

US 20170152232A1

(19) **United States**

(12) **Patent Application Publication** (10) **Pub. No.: US 2017/0152232 A1**
KAMEDA et al. (43) **Pub. Date:** **Jun. 1, 2017**

(54) **NITROGEN-CONTAINING AROMATIC HETEROCYCLIC COMPOUND**

(71) Applicants: **Astellas Pharma Inc.**, Tokyo (JP); **Kotobuki Pharmaceutical Co., Ltd.**, Nagano (JP)

(72) Inventors: **Minoru KAMEDA**, Tokyo (JP); **Ikumi KURIWAKI**, Tokyo (JP); **Kazuhiko IKUBO**, Tokyo (JP); **Hiroyuki HISAMICHI**, Tokyo (JP); **Yuichiro KAWAMOTO**, Tokyo (JP); **Hiroyuki MORITOMO**, Tokyo (JP); **Tomoyuki SUZUKI**, Tokyo (JP); **Takashi FUTAMI**, Tokyo (JP); **Atsushi SUZUKI**, Tokyo (JP); **Kazuhisa TSUNOYAMA**, Tokyo (JP); **Makoto ASAUMI**, Tokyo (JP); **Hiroshi TOMIYAMA**, Nagano (JP); **Atsushi NODA**, Nagano (JP); **Yoshinori IWAI**, Nagano (JP); **Kazuo TOKUZAKI**, Nagano (JP); **Haruki OKADA**, Nagano (JP); **Kozo MIYASAKA**, Nagano (JP)

(73) Assignees: **Astellas Pharma Inc.**, Tokyo (JP); **Kotobuki Pharmaceutical Co., Ltd.**, Nagano (JP)

(21) Appl. No.: **15/277,484**

(22) Filed: **Sep. 27, 2016**

Related U.S. Application Data

(63) Continuation of application No. 13/979,327, filed on Jul. 11, 2013, now Pat. No. 9,464,077, filed as application No. PCT/JP2013/054878 on Feb. 26, 2013.

Foreign Application Priority Data

Feb. 28, 2012 (JP) 2012-042065

Publication Classification

(51) **Int. Cl.**

C07D 239/47 (2006.01)
C07D 239/42 (2006.01)
C07D 403/12 (2006.01)
C07D 401/12 (2006.01)
C07D 491/107 (2006.01)
C07D 405/14 (2006.01)
C07D 487/10 (2006.01)
C07D 413/12 (2006.01)
C07D 471/08 (2006.01)
C07D 417/12 (2006.01)
C07D 401/14 (2006.01)
C07D 471/10 (2006.01)

(52) **U.S. Cl.**

CPC **C07D 239/47** (2013.01); **C07D 401/14** (2013.01); **C07D 239/42** (2013.01); **C07D 403/12** (2013.01); **C07D 401/12** (2013.01); **C07D 471/10** (2013.01); **C07D 405/14** (2013.01); **C07D 487/10** (2013.01); **C07D 413/12** (2013.01); **C07D 471/08** (2013.01); **C07D 417/12** (2013.01); **C07D 491/107** (2013.01)

ABSTRACT

As a result of studies on compounds having FGFR inhibitory action, the present inventors have found that the nitrogen-containing aromatic heterocyclic compounds of the present invention have inhibitory action on FGFR1, FGFR2, and/or FGFR3, particularly, mutant FGFR3, and thus, the present invention has been accomplished. The nitrogen-containing aromatic heterocyclic compound of the present invention can be used as a therapeutic agent for various cancers related to FGFR1, FGFR2, and/or FGFR3, such as lung cancer and hormone therapy-resistant breast cancer, stomach cancer, triple negative breast cancer, endometrial cancer, bladder cancer, and glioblastoma, particularly as a prophylactic and/or therapeutic agent for mutant FGFR3-positive bladder cancer.

NITROGEN-CONTAINING AROMATIC HETEROCYCLIC COMPOUND

TECHNICAL FIELD

[0001] The present invention relates to compounds useful as active ingredients in pharmaceutical compositions, particularly in pharmaceutical compositions for the treatment of mutant FGFR3-positive bladder cancer.

BACKGROUND ART

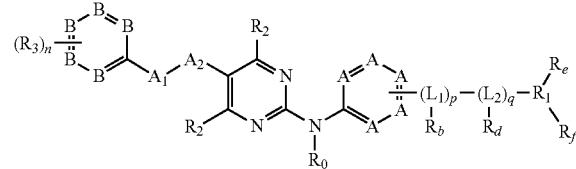
[0002] The signaling pathway induced by fibroblast growth factors (FGFs) and their receptors, fibroblast growth factor receptors (FGFRs), is one of signaling pathways having the most important functions in the course of development from early embryogenesis to the formation of various organs. There are 18 genes of FGF ligands and four FGFR genes (FGFR1 to FGFR4), which are expressed in various cells and involved in cell growth, differentiation, and survival. In recent years, the importance of FGF signaling in the pathogenesis of diverse tumor types has been reported, and clinical reagents that specifically target the FGFs or FGF receptors are being developed (Nature Reviews Cancer 2010; 10, 116-129, J. Med. Chem. 2011; 54, 7066-7083, AACR 2011, No. 1643 AstraZeneca).

[0003] As for FGFR1, it is reported that FGFR1 gene is amplified in lung cancer (in particular, squamous cell cancer) and hormone therapy-resistant breast cancer, and it is also reported that these cell lines exhibit FGFR1-dependent cell growth (Sci. Transl. Med. 2010; 2(62): 62ra93, Breast Cancer Res. 2007; 9(2): R23, Cancer Res. 2010, 70 (5), 2085-2094).

[0004] As for FGFR2, the gene amplification in stomach cancer and triple negative breast cancer and the activating mutation in endometrial cancer are reported (Laboratory Investigation 1998, 78(9): 1143-1153, Virchows Arch. 1997, 431; 383-389, J. Cancer Res. Clin. Oncol., 1993, 119, 265-272, AACR 2011, No. 1643 AstraZeneca, Oncogene 2010; 29, 2013-2023). These cancer cells have been also confirmed to exhibit FGFR2-dependent growth.

[0005] Further, FGFR3 exhibits activating gene mutation in about 50% of cases of bladder cancer. Bladder cancer is largely divided into three types: non-invasive, invasive, and metastatic types. There have been issues on them that although non-invasive bladder cancer has a high 5-year survival rate of 70% or above, it frequently recurs or partly progresses to invasive cancer, and that invasive or metastatic bladder cancer has a low 5-year survival rate of 50% or below. Current therapies for non-invasive bladder cancer with FGFR3 mutation are transurethral resection of bladder tumor (TUR-BT) and postoperative BCG therapy or intravesical instillation of chemotherapeutic agents. However, their recurrence-preventing effect remains unsatisfactory, and their adverse effects such as hematuria and irritable bladder have been at issue. Meanwhile, total cystectomy and the systemic administration of chemotherapeutic agents have been used for the treatment of invasive or metastatic bladder cancer. However, there are issues on their effectiveness, and adverse effects. Bladder cancer is known to be characterized in that part of the cancer cells sloughs off from bladder tissues into urine, and, based on this characteristic, urine cytology is used for the diagnostic of bladder cancer. It was recently reported that FGFR3 mutation can be detected using the sediments in urine (Biochem. Biophys.

Res. Commun. Nov. 3, 2007; 362(4): 865-71). Based on the presence or absence of this FGFR3 mutation, patients with FGFR3 mutation-positive bladder cancer can be selected, and the creation of an FGFR3 selective inhibitor has been demanded.

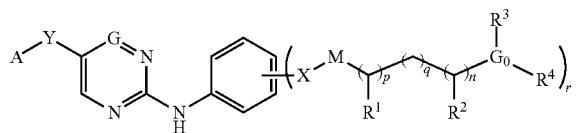

[0006] It is also reported that fusion genes combining FGFR genes and TACC (Transforming Acidic Coiled-coil) genes (FGFR3-TACC3 and FGFR1-TACC1) are expressed in the tumor of some glioblastoma patients (Science, Sep. 7, 2012; 337(6099): 1231-5). According to this report, the forced expression of FGFR3-TACC3 and FGFR1-TACC1 in astrocytes led to transformation and this result showed the oncogenicity of these fusion genes. It was also shown that FGFR3-TACC3 is localized in mitotic spindle poles and induces kinase activity-dependent chromosomal aneuploidy. Further, treatment of FGFR3-TACC3-expressing cells with an FGFR inhibitor suppressed chromosomal aneuploidy, thereby suppressing the growth of the cells. Thus, it is suggested that FGFR inhibitors might be effective for the treatment of glioblastoma patients with FGFR-TACC fusion genes.

[0007] It is also reported that human bladder cancer cell lines RT112, RT4, and LUCC2 express FGFR3-TACC3 fusion gene and that human bladder cancer cell line SW780 also expresses FGFR3-BAIAP2L1 fusion gene (Hum Mol Genet., 2013 Feb. 15, 22(4), 795-803). According to this report, the anchorage-independent growth of these fusion genes has been confirmed as a result of their introduction into NIH3T3 cells. Given that the growth of the foregoing bladder cancer cell lines expressing these FGFR3 fusion genes is inhibited by FGFR inhibitors, the detection of the presence of the fusion genes can be useful to select patients who can be treated effectively with FGFR inhibitors.

[0008] It is reported that the compounds of formula (A) shown below exhibit inhibition of various kinases and are useful as therapeutic agents for cancer and vascular disorders including myocardial infarction (Patent Document 1). Table 2 of the document discloses the test results of inhibition of kinases Yes, VEGFR, EphB4, PDGFR β , and FGFR1 by some of the compounds, which discloses that IC₅₀ values for the FGFR1 inhibitory activity were higher than 1000 nM, showing that the activity was also lower than in the case of inhibition of the activity of the other kinases. Further, in the document, there is no specific disclosure about the compounds of formula (I) of the present invention described below.

[Formula 1]

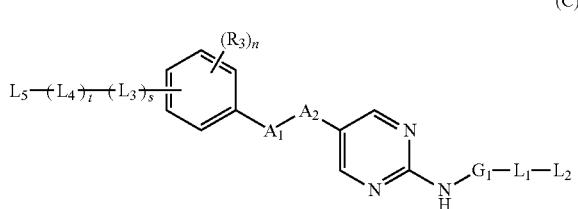
(A)



(In this formula, each of A is CH, N, or the like; each of B is CH or the like; A₁ is O, CR₂, or the like; R₀ is H or the like; A₂ is NR, O, or the like; L₁ is a bond, O, or the like; L₂ is a bond, C₁-C₆ alkyl, or the like; R₁ is a 3- to 6-membered heterocyclic ring or the like; and each of R_e and R_f is H,

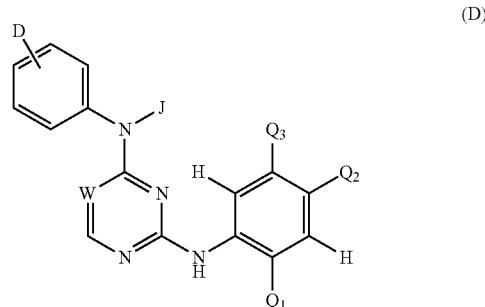
C_1 - C_6 alkyl, hydroxylalkyl, or the like. For the other symbols, refer to the publication.)

[0009] It is reported that the compounds of formula (B) shown below exhibit Abl inhibitory action and are useful against various cancers (Patent Document 2). However, in the document, there is no specific description about FGFR inhibitory action. Further, the compounds of formula (I) of the present invention described below have group $(R^1)_p$ which differentiate the compounds in structure from the compounds of formula (B).


[Formula 2]

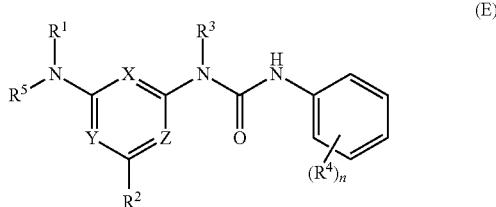
(In this formula, G is CH or the like; A is 3-hydroxyphenyl or the like; and Y is vinyl or ethylene. For the other symbols, refer to the publication.)

[0010] It is reported that the compounds of formula (C) shown below have inhibitory action on various kinases including Src, VEGFR2, Yes, Fyn, Lck, Abl, PDGFR, EGFR, and RET and are usable for the treatment of cancer, vascular disorders, and the like (Patent Document 3). However, there is no disclosure about FGFR inhibitory action in the document. In the document, there is also no specific disclosure about the compounds of formula (I) of the present invention described below.


[Formula 3]

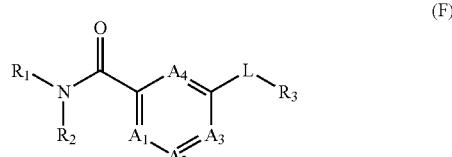
(In this formula, G_1 is aryl optionally having a substituent, heteroaryl optionally having a substituent, or the like; L_1 is O , SO , SO_2 , optionally substituted alkyl, or the like; L_2 is optionally substituted alkyl, heterocyclic ring, or the like; A_1 is a bond, O , $C(R_a)_2$, or the like; and A_2 is NR_a , O , or the like. For the other symbols, refer to the publication.)

[0011] It is reported that the compounds of formula (D) shown below have TIE-2 and/or VEGFR-2 kinase inhibitory action and are useful in treatment of angiogenesis-related diseases including cancer (Patent Document 4). However, there is no specific description about FGFR inhibition in the document. Further, the compounds of formula (I) of the present invention described below differ in structure from the compounds of formula (D) in that the compounds of formula (I) have a group L¹ having no amino group and that the compounds also have two bonds positioned para to each other on a ring comprising X and Y.


[Formula 4]

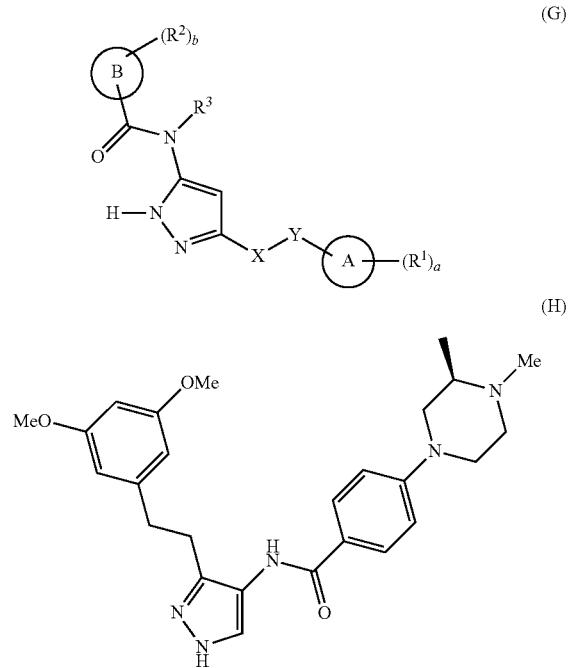
(In this formula, W is N or CR; R is H or the like. For the other symbols, refer to the publication.)

[0012] It is reported that the compounds of formula (E) shown below exhibit inhibitory action on the activity of many receptor protein tyrosine kinases, particularly, FGFRs, and can be used for the treatment of various diseases related to aberrant or excessive activity of these enzymes (Patent Document 5). However, the compounds of formula (I) of the present invention described below differ in structure from the compounds of formula (E) in that the compounds of formula (I) have a group L^1 which does not represent a N atom and that the compounds also have two bonds positioned para to each other on a ring comprising X and Y.


[Formula 5]

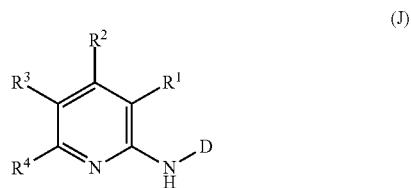
(In this formula, two of X, Y, and Z are N and the third is CH or N. For the other symbols, refer to the publication.)

[0013] It is reported that the compounds of formula (F) shown below exhibit inhibitory action on various kinases and are useful against inflammation and autoimmune diseases (Patent Document 6). On the other hand, the compounds of formula (I) of the present invention described below differ in structure from the compounds of formula (F) in that the compounds of formula (I) have a group L^1 which is not amide and that the compounds also have two bonds positioned para to each other on a ring comprising X and Y.


[Formula 6]

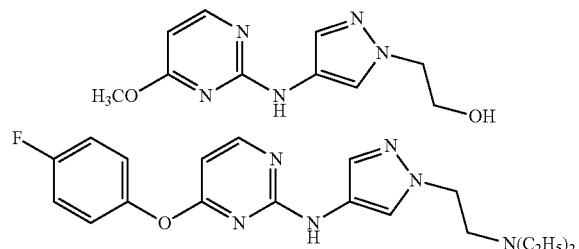
(In this formula, A¹, A², A³, and A⁴ are CR⁴, CR⁵, CR⁶, and CR⁷, respectively, or are N; L is —C(O)NR⁷—, —NR⁷C(O)—, or the like. For the other symbols, refer to the publication.)

[0014] It is reported that the compounds of formula (G) and those of formula (H) shown below exhibit FGFR inhibitory action and can be used for the treatment of various cancers (Patent Documents 7 and 8).


[Formula 7]

(In formula (G), ring B represents a 5- or 6-membered aromatic group that may comprise at least one heteroatom selected from O, S, and N. For the other symbols, refer to the publication.)

[0015] It is reported that the compounds of formula (J) shown below exhibit glucokinase activating effects and can be used for the treatment of diseases related to diabetes mellitus (Patent Document 9), and the structural feature is substitution with amino at the 2 position of the pyridine.


[Formula 8]

(For the symbols in this formula, refer to the publication.)

[0016] Also, the known compounds having the structures shown below are registered on the database as 1371065-79-0 and 1317903-92-6 in CAS registry number, respectively.

[Formula 9]

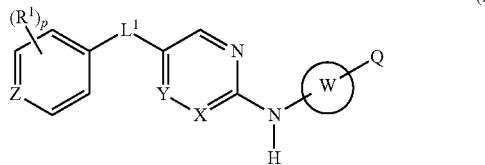
CITATION LIST

Patent Documents

- [0017] Patent Document 1: International Publication No. WO 2006/101977
- [0018] Patent Document 2: International Publication No. WO 2007/056075
- [0019] Patent Document 3: International Publication No. WO 2008/008234
- [0020] Patent Document 4: International Publication No. WO 2003/066601
- [0021] Patent Document 5: International Publication No. WO 2007/071752
- [0022] Patent Document 6: International Publication No. WO 2007/022380
- [0023] Patent Document 7: International Publication No. WO 2008/075068
- [0024] Patent Document 8: International Publication No. WO 2009/153592
- [0025] Patent Document 9: International Publication No. WO 2009/046784

SUMMARY OF INVENTION

Technical Problem


[0026] The present invention provides compounds useful as active ingredients in pharmaceutical compositions, particularly in pharmaceutical compositions for the treatment of mutant FGFR3-positive bladder cancer.

Solution to Problem

[0027] As a result of intensive and extensive studies on compounds having FGFR inhibitory action, the present inventors have found that the nitrogen-containing aromatic heterocyclic compound of the present invention has inhibitory action on FGFR1, FGFR2, and FGFR3, particularly, good inhibitory action on mutant FGFR3. The present invention has been thus accomplished.

[0028] More specifically, the present invention relates to a compound of formula (I) or a salt thereof as well as to a pharmaceutical composition comprising a compound of formula (I) or a salt thereof and a pharmaceutically acceptable excipient.

[Formula 10]

(wherein

X and Y, the same or different from each other, are CH or N, with the proviso that X and Y are not N simultaneously; L¹ is -lower alkylene-, -lower alkylene-O-, -O-lower alkylene-, or -lower alkynylene-;

Z is N or CH;

[0029] R¹, the same or different from one another, are lower alkyl optionally substituted with halogen, -O-(lower alkyl optionally substituted with halogen), halogen, cyano, or -N(lower alkyl)₂;

p is an integer of 2 to 4;

ring W is an optionally substituted aromatic carbocyclic ring, an optionally substituted aromatic heterocyclic ring, or an optionally substituted non-aromatic heterocyclic ring;

Q is -L²-R² or R³;

L² is an optionally substituted aromatic heterocyclic ring or an optionally substituted non-aromatic heterocyclic ring;

R² is a non-aromatic heterocyclic group optionally substituted with lower alkyl, optionally substituted cycloalkyl, lower alkyl optionally substituted with one or more groups selected from the group consisting of -OH and -O-lower alkyl, -C(O)-R⁰, -C(O)-optionally substituted cycloalkyl, -NH-R⁰, -N(lower alkyl)-R⁰, -L³-optionally substituted non-aromatic heterocyclic group, or H;

R⁰ is lower alkyl optionally substituted with -OH;R³ is

[0030] (1) lower alkyl optionally substituted with one or more groups selected from the group consisting of -C(O)OH, -OH, -O-R⁰, amino optionally substituted with one or two R⁰, carbamoyl optionally substituted with one or two R⁰, an optionally substituted aromatic heterocyclic group, an optionally substituted non-aromatic heterocyclic group, and a -C(O)-optionally substituted non-aromatic heterocyclic group;

(2) -O-(lower alkyl optionally substituted with one or more groups selected from the group consisting of -C(O)OH, -OH, -O-R⁰, carbamoyl optionally substituted with one or two R⁰, an optionally substituted non-aromatic heterocyclic group, and a -C(O)-optionally substituted non-aromatic heterocyclic group);

(3) -NH-(lower alkyl optionally substituted with one or more groups selected from the group consisting of -OH, a non-aromatic heterocyclic group optionally substituted with lower alkyl, and carbamoyl optionally substituted with one or two R⁰);

(4) -N(lower alkyl)-(lower alkyl optionally substituted with one or more groups selected from the group consisting of -OH, a non-aromatic heterocyclic group optionally substituted with lower alkyl, and carbamoyl optionally substituted with one or two R⁰);

(5) -C(O)OH;

[0031] (6) -C(O)-optionally substituted non-aromatic heterocyclic group;

(7) -O-(a non-aromatic heterocyclic group optionally substituted with lower alkyl); or

(8) carbamoyl optionally substituted with one or two R⁰; and L³ is a bond, -NH-, -N(lower alkyl)-, or lower alkylene.)

[0032] Unless otherwise specified, when symbols used in one chemical formula herein are also used in another chemical formula, the same symbols have identical meanings.

[0033] The present invention also relates to a pharmaceutical composition that comprises a compound of formula (I) or a salt thereof and a pharmaceutically acceptable excipient and which is available for the treatment of various cancers related to FGFR1, FGFR2, and/or FGFR3, such as FGFR-related lung cancer and hormone therapy-resistant breast cancer, FGFR2-related stomach cancer, triple negative breast cancer, and endometrial cancer, and FGFR3-related bladder cancer and glioblastoma. It is to be noted that the pharmaceutical composition includes therapeutic agents for various cancers related to FGFR1, FGFR2, and/or FGFR3. One embodiment is a pharmaceutical composition for the treatment of FGFR3-related bladder cancer, which comprises a compound of formula (I) or a salt thereof and a pharmaceutically acceptable excipient. Another embodiment is a pharmaceutical composition for the treatment of mutant FGFR3-positive bladder cancer, which comprises a compound of formula (I) or a salt thereof and a pharmaceutically acceptable excipient. In the present specification, "mutant" includes point mutation, fusion mutation, deletion mutation and insertion mutation, and in an embodiment, "mutant" means general idea including point mutation and fusion mutation. In another embodiment, "mutant" means point mutation, and in yet another embodiment, "mutant" means fusion mutation.

[0034] Further, the present invention relates to: use of a compound of formula (I) or a salt thereof, for the manufacture of a pharmaceutical composition for the treatment of various cancers related to FGFR1, FGFR2, and/or FGFR3; use of a compound of formula (I) or a salt thereof, for the treatment of various cancers related to FGFR1, FGFR2, and/or FGFR3; a compound of formula (I) or a salt thereof, for the treatment of various cancers related to FGFR1, FGFR2, and/or FGFR3; and a method for treating various cancers related to FGFR1, FGFR2, and/or FGFR3, which comprises administering an effective amount of a compound of formula (I) or a salt thereof to a subject. The present invention also relates to: use of a compound of formula (I) or a salt thereof, for the manufacture of a pharmaceutical composition for the treatment of mutant FGFR3-positive bladder cancer; use of a compound of formula (I) or a salt thereof, for the treatment of mutant FGFR3-positive bladder cancer; a compound of formula (I) or a salt thereof, for the treatment of mutant FGFR3-positive bladder cancer; and a method for treating mutant FGFR3-positive bladder cancer, which comprises administering an effective amount of a compound of formula (I) or a salt thereof to a subject. It is to be noted that the "subject" referred to above is a human or another animal in need of the treatment, and is a human in need of the treatment in one embodiment.

Advantageous Effects of Invention

[0035] A compound of formula (I) or a salt thereof has inhibitory action on FGFR1, FGFR2, and/or FGFR3, particularly, mutant FGFR3, and can be used as a therapeutic agent for various cancers related to FGFR1, FGFR2, and/or FGFR3, such as lung cancer and hormone therapy-resistant breast cancer, stomach cancer, triple negative breast cancer, endometrial cancer, bladder cancer, and glioblastoma, particularly as a therapeutic agent for mutant FGFR3-positive bladder cancer.

