機械段である。要素3は、2つの半部を有する、例えばFerroxcube社製のフェライトE55コアである。要素4はこの段の移動する部分をEピースの1つに接続するブラケットである。要素5はアセンブリの全ての部分を位置決めするアセンブリブラケットである。インダクタンスはリッツワイヤが周囲に巻かれるフェライトE形コア構成の2つの半部の空隙を調整する機械的段(または他の同様の移動アクチュエータ)(要素2)を用いて調整することができる。これにより、80スレッド/インチの調整ネジを調整した後によりすることによってリアクタンスを所望の値の約1%以内に正確に制御できるため、信号の製造段階中のLCL共振タンク(LCL同調回路)の急速で容易な同調が可能になる。ここに記載するような機械的に微調整可能なインダクタを誘導無線電力伝送システムに適用することは新規なことである。

[0049]

損失及び磁束密度に関するACインダクタ(Lb)設計プロセスは起磁力の平衡の基本原理を用いることができる。この原理を用いて巻き数、空隙及び磁束密度を選択することができる。図12は、フェライト内の磁束密度及び電力損失を異なる空隙及び巻き数(図示されないで組み込まれている)について示す。小さなステップジャンプは巻き数インクリメントであり、大きなジャンプは1mmの空隙インクリメントである。従って、2つのインダクタを用いることによって磁束密度を極めて低く維持することができ、所望の設計を容易に達成することができる。更に、RMS磁束密度は使用する3C90材料の絶対飽和密度である0.2Tより遥かに低く維持すべきである(~0.28Tピークであるため

10

20

30

40

) 。

[0050]

D.LCL同調回路の容量性回路

いくつかの実施形態では、LCLコンバータ(図10)に示す容量性回路は直列補償キ ャパシタ (C 1 。) 及び並列タンクキャパシタ (C 1) を含むことができる。このような システムのキャパシタンスを決定するために、以下の方法を使用することができる。

- 1.所望の動作角周波数 = 2 fを決定する(ここで、fは周波数(Hz)である)
- 2 . 一次側の入力 D C (V d c 1) 、所望の出力電圧 (V d c 2) 及び所望の出力電流 (I d c 2) を決定する。出力電力 P o u t = V d c 2 * I d c 2 。
- 3.所定のパッドセットに対して、一次及び二次レシーバパッド314及び316間の 結合係数(k)範囲及び公称空隙を決定する。

$$k = \sqrt{1 - \frac{\left(L_1\right)_s}{\left(L_1\right)_o}}$$

であり、(L₁)。は二次レシーバパッド316が所定の高さで短絡された状態での一次 レシーバパッドのインダクタンスであり、(L 1)。は二次レシーバパッド316が所定 の高さで開路された状態での一次レシーバパッドのインダクタンスである。 k 。 はパッド が公称空隙に設定されている状態での結合係数kである。

4.最大一次RMS AC電圧(V_{ac1})を決定する。ここで、 = 180 のとき

$$V_{ac1} = V_{dc1} * \frac{2\sqrt{2}}{\pi} \sin\left(\frac{\sigma}{2}\right)$$

である。そして、IPTモデルを用いて所要の最大RMS ACトラック電流(Iュ ma 、) も決定する。従って、所望の一次リアクタンス(X₁ _{des})は

$$X_{1_des} = \frac{V_{ac1}}{I_{1_}}$$

である。

- 5.一次上方の公称高さにおいて一次レシーバパッド314が開路であるときの二次レ シーバパッドインダクタンス(Lヵ。)及び関連するリアクタンス(Xヵ。)を決定する 。 X_{20} = $*L_{20}$ であり、ここで はシステムの角周波数である。
- 6. 最大高さ(即ちk m i n) での開路電圧(V o c) V o c = I 1 m a x * X 2 0 * k_{min}を決定し(一次及び二次レシーバパッドのインダクタンスは互いに極めて近いも のと仮定する)、このインダクタンスから所望の二次リアクタンス(X 2 des)、

$$X_{2_des} = \frac{V_{oc}}{I_{dc2}}$$

を決定する。

- 7. 所定の二次共振回路(図23に示す)に対して、所要の二次直列補償キャパシタ(C 2 s)及び二次並列タンクキャパシタ(C 2)を、次の方程式 C 2 s = [- X_{2 des})] ^{- 1}及びC₂ = [* X_{2 des}] ^{- 1}を用いて決定する。
- 二次パッドが最大高さで、二次コイルが二次直列補償キャパシタCっ。と直列に短 絡された状態での公称一次レシーバパッドインダクタンス(Lュ 。)及びリアクタンス(X 1 n) を決定する。
- 9.所定の一次LCL同調回路(図10に示す)に対して、所要の一次直列補償キャパ シタ(C_{1s})及び一次並列タンクキャパシタ(C_{1})を、次の方程式 C_{1s} =[X _{1 0} - X _{1 _ d e s})] ^{- 1} 及び C ₁ = [* X _{1 _ d e s}] ^{- 1} を用いて決定する。 10.従って、一次ブリッジインダクタンス(Lょ)は

$$L_b = \frac{X_{1_des}}{\omega}$$

で決定できる。ブリッジインダクタンスをインバータの2つのレグに分割する場合には、 関連するインダクタンスは各インダクタに等分する。

10

20

30

40

[0051]

E.コイル相互作用

いくつかの実施形態では、L₁(図10参照)は二次回路318に電力を伝送するために使用する磁気パッド設計である。共振無線IPTコンバータでは、一次パッドはある程度の自己インダクタンス及び相互インダクタンスを有する疎結合変成器の一次側半部として作用する。自己インダクタンスは(II.Dに示すように)回路を同調させるために使用でき、そのため、システムは一般に、共振電力伝送の効率を維持するために、自己インダクタンスの変化を充分に許容しなければならない。

[0052]

III.磁気システム

ここに記載するIPTシステムは磁気システムを含む。いくつかの実施形態では、任意の適切な磁気システムを使用する。これらのシステムは空隙を介して磁界を発生し受信する。円形パッドトポロジをここに記載するシステムに使用することができる。例えば、M. Budhiaらの「Design and Optimisation of Circular Magnetic Structures for Lumped Inductive Power Transfer Systems」(IEEE Transactions on Industrial Electronics、1-1ページ、2011年)、F. Nakaoらの「Ferrite core couplers for inductive chargers」(Proceedings of the Power Conversion Conference, 2002. PCC Osaka 2002、2002年、850-854ページ、第2巻)、H. H. Wuらの「A review on inductive charging for electric vehicles」(IEEE International electric Machines & Drives Conference (IEMDC), 2011、2011年、143-147ページ)、H. H. Wuらの「A 1kW inductive charging system using AC processing pickups」(6th IEEE Conference on Industrial Electronics and Applications (ICIEA), 2011、2011年、1999-2004ページ)、及びH. Chang-Yuらの「LCL pick-up circulating current controller for inductive power systems」(IEEE Energy Conversion Congress and Exposition (ECCE), 2010、2010年、640-646ページ))を参照されたい。

[0053]

円形設計に加えて、他のパッド設計、例えば2011年10月7日に出願された米国仮 出願第61/554,957号に記載されているパッド設計を使用するもでき、その全内 容は参照することによりここに組み込まれる。他のパッド設計として、M. Budhiaらの「A new IPT magnetic coupler for electric vehicle charging systems (36th Annual C onference on IEEE Industrial Electronics Society, IECON 2010、2010年、2487-2492 ページ)、M. Budhiaらの「Development and evaluation of single sided flux coupler s for contactless electric vehicle charging (IEEE Energy Conversion Congress a nd Expo (ECCE), 2011、2011年、614-621ページ)、M. Chigiraらの「Small-Size Light -Weight Transformer with New Core Structure for Contactless Electric Vehicle Pow er Transfer System」(IEEE Energy Conversion Congress and Expo (ECCE), 2011、20 11年、260–266ページ)、H. Jinらの「Characterization of novel Inductive Power Tra nsfer Systems for On-Line Electric Vehicles (Twenty-Sixth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), 2011、2011年、1975-1979ペー ジ)及びY. Nagatsukaらの「Compact contactless power transfer system for electric vehicles」(International Power Electronics Conference(IPEC), 2010、2010年、8 07-813ページ)等に記載されている偏極パッド設計がある。

[0054]

一次及び二次回路は同じ又は異なるパッドを使用できる。いくつかの実施形態では、同じパッド設計を一次回路(例えば、図 1 0 の L $_1$)及び二次回路(例えば、図 2 3 の L $_2$)の両方に同じパッド設計を使用する。

[0055]

車両応用では、車両の幅でパッドの幅が制限され得る。更に、磁界の安全規格を満たすため及び設置を容易にするために、パッドのサイズは車両の幅より十分に小さくするのが好ましい。パッドサイズは用途(例えば自動車用、産業用等)の制約に応じて直径が変化

10

20

30

40

10

20

30

40

50

し得る。パッドの直径は約150mmから1500mmまでとすることができ、例えば150mm~305mm~610mm、又は610mm~1500mmを含むことができる。例えば、いくつかの実施形態では、図13及び図16に示す寸法を有する813mm(32インチ)径の円形パッド設計を使用することができる。

[0056]

フェライトバーの長さ、バーの位置及び内部及び外部コイルの半径は、M. Budhiaらの「Design and Optimisation of Circular Magnetic Structures for Lumped Inductive Power Transfer Systems」(IEEE Transactions on Power Electronics、1-1ページ、2011年)に概説されている設計最適化に従うことができる。レシーバ及びトランスミッタパッドは異なる構造又は同一の構造にすることができる。

[0057]

例えば、いくつかの実施形態では、各長いフェライトレグは約 $101 \times 25 \times 25 mm$ の寸法を有する3つの直線状 1 コア (0 R 4 9 9 2 5 1 C) からなるものとし得る。一実施形態では、巻線は A W G 3 6 リッツ線の約1 3 0 0 のより線からなる。使用するフェライトバーの容積は磁束密度飽和目的に対して過大評価されていること及びこのパッドはより大きな電力コンバータを使用すれば、2 0 k H z で 1 0 k W の電力を伝送することができることに留意すべきである。各パッドは、約2 0 . 4 k g (4 5 1 b) である。

[0058]

フェライトレグの数及びコイルの面積を選択する設計原理は円形パッドの設計最適化において判断される。例えば、M. Budhiaらの「Design and Optimisation of Circular Mag netic Structures for Lumped Inductive Power Transfer Systems」(IEEE Transactions on Power Electronics、1-1ページ、2011年)参照。

[0059]

コイル被覆エリアは一般にフェライトレグの中央部に位置し、そのエリアは一実施形態では長さの約40%にすべきである。巻き数は特定の用途に必要とされるアンペアターンに対して設計者が制御することができる。例えば、ここに記載する設計例では一次及び二次レシーバパッド314及び316の各々に12ターンを使用する。

[0060]

模範的なパッドが異なる垂直高さの下でどのように働くかをモデル化するために、結合係数対高さを図 14 に示す。更に、高さの変化の下で達成し得る可能な最高の非補償電力(SU)を予測するために結合係数データ及び 40 Aの一次タンク電流を使用している。まれに、5 のQ $_2$ であれば、共振コンバータにおいて 5 k Wの電力伝送を保証するには 1 k W以上の非補償電力で十分となる。これは図 14 では模範的なパッドに対して達成し得る最高動作点がほぼ 260 mm (10.3 インチ)であることを示している。非補償電力は結合係数の二乗に比例する。図 15 を参照されたい。

[0061]

パッド構造設計は、3~100のフェライトアーム、例えば18のフェライトアームの周囲に嵌合する二枚貝状の全プラスチック構造を備えることができる。いくつかの実施形態では、約3つのフェライトバー、例えばMagnetics 社から入手し得る部品番号0R49925ICのフェライトバーを18のフェライトアームの各々に入れる。磁気性能に影響を与えない任意の適切な材料を用いてパッド設計を製作することができる。いくつかの実施形態では、二枚貝半部は約0.375インチの厚さであり、フェライトアームを受け入れるようにカットされた溝は図16に示すように各半部において0.150インチの深さである。しかしながら、これらのパラメータはパッドの全体直径及び個々のIPT用途に必要とされるシステム性能に応じて変化する厚さ及び深さに調整することができる。

[0062]

いくつかの実施形態では、フェライトバーに対する嵌合寸法は名目上バーをきつくしっかり保持し得る極めて小さい間隙の嵌合とする。フェライトバー及び / 又はリッツ線を固定するために適切な接着剤及び / 又は留め具を使用してもよい。一実施形態では、工具を

