WO 2006/0566246 A1 || 0000000 0 000 O A A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
1 June 2006 (01.06.2006)

(10) International Publication Number

WO 2006/056646 Al

(51) International Patent Classification:
GOGF 21/00 (2006.01) GOGF 21/22 (2006.01)

(21) International Application Number:
PCT/FI12005/000504

(22) International Filing Date:
24 November 2005 (24.11.2005)

English
English

(25) Filing Language:
(26) Publication Language:

(30) Priority Data:
10/996,801 24 November 2004 (24.11.2004) US
20041517 25 November 2004 (25.11.2004) FI

(71) Applicant (for all designated States except US): NOKIA
CORPORATION [FI/FI]; Keilalahdentie 4, FI-02150 Es-
poo (FD).

(72) Inventor; and
(75) Inventor/Applicant (for US only): TARKKALA, Lauri
[FI/FI]; Tiklinkuja 8 B 4, FI-02660 Espoo (FI).

(74) Agent: PAPULA OY; P.O. Box 981, (Mechelininkatu 1
A), FI-00101 Helsinki (FI).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KN, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV,
LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI,
NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG,
SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US,
UZ, VC, VN, YU, ZA, ZM, ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
with international search report

[Continued on next page]

(54) Title: METHOD FOR THE SECURE INTERPRETATION OF PROGRAMS IN ELECTRONIC DEVICES

ﬂ//300

Ir—’

SRR

304_| e
| INSTALLER| | COMMUNI- 302
CATION ||
1306
STUB
> 308
v
INTER-
PIPRETER | h_310
316 v v
“H OPERATING|| |PROGRAM | |
SYSTEM 312
v
LIBRARY
= W34

(57) Abstract: The invention relates to method for
the secure interpretation of program in an electronic
device. An interpreted program is loaded and a
stub executable is formed using a prototype stub
executable. The stub executable is associated with the
interpreted program. At least one second capability
also is assigned to the interpreted program and further
to the stub executable. The stub executable invokes
at least one function in a shared interpreter library
to interpret the interpreted program. The interpreter
engine checks whether the interpreted program refers
an external interpreted program code section. The
interpreted engine infers at least one second capability
for the external interpreted program code section.
The interpreter engine disallows the execution of said
external interpreted program code section if said at
least one first capability is not a subset of said at least
one second capability.



WO 2006/056646 A1 I INDVYH) AT Y00 0 Y AR

—  before the expiration of the time limit for amending the Fortwo-letter codes and other abbreviations, refer to the "Guid-
claims and to be republished in the event of receipt of ance Notes on Codes and Abbreviations" appearing at the begin-
amendments ning of each regular issue of the PCT Gazette.



10

15

20

25

30

35

WO 2006/056646

TITLE OF THE INVENTION

METHOD FOR THE SECURE INTERPRETATION OF PROGRAMS IN
ELECTRONIC DEVICES

BACKGROUND OF THE INVENTION

Field of the invention:

The invention relates to interpreted program-
ming languages. Particularly, the invention relates to
a method for the secure interpretation of programs in

electronic devices.

Description of the Related Art:

Security is an important factor in electronic
communication devices. Nowadays mobile terminals have
evolved from simple cellular telephones into multi-
purpose communicator devices with applications similar
to personal computers. The communicator devices come
with a wide variety of services such as 'Internet
browsing, E-mail and multimedia calls. One important
technology, which is making its way to mobile texrmi-
nals are various interpreted languages such as Java,
Perl, PHP and Python. These interpreted language fur-
ther increase the plethora of value-added services and
games available in mobile terminals. The software de-
veloped using these interpreted languages comprises
gseparate programs and shared libraries. These programs
and libraries may be downloaded over the air from a
network server to a mobile terminal. The. downloading
of software mostly occurs by means of a browser pro-
vided in the mobile terminal. It is important for the
user to be able to trust the applications he or she
downloads from the network. It is very easy to sneak
malicious code into the mobile terminal, unless proper
security procedures are applied in the mobile termi-
nal. In a mobile terminal malicious code may cause a
variety of nuisances. For example, calls may be set-up

PCT/F12005/000504



10

15

20

25

30

35

WO 2006/056646

to chargeable service numbers without properly inform-
ing the user, information may be gathered and stolen
from the mobile terminal, and chargeable purchases may
be made on behalf of the user, if the mobile terminal
supports some kind of mobile payment system.

History shows several examples of malicious
programs that have been written using interpreted lan-
guages running within an interpreter on another plat-
form. These malicious programs have either targeted
the interpreted environment, the host environment or
both. The malicious programs operation was feasible,
because the interpreter’s runtime environment did not
provide sufficient isolation £from other interpreted
programs or the host platform.

Application isolation in the context of this
patent application is defined as the separation of the
persistent state and runtime behavior of the programs.
Programs may voluntarily share their data or react to
the behavior of other programs.

Modern features familiar to an expert on the
field include data caging, runtime isolation of proc-
esses, capability framework, process identifiers, In-
ter-Process Communication (IPC) authentication,
trusted computing base, perimeter defense and software
installation programs of operating systems.

These features together igolate programs from
each other, from the trusted computing base and from
sensitive system interfaces. A noteworthy feature in
contemporary operating systems is that the policy is
enforced at the process boundary and as such the sys-
tem ig based on the isolation of processes and hence
programs. The trusted computing base also denies pro-
grams the ability to increase their privileges.

A secure kernel isolates native programs from
each other. This implies that it is not possible to
grant capabilities or access to resources to programs
that are not isolated from each other. If it would be

PCT/FI12005/000504



10

15

20

25

30

35

WO 2006/056646

possible to grant capabilities to applications that
were not isolated from each other then there would be
no guarantees that the capabilities do not “leak” to
malicious code. Essentially, the isolation of applica-
tions is a critical underpinning of the capability
framework.