DESCRIPTION OF EMBODIMENTS

[0036] The present invention is described in detail below.

[0037] As used herein, the term “lower alkyl” refers to linear or branched alkyl having 1 to 8 carbon atoms (hereinafter abbreviated as C₁₋₈) including methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, and the like. Another embodiment is C₁₋₄ alkyl, and yet another embodiment is methyl. Yet another embodiment is ethyl.

[0038] The term “lower alkylene” refers to linear or branched C₁₋₈ alkylene including methylene, ethylene, trimethylene, tetramethylene, pentamethylene, hexamethylene, heptamethylene, octamethylene, propylene, methylmethylen, ethylethylene, 1,2-dimethylethylene, 1,1,2,2-tetramethylethylene, and the like. Another embodiment is C₁₋₄ alkylene, and yet another embodiment is methylene. Yet another embodiment is ethylene.

[0039] The term “lower alkynylene” refers to linear or branched C₂₋₆ alkynylene including ethynylene, propynylene, butynylene, pentynylene, hexynylene, 1,3-butadiynylene, 1,3-pentadiynylene, and the like. Another embodiment is C₂₋₄ alkynylene, and yet another embodiment is ethynylene.

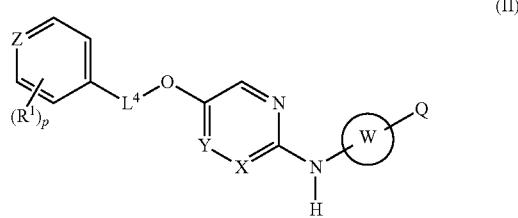
[0040] The term “cycloalkyl” refers to a C₃₋₁₀ saturated hydrocarbon ring group and it may be bridged. Examples include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, adamantyl, and the like. Another embodiment is C₃₋₈ cycloalkyl, and yet another embodiment is C₃₋₆ cycloalkyl. Yet another embodiment is cyclopropyl.

[0041] The term “aromatic carbocyclic ring” refers to a C₆₋₁₄ monocyclic to tricyclic aromatic hydrocarbon ring. Examples include benzene, naphthalene, and anthracene, and another embodiment is benzene.

[0042] The term “aromatic heterocyclic ring” refers to a 5- to 10-membered aromatic heterocyclic ring which has 1 to 4 heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur. Examples include pyridine, pyrrole, pyrazine, pyrimidine, pyridazine, imidazole, pyrazole, thiazole, oxazole, isoxazole, thiophene, isothiazole, furan, oxadiazole, thiadiazole, indole, isoindole, indazole, benzofuran, benzothiophene, benzimidazole, benzoxazole, benzothiazole, quinoline, isoquinoline, cinnoline, phthalazine, quinazoline, quinoxaline, thienopyridine, thienopyrimidine, thienopyrazine, and the like. Another embodiment is pyridine, pyrrole, pyrazine, pyrimidine, pyridazine, imidazole, pyrazole, thiazole, oxazole, thiophene, furan, oxadiazole, and indazole. Yet another embodiment is pyridine, pyrimidine, imidazole, pyrazole, thiazole, and indazole. Yet another embodiment is pyridine, imidazole, and pyrazole. Yet another embodiment is pyridine. Yet another embodiment is pyrazole. Yet another embodiment is imidazole.

[0043] The term “aromatic heterocyclic group” refers to a monovalent group of the “aromatic heterocyclic ring” described above. Examples include pyridyl, pyrrolyl, pyrazinyl, pyrimidinyl, pyridazinyl, imidazolyl, pyrazolyl, thiazolyl, oxazolyl, thietyl, furyl, 1,2,4-oxadiazolyl, and the like. Another embodiment is a 5- or 6-membered aromatic heterocyclic group which has 1 or 2 nitrogen atoms, and yet another embodiment is pyridyl.

[0044] The term “non-aromatic heterocyclic ring” refers to a 3- to 10-membered non-aromatic heterocyclic ring (or a 4- to 8-membered non-aromatic heterocyclic ring in one embodiment) having 1 to 4 heteroatoms which are selected from the group consisting of nitrogen, oxygen, and sulfur and which are the same or different. The non-aromatic heterocyclic ring may be fused to a benzene ring or a thiophene ring, be bridged by lower alkylene, be combined with another non-aromatic heterocyclic ring to form a spiro ring, or have an unsaturated bond on part of the own ring. The sulfur atom or nitrogen atom which is a ring-forming atom may be oxidized. Examples include aziridine, oxetane, azetidine, pyrrolidine, piperidine, azepane, diazepane, azocane, piperazine, 4-oxidopiperazine, homopiperazine, morpholine, oxazepane, thiomorpholine, 1,1-dioxidothiomorpholine, 1,1-dioxidothiazolidine, thiazepane, 1-azabicyclo[2.2.2]octane, 7-oxabicyclo[2.2.1]heptane, 2,5-diazabicyclo[2.2.1]heptane, 3-azabicyclo[3.2.1]octane, 8-azabicyclo[3.2.1]octane, 9-azabicyclo[3.3.1]nonane, 3,9-diazabicyclo[3.3.1]nonane, 3,9-diazaspiro[5.5]undecane, 2,6-diazaspiro[3.3]heptane, 2-oxa-6-azaspiro[3.3]heptane, 2-oxa-7-azaspiro[3.5]nonane, tetrahydropyran, tetrahydrofuran, dioxane, dioxolan, tetrahydrothiophene, tetrahydrothiopyran, tetrahydrothienopyridine, tetrahydrobenzoazepine, tetrahydrobenzodiazepine, dihydrobenzofuran, dihydrobenzothiophene, dihydrobenzopyran, dihydrobenzodioxane, benzodioxane, dihydropyran, dihydropyrrrole, dihydropyridine, tetrahydropyridine, tetrahydropyrazine, and the like. Another embodiment is a 5- to 7-membered non-aromatic heterocyclic ring having 1 or 2 heteroatoms which are selected from the group consisting of nitrogen, oxygen, and sulfur and which are the same or different. Yet another embodiment is a 5- to 7-membered nitrogen-containing non-aromatic heterocyclic ring which may have at least one nitrogen atom and have one additional heteroatom selected from the group consisting of nitrogen, oxygen, and sulfur. Yet another embodiment is a 6-membered nitrogen-containing non-aromatic heterocyclic ring. Examples include piperazine, piperidine, morpholine, thiomorpholine, 1,1-dioxidothiomorpholine, and the like. Yet another embodiment is oxetane, piperidine, piperazine, morpholine, thiomorpholine, 4-oxidopiperazine, 1,1-dioxidothiomorpholine, tetrahydropyran, tetrahydrofuran, tetrahydrothiophene, tetrahydropyridine, 1-azabicyclo[2.2.2]octane, 8-azabicyclo[3.2.1]octane, 3,9-diazaspiro[5.5]undecane, 2,6-diazaspiro[3.3]heptane, 2-oxa-6-azaspiro[3.3]heptane, or 2-oxa-7-azaspiro[3.5]nonane. Yet another embodiment is morpholine, piperidine, piperazine, 4-oxidopiperazine, 3,9-diazaspiro[5.5]undecane, or 2,6-diazaspiro[3.3]heptane. Yet another embodiment is piperidine. Yet another embodiment is piperazine.


[0045] The term “non-aromatic heterocyclic group” refers to a monovalent group of a non-aromatic heterocyclic ring. The non-aromatic heterocyclic group is a 3- to 10-membered non-aromatic heterocyclic group having 1 to 4 heteroatoms

which are selected from the group consisting of nitrogen, oxygen, and sulfur and which are the same or different. The non-aromatic heterocyclic group may be bridged by lower alkylene, have an unsaturated bond on part of the ring, or be combined with another non-aromatic heterocyclic ring to form a spiro ring. The sulfur atom or nitrogen atom which is a ring-forming atom may be oxidized. Examples include aziridinyl, azetidinyl, oxetanyl, pyrrolidinyl, piperidinyl, azepanyl, diazepanyl, azocanyl, piperazinyl, homopiperazinyl, morpholinyl, oxazepanyl, thiomorpholinyl, 1,1-dioxidothiomorpholinyl, thiazepanyl, tetrahydropyranyl, tetrahydrofuryl, dioxanyl, dioxolanyl, tetrahydrothienyl, tetrahydrothiopyranyl, 7-oxabicyclo[2.2.1]heptyl, 2,5-diazabicyclo[2.2.1]heptyl, 3-azabicyclo[3.2.1]octyl, 8-azabicyclo[3.2.1]octyl, 9-azabicyclo[3.3.1]nonyl, 3,9-diazabicyclo[3.3.1]nonyl, dihydropyranyl, dihydropyrrolyl, dihydropyridyl, tetrahydropyridyl, tetrahydropyrazyl, 9-diazaspiro[5.5]undec-3-yl, 1,9-diazaspiro[5.5]undec-9-yl, 2,8-diazaspiro[4.5]dec-8-yl, 1,4-dioxa-8-azaspiro[4.5]dec-8-yl, and the like. Another embodiment is a 5- to 7-membered non-aromatic heterocyclic group having 1 or 2 heteroatoms which are selected from the group consisting of nitrogen, oxygen, and sulfur and which are the same or different. Yet another embodiment is a 5- to 7-membered non-aromatic heterocyclic group having at least one nitrogen atom. Yet another embodiment is a 6-membered nitrogen-containing non-aromatic heterocyclic group. Examples include piperazinyl, piperidinyl, morpholinyl, thiomorpholinyl, 1,1-dioxidothiomorpholinyl, and the like. Yet another embodiment is oxetanyl, piperidinyl, piperazinyl, morpholinyl, thiomorpholinyl, 4-oxidopiperazinyl, 1,1-dioxidothiomorpholinyl, tetrahydropyranyl, tetrahydrofuryl, tetrahydrothienyl, tetrahydropyridyl, 1-azabicyclo[2.2.2]octyl, 8-azabicyclo[3.2.1]octyl, 3,9-diazaspiro[5.5]undec-3-yl, 2,6-diazaspiro[3.3]hept-2-yl, or 2-oxa-6-azaspiro[3.3]hept-6-yl. Yet another embodiment is piperidinyl or piperazinyl. Yet another embodiment is piperidinyl. Yet another embodiment is piperazinyl.

[0046] The term "halogen" refers to —F, —Cl, —Br, or —I. Another embodiment is —F, and yet another embodiment is —Cl.

[0047] A compound of formula (I) or a salt thereof, wherein L¹ in formula (I) is -lower alkylene-O-, means a compound of formula (II) or a salt thereof.

[Formula 11]

(In this formula, L⁴ represents lower alkylene. The same applies hereinafter.)

[0048] Further, two to four R¹ in (R¹)_p may be the same or different from one another.

[0049] The phrase "optionally substituted" as used herein means "unsubstituted" or "having 1 to 5 substituents". When a plurality of substituents are contained, these substituents

may be the same or different from one another. Further, for example, two R⁰ on the nitrogen in the "carbamoyl optionally substituted with one or two R⁰" may be the same lower alkyl or different lower alkyl from each other. Each R⁰ may be substituted with —OH, or alternatively, either one may be substituted or neither one may be substituted.

[0050] As referred to herein, a substituent in "an optionally substituted aromatic carbocyclic ring", "an optionally substituted aromatic heterocyclic ring", or "an optionally substituted non-aromatic heterocyclic ring" as ring W in formula (I) is, for example, a group shown in group D1 described below.

[0051] Group D1 is a group consisting of:

[0052] (1) an aromatic heterocyclic group optionally substituted with one or more substituents selected from —OH and lower alkyl;

[0053] (2) a non-aromatic heterocyclic group optionally substituted with one or more substituents selected from —OH and lower alkyl;

[0054] (3) halogens;

[0055] (4) —O-lower alkyl, —S-lower alkyl, —OH, and —SH;

[0056] (5) —CN and —NO₂;

[0057] (6) —CO₂H and —CO₂-lower alkyl; and

[0058] (7) lower alkyl or —O-lower alkyl, each of which is optionally substituted with one or more groups selected from the group consisting of the groups shown in (1) to (6) above.

[0059] Another embodiment of group D1 is a group consisting of:

[0060] (1) an aromatic heterocyclic group optionally substituted with —OH;

[0061] (2) halogens;

[0062] (3) —OH;

[0063] (4) —CN;

[0064] (5) —CO₂H; and

[0065] (6) lower alkyl or —O-lower alkyl, each of which is optionally substituted with one or more substituents selected from the group consisting of the substituents shown in (1) to (5) above.

[0066] Yet another embodiment of group D1 is a group consisting of:

[0067] (1) lower alkyl optionally substituted with halogen;

[0068] (2) —O-lower alkyl optionally substituted with an aromatic heterocyclic group optionally substituted with —OH;

[0069] (3) halogens; and

[0070] (4) —CN

[0071] Yet another embodiment of group D1 is a group consisting of lower alkyl optionally substituted with halogen; —O-lower alkyl optionally substituted with one or more substituents selected from the group consisting of a non-aromatic heterocyclic group optionally substituted with oxo, an aromatic heterocyclic group optionally substituted with —OH, and halogens, cyano, and oxo.

[0072] A substituent acceptable in "an optionally substituted aromatic heterocyclic ring" or "an optionally substituted non-aromatic heterocyclic ring" referred to as L² in formula (I), "optionally substituted cycloalkyl" or "an optionally substituted non-aromatic heterocyclic group" referred to as R² in formula (I), and "an optionally substituted aromatic heterocyclic group" or "an optionally substituted

tuted non-aromatic heterocyclic group" referred to in R^3 in formula (I) is, for example, a substituent selected from group D2.

[0073] Group D2 is a group consisting of:

[0074] (1) halogens;

[0075] (2) —OH and —SH;

[0076] (3) —CN; and

[0077] (4) lower alkyl optionally substituted with one or more substituents selected from the group consisting of the substituents shown in (1) to (3) above.

[0078] Another embodiment of group D2 is a group consisting of:

[0079] (1) lower alkyl optionally substituted with —OH; and

[0080] (2) —OH

[0081] Some embodiments of the compounds of formula (I) or salts thereof are given below.

[0082] (1) A compound or a salt thereof, wherein X is N and Y is CH. Another embodiment is a compound or a salt thereof, wherein X is CH and Y is N. Yet another embodiment is a compound or a salt thereof, wherein X is CH and Y is CH.

[0083] (2) A compound or a salt thereof, wherein L^1 is lower alkylene or -lower alkylene-O—. Another embodiment is a compound or a salt thereof, wherein L^1 is -lower alkylene-. Yet another embodiment is a compound or a salt thereof, wherein L^1 is -lower alkylene-O—. Yet another embodiment is a compound or a salt thereof, wherein L^1 is ethylene or -methylene-O—. Yet another embodiment is a compound or a salt thereof, wherein L^1 is ethylene. Yet another embodiment is a compound or a salt thereof, wherein L^1 is -methylene-O—. Yet another embodiment is a compound or a salt thereof, wherein L^1 is ethynylene.

[0084] (3) A compound or a salt thereof, wherein Z is CH. Another embodiment is a compound or a salt thereof, wherein Z is N.

[0085] (4-1) A compound or a salt thereof, wherein p is 2 or 4. Another embodiment is a compound or a salt thereof, wherein p is 2. Yet another embodiment is a compound or a salt thereof, wherein p is 4.

[0086] (4-2) A compound or a salt thereof, wherein R^1 , the same or different from one another, are —O-lower alkyl or halogen. Another embodiment is a compound or a salt thereof, wherein R^1 , the same or different from one another, are —O-lower alkyl. Yet another embodiment is a compound or a salt thereof, wherein R^1 , the same or different from one another, are halogen. Yet another embodiment is a compound or a salt thereof, wherein R^1 , the same or different from one another, are —O-methyl or F. Yet another embodiment is a compound or a salt thereof, wherein R^1 , the same or different from one another, are —O-methyl or Cl. Yet another embodiment is a compound or a salt thereof, wherein all of R^1 are F.

[0087] (5) A compound or a salt thereof, wherein the 6-membered aromatic ring in formula (I) which is substituted with $(R^1)_p$, and which has Z as a ring-forming atom is 2,6-dichloro-3,5-dimethoxyphenyl or 2,6-difluoro-3,5-dimethoxyphenyl. Another embodiment is a compound or a salt thereof, wherein the 6-membered aromatic ring in formula (I) which is substituted with $(R^1)_p$, and which has Z as a ring-forming atom is 2,6-dichloro-3,5-dimethoxyphenyl. Another embodiment is a compound or a salt thereof, wherein the 6-membered aromatic ring in formula (I) which

is substituted with $(R^1)_p$ and which has Z as a ring-forming atom is 2,6-difluoro-3,5-dimethoxyphenyl.

[0088] (6) A compound or a salt thereof, wherein ring W is an aromatic carbocyclic ring optionally substituted with one or more substituents selected from group D1 or is an aromatic heterocyclic ring optionally substituted with one or more substituents selected from group D1. Another embodiment is a compound or a salt thereof, wherein ring W is a benzene ring substituted with one or more substituents selected from group D1 or is pyrazole, pyridine, pyrimidine, thiazole, indazole, or imidazole which in each case is optionally substituted with one or more substituents selected from group D1. Yet another embodiment is a compound or a salt thereof, wherein ring W is a benzene ring optionally substituted with one or more substituents selected from group D1 or is pyrazole optionally substituted with one or more substituents selected from group D1. Yet another embodiment is a compound or a salt thereof, wherein ring W is a benzene ring optionally substituted with one or more substituents selected from group D1. Yet another embodiment is a compound or a salt thereof, wherein ring W is a benzene ring optionally substituted with one or more substituents selected from the group consisting of lower alkyl, —O-lower alkyl, and halogens. Yet another embodiment is a compound or a salt thereof, wherein ring W is a benzene ring optionally substituted with one or more substituents selected from the group consisting of methyl, —O-methyl, and halogens. Yet another embodiment is a compound or a salt thereof, wherein ring W is a benzene ring optionally substituted with —O-methyl. Yet another embodiment is a compound or a salt thereof, wherein ring W is pyrazole optionally substituted with one or more substituents selected from group D1. Yet another embodiment is a compound or a salt thereof, wherein ring W is pyrazole optionally substituted with lower alkyl. Yet another embodiment is a compound or a salt thereof, wherein ring W is pyrazole optionally substituted with methyl. Yet another embodiment is a compound or a salt thereof, wherein ring W is pyrazole substituted with methyl. Yet another embodiment is a compound or a salt thereof, wherein ring W is pyrazole.

[0089] (7) A compound or a salt thereof, wherein Q is $-L^2-R^2$. Another embodiment is a compound or a salt thereof, wherein Q is R^3 .

[0090] (8) A compound or a salt thereof, wherein L^2 is a non-aromatic heterocyclic ring optionally substituted with one or more substituents selected from group D2. Another embodiment is a compound or a salt thereof, wherein L^2 is a nitrogen-containing non-aromatic heterocyclic ring optionally substituted with one or more substituents selected from group D2. Yet another embodiment is a compound or a salt thereof, wherein L^2 is piperazine, 4-oxidopiperazine, piperidine, morpholine, azetidine, 3,9-diazaspiro[5.5]undecane, 2,6-diazaspiro[3.3]heptane, 2-oxa-6-azaspiro[3.3]heptane, 2-oxa-7-azaspiro[3.5]nonane, 8-azabicyclo[3.2.1]octane, or 1-azabicyclo[2.2.2]octane which in each case is optionally substituted with one or more substituents selected from group D2. Yet another embodiment is a compound or a salt thereof, wherein L^2 is piperazine optionally substituted with one or more methyl, piperidine optionally substituted with one or more methyl, or 3,9-diazaspiro[5.5]undecane. Yet another embodiment is a compound or a salt thereof, wherein L^2 is piperidine or 4-methylpiperazine.

[0091] (9) A compound or a salt thereof, wherein R^2 is lower alkyl optionally substituted with one or more groups

selected from the group consisting of —OH and —O-lower alkyl, —NH-(lower alkyl optionally substituted with —OH), a non-aromatic heterocyclic group optionally substituted with one or more substituents selected from group D2, -lower alkylene-(a non-aromatic heterocyclic group optionally substituted with one or more substituents selected from the group D2), or H. Another embodiment is a compound or a salt thereof, wherein R² is lower alkyl optionally substituted with one or more groups selected from the group consisting of —OH and —O-lower alkyl, —NH-(lower alkyl optionally substituted with —OH), a non-aromatic heterocyclic group optionally substituted with lower alkyl (the lower alkyl is optionally substituted with —OH), or H. Yet another embodiment is a compound or a salt thereof, wherein R² is piperazine optionally substituted with methyl, piperidine optionally substituted with methyl, 2-hydroxyethylamino, or H. Yet another embodiment is a compound or a salt thereof, wherein R² is 4-methylpiperazine, 2-hydroxyethylamino, or H. Yet another embodiment is a compound or a salt thereof, wherein R² is 4-methylpiperazine. Yet another embodiment is a compound or a salt thereof, wherein R² is 2-hydroxyethylamino. Yet another embodiment is a compound or a salt thereof, wherein R² is H.

[0092] (10) A compound or a salt thereof, wherein R³ is lower alkyl optionally substituted with one or more groups selected from the group consisting of —C(O)OH, carbamoyl optionally substituted with one or two R⁰, —OH, a non-aromatic heterocyclic group optionally substituted with one or more substituents selected from group D2, and —C(O)-(a non-aromatic heterocyclic group optionally substituted with one or more substituents selected from group D2) or wherein R³ is —O-lower alkyl optionally substituted with one or more groups selected from the group consisting of —C(O)OH, carbamoyl optionally substituted with one or two R⁰, —OH, a non-aromatic heterocyclic group optionally substituted with one or more substituents selected from group D2, and —C(O)-(a non-aromatic heterocyclic group optionally substituted with one or more substituents selected from group D2)). Another embodiment is a compound or a salt thereof, wherein R³ is lower alkyl substituted with one or more groups selected from the group consisting of —C(O)OH, carbamoyl optionally substituted with one or two R⁰, —OH, a non-aromatic heterocyclic group optionally substituted with one or more substituents selected from group D2, and —C(O)-(a non-aromatic heterocyclic group optionally substituted with one or more substituents selected from group D2). Yet another embodiment is a compound or a salt thereof, wherein R³ is lower alkyl substituted with one or more substituents selected from the group consisting of —OH, a non-aromatic heterocyclic group optionally substituted with one or more substituents selected from —OH and lower alkyl, and —C(O)-(a non-aromatic heterocyclic group optionally substituted with one or more substituents selected from the group consisting of —OH and lower alkyl). Yet another embodiment is a compound or a salt thereof, wherein R³ is lower alkyl substituted with one or more substituents selected from the group consisting of —OH, a non-aromatic heterocyclic group optionally substituted with lower alkyl, and —C(O)-(a non-aromatic heterocyclic group optionally substituted with —OH). Yet another embodiment is a compound or a salt thereof, wherein R³ is lower alkyl substituted with one or more groups selected from the group consisting of —OH, piperazinyl optionally substituted with methyl, and —C(O)-(azetidinyl optionally substituted with

—OH). Yet another embodiment is a compound or a salt thereof, wherein R³ is 2-hydroxyethyl, 2,3-dihydroxypropyl, or 4-methylpiperazin-1-ylmethyl. Yet another embodiment is a compound or a salt thereof, wherein R³ is 4-methylpiperazin-1-ylmethyl. Yet another embodiment is a compound or a salt thereof, wherein R³ is lower alkyl optionally substituted with one or more —OH. Yet another embodiment is a compound or a salt thereof, wherein R³ is 2-hydroxyethyl or 2,3-dihydroxypropyl.

[0093] (11) A compound or a salt thereof, which is a consistent combination of any two or more of the embodiments described in (1) to (10) above.

[0094] The present invention encompasses a compound or a salt thereof, which is a combination of any two or more of the embodiments described in (1) to (10) above, as described in (11) above. Specific examples include the embodiments described below.

[0095] (12) A compound or a salt thereof, wherein X is N; Y is CH; and L¹ is lower alkylene or -lower alkylene-O—.

[0096] (13) The compound according to (12) or a salt thereof, wherein Z is CH; R¹, the same or different from one another, are —O-lower alkyl or halogen; p is 2 or 4; ring W is an optionally substituted aromatic carbocyclic ring or an optionally substituted aromatic heterocyclic ring.

[0097] (14) The compound according to (13) or a salt thereof, wherein L¹ is ethylene or -methylene-O—; p is 4; ring W is an optionally substituted benzene ring or optionally substituted pyrazole.

[0098] (15) The compound according to any one of (12) to (14) or a salt thereof, wherein Q is -L²-R²; L² is an optionally substituted non-aromatic heterocyclic ring; R² is lower alkyl optionally substituted with one or more groups selected from the group consisting of —OH and —O-lower alkyl, —NH-(lower alkyl optionally substituted with —OH), an optionally substituted non-aromatic heterocyclic group, -lower alkylene-(an optionally substituted non-aromatic heterocyclic group), or H.