接近可能しバーの組み立て又は分解を助けるために、図17に示すように溝の隅部に曲率半径を与えることができる。二枚貝半部の片方の上部には鳩の尾形の溝が含まれ、リッツ線の位置決め用の所望の螺旋フットプリントを横断している。一実施形態に対する溝の寸法が図17に示されている。リッツ線の位置決めのための捕獲用鳩の尾形溝を誘導無線電力伝送システムに適用することは新規であり、利点をもたらす。図示の実施形態の場合、リッツワイヤは嵌め込み配置であるため、組み立て時におけるリッツ線の設置が促進される。更に、リッツ線を極めて正確に設置できる(例えば、±0.05mm又は±0.025mm)。正確な位置決めは完成パッドの磁気性能を解析的にモデル化した磁気性能と対応させるのに役立つ。正確な位置決めのために、リッツ線長の予測も正確になる。従って、コイルインダクタンス、コイル抵抗及び他のコイル電気パラメータが厳しいトレランスに維持され、システムの性能及び効率が向上する。

10

[0063]

一実施形態では、螺旋フットプリントは図17において均等に増大する半径の約12ターンの溝を有する。この螺旋ターンは約7.0インチの半径から出発して約10.7インチの半径で終了する。しかしながら、これらのターンの半径及び数はシステムの必要性及び目標用途に応じて調整することができる。

[0064]

模範的なシステムに対して、選択したフェライト材料の一般的なコア損失は100kHz、200mTの電界及び100 において約696mW/cm3である。フェライトはマンガン亜鉛材料とすることができ、同等の材料及び様々な形のものを様々なフェライトメーカから入手することができる。

20

[0065]

いくつかの実施形態では、螺旋溝内に設置されるリッツ線は記載した各パッドアセンブリまで進むツイストペアリードワイヤにとって十分な長さを含む。鳩の尾形溝内のワイヤは個々のより線に被覆されたナイロンサービング及びエナメルのみを有する。プラスチックパッドまでのリード断面において、ツイストペアの各部分は Kynar製の熱収縮絶縁材料(FIT-225又は同等物)の2つの層内に包まれているようにすることができる。ツイストペアはHalar製の編み上げチューブ型オーバラップ保護層内に包まれるようにすることもできる。適切なリッツ線は38ゲージ銅線のより線/網組線1300/38S80DN(HM線)の1300のより線からなるリッツ線を含むことができる。

30

[0066]

IV.一次コントローラ

ここに記載するIPTシステムは一次コントローラ308を含むことができ、このコントローラはハードウェア及びこれと関連するソフトウェアの両方を有する。

[0067]

A . ハードウェア

共振スイッチング波形を制御するために任意の適切な一次コントローラを使用することができる。いくつかの実施形態では、一次トラック電流コントローラを開発するために、Xilinx Spartan 3AN FPGAを用いたフィールドプログラマブルゲートアレイ(FPGA)開発ボードを使用することができる。標準規格802.15.4の無線プロトコル層のような無線プロトコル層でのカスタムアプリケーション通信プロトコルを提供するために、この開発ボードにカスタム無線通信カードを付加してもよい。このFPGA開発プラットフォームは一般に初期のIPTシステムに極めて大きなフレキシビリティを可能にする。更に、より費用効果の高い解決策が存在し、一般に、より精細なシステム全体の制御を、より高いデータスループットレートで可能にする。コントローラに対する1つのこのような代替例は、ディジタル信号コントローラ(DSC)又はディジタル信号プロセッサ(DSP)、例えばフリースケールMC56F84××又はシリーズクル信号プロセッサ(DSP)、例えばフリースケールMC56F84××又はシリーズ

[0068]

B . ソフトウェア

50

1. 概要

FPGAを使用する実施形態では、内部ファームウェア開発はハードウェア記述言語(HDL)で行うことができる。DSC又はDSPを用いる実施形態では、内部ファームウェア開発は、C又はC++等のソフトウェアプログラミング言語で行うことができる。このようなファームウェアはサブセクション、例えば6つの異なるサブセクションに分割することができる。これらのサブセクションは、例えばプロセッササブセクション、通信サブセクション、アナログ・ディジタルコンバータ(ADC)サブセクション、LEDディスプレイサブセクション、スイッチ制御サブセクション、及びスイッチ故障及び準備サブセクションを含むことができる。

[0069]

これらのファームウェアサブセクションに加えて、追加のソフトウェアをプロセッササブセクションにアプリケーションとして加えることができ、C又はC++言語等の任意の適切な言語で実行させることができる。マニュアル制御及びデータロギングなどのインタラクションは任意の適切なユーザインタフェース、例えば無線インタフェースによるPC上のグラフィックユーザインタフェース(GUI)によって独立に処理することができる。マニュアル制御及びインタラクションは任意であるが、システムのデータが豊富な分析の実行を支援する。

[0070]

a . プロセッサ

プロセッササブセクションはプロセッサ、例えば約30MHz・100MHzのクロック周波数で動作する32ビットプロセッサを含み、データ及びプログラムメモリを必要とし得る。他の適切なプロセッサは64ビットのもの、又は異なるクロック速度を有するもの又はシングル又はマルチコアを有するものとし得る。一次クロックは外部位相ロックループ(PLL)で調整し得るが、いくつかの実施形態では周波数の重要な性質のために、HDLブロックがクロックタイミング検証を実行し、クロックタイミングが既知の基準クロック信号に対して完全に検証されるまで、プロセッサ(及び他の全てのサブセクションをリセット状態(従って電力伝送を阻止する状態)に保持することができる。プロセッサオセクションは、一実施形態では、ソフトウェアのアプリケーション層を完全に管理する。プロセッサはLCLコンバータを流れる電流及び電圧測定値を受け取り、位相角を、従って一次トラック電流を直接決定する(以下のIV.B.1.eに記載されている)。更に、プロセッサは通信を制御し、報告を実行し、必要に応じオペレータにより出されるマニュアル制御コマンドを実行するように構成することができる。

[0071]

b . 通信

通信サブセクションは、一実施形態では、ハイレベルデータ伝送を無線通信チップで要求される低レベルビットエンコーディングに変換するように構成し得る。通信サブセクションは無線データの適切な送信及び受信を保証する。

[0072]

c . アナログ - ディジタルコンバータ (A D C)

ADCサブセクションは、一実施形態では、外部ADC集積回路と自動的に通信し、データをフィルタリングし、重要な測定パラメータをプロセッササブセクションに周期的に報告するように構成し得る。

[0073]

d . L E D ディスプレイ

発光ダイオード(LED)ディスプレイサブセクションは、視覚ステータス報告を処理することによってプロセッサの負荷を低減するように構成し得る。このサブセクションは各サブセクションのステータスを自動的に読み取り、一実施形態では、起こり得る問題及び電力レベルステータス情報を直ちに視覚的に報告する。LEDディスプレイサブセクションはFPGA開発ボード上のRGBのカラーLEDセットを直接制御することができる

10

20

30

50

40

[0074]

e . スイッチ制御

スイッチ制御サブセクションは、一実施形態では、プロセッサからの所望の位相を各フルブリッジスイッチへの正しい波形制御に変換するように構成される。このサブセクションは、他のサブセクションより高速で、例えば100MHz-500MHzで動作するクロックを必要とする(ダイレクト低レイテンシ制御レゾリューションを可能にするため)。このサブセクションは別個のクロックで動作するため、HDLは潜在的な準安定性問題がシステムを損傷しないようにクロックドメイン間の非同期問題を処理することができる

[0075]

LCLコンバータを使用するとき、その広い容認性のために、スイッチ制御の方法として対称電圧相殺(SVC)又は位相シフト(PS)制御を使用することができる。導通角が $0 \sim 180$ 。変化するときの一次電流の変化が図 18に示されている。図 18は、一次トラック電流がゼロから 40 A まで完全に接続できることを示している。他の実施形態は、 2012年 10月 23日に出願された米国特許出願第 13/642, 925号に記載されている非対称電圧相殺(AVC)制御の使用を含み、その全開示内容は参照することによりここに組み込まれる。

[0076]

f.スイッチ故障及び準備フィルタ

スイッチ故障及び準備フィルタサブセクションは、主としてゲートドライバ回路から疑似故障及び準備信号をフィルタリングするように構成される。スイッチングインバータの電気的に雑音の多い環境のために、高電力回路からのディジタル信号報告はしばしばバウンスして疑似信号を生じ得る。このサブセクションは読み込みを正しくするために入力信号をディジタル的にフィルタリングし、デバウンスする。

[0077]

2. デュアルサイド制御及び最適効率

図1は、IPTシステム内の効率を最大にするためのシステム100の一実施形態を示す概略ブロック図である。システム100はIPTシステム104内に最大効率装置102を含む。また、IPTシステム104は第1段106、第2段108、第1段106及び第2段108間の無線電力伝送部110を含む。信号100は、負荷112及び電圧源114を含む。システム100の要素を以下に説明する。

[0078]

システム100は最大効率装置102を含み、この装置は、IPTシステム104の最大効率を見つけるためにIPTシステムの少なくとも電圧及び電流を繰り返し測定し、その後より高い効率を達成するために第1段106及び第2段108のパラメータを調整する。最大効率装置102は図2の装置200に関して後でより詳細に説明される。

[0079]

システム100はIPTシステム104を含む。IPTシステム104は第1段106から第2段108へ電力を無線伝送する。IPTシステム104は車輌、車輌内の電離、又は無線電力伝送が有効な他の装置に電力を供給することができる。IPTシステム104は様々なトポロジを含むことができ、効率を測定し、高い効率を達成するためにパラメータを処理することができる任意の構成を含むことができる。一実施形態では、第1段106はエネルギーを無線伝送し、第2段108は無線伝送されたエネルギーを受け取り、出力バスを介する1以上の負荷112へのエネルギー伝送を制御する。

[0800]

第1段106は電圧源114から電力を受信する。一実施形態では、電圧源114はDC電圧源であり、第1段106は入力としてDC電圧を受信する。別の実施形態では、電圧源114はAC電圧源である。第1段106は、一実施形態では、AC電圧を入力として用いる。別の実施形態では、第1段はAC電圧を整流してDC電圧を第1段106内の別の段に供給する整流器段を含む。電圧源114は公共電力網、発電機、電池、燃料電池

10

20

30

40

(21)

、又は他の当業者に既知の他の電力源からのものとすることができる。

[0081]

第1段106は、いくつかの実施形態では、無線電力伝送に適した1以上のスイッチング電力コンバータ又はインバータを含む。例えば、第1段106は、共振インバータ、共振コンバータ、又はIPTシステム104内の無線電力伝送に有用な他のトポロジを含むことができる。一実施形態では、第1段106は共振回路網に制御された方形波インバータを含む。例えば、方形波インバータは図5に関して記載したHブリッジインバータとすることができる。他の実施形態では、第1段106は共振回路網を励振するフルブリッジ、ハーフブリッジ、プッシュプル又は他のタイプのスイッチングでコンバータを含むことができる。共振回路網はキャパシタ、インダクタ、又は従来既知の他のコンポーネントの組合せを含むことができる。第1段106はインバータ又はコンバータを含み、その後段に共振回路網(RN)が続き、その後段に負荷が続く。コンバータ/RN/負荷は、電圧源・RN・電圧シンク、電圧源・RN・電流シンクなどの様々な組合せのものとすることができる。

[0082]

共振回路網は一般的にインダクタ及びキャパシタなどの2以上のリアクティブコンポーネントを含む。リアクティブコンポーネントはコンバータ/インバータのタイプ及び負荷のタイプに応じて様々な直列及び並列配置にすることができる。共振回路網は2素子型、3素子型、又は他の高次配置にすることができる。当業者はIPTシステム104の無線電力伝送に適した他の配置も認識されよう。

[0083]

一実施形態では、第1段106はLCL負荷共振コンバータを含む。LCL負荷共振コンバータは、図5に関して上述したトポロジを含むことができる。一実施形態では、第1段106はLCL負荷共振器コンバータの負荷として働く一実施形態レシーバパッド314も含む。一実施形態では、一次レシーバパッド314は、図13・図17に関して上記したものである。

[0084]

システム100は負荷112に電力を供給する第2段108を含む。一実施形態では、第2段108は、二次共振回路、二次整流回路、及び二次減結合回路を含む。二次共振回路は、図13・図17に関して記載したような二次レシーバパッド316を含むことができる。二次共振回路網はインダクタ及びキャパシタなどの他のリアクティブコンポーネントも含むことができる。リアクティブコンポーネントは様々な直列及び並列配置にすることができる。一実施形態では、二次共振回路は図23に関して記載するように構成することができる。

[0085]

第2段108は、一実施形態では、二次整流回路を含む。二次整流回路は二次共振回路からのAC電圧を整流する。二次整流回路はフルブリッジ整流器、ハーフブリッジ整流器、又は当業者に既知の他の整流回路とすることができる。第2段108は二次減結合回路を含む。二次減結合回路は負荷112を二次整流回路及び二次共振回路から減結合するのに役立つ。一実施形態では、二次減結合回路は二次減結合コンバータである。二次減結合コンバータは、ブーストコンバータ、バックコンバータ又は他のトポロジなどのスイッチング電力コンバータとすることができる。二次減結合コンバータは、二次整流回路からのDC電圧を負荷112に有用な別の形態に変換することができる。例えば、負荷112がDC電圧を要求する場合には、二次減結合コンバータはDC・DCコンバータとすることができる。