The security features mentioned above are in-
strumental in preventing the damage a malicious or de-
fective program may do to the platform, to data oxr to
other programs on the system. These features have been
designed so that application isolation is provided for
native programs. The system specifications do not at
the moment suggest how application isolation would be
provided for interpreted programs. This invention pro-
poses a method by which this is achieved.

SUMMARY OF THE INVENTION:

The invention relates to a method for the se-
cure interpretation programs in an electronic device.
The method comprises: providing at least one shared
interpreter library and a prototype stub executable in
gsaid electronic device, loading an interpreted program
in said electronic device, forming a stub executable
using said prototype stub executable in said elec-
tronic device, associating said stub executable with
said interpreted program in said electronic device,
assigning at least one second capability to said stub
executable, and executing said stub executable in said
electronic device.

The invention relates also to an electronic
device comprising: at least one shared interpreter 1li-
brary configured to implement an interpreter engine,
an installer entity configured to load an interpreted
program in said electronic device, to form a stub ex-
ecutable using a prototype stub executable, to assign
at least one second capability to said stub executa-
ble, to associate said at least one second capability

PCT/F12005/000504



10

15

20

25

30

35

WO 2006/056646

4

to said stub executable, and an operating system en-
tity configured to execute said stub executable.

The invention relates also to a computer pro-
gram comprising code adapted to perform the following
steps when executed on a data-processing system: load-
ing an interpreted program, forming a stub executable
uging a prototype stub executable, associating the
stub executable with the interpreted program, assign-
ing at least one second capability to the interpreted
program, associating the at least one second capabil-
ity to the stub executable, executing the stub execu-
table, the stub executable indicating to at least omne
shared interpreter library the interpreted program,
and the stub executable invoking at least one function
in the shared interpreter library to interpret the in-
terpreted program.

The invention relates also to a computer pro-
gram comprising code adapted to perform the following
steps when executed on a data-processing system: pro-
viding at least one capability associated with said
computer program to an interpreted program, obtaining
information on an interpreted program from a 6 secure
source assigned to said computer program, indicating
to at least one shared interpreter library said inter-
preted program, said at least one shared library com-
prising at least one function implementing an inter-
preter engine for interpreting interpreted program
code, and invoking at least one function in said
shared interpreter library to interpret said inter-
preted program.

In one embodiment of the invention, the
method further comprises: the stub executable indicat-
ing to said at least one shared interpreter library
said interpreted program, the stub executable invoking

at least one function in said at least one shared in-

terpreter library to interpret said interpreted pro-

gram, checking whether an external interpreted program

PCT/F12005/000504



10

15

20

25

30

35

WO 2006/056646 PCT/F12005/000504

code section is referred by the interpreted program,
inferring at least one first capability for said ex-
ternal interpreted program code section; and disallow-
ing the execution of said external interpreted program
code section if said at least one second capability is
not a subset of said at least one first capability.

In one embodiment of the invention, the at
least one sghared interpreter library is further con-
figured to check whether an external interpreted pro-
gram code section is referred by an interpreted pro-
gram, to infer at least one first capability for said
external interpreted program code section, and to dis-
allow the execution of gaid external interpreted pro-
gram code section if at least one second capability is
not a subset of said at least one first capability.

In one embodiment of the invention, the se-
cure source is a secure directory in an electronic de-
vice. The secure source may, for example, be the com-
puter program code itself or it may be the directory
storing the computer program. The information on the
interpreted program may be the file name of the inter-
preted program. The secure source may also be the op-
erating system, which provides to the computer program
the filename of the file comprising the computer pro-
gram. ‘

It should be noted that the term external in-
terpreted program code section refers to an inter-
preted program code section that is obtained outside
of the interpreted program itself, for example, from a
directory different than the one reserved for the in-
terpreted program in the electronic device. For exam-
ple, the external interpreted program code section may
be read from a shared interpreted library. An external
interpreted program code section may also be obtained
over-the-air during the interpretation of the inter-
preted program. The term at least one first capability
refers to the set of capabilities assigned to the ex-



10

15

20

25

30

35

WO 2006/056646

ternal interpreted program code section, for example,
a shared interpreted library. The term at least one
second capability refers to the set of capabilities of
the stub executable. It should be noted that a single
capability might comprise a number of individual oper-
ating system, data communication or electronic device
management related operations or functions. In other
words, a number of functions may have been grouped in
a single capability for convenience reason. A program
or a piece of program code can have associated with it
a set of capabilities. A capability grants access to a
resource or function in the electronic device that
would be otherwise unavailable to said program or pro-
gram code. The capabilities are policed by the operat-
ing system or the functions serving sald program in
the electronic device.

In one embodiment of the invention, a reli-
ability category is determined for an interpreted pro-
gram code section based on at least one of the loca-
tion of a file comprising the interpreted program code
gsection in the £file system of the electronic device
and whether the interpreted program code section has
been received from a trusted remote sender, and the
trust level is granted based the reliability category.

In one embodiment of the invention, the exe-
cution of arbitrary data is disabled in the at least
one interpreter library. This means, for example, that
the functions for the execution of arbitrary data are
made inaccessible for the interpreter engine. The at-
tempt to call such a function causes an error to be
generated in the interpreter engine. In one embodiment
of the invention, the stub executable is executed in a
separate process context. The disabling may be per-
formed beforehand as the interpreter engine is com-
piled to produce the at least one shared interpreter
library. This disabled version is then provided to the

electronic device.

PCT/F12005/000504



WO 2006/056646 PCT/F12005/000504

10

15

20

25

30

35

In one embodiment of the invention, the ex-
ternal interpreted program code section is loaded in
said electronic device, for example, over-the-air from
a network server. In one embodiment of the invention,
the external interpreted program code section is a
function within a shared interpreted library compris-
ing interpreted program code. The external interpreted
program code section may also be formed from arbitrary
data by the interpreted program so that the inter-
preted program code is passed by the interpreted pro-
gram itself to the interpreter engine.