[0099] (16) The compound according to (15) or a salt thereof, wherein p is 4; L² is piperazine optionally substituted with one or more methyl, piperidine optionally substituted with one or more methyl, or 3,9-diazaspiro[5.5]undecane; R² is piperazine optionally substituted with methyl, piperidine optionally substituted with methyl, 2-hydroxyethylamino, or H.

[0100] (17) The compound according to (16) or a salt thereof, wherein R¹, the same or different from one another, are —O-methyl or F; L¹ is -methylene-O—; ring W is a benzene ring optionally substituted with —O-methyl; L² is piperidine or 4-methylpiperazine; R² is 4-methylpiperazine, 2-hydroxyethylamino, or H.

[0101] (18) The compound according to any one of (12) to (14) or a salt thereof, wherein ring W is optionally substituted pyrazole; Q is R³; R³ is lower alkyl substituted with one or more groups selected from the group consisting of —C(O)OH, carbamoyl optionally substituted with one or two R⁰, —OH, an optionally substituted non-aromatic heterocyclic group, and —C(O)-(an optionally substituted non-aromatic heterocyclic group).

[0102] (19) The compound according to (18) or a salt thereof, wherein p is 4 and R³ is lower alkyl substituted with one or more substituents selected from the group consisting of —OH, a non-aromatic heterocyclic group optionally substituted with lower alkyl, and —C(O)-(a non-aromatic heterocyclic group optionally substituted with —OH).

[0103] (20) The compound according to (19) or a salt thereof, wherein R¹, the same or different from one another, are —O-methyl or F; L¹ is -methylene-O—; ring W is pyrazole optionally substituted with methyl; R³ is 2-hydroxyethyl, 2,3-dihydroxypropyl, or 4-methylpiperazin-1-ylmethyl.

[0104] Another embodiment of the compound of formula (I) or salt thereof is, for example, a compound or a salt thereof, wherein X and Y, the same or different from each other, are CH or N, with the proviso that X and Y are not N simultaneously; L¹ is -lower alkylene-, -lower alkylene-O—, —O-lower alkylene-, or lower alkynylene;

Z is N or CH;

[0105] R¹, the same or different from one another, are lower alkyl optionally substituted with halogen, —O-(lower alkyl optionally substituted with halogen), halogen, cyano, or —N(lower alkyl)₂;

p is an integer of 2 to 4;

ring W is an optionally substituted aromatic carbocyclic ring, an optionally substituted aromatic heterocyclic ring, or an optionally substituted non-aromatic heterocyclic ring; Q is -L²-R² or R³;

L² is an optionally substituted aromatic heterocyclic ring or an optionally substituted non-aromatic heterocyclic ring; R² is lower alkyl optionally substituted with one or more groups selected from the group consisting of —OH and —O-lower alkyl, —C(O)-optionally substituted cycloalkyl, —NH-lower alkyl optionally substituted with —OH, an -L³-optionally substituted non-aromatic heterocyclic group, or H;

R³ is lower alkyl optionally substituted with one or more groups selected from the group consisting of —C(O)OH, —OH, —NH-lower alkyl, —N(lower alkyl)₂, —C(O)—NH-lower alkyl, —C(O)—N(lower alkyl)₂, an optionally substituted aromatic heterocyclic group, an optionally substituted non-aromatic heterocyclic group, and a —C(O)-optionally substituted non-aromatic heterocyclic group, —O-(lower alkyl optionally substituted with one or more groups selected from the group consisting of —OH, —C(O)—NH-lower alkyl, and —C(O)—N(lower alkyl)₂), —NH-lower alkyl optionally substituted with one or more groups selected from the group consisting of —OH, —C(O)—NH-lower alkyl, and —C(O)—N(lower alkyl)₂), —N(lower alkyl)-(lower alkyl optionally substituted with one or more groups selected from the group consisting of —OH, —C(O)—NH-lower alkyl, and —C(O)—N(lower alkyl)₂), —C(O)OH, or a —C(O)-optionally substituted non-aromatic heterocyclic group; and L³ is a bond or lower alkylene.

[0106] Examples of specific compounds falling within the scope of the compound of formula (I) or a salt thereof include the following compounds:

[0107] 5-[2-(2,6-difluoro-3,5-dimethoxyphenyl)ethyl]-N-[3-methoxy-4-(4-methylpiperazin-1-yl)phenyl]pyrimidin-2-amine,

[0108] (2S)-3-[4-(5-[2-(2,6-difluoro-3,5-dimethoxybenzyl)oxy]pyrimidin-2-yl)amino]-1H-pyrazol-1-yl]propane-1,2-diol,

[0109] 5-[2-(2,6-difluoro-3,5-dimethoxyphenyl)ethyl]-N-[3-methoxy-4-[4-(4-methylpiperazin-1-yl)piperidin-1-yl]phenyl]pyrimidin-2-amine,

[0110] 5-[2-(2,6-difluoro-3,5-dimethoxyphenyl)ethyl]-N-[3-fluoro-4-[4-(4-methylpiperazin-1-yl)piperidin-1-yl]phenyl]pyrimidin-2-amine,

[0111] 5-[(2,6-difluoro-3,5-dimethoxybenzyl)oxy]-N-[3-methoxy-4-(4-methylpiperazin-1-yl)piperidin-1-yl]phenyl]pyrimidin-2-amine,

[0112] 5-[(2,6-difluoro-3,5-dimethoxybenzyl)oxy]-N-[3-methoxy-4-(4-methylpiperazin-1-yl)phenyl]pyrimidin-2-amine,

[0113] 5-[(2,6-dichloro-3,5-dimethoxybenzyl)oxy]-N-[1-(1-methylpiperidin-4-yl)-1H-pyrazol-4-yl]pyrimidin-2-amine,

[0114] 5-[(2,6-dichloro-3,5-dimethoxybenzyl)oxy]-N-[1-(piperidin-4-yl)-1H-pyrazol-4-yl]pyrimidin-2-amine,

[0115] 5-[(2,6-difluoro-3,5-dimethoxybenzyl)oxy]-N-[3-methoxy-4-(4-methylpiperidin-4-yl)piperazin-1-yl]phenyl]pyrimidin-2-amine,

[0116] 5-[(2,6-difluoro-3,5-dimethoxybenzyl)oxy]-N-[3-methyl-4-(4-methylpiperazin-1-yl)piperidin-1-yl]phenyl]pyrimidin-2-amine,

[0117] 5-[(2,6-difluoro-3,5-dimethoxybenzyl)oxy]-N-[4-(3R,5S)-3,5-dimethylpiperazin-1-yl]-3-methoxyphenyl]pyrimidin-2-amine,

[0118] N-[4-(3,9-diazaspiro[5.5]undec-3-yl)-3-methoxyphenyl]-5-[(2,6-difluoro-3,5-dimethoxybenzyl)oxy]pyrimidin-2-amine,

[0119] 2-[4-(5-[2-(2,6-difluoro-3,5-dimethoxybenzyl)oxy]pyrimidin-2-yl)amino]-1H-pyrazol-1-yl]ethanol,

[0120] 5-[(2,6-difluoro-3,5-dimethoxybenzyl)oxy]-N-[1-[2-(4-methylpiperazin-1-yl)ethyl]-1H-pyrazol-4-yl]pyrimidin-2-amine,

[0121] 2-[4-(5-[2-(2,6-difluoro-3,5-dimethoxybenzyl)oxy]pyrimidin-2-yl)amino]-1H-pyrazol-1-yl]-1-(3-hydroxyazetidin-1-yl)ethanol,

[0122] (2R)-3-[4-(5-[2-(2,6-difluoro-3,5-dimethoxybenzyl)oxy]pyrimidin-2-yl)amino]-1H-pyrazol-1-yl]propane-1,2-diol,

[0123] 2-[1-[4-(5-[2-(2,6-difluoro-3,5-dimethoxybenzyl)oxy]pyrimidin-2-yl)amino]phenyl]piperidin-4-yl]amino ethanol,

[0124] 5-[(2,6-difluoro-3,5-dimethoxybenzyl)oxy]-N-[1-methyl-5-[(4-methylpiperazin-1-yl)methyl]-1H-pyrazol-3-yl]pyrimidin-2-amine, and

[0125] 5-[(2,6-difluoro-3,5-dimethoxybenzyl)oxy]-N-[4-(4-methylpiperazin-1-yl)phenyl]pyrimidin-2-amine, and salts thereof.

[0126] In another embodiment, examples of specific compounds falling within the scope of the compound of formula (I) or a salt thereof include the following compounds:

[0127] 5-[2-(2,6-difluoro-3,5-dimethoxyphenyl)ethyl]-N-[3-methoxy-4-(4-methylpiperazin-1-yl)phenyl]pyrimidin-2-amine,

[0128] (2S)-3-[4-(5-[2-(2,6-difluoro-3,5-dimethoxybenzyl)oxy]pyrimidin-2-yl)amino]-1H-pyrazol-1-yl]propane-1,2-diol,

[0129] 5-[2-(2,6-difluoro-3,5-dimethoxyphenyl)ethyl]-N-[3-methoxy-4-(4-methylpiperazin-1-yl)piperidin-1-yl]phenyl]pyrimidin-2-amine,

[0130] 5-[2-(2,6-difluoro-3,5-dimethoxyphenyl)ethyl]-N-[3-fluoro-4-(4-methylpiperazin-1-yl)piperidin-1-yl]phenyl]pyrimidin-2-amine,

[0131] 5-[(2,6-difluoro-3,5-dimethoxybenzyl)oxy]-N-[3-methoxy-4-(4-methylpiperazin-1-yl)piperidin-1-yl]phenyl]pyrimidin-2-amine,

[0132] 5-[(2,6-difluoro-3,5-dimethoxybenzyl)oxy]-N-[3-methoxy-4-(4-methylpiperazin-1-yl)phenyl]pyrimidin-2-amine,

[0133] 5-[(2,6-dichloro-3,5-dimethoxybenzyl)oxy]-N-[1-(1-methylpiperidin-4-yl)-1H-pyrazol-4-yl]pyrimidin-2-amine,

[0134] 5-[(2,6-dichloro-3,5-dimethoxybenzyl)oxy]-N-[1-(piperidin-4-yl)-1H-pyrazol-4-yl]pyrimidin-2-amine,

[0135] 5-[(2,6-difluoro-3,5-dimethoxybenzyl)oxy]-N-[3-methoxy-4-[4-(1-methylpiperidin-4-yl)piperazin-1-yl]phenyl]pyrimidin-2-amine,

[0136] 5-[(2,6-difluoro-3,5-dimethoxybenzyl)oxy]-N-[3-methyl-4-[4-(4-methylpiperazin-1-yl)piperidin-1-yl]phenyl]pyrimidin-2-amine,

[0137] 5-[(2,6-difluoro-3,5-dimethoxybenzyl)oxy]-N-[4-[(3R,5S)-3,5-dimethylpiperazin-1-yl]-3-methoxyphenyl]pyrimidin-2-amine,

[0138] N-[4-(3,9-diazaspiro[5.5]undec-3-yl)-3-methoxyphenyl]-5-[(2,6-difluoro-3,5-dimethoxybenzyl)oxy]pyrimidin-2-amine,

[0139] 2-[4-({5-[(2,6-difluoro-3,5-dimethoxybenzyl)oxy]pyrimidin-2-yl}amino)-1H-pyrazol-1-yl]ethanol,

[0140] 5-[(2,6-difluoro-3,5-dimethoxybenzyl)oxy]-N-[1-[2-(4-methylpiperazin-1-yl)ethyl]-1H-pyrazol-4-yl]pyrimidin-2-amine,

[0141] 2-[4-({5-[(2,6-difluoro-3,5-dimethoxybenzyl)oxy]pyrimidin-2-yl}amino)-1H-pyrazol-1-yl]-1-(3-hydroxyazetidin-1-yl)ethane, and

[0142] (2R)-3-[4-({5-[(2,6-difluoro-3,5-dimethoxybenzyl)oxy]pyrimidin-2-yl}amino)-1H-pyrazol-1-yl]propane-1,2-diol, and salts thereof.

[0143] In yet another embodiment, examples of specific compounds falling within the scope of the compound of formula (I) or a salt thereof include the following compounds:

[0144] 5-[(2,6-difluoro-3,5-dimethoxybenzyl)oxy]-N-[3-methoxy-4-[4-(4-methylpiperazin-1-yl)piperidin-1-yl]phenyl]pyrimidin-2-amine,

[0145] 2-[4-({5-[(2,6-difluoro-3,5-dimethoxybenzyl)oxy]pyrimidin-2-yl}amino)-1H-pyrazol-1-yl]ethanol,

[0146] (2R)-3-[4-({5-[(2,6-difluoro-3,5-dimethoxybenzyl)oxy]pyrimidin-2-yl}amino)-1H-pyrazol-1-yl]propane-1,2-diol,

[0147] 2-[{1-[4-({5-[(2,6-difluoro-3,5-dimethoxybenzyl)oxy]pyrimidin-2-yl}amino)phenyl]piperidin-4-yl}amino]ethanol,

[0148] 5-[(2,6-difluoro-3,5-dimethoxybenzyl)oxy]-N-[1-methyl-5-[(4-methylpiperazin-1-yl)methyl]-1H-pyrazol-3-yl]pyrimidin-2-amine, and

[0149] 5-[(2,6-difluoro-3,5-dimethoxybenzyl)oxy]-N-[4-(4-methylpiperazin-1-yl)phenyl]pyrimidin-2-amine, and salts thereof.

[0150] In yet another embodiment, examples of specific compounds falling within the scope of the compound of formula (I) or a salt thereof include the following compounds:

[0151] 5-[(2,6-difluoro-3,5-dimethoxybenzyl)oxy]-N-[3-methoxy-4-[4-(4-methylpiperazin-1-yl)piperidin-1-yl]phenyl]pyrimidin-2-amine,

[0152] 2-[4-({5-[(2,6-difluoro-3,5-dimethoxybenzyl)oxy]pyrimidin-2-yl}amino)-1H-pyrazol-1-yl]ethanol, and (2R)-3-[4-({5-[(2,6-difluoro-3,5-dimethoxybenzyl)oxy]pyrimidin-2-yl}amino)-1H-pyrazol-1-yl]propane-1,2-diol, and salts thereof.

[0153] In yet another embodiment, examples of specific compounds falling within the scope of the compound of formula (I) or a salt thereof include the following compounds:

[0154] 2-({1-[4-({5-[(2,6-difluoro-3,5-dimethoxybenzyl)oxy]pyrimidin-2-yl}amino)phenyl]piperidin-4-yl}amino)ethanol,

[0155] 5-[(2,6-difluoro-3,5-dimethoxybenzyl)oxy]-N-[1-methyl-5-[(4-methylpiperazin-1-yl)methyl]-1H-pyrazol-3-yl]pyrimidin-2-amine, and

[0156] 5-[(2,6-difluoro-3,5-dimethoxybenzyl)oxy]-N-[4-(4-methylpiperazin-1-yl)phenyl]pyrimidin-2-amine, and salts thereof.

[0157] The compounds of formula (I) may have tautomers and/or geometrical isomers, depending on the type of substituents. Even when the compound of formula (I) appear herein only in one isomer form, the present invention encompasses the other isomers, and also encompasses separated isomers or mixtures thereof.

[0158] Further, since some compounds of formula (I) have an asymmetric carbon atom or axial asymmetry, optical isomers based on this asymmetry may also exist. The present invention also encompasses separated optical isomers of the compounds of formula (I) or mixtures thereof.

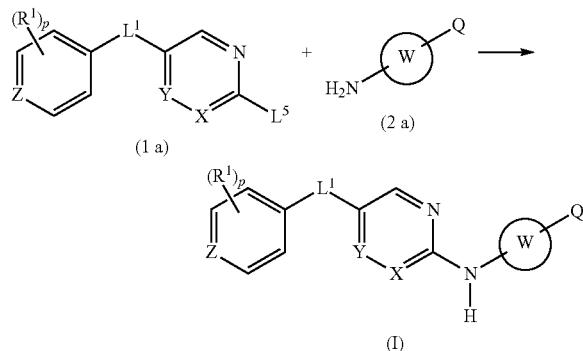
[0159] Furthermore, the present invention encompasses pharmaceutically acceptable prodrugs of the compounds represented by formula (I). The term "pharmaceutically acceptable prodrug" refers to a compound having a group that can be converted into an amino group, a hydroxyl group, a carboxyl group, or the like by solvolysis or under physiological conditions. Examples of a prodrug-forming group include those described in Prog. Med., 5, 2157-2161 (1985) and those described in "Development of Pharmaceuticals" (Hirokawa Publishing, 1990) vol. 7, Molecular Design, 163-198.

[0160] Likewise, salts of the compounds of formula (I) are pharmaceutically acceptable salts of the compounds of formula (I). The compounds of formula (I) may form acid addition salts or salts with bases, depending on the type of substituents. Specific examples include acid addition salts with inorganic acids (e.g., hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, nitric acid, phosphoric acid) or with organic acids (e.g., formic acid, acetic acid, propionic acid, oxalic acid, malonic acid, succinic acid, fumaric acid, maleic acid, lactic acid, malic acid, mandelic acid, tartaric acid, dibenzoyltartaric acid, ditoluoyltartaric acid, citric acid, methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, aspartic acid, glutamic acid), salts with inorganic bases (e.g., sodium, potassium, magnesium, calcium, aluminum) or with organic bases (e.g., methylamine, ethylamine, ethanolamine, lysine, ornithine), salts with various amino acids and amino acid derivatives (e.g., acetylleucine), ammonium salts, and the like.

[0161] Moreover, the present invention encompasses the compounds of formula (I) and salts thereof in the form of various hydrates, solvates, and crystalline polymorphic substances. The present invention also encompasses the compounds labeled with various radioactive or non-radioactive isotopes.

[0162] (Preparation Processes)

[0163] The compounds of formula (I) and salts thereof can be prepared by applying various known synthesis methods on the basis of characteristics derived from their basic


structure or the type of their substituents. In some cases, depending on the type of functional group, it is technically effective to replace such a functional group with an appropriate protecting group (a group that can be easily converted into the original functional group) between the starting material stage and the intermediate stage. Examples of the protecting group include those described in Wuts (P. G. M. Wuts) and Greene (T. W. Greene), "Greene's Protective Groups in Organic Synthesis (fourth edition, 2006)", and the like, which may be selected and used as appropriate, depending on reaction conditions. In such a method, after introduction of the protecting group and subsequent reaction, the protecting group may be removed, if needed, to obtain a desired compound.

[0164] Likewise, a prodrug of the compound of formula (I) can be prepared by introducing a specific group between the starting material stage and the intermediate stage, as in the case of the above protecting group, or by subjecting the obtained compound of formula (I) to further reaction. The reaction may be accomplished by applying esterification, amidation, dehydration, or the like, which is a method that is common and known to those skilled in the art.

[0165] Described below are typical processes for preparing the compounds of formula (I). Each process may also be accomplished by reference to the documents cited in this description. It should be noted that the preparation processes of the present invention are not limited to the examples illustrated below.

[0166] (Preparation Process 1)

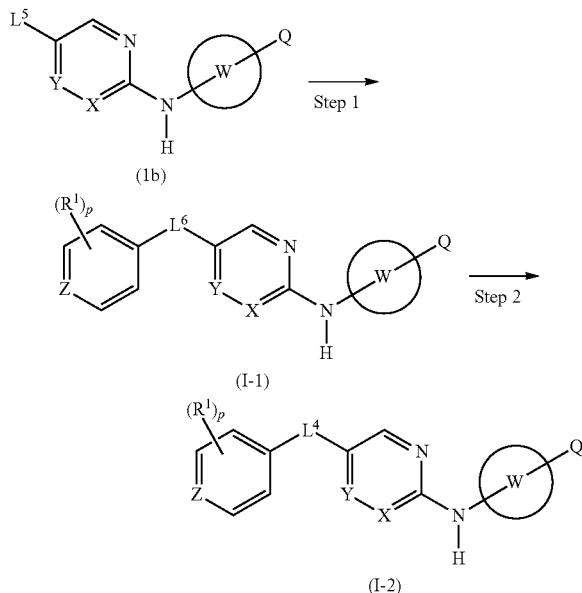
[Formula 12]

(In this formula, L^5 represents halogen, methylsulfinyl, or methylsulfonyl. The same applies hereinafter.)

[0167] The compound (I) of the present invention can be obtained by coupling reaction of compound (1a) and compound (2a).

[0168] In this reaction, compounds (1a) and (2a) are used in equal amounts or one of them is used in an excessive amount. A mixture of these compounds is stirred in the presence of a predetermined catalyst, in a solvent inert to the reaction or in the absence of a solvent, generally for 0.1 hour to 5 days under conditions between room temperature and heating to reflux. This reaction is preferably performed under an inert gas atmosphere. Examples of the solvent used in this process include, but are not particularly limited to, aromatic hydrocarbons (e.g., benzene, toluene, xylene), ethers (e.g., diethyl ether, tetrahydrofuran, dioxane, dimethoxyethane), halogenated hydrocarbons (e.g., dichloro-

methane, 1,2-dichloroethane, chloroform), N-methylpyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide, dimethyl sulfoxide, ethyl acetate, acetonitrile, tert-butanol, and mixtures thereof. Examples of the predetermined catalyst include palladium acetate, tris (dibenzylideneacetone)dipalladium, and the like. Further, when a palladium catalyst is used, a ligand used for the catalyst may be triphenylphosphine, 1,1'-binaphthalene-2,2'-dilylbis(diphenylphosphine), 2-(dicyclohexylphosphino)-2', 4',6'-trisopropyl-1,1'-biphenyl, or 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene. The reaction may be performed in the presence of an organic base (e.g., triethylamine, N,N-diisopropylethylamine, or N-methylmorpholine) or an inorganic base (e.g., sodium tert-butoxide, potassium carbonate, sodium carbonate, cesium carbonate, or potassium hydroxide), because it is advantageous for smooth reaction in some cases. Heating the reaction mixture by microwave irradiation is advantageous for smooth reaction in some cases.


DOCUMENTS

[0169] S. R. Sandler and W. Karo, "Organic Functional Group Preparations", second edition, vol. 1, Academic Press Inc., 1991

[0170] The Chemical Society of Japan (ed.), "The Fifth Series of Experimental Chemistry", vol. 14, MARUZEN Co., Ltd., 2005

[0171] (Preparation Process 2)

[Formula 13]

(In this formula, L^6 represents lower alkynylene. The same applies hereinafter.)

[0172] (Step 1)

[0173] This process is intended to prepare compound (I-1) of the present invention by Sonogashira coupling reaction of compound (1b) and a terminal alkyne derivative.

[0174] In this process, compound (1b) and a terminal alkyne derivative are used in equal amounts or one of them

is used in an excessive amount. A mixture of these is stirred in the presence of a base, a palladium catalyst, and copper iodide, in a solvent inert to the reaction, generally for 0.1 hour to 5 days under conditions between room temperature and heating to reflux. This reaction is preferably performed under an inert gas atmosphere. Examples of the solvent used in this process include, but are not particularly limited to, aromatic hydrocarbons (e.g., benzene, toluene, xylene), ethers (e.g., diethyl ether, tetrahydrofuran, dioxane, dimethoxyethane), halogenated hydrocarbons (e.g., dichloromethane, 1,2-dichloroethane, or chloroform), alcohols (e.g., methanol, ethanol, 2-propanol, butanol), N,N-dimethylformamide, dimethyl sulfoxide, and mixtures thereof. The base is preferably an organic base (e.g., triethylamine, N,N-diisopropylethylamine, or N-methylmorpholine) or an inorganic base (e.g., potassium carbonate, sodium carbonate, cesium carbonate, or potassium hydroxide). The palladium catalyst is preferably tetrakis(triphenylphosphine)palladium, palladium dichlorobis(triphenylphosphine)palladium, palladium chloride-1,1'-bis(diphenylphosphino)ferrocene, or the like. Heating the reaction mixture by microwave irradiation is advantageous for smooth reaction in some cases.

DOCUMENTS

[0175] A. d. Meijere and F. Diederich (ed.), "Metal-Catalyzed Cross-Coupling Reactions", first edition, VCH Publishers Inc., 1997

[0176] The Chemical Society of Japan (ed.), "The Fifth Series of Experimental Chemistry", vol. 13, MARUZEN Co., Ltd., 2005

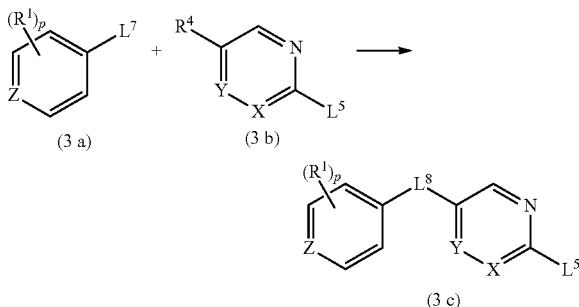
[0177] (Step 2)

[0178] This process is intended to prepare compound (1-2) of the present invention by reducing the alkyne moiety of compound (I-1) of the present invention to alkylene by hydrogenation or diimide reduction.