[0086]

一実施形態では、負荷112はエネルギー蓄積素子を含む。エネルギー蓄積素子は電池、キャパシタ、又はエネルギーを蓄積し得る他の素子とすることができる。負荷112エネルギー蓄積素子に加えて追加の負荷を含むこともできる。例えば、負荷112は電気自動車駆動系とすることができる。電池で電気自動車駆動系に電力を供給することができる

10

20

30

40

。一実施形態では、第2段108及び負荷112は車内に設置される。例えば、車が第2段108内の二次レシーバパッド316を第1段106内の一実施形態レシーバパッド314と整列させたとき、第1段106は第2段108に電力を無線伝送することができる。IPTシステム104は第2段108及び負荷112を備えた車が移動し停止する複数の場所に複数の第1段106を備えることができる。

[0087]

図 2 は、 I P T システム 1 0 4 内の効率を最大にする装置 2 0 0 の一実施形態を示す概略プロック図である。装置 2 0 0 は、後述する測定モジュール 2 0 2 、最大効率モジュール 2 0 4 、及び調整モジュール 2 0 6 を有する最大効率装置 1 0 2 の一実施形態である。

[0088]

装置200は、IPTシステム104の電圧及び電流を測定する測定モジュール202を含む。電圧は出力電圧及び/又は入力電圧とすることができる。例えば、測定モジュール202は負荷112を給電する第2段108の出力バスの出力電圧を測定することができる。別の実施形態では、測定モジュール202はIPTシステム104への入力電圧、例えば電圧源114が第1段106に接続される入力端の電圧を測定する。測定モジュール202は出力電流及び/又は入力電流を測定することができる。測定モジュール202は出力電流及び/又は入力電流を測定することができる。測定モジュール202は、一実施形態では、第2段108の出力バスの出力電流を測定する。別の実施形態では、測定モジュール202はIPTシステム104の入力端における入力電流、例えば電圧源114から第1段106への電流を測定する。

[0089]

別の実施形態では、測定モジュール 2 0 2 は第 1 段 1 0 6 又は第 2 段 1 0 8 への内部の電圧及び / 又は電流を測定する。例えば、測定モジュール 2 0 2 は第 1 段 1 0 6 の整流段及びコンバータ段の間で電圧及び / 又は電流を測定する。この電圧及び電流測定値は、負荷 1 1 2 へ伝送される電力の量、負荷 1 1 2 の定常状態抵抗、 I P T システム 1 0 4 への入力電力などの決定に有用である。測定電圧及び電流は I P T システム 1 0 4 の効率を評価し、最大効率まで繰り返すのに有用である。測定電圧及び / 又は電流は効率の計算式で使用することができる。

[0090]

装置200はIPTシステム104に関する最大効率を決定する最大効率モジュール204を含む。一実施形態では、最大効率モジュール204は第1段106及び第2段108に関する最大効率を決定する。最大効率モジュール204は測定モジュール202の測定値と一緒にIPTシステム104のパラメータをIPTシステム104の最大効率まで反復して使用する。最大効率モジュール204で決定された最大効率は、特定の負荷112、IPTシステム104により発生される特定量の電力、IPTシステム104へ入力する電力量等に基づくものとし得る。最大効率モジュール204は最大効率を決定するためにIPTシステム104内で得られる他の測定値を使用してもよい。

[0091]

最大効率モジュール 2 0 4 は、一実施形態では、1以上の変数を反復使用することによって最大効率を決定する。例えば、最大効率モジュール 2 0 4 は最大効率を決定するために1以上の変数を特定の範囲に亘って変化させることができる。最大効率モジュール 2 0 4 が使用し得る変数のいくつかは、第1段106の導通角、第2段108のデューティサイクル、IPTシステム104が空隙を介して電力を無線伝送する空隙の大きさ、一次レシーバパッド 3 1 4 及び二次レシーバパッド 3 1 6 のミスアライメント、1以上の負荷112に伝送される電力、及び品質係数である。当業者は、最大効率モジュール 2 0 4 で IPTシステム 1 0 4 の最大効率を決定するのに他の変数を変化させてもよいことは認識されよう。

[0092]

一実施形態では、最大効率モジュール204はIPTシステム104の第1段106及び第2段108内の種々の要素のモデルを使って最大効率を決定する。最大効率モジュー

10

20

30

40

ル204はIPTシステム104内の種々の素子の動作を近似する方程式を含むことがで きる。IPTシステム104の特定のトポロジに対する方程式が以下に示されるが、当業 者は第1段106から第段108へ電力を無線伝送するIPTシステム104に適した他 のトポロジに適用可能な他の方程式を認識されよう。

[0093]

装置200は、IPTシステム104内の1以上のパラメータを最大効率モジュール2 0 4 により計算された最大効率と一致して調整する調整モジュール 2 0 6 を含む。例えば 、調整モジュール206は、最大効率モジュール204により決定された最大効率に対応 させるために、IPTシステム104が最大効率モジュール204により決定された動作 状態と合致する動作状態になるようにIPTシステム104内の1以上のパラメータを調 整する。

[0094]

一実施形態では、調整モジュール206により調整される1以上のパラメータは第2段 108のデューティサイクルを調整するデューティサイクル基準及び第1段106の導通 角を調整する導通角基準を含む。例えば、第1段106が共振コンバータを含む場合には 、その共振コンバータを制御する一般的な方法は導通角を調整する。第2段108がブー ストコンバータなどの二次結合コンバータを含む場合には、そのコンバータを制御する一 般的な方法はデューティサイクルを調整する。共振コンバータを制御するシステムは基準 を含む。典型的な制御システムは、電流又は電圧などのパラメータを測定し、基準に対す る誤差に基づく誤差信号を用いて導通角又はデューティサイクルなどの制御パラメータを 調整する帰還を使用する。共振コンバータに対する導通角の調整は共振コンバータを異な る動作点に調整し得る。更に、二次減結合コンバータのデューティサイクルの調整は第2 段108の動作点を変化し得る。一般的に、第1段106の共振コンバータに対する導通 角及び第2段108の二次減結合コンバータのデューティサイクルは独立に調整すること ができる。導通角及びデューティサイクルを独立に調整すると、最大効率モジュール20 4により計算された最大効率へ向けたIPTシステム104の調整に大きなフレキシビリ ティを与えることができる。

[0095]

一般的に、第2段108内の二次減結合回路に対するデューティサイクルを調整する制 御ループは比較的高速の制御ループである。同様に、第1段106の共振コンバータに対 する導通角を調整する制御ループも比較的高速である。一実施形態では、調整モジュール 206がデューティサイクル基準及び/又は導通角基準を調整する場合には、調整モジュ ール206は外部ループの一部分として動作する。一実施形態では、外部ループは第2段 108に対するデューティサイクルを制御する内部制御ループ及び第1段106に対する 導通角を制御する内部制御ループより低速である。例えば、これらの内部ループはデュー ティサイクル及び導通角をミリ秒又はマイクロ秒ベースで調整することができるが、外部 ループは導通角基準及びデューティサイクル基準を分又は秒ベースで調整することができ る。

[0096]

いくつかの実施形態では、ここに記載する誘導性充電システムのスイッチ1つの望まし い特徴は、オンボード電池326を充電するために使用する電力(電流)を制御する能力 にある。式(2)及び(21)をグループ化することによって、下記の式(5)から、電 池 3 2 6 へ供給される電力はデューティサイクル(D)と導通角()の両制御変数によ り決まり、これは減結合及び一次トラック電流制御として通常よく知られている。例えば 、G. A. Covicらの「Self tuning pick-ups for inductive power transfer」(IEEE Pow er Electronics Specialists Conference, 2008. PESC 2008.、2008年、3489-3494ページ)、及びP. Siらの「Wireless Power Supply for Implantable Biomedical Device Based on Primary Input Voltage Regulation (2nd IEEE Conference on Industrial Electr onics and Applications, 2007. ICIEA 2007.、2007年、235-239ページ)参照。

[0097]

10

20

30

$$P_{out} = \frac{V_{dc}^2}{\omega^2} \frac{M^2}{L_{leq}^2 L_{2eq}^2} R_{dc} (1 - D)^3 \sin^2 \left(\frac{\sigma}{2}\right)$$
(5)

[0098]

制御アルゴリズムを実行するためにこれまでいくつかの方法が提案されている。一つの可能な選択肢は一次トラック電流自身の制御を用いる。例えば、G. B. Joungらの「An energy transmission system for an artificial heart using leakage inductance compensation of transcutaneous transformer」(IEEE Transactions on Power Electronics、第13巻、1013-1022ページ、1998年11月)、及びP. Siらの「A Frequency Control Method for Regulating Wireless Power to Implantable Devices」(IEEE Transactions on Biomedical Circuits and Systems、第2巻、22-29ページ、2008年3月)参照。別のもっと最近の開発例はMが変化するとき一次トラック電流を により制御する。デューティサイクル制御は負荷抵抗変化に対して使用される。要するに、 I_1 は V_d 。を固定に維持するために式(20)で支配されるMに反比例するように制御され、負荷変化による電力出力を式(5)で制御するためにDが使用される。このタイプのアプローチは二次減結合制御と呼ばれる。しかしながら、これらの両方法とも、いくつかの実施形態で実施可能であるが、最高の総合システム効率を得るための最適な制御ストラテジではない。ここに記載する実施形態によるこのシステムでは、負荷及び結合の変化を有するシステムに対して最高の効率を達成するために新たなデュアルサイド制御ストラテジを使用する。

[0099]

ここに記載するいくつかの実施形態で使用する効率解析アプローチはシステムを別個のセクションに分割し各セクションの効率を個別に解析する。効率解析の一つの前提として、LCLコンバータ上のHブリッジのスイッチング損失は極めて複雑な性質で変化するため、導通損失のみが考慮される。純粋且つ実際の反射抵抗状態の下でも、1つのレグは比較的高いダイオード逆回復損失(容量性スイッチング)で動作し、他のレグは通常のハード特性(誘導性スイッチング)で動作し得る。例えば、H. H. Wuらの「Design of Symmetric Voltage Cancellation Control for LCL converters in Inductive Power Transfer Systems」(IEEE International Electric Machines & Drives Conference (IEMDC), 2011、2011年、866-871ページ)参照。更に、各半導体装置のスイッチング特性は動作温度及び比較的大きな不一致を有する内部装置パラメータに強く依存する。

[0100]

解析の説明を助けるために、図19を参照し得る。半導体装置の導通損は、一実施形態では、2つの部分に分離してモデル化され、1つの部分はゼロ電流における順方向電圧降下($V_{rd_on} V_{bs_on} V_{bd_on} V_{bd_on}$)であり、他の部分は直列の等価線形抵抗である。これらの各部分は別個に考慮することができる。 $R_{ld_on} U_{ld_on} U_{ld$

[0101]

整流器後段のブーストコンバータの効率は、次の式で与えられる。

[0102]

【数 6 】

$$\boldsymbol{\eta}_{b2} = \frac{P_{out}}{P_{out} + P_{Ldc} + P_{switch} + P_{diode}}$$

(6)

[0 1 0 3]

ここでは線形抵抗のみが考慮され、式(6)を展開すると、次の式となる。

[0104]

20

10

30

【数7】

$$\eta_{b2} = \frac{1}{1 + \frac{R_{Ldc} + DR_{bs_om} + (1 - D)R_{bd_om}}{(1 - D)^2 R_{dc}}}$$

(7)

[0105]

 R_{bs_on} が R_{bd_on} にほぼ等しいものとすると、式(7)は次の式に簡略化される。

[0106]

【数 8 】

$${{\eta }_{b2}}=\frac{1}{1+\frac{8\omega {{C}_{2}}\left({{R}_{\mathit{Ldc}}}+{{R}_{\mathit{bd}_\mathit{on}}} \right)}{{{{\pi }^{2}}{{Q}_{\mathit{2v}}}}}$$

(8)

[0107]

装置の順方向電圧降下による損失は同様に導出でき、V_{hs_on}とV_{hd_on}とが同等であるとすることにより、効率は、次の式で表される。

[0108]

【数9】

$$\eta_{c2} = \frac{1}{1 + \frac{\pi V_{rd_on} + \sqrt{2}V_{bd_on}}{\sqrt{2}(1 - D)V_{out}}}$$

[0109]

次に、二次共振回路に対して、パッドインダクタンス変化による離調効果が考量される。解析を簡単にするために、パッドインダクタンスは一定であると数学的に取扱い、並列同調キャパシタは変数として取り扱う。更に、同調キャパシタのESRはそれらの損失は、他のコンポーネントより一桁低いので無視される。 i 2 の大きさは次の方程式で表される。

(9)

[0110]