‘ In one embodiment of the invention, a trust
level is granted to the shared interpreted Ilibrary.
The trust level may be granted by the user or by the
installer entity automatically. If the installer en-
tity grants the trust level automatically, it may be
obtained by inspecting trust level information pro-
vided by a network server. The operator may have
gsigned the trust level information. The signing may
also have been performed by a service provider or any
other trusted entity. The trust level is used to de-
termine the at least one first capability either in
the operating system entity level or in the installer
entity level.

In one embodiment of the invention, the load-
ing of the interpreted program comprises the download-
ing of the interpreted program from a network server.

In one embodiment of the invention, the pro-
viding of the at least one shared interpreter library
and the prototype stub executable comprises the down-
loading of them from a network server to the elec-
tronic device.

In one embodiment of the invention, the load-
ing of the at least one shared interpreted library
comprises the downloading of them from a network

server to the electronic device.



10

15

20

25

30

35

WO 2006/056646

In one embodiment of the invention, the in-
terpreted program is identified using a unique identi-
fier in the electronic device. The unique identifier
may be used, for example, by the operating system en-
tity and the installer entity to refer to the inter-
preted program and the stub executable. The at least
one second capability may be associated by the operat-
ing system entity with the unique identifier.

In one embodiment of the invention, the elec-
tronic device comprises a mobile terminal. In one em-
bodiment of the invention, the electronic device com-
prises a SYMBIAN™ operating system device. In one em-
bodiment of the invention, the electronic device com-
prises a General Packet Radio System terminal or a
Universal Mobile Telecommunications System terminal.

In one embodiment of the invention, the com-
puter program is stored on a computer readable medium.
The computer readable medium may be a removable memory
card, magnetic disk, optical disk or magnetic tape.

In one embodiment of the invention, the elec-
tronic device is a mobile device, for example, a lap-
top computer, a palmtop computer, a mobile terminal or
a personal digital assistant (PDA). In one embodiment
of the invention, the electronic device is a desktop
computer or a mainframe computer.

The benefits of the invention are related to
the improved reliability of loaded interpreted pro-
grams. The invention enables the capabilities defined
for executable programs in the native operating system
to be applied for interpreted programs and program
code per program or program code that are executed
within an interpreter which otherwise would be seen as
a single arbitrary application in the native operating
system with a single set of capabilities.

PCT/F12005/000504



WO 2006/056646 PCT/F12005/000504

10

15

20

25

30

35

BRIEF DESCRIPTION OF THE DRAWINGS:

The accompanying drawings, which are included
to provide a further understanding of the invention
and constitute a part of this specification, illus-
trate embodiments of the invention and together with
the description help to explain the principles of the
invention. In the drawings:

Fig. 1 is a block diagram illustrating an ex-
ample of a directory tree in an electronic device ac-
cording to the invention;

Fig. 2A and Fig. 2B are a flow chart illus-
trating the method for the secure interpretation of
programs in one embodiment of the invention; and

Fig. 3 1is a block diagram illustrating an

electronic device according to the invention.

DETAILED DESCRIPTION OF THE EMBODIMENTS:

Reference will now be made in detail to the
embodiments of the present invention, examples of
which are illustrated in the accompanying drawings.

Figure 1 is a block diagram illustrating an
example of a directory tree in an electronic device
according to the invention. The electronic device is
as illustrated in Figure 3. In one embodiment of the
invention the electronic device is a SYMBIAN™ operat-
ing system device. The directory tree illustrates what
files essential to the method are stored in an elec-
tronic device according to the invention and what
their mutual relationships are. In Figure 1 there is a
root node 100, to which subdirectories 101, 102 and
103 are connected. The subdirectory 101 stores binary
fileg, which implement an interpreter. The interpreter
may be, for example, a Java interpreter, a Perl inter-
preter, A PHP interpreter or a Python interpreter. In
gubdirectory 101 there are files 111, 112 and 113.
File 111 comprises the engine for an interpreter,



10

15

20

25

30

35

WO 2006/056646

10

which executes either directly the program source code
or a byte code that has been produced using a com-
piler. The program source code or the byte code that
is interpreted by the interpreter engine is hereinaf-
ter referred to as the interpreted program code. The
compiler takes a human readable source code and com-
piles it into a byte code. However, it should be noted
that the byte code might be any intermediate language,
which may be executed by the interpreter engine. The
intermediate language may be in any format optimal for
machine execution. It doeg not necessarily have to
comprise operation codes of the size of one byte. In
essence file 111 dis a Dynamically Linked Library
(DLL), which comprises functions for the execution of
the interpreter engine. File 112 is a stub interpreter
executable, which when executed, invokes eventually
the interpreter engine placed in file 111. File 113 is
formed by means of file 112 whenever an interpreted
program is installed to the electronic device.

A subdirectory 102 comprises a program, which
is to be interpreted using the interpreter engine.
Subdirectory 102 comprises a file 121, which comprises
the interpreted program. The component <SID> in the
subdirectory name represents a Security Identifier
(SID), which has been assigned to the interpreted pro-
gram. The SID identifies uniquely the interpreted pro-
gram and enables capabilities be assigned to the in-
terpreted program. A capability represents an operat-
ing system function or a set of operating system func-
tions that may be invoked by an application identified
using a SID. Examples of capabilities include the ca-
pability to set-up and communicate over a remote net-
work, for example, to a remote Internet server, and
the capability to access files stored on the elec-
tronic device. A single capability may comprise a num-
ber of related functions and operations. For example,

all IP socket related functions might comprise a sin-

PCT/F12005/000504



10

15

20

25

30

35

WO 2006/056646 PCT/F12005/000504

11

gle capability. Other capabilities may relate to power
management, local communication over BLUETOOTH™ or in-
frared and low-level radio protocol operations.