[0179] In this process, compound (I-1) of the present invention and palladium carbon are used in equal amounts or one of them is used in an excessive amount. A mixture of these is stirred in a solvent inert to the reaction, under a hydrogen atmosphere, generally for 0.1 hour to 5 days under conditions between room temperature and heating to reflux. Examples of the solvent used in this process include, but are not particularly limited to, ethers (e.g., diethyl ether, tetrahydrofuran, dioxane, dimethoxyethane), alcohols (e.g., methanol, ethanol, 2-propanol, butanol), and mixtures thereof.

[0180] Other than the hydrogenation reaction, compound (I-1) of the present invention and predetermined diimide are used in equal amounts or one of them is used in an excessive amount. A mixture of these is stirred in a solvent inert to the reaction, generally for 0.1 hour to 5 days under conditions between room temperature and heating to reflux. Examples of the solvent used in this process are the same as shown above. The predetermined diimide is, for example, 4-methylbenzenesulfonyl hydrazide.

[0181] The substituent(s) on ring W in the compound of formula (I) can be easily converted into other functional groups by the reaction described below in the Examples, reaction obvious to those skilled in the art, or a modified process thereof, using a compound of formula (I) as a starting material. For example, the conversion can be achieved by combining any processes that can be applied generally by those skilled in the art, such as reduction,


halogenation, deprotection, hydrolysis, amidation, amination, oxidation, reductive amination, acylation, O-alkylation, N-alkylation, reductive alkylation, and epoxidation.

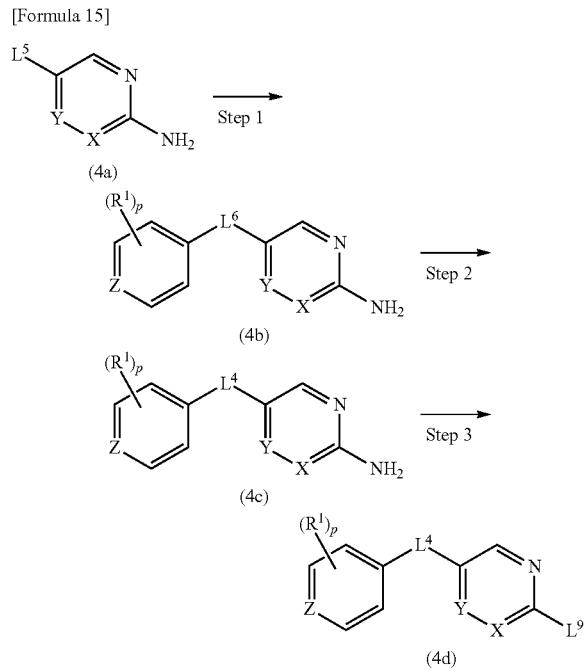
[0182] (Preparation of Starting Compound)

[0183] The starting compound used in the preparation process described above can be prepared, for example, by a process described below, the process in the Preparation Examples described later, a known process, or a modified process thereof.

[0184] (Starting Material Synthesis 1)

[Formula 14]

(In this formula, R⁴ represents —OH or -lower alkylene-OH; L⁷ represents halogen, —OH, -lower alkylene-OH, -lower alkylene-OMs, -lower alkylene-OTs, -lower alkylene-OTf, or -lower alkylene-halogen; L⁸ represents -lower alkylene-O— or —O-lower alkylene-. The same applies hereinafter.)


[0185] This preparation process is intended to prepare compound (3c) which is starting compound (1a) of the Preparation Process 1 wherein L¹ is —O-lower alkylene- or -lower alkylene-O—.

[0186] In the case of compound (3a) wherein L⁷ is halogen, -lower alkylene-OMs, -lower alkylene-OTs, -lower alkylene-OTf, or -lower alkylene-halogen, compounds (3a) and (3b) are used in equal amounts or one of them is used in an excessive amount. A mixture of these is stirred in the presence of a base in a solvent inert to the reaction, generally for 0.1 hour to 5 days under conditions between room temperature and heating to reflux. Examples of the solvent used in this process include, but are not particularly limited to, N-methylpyrrolidone, N,N-dimethylformamide, dimethyl sulfoxide, and the like. The base is preferably an inorganic base such as potassium carbonate, sodium carbonate, cesium carbonate, or potassium hydroxide.

[0187] In the case of compound (3a) wherein L⁷ is —OH or -lower alkylene-OH, compounds (3a) and (3b) are used in equal amounts or one of them is used in an excessive amount. A mixture of these is stirred in the presence of a predetermined phosphine reagent and a predetermined condensing agent in a solvent inert to the reaction, generally for 0.1 hour to 5 days under conditions between room temperature and heating to reflux. Examples of the solvent used in this process include, but are not particularly limited to, ethers such as diethyl ether, tetrahydrofuran, dioxane, and dimethoxyethane. Examples of the predetermined phosphine reagent include tributylphosphine, triphenylphosphine, and the like. Examples of the predetermined condensing agent include diethyl azodicarboxylate, 1,1'-(azodicarbonyl)dipiperidine, and the like. Use of

(cyanomethylene)trimethylphosphorane, instead of the predetermined phosphine and the predetermined condensing agent, is advantageous for smooth reaction in some cases.

[0188] (Starting Material Synthesis 2)

(In this formula, L^9 represents halogen. The same applies hereinafter.)

[0189] This preparation process is intended to prepare compound (4d) which is starting compound (1a) of the Preparation Process 1 wherein L^1 is lower alkylene.

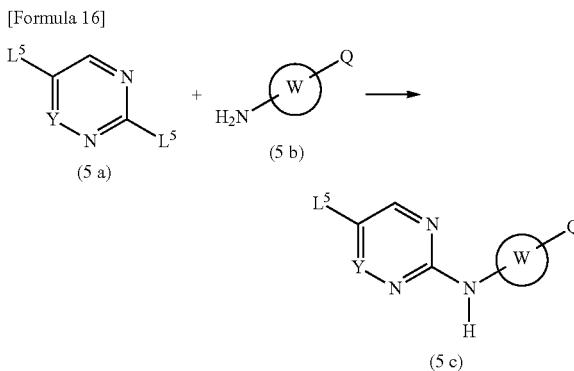
[0190] (Step 1)

[0191] This process is intended to prepare compound (4b) by Sonogashira coupling reaction of compound (4a) and a terminal alkyne derivative.

[0192] The reaction conditions are the same as in Step 1 of the Preparation Process 2.

[0193] (Step 2)

[0194] This process is intended to prepare compound (4c) by reducing the alkyne moiety of compound (4b) to lower alkylene by hydrogenation.


[0195] The reaction conditions are the same as in Step 2 of the Preparation Process 2.

[0196] (Step 3)

[0197] This process is intended to prepare compound (4d) by converting the amino group of compound (4c) into halogen.

[0198] In this process, compound (4c) and a combination of copper chloride (II) and n-pentyl nitrite are used in equal amounts or one of them is used in an excessive amount. A mixture of these is stirred in a solvent inert to the reaction, generally for 0.1 hour to 5 days under conditions between ice cooling and heating to reflux. Examples of the solvent used in this process include, but are not particularly limited to, halogenated hydrocarbons such as dichloromethane, 1,2-dichloroethane, and chloroform.

[0199] (Starting Material Synthesis 3)

[0200] This preparation process is intended to prepare compound (5c) which is starting compound (1b) of the Preparation Process 2 wherein X is N.

[0201] This reaction is intended to prepare compound (5c) by ipso-substitution reaction of compounds (5a) and (5b).

[0202] Compounds (5a) and (5b) are used in equal amounts or one of them is used in an excessive amount. A mixture of these is stirred in a solvent inert to the reaction under a hydrogen atmosphere, generally for 0.1 hour to 5 days under conditions between ice cooling and heating to reflux. Examples of the solvent used in this process include, but are not particularly limited to, alcohols (e.g., methanol, ethanol, 2-propanol, butanol), N-methylpyrrolidone, N,N-dimethylformamide, dimethyl sulfoxide, and mixtures thereof. Use of an acid such as methanesulfonic acid, acetic acid, trifluoroacetic acid, hydrogen chloride, or sulfuric acid is advantageous for smooth reaction in some cases.

[0203] The pharmacological activity of the compounds of formula (I) was confirmed in the tests described below.

Test Example 1: FGFR1, FGFR2, and FGFR3
Enzyme Assay

[0204] In the enzyme assay, human recombinant FGFR1, FGFR2, and FGFR3 (Carna Biosciences; Catalog Nos. 08-133, 08-134, and 08-135) were used, and reactions were performed at room temperature (FGFR1 and FGFR2) or 30° C. (FGFR3). The measurement method is outlined below.

[0205] The compound was diluted with a solution of dimethyl sulfoxide (DMSO) (10-fold common ratio, 4 portions) before dilution with a reaction buffer (100 mM HEPES (pH7.5), 0.003% Brij-35, 0.004% Tween 20, 0.5 mM DTT, and 10 mM MgCl₂) so that the final DMSO concentration was 2%. To 4 μL of the compound solution in a 384-well plate, 2 μL each of FGFR1 enzyme (2 or 3 ng/μL), FGFR2 enzyme (2 ng/μL), or FGFR3 enzyme (6 ng/μL) which were diluted with the reaction buffer was added. In 20 minutes, 4 μL of a substrate-ATP solution (100 mM HEPES (pH7.5), 0.003% Brij-35, 0.004% Tween 20, 0.5 mM DTT, 10 mM MgCl₂, 3.75 μM substrate-FL-peptide 22+500 μM (FGFR1) ATP, 188 μM (FGFR2) ATP, or 250 μM (FGFR3) ATP) was added before subsequent 30-minute reaction. After the reaction was stopped, the reaction mixture was measured with a LabChip EZ Reader. The IC₅₀ values were calculated by non-linear regression based on the inhibition rates obtained. The results of some compounds are

shown in Table 1. The term “Ex” in the table denotes compound No. in the Examples described later.

TABLE 1

Ex	FGFR1 IC ₅₀ (nM)	FGFR2 IC ₅₀ (nM)	FGFR3 IC ₅₀ (nM)
7	2	3	1
11	1	—	2
27	2	1	<1
33	2	3	2
56	2	2	1
57	1	2	2
71	2	3	2
72	—	2	2
84	2	2	1
87	—	3	2
92	—	2	1
95	—	3	2
113	1	—	2
114	2	—	1
115	2	—	2
116	1	—	2
122	—	2	2
248	4	—	5
299	<1	—	2

Test Example 2: Growth Assay of Cells with Forced Expression of Mutant FGFR3 (FGFR3_S249C/NIH3T3)

[0206] FGFR3_S249C/NIH3T3 cells were added to a 96-well spheroid plate (U bottom) at a concentration of 3000 cells/well/90 μ L, and the compound solution (10 μ L) was added thereto on the next day (final DMSO concentration: 0.1%). The compound solution was prepared by serially diluting the compound with DMSO at a 3-fold common ratio (9 portions and DMSO only) from the maximum concentration of 10 mM and then diluted 100-fold with a culture medium (D-MEM, 10% FBS). 5 days after the addition of the compound, the growth inhibition caused by the compound was evaluated by Promega (G7573) CellTiter-GloTM Luminescent Cell Viability Assay. The IC₅₀ value was calculated by non-linear regression, using DMSO-added wells as control and assuming count 0 to be 100% inhibition. The results of some compounds are shown in Table 2.

TABLE 2

Ex	IC ₅₀ (nM)
7	18
11	13
27	13
33	26
56	13
57	5
71	10
72	24
84	16
87	20
92	7
95	57
113	11
114	7
115	36
116	8
122	7
248	50
299	10

Test Example 3: Antitumor Test on UM-UC-14 (FGFR3_S249C-Positive Cells, Bladder Cancer)

[0207] 3×10⁶ UM-UC-14 cells per 0.1 mL (PBS+matrikel, 1:1) were inoculated subcutaneously into the right flank of nude mice (CAnN, Cg-Foxn1nu/CrlCrlj (nu/nu), male, 4- to 5-week-old), and when their tumor size reached about 250 mm³, drug administration was started (Day 1). The drug was administered once a day and the tumor size was measured with a caliper and the body weight was also measured every two or three days. The antitumor effect was finally determined based on the tumor volume (mm³; minor axis (mm)×minor axis (mm)×major axis (mm)/2) at Day 11 (n=3-5). To the control group, 0.5% MC (methyl cellulose) was administered. For “% inhibition” in the table, for example, 100% inhibition indicates that the tumor growth of the control was inhibited to the level of the tumor volume at Day 1. “% regression” indicates what percentage of regression could be achieved compared with the tumor volume at Day 1. Here, the tumor volume at Day 1 means tumor volume immediately before drug administration. The results of some compounds administered orally (1 mg/kg/day for other than Ex 95 and 3 mg/kg/day for Ex 95) are shown in Table 3.

TABLE 3

Ex	Antitumor Activity
7	33% inhibition
11	53% regression
27	62% inhibition
33	70% inhibition
56	4% regression
57	77% inhibition
71	50% inhibition
72	30% inhibition
84	34% regression
87	72% inhibition
92	49% inhibition
95	97% inhibition
113	4% regression
114	33% regression
115	70% inhibition
116	54% regression
122	15% regression
248	95% inhibition
299	15% regression

[0208] The test described above confirmed that the plural compounds of the Examples included in formula (I) of the present invention had inhibitory action on FGFR1, FGFR2, and/or FGFR3. It was also confirmed that the plural compounds of the Examples included in formula (I) inhibited the growth of the cells with forced expression of mutant FGFR3 and that the compounds also inhibited the growth of bladder cancer or made bladder cancer itself regress, in the animal model bearing mutant FGFR3-positive bladder cancer. In light of the foregoing, the compound of formula (I) or a salt thereof can be used as a therapeutic agent for various cancers related to FGFR1, FGFR2, and/or FGFR3, particularly, mutant FGFR3-positive bladder cancer.

Test Example 4: Isolation of FGFR3-TACC3_v1

[0209] cDNA was synthesized by reverse transcription reaction in 200 clinical specimens of lung cancer (Asterand plc.; US) using reverse transcriptase (SuperScriptIII, Life Technologies, Corp.) and random primers (random primers, Life Technologies Corp.) in accordance with the protocol of the kit.

[0210] Next, PCR (30 cycles of 98° C. for 10 seconds, 55° C. for 15 seconds, 68° C. for 1.5 minutes) was carried out using primers FGFR3_TACC3_RT_F represented by SEQ ID No: 1 and FGFR3_TACC3_RT_R represented by SEQ ID No: 2, the cDNA obtained above as a template, and DNA polymerase (TaKaRa Ex Taq; Takara Bio Inc.). Additional PCR (30 cycles of 98° C. for 15 seconds, 55° C. for 15 seconds, 68° C. for 1 minute) was carried out using the PCR product described above which was diluted 10-fold as a template, primers FGFR3_TACC3_nested_F represented by SEQ ID No: 3 and FGFR3_TACC3_nested_R represented by SEQ ID No: 4, and the same DNA polymerase as shown above. Electrophoresis performed after the PCR reaction showed that a PCR product of about 500 bases was obtained from only sample Lg344 specimen.

[0211] After that, the PCR product was sequenced by dideoxy sequencing (BigDye Terminator v3.1 Cycle Sequencing Kit; Life Technologies Corp.). As a result, the PCR product of about 500 bases was found to be a sequence obtained by fusion of the 3' end of exon 18 in the coding sequence (hereinafter, CDS) of FGFR3 (NM_001163213.1) registered in the NCBI to the 5' end of exon 11 in the CDS of TACC3 (NM_006342.1).

[0212] cDNA was synthesized by reverse transcription reaction in the Lg344 specimen RNA which is the lung cancer tissue-derived RNA of a squamous cell lung cancer patient (Asterand plc.; US) using reverse transcriptase (SuperScriptIII, Life Technologies, Corp.) and oligo(dT) primers (oligo(dT)20 primers, Life Technologies, Corp.) in accordance with the protocol of the kit.

[0213] Next, PCR (25 cycles of 98° C. for 15 seconds, 60° C. for 15 seconds, 68° C. for 3.5 minutes) was carried out using primers FGFR3-TACC3_cloning_F represented by SEQ ID No: 5 and FGFR3-TACC3_cloning_R represented by SEQ ID No: 6, the cDNA obtained above as a template, and DNA polymerase (KOD-plus-Ver. 2; Toyobo Co., Ltd.). Additional PCR (25 cycles of 98° C. for 15 seconds, 55° C. for 15 seconds, 68° C. for 3.5 minutes) was carried out using the PCR product described above which was diluted 10-fold as a template, primers FGFR3_TACC3_cloning_BamHI_F represented by SEQ ID No: 7 and FGFR3_TACC3_cloning_EcoRI_R represented by SEQ ID No: 8, and the same DNA polymerase as shown above. Electrophoresis performed after the PCR reaction showed that a PCR product of about 2.9 k bases was obtained. The PCR product was cloned into a cloning vector (TOPO XL PCR Cloning Kit; Life Technologies, Corp.). The insert was sequenced by dideoxy sequencing (BigDye Terminator v3.1 Cycle Sequencing Kit; Life Technologies, Corp.). As a result, it was found in the PCR product of about 2.9 k bases that there was a transcript obtained by fusion of the region between the 5'-terminus of the CDS of FGFR3 (NM_001163213.1) registered in the NCBI and the 3' end of exon 18 to the region between the 5' end of exon 11 in the CDS of TACC3 (NM_006342.1) and the 3'-terminus of the CDS (FGFR3-TACC3_v1) (SEQ ID No: 9). The polypeptide coded by SEQ ID No: 9 (FGFR3-TACC3_v1 fusion polypeptide) is shown in SEQ ID No: 10.

Test Example 5: Isolation of FGFR3-TACC3_v2

[0214] cDNA was synthesized by reverse transcription reaction in 59 specimens of bladder cancer (Asterand plc.; US) using reverse transcriptase (SuperScriptIII, Life Tech-

nologies, Corp.) and random primers (random primers, Life Technologies Corp.) in accordance with the protocol of the kit.

[0215] Next, PCR (30 cycles of 98° C. for 10 seconds, 55° C. for 15 seconds, 68° C. for 1.5 minutes) was carried out using primers FGFR3_TACC3_RT_F represented by SEQ ID No: 1 and FGFR3_TACC3_RT_R represented by SEQ ID No: 2, the cDNA obtained above as a template, and DNA polymerase (TaKaRa Ex Taq; Takara Bio Inc.). Additional PCR (30 cycles of 98° C. for 15 seconds, 55° C. for 15 seconds, 68° C. for 1 minute) was carried out using the PCR product described above which was diluted 10-fold as a template, primers FGFR3_TACC3_nested_F represented by SEQ ID No: 3 and FGFR3_TACC3_nested_R represented by SEQ ID No: 4, and the same DNA polymerase as shown above. Electrophoresis performed after the PCR reaction showed that a PCR product of about 600 bases was obtained from sample Bd106 specimen.

[0216] After that, the PCR product was sequenced by dideoxy sequencing (BigDye Terminator v3.1 Cycle Sequencing Kit; Life Technologies Corp.). As a result, the PCR product of about 600 bases was found to be a sequence obtained by fusion of the 3' end of exon 18 in the CDS of FGFR3 (NM_001163213.1) registered in the NCBI to the 5' end of exon 10 in the CDS of TACC3 (NM_006342.1). cDNA was synthesized by reverse transcription reaction in the Bd106 specimen RNA which is the bladder cancer tissue-derived RNA of a bladder cancer patient (Asterand plc.; US) using reverse transcriptase (SuperScriptIII, Life Technologies, Corp.) and oligo(dT) primers (oligo(dT)20 primers, Life Technologies, Corp.) in accordance with the protocol of the kit.

[0217] Next, PCR (25 cycles of 98° C. for 15 seconds, 60° C. for 15 seconds, 68° C. for 3.5 minutes) was carried out using primers FGFR3-TACC3_cloning_F represented by SEQ ID No: 5 and FGFR3-TACC3_cloning_R represented by SEQ ID No: 6, the cDNA obtained above as a template, and DNA polymerase (KOD-plus-Ver. 2; Toyobo Co., Ltd.). Additional PCR (25 cycles of 98° C. for 15 seconds, 55° C. for 15 seconds, 68° C. for 3.5 minutes) was carried out using the PCR product described above which was diluted 10-fold as a template, primers FGFR3_TACC3_cloning_BamHI_F represented by SEQ ID No: 7 and FGFR3_TACC3_cloning_EcoRI_R represented by SEQ ID No: 8, and the same DNA polymerase as shown above. Electrophoresis performed after the PCR reaction showed that a PCR product of about 3.0 k bases was obtained. The PCR product was cloned into a cloning vector (TOPO XL PCR Cloning Kit; Life Technologies, Corp.). The insert was sequenced by dideoxy sequencing (BigDye Terminator v3.1 Cycle Sequencing Kit; Life Technologies, Corp.). As a result, it was found in the PCR product of about 3.0 k bases that there was a transcript obtained by fusion of the region between the 5'-terminus of the CDS of FGFR3 (NM_001163213.1) registered in the NCBI and the 3' end of exon 18 to the region between the 5' end of exon 10 in the CDS of TACC3 (NM_006342.1) and the 3'-terminus of the CDS (FGFR3-TACC3_v2) (SEQ ID No: 11). The polypeptide coded by SEQ ID No: 11 (FGFR3-TACC3_v2 fusion polypeptide) is shown in SEQ ID No: 12.

Test Example 6: Isolation of FGFR3-TACC3_v3

[0218] cDNA was synthesized by reverse transcription reaction in 59 specimens of bladder cancer (Asterand plc.; US) using reverse transcriptase (SuperScriptIII, Life Tech-

nologies, Corp.) and random primers (random primers, Life Technologies Corp.) in accordance with the protocol of the kit.

[0219] Next, PCR (30 cycles of 98° C. for 10 seconds, 55° C. for 15 seconds, 68° C. for 1.5 minutes) was carried out using primers FGFR3_TACC3_RT_F represented by SEQ ID No: 1 and FGFR3 TACC3_RT_R represented by SEQ ID No: 2, the cDNA obtained above as a template, and DNA polymerase (TaKaRa Ex Taq; Takara Bio Inc.). Additional PCR (30 cycles of 98° C. for 15 seconds, 55° C. for 15 seconds, 68° C. for 1 minute) was carried out using the PCR product described above which was diluted 10-fold as a template, primers FGFR3_TACC3_nested_F represented by SEQ ID No: 3 and FGFR3_TACC3_nested_R represented by SEQ ID No: 4, and the same DNA polymerase as shown above. Electrophoresis performed after the PCR reaction showed that a PCR product of about 650 bases was obtained from sample Bd021 specimen.

[0220] After that, the PCR product was sequenced by dideoxy sequencing (BigDye Terminator v3.1 Cycle Sequencing Kit; Life Technologies Corp.). As a result, the PCR product of about 650 bases was found to be a sequence obtained by fusion of a certain sequence of exon 19 in the CDS of FGFR3 (NM_001163213.1) registered in the NCBI to a part of intron 10-11 of TACC3 (NM_006342.1) and to the 5' end of exon 11 in the CDS of TACC3.

[0221] cDNA was synthesized by reverse transcription reaction in the Bd021 specimen RNA which is the bladder cancer tissue-derived RNA of a bladder cancer patient (Asterand plc.; US) using reverse transcriptase (SuperScriptIII, Life Technologies, Corp.) and oligo(dT) primers (oligo (dT)20 primers, Life Technologies, Corp.) in accordance with the protocol of the kit.

[0222] Next, PCR (25 cycles of 98° C. for 15 seconds, 60° C. for 15 seconds, 68° C. for 3.5 minutes) was carried out using primers FGFR3-TACC3_cloning_F represented by SEQ ID No: 5 and FGFR3-TACC3_cloning_R represented by SEQ ID No: 6, the cDNA obtained above as a template, and DNA polymerase (KOD-plus-Ver. 2; Toyobo Co., Ltd.). Additional PCR (25 cycles of 98° C. for 15 seconds, 55° C. for 15 seconds, 68° C. for 3.5 minutes) was carried out using the PCR product described above which was diluted 10-fold as a template, primers FGFR3_TACC3_cloning_BamHI_F represented by SEQ ID No: 7 and FGFR3_TACC3_cloning_EcoRI_R represented by SEQ ID No: 8, and the same DNA polymerase as shown above. Electrophoresis performed after the PCR reaction showed that a PCR product of about 3.0 k bases was obtained. The PCR product was cloned into a cloning vector (TOPO XL PCR Cloning Kit; Life Technologies, Corp.). The insert was sequenced by dideoxy sequencing (BigDye Terminator v3.1 Cycle Sequencing Kit; Life Technologies, Corp.). As a result, it was found in the PCR product of about 3.0 k bases that there was a transcript obtained by fusion of the region between the 5'-terminus of the CDS of FGFR3 (NM_001163213.1) registered in the NCBI and a certain sequence of exon 19 to part of intron 10-11 of TACC3 (NM_006342.1) and further to the region between the 5' end of exon 11 in the CDS of TACC3 and the 3'-terminus of the CDS (FGFR3-TACC3_v3) (SEQ ID No: 13). The polypeptide coded by SEQ ID No: 13 (FGFR3-TACC3_v3 fusion polypeptide) is shown in SEQ ID No: 14.