【数10】

$$|i_2| = i_{\alpha c} \sqrt{1 + Q_{2v}^2 (1 + \alpha)^2}$$

(10)

[0111]

ここで、 は次の通りである。

[0112]

【数11】

$$\alpha = \Delta C_2/C_2$$

(11)

[0113]

式(6)に提案されたアプローチに続いて式(10)を使用すると、効率は、次の式で与えられる。

[0114]

【数12】

$$\eta_{r2} = \frac{1}{1 + \frac{\omega C_2 R_{L2}}{O_{2n}} \left(1 + Q_{2n}^2 \left(1 + \alpha \right)^2 \right)}$$

(12)

[0115]

50

30

40

方程式(8)、(9)及び(12)を掛け合わせれば、その結果は、第2段108の二次共振回路、二次整流回路、及び二次減結合コンバータの効率になる。次の導出はLCL負荷共振コンバータ及び関連今日回路網の効率を決定することにある。図20に示す等価回路が損失をモデル化するために使用される。最初に、二次離調共振回路の並列インピーダンスは、次の式により与えられる。

【 0 1 1 6 】 【数 1 3 】

$$Z_{p} = R_{ac} \left\| \frac{1}{j\omega\Delta C_{2}} = \frac{R_{ac} (1 - jQ_{2\nu}\alpha)}{1 + Q_{2\nu}^{2}\alpha^{2}} \right\|$$
(13)

[0117]

二次側の全てのESR損失は、それらの値はリアクタンス及び抵抗成分より著しく小さいために無視され、iっは、次の式で与えられることに注意されたい。

[0118]

【数14】

$$I_{2} = \frac{V_{OC} - V_{oc2}}{j\omega L_{2}} = \frac{j\omega MI_{1} - \frac{M^{2}}{L_{2eq}}I_{1}\frac{R_{oc}(1 - jQ_{2v}\alpha)}{1 + Q_{2v}^{2}\alpha^{2}}}{j\omega L_{2eq}}$$

[0119]

第1の原理から、反射インピーダンスは、次の式の通りである。

[0120]

【数15】

$$Z_{r} = \frac{\omega^{2} M^{2} I_{2}}{V_{oc}} = \frac{\omega M^{2}}{L_{2eq}} \frac{Q_{2v}}{1 + Q_{2v}^{2} \alpha^{2}} + j \frac{\omega M^{2}}{L_{2eq}} \left(-1 - \frac{Q_{2v}^{2} \alpha}{1 + Q_{2v}^{2} \alpha^{2}} \right)$$
(1.5.)

[0121]

式 (15) は、 C_2 が零にセットされれば、式 (3) に簡略化されることに注意されたい。前と同様に、線形抵抗損失は零電流時の順方向電圧降下から分離される。式 (6) の場合と同様のアプローチを使用することにより、一次側の効率は、次の式で与えられる

[0122]

【数16】

$$\eta_{r1} = \frac{1}{1 + \frac{R_{L1} + R_b \omega^2 C_1^2 ((R_{L1} + \text{Re}(Z_r))^2 + (\omega \Delta I_1 + \text{Im}(Z_r))^2)}{\text{Re}(Z_r)}}$$

(16)

[0123]

式(8)と同様に、順方向電圧降下による効率は、次の式で与えられる。

[0124]

【数17】

$$\eta_{c1} = 1 - \frac{nV_{hs_on}}{\omega L_b \sqrt{\frac{2P_{out}}{\text{Re}(Z_r)}}}$$

(17)

[0125]

式(8)、(9)、(12)、(16)及び(17)を集めることによって、全体的なシステム効率は、次の式で与えられる。

[0126]

【数 1 8 】 $\eta = \eta_{r1} \cdot \eta_{c1} \cdot \eta_{r2} \cdot \eta_{b2} \cdot \eta_{c2}$

(18)

[0127]

一実施形態では、式(18)を用いて最高効率点を見つけ出すことができる。しかしながら、一般的にこの関数は Q_2 、に対して4次より高次であり、これはグローバル最大点の解析解を直接決定できないことを意味する。幸いなことに、詳しい解析により、この関数は常にグローバル最大点を有し、簡単な検出ルーチンを用いて最大点を検出することができる。解析のための値は表2に示されている。 R_b は L_b のESRとスイッチの線形抵抗の和である。変数M及びを決定するために、図4を使用できる。 Q_2 、は式(14)を用いて計算される。本例では、SKWシステムのFPGAコントローラ及び全てのセンサを給電するために約37Wが使用されている。

10

[0 1 2 8]

【表2】

効率解析のためのシステムパラメータ

パラメータ	値	パラメータ	値		
R _{Ldc}	0.0166Ω	R_{L1}	0.0636Ω		
R _{bd_on}	0. 035Ω	R _b	0. 1194Ω		
V _{bd_on}	0.95V	V _{hs_on}	0.9V		
R _{L2}	0. 0569Ω	V _{rd_on}	0.77V		

20

30

[0129]

このシステムを実際に実現するためには、図21に示すコントローラブロック図を使用することができる。一実施形態では、デューティサイクルDが一次制御変数として使用され、導通角 が出力電力(電流)を規定値に維持するために常に更新される。

[0130]

[0131]

【数19】

 $M = \frac{\sqrt{1 + Q_2^2 \alpha^2}}{1 - D} \frac{I_{out} X_1}{V_{dc} \sin\left(\sigma/2\right)} L_{2eq}$

40

[0132]

図22は、広い範囲の負荷及びデューティサイクル状態に亘って大きな誤差なしに相互インダクタンス(又は結合係数)を決定することができることを示す。表2のシステムパラメータの推定値が式(18)を用いる最適効率制御に必要とされる。正確な推定値を生成する一つの方法は、各コンポーネントのESRチャネルを直接測定し、その後コントローラを各ユニットに対して測定寄生値でプログラムする。この技術の潜在的な欠点は、動作中に2つのIPTパッドのESRに浮遊金属物体が近づくと、それらのESRが変化し

(19)

得ることにある。動作中のパッドESRを正確に検出するいくつかの代替可能な方法がある。いくつかの実施形態では、名目上の追加コストで共振コンバータの前に入力電圧及び電流センサを設置することによって代替方法を始め、入力電力を直接測定することができる。システムの入力及び出力にアクセスすることで、効率を決定し、そのピークをサーチすることによって最適値を検出することができる。これは、ここに記載するシステムのいくつかの実施形態では閉ループコントローラに対して取られている実際の実施アプローチである。この方法で測定する効率は完全には正確でないといえるが、一般的な傾向は1%の測定誤差を有し得るセンサを用いて依然として決定することができる。図33に示す関数のピーク値は全く正確に追跡記録することができる。

[0133]

10

20

いくつかの実施形態では、一次コントローラ308のプロセッサは、最適システム効率を保証するために、システム効率を追跡し、SVC制御及び二次減結合制御を最適にすることに責任を持つように構成される。

[0134]

V. 二次同調回路網(二次回路 3 1 8、図 2 3) ここに記載するIPTシステムは二次同調回路を含むことができる。

[0135]

A . 二次共振回路の容量性回路網

いくつかの実施形態では、二次減結合コンバータとともに示される図 2 3 に示す容量性回路網は直列補償キャパシタ(C_2_s)及び並列タンクキャパシタ(C_2)を含むことができる。このシステムのキャパシタンスを決定するために、一実施形態では、次の方法を使用することができる。

[0136]

- 1.所望の動作角周波数 =2 fを決定する(ここで、fは周波数(Hz)である)
- 2 . 一次側の入力 D C (V $_{
 m d}$ $_{
 m c}$ $_{
 m 1}$) 、所望の出力電圧 (V $_{
 m d}$ $_{
 m c}$ $_{
 m 2}$) 及び所望の出力電流 (I $_{
 m d}$ $_{
 m c}$ $_{
 m 2}$) を決定する。出力電力 P $_{
 m o}$ $_{
 m u}$ $_{
 m t}$ = V $_{
 m d}$ $_{
 m c}$ $_{
 m 2}$ * I $_{
 m d}$ $_{
 m c}$ $_{
 m 2}$
- 3. 所定のパッドセットに対して、一次及び二次レシーバパッド 3.1.4 及び 3.1.6 間の結合係数(k)範囲及び公称空隙を決定する。

$$k = \sqrt{1 - \frac{\left(L_1\right)_s}{\left(L_1\right)_o}}$$

30

50

であり、ここで(L_1)。は二次レシーバパッド 3 1 6 が所定の高さで短絡された状態での一次レシーバパッドのインダクタンスであり、(L_1)。は二次レシーバパッド 3 1 6 が所定の高さで開路された状態での一次レシーバパッドのインダクタンスである。 k 。はパッドが公称空隙に設定されている状態での結合係数である。

4 . 最大一次 R M S A C 電圧(V _{a c 1})を決定する。ここで、 = 1 8 0 ° のとき

$$V_{ac1} = V_{dc1} * \frac{2\sqrt{2}}{\pi} \sin\left(\frac{\sigma}{2}\right)$$

である。そして、IPTモデルを用いて所要の最大RMS ACトラック電流(I_{1ma} 40 $_{x}$)も決定する。従って、所望の一次リアクタンス(X_{1des})は

$$X_{1_des} = \frac{V_{ac1}}{I_{1_}}$$

である。

- 5.一次パッドの上方の公称高さに位置し、一次レシーバパッド 3 1 4 が開路であるときの二次レシーバパッドのインダクタンス(L $_2$ $_0$)及び関連するリアクタンス(Х $_2$ $_0$)を決定する。 Х $_2$ $_0$ = * L $_2$ $_0$ であり、ここで はシステムの角周波数である。
- 6.最大高さ(即ち k_{min})での開路電圧(V_{oc}) V_{oc} = I_{1max} * X_{20} * k_{min} を決定し(一次及び二次レシーバパッドのインダクタンスは互いに極めて近いものと仮定する)、このインダクタンスから所望の二次リアクタンス(X_{2des})、

10

20

30

40

50

$$X_{2_des} = \frac{V_{oc}}{I_{de2}}$$

を決定する。

7.所定の二次共振回路(図23に示す)に対して、所要の二次直列補償キャパシタ(C $_2$ s)及び二次並列タンクキャパシタ(C $_2$)を、次の方程式 C $_2$ s = [* (X $_2$ 0 + X $_2$ d e s)] $^{-1}$ 及び C $_2$ = [* X $_2$ d e s] $^{-1}$ を用いて決定する。

8. 二次パッドが最大高さで、二次コイルが二次直列補償キャパシタ C $_2$ s と直列に短絡された状態での公称一次レシーバパッドインダクタンス(L $_1$ $_0$) 及びリアクタンス(X $_1$ $_0$) を決定する。

$$L_b = \frac{X_{1_des}}{\omega}$$

で決定できる。ブリッジインダクタンスをインバータの2つのレグに分割する場合には、 関連するインダクタンスは各インダクタに等分される。

[0 1 3 7]

B. コイルの相互作用

図23に示す L 2 は二次回路318へ電力を伝送するために使用する磁気パッド設計を示す。 IPTコンバータの二次側では、二次磁気パッド(二次レシーバパッド316)は若干量の自己インダクタ及び相互インダクタを有する疎結合変成器の二次側半部として作用する。その自己インダクタは(上述したように)回路の同調に使用され、よってシステムは、一般的に、共振電力変成器の効率を維持するためにはこの自己インダクタの変化を適切に許容しなければならない。しかしながら、二次自己インダクタの変化は一次自己インダクタより著しく小さい。

[0138]

VI.二次整流回路

エンドポイント負荷に応じて、ここに記載するIPTシステムは自由選択の二次整流回路を含むことができる。選択使用されるとき、二次整流回路は高周波数のAC波形をDC波形に変換するように構成される。二次整流回路は低損失動作用に選択した4つの高速ダイオードの全波整流ブリッジ整流器とすることができる。例えば、いくつかの実施形態では、整流器を実現するために4つのフェアチャイルドRHRG75120ダイオードを使用した。整流に使用するダイオードは極めて高速のダイオード逆回復時間、引くインダクタ電圧効果、高い定格電圧及び高い定格電流を有するように構成することができる。他の実施形態は低損失整流を実行するためにスイッチを用いた同期整流技術を使用する。

[0139]

VII. 二次減結合回路

IPTシステムは二次減結合回路を自由選択で含むことができる。任意の適切な現結合回路を使用することができる。二次減結合回路はプーストコンバータのようなスイッチング電力コンバータを含むことができる。例えば、図23に示す減結合制御を備えた並列ピックアップ(二次回路318)がいくつかの実施形態で使用されている。例えば、J. T. Boysらの「Stability and control of inductively coupled power transfer systems」(IEE Proceedings - Electric Power Applications、第147巻、37-43ページ、2000年)、G. A. Covicらの「Self tuning pick-ups for inductive power transfer」(IEEE Power Electronics Specialists Conference, 2008、PESC 2008、2008年、3489-3494ページ)、N. A. Keelingらの「A Unity-Power-Factor IPT Pickup for High-Power Applications」(IEEE Transactions on Industrial Electronics、第57巻、744-751ページ、2010年)、J. T. Boysらの「Single-phase unity power-factor inductive power transfer system」(IEEE Power Electronics Specialists Conference, 2008、PESC 2008、2008