A subdirectory 103 comprises a shared 1i-
brary, which comprises functions that are to be in-
voked from interpreted programs such as the inter-
preted program stored in file 121. The shared library
is stored in a file 131. Subdirectory 132 comprises
also a policy file, which governs the policies how the
shared library is managed in the electronic device.
The policy file would define how to manage the
/resource/<lang> directory and how to create the lang-
<version-s>-gtub-interpreter.exe for bootstrapping the
intexrpreter for a certain script. The advantage of us-
ing a policy definition file is that no interpreter-
specific foreign code is executed in the context of
the software installation program. The policies of all
interpreters can also be cross-referenced and checked
for errors and conflicts before they are implemented.
The policy support required in this case is also ex-
tremely simple. The shared interpreted library is as-
gsigned a trust level, in other words, a set of capa-
bilities that are allowed for the functions in the 1li-
brary. The set of capabilities are either operator de-
termined or user determined. In the case of operator
determination, the capabilities are indicated to the
electronic device as the file is downloaded from a
network server. The capabilities are verified, for ex-
ample, so that they are signed using the operator’s
digital signature. In the case of user determination,
the user is prompted to indicate what capabilities are
to be allowed for the library. The capabilities as-
signed to the shared interpreted library should re-
flect what functionalities have been tested and are
thus considered reliable in the case of the library.

For example, a library may be considered safe to down-



10

15

20

25

30

35

WO 2006/056646

12

load files to the electronic device, but may not be
allowed to read files in the electronic device.

Figures 2A and 2B are a flow chart illustrat-
ing the method for the secure interpretation of pro-
grams in one embodiment of the invention.

At step 202 a shared interpreter library com-
prising the main interpreter code, that is, the inter-
preter engine is provided to the electronic device.
The shared library may be provided, for example, as
part of the native operating system or it may be down-
loaded over the air to the electronic device from a
network server as the user requests the downloading of
the interpreter.

At step 204 a prototype stub executable com-
prising the functions necessary to invoke the inter-
preter engine for the interpretation of a sgingle in-
terpreted program is provided to the electronic de-
vice. The prototype stub executable may be provided,
for example, as part of the native operating system or
it may be downloaded over the air to the electronic
device as the user requests the downloading of the in-
terpreter from the network server. The installation of
the shared interpreter library, comprising the main
interpreter code, and the prototype stub executable
may be performed in a separate installer entity, which
stores them to a non-volatile memory in the electronic
device.

In one embodiment of the invention, a shared
interpreted library is also loaded to the electronic
device. The shared library may be loaded to the elec-
tronic device using a removable memory medium such as
a magnetic or optical disk or a removable memory card
or it may be downloaded over the air to the electronic
device. The installation of the shared interpreted 1li-
brary may be performed in a separate installer entity,
which storeg it to a non-volatile memory in the elec-

tronic device.

PCT/F12005/000504



10

15

20

25

30

35

WO 2006/056646

13

Optionally, at step 206 a trust 1level is
granted to a shared interpreted library in the elec-
tronic device. The trust level specifies a set of ca-
pabilities assigned to the shared interpreted library.
The granting decision may be based on trust level in-
formation signed by the operator or any other entity
trusted by the electronic device. The trust is estab-
lished, for example, by means of Public Key Infra-
structure (PKI) and trust chains. The wuser of the
electronic device may also explicitly specify the
granting decision via the user interface of the elec-
tronic device.

At step 208 the interpreted program is loaded
to the electronic device. The interpreted program is,
for example, downloaded over the air. The interpreted
progfam may have been selected by the user from a WWW-
page or a WAP-page. The interpreted program is down-
loaded, for example, from a network server to which
the electronic device has established a connection.
The installing of the interpreted program may be per-
formed by an installer entity. In one embodiment of
the invention, the interpreted program may also be
loaded to the electronic device using a removable mem-
ory medium such as a magnetic or optical disk or a re-
movable memory card.

At step 210 a unique identifier is assigned
to the interpreted program. The interpreted program
may use functions in the shared library that may have
been downloaded to the electronic device. The unique
identifier is obtained from an authority, which is re-
sponsible for allocating unique identifiers for appli-
cations executed in the electronic device.

At step 212 the capabilities to be granted to
the interpreted program are determined in the elec-
tronic device. For example, the capabilities are de-
termined by analyzing the interpreted program code of
the interpreted program or they may be specified in a

PCT/F12005/000504



10

15

20

25

30

35

WO 2006/056646

14

separate file or data structure provided in associa-
tion with the interpreted program from the network
server or from a removable memory medium. There may
also be interpreted programs for which no capabilities
are granted. In such as case the interpreted program
is merely allowed to render information to the display
and to interact with the user using the keyboard.

At step 214 a stub executable is formed using
the prototype stub executable. The stub executable is
formed for invoking the interpreter engine and for de-
termining the interpreted program to the interpreter
engine. The stub executable is formed using the proto-
type stub executable. The stub executable may be
formed using instructions provided in a separate pol-
icy file, which is provided, for example, in associa-
tion with the shared interpreted library or in asso-
ciation with the interpreted program. The forming of
stub executable may be performed by an installer en-
tity.

At step 216 the running of other programs
from the stub executable is disabled. The disabling is
achieved, for example, so that the stub executable ex-
plicitly indicates to the interpreter engine the in-
terpreted program that is to be executed. The inter-
preted program is indicated, for example, by providing
its filename such as file 121 in Figure 1.