Test Example 7: Isolation of FGFR3-TACC3_v1
from Bladder Cancer Patient-Derived Cell Line
RT-112

[0223] cDNA was synthesized by reverse transcription reaction in RNA purified from bladder cancer patient-derived cell line RT-112 (purchased from Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH) using reverse transcriptase (SuperScriptIII, Life Technologies, Corp.) and oligo(dT) primers (oligo (dT)20 primers, Life Technologies, Corp.) in accordance with the protocol of the kit.

[0224] Next, PCR (25 cycles of 98° C. for 15 seconds, 60° C. for 15 seconds, 68° C. for 3.5 minutes) was carried out using primers FGFR3-TACC3_cloning_F represented by SEQ ID No: 5 and FGFR3-TACC3_cloning_R represented by SEQ ID No: 6, the cDNA obtained above as a template, and DNA polymerase (KOD-plus-Ver. 2; Toyobo Co., Ltd.). Additional PCR (25 cycles of 98° C. for 15 seconds, 55° C. for 15 seconds, 68° C. for 3.5 minutes) was carried out using the PCR product described above which was diluted 10-fold as a template, primers FGFR3_TACC3_cloning_BamHI_F represented by SEQ ID No: 7 and FGFR3_TACC3_cloning_EcoRI_R represented by SEQ ID No: 8, and the same DNA polymerase as shown above. Electrophoresis performed after the PCR reaction showed that a PCR product of about 2.9 k bases was obtained. The PCR product was cloned into a cloning vector (TOPO XL PCR Cloning Kit; Life Technologies, Corp.), and the insert was sequenced by dideoxy sequencing (BigDye Terminator v3.1 Cycle Sequencing Kit; Life Technologies, Corp.). As a result, it was found that a transcript obtained was the same as the transcript obtained by fusion of the region between the N-terminus of the CDS of FGFR3 (NM_001163213.1) registered in the NCBI and the 3' end of exon 18 to the region between the 5' end of exon 11 in the CDS of TACC3 (NM_006342.1) and the C-terminus of the CDS (FGFR3-TACC3_v1) (SEQ ID No: 9).

Test Example 8: Isolation of FGFR3-TACC3_v4
from Bladder Cancer Patient-Derived Cell Line
RT4

[0225] cDNA was synthesized by reverse transcription reaction in RNA purified from bladder cancer patient-derived cell line RT4 (purchased from ECACC (European Collection of Cell Cultures)) using reverse transcriptase (SuperScriptIII, Life Technologies, Corp.) and oligo(dT) primers (oligo(dT)20 primers, Life Technologies, Corp.) in accordance with the protocol of the kit. Next, PCR (30 cycles of 98° C. for 15 seconds, 60° C. for 15 seconds, 68° C. for 5.5 minutes) was carried out using primers FGFR3-TACC3_cloning_F represented by SEQ ID No: 5 and FGFR3-TACC3_cloning_R represented by SEQ ID No: 6, the cDNA obtained above as a template, and DNA polymerase (KOD-plus-Ver. 2; Toyobo Co., Ltd.). Additional PCR (30 cycles of 98° C. for 15 seconds, 55° C. for 15 seconds, 68° C. for 5 minutes) was carried out using the PCR product described above which was diluted 10-fold as a template, primers FGFR3_TACC3_cloning_BamHI_F represented by SEQ ID No: 7 and FGFR3_TACC3_cloning_EcoRI_R represented by SEQ ID No: 8, and the same DNA polymerase as shown above. Electrophoresis performed after the PCR reaction showed that a PCR product of about 4.5 k bases was obtained. The PCR product was cloned into a cloning vector (TOPO XL PCR Cloning Kit; Life Tech-

nologies, Corp.), and the insert was sequenced by dideoxy sequencing (BigDye Terminator v3.1 Cycle Sequencing Kit; Life Technologies, Corp.). As a result, it was found that there was a transcript obtained by fusion of part of intron 18-19 sequence of FGFR3 (NM_001163213.1) registered in the NCBI to the region between the 5'-terminus of the CDS of the FGFR3 and the 3' end of exon 18 and further to the region between a certain sequence of exon 4 of TACC3 (NM_006342.1) and the 3'-terminus of the CDS of the TACC3 (FGFR3-TACC3 v4). In the confirmed sequence, T at base position 882 was replaced by C (SNPs registration No.; rs2234909), C at base position 2484 by T, and G at base position 2663 by A (SEQ ID No: 15). The polypeptide coded by SEQ ID No: 15 (FGFR3-TACC3_v4 fusion polypeptide) is shown in SEQ ID No: 16.

Test Example 9: Preparation of Retrovirus Solutions of FGFR3-TACC3_v1, FGFR3-TACC3_v2, FGFR3-TACC3_v3, and FGFR3-TACC3_v4

[0226] To express, as proteins, the ORF full lengths of FGFR3-TACC3_v1, FGFR3-TACC3_v2, FGFR3-TACC3_v3, and FGFR3-TACC3_v4, enzyme reaction was performed at 37° C. for 3 hours using the cloning vectors prepared in Test Examples 4, 5, 6, and 8 and restriction enzyme BamHI, and restriction enzyme digested DNA fragments were obtained and purified. Another enzyme reaction was performed at 37° C. for 3 hours using EcoRI and the DNA fragments, and restriction enzyme digested DNA fragments were obtained and purified. The ORF-containing DNA fragments were cloned into BamHI and EcoRI sites in the multicloning site of an expression vector (pMXs-puro; Cosmo Bio) to construct expression plasmids (FGFR3-TACC3_v/pMXs-puro, FGFR3-TACC3_v2/pMXs-puro, FGFR3-TACC3_v3/pMXs-puro, and FGFR3-TACC3_v4/pMXs-puro).

[0227] 9 µg each of FGFR3-TACC3_v1/pMXs-puro, FGFR3-TACC3_v2/pMXs-puro, FGFR3-TACC3_v3/pMXs-puro, and FGFR3-TACC3_v4/pMXs-puro was transfected into Platinum-E cells, using a transfection reagent (FUGENE® HD, Roche). At 24 hours after the transfection, D-MEM media (Dulbecco's Modified Eagle Medium; Invitrogen) containing 10% bovine serum (Nichirei Biosciences) were replaced, and the culture supernatants were collected after 24 hours to prepare retrovirus solutions.

Test Example 10: Investigation of Anchorage-Independent Growth-Promoting Action of FGFR3-TACC3_v1, FGFR3-TACC3_v2, FGFR3-TACC3_v3, and FGFR3-TACC3_v4

[0228] To the virus solutions prepared using FGFR3-TACC3_v1/pMXs-puro, FGFR3-TACC3_v2/pMXs-puro, FGFR3-TACC3_v3/pMXs-puro, and FGFR3-TACC3_v4/pMXs-puro in Test Example 9, 4 µg/mL of polybrene (Polybrene; Sigma) was added followed by addition of the resulting mixtures to NIH3T3 cells for infection. At 6 hours after the addition, the media used were replaced by D-MEM media containing 10% bovine serum (Nichirei Biosciences), and, on the day after the infection, the media were replaced by D-MEM media (Invitrogen) containing 10% bovine serum (Nichirei Biosciences) and 1 µg/mL of puromycin (Sigma). The culture was continued in the presence of 5% CO₂ at 37° C. for 4 weeks to obtain NIH3T3 cells stably

expressing each of FGFR3-TACC3_v1, FGFR3-TACC3_v2, FGFR3-TACC3_v3, and FGFR3-TACC3_v4 (these cells were designated as FGFR3-TACC3_v1-expressing NIH3T3 cells, FGFR3-TACC3_v2-expressing NIH3T3 cells, FGFR3-TACC3_v3-expressing NIH3T3 cells, and FGFR3-TACC3_v4-expressing NIH3T3 cells, respectively.) [0229] To investigate the anchorage-independent growth-promoting ability of FGFR3-TACC3_v1-expressing NIH3T3 cells, FGFR3-TACC3_v2-expressing NIH3T3 cells, FGFR3-TACC3_v3-expressing NIH3T3 cells, and FGFR3-TACC3_v4-expressing NIH3T3 cells, these cells and NIH3T3 cells infected with a blank vector pMXs-puro (Mock/NIH3T3 cells) were each seeded at 1×10³ cells per well in D-MEM media (Invitrogen) containing 10% bovine serum (Nichirei Biosciences) in a 96-well spheroid plate (Sumilon Celltight Spheroid 96U; Sumitomo Bakelite). The cells were cultured in the presence of 5% CO₂ at 37° C. and were counted on the next day (Day 1) and 4 days later (Day 4), using a cell counting reagent (CELLTITER-Glo™ Luminescent Cell Viability Assay; Promega) in accordance with the method described in the manual. A luminometer was used for detection. It was confirmed that the count of Mock/NIH3T3 cells did not increase between Day 1 and Day 4, while the counts of FGFR3-TACC3_v1-expressing NIH3T3 cells, FGFR3-TACC3_v2-expressing NIH3T3 cells, FGFR3-TACC3_v3-expressing NIH3T3 cells, and FGFR3-TACC3_v4-expressing NIH3T3 cells increased about 3.1-fold, about 2.8-fold, about 2.3-fold, and about 2.5-fold, respectively, between Day 1 and Day 4.

[0230] In light of the foregoing, it was found that FGFR3-TACC3_v1-expressing NIH3T3 cells, FGFR3-TACC3_v2-expressing NIH3T3 cells, FGFR3-TACC3_v3-expressing NIH3T3 cells, and FGFR3-TACC3_v4-expressing NIH3T3 cells exhibit anchorage-independent cell growth.

Test Example 11: Anchorage-Independent Cell Growth-Inhibitory Activity of Compounds on FGFR3-TACC3_v1-Expressing NIH3T3 Cells, FGFR3-TACC3_v2-Expressing NIH3T3 Cells, FGFR3-TACC3_v3-Expressing NIH3T3 Cells, FGFR3-TACC3_v4-Expressing NIH3T3 Cells, and Bladder Cancer Patient-Derived Cell Lines RT-112 and RT4

[0231] Measurement for anchorage-independent cell growth (colony method, etc.) is known to be a system for investigating the anticancer action (pharmacological effect) of compounds (Clinical Oncology, second edition, Cancer and Chemotherapy Publishers Inc.). As a method for measuring the non-adhesive growth of cells, there is the following method using a spheroid plate as referred to above in place of the colony method.

[0232] In a 96-well spheroid plate (Sumilon Celltight Spheroid 96U; Sumitomo Bakelite), FGFR3-TACC3_v1-expressing NIH3T3 cells, FGFR3-TACC3_v2-expressing NIH3T3 cells, FGFR3-TACC3_v3-expressing NIH3T3 cells, and FGFR3-TACC3_v4-expressing NIH3T3 cells were each seeded at 1×10³ cells per well in D-MEM media (Invitrogen) containing 10% fetal bovine serum. Likewise, bladder cancer patient-derived cell line RT-112 was seeded at 1×10³ cells per well in RPMI1640 medium containing 10% fetal bovine serum and 2 mM L-glutamine, and bladder cancer patient-derived cell line RT4 was seeded at 1×10³ cells per well in RPMI1640 medium containing 10% fetal bovine serum. A well supplemented with only medium was

also prepared for a positive control. Culturing was performed overnight in the presence of 5% CO₂ at 37° C. followed by addition of test compounds (final concentrations: 100 nM, 10 nM, and 1 nM). As a negative control, DMSO used as a solvent for the compounds was added at the same concentration (0.1%) as in the case of addition of the compounds. Then, culturing was performed in the presence of 5% CO₂ at 37° C. for 4 days, and a cell counting reagent (CellTiter-GloTM Luminescent Cell Viability Assay; Promega) was added and the resulting mixture was stirred for 20 minutes followed by measurement with a luminometer. Assuming that the values of the positive control and the negative control were 100% inhibition and 0% inhibition, respectively, the growth inhibition rate (%) was calculated for each compound. As shown in Table 4, it was found out that some compounds of the present invention inhibited the anchorage-independent growth of FGFR3-TACC3_v1-expressing NIH3T3 cells, FGFR3-TACC3_v2-expressing NIH3T3 cells, FGFR3-TACC3_v3-expressing NIH3T3 cells, FGFR3-TACC3_v4-expressing NIH3T3 cells, and bladder cancer patient-derived cell lines RT-112 and RT4. [0233] The results described above showed that the growth of cancer cells and tumors that express FGFR3-TACC3_v1, FGFR3-TACC3_v2, FGFR3-TACC3_v3, and FGFR3-TACC3_v4 can be inhibited by the compounds of the present invention.

TABLE 4

Ex		v1	v2	v3	v4	RT-112	RT4
56	100 nM	92	91	91	90	90	64
	10 nM	84	79	78	82	83	42
	1 nM	22	21	20	22	29	5
113	100 nM	91	91	87	88	89	64
	10 nM	53	42	32	73	77	39
	1 nM	4	2	3	13	23	8
116	100 nM	91	90	86	89	89	63
	10 nM	44	31	24	70	72	39
	1 nM	5	0	3	11	21	8
122	100 nM	90	88	89	89	89	63
	10 nM	84	79	79	82	80	43
	1 nM	26	23	25	19	23	6
248	100 nM	84	79	81	83	81	43
	10 nM	28	29	20	26	33	10
	1 nM	7	11	6	-5	5	3
299	100 nM	92	91	89	90	89	63
	10 nM	77	63	51	82	84	45
	1 nM	9	4	5	16	31	8

Test Example 12: Inhibitory Activity of Compounds on the In Vitro Kinase Activity of FGFR3-TACC3 Fusion Polypeptide

[0234] (1) Construction of FLAG-Tag Fusion Expression Plasmids (FGFR3-TACC3_v1 (N-FLAG)/pcDNA3.1/Zeo(+), FGFR3-TACC3_v2 (N-FLAG)/pcDNA3.1/Zeo(+), and FGFR3-TACC3_v3 (N-FLAG)/pcDNA3.1/Zeo(+))

[0235] To obtain 5'-terminally FLAG-tagged FGFR3-TACC3 fusion polynucleotide, PCR was carried out for 5'-terminal FLAG tagging using the vectors cloned in Test Examples 4, 5, and 6 as templates. PCR (12 cycles of 98° C. for 15 seconds, 55° C. for 15 seconds, 68° C. for 3.5 minutes) was carried out using primers FGFR3_N_FLAG_BamHI represented by SEQ ID No: 17 and FGFR3_TACC3_cloning_EcoRI_R represented by SEQ ID No: 8 and DNA polymerase (KOD-plus-Ver. 2; Toyobo Co., Ltd.). PCR products obtained were cloned into cloning vectors

(TOPO XL PCR Cloning Kit; Life Technologies, Corp.). The inserts were sequenced by dideoxy sequencing (BigDye Terminator v3.1 Cycle Sequencing Kit; Life Technologies, Corp.). As a result, it was confirmed that the PCR products were nucleic acid sequences of SEQ ID Nos: 9, 11, and 13 in which the three bases coding for the first methionine (ATG) were deleted and start codon and a nucleic acid sequence coding for FLAG tag (SEQ ID No: 24) were added to the 5'-terminus. Polypeptides coded by the above are referred to FGFR3-TACC3_v1 (N-FLAG) fusion polypeptide, FGFR3-TACC3_v2 (N-FLAG) fusion polypeptide and FGFR3-TACC3_v3 (N-FLAG) fusion polypeptide, respectively, and these polypeptides are collectively referred to FGFR3-TACC3 (N-FLAG) fusion polypeptide. Further, to construct an expression vector expressing, as a protein, each of the ORF full lengths of FGFR3-TACC3_v1 (N-FLAG), FGFR3-TACC3_v2 (N-FLAG), and FGFR3-TACC3_v3 (N-FLAG) which contained these FLAG sequences added, enzyme reaction was performed at 37° C. for 3 hours using the cloning vectors described above and restriction enzyme BamHI, and restriction enzyme digested DNA fragments were obtained and purified. Further, enzyme reaction was performed at 37° C. for 3 hours using EcoRI and the DNA fragments, and restriction enzyme digested DNA fragments were obtained and purified. These ORF-containing DNA fragments were cloned into BamHI and EcoRI sites in the multicloning site of an expression vector (pcDNA3.1/Zeo(+); Life Technologies, Corp.) to construct expression plasmids (FGFR3-TACC3_v1 (N-FLAG)/pcDNA3.1/Zeo(+), FGFR3-TACC3_v2 (N-FLAG)/pcDNA3.1/Zeo(+), and FGFR3-TACC3_v3 (N-FLAG)/pcDNA3.1/Zeo(+)).

[0236] (2) Preparation of FGFR3-TACC3 (N-FLAG) Fusion Polypeptide

[0237] On the day before transfection, 0.5×10⁷ HEK293 cells per collagen-coated 15-cm dish were cultured in D-MEM medium containing 10% fetal bovine serum to prepare 10 dishes. On the day of transfection, 27 µg each of FGFR3-TACC3_v1 (N-FLAG)/pcDNA3.1/Zeo(+), FGFR3-TACC3_v2 (N-FLAG)/pcDNA3.1/Zeo(+), and FGFR3-TACC3_v3 (N-FLAG)/pcDNA3.1/Zeo(+) (Test Example 12) per dish was transfected into HEK293 cells, using 81 µL of a transfection reagent (FUGENE[®] HD, Roche). At 24 hours after the transfection, the media were removed, and after washing three times with PBS, 1 mL of PBS was added. The cells were scraped with a cell scraper (Corning Inc.) and then recovered in polypropylene tubes. After centrifugation at 1200 rpm for 5 minutes, the supernatant was removed, 150 µL of a cell lysate (50 mM Tris-HCl (pH8.0), 150 mM NaCl, 1% NP-40, 1 mM EDTA, and protease inhibitor cocktail complete) was added, and the cells were incubated on ice for 30 minutes and lysed. Each of the FGFR3-TACC3_v1 (N-FLAG) fusion polypeptide, FGFR3-TACC3_v2 (N-FLAG) fusion polypeptide, and FGFR3-TACC3_v3 (N-FLAG) fusion polypeptide which were present in the supernatant obtained after the centrifugation was purified using M2 antibody affinity gel (ANTI-FLAG M2 Affinity Gel; Sigma-Aldrich) in accordance with the method described in the product information document. A wash liquid (50 mM Tris-HCl (pH8.0), 150 mM NaCl, 1% NP-40, 1 mM EDTA, and protease inhibitor cocktail complete) and an eluate (20 mM Tris-HCl (pH7.4), 10 mM MgCl₂, 10 mM MnCl₂, and 0.5 mg/mL of FLAG peptide) were used for washing and elution, respectively, to give 100 µL of eluates. The eluates were subjected to immunoblotting

using an anti-FGFR3 antibody (Cell Signaling Technology) and an anti-FLAG M2 antibody (Sigma-Aldrich) and silver staining, and then confirmed that FGFR3-TACC3_v1 (N-FLAG) fusion polypeptide, FGFR3-TACC3_v2 (N-FLAG) fusion polypeptide, and FGFR3-TACC3_v3 (N-FLAG) fusion polypeptide were obtained.

[0238] (3) Detection of the In Vitro Kinase Activity of FGFR3-TACC3 (N-FLAG) Fusion Polypeptide
FGFR3-TACC3_v (N-FLAG) fusion polypeptide, FGFR3-TACC3_v2 (N-FLAG) fusion polypeptide, and FGFR3-TACC3_v3 (N-FLAG) fusion polypeptide, which were purified as described above were used to investigate their phosphorylating activity against a peptide substrate by using a kinase activity detection kit (HTRF KinEASE-TK; Cisbio). The reaction buffer was prepared by adding 1 mM (final concentration) of DTT and 5 mM (final concentration) of Mg to 5× kinase buffer enclosed in the kit using 1 μ L of 1-fold, 3-fold and 10-fold diluted solutions of the above prepared eluates as enzyme solutions, respectively, in 384-well, low-volume black plate (Corning). Using 2.0 μ M (final concentration) of TK Substrate enclosed in the kit as a substrate, the reaction was performed in a final volume of 5.0 μ L at room temperature for 1 hour in each case of adding no ATP and adding 100 μ M ATP (final concentration). After the reaction, Sa-XL665 solution and TK Antibody-Eu(K) solution were prepared in accordance with kit-recommended method and added each of 2.5 μ L of the solutions. After the reaction was performed at room temperature for 1 hour, the HTRF counts (i.e., phosphorylation of the peptide substrate) were detected. As the results, it was showed that compared with ATP-free ones, the HTRF counts in ATP-added ones had increased about 38-fold, about 40-fold, and about 38-fold, respectively, in the case of adding 1 μ L of 1-fold diluted solutions of the eluates described above including FGFR3-TACC3_v1 (N-FLAG) fusion polypeptide, FGFR3-TACC3_v2 (N-FLAG) fusion polypeptide, and FGFR3-TACC3_v3 (N-FLAG) fusion polypeptide, had increased about 27-fold, 34-fold, and 31-fold, respectively, in the case of adding 1 μ L of 3-fold diluted solutions of the eluates, and had increased 5-fold, 18-fold, and 11-fold, respectively, in the case of adding 1 μ L of 10-fold diluted solutions of the eluates.

[0239] As described above, the in vitro kinase activity of the respective fusion polypeptides could be detected by use of a kinase activity detection kit.

[0240] (4) Inhibitory Action of Compounds on the In Vitro Kinase Activity of FGFR3-TACC3 (N-FLAG) Fusion Polypeptide
The inhibitory activity of the test compounds on the in vitro kinase activity of FGFR3-TACC3_v1 (N-FLAG) fusion polypeptide, FGFR3-TACC3_v2 (N-FLAG) fusion polypeptide, and FGFR3-TACC3_v3 (N-FLAG) fusion polypeptide was investigated using the kinase activity detection kit described above and 384-well plate of the same sort. The compounds were added so that the final concentrations were 100 nM, 10 nM, and 1 nM, and DMSO was added as a control so that the concentration was 0.1%. For FGFR3-TACC3 v1 (N-FLAG) fusion polypeptide, 1 μ L of a 2-fold diluted solution of the eluate described above was added; for FGFR3-TACC3_v2 (N-FLAG) fusion polypeptide, 1 μ L of a 3-fold diluted solution of the eluate described above was added; and for FGFR3-TACC3 v3 (N-FLAG) fusion polypeptide, 1 μ L of a 3-fold diluted solution of the eluate described above was added. TK Substrate enclosed in the kit

as a substrate was added in a final concentration of 2.0 μ M, the reaction was performed at room temperature for 15 minutes. Then the reaction was performed in a final volume of 5.0 μ L at room temperature for 60 minutes in each case of adding no ATP and adding 100 μ M ATP (final concentration). After the other processes were performed by addition of each of 2.5 μ L of Sa-XL665 solution and TK Antibody-Eu(K) solution prepared by using similar method to that described in (3) above, and the reaction was performed at room temperature for 1 hour, the HTRF counts were detected. Assuming that the phosphorylation counts with adding no ATP and adding ATP in the absence of the compounds (DMSO was added in a concentration of 0.1%, the concentration equal to the compounds) were 100% inhibition and 0% inhibition, respectively, the inhibition rates (%) of the kinase activity of FGFR3-TACC3_v (N-FLAG) fusion polypeptide, FGFR3-TACC3_v2 (N-FLAG) fusion polypeptide, and FGFR3-TACC3_v3 (N-FLAG) fusion polypeptide were calculated for the compounds, using the following formula:

$$\begin{aligned} & \text{[rate (\%)} \text{ of inhibiting kinase activity by compound]} \\ & = \frac{1 - [\text{phosphorylation count with adding compound and adding ATP-phosphorylation count with adding no compound and adding no ATP}]}{[\text{phosphorylation count with adding no compound and adding ATP-phosphorylation count with adding no compound and adding no ATP}]} \times 100 \end{aligned}$$

[0241] As a result, as shown in Table 5, it was found out that some compounds of the present invention inhibit the phosphorylating activity of purified FGFR3-TACC3_v1 (N-FLAG) fusion polypeptide, purified FGFR3-TACC3_v2 (N-FLAG) fusion polypeptide, and purified FGFR3-TACC3_v3 (N-FLAG) fusion polypeptide against the peptide substrate.

TABLE 5

Ex		v1	v2	v3
56	100 nM	92	94	93
	10 nM	77	86	85
	1 nM	49	33	47
113	100 nM	92	94	96
	10 nM	79	74	81
	1 nM	28	24	35
116	100 nM	95	95	96
	10 nM	79	73	86
	1 nM	31	22	41
122	100 nM	94	95	97
	10 nM	80	80	85
	1 nM	34	27	45
248	100 nM	86	78	91
	10 nM	40	25	55
	1 nM	7	6	30
299	100 nM	94	95	96
	10 nM	84	77	88
	1 nM	35	20	47

Test Example 13: Isolation of FGFR3-BAIAP2L1
from Bladder Cancer Patient-Derived Cell Line
SW780

[0242] cDNA was synthesized by reverse transcription reaction in RNA purified from bladder cancer patient-derived cell line SW780 (purchased from ATCC) using reverse transcriptase (SuperScriptIII, Life Technologies, Corp.) and oligo(dT) primers (oligo(dT)20 primers, Life Technologies, Corp.) in accordance with the protocol of the kit.