10

20

40

50

年、3701-3706ページ)、Y. Xuらの「Modeling and controller design of ICPT pick-ups」(International Conference on Power System Technology, 2002. Proceedings. Powercon 2002、2002年)参照。

[0140]

いくつかの実施形態では、上述した二次減結合回路は次の利点を有する。

- ・並列共振回路が定常状態の下で電流源として作用し(例えば、G. A. Covicらの「Self tuning pick-ups for inductive power transfer」(IEEE Power Electronics Special ists Conference, 2008. PESC 2008.、2008年、3489-3494ページ)参照)、ほとんどの種類のバッテリを充電するために十分に機能しうる。
- ・二次減結合コントローラ 3 2 0 は使用が容易で、スイッチ S _b のデューティサイクルを制御するだけでピックアップの出力電圧を任意の所望の値に調整することができる。例えば、J. T. Boysらの「stability and control of inductively coupled power transfer systems」(IEE Proceedings Electric Power Applications、第 1 4 7 巻、37-43ページ、2000年)参照。更に、この二次側制御は、無線通信リンクが一時的に不作動になった場合に、電池に対する保護機能として作用する。

[0141]

二次減結合コントローラスイッチを高いスイッチング周波数で動作させると、一次側へ一定の反射インピーダンス(Zァ)を生成し、電源から引き出される電流は、低速スイッチング動作に比較して、二次側からのEMI理想的に最小にする能力を有するものとなる。ここで、開回路電圧は第1の原理から、次の式により与えられる。

[0142]

【数20】

 $V_{oc} = j\omega MI_1$

(20)

[0143]

そして、電池326が定常状態の下で等価DC抵抗としてモデル化できる場合には、出力電力は、次の式で与えられる。

[0144]

【数21】

$$P_{out} = P_{max} (1 - D) = \omega I_1^2 \frac{M^2}{L_{2eq}} Q_{2\nu} (1 - D)$$
(2.1)

[0145]

ここで、次の通りである。

[0146]

【数22】

$$Q_{2v} = \frac{R_{ac}}{X_2} = \frac{\pi^2 (1 - D)^2 R_{dc}}{8\omega L_{2eq}}$$

(22)

[0147]

【数23】

$$L_{2eq} = rac{\left(\omega L_2 - 1/\omega C_{2s}
ight)}{\omega}$$

(23)

[0148]

式(22)中の Q_2 vは Q_2 と相違する。 Q_2 は全体的な品質係数であり、電圧Q (Q_2 v) と電流Q (Q_2 i) の積として定義することができる。例えば、N. A. Keelingらの「A Unity-Power-Factor IPT Pickup for High-Power Applications」(IEEE Transact ions on Industrial Electronics、第 5 7 巻、744-751ページ、2010年)参照。ここで、 Q_2 v は同様に処理され、 Q_2 i は Q_2 i は Q_2 v は Q_2 i は Q_2 i は Q_2 i は Q_2 v な

れる。設計ストラテジの重要部分は式(21)の電力要件を満足する式(23)のL $_2$ e q を選択することにある。設計パラメータは表 $_3$ に示されている。 $_3$ 0 $_4$ 0 $_5$ 0 人 $_5$ 0 で $_5$ 1 で $_5$ 1 で $_5$ 2 で $_5$ 3 に示されている。 $_5$ 3 に示されない。 $_5$ 4 に依存するため、ここでは与えられない。 $_6$ 5 にな目的は整流電流を連続的に維持するためであり、その選択基準は、例えば、P. Si らの「Analyses of DC Inductance Used in ICPT Power Pick-Ups for Maximum Power Transfer」(2005 IEEE/PES Transmission and Distribution Conference and Exhibition: A sia and Pacific、2005年、1-6ページ)に見つけることができる。

[0 1 4 9]

【表3】

パラメータ	値	パラメータ	値	
V _{out}	300 V	L _{dc}	550 μ H	
X 2	9. 81 Ω	i out	0-17 A	
C 2	811. 19 n F	ダイオード (D _b)	IDT16S60C	
L ₂	177-188 μ H	スイッチ	IRG7PH42UPBF	
C _{2 s}	611. 19 n F	ダイオード (整流器)	RHRG75120	

[0150]

いくつかの実施形態では、並列共振ピックアップの特定の L $_{\rm d}$ $_{\rm c}$ を選択するプロセスを使用することができる。例えば、回路に必要とされる最小 D C インダクタンスを解析するプロセッサが続いて行われる。一つの直接的な方法は、最大値に対して正規化される出力電力の量を測定することであり、適度な L $_{\rm d}$ $_{\rm c}$ を選択することができる(図 2 4)。しかしながら、このプロセスは、電力が入手可能であっても、D C 電流に大きな高調波リップを有し、整流器を逆流してノンユニティの変位力率を生じるため、少し複雑である。例えば、P. Siらの「Analyses of DC Inductance Used in ICPT Power Pick-Ups for Maximum Power Transfer」(2005 IEEE/PES Transmission and Distribution Conference and Exhibition: Asia and Pacific、2005年、1-6ページ)参照。この現象は、一次コンバータへ反射されるとき H ブリッジ回路網への追加の負荷を生じ、大きな反射を避けるために、動作中のリップル電流を 2 0 % 以下に低減するのがよい。従って、図 2 5 の曲線は、D C インダクタンスを約 5 0 0 μ H まで増大すると、リップルは 2 0 % まで減少し得ることを示している。

[0151]

次に、二次減結合コントローラ320のスイッチング周波数の解析は幾分複雑であり、システムが動作し得る最適周波数は高速スイッチング中にある。スイッチング周波数がLa。及び並列共振タンクの共振極に選択されるとき、78%への大きな効率降下も生じ得る。従って、より高い又はより低い周波数を選択することができる。より低い周波数は、ピックアップがスイッチオン及びオフされるときEMIが生じ、グリッドへ戻される。従って、より高い周波数が好ましい。図26に示すように、周波数を10kHz以上にすると、その効率は高く維持される。

[0152]

DC等価回路理論及び状態空間平均(例えば、J. T. Boysらの「Controlling inrush currents in inductively coupled power systems」(The 7th International Power Engineering Conference, 2005. IPEC 2005、2005年、1046-1051ページ)参照)を使用すると、並列同調源結合回路に対する伝達関数は次の方程式(24)で示される。前記システムパラメータを用いたこの伝達関数のルートローカスプロットが図27に示されている。このルートローカスプロットは、3つの極と2つの零点があることを示している。零点は右半面零点であり、これは、出力はステップ関数が入力であるときに予測される方向の負方向に常に作用することを意味する。この点を考慮に入れると、更に解析モデルに重要な前

10

20

30

提を行い、システムを不安定の寸前に追いやることは賢い選択ではない。

[0153]

【数24】

$$\frac{V_0(s)}{d(s)} = \frac{-\frac{I_{d'}}{C_{dc}} \left(s^2 + \left(\frac{r}{L_{dc}} - \frac{R_L(1-D)^2}{L_{dc}}\right)s + \frac{1}{L_{dc}C_2}\right)}{s^3 + \left(\frac{1}{C_{dc}R_L} + \frac{r}{L_{dc}}\right)s^2 + \left(\frac{1}{C_2L_{dc}} + \frac{r}{L_{dc}R_LC_{dc}} + \frac{(1-D)^2}{L_{dc}C_{dc}}\right)s + \frac{1}{C_2L_{dc}R_LC_{dc}}}$$

(24)

10

20

30

40

[0154]

A.スイッチングセクションのスイッチ及びダイオードの選択

ここに記載するシステムには任意の適切なスイッチ及びダイオードの組合せを使用することができる。例えば、いくつかの実施形態では、簡単さ、コスト及びMOSFET型スイッチにスナブ素子を付加することにより生じる損失の回避のために、同じインターナショナルレクティフィアIGBT IRG7PH42UPBFスイッチ(一次同調LCL負債共振コンバータに使用されるスイッチと同一)を図23に示す二次減結合せスイッチSのために使用することができる。ゲートドライバ回路も図9に示すものと同様にすることができる。図23に示すダイオードDbは任意の適切なコンポーネント又はコンポーネントセットから選択でき、例えばInfineon社製の2つの並列接続されたIDH16S600C炭化シリコン(SiC)ショットキダイオードとすることができる。SiCダイオードは正の温度係数を有するため、一般的なシリコンショットキダイオードの場合に起こり得る熱暴走を抑えるために追加の熱平衡の配慮が必要なくなる。更に、SiCダイオードは極めて低い導通損及びほぼゼロの逆回復時間を示す。

[0 1 5 5]

二次側電子回路上のスイッチ及びダイオードは一次側と同じボトム構造及び同じヒートスプレッダウェハを熱ペーストとともに用いて構成することができる(図8)。アルミニウムヒートシンクは中程度の容量及び表面積を有するもの、例えばM&Mメタルから入手し得るMM32647とすることができる。一次側及び二次側の電子回路アセンブリはヒートシンクチャネルに下向きに向けた空冷ファンを含むことができる。Sofasco社製のモデル番号D7025V12又は同等物が適切である。二次側熱構造は図8に示す構造と同等である。

[0156]

VIII.二次減結合コントローラ

ここに記載するIPTシステムは二次減結合コントローラ320を含むことができ、このコントローラはハードウェア及びこれと関連するソフトウェアの両方を有する。

[0157]

A . ハードウェア

減結合スイッチ波形を制御するために任意の適切な二次減結合コントローラ320を使用することができる。いくつかの実施形態では、二次減結合コントローラを開発するために、Xilinx Spartan 3AN FPGAを用いたフィールドプログラマブルゲートアレイ(FPGA)開発ボードを使用することができる。標準規格802.15.4の無線プロトコル層のような無線プロトコル層でのカスタムアプリケーション通信プロトコルを提供すために、この開発ボードにカスタム無線通信カードを付加してもよい。このFPGA開発プラットフォームは一般に初期のIPTシステムに大きなフレキシビリティを可能にする。更に、もっと費用効果の高い解決策が存在し、一般によりもっと精知なシステム全体の制御をもっと高いデータスループットレートで可能にする。二次減結合コントローラに対する1つのこのような代替例は、ディジタル信号コントローラ(DSCンはディジタル信号プロセッサ(DSP)、例えばフリースケールMC56F84xx又はシリーズDSC、を使用する。

[0158]

B. ソフトウェア

1. 概要

FPGA又は代替プロセッサを使用するいくつかの実施形態では、内部ファームウェア開発はハードウェア記述言語(HDL)で行うことができる。DSC又はDSPを用いる実施形態では、内部ワームウェエア開発は、C又はC++などのソフトウェアプログラミング言語で行うことができる。このようなファームウェアはサブセクション、例えば5つの異なるサブセクションに分割することができる。これらのサブセクションは、例えばプロセッササブセクション、通信サブセクション、アナログ・ディジタルコンバータ(ADC)サブセクション、LEDディスプレイサブセクション、及びスイッチ制御サブセクションを含むことができる。

[0159]

これらのファームウェアサブセクションに加えて、追加のソフトウェアをプロセッササブセクションにアプリケーションとして加えることができ、C又はC++言語などの任意の適切な言語で実行させることができる。マニュアル制御及びデータロギングなどのインタラクションは任意の適切なユーザインタフェース、例えば無線インタフェースによるPC上のグラフィックユーザインタフェース(GUT)によって独立に処理することができる。マニュアル制御及びインタラクションは任意であるが、システムのデータが豊富な分析の実行を支援する。

[0 1 6 0]

a . プロセッサ

プロセッサザブセクションはプロセッサ、例えば約30MHz-100MHzのクロック周波数で動作する32ビットプロセッサを含み、データ及びプログラムメモリを必要とし得る。他の適切なプロセッサを使用してもよい。一次クロックは外部位相ロックルークイミング検証を実行し、クロックタイミングが既知の基準クロック信号に対して完全に証されるまで、プロセッサ(及び他の全てのサブセクション)をリセット状態(従ってった送を阻止する状態)に保持することができる。プロセッササブセクションは、ソーラ320を流れる電流及び電圧の測定値を受け取り、IPTシステム104の電力伝送をアルサイド制御で決定するのを直接支援する(IV.B.2に記載されている)。更にいくつかの実施形態では、プロセッサは通信を制御し、報告を実行し、必要に応じオペレータにより出されるマニュアル制御コマンドを実行するように構成することができる。

[0161]

b . 通信

通信サブセクションは、ハイレベルデータ伝送を無線通信チップで要求される低レベルビットエンコーディングに変換するように構成される。通信サブセクションは、一実施形態では、無線データの適切な送信及び受信を保証する。

[0162]

c . アナログ - ディジタルコンバータ(ADC)