At step 218 the capabilities determined for
the interpreted program are assigned to the stub ex-
ecutable formed at step 214 in the electronic device.
The stub executable will represent the interpreted
program for the operating system security functions.
Due to the fact that the stub executable is used to
invoke the interpreter engine and to provide the in-
terpreted program to the interpreter engine it is en-
sured that no other interpreted program code than the
interpreted program or functions in the shared inter-
preted library are executed. In other words, there is

PCT/F12005/000504



10

15

20

25

30

35

WO 2006/056646

15

no other possibility for interpreted programs to get
executed in the interpreter engine than via a stub ex-
ecutable.

" The label “A” represents the point where the
method illustrated in Figure 2A continues in Figure
2B.

At step 220 the process in charge of inter-
preting the interpreted program by means of the stub
executable and the interpreter engine is executed in a
separate process context by the operating system of
the electronic device. For each interpreted program
there is a separate process context.

At step 222 it is checked by the interpreter
engine whether the program is at end. If the program
is not at end, the method continues at step 224.

At step 224 it i1s checked by the interpreter
engine whether external interpreted program code is to
be interpreted by it. If this is the case, method con-
tinues at step 226, otherwise the method continues at
step 220. An example of an external interpreted pro-
gram code is code included in a shared interpreted 1li-
brary. Another example of an external interpreted pro-
gram code is code that has been received to the elec-
tronic device during the interpretation of the current
code.

At step 226 the trust level of the external
interpreted program code is compared to the capabili-
ties of the stub executable by the interpreter engine.
It is determined that the capabilities of the stub ex-
ecutable are a subset of the capabilities associated
with the trust level of the external interpreted pro-
gram code, that is, for example, the shared inter-
preted library. A given trust level uniquely specifies
the set of capabilities that has been assigned to an
external interpreted program code. The trust level is
inferred, for example, based on the location of the

external interpreted program code in the electronic

PCT/F12005/000504



10

15

20

25

30

35

WO 2006/056646

16

device file system. For example, if the code is lo-
cated in a trusted directory such as the directory of
the interpreted program or a language specific trusted
directory, it 1s granted at least the capabilities of
the interpreted program. If the capabilities of the
stub executable are not a subset of the capabilities
associated with the trust level, in other words, the
stub executable has capabilities not belonging to the
set of capabilities specified for the external inter-
preted program code, the interpreter engine considers
the trust level to be exceeded.

At step 228 the interpreter engine checks, 'if

the trust level was exceeded. If it was exceeded, the

method continues at step 230. Otherwise the method

continues at step 220.

At step 230 the interpreter engine disallows
the program execution. The user may be provided with
an appropriate error message and ﬁhe execution of the
stub executable is terminated.

Figure 3 is a block diagram illustrating an
electronic device 300 according to the invention.
Electronic device 300 comprises a first memory (not
shown) and a second memory (not shown). The first mem-
ory is a volatile RAM work memory and the second mem-
ory is a non-volatile memory. In one embodiment of the
invention the first and the second memories are the
same memory, which is non-volatile. The electronic de-
vice also comprises a processor (not shown).

In Figure 3 there is a box 302, which illus-
trates the software in the electronic device. The
software comprises at least an operating system entity
316, an installer entity 304 and a communication en-
tity 306. The software may also comprise an inter-
preter engine 310 and a stub executable 308 associated
with interpreter engine 310. Interpreter engine 310
executes the interpreted program codes for interpreted
programs such as interpreted program 312. The inter-

PCT/F12005/000504



10

15

20

25

30

35

WO 2006/056646

17

preted programs may use at least one function stored
in a shared library 314. Shared library 314 comprises
functions specified in the interpreted program code
executed by interpreter engine 310. Shared library 314
may also comprise functions specified in the native
machine code of the electronic device. Stub executable
308 is used to invoke an instance of a given inter-
preted program in interpreter engine 310. No other in-
terpreted programs may be invoked in interpreter en-
gine 310 using the same stub executable. Communication
entity 306 performs the communication related tasks in
the electronic device. It comprises the protocol
stacks that are used for the radio interface communi-
cation and in the communication with a remote network
such as the Internet. When communication entity 306
receives interpreted program 312 from the remote net-
work, it is provided to an installer entity 304. In-
staller entity 304 stores interpreted program 312 to
electronic device non-volatile memory. Installer en-
tity 304 creates a stub executable specific to inter-
preted program 312. In one embodiment of the inven-
tion, installer entity uses a policy file in the form-
ing of the necessary files as interpreted program 312
is installed to the non-volatile memory in electronic
device 300. Installer entity 304 may also be responsi-
ble for the installing and configuring of shared 1i-
brary 314 in non-volatile memory when it is downloaded
to electronic device 300. Similarly, installer entity
may also be responsible for the installing and config-
uring of interpreter engine 310 and a prototype stub
in non-volatile memory when the interpreter is down-
loaded to electronic device 300. Operating system en-
tity 316 or installer entity 304 may be responsible
for the assigning of trust levels and capabilities to
shared libraries and interpreted programs. In one em-
bodiment of the invention, installer entity 304 is an

application executed within electronic device 300. In

PCT/F12005/000504



WO 2006/056646 PCT/F12005/000504

10

15

20

25

30

35

18

one embodiment of the invention, stub executable 308
is an application executed within electronic device
300 under operating system entity 316. Interpreter en-
gine 310 is a dynamically linked library in the native
machine code of electronic device 300. Functions are
invoked by stub executable 308 from the dynamically
linked library.

In the following text is described one em-
bodiment of the invention, where the method of the in-
vention is applied in SYMBIAN™ operating system envi-
ronment. The importance of isolating interpreted ap-
plications from each other and the host platform is
relative to the importance of the data manipulated and
the functionality provided by these interpreted pro-
grams. If only one program is implemented for an in-
terpreter then application isolation is performed im-
plicitly.