[0243] Next, PCR (30 cycles of 98° C. for 15 seconds, 60° C. for 15 seconds, 68° C. for 5 minutes) was carried out using primers FGFR3-BAIAP2L1_cloning_F represented by SEQ ID No: 18 and FGFR3-BAIAP2L1_cloning_R represented by SEQ ID No: 19, the cDNA obtained above as a template, and DNA polymerase (KOD-plus-Ver. 2; Toyobo Co., Ltd.). Additional PCR (30 cycles of 98° C. for 15 seconds, 55° C. for 15 seconds, 68° C. for 4 minutes) was carried out using the PCR product described above which was diluted 10-fold as a template, primers FGFR3-BAIAP2L1_cloning_BamHI_F represented by SEQ ID No: 20 and FGFR3-BAIAP2L1_cloning_NotI_R represented by SEQ ID No: 21, and the same DNA polymerase as shown above. Electrophoresis performed after the PCR reaction showed that a PCR product of about 3.8 k bases was obtained. The PCR product was cloned into a cloning vector (TOPO XL PCR Cloning Kit; Life Technologies, Corp.), and the insert was sequenced by dideoxy sequencing (BigDye Terminator v3.1 Cycle Sequencing Kit; Life Technologies, Corp.). As a result, the product was found to be a transcript obtained by fusion of the region between the 5'-terminus of the CDS of FGFR3 (NM_001163213.1) registered in the NCBI and the 3' end of exon 18 to the region between the 5' end of exon 2 in the CDS of BAIAP2L1 (NM_018842.4) and the 3'-terminus of the CDS (FGFR3-BAIAP2L1). In the confirmed sequence, G at base position 3558 was replaced by A (SNPs registration No.: rs1045916), C at base position 3723 by T, and G at base position 3747 by A (SEQ ID No: 22). The polypeptide coded by SEQ ID No: 22 is shown in SEQ ID No: 23.

Test Example 14: Preparation of Retrovirus Solution of FGFR3-BAIAP2L1

[0244] To construct an expression plasmid expressing, as a protein, the ORF full length of FGFR3-BAIAP2L1, enzyme reaction was performed at 37° C. for 3 hours using the cloning vector described above and restriction enzyme BamHI, and restriction enzyme digested DNA fragments were obtained and purified. Further, enzyme reaction was performed at 37° C. for 3 hours using NotI and the DNA fragments, and restriction enzyme digested DNA fragments were obtained and purified. This ORF-containing DNA fragment was cloned into BamHI and NotI sites in the multicloning site of an expression vector (pMXs-puro; Cosmo Bio) to construct an expression plasmid (FGFR3-BAIAP2L1/pMXs-puro). The prepared FGFR3-BAIAP2L1/pMXs-puro was used to prepare a retrovirus solution in accordance with the method used in Test Example 9.

Test Example 15: Investigation of Anchorage-Independent Growth of FGFR3-BAIAP2L1

[0245] The virus solution prepared using FGFR3-BAIAP2L1/pMXs-puro in Test Example 14 was used to obtain NIH3T3 cells expressing FGFR3-BAIAP2L1 stably in accordance with the method used in Test Example 10 (designated as FGFR3-BAIAP2L1-expressing NIH3T3 cells).

[0246] To investigate the anchorage-independent growth-promoting ability of FGFR3-BAIAP2L1-expressing NIH3T3 cells, the same method as in Test Example 10 was applied. It was confirmed that the count of Mock/NIH3T3 cells did not increase between Day 1 and Day 4, while the

count of FGFR3-BAIAP2L1-expressing NIH3T3 cells increased about 2.5-fold between Day 1 and Day 4. In light of the foregoing, it was shown that FGFR3-BAIAP2L1-expressing NIH3T3 cells exhibit anchorage-independent cell growth.

Test Example 16: Inhibitory Activity on Anchorage-Independent Cell Growth of FGFR3-BAIAP2L1-Expressing NIH3T3 Cells

[0247] In a 96-well spheroid plate (Sumilon Celltight Spheroid 96U; Sumitomo Bakelite), FGFR3-BAIAP2L1-expressing NIH3T3 cells were seeded at 1×10^3 cells per well in D-MEM medium containing 10% fetal bovine serum. A well supplemented with only medium was also prepared for a positive control. Culturing was performed overnight in the presence of 5% CO₂ at 37° C. followed by addition of test compounds (final concentrations: 100 nM, 10 nM, and 1 nM). As a negative control, DMSO used as a solvent for the compounds was added at the same concentration (0.1%) as in the case of addition of the compounds. Then, culturing was performed in the presence of 5% CO₂ at 37° C. for 4 days, and a cell counting reagent (CellTiter-GloTM Luminescent Cell Viability Assay; Promega) was added and the resulting mixture was stirred for 20 minutes followed by measurement with a luminometer. Assuming that the values of the positive control and the negative control were 100% inhibition and 0% inhibition, respectively, the growth inhibition rate (%) was calculated for each compound. As shown in Table 6, it was found out that some compounds of the present invention inhibit the anchorage-independent growth of FGFR3-BAIAP2L1-expressing NIH3T3 cells.

[0248] The results described above showed that the growth of cancer cells and tumors that express FGFR3-BAIAP2L1 can be inhibited by the compounds of the present invention.

TABLE 6

Ex	FGFR3-BAIAP2L1-expressing NIH3T3 Cells	
56	100 nM	90
	10 nM	80
	1 nM	24
113	100 nM	89
	10 nM	70
	1 nM	14
116	100 nM	87
	10 nM	74
	1 nM	15
122	100 nM	90
	10 nM	83
	1 nM	17
248	100 nM	82
	10 nM	19
	1 nM	-3
299	100 nM	91
	10 nM	81
	1 nM	15

[0249] A pharmaceutical composition which comprises one or more of the compounds of formula (I) or salts thereof, as active ingredient, can be prepared in a conventional manner by using an excipient commonly used in the art, more specifically, a pharmaceutical excipient, pharmaceutical carrier, or another additive.

[0250] Any mode of administration may be used: namely, either oral administration in the form of tablets, pills,

capsules, granules, powders, solutions or the like, or parenteral administration in the form of injections (e.g., intraarticular, intravenous, or intramuscular injection), suppositories, eye drops, eye ointments, percutaneous solutions, ointments, percutaneous patches, transmucosal solutions, transmucosal patches, inhalants, intravesical instillation or the like.

[0251] Solid compositions used for oral administration include tablets, powders, granules, and the like. In these solid compositions, one or more active ingredients are mixed with at least one inert excipient. The compositions may also comprise inert additives such as lubricants, disintegrating agents, stabilizers, and/or solubilizers, as in usual cases. Tablets or pills may be coated with sugar or a gastrosoluble or enteric film, if needed.

[0252] Liquid compositions for oral administration include pharmaceutically acceptable emulsions, solutions, suspensions, syrups, elixirs, and the like, and comprise a commonly-used inert diluent such as purified water or ethanol. These liquid compositions may comprise auxiliaries (e.g., solubilizers, wetting agents, suspending agents), sweeteners, flavors, aromatics, and/or antiseptics, in addition to such an inert diluent.

[0253] Injections for parenteral administration include sterile aqueous or non-aqueous solutions, suspensions, or emulsions. Examples of aqueous solvents include injectable distilled water and physiological saline. Examples of non-aqueous solvents include alcohols such as ethanol. These compositions may further comprise isotonizing agents, antiseptics, wetting agents, emulsifiers, dispersants, stabilizers or solubilizers. They are sterilized, for example, by filtration through a bacteria-retaining filter, by incorporation of disinfectants, or by irradiation. Alternatively, they may be formulated into a sterile solid composition and reconstituted for use by being dissolved or suspended in sterile water or a sterile injectable solvent before use.

[0254] Formulations for external use include ointments, plasters, creams, jellies, cataplasms, sprays, lotions, eye drops, eye ointments, and the like. They include commonly-used ointment bases, lotion bases, aqueous or non-aqueous solutions, suspensions, emulsions, or the like.

[0255] Transmucosal formulations such as inhalants or transnasal formulations are used in solid, liquid, or semi-solid form and can be prepared in a conventionally known manner. For example, such formulations may be supplemented as appropriate with known excipients, and further with pH adjusters, antiseptics, surfactants, lubricants, stabilizers, thickeners, or the like. For their administration, an appropriate device for inhalation or insufflation may be used. For example, using a known device (e.g., a metered-dose inhalation device) or a nebulizer, the compound(s) may be administered alone or as a powder of a formulated mixture or as a solution or suspension in combination with a pharmaceutically acceptable carrier. Dry powder inhalators and the like may be for single or multiple administration use, and dry powders or powder-containing capsules may be used in such devices. Alternatively, they may be in the form of pressurized aerosol sprays or the like which use an appropriate propellant, for example, a preferred gas such as chlorofluoroalkane or carbon dioxide.

[0256] In general, for oral administration, the daily dosage is desirably about 0.001 to 100 mg/kg body weight, preferably 0.1 to 30 mg/kg body weight, more preferably 0.1 to 10 mg/kg body weight, given as a single dose or in 2 to 4

divided doses. For intravenous administration, the daily dosage is desirably about 0.0001 to 10 mg/kg body weight, given in one or several doses per day. Likewise, for transmucosal formulations, the daily dosage is about 0.001 to 100 mg/kg body weight, given in one or several doses per day. The dosage may be determined as appropriate for each case in consideration of symptom, age, sex, and the like.

[0257] The pharmaceutical composition of the present invention comprises one or more of the compounds of formula (I) or salts thereof, as active ingredients in an amount of 0.01 to 100 wt. % (0.01 to 50 wt. % in one embodiment), which varies depending on administration route, dosage form, administration site, or the types of excipients and additives.

[0258] The compounds of formula (I) can be used in combination with various therapeutic or prophylactic agents for diseases against which the compounds of formula (I) would be effective. In such combination therapy, drugs may be administered simultaneously or separately in succession or at desired time intervals. Formulations for simultaneous administration may be in either mixed form or separate form.

EXAMPLES

[0259] The processes for preparing the compounds of formula (I) are described in more detail with reference to the examples shown below. It should be noted that the present invention is not limited to the compounds described in the examples shown below. In addition, the processes for preparing the starting compounds are shown in preparation examples. Processes for preparing the compounds of formula (I) are not limited only to those actually described in the examples shown below, and the compounds of formula (I) may also be prepared by any combination of these processes or by any processes obvious to those skilled in the art.

[0260] In the examples, preparation examples and tables shown below, the following abbreviations are used as needed.

[0261] PEx: Preparation Example No., Ex: Example No., PSyn: Preparation Example No. of compound prepared in the same manner, Syn: Example No. of compound prepared in the same manner, Str: chemical structural formula (Me: methyl, Et: ethyl, 'Pr: isopropyl, 'Bu: tert-butyl, Boc: tert-butoxycarbonyl, Bn: benzyl, THP: tetrahydropyranyl), DAT: physical and chemical data, ESI+: m/z value in mass analysis (ionization method ESI, (M+H)⁺ unless otherwise specified), ESI-: m/z value (ionization method ESI, (M-H)⁻ unless otherwise specified), EI: m/z value in mass analysis (ionization method EI, (M)⁺ unless otherwise specified), APCI/ESI+: m/z value in mass analysis (simultaneous measurement by ionization methods APCI and ESI, (M+H)⁺ unless otherwise specified), NMR1: δ (ppm) in ¹H-NMR in dimethyl sulfoxide-d₆, NMR2: δ (ppm) in ¹H-NMR in CDCl₃, NMR3: δ (ppm) in ¹H-NMR in CD₃OD, "M" in Preparation Example and Example: which indicates mol/L. "HCl" in a structural formula indicates hydrochloride and the number in front of the term "HCl" indicates molar ratio. For example, 2HCl means a dihydrochloride salt. The symbol "*" in the tables in Preparation Examples and Examples indicates that the compounds given the symbol are optically active substances.

Preparation Example 1

[0262] Under an argon atmosphere, to a mixture of 3-methoxy-4-[4-(4-methylpiperazin-1-yl)piperidin-1-yl] aniline (300 mg) and ethanol (6 mL), methanesulfonic acid (128 μ L) was added followed by stirring at room temperature for 30 minutes. Subsequently, 5-bromo-2-chloropyrimidine (229 mg) was added thereto and the resulting mixture was stirred at 100° C. for 4 hours. Additional 5-bromo-2-chloropyrimidine (95 mg) was added thereto and the resulting mixture was stirred at 100° C. for 12 hours. To the reaction mixture, a saturated aqueous sodium hydrogen carbonate solution was added followed by extraction with chloroform. An organic layer obtained was dried over anhydrous sodium sulfate and then filtered. After the filtrate was concentrated under reduced pressure, the resulting residue was purified by basic silica gel column chromatography (ethyl acetate/methanol) to give 5-bromo-N-[3-methoxy-4-[4-(4-methylpiperazin-1-yl)piperidin-1-yl]phenyl]pyrimidin-2-amine (352 mg).

Preparation Example 2

[0263] To a mixture of 3-methoxy-4-[4-(4-methylpiperazin-1-yl)piperidin-1-yl]aniline (253 mg) and isopropanol (6 mL), methanesulfonic acid (162 μ L) was added followed by stirring at room temperature for 30 minutes. After that, 2-chloro-5-iodopyrimidine (200 mg) was added thereto, and the resulting mixture was stirred at 90° C. for 12 hours and further stirred at 130° C. for 2 hours under microwave irradiation. To the reaction mixture, a saturated aqueous sodium hydrogen carbonate solution was added followed by extraction with chloroform. An organic layer obtained was dried over anhydrous sodium sulfate and then filtered. After the filtrate was concentrated under reduced pressure, the resulting residue was purified by silica gel column chromatography (chloroform/methanol) to give 5-iodo-N-[3-methoxy-4-[4-(4-methylpiperazin-1-yl)piperidin-1-yl]phenyl]pyrimidin-2-amine (282 mg).

Preparation Example 3

[0264] Under an argon atmosphere, a mixture of 1-ethynyl-3,5-dimethoxybenzene (3 g) and acetonitrile (30 mL) was ice cooled, and then sulfonyl chloride (3.15 mL) was added thereto followed by stirring at room temperature for 4 hours. Additional sulfonyl chloride (449 μ L) was added thereto followed by stirring at room temperature for 12 hours. After the reaction mixture was concentrated under reduced pressure, ethyl acetate and a saturated aqueous sodium hydrogen carbonate solution were added to the resulting residue followed by stirring at room temperature for 30 minutes. The resulting solid was collected by filtration, washed with ethyl acetate, and then dried under reduced pressure to give 2,4-dichloro-3-ethynyl-1,5-dimethoxybenzene (1.99 g).

Preparation Example 4

[0265] A mixture of 1-ethynyl-3,5-dimethoxybenzene (4 g) and acetonitrile (80 mL) was ice cooled, and N-fluoro-N'-(chloromethyl)triethylenediamine bis(tetrafluoroborate) (19.4 g) was added thereto. The resulting mixture was gradually warmed and stirred at room temperature for 12 hours. To the reaction mixture, a saturated aqueous sodium hydrogen carbonate solution was added followed by extraction with ethyl acetate. An organic layer obtained was washed with saturated brine, and then dried over anhydrous sodium sulfate and then filtered. After the filtrate was concentrated under reduced pressure, the resulting residue was purified by silica gel column chromatography (ethyl acetate/hexane) and subsequently purified by silica gel column chromatography (chloroform/hexane) to give 3-ethynyl-2,4-difluoro-1,5-dimethoxybenzene (798 mg, Preparation Example No. PEx. 4-1, which is described later) and 1-ethynyl-2-fluoro-3,5-dimethoxybenzene (375 mg, Preparation Example No. PEx. 4-2, which is described later).

Preparation Example 5

[0266] Under an argon atmosphere, a mixture of 1-ethynyl-2-fluoro-3,5-dimethoxybenzene (800 mg) and acetonitrile (8 mL) was ice cooled, and sulfonyl chloride (378 μ L) was added thereto followed by stirring at room temperature for 12 hours. To the reaction mixture, ethyl acetate and a saturated aqueous sodium hydrogen carbonate solution were added followed by extraction with ethyl acetate. An organic layer obtained was washed with saturated brine, dried over anhydrous sodium sulfate, and then filtered. After the filtrate was concentrated under reduced pressure, the resulting residue was solidified with ethyl acetate/diisopropyl ether to give 2-chloro-3-ethynyl-4-fluoro-1,5-dimethoxybenzene (787 mg).

Preparation Example 6

[0267] To a mixture of 2,6-difluoro-3-methoxybenzaldehyde (500 mg), potassium carbonate (803 mg), and methanol (10 mL), dimethyl (1-diazo-2-oxopropyl)phosphonate (523 μ L) was added at room temperature under an argon atmosphere followed by stirring for 5 hours. To the reaction mixture, water was added followed by extraction with ethyl acetate. An organic layer obtained was washed with saturated brine, dried over anhydrous sodium sulfate, and then filtered. After the filtrate was concentrated under reduced pressure, the resulting residue was purified by silica gel column chromatography (ethyl acetate/hexane) to give 2-ethynyl-1,3-difluoro-4-methoxybenzene (452 mg).

Preparation Example 7

[0268] To a mixture of 2-amino-5-iodopyrimidine (1 g), 3-ethynyl-2,4-difluoro-1,5-dimethoxybenzene (897 mg), tetrakis(triphenylphosphine) palladium (261 mg), copper iodide (43 mg), and N,N-dimethylformamide (20 mL), N,N-diisopropylethylamine (1.55 mL) was added under an argon atmosphere followed by stirring at 80° C. for 1 hour. The reaction mixture was concentrated under reduced pressure, and to the obtained residue were added chloroform and water, and insoluble materials were removed by filtration through celite. After the filtrate was extracted with chloroform, the organic layer was washed with saturated brine, dried over anhydrous sodium sulfate, and then filtered. After the filtrate was concentrated under reduced pressure, the resulting residue was purified by silica gel column chromatography (chloroform/methanol) to give 5-[(2,6-difluoro-3,5-dimethoxyphenyl)ethynyl]pyrimidin-2-amine (1.07 g).

Preparation Example 8

[0269] To a mixture of 5-[(2,6-difluoro-3,5-dimethoxyphenyl)ethynyl]pyrimidin-2-amine (400 mg), methanol (4 mL), and tetrahydrofuran (4 mL), 10% palladium-carbon

(73 mg) was added under an argon atmosphere. After the resulting mixture was stirred at 60° C. for 8 hours under a hydrogen atmosphere, insoluble materials were removed by filtration through celite. The filtrate was concentrated under reduced pressure to give 5-[(2,6-difluoro-3,5-dimethoxyphenyl)ethyl]pyrimidin-2-amine (402 mg).

Preparation Example 9

[0270] To a mixture of 5-[(2,6-difluoro-3,5-dimethoxyphenyl)ethyl]pyrimidin-2-amine (100 mg) and acetonitrile (2 mL) under an argon atmosphere were added copper chloride (II) (68 mg) and n-pentyl nitrite (69 µL), followed by stirring at 60° C. for 4 hours. To the reaction mixture, ethyl acetate was added and insoluble materials were removed by filtration. After the filtrate was concentrated under reduced pressure, the resulting residue was purified by silica gel column chromatography (ethyl acetate/hexane) to give 2-chloro-5-[(2,6-difluoro-3,5-dimethoxyphenyl)ethyl]pyrimidine (20 mg).

Preparation Example 10

[0271] A mixture of (2-chloropyrimidin-5-yl)methanol (120 mg), 3,5-dimethoxyphenol (186 mg), tributylphosphine (297 µL), and tetrahydrofuran (2.4 mL) was ice cooled, and 1,1'-(azodicarbonyl)dipiperidine (305 mg) was added thereto followed by stirring at room temperature for 12 hours. Insoluble materials were removed by filtration and the filtrate was concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography (ethyl acetate/hexane) to give 2-chloro-5-[(3,5-dimethoxyphenoxy)methyl]pyrimidine (119 mg).

Preparation Example 13

[0272] A mixture of 2-chloro-5-hydroxypyrimidine (278 mg), potassium carbonate (453 mg), and N,N-dimethylformamide (3 mL) was ice cooled, and 3,5-dimethoxybenzyl bromide (541 mg) was added thereto followed by stirring at room temperature for 7 hours. To the reaction mixture, water was added followed by extraction with ethyl acetate. An organic layer obtained was washed with saturated brine, dried over anhydrous magnesium sulfate, and then filtered. The resulting residue was purified by silica gel column chromatography (ethyl acetate/hexane) to give 2-chloro-5-[(3,5-dimethoxybenzyl)oxy]pyrimidine (360 mg).

Preparation Example 14

[0273] To a mixture of 2-chloro-5-[(3,5-dimethoxybenzyl)oxy]pyrimidine (4.17 g) and N,N-dimethylformamide (40 mL), N-chlorosuccinimide (4.05 g) was added followed by stirring at room temperature for 2 hours and stirring at 60° C. for 2 hours. To the reaction mixture, water was added, and the resulting solid was collected by filtration, washed with water, and then dried under reduced pressure. The obtained solid was suspended in ethyl acetate (40 mL) and heated to 80° C. The solid was collected by filtration, and then dried under reduced pressure to give 2-chloro-5-[(2,6-dichloro-3,5-dimethoxybenzyl)oxy]pyrimidine (3.99 g).

Preparation Example 15

[0274] A mixture of 2-chloro-5-hydroxypyrimidine (487 mg) and 1-(3,5-dimethoxyphenyl)ethanol (680 mg), tributylphosphine (1.37 mL), and tetrahydrofuran (14 mL) was

ice cooled, and 1,1'-(azodicarbonyl)dipiperidine (1.4 g) was added thereto followed by stirring at room temperature for 12 hours and stirring at 50° C. for 3 hours. Insoluble materials were removed by filtration and the filtrate was concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography (ethyl acetate/hexane) to give 2-chloro-5-[(3,5-dimethoxyphenyl)ethoxy]pyrimidine (415 mg).

Preparation Example 16

[0275] A mixture of methyl 3,5-dimethoxybenzoate (1 g) and acetonitrile (20 mL) was ice cooled, and N-fluoro-N'-(chloromethyl)triethylenediamine bis(tetrafluoroborate) (4.09 g) was added thereto followed by stirring at room temperature overnight. To the reaction mixture, a saturated aqueous sodium hydrogen carbonate solution was added followed by extraction with ethyl acetate. An organic layer obtained was washed with saturated brine, added anhydrous sodium sulfate and basic silica gel followed by stirring for 30 minutes, and then filtered. After the filtrate was concentrated under reduced pressure, the resulting residue was purified by silica gel column chromatography (ethyl acetate/hexane) to give methyl 2,6-difluoro-3,5-dimethoxybenzoate (292 mg: Preparation Example 16-1) and methyl 2-fluoro-3,5-dimethoxybenzoate (232 mg: Preparation Example 16-2).

Preparation Example 17

[0276] A mixture of methyl 2,6-difluoro-3,5-dimethoxybenzoate (10 g) and tetrahydrofuran (50 mL) was ice cooled, and lithium borohydride (3.0M tetrahydrofuran solution, 43 mL) was added thereto followed by stirring at room temperature for 65 hours. The reaction mixture was ice cooled again, and additional lithium borohydride (3.0M tetrahydrofuran solution, 14 mL) was added thereto followed by stirring at room temperature for 22 hours. The reaction mixture was ice cooled and slowly added into ice water (300 mL). Further, concentrated hydrochloric acid (25 mL) was slowly added thereto, and the resulting mixture was stirred at room temperature for 1 hour and extracted with toluene/ethyl acetate (1:1). An organic layer obtained was washed with a saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried over anhydrous sodium sulfate, and then filtered. The filtrate was concentrated under reduced pressure to give (2,6-difluoro-3,5-dimethoxyphenyl)methanol (8.67 g).

Preparation Example 18

[0277] A mixture of (2,6-difluoro-3,5-dimethoxyphenyl)methanol (1.71 g), triethylamine (2.57 mL), and tetrahydrofuran (34 mL) was ice cooled, and methanesulfonyl chloride (716 µL) was added thereto followed by stirring for 1 hour. To the reaction mixture, water was added followed by extraction with ethyl acetate. An organic layer obtained was washed with saturated brine, dried over anhydrous sodium sulfate, and then filtered. The filtrate was concentrated under reduced pressure to give 2,6-difluoro-3,5-dimethoxybenzyl methanesulfonate (2.32 g).

Preparation Example 19

[0278] To a mixture of 2-chloro-5-hydroxypyrimidine (4.38 g), potassium carbonate (9.27 g), and N,N-dimethylformamide (79 mL), 2,6-difluoro-3,5-dimethoxybenzyl

methanesulfonate (7.89 g) was added followed by stirring at 60° C. for 1 hour. To the reaction mixture, water was added, and the resulting solid was collected by filtration, washed with water, and then dried under reduced pressure to give 2-chloro-5-[(2,6-difluoro-3,5-dimethoxybenzyl)oxy]pyrimidine (8.53 g).