ADCサブセクションは、外部ADC集積回路と自動的に通信し、データをフィルタリングし、重要な測定パラメータをプロセッササブセクションに周期的に報告するように構成し得る。

[0163]

d.LEDディスプレイ

LEDディスプレイサブセクションは、視覚ステータス報告を処理することによってプロセッサの負荷を低減するように構成し得る。このサブセクションは各サブセクションのステータスを自動的に読み取り、起こり得る問題及び電力レベルステータス情報を直ちに視覚的に報告する。LEDディスプレイサブセクションはFPGA開発ボード上のRGBのカラーLEDセットを直接制御することができる。

[0164]

10

20

e . スイッチ制御

スイッチ制御サブセクションは、プロセッサからの所望の減結合デューティサイクルを減結合スイッチへの正しい波形制御に変換するように構成される。このサブセクションは、プロセッサがいつデューティサイクルの変化を要求するかと無関係に、新たな値が適切な時間間隔で再ロードされるようにディーティサイクル制御を刻時することを助ける。このサブセクションは、一実施形態では、障害が検出された場合に二次回路318を自動的に減結合することができるフォールトトレラントパルス幅変調(PWM)信号を出力する

[0165]

IX.無線で電力を供給される負荷

図28及び図29は、固定出力電圧条件(300V)及び最も悪い場合の結合係数における、一次側のグリッド入力から二次側へのDC出力にデュアルサイド制御、すなわち二次減結合制御(デューティサイクルとして示される)を使用したときの無線IPTの全体の効率を示すものである。高出力IPTシステムに付随する負荷のほとんどが、バッテリの充電の際に、電気自動車のような一定のDC電圧出力を必要とするであろうことに留意されたい。しかしながら、負荷条件が変化する条件下でシステム出力電圧の変化が許される場合、システムの全体効率は、軽負荷のもとで改善されうる。図30は、デュアルサイド制御がなく、いくつかの異なる垂直及び水平な磁気パッドのミスアライメント状態のもとで出力電圧が変化する場合のシステムの全体効率を示す。

[0166]

X . 故障保護及び安全性

故障保護は、人及び機器の安全を確保するために、高電圧及び高出力システムにおいて 重要な一面である。本明細書に記載される 5 k W以上の無線 I P T システムは、 3 層のハ ードウェアの耐故障性と、複数の付加的な層のソフトウェアの故障保護を使用できる。

[0167]

A . ハードウェアの故障保護

いくつかの実施形態では、ハードウェアの故障保護の第1層は、各一次スイッチゲートドライバ及びAC-DC力率段の入力に存在する。標準的なヒューズ保護に加え、一実施形態では、AC-DC力率段は、以上に高い電流スパイクを検出して、マニュアルリセットが行われるまでシステムの電源を切るという能力を有する。LCLコンバータで、各スイッチのゲートドライブ回路は、いずれかのスイッチに脱飽和(例えば故障モード)が検出されると、全てのゲートドライバの電源が切られて、システムがスイッチの故障を報告するように、脱飽和保護を有する。故障保護のこの層に更なる安全性が必要な場合、標準的な、通常開いているコンタクタを、AC-DC力率段の入力又は出力に加えることができる。

[0168]

いくつかの実施形態では、ハードウェア故障保護の第2層は、第1及び第2の共振回路網に存在できる。一実施形態では、リテルヒューズ(部品番号V25S750P)からの金属酸化物バリスタ(MOV)が、図10の並列な同調キャパシタC₁及び図23の並列な同調キャパシタC₂と並列に配置される。それぞれのMOVは、一般に、約750VAC又は970VDCの過渡電流から保護して、890Jのエネルギーを消費する能力を有するが、これは、当該実施形態では、システムの容量エネルギー蓄積を除去し、人の安全を保証するために十分である。MOV自体が故障するという、発生することが想定されにくいイベントにおいて、最も想定される故障モードは、IPTシステムを実際に離調し、追加の電力伝送を防ぐ短絡である。

[0169]

いくつかの実施形態では、ハードウェア故障保護の第3層は、二次減結合回路に存在できる。全てのソフトウェアが出力電力を制御できず、一次回路が出力電力に係らず一定のトラック電流を継続して供給するという、発生する可能性が高いイベントにおいて、シュミットトリガ回路は、自動的に二次回路を減結合し、出力電圧を310Vから330Vの

10

20

30

40

間に調整するため、過電圧状態にすることなく、全システムの適切な動作状態を維持できる。故障保護の本層は、二次減結合制御を有さないか、有したとしても制御は完全にソフトウェア内に残るという点で、多くの類似するシステムに対して特徴的である。更に、故障保護の本段階では、動的なインモーションの無線誘導電力伝送に対するトレンドが可能になる。

[0170]

B. ソフトウェアの故障保護

いくつかの実施形態では、一次コントローラ208及び二次減結合コントローラ320に搭載されたソフトウェアは、IPTシステム全体に亘って電流レベル及び電圧レベルを常時監視するように構成される。いかなるときにも、電流又は電圧が所定の最大値を越えた場合、それぞれ独立したコントローラは、さらなる電力伝送を防止し、ユーザに適切な過電圧又は過電流のエラーを報告する。加えて、不変性及び信頼性のために、通信が監視される。通信が信頼性がないと判断されるか、又は通信が行われないまま所定の時間経過した場合、それぞれ独立したコントローラは、さらなる電力伝送を防止し、ユーザに適切な通信のエラーを報告する。

[0171]

安全性の他の重要な一面は、渦電流により発熱している、一次及び二次磁気コイル(一次及び二次レシーバパッド314及び316)の間のフェリ磁性の物体がないことを確実にすることである。一次コントローラ308のソフトウェア及び二次減結合コントローラ320のソフトウェアは、常時システムの効率を監視し、未確認のフェリ磁性材料により効率の低下が発生した場合に検出できる。このような効率の低下が発生した場合、IPTシステムは、それぞれ個別のコントローラを停止することにより、かかる物体の発熱を防ぎ、適切なエラーメッセージをユーザに報告する。

[0172]

C . 磁気の安全性

国際非電離放射線防護委員会(ICNIRP: International Commission on Non Ionizing Radiation Protection)のガイドライン「EU及びオセアニアの多くの国々で現在採用されている基準」は、広範囲に亘る新しい電磁誘導充電の規格(SAE-J2954、ISO/IEC PT61980等)により、人に曝露される最大磁界を決定するのに広く使われている。

[0173]

開示されたIPTシステムの磁界測定は、様々な実施形態では、ARPANSAにより提案される測定技術を使用することにより、厳密にICNIRP規格に適合する。例えば、M. Budhiaらの「Design and Optimisation of Circular Magnetic Structures for Lumped Inductive Power Transfer Systems」(IEEE Transactions on Power Electronics、1-1ページ、2011年)を参照されたい。一般に、満たされるべき基準は2つあり、1)人体に曝露される絶対最大磁界は27.3μTを超えてはならず、2)頭部、胸部、股間及び膝で測定される平均磁場強度は、6.25μTを下回ってはならない。図31は、一実施形態では、絶対最大磁場強度が0.82mで満たされ、これは、一般的な乗用車の幅の半分未満である。測定は、全ての可能な動作状態で行われ、最も悪い場合の粗い面と状態が図31に示されている。図32は、平均4.36μTの人体が、4点の測定を使用して、標準的なシナリオとして(例えば、M. Budhiaらの「Design and Optimisation of Circular Magnetic Structures for Lumped Inductive Power Transfer Systems」(IEEE Transactions on Power Electronics、1-1ページ、2011年)参照)測定され、1500mmの女性の最小の高さが最も悪い場合として使用される。

[0174]

XI.システムの結果

実際の実験的測定は、デュアルサイド制御における前項からのシステム効率の分析を確認するために使用されてきた。図33及び図34は、異なる結合状態における動作中のデューティサイクルの変化に対する分析的及び実験的な結果を示す。Q2vmは、達成可能

10

20

30

40

な Q_2 $_v$ の最大値であり、特定の負荷状態を意味する。例えば、 Q_2 $_v$ $_m$ は、5 k W の出力を意味し、0 . 8 Q_2 $_v$ $_m$ は、4 k W の出力を意味する。実験的な結果について、デューティサイクルは、物理システムの部品公差内に抑えるために、より高い Q_2 $_v$ (負荷状態)に制限される。予想される効率と測定された効率との間の絶対値の差はあるが、最高効率が発生するデューティサイクルはほとんど同じであり、波形の傾きはほとんど等しい。低出力における効率の値の大きな違いは、システムにおけるスイッチング損失を無視すると仮定したことに起因する。スイッチング損失がシステムレベルのシミュレーションに含まれるとき、シミュレーションの結果は実験結果に直接的に合致するが、ここでは、明確さのため示されない。これらの計算により、それぞれの制御スキームの効率間の直接的な比較が可能である。

[0175]

一次側の制御において、デューティサイクルは常にゼロに維持され、これはより低いQ $2 \vee$ に現れる。取得された効率は、測定において現れる最適なピークよりも当然低い。二次側の制御において、デューティサイクルは、 $D=(1-R_{dc_min}/R_{dc})$ に維持することにより負荷抵抗の変化に対して出力電圧を一定に維持するように制御される。同様に、二次減結合制御の効率は最適でないことが理解できる。明確に比較するため、図 33 及び図 34 による実験の結果が表 4 に示される。k=1 . 14 k_{min} の場合、一次制御の効率は、二次減結合制御の効率よりもわずかに良いが、最適制御は、これら双方よりも良い。k=2 k_{min} の場合、二次減結合制御は、一次制御よりも良いが、最適制御は、依然として最も良い。k=2 k_{min} の場合、k=2 k_{min} の k=2 k_{min} の k_{min

[0176]

【表4】

1. $14k_{min}$ 及び $2k_{min}$ におけるシステム効率測定。 1番目の値が分析結果であり、 2番目の値が実験結果である。

効率	K	5 k W	4 k W	3 k W	2 k W	1 kW
		$(R_{dc} = 1)$	$(R_{dc} = 2$	$(R_{dc} = 3)$	$(R_{dc}=4$	$(R_{dc} = 9$
		8Ω)	2. 5Ω)	0Ω)	5Ω)	ΟΩ)
一次	1.14 k _m	0. 945/0. 923	0. 942/0. 922	0. 934/0. 904	0. 915/0. 877	0.856/0.791
二次	1.14 k _m	0. 945/0. 923	0.941/0.913	0. 932/0. 883	0. 911/0. 837	0.845/0.719
最適	1.14 k _m	0. 945/0. 923	0. 943/0. 922	0. 938/0. 904	0. 931/0. 877	0. 909/0. 804
一次	2 k m	0.943/0.912	0. 936/0. 898	0. 923/0. 876	0.895/0.850	0.819/0.751
二次	2 k m	0. 943/0. 912	0. 941/0. 896	0. 939/0. 877	0. 929/0. 856	0.896/0.744
最適	2 k m	0. 943/0. 912	0. 943/0. 899	0. 939/0. 878	0. 930/0. 871	0, 907/0, 820

[0177]

一般的な I P T システムにおいて、最高効率は、必要とされる電力伝送に対して最小の一次トラック電流が使用された場合に達成されると思われるかもしれない。しかし、が低い場合における(16)及び(17)の H ブリッジの高い導通損により、最高効率は、最小の一時電流ではもはや発生しない。 k=2 k_{min} 及び $Q_{2v}=0$. 2 Q_{2m} における効率の差異の大きさを示すために、重要な波形の R M S 値が図 3 5 に示されている。最高効率は、図 3 4 において D = 0 . 6 で発生し、図 3 5 の最小の i_b に対応する。一次側制御と比較すると、 i_b 及び i_b は、最適制御に対して極めて小さい。

[0178]

様々な垂直及び水平高さの範囲における、400VDCから300VACのシステムレ

10

20

30

40

ベルの充電効率が図36に示されている。この効率は、フロントPFC及び整流段を含まない。これらの特徴により、この段からの効率が98%にも到達することが理解できるだろう。例えば、F. Musaviらの「A High-Performance Single-Phrase Bridgeless Interle aved PFC Converter for Plug-in Hybrid Electric Vehicle Battery Chargers」(IEEE Transactions on Industry Applications、第47巻、1833-1843ページ、2011年)参照。このコンポーネントを考慮すると、幅広い結合状態の範囲に亘る通常運転の間の効率は、グリッドから電池326まで、依然として90%前後又は90%以上でありうる。この実際の結果は、近年のIPT及びデバイス技術の進歩によりレベル2の電磁誘導充電を極めて高効率にできることを示したため、重要な成果である。そのため、電磁誘導充電がプラグインシステムよりも非効率的であるという前述の仮定は、もはや正当でない。

[0179]