A case where application isolation becomes
critical 1s when a majority of the applications is im-
plemented using a single interpreter. A significant
amount of the platform security work would be left re-
dundant it the interpreter did not apply platform se-
curity correctly. This could leave a malicious program
the ability to target the valuable data of other in-
terpreted programs.

The Microsoft macrovirus problem is an exam-
ple of a worst-case of what the extent of the problem
could be. It does not matter if the underlying operat-
ing system is secure if the environments the programs
run in are not (e.g. Word, Excel).

The integration means that the significant
aspects of the syntax and semantics of the operating
system platform security are provided to the inter-
preted program. The following features are required:
an interpreted program must have a unique identifica-
tion, an interpreted program must have its own private
directory, shared code libraries must have trust lev-



10

15

20

25

30

35

WO 2006/056646

19

els and the trust levels must be managed like individ-
ual programs, an interpreted program must have a capa-
bility set assigned to it, each interpreted program
must execute in separate process contexts, and an in-
terpreted program must be limited by its capability
set.

The suggested method for implementing these
is based on the following. The main ideas are as fol-
lows: placing an interpreter executable in a DLL
/sys/bin/lang-<version->interpreter.dll (the <versions
part denotes the version of the interpreter), creating
a stub executable /sys/bin/lang-<versions>-stub-
interpreter.exe (the <version> part denotes the ver-
sion of the interpreter), for each interpreted program
is assigned a SID/VID pair as for any other program,
the interpreted program files are placed in the direc-
tory /private/<SID>/, for each interpreted program X
the /sys/bin/lang-<version->stub-interpreter.exe is
copied to /sys/bin/interpreted-program-X.exe and the
interpreted-program-X is assigned the capabilities X
is to have, the stub-interpreter would always execute
a designated program from its private directory, a
general purpose shared code is placed in
/resource/<lang>/1lib, any required native DLLs are
placed in /sys/bin, and a file dictating the policy to
be used for managing shared code is placed under
/resource/<lang>/policy.txt.

This solution essentially maps interpreted
programs onto the native operating system platform se-
curity in such a manner that they will seem as native
operating system programs. An additional benefit is
that it keeps the user experience similar to the case
when capabilities are assigned to a native program
This solution does not yet address how to assign trust
levels to shared code. This is discussed in the next

section.

PCT/F12005/000504



10

15

20

25

30

35

WO 2006/056646

20

The proposed design does not outright solve
how trust levels are assigned to individual pieces of
code external to the interpreted program. The problem
is troublesome for the following reasons. Most inter-
preted languages provide access to the interpreter
from within the language (e.g. in Perl or Python via
the eval() function). Therefore any I/O source can be
used to provide ready-to-run code (this is actually
true for native programs also, but the presence of
such code would deny certification).

Based on monitoring the external I/O0 of an
interpreter one cannot deduce what input data is used
as code and what as data.

Using the stub interpreter exe provides a
neat way to attach capabilities to programs, but there
is no easy way to attach capabilities to arbitrary in-
put using the existing operating system mechanisms.

Based on the above it is clear that any sane
mechanism for attaching trust levels for general pur-
pose code requires support from the actual inter-
preter. There are two options available for this: de-
nying the loading/running code that would cause not
trusted code to be run with capabilities, the intro-
duction of lower capabilities at runtime based on what
gource the code came from.

Adjusting capabilities at runtime may require
changes to the operating system kernel. A compromise
solution is to require interpreters with capabilities
to digable loading and running code from other sources
than the scripts private directory.

For shared code libraries in /sys/resource
SID/VID values are not assigned. SID/VID values are
only assigned to binaries under /sys/bin. A policy
file format is defined that describes how to manage
the interpreted program code that is shared between
interpreted programs. The policy file would define the
following: ’

PCT/F12005/000504



10

15

20

25

30

35

WO 2006/056646

21

e How to manage the /sys/resource/<lang> direc-
tory

e How to create the lang-<version->-stub-
interpreter.exe for bootstrapping the inter-
preter for a certain script
The directory /sys is a directory in which

only the installer entity may write. But every program
can read that directory. The directories
/private/<SID> are directories, which may only be read
by the installer entity or the program, which resides
in that directory. The principle that the electronic
device has these two type of directories is essential,
not the actual names of the directories.

The advantage of using a policy definition
file is that no interpreter-specific foreign code is
executed in the context of the SWInstall, that is, the
software installation program. The policies of all in-
terpreters can also be cross-referenced and checked
for errors and conflicts before they are implemented.
The policy support required in this case is also ex-
tremely simple.

The interpreters should have the following
features implemented into them:

e The default directory used within the scripts
is /private/<SID>. If files are to be glob-
ally readable/writable, then this must be de-
clared explicitly.

e Running code external to the private direc-
tory and the /sys/resource directory is dis-
abled if the program has been granted ANY ca-
pabilities (including User capabilities). One
may wish to have a special “developer-switch”
that disables this feature.

e If User-capabilities have been granted then
program code can only be loaded from the pro-
gramg private directory and the shared code

directory.

PCT/F12005/000504



WO 2006/056646 PCT/F12005/000504

22

e If System-capabilities have been granted then
program code can only be loaded from the pro-
grams private directory.

It is obvious to a person skilled in the art
that with the advancement of technology, the basic
idea of the invention may be implemented in various
ways. The invention and its embodiments are thus not
limited to the examples described above; instead they

may vary within the scope of the claims.