Preparation Example 20

[0279] A mixture of 2,3,5,6-tetrafluoropyridine (1.5 g) and methanol (15 mL) was ice cooled, and sodium methoxide (4.03 g) was added thereto followed by stirring at room temperature for 2 hours and stirring at 50° C. overnight. To the reaction mixture, water was added followed by extraction with diethyl ether. An organic layer obtained was washed with saturated brine, dried over anhydrous sodium sulfate, and then filtered. The filtrate was concentrated under reduced pressure to give 3,5-difluoro-2,6-dimethoxypyridine (1.47 g).

Preparation Example 21

[0280] A mixture of diisopropylamine (745 µL) and tetrahydrofuran (5 mL) was cooled to -78° C., and n-butyl lithium (1.6M hexane solution, 3.02 mL) was added thereto followed by stirring at 0° C. for 30 minutes. The reaction mixture was cooled to -78° C., and a mixture of 3,5-difluoro-2,6-dimethoxypyridine (770 mg) and tetrahydrofuran (5 mL) was added thereto dropwise followed by stirring for 1 hour. After N,N-dimethylformamide (440 µL) was added thereto, the resulting mixture was warmed to room temperature and stirred for 1 hour. To the reaction mixture, water was added followed by extraction with ethyl acetate. An organic layer obtained was washed with saturated brine, dried over anhydrous sodium sulfate, and then filtered. The resulting residue was purified by silica gel column chromatography (ethyl acetate/hexane) to give 3,5-difluoro-2,6-dimethoxyisonicotinaldehyde (406 mg).

Preparation Example 22

[0281] A mixture of 3,5-difluoro-2,6-dimethoxyisonicotinaldehyde (400 mg) and methanol (4 mL) was ice cooled, and sodium borohydride (82 mg) was added thereto followed by stirring for 1 hour. To the reaction mixture, 1M hydrochloric acid was added followed by extraction with ethyl acetate. An organic layer obtained was washed with saturated brine, dried over anhydrous sodium sulfate, and then filtered. The filtrate was concentrated to give (3,5-difluoro-2,6-dimethoxypyridin-4-yl)methanol (403 mg).

Preparation Example 23

[0282] To a mixture of 2-chloro-5-[(2,6-dichloro-3,5-dimethoxybenzyl)oxy]pyrimidine (235 mg), tert-butyl 4-(4-amino-3-methoxyphenyl)piperidine-1-carboxylate (306 mg), 1,1'-binaphthalene-2,2'-diylbis(diphenylphosphine) (138 mg), cesium carbonate (660 mg), and dioxane (10 mL), palladium acetate (30 mg) was added at room temperature under an argon atmosphere. The resulting mixture was stirred at 100° C. for 3 hours. To the reaction mixture, water was added followed by extraction with ethyl acetate. An organic layer obtained was washed with saturated brine, dried over anhydrous magnesium sulfate, and then filtered. After the filtrate was concentrated under reduced pressure, the resulting residue was purified by silica gel column chromatography (ethyl acetate/hexane) to give tert-butyl

4-[4-((5-[(2,6-dichloro-3,5-dimethoxybenzyl)oxy]pyrimidin-2-yl)amino)-3-methoxyphenyl]piperidine-1-carboxylate (298 mg).

Preparation Example 24

[0283] To a mixture of 2-fluoro-5-nitrotoluene (500 mg), potassium carbonate (2.0 g), and N,N-dimethylformamide (15 mL), 4-piperidin-4-ylthiomorpholine 1,1-dioxide bistrifluoroacetate (2.16 g) was added followed by stirring at 80° C. for 20 hours. To the reaction mixture, water was added followed by extraction with ethyl acetate. An organic layer obtained was washed with saturated brine, dried over anhydrous magnesium sulfate, and then filtered. After the filtrate was concentrated under reduced pressure, the resulting residue was purified by silica gel column chromatography (chloroform/methanol) to give 4-[1-(2-methyl-4-nitrophenyl)piperidin-4-yl]thiomorpholine 1,1-dioxide (870 mg).

Preparation Example 25

[0284] To a mixture of 4-[1-(2-methyl-4-nitrophenyl)piperidin-4-yl]thiomorpholine 1,1-dioxide (1.5 g) and acetic acid (30 mL), 10% palladium-carbon (452 mg) was added under an argon atmosphere. After stirring for 13 hours under a hydrogen atmosphere, insoluble materials were removed by filtration through celite. The filtrate was concentrated under reduced pressure, and then a saturated aqueous sodium hydrogen carbonate solution was added to the resulting residue. The resulted solid was collected by filtration, washed with water, and then dried under reduced pressure to give 4-[4-(1,1-dioxidothiomorpholin-4-yl)piperidin-1-yl]-3-methylaniline (1.26 g).

Preparation Example 26

[0285] To a mixture of 1-chloro-2-(difluoromethoxy)-4-nitrobenzene (920 mg), potassium carbonate (1.7 g), and N,N-dimethylformamide (10 mL), 1-methyl-4-piperidin-4-ylpiperazine (1.13 g) was added followed by stirring at 100° C. overnight. The reaction mixture was concentrated under reduced pressure, and water was added to the resulting residue followed by extraction with ethyl acetate. An organic layer obtained was washed with saturated brine, dried over anhydrous magnesium sulfate, and then filtered. After the filtrate was concentrated under reduced pressure, the resulting residue was purified by silica gel column chromatography (chloroform/methanol/conc. aqueous ammonia solution) to give 1-[1-[2-(difluoromethoxy)-4-nitrophenyl]piperidin-4-yl]-4-methylpiperazine (1.38 g).

Preparation Example 27

[0286] To a mixture of 1-[1-[2-(difluoromethoxy)-4-nitrophenyl]piperidin-4-yl]-4-methylpiperazine (1.38 g) and ethanol (54 mL), 10% palladium-carbon (397 mg) was added under an argon atmosphere. After stirring for 1 hour under a hydrogen atmosphere, insoluble materials were removed by filtration through celite. The filtrate was concentrated under reduced pressure to give 3-(difluoromethoxy)-4-[4-(4-methylpiperazin-1-yl)piperidin-1-yl]aniline (1.25 g).

Preparation Example 28

[0287] A mixture of benzyl piperazine-1-carboxylate (10 g), 2,2,6,6-tetramethylpiperidin-4-one (7.05 g), and dichloro-

romethane (100 mL) was ice cooled, and sodium triacetoxy borohydride (11.5 g) was added thereto followed by stirring at room temperature overnight. To the reaction mixture, a saturated aqueous sodium hydrogen carbonate solution was added followed by extraction with chloroform. An organic layer obtained was washed with saturated brine, dried over anhydrous sodium sulfate, and then filtered. After the filtrate was concentrated under reduced pressure, the resulting residue was purified by basic silica gel column chromatography (ethyl acetate/hexane) to give benzyl 4-(2,2,6,6-tetramethylpiperidin-4-yl)piperazine-1-carboxylate (7.18 g).

Preparation Example 29

[0288] To a mixture of benzyl 4-(2,2,6,6-tetramethylpiperidin-4-yl)piperazine-1-carboxylate (7.18 g) and ethanol (60 mL), 10% palladium-carbon (2.0 g) was added under an argon atmosphere. After stirring for 7 hours under a hydrogen atmosphere, insoluble materials were removed by filtration through celite. The filtrate was concentrated under reduced pressure to give 1-(2,2,6,6-tetramethylpiperidin-4-yl)piperazine (4.35 g).

Preparation Example 30

[0289] To a mixture of 2-chloro-5-[(2,3,5,6-tetrafluorobenzyl)oxy]pyrimidine (202 mg), tert-butyl 9-(4-amino-2-methoxyphenyl)-3,9-diazaspiro[5.5]undecane-3-carboxylate (311 mg), 2-(dicyclohexylphosphino)-2',4',6'-trisopropyl-1,1'-biphenyl (30 mg), potassium carbonate (134 mg), and tert-butanol (10 mL), tris(dibenzylideneacetone)dipalladium (19 mg) was added at room temperature under an argon atmosphere. The resulting mixture was stirred at 100° C. for 4 hours. Insoluble materials were removed by filtration and washed with ethyl acetate. The filtrate was concentrated under reduced pressure and the resulting residue was purified by silica gel column chromatography (ethyl acetate/hexane) to give tert-butyl 4-[4-(5-[(2,3,5,6-tetrafluorobenzyl)oxy]pyrimidin-2-yl]amino)-2-methoxyphenyl]-3,9-diazaspiro[5.5]undecane-3-carboxylate (259 mg).

Preparation Example 31

[0290] To a mixture of N-[3-(1,4-dioxa-8-azaspiro[4.5]dec-8-yl)phenyl]-5-[(2,3,5,6-tetrafluorobenzyl)oxy]pyrimidin-2-amine (596 mg), acetic acid (9 mL), and water (9 mL), concentrated hydrochloric acid (0.5 mL) was added followed by stirring at 80° C. for 7 hours. The reaction mixture was ice cooled, and a 1M aqueous sodium hydroxide solution (155 mL) and a saturated aqueous sodium hydrogen carbonate solution were added thereto, and then the resulting solid was collected by filtration. Chloroform was added thereto, and the resulting mixture was dried over anhydrous sodium sulfate and then filtered. The filtrate was concentrated under reduced pressure to give 1-[3-(5-[(2,3,5,6-tetrafluorobenzyl)oxy]pyrimidin-2-yl)amino]phenyl)piperidin-4-one (512 mg).

Preparation Example 32

[0291] A mixture of 2-[3-(5-[(2,3,5,6-tetrafluorobenzyl)oxy]pyrimidin-2-yl)amino]-1H-pyrazol-1-yl]ethanol (116 mg), triethylamine (84 μ L), and tetrahydrofuran (4 mL) was ice cooled, and methanesulfonyl chloride (47 μ L) was added thereto followed by stirring for 3 hours. To the reaction mixture, water was added followed by extraction with ethyl

acetate. An organic layer obtained was washed with saturated brine, dried over anhydrous magnesium sulfate, and then filtered. The filtrate was concentrated under reduced pressure to give 2-[3-(5-[(2,3,5,6-tetrafluorobenzyl)oxy]pyrimidin-2-yl)amino]-1H-pyrazol-1-yl]ethyl methanesulfonate (129 mg).

Preparation Example 33

[0292] A mixture of 4-(4-nitro-1H-pyrazol-1-yl)piperidine (250 mg), 1-methylpiperidin-4-one (220 μ L), and dichloromethane (5 mL) was ice cooled, and sodium triacetoxy borohydride (810 mg) was added thereto followed by stirring at room temperature for 4 hours. To the reaction mixture, a saturated aqueous sodium hydrogen carbonate solution was added followed by extraction with chloroform. An organic layer obtained was washed with saturated brine, dried over anhydrous magnesium sulfate, and then filtered. After the filtrate was concentrated under reduced pressure, the resulting residue was purified by silica gel column chromatography (chloroform/methanol/conc. aqueous ammonia solution) to give 1'-methyl-4-(4-nitro-1H-pyrazol-1-yl)-1,4'-bipiperidine (342 mg).

Preparation Example 34

[0293] To a mixture of 1-(2-chloro-4-nitrophenyl)-4-(1-methylpiperidin-4-yl)piperazine (3.7 g), ammonium chloride (352 mg), ethanol (94 mL), tetrahydrofuran (47 mL), and water (47 mL), iron powder (3.06 g) was added followed by stirring at 70° C. for 4 hours. After insoluble materials were removed by filtration, the filtrate was concentrated under reduced pressure. To the resulting residue, a saturated aqueous sodium hydrogen carbonate solution was added followed by extraction with ethyl acetate. An organic layer obtained was dried over anhydrous magnesium sulfate and then filtered. The filtrate was concentrated under reduced pressure to give 3-chloro-4-[4-(1-methylpiperidin-4-yl)piperazin-1-yl]aniline (1.03 g).

Preparation Example 35

[0294] To a mixture of (3R,5S)-1-(2-methoxy-4-nitrophenyl)-3,5-dimethylpiperazine (3.0 g), N,N-diisopropylethylamine (2.32 mL), di-tert-butylcarbonate (2.71 g), and dioxane (20 mL), 4-dimethylaminopyridine (69 mg) was added followed by stirring at 80° C. overnight. To the reaction mixture, a saturated aqueous sodium hydrogen carbonate solution was added followed by extraction with ethyl acetate. An organic layer obtained was washed with saturated brine, dried over anhydrous sodium sulfate, and then filtered. After the filtrate was concentrated under reduced pressure, the resulting residue was purified by silica gel column chromatography (ethyl acetate/hexane) to give tert-butyl (2R,6S)-4-(2-methoxy-4-nitrophenyl)-2,6-dimethylpiperazine-1-carboxylate (1.73 g).

Preparation Example 36

[0295] To a mixture of 2-(2-bromoethoxy)-1-chloro-4-nitrobenzene (3.0 g), cesium carbonate (5.23 g), N-methylpyrrolidone (30 mL), 1H-pyrazole (874 mg) was added followed by stirring at 60° C. for 6 hours. To the reaction mixture, water was added, and the resulting solid was collected by filtration. The solid was washed with water and dried under reduced pressure to give 1-[2-(2-chloro-5-nitrophenoxy)ethyl]-1H-pyrazole (2.57 g).

Preparation Example 37

[0296] To a mixture of 1-[2-(2-chloro-5-nitrophenoxy)ethyl]-1H-pyrazole (1.3 g), cesium carbonate (1.0 g), N-methylpyrrolidone (8 mL), cis-2,6-dimethylpiperazine (832 mg) was added followed by stirring at 130° C. overnight. To the reaction mixture, water was added, and the resulting solid was collected by filtration. The solid was washed with water and dried under reduced pressure to give (3R,5S)-3,5-dimethyl-1-{4-nitro-2-[2-(1H-pyrazol-1-yl)ethoxy]phenyl}piperazine (1.15 g).

Preparation Example 38

[0297] A mixture of 2-chloro-5-[(3,5-dimethoxybenzyl)oxy]pyridine (500 mg) and acetonitrile (10 mL) was ice cooled, and sulfonyl chloride (297 μ L) was added thereto followed by stirring at room temperature for three days. After the reaction mixture was concentrated under reduced pressure, a saturated aqueous sodium hydrogen carbonate solution was added to the residue obtained. The resulting solid was collected by filtration, washed with water, and then dried under reduced pressure to give 2-chloro-5-[(2,6-dichloro-3,5-dimethoxybenzyl)oxy]pyridine (596 mg).

Preparation Example 39

[0298] To a mixture of 5-[(2,6-difluoro-3,5-dimethoxybenzyl)oxy]-N-[1-(tetrahydro-2H-pyran-2-yl)-1H-pyrazol-4-yl]pyrimidin-2-amine (3.6 g) and metanol (20 mL), a 4M hydrogen chloride/dioxane solution (40 mL) was added followed by stirring at room temperature for 6 hours. After the reaction mixture was concentrated under reduced pressure, a saturated aqueous sodium hydrogen carbonate solution was added to the residue obtained. The resulting solid was collected by filtration, washed with diethyl ether, and then dried under reduced pressure to give 5-[(2,6-difluoro-3,5-dimethoxybenzyl)oxy]-N-(1H-pyrazol-4-yl)pyrimidin-2-amine (2.9 g).

Preparation Example 40

[0299] To a mixture of 5-[(2,6-difluoro-3,5-dimethoxybenzyl)oxy]-N-(1H-pyrazol-4-yl)pyrimidin-2-amine (4.0 g), potassium carbonate (4.6 g), and N,N-dimethylformamide (80 mL), ethyl bromoacetate (2.4 mL) was added followed by stirring at 80° C. for 3 hours. To the reaction mixture, water was added followed by extraction with ethyl acetate. An organic layer obtained was washed with saturated brine, dried over anhydrous sodium sulfate, and then filtered. After the filtrate was concentrated under reduced pressure, the resulting residue was purified by silica gel column chromatography (ethyl acetate/hexane) to give ethyl [4-({5-[(2,6-difluoro-3,5-dimethoxybenzyl)oxy]pyrimidin-2-yl}amino)-1H-pyrazol-1-yl]acetate (4.2 g).

Preparation Example 41

[0300] To a mixture of 5-[(2,6-difluoro-3,5-dimethoxybenzyl)oxy]-N-(1H-pyrazol-4-yl)pyrimidin-2-amine (50 mg), potassium carbonate (57 mg), and N,N-dimethylformamide (1 mL), [(4R)-2,2-dimethyl-1,3-dioxolan-4-yl]methyl 4-methylbenzenesulfonate (98 μ L) was added followed by stirring at 60° C. for 1 hour and stirring at 110° C. for 4 days. To the reaction mixture, water was added followed by extraction with ethyl acetate. An organic layer obtained was washed with saturated brine, dried over anhy-

drous sodium sulfate, and then filtered. After the filtrate was concentrated under reduced pressure, the resulting residue was purified by silica gel column chromatography (ethyl acetate/hexane) to give 5-[(2,6-difluoro-3,5-dimethoxybenzyl)oxy]-N-(1-{[(4S)-2,2-dimethyl-1,3-dioxolan-4-yl]methyl}-1H-pyrazol-4-yl)pyrimidin-2-amine (45 mg).

Preparation Example 111

[0301] To a mixture of 4-nitro-1H-pyrazole (500 mg), tert-butyl (3-endo)-3-[(methylsulfonyl)oxy]-8-azabicyclo[3,2,1]octane-8-carboxylate (1.35 g) and N-methylpyrrolidone (6 mL), cesium carbonate (2.16 g) was added followed by stirring at 100° C. for 6 hours. To the reaction mixture, water was added, and the resulting solid was collected by filtration, washed with water, and then dried under reduced pressure to give tert-butyl (3-exo)-3-(4-nitro-1H-pyrazol-1-yl)-8-azabicyclo[3,2,1]octane-8-carboxylate (1.07 g).

Preparation Example 118

[0302] A mixture of 4-nitro-1H-pyrazole (3 g), quinuclidin-3-ol (4.05 g), triphenylphosphine (9.05 g), and tetrahydrofuran (60 mL) was ice cooled, and diisopropyl azodicarboxylate (6.84 mL) was added thereto followed by stirring at room temperature overnight. After the reaction mixture was concentrated under reduced pressure, 1M hydrochloric acid (50 mL) was added to the resulting residue. The aqueous layer obtained was washed with ethyl acetate, and then a 1M aqueous sodium hydroxide solution (60 mL) was added for basification. After extraction with chloroform, an organic layer obtained was dried over anhydrous sodium sulfate and then filtered. The filtrate was concentrated under reduced pressure and then the resulting residue was purified by basic silica gel column chromatography (ethyl acetate) to give 3-(4-nitro-1H-pyrazol-1-yl)quinuclidine (5.15 g).

Preparation Example 133

[0303] A mixture of tert-butyl (4-amino-2-methoxyphenyl)[2-(4-methylpiperazin-1-yl)ethyl]carbamate (1.21 g) and tetrahydrofuran (24 mL) was ice cooled, and lithium aluminum hydride (629 mg) was added thereto followed by stirring for 1 hour under heating to reflux. To the reaction mixture, water (0.63 mL), a 1M aqueous sodium hydroxide solution (0.63 mL), and water (1.89 mL) in that order were added. After insoluble materials were removed by filtration through celite, the filtrate was extracted with ethyl acetate. An organic layer obtained was washed with saturated brine, dried over anhydrous magnesium sulfate, and then filtered. After the filtrate was concentrated under reduced pressure, the resulting residue was purified by basic silica gel column chromatography (chloroform/methanol) to give 2-methoxy-N¹-methyl-N¹-[2-(4-methylpiperazin-1-yl)ethyl]benzene-1,4-diamine (922 mg).

Preparation Example 138

[0304] To a mixture of 2-chloro-5-nitropyrimidine (798 mg), potassium carbonate (1.04 g), and N,N-dimethylformamide (16 mL), 1-methyl-4-(piperidin-4-yl)piperazine (1.1 g) was added followed by stirring at room temperature for 3 hours. To the reaction mixture, water was added followed by extraction with ethyl acetate. An organic layer obtained was washed with saturated brine, dried over anhydrous magnesium sulfate, and then filtered. After the filtrate was concentrated under reduced pressure, the resulting resi-

due was purified by silica gel column chromatography (chloroform/methanol) to give 2-[4-(4-methylpiperazin-1-yl)piperidin-1-yl]-5-nitropyrimidine (542 mg).

Preparation Example 143

[0305] To a mixture of tert-butyl 4-(2-amino-1,3-thiazol-5-yl)piperidine-1-carboxylate (1.13 g) and ethyl acetate (8 mL), 4M hydrogen chloride/ethyl acetate solution (8 mL) was added followed by stirring at room temperature for 3 hours. The solvent was concentrated under reduced pressure to give 5-(piperidin-4-yl)-1,3-thiazol-2-amine hydrochloride (877 mg).

Preparation Example 144

[0306] To a mixture of 5-(piperidin-4-yl)-1,3-thiazol-2-amine hydrochloride (519 mg), dichloromethane (5 mL), and methanol (5 mL), 1H-benzotriazol-1-ylmethanol (423 mg), sodium acetate (388 mg), and sodium triacetoxy borohydride (1.0 g) in that order were added followed by stirring at room temperature for 2 hours. To the reaction mixture, a saturated aqueous sodium hydrogen carbonate solution and basic silica gel were added followed by concentration of the solvent under reduced pressure. The resulting residue was purified by basic silica gel column chromatography (chloroform/methanol) to give 5-(1-methylpiperidin-4-yl)-1,3-thiazol-2-amine (411 mg).

Preparation Example 145

[0307] A mixture of 5-nitropyridin-2(1H)-one (700 mg), (R)-2,2-dimethyl-1,3-dioxolane-4-methanol (661 mg), triphenylphosphine (1.97 g), and tetrahydrofuran (20 mL) was ice cooled, diisopropyl azodicarboxylate (1.49 mL) was added followed by stirring at room temperature for 5 hours. To the reaction mixture, water was added followed by extraction with ethyl acetate. An organic layer obtained was washed with saturated brine, dried over anhydrous sodium sulfate, and then filtered. After the filtrate was concentrated under reduced pressure, the resulting residue was purified by silica gel column chromatography (hexane/ethyl acetate) to give (R)-2-[(2,2-dimethyl-1,3-dioxolan-4-yl)methoxy]-5-nitropyridine (541 mg).

Preparation Example 152

[0308] To a mixture of (S)-2,2-dimethyl-1,3-dioxolane-4-methanol (661 mg) and N,N-dimethylformamide (23 mL), sodium hydride (218 mg) was added followed by stirring at room temperature for 10 minutes. To the reaction mixture, 2-chloro-5-nitropyridine (793 mg) was added followed by stirring at room temperature for 2 hours. After water was added to the reaction mixture, extraction with ethyl acetate was performed. An organic layer obtained was washed with saturated brine, dried over anhydrous sodium sulfate, and then filtered. After the filtrate was concentrated under reduced pressure, the resulting residue was purified by silica gel column chromatography (hexane/ethyl acetate) to give (S)-2-[(2,2-dimethyl-1,3-dioxolan-4-yl)methoxy]-5-nitropyridine (810 mg).

Preparation Example 162

[0309] To a mixture of 2-[4-(5-[(2,6-difluoro-3,5-dimethoxybenzyl)oxy]pyrimidin-2-yl]amino)-1H-pyrazol-1-yl]ethyl methanesulfonate (320 mg) and N-methylpyrrolidone

(6 mL), tert-butyl piperazine-1-carboxylate (1.31 g) was added followed by stirring at 80° C. overnight and additional stirring at 120° C. overnight. To the reaction mixture, water and a saturated aqueous sodium hydrogen carbonate solution were added followed by extraction with ethyl acetate. An organic layer obtained was washed with saturated brine, dried over anhydrous magnesium sulfate, and then filtered. After the filtrate was concentrated under reduced pressure, the resulting residue was purified by silica gel column chromatography (chloroform/methanol) and then solidified with ethyl acetate/diisopropyl ether to give tert-butyl 4-[2-[4-(5-[(2,6-difluoro-3,5-dimethoxybenzyl)oxy]pyrimidin-2-yl]amino)-1H-pyrazol-1-yl]piperazine-1-carboxylate (202 mg).

Preparation Example 175

[0310] A mixture of 5-methyl-1H-pyrazol-3-amine (522 mg) and N,N-dimethylformamide (10 mL) was ice cooled, and sodium hydride (473 mg) was added thereto followed by stirring for 30 minutes. To the reaction mixture, 2-(2-bromoethoxy)tetrahydro-2H-pyran (893 μ L) was added followed by stirring at room temperature for 12 hours. After saturated aqueous ammonium chloride solution was added to the reaction mixture, extraction with ethyl acetate was performed. An organic layer obtained was washed with saturated brine, dried over anhydrous sodium sulfate, and then filtered. After the filtrate was concentrated under reduced pressure, the resulting residue was purified by silica gel column chromatography (hexane/ethyl acetate) to give 5-methyl-1-[2-(tetrahydro-2H-pyran-2-yloxy)ethyl]-1H-pyrazol-3-amine (427 mg: Preparation Example 175-1) and 3-methyl-1-[2-(tetrahydro-2H-pyran-2-yloxy)ethyl]-1H-pyrazol-5-amine (199 mg: Preparation Example 175-2).