 $k=1.14k_{min}$ 及び $k=2k_{min}$ という 2 つの結合状態における動作の波形が、図 3 7 及び図 3 8 に示されている。 5 k W という最大値において、デューティサイクルはゼロに設定され、 2 k W において、 R M S 波形はより高くなる。 $k=1.14k_{min}$ の場合、入力電圧は、 (2) に示される一次トラック電流を減少させるためにLCLコンバータの導通角を低くすることにより制限され、低い入力電圧を補うためにより高い電流が必要とされるため、ブリッジ電流は $k=2k_{min}$ よりもきわめて高い。最適効率のデュアルサイド制御のために、 2 k W の出力が 0 . 4 前後のデューティサイクルに対応することに留意されたい。

[0180]

XII.デュアルサイド制御のための方法

図39は、本発明におけるデュアルサイド制御の平準化のための方法3900の一実施形態を示す概略のフローチャート図である。方法3900が開始すると、でIPTシステム104の電圧及び電流を測定する(3902)。一実施形態では、方法3900は、第2段108の出力等のIPTシステム104の出力において、電圧及び電流を測定する(3902)。他の一実施形態では、方法3900は、入力電圧及び電流を測定する(3902)。入力電圧及び電流又は出力電圧及び電流は、IPTシステム104の入力電力及び/又は出力電力を決定するために使用されうる。例えば、測定モジュール202は、IPTシステム104の電圧及び電流を測定する。

[0181]

方法 3 9 0 0 は、 I P T システム 1 0 4 のパラメータを最大効率まで繰り返し使用することにより、 I P T システムの最大効率を決定する (3 9 0 4)。 例えば、最大効率モジュール 2 0 4 は、 I P T システム 1 0 4 の最大効率を決定してもよい (3 9 0 4)。 方法 3 9 0 0 は、 I P T システム 1 0 4 内の 1 以上のパラメータを、計算された最大効率と一致して調整し (3 9 0 6)、 方法 3 9 0 0 は終了する。 例えば、調整モジュール 2 0 6 は、 I P T システム 1 0 4 の 1 以上のパラメータを調整できる (3 9 0 6)。 調整モジュール 2 0 6 は、 第 1 段 1 0 6 の導通角の基準及び / 又は第 2 段のデューティサイクルの基準を調整してもよい。

[0182]

図40は、本発明におけるデュアルサイド制御のための方法4000の他の一実施形態を示す概略的なフローチャート図である。方法4000が開始すると、IPTシステム104の第2段108の出力を測定する(4002)。一実施形態では、出力は、第2段108の出力電圧及び/又は出力電流である。方法4000は、エラーがあるかを決定する(4004)。例えば、第2段108が、ブーストコンバータのようなコンバータ(二次減結合コンバータ)である二次減結合制御を含む場合、二次減結合制御は、二次減結合コンバータは、出力電圧又は出力電流を制御する帰還ループを含んでもよい。帰還ループは、基準信号と比較されうる。方法4000は、一実施形態では、エラー信号があるかを決定する(4004)。方法4000は、エラーがないと決定すると(4004)、フローを戻って第2段108の出力を測定する(4002)。方法4000は、エラーがあると決定すると(4004)

10

20

30

40

50

、エラー信号に基づいて二次減結合コンバータのデューティサイクルを調整し(4006)、再び第2段108の出力を測定する(4002)。

[0183]

方法4000は、第1段106の出力を測定する(4008)。例えば、第1段106 は、導通角を制御することにより制御されるLCL負荷共振コンバータを含んでもよい。 LCL負荷共振コンバータは、導通角を制御する帰還ループを含んでもよい。帰還ループ は、エラーを決定するために、第1段106の出力を、基準信号と比較する。方法400 0は、エラーがあるかを決定する(4010)。方法4000は、エラーがないと決定し た場合、フローを戻って第1段106の出力を測定する(4008)。方法4000は、 エラーがあると決定した場合(4010)、第1段106の導通角を調整し(4012) 、フローを戻って第1段106の出力を測定する(4008)。

[0184]

方法4000は、第2段108の出力を使い、IPTシステム104の最大効率を計算 する(4014)。方法4000は、計算された最大効率と一致して、第1段106の基 準を調整して(4016)、第2段108の基準を調整し(4018)、フローを戻って 第2段108の出力を測定する(4002)。例えば、方法4000は、第1段106の LCL負荷共振コンバータの導通角を調整する第1段106の基準を調整する(4016)。他の一実施形態では、方法4000は、第2段108の二次減結合コンバータのデュ ーティサイクルを調整する第2段108の基準を調整する(4018)。一般に、IPT システム 1 0 4 の最大効率を計算して (4 0 1 4) 基準を調整する (4 0 1 6 及び 4 0 1 8)帰還ループは、デューティサイクル及び導通角を調整する(4006及び4012) 帰還ループよりも遅いループである。

[0185]

XIII.用語

本明細書で使用される用語の一覧は、次の通りである。

一次LCL負荷共振コンバータへのDC入力電圧

二次共振回路の全体の品質係数(J. T. Boysらの「Stability and control of i nductively coupled power transfer systems | (IEE Proceedings - Electric Power Ap plications、第147巻、37-43ページ、2000年))

二次共振回路の電圧品質係数 (N. A. Keelingらの「A Unity-Power-Factor IP T Pickup for High-Power Applications (IEEE Transactions on Industrial Electron ics、第57巻、744-751ページ、2010年))

二次共振回路の電流品質係数(N. A. Keelingらの「A Unity-Power-Factor IP T Pickup for High-Power Applications (IEEE Transactions on Industrial Electron ics、第57巻、744-751ページ、2010年))

Q_{2 v m} 最大結合及び最大負荷状態のときの最大電圧品質係数

Q 1 一次LCL負荷共振コンバータの品質係数

R_{dc} 定常状態における電池326のDC等価抵抗

最大負荷状態 R_{dc_min}

k 結合係数

k_{min} 動作レンジ内の最小結合係数

動作レンジ内の最大結合係数 k m a x

M 一次及び二次レシーバパッド314及び316の相互インダクタンス

L₁ 一次レシーバパッド314の自己インダクタンス(図5)

二次レシーバパッド316の自己インダクタンス(図5)

C 。。 二次共振回路の直列同調キャパシタ(図23)

二次共振回路の並列同調キャパシタ(図23)

 $C_{1,s}$ 一次 L C L 負荷共振コンバータの直列同調キャパシタ(図 5)

C ₁ 一次 L C L 負荷共振コンバータの並列同調キャパシタ (図 5)

二次減結合回路のDCインダクタンス

10

20

30

40

50

```
LCL負荷共振コンバータのブリッジインダクタンス
```

SU レシーバパッドの非補償電力(V。。*I。。として定義される(G. Elliottら の「Multiphase Pickups for Large Lateral Tolerance Contactless Power-Transfer Sy stems」(IEEE Transactions on Industrial Electronics、第57巻、1590-1598ページ 、2010年)))

i , 一次トラック電流(又はインダクタコイルを流れる電流)(図5)

i_{1 _ m a x} LCL負荷共振コンバータ内の最大一次トラック電流(図5)

二次レシーバパッド316が短絡したときに測定された電流

二次レシーバパッド316が開路であるときに測定された電圧

IPTシステムの動作周波数

LCL負荷共振コンバータのリアクタンス (M. Borageらの「Analysis and desi gn of an LCL-T resonant converter as a constant-current power supply」(IEEE Tra nsactions on Industrial Electronics、第52巻、1547-1554ページ、2005年))

X₂ 二次共振回路のリアクタンス(並列等価)

第1段の導通角の制御変量 (H. H. Wuらの「Design of Symmetric Voltage Cancel lation Control for LCL converters in Inductive Power Transfer Systems (IEEE In ternational electric Machines & Drives Conference (IEMDC), 2011、2011年、866-8 71ページ))

Z₁ 一次側における二次側からの反射インピーダンス

 Z_2 V_o cから測定された二次回路 3 1 8 の等価インピーダンス

L_{1 e q} 直列同調(1)における等価な一次レシーバパッドのインダクタンス

L_{2 e q} 直列同調(23)における等価な二次レシーバパッドのインダクタンス

V_{ab} HブリッジのAC出力電圧(図5)

(V_{ab})₁ AC出力電圧の基本要素

Va、。 二次並列共振キャパシタに亘る電圧

高さの変化による一次レシーバパッドのインダクタンスの変化

L。 高さの変化による二次レシーバパッドのインダクタンスの変化

C 2 L 2 の変化による二次同調キャパシタンスの等価な変化

P_{max} IPTシステムの最大伝送可能な電力

P。 」 ・ IPTシステムに伝送される出力電力

D 二次ブーストコンバータの制御デューティサイクル (二次減結合回路)

R a c 共振タンクからの負荷の等価ACレジスタンス(図19)

V_{out} 二次減結合回路のDC出力電圧

二次減結合回路のDC出力電流

R₁₂ 二次レシーバパッド316のESR

R_{Ldc} DCインダクタ及び整流器ブリッジの抵抗の2倍な線形のESR

R_{bd_on} ブーストコンバータダイオードの抵抗部分の線形

V_{bd} o_n ブーストコンバータダイオードの電圧降下部分

LCL負荷共振コンバータ(一実施形態ではIGBT IRG7PH4 R_{hs_on}

2 UPBF)のスイッチング素子の抵抗部分の線形

V_{hs_on} LCL負荷共振コンバータ(一実施形態ではIGBT IRG7PH4 2 UPBF)のスイッチング素子の電圧降下部分

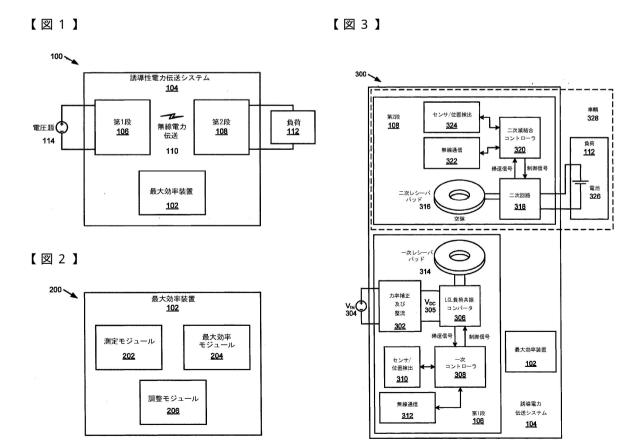
二次整流器回路ダイオードの電圧降下部分 V_{rdon}

正規化された同調キャパシタンス(11)

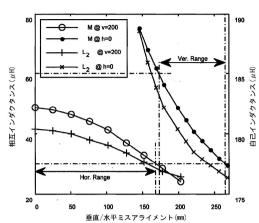
- b2 電圧降下しない二次ブーストコンバータ(二次減結合回路)の効率
- 線形な抵抗損失を有する二次ブーストコンバータ(二次減結合回路)の効率 c 2
- 二次共振回路の効率
- 電圧降下しない一次LCL負荷共振コンバータの効率
- 線形な抵抗損失を有さない一次LCL負荷共振コンバータの効率 スイッチング損失を無視するシステムの効率

10

20

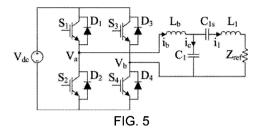

30

40

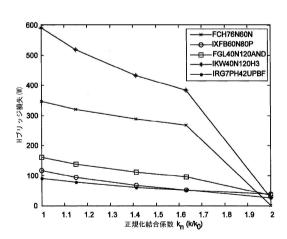

50

[0186]

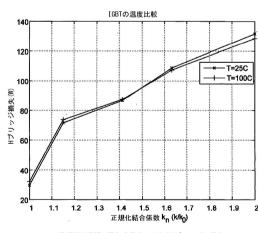
本発明は、その要旨及び本質的な特徴から逸脱することなく他の特定の形態で組み込ま れうる。説明された実施形態は、あらゆる点で例として示されているに過ぎず、限定する ものではないと理解されたい。従って、発明の範囲は、上述の説明よりも添付の請求項に より示される。請求項と等価な意味及び範囲に含まれるあらゆる変更は、当該請求項の範 囲内に含まれる。



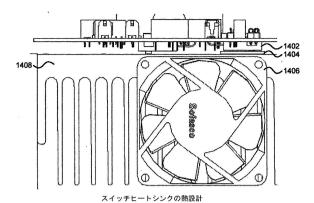
【図4】



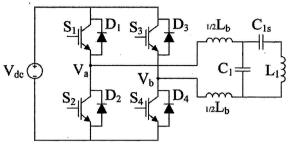
垂直及び水平ミスアライメントに関するミスアライメント状態を示す。 h = 0 トレンドは ゼロ水平オフセット下での垂直ミスアライメントのプロファイルを表す。 v = 2 0 0 は 2 0 0 mmの垂直オフセット下での水平ミスアライメントのプロファイルを表す。