WO 2006/056646 PCT/FI12005/000504

10

15

20

25

30

35

23

CLAIMS:

1. A method for the secure interpretation of
a program in an electronic device, the method compris-
ing:
providing at least one shared interpreter library
and a prototype stub executable in said electronic de-
vice;
loading an interpreted program in said electronic
device;
forming a stub executable using said prototype
stub executable in said electronic device;
associating said stub executable with said inter-
preted program in said electronic device;
assigning at least one second capability to said
stub executable; and
executing said stub executable in said electronic
device.
2. The method according to c¢laim 1, the
method further comprising: ‘
said stub executable indicating to said at least
one shared interpreter library said interpreted pro-
gram;
said stub executable invoking at least one func-
tion in said at least one shared interpreter library
to interpret said interpreted program;
checking whether an external interpreted program
code section is referred by the interpreted program;
inferring at least one first capability for said
external interpreted program code section; and
disallowing execution of said external interpreted
program code section if said at least one second capa-
bility is not a subset of said at least one first ca-
pability.
3. The method according to <c¢laim 2, the
method further comprising:
loading said external interpreted program code

section in saild electronic device; and



10

15

20

25

30

35

WO 2006/056646

24

executing said stub executable in a separate proc-
ess context.

4. The method according to claim 2, wherein
said loading of said interpreted program code sgection
comprises downloading it from a network server to said
electronic device.

5. The method according to claim 2, the
method further comprising:

granting a trust level to said external inter-
preted program code section; and

determining the said at least one first capability
based on said trust level.

6. The method according to <claim 5, the
method further comprising:

determining a reliability category for an inter-
preted program code section based on at least one of a
location of a file comprising said interpreted program
code section in the file system of said electronic de-
vice and whether said interpreted program code section
has been received from a trusted remote sender; and

granting said trust level based said reliability
category.

7. The method according to claim 1, wherein
said loading of said interpreted program comprises the
downloading of said interpreted program from a network
server.

8. The method according to claim 1, wherein
said providing of said at least one shared interpreter
library and said prototype stub executable comprises
downloading them from a network server to said elec-
tronic device.

9. The method according to claim 1, wherein
said interpreted program is identified using a unique
identifier in said electronic device.

10. The method according to claim 1, wherein

said electronic device is a mobile terminal.

PCT/F12005/000504



10

15

20

25

30

35

WO 2006/056646

25

11. The method according to claim 1, wherein
said electronic device is a SYMBIAN™ operating system
device.

12. The method according to claim 1, wherein
said electronic device is a General Packet Radio Sys-
tem terminal or a Universal Mobile Telecommunications
System terminal. -

13. An electronic device comprising:

at least one shared interpreter library configured
to implement an interpreter engine;

an installer entity configured to load an inter-
preted program in said electronic device, to form a
stub executable using a prototype stub executable, to
associate said stub executable with said interpreted
program, to assign said at least one second capability
to said stub executable; and

an operating system entity configured to execute
said stub executable.

14. The electronic device according to claim
13, wherein said at least one shared interpreter 1i-
brary is further configured to

check whether an external interpreted program code
section is referred by an interpreted program,

to infer at least one first capability for said
external interpreted program code section, and

to disallow execution of said external interpreted
program code section if at least one second capability
is not a subset of said at least one first capability.

15. The electronic device according to claim
14, wherein said loading of said at least one inter-
preted program code section comprises downloading it
from a network server to said electronic device.

16. The electronic device according to claim
14, wherein said installer entity is further config-
ured to load said external interpreted program code
section in said electronic device and said operating

PCT/F12005/000504



10

15

20

25

30

35

WO 2006/056646

26

system entity is further configured to execute said
stub executable in a separate process context.

17. The electronic device according to claim
14, wherein said at least one shared interpreter 1li-
brary is further configured to grant a trust level to
gaid external interpreted program code section and to
determine the said at least one first capability based
on said trust level.

18. The electronic device according to claim
13, wherein said loading of said interpreted program
comprises downloading said interpreted program from a
network server. ’

19. The electronic device according to claim
13, wherein said installer entity is further config-
ured to download said at least one shared interpreter
library and said prototype stub executable from a net-
work server to said electronic device.

20. The electronic device according to claim
13, wherein said operating system entity is further
configured to identify said interpreted program using
a unique identifier.

21. The electronic device according to claim
13, wherein said electronic device is a mobile termi-
nal.

22. The electronic device according to claim
13, wherein said electronic device is a SYMBIAN™ oper-
ating system device. “

23. The electronic device according to claim
13, wherein said electronic device is a General Packet
Radio System terminal or a Universal Mobile Telecommu-
nications System terminal.

24. A computer program comprising code
adapted to perform the following steps when executed
on a data-processing system:

loading an interpreted program;
forming a stub executable using a prototype stub

executable;

PCT/F12005/000504



WO 2006/056646 PCT/F12005/000504

10

15

20

25

30

35

27

associating said stub executable with said inter-
preted program;

assigning at least one second capability to said
interpreted program;

associating said at least one second capability to
said stub executable;

executing said stub executable;

said stub executable indicating to at least one
shared interpreter library said interpreted program;
and

sald stub executable invoking at least one func-
tion in said shared interpreter library to interpret
said interpreted program.

25. The computer program according to claim
24, wherein said computer program is stored on a com-
puter readable medium.

26. The computer program according to claim
25, wherein said computer readable medium is a remov-
able memory card.

27. The computer program according to claim
25, wherein said computer readable medium is a mag-
netic or an optical disk.

28. A computer program comprising code
adapted to perform the following steps when executed
on a data-processing system:

providing at least one capability associated with
said computer program to an interpreted program;

obtaining information on said interpreted program
from a secure source assigned to said computer pro-
gram;

indicating to at least one shared interpreter 1li-
brary said interpreted program, said at least one
shared library comprising at least one function imple-
menting an interpreter engine for interpreting inter-
preted program code; and



WO 2006/056646 PCT/F12005/000504

10

15

28

invoking at least one function in said shared in-

terpreter library to interpret said interpreted pro-
gram.

29. The computer program according to claim
28, wherein said secure source 1s a secure directory
in an electronic device.