【図5】

【図6】

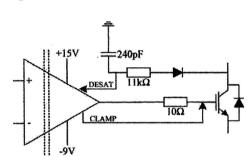


【図7】

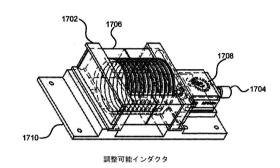


IRG7PH42UPBFの異なる温度におけるHブリッジの損失

【図8】



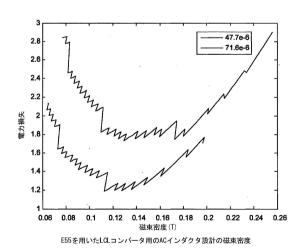
【図10】

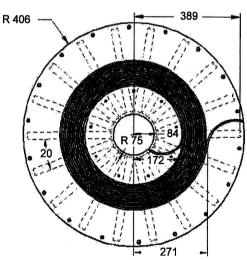


スプリットインダクタ設計を備えたLCLコンバータ

【図9】

【図11】

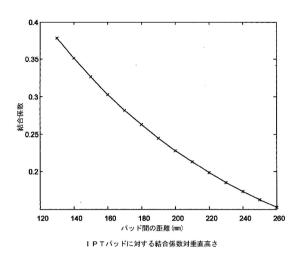


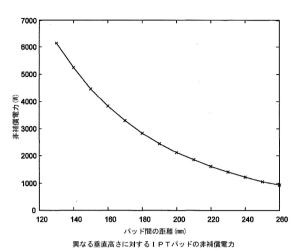

Infineon 1ED020I12-F

簡略IGBTゲートドライバ回路

【図12】

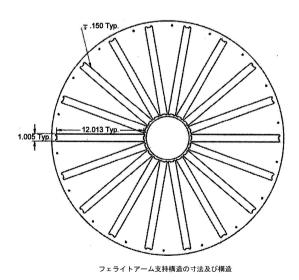
【図13】

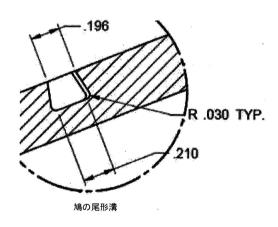


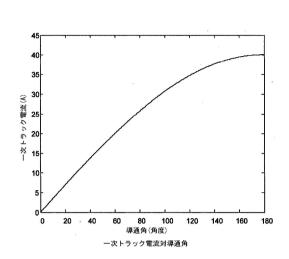


円形パッド構造及び寸法(上面図)

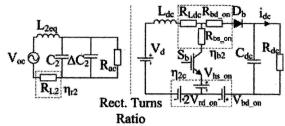
【図14】


【図15】

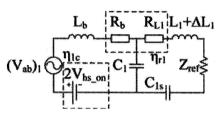



【図16】

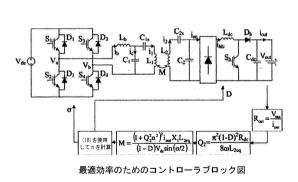
【図17】



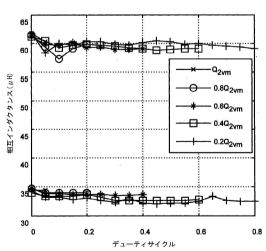
【図18】



【図19】

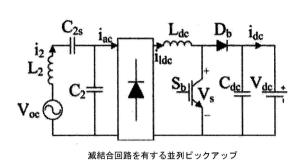

二次減結合ピックアップの等価効率モデル回路図

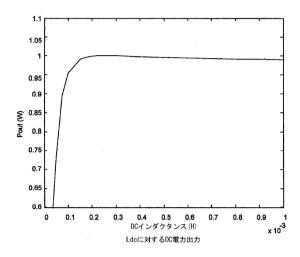
【図20】



一次LCLコンバータの等価効率モデル回路

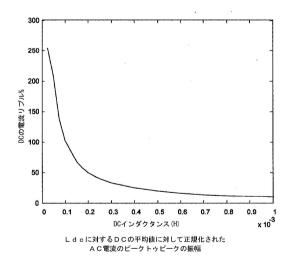
【図21】

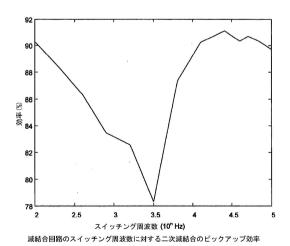

【図22】



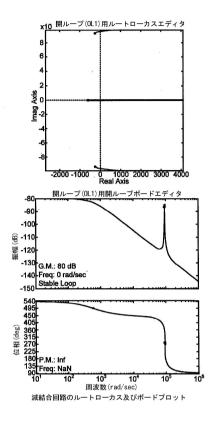
次を使用した結合係数の算出:上部のグラフは $k=2~k_{min}$ ($M=6~0~\mu$ H) の場合を示し、下部のグラフは $k=1.~1~4~k_{min}$ ($M=3~4.~2~\mu$ H) の場合を示す。

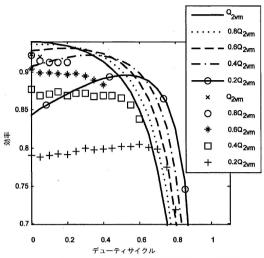
【図23】


【図24】

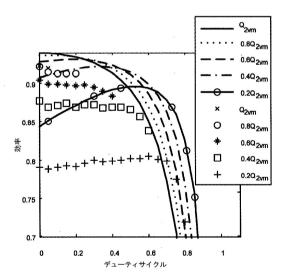


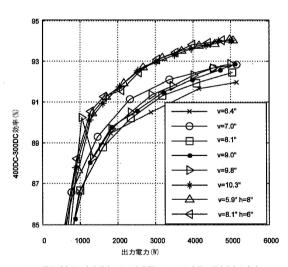
【図25】


【図26】



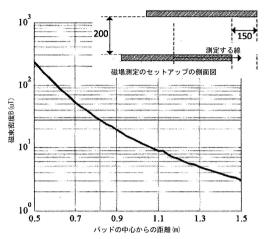
【図27】

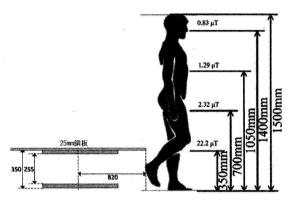



テューディザイツル k=1. $14k_{min}$ (v=246mm, h=0mm) における模範的なシステムの効率。 線は分析的に算出された結果を示し、ブロットは実験的に測定された結果を示す。データは、最大の02v の負荷状態の割合に合致した場合における、異なる負荷状態で取得されたものである。

【図29】

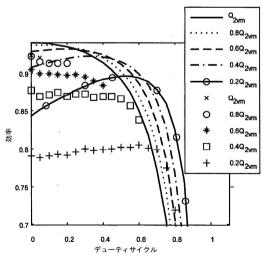
【図30】

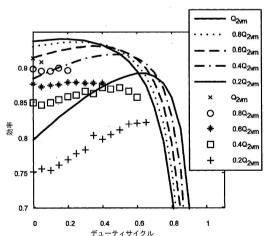

k=2.0km; n(v=172mm、h=0mm)における模範的なシステムの効率。 線は分析的に算出された結果を示し、プロットは実験的に測定された結果を示す。データは、 最大のQ2vの負荷状態の割合に合致した場合における、異なる負荷状態で取得されたものである。


出力電圧が変化できる場合における実際のシステム全体の測定された効率。 D C 出力が300Vのとき5kWの伝送が生じる。

【図31】

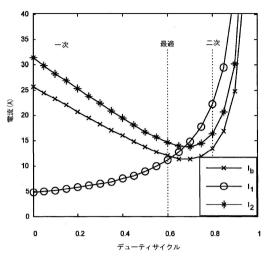
【図32】

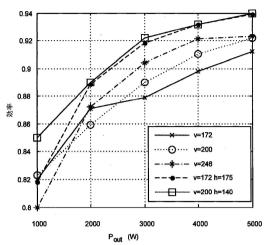

最も悪い条件で動作する5kWのシステムにおける磁界の測定結果。最高磁場強度は、 200mmの垂直高さ及び150mmの水平ミスアライメントに見られる。


1500mmの身長の人間の女性の体における4つの測定点からの人体平均測定。 最高磁場強度は、255mmの垂直高さ及び0mmの水平ミスアライメントに見られる。

【図33】

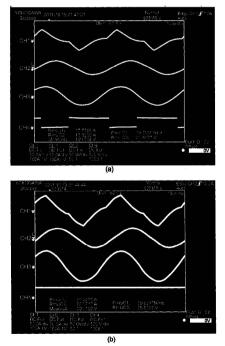
【図34】


k=1. 14 $k_{m,n}$ (v=246mm、h=0mm)におけるシステムの効率。線は分析的に 算出された結果を示し、プロットは実験的に測定された結果を示す。データは、最大の Q2vの負荷状態の割合に合致した場合における、異なる負荷状態で取得されたものである。

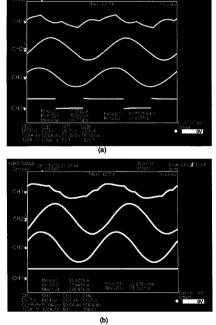

デューティサイクル
k=2.0 kmin (v=172mm、h=0mm) におけるシステムの効率。線は分析的に算出された結果を示し、ブロットは実験的に測定された結果を示す。データは、最大のQ2vの負荷状態の割合に合致した場合における、異なる負荷状態で取得されたものである。

【図35】

【図36】

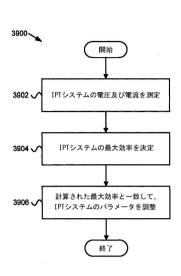


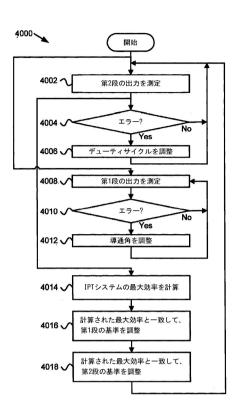
 $Q_{2v}=0$. $2Q_{2vm}$ 及び $k=2k_{min}$ における i_b 、 i_1 及び i_2 の波形用の電流値


広範囲に亘る動作状態でのシステムの効率の測定。 v = 1 7 2は、1 7 2 mmの垂直高さ及び 0 mmの水平ミスアライメントである。 v = 2 0 0、h = 1 4 0は、2 0 0 mmの 垂直高さ及び 1 4 0 mmの水平ミスアライメントである。

【図37】

v = 1 7 2 mm、h = 0 mmにおける(a) P = 2 kW、(b) P = 5 kW。上部から下部へのグラフが i_b (図 1 1)、 i_γ (図 1 1)、 i_γ (図 2 9)及び V_a (図 2 9)(デューティサイクルの逆)である。


【図38】



 $v=2.4\,6$ mm、h=0mmにおける(a) $P=2\,kW$ 、(b) $P=5\,kW$ 。上部から下部へのグラフが i_b (図1.1)、 i_+ (図1.1)、 i_+ (図2.9)及び V_8 (図2.9)(デューティサイクルの逆)である。

【図39】

【図40】

フロントページの続き

(51)Int.CI. F I

 B 6 0 L
 5/00
 (2006.01)
 B 6 0 M
 7/00
 X

 H 0 1 F
 38/14
 (2006.01)
 B 6 0 L
 5/00
 B

 H 0 1 F
 38/14

(72)発明者 カイリー シーリー

アメリカ合衆国 ユタ州 84321 ローガン サウス 600 イースト 646

(72)発明者 アーロン ギルクリスト

アメリカ合衆国 ユタ州 84341 ローガン イースト 1900 ノース 1174

審査官 安井 雅史

(56)参考文献 特開2010-068646(JP,A)

特開平11-224822(JP,A) 特開2011-244583(JP,A) 特開平06-105408(JP,A) 特表2009-528812(JP,A) 特開2011-116246(JP,A)

Hunter Hanzhuo Wu , Design of Symmetric Voltage Cancellation Control for LCL Converters in Inductive Power Transfer System , 2011 IEEE International Electric Machine & Drives Conference , 米国 , IEEE , 2 0 1 1 年 5月15日 , 866-871

Hunter H. Wu, A 1kW Inductive Charging System using AC Processing Pickups, 2011 6th IE EE Conference on Industrial Electronics and Applications, 米国, IEEE, 2 0 1 1年 6月 1日,1999-2004

Hunter Hanzhuo Wu , A Review on Inductive Charging for Electric Vehicles , 2011 IEEE International Electric Machines & Drives Conference , 米国 , IEEE , 2 0 1 1 年 5月15日 , 143-147

(58)調査した分野(Int.CI., DB名)

B 6 0 L 1 / 0 0 - 1 3 / 0 0 1 5 / 0 0 - 1 5 / 4 2 B 6 0 M 1 / 0 0 - 7 / 0 0 H 0 1 F 3 8 / 1 8 H 0 2 J 7 / 0 0 - 7 / 1 2 7 / 3 4 - 7 / 3 6 5 0 / 0 0 - 5 0 / 9 0 H 0 2 M 7 / 0 0 - 7 / 4 0