30. The computer program according to claim
28, wherein said computer program is stored on a com-
puter readable medium.

31. The computer program according to claim
30, wherein said computer readable medium is a remov-
able memory card.

32. The computer program according to claim
30, wherein said computer readable medium is a mag-

netic or an optical disk.



WO 2006/056646 PCT/F12005/000504

1/4

111

/

lang-<version>-interpreter.dll 112

101

/sys/bin/ lang-<version>-stub-interpreter.exe
: 113

102 interpreted-program1.exe’” 1

/

/private/<SID>/ —interpreted-programl.bytecode
100 1/ 103 131
/™ /resource/<lang>/lib shared-library1.bytecode
: policy.txt

132

FIG. 1



WO 2006/056646 PCT/F12005/000504

2/4

SECURE PROGRAM
INTERPRETATION METHOD

202

PROVIDING A SHARED LIBRARY
OF MAIN INTERPRETER CODE
v
PROVIDING A STUB PROTOTYPE
EXECUTABLE LINKING TO THE
MAIN INTERPRETER CODE

v
GRANTING A TRUST LEVEL
TO A SHARED INTERPRETED
LIBRARY

v

LOADING THE
INTERPRETED PROGRAM
v
ASSIGNING A UNIQUE ID
TO AN INTERPRETED PROGRAM

¥
DETERMINE THE CAPABILITIES
TO BE GRANTED TO THE
INTERPRETED PROGRAM

Y

FORMING A STUB EXECUTABLE
USING THE PROTOTYPE STUB
EXECUTABLE

v
DISABLING THE RUNNING OF
OTHER INTERPRETED
PROGRAMS FROM THE STUB
EXECUTABLE
v 218

ASSIGNING THE CAPABILITIES
TO THE STUB EXECUTABLE

@

FIG. 2A

204

206

208

210

212

214

216

N U

L




WO 2006/056646

—>
—>

3/4

P

PCT/F12005/000504

CONTINUING THE EXECUTION OF
INTERPRETED PROGRAM IN IT'S
OWN PROCESS CONTEXT

CHECKING THAT THE
CAPABILITIES OF THE STUB
EXECUTABLE ARE A SUBSET
OF THE TRUST LEVEL OF THE
EXTERNAL CODE

226

230

/

DISALLOW
PROGRAM
EXECUTION




WO 2006/056646

4/4

Fﬂ/300

PCT/F12005/000504

304_| \
| nsTaLLER| [CcoMMUNI- 300
Ncation N
306
STUB R
> \_308
v
INTER-
PRETER | N_310
316 v vV
OPERATING|| [PROGRAM | |
|sySTEM 312
v
LIBRARY |
314

FIG. 3



INTERNATIONAL SEARCH REPORT

International application No.

PCT/FI2005/000504

A. CLASSIFICATION OF SUBJECT MATTER

IPC: see extra sheet )
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC: GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

SE,DK,FI,NO classes as above

Electronic data base consulted during the international search (name

EPO-INTERNAL, WPI DATA, PAJ

of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™| Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A US 040039926 20 (LAMBERT, M), 26 February 2004 1-32
(26.02.2004), the whole document

A US 20030093660 A1 (SAFA, J A), 15 May 2003 1-32
(15.05.2003), abstract

A US 5974549 A (GOLAN, G), 26 October 1999 1-32
(26.10.1999), the whole document

A US 6044467 A (GONG, L), 28 March 2000 (28.03.2000), 1-32
column 2, 1ine 33 - T1ine 50

Further documents are listed in the continuation of Box

]

C. m See patent family annex.

* Special categories of cited documents:

“A" document defining the general state of the art which is not considered
to be of particular relevance

"E” earlier application or patent but published on or after the international
filing date

“L”  document which may throw doubts on priority claim(s) or which is
cited 1o establish the publication date of another citation or other
special reason (as specified)

“O" document referring to an oral disclosure, use, exhibition or other
means

“P"  document published prior to the international filing date but later than

the priority date claimed

“T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance: the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

“Y"” document of particular relevance: the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

ngn

document member of the same patent family

Date of the actual completion of the international search

18 April 2006

Date of mailing of the international search report

20 -04- 2006

Name and mailing address of the ISA/
Swedish Patent Office

Box 5055, S-102 42 STOCKHOLM
Facsimile No. +46 8 666 02 86

Authorized officer

Pia Eklund /LR
Telephone No. +46 8 782 25 00




INTERNATIONAL SEARCH REPORT International application No.
PCT/FI2005/000504

International patent classification (IPQ)
GO6F 21/00 (2006.01)
GO6F 21/22 (2006.01)

Download your patent documents at www.prv.se

Cited patent documents can be downloaded at WWW.prv.se by
following the links e-tjénster/anfdrda dokument. Use the
application number as username. The password is 53ko88ubst.

Paper copies can be ordered at a cost of 50 SEK per copy from
PRV InterPat (telephone number 08-782 28 85).

Cited literature, if any, will be enclosed in paper form.

Form PCT/ISA/210 (extra sheet) (April 2005)




INTERNATIONAL SEARCH REPORT

International application No.
Information on patent family members

04/03/2006 | PCT/FI2005/000504

us 040039926 20 26/02/2004 NONE

R G b S i b o M e P Pt S et e e D P i P W o v (P PO G Skt (S et S W S B0t o Bt e Bt S B B Y P it S B S T o S P o S S S B

US 20030093660 Al  15/05/2003 EP 1440369 A 28/07/2004
GB 0124869 D 00/00/0000
GB 2381090 A,B 23/04/2003
Wo 03034212 A 24/04/2003

us 5974549 A 26/10/1999 NONE

us 6044467 A 28/03/2000 AU 1716999 A 28/06/1999
WO 9930238 A 17/06/1999

Form PCT/ISA/210 (patent family annex) (April 2005)



	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