Preparation Example 176

[0311] To a mixture of 5-[2-(benzyloxy)ethyl]-3-(2,5-dimethyl-1H-pyrrol-1-yl)-1-methyl-1H-pyrazole (640 mg) and ethanol (9.7 mL), hydroxylamine (1.37 mL) and p-toluenesulfonic acid monohydrate (1.95 g) in that order were added followed by stirring at 95° C. overnight. The reaction mixture was concentrated under reduced pressure, and then water was added to the resulting residue followed by extraction with chloroform. An organic layer obtained was washed with saturated brine, dried over anhydrous magnesium sulfate, and then filtered. After the filtrate was concentrated under reduced pressure, the resulting residue was purified by silica gel column chromatography (chloroform/methanol) to give 5-[2-(benzyloxy)ethyl]-1-methyl-1H-pyrazol-3-amine (470 mg).

Preparation Example 183

[0312] To a mixture of (1-methyl-3-nitro-1H-pyrazol-5-yl)methanol (398 mg), 3,4-dihydro-2H-pyran (459 μ L), and ethyl acetate (8 mL), p-toluenesulfonic acid monohydrate (96 mg) was added followed by stirring at room temperature for 1.5 hours. Additional 3,4-dihydro-2H-pyran (459 μ L) and p-toluenesulfonic acid monohydrate (96 mg) were added thereto followed by stirring at room temperature for 1.5 hours. After water was added to the reaction mixture, extraction with ethyl acetate was performed. An organic layer obtained was washed with saturated brine, dried over anhydrous sodium sulfate, and then filtered. After the filtrate was concentrated under reduced pressure, the resulting resi-

due was purified by silica gel column chromatography (hexane/ethyl acetate) to give 1-methyl-3-nitro-5-[(tetrahydro-2H-pyran-2-yl)oxy]methyl]-1H-pyrazole (487 mg).

Preparation Example 186

[0313] A mixture of 4-nitro-1H-pyrazole (300 mg), 2-phenyl-1,3-dioxan-5-ol (717 mg), triphenylphosphine (1.11 g) and tetrahydrofuran (4.5 mL) was ice cooled, and then diisopropyl azodicarboxylate (842 μ L) was added thereto followed by stirring at room temperature for 12 hours. After the reaction mixture was concentrated under reduced pressure, the resulting residue was purified by silica gel chromatography (ethyl acetate/hexane) to give 4-nitro-1-(2-phenyl-1,3-dioxan-5-yl)-1H-pyrazole (121 mg).

Preparation Example 189

[0314] To a mixture of 5-nitropyridine-2-carbaldehyde (761 mg), 2-(piperazin-1-yl)ethanol (1.23 mL), acetic acid (570 μ L), and dichloromethane (20 mL), sodium triacetoxy borohydride (2.23 g) was added followed by stirring at room temperature for 16 hours. To the reaction mixture, a saturated aqueous sodium hydrogen carbonate solution was added followed by extraction with chloroform/2-propanol. An organic layer obtained was washed with saturated brine, dried over anhydrous sodium sulfate, and then filtered. After the filtrate was concentrated under reduced pressure, the resulting residue was purified by silica gel column chromatography (chloroform/methanol) to give 2-{4-[(5-nitropyridin-2-yl)methyl]piperazin-1-yl}ethanol (726 mg).

Preparation Example 191

[0315] To a mixture of methyl 5-[(2,6-difluoro-3,5-dimethoxybenzyl)oxy]pyrimidin-2-yl]amino)-1-(tetrahydro-2H-pyran-2-yl)-1H-pyrazole-3-carboxylate (871 mg), ethanol (8.7 mL), and tetrahydrofuran (8.7 mL), a 1M aqueous sodium hydroxide solution (3.45 mL) was added followed by stirring at 60° C. for 2 hours. To the reaction mixture, 1M hydrochloric acid was added, and the resulting solid was collected by filtration, washed with water, and then dried under reduced pressure to give 5-[(2,6-difluoro-3,5-dimethoxybenzyl)oxy]pyrimidin-2-yl]amino)-1-(tetrahydro-2H-pyran-2-yl)-1H-pyrazole-3-carboxylic acid (846 mg).

Preparation Example 193

[0316] A mixture of 5-[(2,6-difluoro-3,5-dimethoxybenzyl)oxy]pyrimidin-2-yl]amino)-1-(tetrahydro-2H-pyran-2-yl)-1H-pyrazole-3-carboxylic acid (300 mg) and dioxane (8.5 mL) was ice cooled, and 1,1'-carbonyldimidazole (99 mg) was added thereto followed by stirring at room temperature for 2 hours and stirring at 60° C. for 2 hours. Additional 1,1'-carbonyldimidazole (99 mg) was added thereto followed by stirring at 60° C. for 2 hours. Further, 1,1'-carbonyldimidazole (297 mg) was added thereto followed by stirring at room temperature for 1 hour. The reaction mixture was ice cooled and sodium borohydride (230 mg) was added thereto followed by stirring at room temperature for 12 hours. Water was added to the reaction mixture and extraction with ethyl acetate was performed. An organic layer obtained was washed with saturated brine, dried over anhydrous sodium sulfate, and then filtered. After the filtrate was concentrated under reduced pressure, the resulting residue was purified by silica

gel column chromatography (hexane/ethyl acetate) to give [5-[(2,6-difluoro-3,5-dimethoxybenzyl)oxy]pyrimidin-2-yl]amino)-1-(tetrahydro-2H-pyran-2-yl)-1H-pyrazole-3-yl]methanol (126 mg).

Preparation Example 201

[0317] To a mixture of 1-methyl-3-nitro-1H-pyrazole-5-carbaldehyde (850 mg) and tetrahydrofuran (50 mL), methyl (triphenylphosphoranylidene)acetate (3.66 g) was added followed by stirring at 60° C. for 3 hours. After the reaction mixture was concentrated under reduced pressure, water was added to the resulting residue followed by extraction with chloroform. An organic layer obtained was washed with saturated brine, dried over anhydrous magnesium sulfate, and then filtered. After the filtrate was concentrated under reduced pressure, the residue obtained was washed with chloroform and the resulting solid was collected by filtration. The filtrate was concentrated under reduced pressure, and the resulting residue was purified by silica gel column chromatography (chloroform/methanol) and then combined with the solid obtained earlier to give methyl (E)-3-(1-methyl-3-nitro-1H-pyrazol-5-yl)acrylate (1.15 g).

Preparation Example 202

[0318] Under an argon atmosphere, to a mixture of methyl (E)-3-(1-methyl-3-nitro-1H-pyrazol-5-yl)acrylate (1.15 g) and ethanol (50 mL) was added 10% palladium-carbon (580 mg). After stirring under a hydrogen atmosphere in 1 atm for 12 hours and in 2.7 atm for 4 hours, insoluble materials were removed by filtration through celite. The resulting filtrate was concentrated under reduced pressure to give methyl 3-(3-amino-1-methyl-1H-pyrazol-5-yl)propanoate (955 mg).

Preparation Example 204

[0319] To a mixture of 2-[(tert-butoxycarbonyl)amino]-1,3-thiazole-5-carboxylic acid (500 mg), N-[3-(diethylamino)propyl]-N'-ethylcarbodiimide hydrochloride (589 mg), 1H-benzotriazol-1-ol (415 mg), and N,N-dimethylformamide (10 mL), 1-methylpiperazine (451 μ L) was added followed by stirring at room temperature for 3 days. To the reaction mixture, water was added followed by extraction with ethyl acetate. An organic layer obtained was washed with saturated brine, dried over anhydrous sodium sulfate, and then filtered. After the filtrate was concentrated under reduced pressure, the resulting residue was purified by silica gel column chromatography (chloroform/methanol) to give tert-butyl {5-[(4-methylpiperazin-1-yl)carbonyl]-1,3-thiazol-2-yl}carbamate (560 mg).

Preparation Example 205

[0320] A mixture of 4-aminopyridin-2(1H)-one (400 mg) and N-methylpyrrolidone (15 mL) was ice cooled, and sodium hydride (218 mg) was added thereto followed by stirring at room temperature for 30 minutes. To the reaction mixture, (S)-2,2-dimethyl-1,3-dioxolan-4-ylmethyl p-toluenesulfonate (1.14 g) and sodium iodide (109 mg) in that order were added followed by stirring at room temperature for 4 hours. After sodium hydride (218 mg) was added to the reaction mixture followed by stirring at 80° C. overnight. To the reaction mixture, a saturated aqueous ammonium chloride solution was added, and then the resulting mixture was saturated with sodium chloride, and extraction with metha-

nol/chloroform was performed. An organic layer obtained was dried over anhydrous sodium sulfate and then filtered. The filtrate was concentrated under reduced pressure, and the resulting residue was purified by basic silica gel column chromatography (ethyl acetate/methanol) to give (R)-4-amino-1-[(2,2-dimethyl-1,3-dioxolan-4-yl)methyl]pyridin-2(1H)-one (136 mg).

Preparation Example 209

[0321] A mixture of [5-({5-[(2,6-difluoro-3,5-dimethoxybenzyl)oxy]pyrimidin-2-yl}amino)-1-(tetrahydro-2H-pyran-2-yl)-1H-pyrazol-3-yl]methanol (126 mg), triethylamine (147 μ L), dichloromethane (6 mL), and tetrahydrofuran (6 mL) was ice cooled, and then methanesulfonyl chloride (82 μ L) was added thereto followed by stirring at room temperature for 3 hours. To the reaction mixture, N,N-dimethylformamide (6 mL) was added followed by stirring at room temperature for 12 hours. Water was added to the reaction mixture and extraction with chloroform was performed. An organic layer obtained was washed with saturated brine, dried over anhydrous sodium sulfate, and then filtered. The filtrate was concentrated under reduced pressure to give N-[3-(chloromethyl)-1H-pyrazol-5-yl]-5-[(2,6-difluoro-3,5-dimethoxybenzyl)oxy]pyrimidin-2-amine (109 mg).

Preparation Example 210

[0322] To a mixture of tert-butyl {5-[(4-methylpiperazin-1-yl)carbonyl]-1,3-thiazol-2-yl}carbamate (560 mg) and ethyl acetate (8 mL) was added 4M hydrogen chloride/ethyl acetate solution (8 mL) followed by stirring at room temperature for 3 hours. After the reaction mixture was concentrated under reduced pressure, the resulted residue was purified by basic silica gel chromatography (methanol/chloroform) to give (2-amino-1,3-thiazol-5-yl)(4-methylpiperazin-1-yl)methanone (357 mg).

Preparation Example 211

[0323] To a mixture of (5-nitro-1H-pyrazol-3-yl)methanol (1.86 g), 3,4-dihydro-2H-pyran (4.7 mL), and acetonitrile (28 mL), trifluoroacetic acid (40 μ L) was added followed by stirring at 70° C. for 3 hours. To the reaction mixture, a saturated aqueous sodium hydrogen carbonate solution was added followed by extraction with ethyl acetate. An organic layer obtained was washed with saturated brine, dried over anhydrous sodium sulfate, and then filtered. After the filtrate was concentrated under reduced pressure, the resulting residue was purified by silica gel column chromatography (hexane/ethyl acetate) to give 5-nitro-1-(tetrahydro-2H-pyran-2-yl)-3-[(tetrahydro-2H-pyran-2-yloxy)methyl]-1H-pyrazole (3.98 g).

Preparation Example 214

[0324] A mixture of [5-({5-[(2,6-difluoro-3,5-dimethoxybenzyl)oxy]pyrimidin-2-yl}amino)-1H-pyrazol-3-yl]methanol (200 mg) and 1,2-dichloroethane (12 mL) was ice cooled, and manganese dioxide (442 mg) was added thereto followed by stirring at room temperature for 30 minutes and then stirring at 90° C. for 2 hours. After insoluble materials were removed by filtration, the filtrate was concentrated under reduced pressure to give 5-({5-[(2,6-difluoro-3,5-dimethoxybenzyl)oxy]pyrimidin-2-yl}amino)-1H-pyrazole-3-carbaldehyde (142 mg).

Preparation Example 229

[0325] A mixture of methyl 2-chloro-6-fluoro-3,5-dimethoxybenzoate (682 mg) and tetrahydrofuran (25 mL) was ice cooled, and lithium aluminum hydride (104 mg) was added thereto followed by stirring at room temperature for 3 hours. To the reaction mixture, diethylether was added for dilution under ice cooling, and then a saturated aqueous sodium sulfate solution was added thereto. Insoluble materials were separated by filtration and the filtrate was concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography (hexane/ethyl acetate) to give (2-chloro-6-fluoro-3,5-dimethoxyphenyl)methanol (363 mg).

Preparation Example 232

[0326] To a mixture of 2-bromo-5-nitroanisole (3.15 g), tert-butyl 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-8-azabicyclo[3.2.1]oct-2-ene-8-carboxylate (5.00 g), and dioxane (40 mL), [1,1'-bis(diphenylphosphino)ferrocene] palladium dichloride dichloromethane complex (554 mg) and potassium carbonate (2.81 g) in that order were added under an argon atmosphere followed by stirring at 80° C. for 21 hours. To the reaction mixture, water was added followed by extraction with ethyl acetate. An organic layer obtained was washed with saturated brine, dried over anhydrous sodium sulfate, and then filtered. After the filtrate was concentrated under reduced pressure, the resulting residue was purified by silica gel column chromatography (hexane/ethyl acetate) to give tert-butyl 3-(2-methoxy-4-nitrophenyl)-8-azabicyclo[3.2.1]oct-2-ene-8-carboxylate (2.78 g).

Preparation Example 252

[0327] A mixture of tert-butyl 4,4-bis(acetoxymethyl)-1,4'-bipiperidin-1'-carboxylate (712 mg) and dichloromethane (6 mL) was ice cooled, and then trifluoroacetic acid (3 mL) was added thereto followed by stirring at room temperature for 3 hours. To the reaction mixture, a saturated aqueous sodium hydrogen carbonate solution was added followed by extraction with dichloromethane. An organic layer obtained was washed with brine, dried over anhydrous sodium sulfate, and then filtered. The filtrate was concentrated under reduced pressure to give 1,4'-bipiperidin-4,4-diylbis(methylene) diacetate (529 mg).

Preparation Example 255

[0328] A mixture of tert-butyl 4,4-bis(hydroxymethyl)piperidine-1-carboxylate (1.01 g), triethylamine (861 μ L), and dichloromethane (10 mL) was ice cooled, and acetic anhydride (950 μ L) was added thereto followed by stirring for 2 hours. To the reaction mixture, water was added followed by extraction with dichloromethane. An organic layer obtained was washed with saturated brine, dried over anhydrous sodium sulfate, and then filtered. After the filtrate was concentrated under reduced pressure, the resulting residue was purified by silica gel column chromatography (hexane/ethyl acetate) to give tert-butyl 4,4-bis(acetoxymethyl)piperidine-1-carboxylate (1.38 g).

Preparation Example 295

[0329] After a mixture of 2-[3-(2,5-dimethyl-1H-pyrrol-1-yl)-1-methyl-1H-pyrazol-5-yl]ethanol (630 mg), benzyl bromide (376 μ L), and tetrahydrofuran (8 mL) was ice

cooled, sodium hydride (173 mg) was added thereto followed by stirring at room temperature for 6 hours. To the reaction mixture, water was added followed by extraction with ethyl acetate. An organic layer obtained was washed with saturated brine, dried over anhydrous sodium sulfate, and then filtered. After the filtrate was concentrated under reduced pressure, the resulting residue was purified by silica gel column chromatography (ethyl acetate/hexane) to give 5-[2-(benzyloxy)ethyl]-3-(2,5-dimethyl-1H-pyrrol-1-yl)-1-methyl-1H-pyrazole (640 mg).

Preparation Example 296

[0330] After a mixture of 3-(2,5-dimethyl-1H-pyrrol-1-yl)-1-methyl-1H-pyrazole (2 g) and tetrahydrofuran (60 mL) was cooled to -78° C., n-butyl lithium (1.6M hexane solution, 8.56 mL) was added thereto followed by stirring for 2 hours. To the reaction mixture, oxirane (1.1M tetrahydrofuran solution, 15.6 mL) and borontrifluoride tetrahydrofuran complex (1.51 mL) were added followed by stirring for 30 minutes. After that, the mixture obtained was warmed to room temperature and stirred for 6 hours. To the reaction mixture, a saturated aqueous ammonium chloride solution was added followed by extraction with ethyl acetate. An organic layer obtained was washed with saturated brine, dried over anhydrous sodium sulfate, and then filtered. After the filtrate was concentrated under reduced pressure, the resulting residue was purified by silica gel column chromatography (ethyl acetate/hexane) to give 2-[3-(2,5-dimethyl-1H-pyrrol-1-yl)-1-methyl-1H-pyrazol-5-yl]ethanol (630 mg).

[0331] The compounds shown in Tables 7 to 62 below were prepared in the same manner as in the preparation examples described above. Tables 7 to 62 also show the processes for preparing the compounds of the preparation examples and the structures and physical and chemical data of the compounds.

Example 1

[0332] To a mixture of 5-bromo-N-{3-methoxy-4-[4-(4-methylpiperazin-1-yl)piperidin-1-yl]phenyl}pyrimidin-2-amine (104 mg), 1-ethynyl-3,5-dimethoxybenzene (37 mg), tetrakis(triphenylphosphine) palladium (13 mg), copper iodide (4 mg), and N,N-dimethylformamide (2 mL), triethylamine (157 µL) was added under an argon atmosphere followed by stirring at 120° C. for 30 minutes. Further, a mixture of 1-ethynyl-3,5-dimethoxybenzene (146 mg) and N,N-dimethylformamide (1 mL) was added thereto followed by stirring at 120° C. for 2 hours. The reaction mixture was diluted with ethyl acetate, and insoluble materials were removed by filtration through celite. After the filtrate was concentrated under reduced pressure, the resulting residue was purified by silica gel column chromatography (chloroform/methanol) and subsequently purified by basic silica gel column chromatography (ethyl acetate/methanol), and then solidified with ethyl acetate to give 5-[2-(3,5-dimethoxyphenyl)ethynyl]-N-{3-methoxy-4-[4-(4-methylpiperazin-1-yl)piperidin-1-yl]phenyl}pyrimidin-2-amine (23 mg).

Example 2

[0333] To a mixture of 5-[2-(3,5-dimethoxyphenyl)ethynyl]-N-{3-methoxy-4-[4-(4-methylpiperazin-1-yl)piperidin-1-yl]phenyl}pyrimidin-2-amine (72 mg), methanol (2 mL), and tetrahydrofuran (2 mL), 10% palladium-carbon (25 mg)

was added under an argon atmosphere. After stirring for 4 hours under a hydrogen atmosphere (3 atm), insoluble materials were removed by filtration through celite. After the filtrate was concentrated under reduced pressure, the resulting residue was purified by silica gel column chromatography (chloroform/methanol) and then solidified with diethyl ether to give 5-[2-(3,5-dimethoxyphenyl)ethyl]-N-{3-methoxy-4-[4-(4-methylpiperazin-1-yl)piperidin-1-yl]phenyl}pyrimidin-2-amine (17 mg).

Example 3

[0334] To a mixture of 5-iodo-N-{3-methoxy-4-[4-(4-methylpiperazin-1-yl)piperidin-1-yl]phenyl}pyrimidin-2-amine (100 mg), 2,4-dichloro-3-ethynyl-1,5-dimethoxybenzene (55 mg), tetrakis(triphenylphosphine) palladium (23 mg), copper iodide (2 mg), and N,N-dimethylformamide (2 mL), N,N-diisopropylethylamine (67 µL) was added under an argon atmosphere followed by stirring at 100° C. for 4 hours. The reaction mixture was diluted with ethyl acetate, and insoluble materials were removed by filtration through celite. To the filtrate, a saturated aqueous sodium hydrogen carbonate solution was added followed by extraction with ethyl acetate. An organic layer obtained was washed with brine, dried over anhydrous sodium sulfate, and then filtered. After the filtrate was concentrated under reduced pressure, the resulting residue was purified by silica gel column chromatography (chloroform/methanol) and subsequently purified by basic silica gel column chromatography (ethyl acetate/methanol), and then solidified with ethyl acetate to give 5-[2,6-dichloro-3,5-dimethoxyphenyl]ethynyl]-N-{3-methoxy-4-[4-(4-methylpiperazin-1-yl)piperidin-1-yl]phenyl}pyrimidin-2-amine (56 mg).

Example 4

[0335] To a mixture of 5-[2,6-dichloro-3,5-dimethoxyphenyl]ethynyl]-N-{3-methoxy-4-[4-(4-methylpiperazin-1-yl)piperidin-1-yl]phenyl}pyrimidin-2-amine (92 mg) and ethyl acetate (6 mL), a 4M hydrogen chloride/ethyl acetate solution (1 mL) was added followed by stirring at room temperature for 4 hours. The resulting solid was collected by filtration and dried under reduced pressure to give 5-[2,6-dichloro-3,5-dimethoxyphenyl]ethynyl]-N-{3-methoxy-4-[4-(4-methylpiperazin-1-yl)piperidin-1-yl]phenyl}pyrimidin-2-amine trihydrochloride (101 mg).

Example 5

[0336] A mixture of 5-[2-(3,5-dimethoxyphenyl)ethynyl]-N-{3-methoxy-4-[4-(4-methylpiperazin-1-yl)piperidin-1-yl]phenyl}pyrimidin-2-amine (131 mg) and acetonitrile (1.3 mL) was ice cooled, and then sulfonyl chloride (41 µL) was added thereto followed by stirring at room temperature for 12 hours. After the reaction mixture was concentrated under reduced pressure, the resulting residue was purified by silica gel column chromatography (chloroform/methanol) and then washed with diisopropyl ether to give N-{2-chloro-5-methoxy-4-[4-(4-methylpiperazin-1-yl)piperidin-1-yl]phenyl}-5-[2-(2,6-dichloro-3,5-dimethoxyphenyl)ethyl]pyrimidin-2-amine (29 mg).

Example 6

[0337] Under an argon atmosphere, a mixture of 5-[2,6-difluoro-3,5-dimethoxyphenyl]ethynyl]-N-{3-methoxy-4-[4-(1-methylpiperidin-4-yl)piperazin-1-yl]}

phenyl}pyrimidin-2-amine (164 mg), 4-methylbenzenesulfonyl hydrazide (2.63 g), and 1,2-dimethoxyethane (3 mL) was stirred at 110° C., and a mixture of sodium acetate (1.16 g) and water (1 mL) was added thereto. After 2 hours, 4-methylbenzenesulfonyl hydrazide (1.32 g) was added thereto, and then an additional mixture of sodium acetate (581 mg) and water (1 mL) was added thereto followed by stirring at 110° C. for 2 hours. To the reaction mixture, a saturated aqueous sodium hydrogen carbonate solution was added followed by extraction with chloroform. An organic layer obtained was dried over anhydrous magnesium sulfate and then filtered. The filtrate was concentrated under reduced pressure, and the resulting residue was purified by basic silica gel column chromatography (ethyl acetate/methanol/conc. aqueous ammonia solution) and then solidified with ethyl acetate/diisopropyl ether to give 5-[2-(2,6-difluoro-3,5-dimethoxyphenyl)ethyl]-N-[3-methoxy-4-[4-(1-methylpiperidin-4-yl)piperazin-1-yl]phenyl}pyrimidin-2-amine (114 mg).

Example 7

[0338] A mixture of 5-[(2,6-difluoro-3,5-dimethoxyphenyl)ethynyl]-N-[3-methoxy-4-(4-methylpiperazin-1-yl)phenyl]pyrimidin-2-amine (100 mg), tetrahydrofuran (5 mL), and methanol (5 mL) was reacted using H-Cube (trademark) (10% palladium-carbon, 0.5 mL/min, 50° C., 1 atm). The reaction mixture was concentrated under reduced pressure, and the resulting residue was purified by silica gel column chromatography (chloroform/methanol) and then solidified with ethyl acetate/diisopropyl ether to give 5-[2-(2,6-difluoro-3,5-dimethoxyphenyl)ethyl]-N-[3-methoxy-4-(4-methylpiperazin-1-yl)phenyl]pyrimidin-2-amine (29 mg).

Example 8

[0339] To a mixture of ethyl [4-(5-[(2,6-difluoro-3,5-dimethoxybenzyl)oxy]pyrimidin-2-yl]amino)-1H-pyrazol-1-yl]acetate (292 mg), tetrahydrofuran (6 mL), and ethanol (6 mL), a 1M aqueous sodium hydroxide solution (1.3 mL) was added at room temperature followed by stirring for 5 hours. The reaction mixture was neutralized with 1M hydrochloric acid and the resulting solid was collected by filtration. The solid was washed with water and dried under reduced pressure to give [4-(5-[(2,6-difluoro-3,5-dimethoxybenzyl)oxy]pyrimidin-2-yl]amino)-1H-pyrazol-1-yl]acetic acid (267 mg).

Example 9

[0340] To a mixture of 2-chloro-5-[2-(2,6-difluoro-3,5-dimethoxyphenyl)ethyl]pyrimidine (56 mg), 1-(1-methylpiperidin-4-yl)-1H-pyrazol-4-amine (48 mg), 1,1'-binaphthalene-2,2'-diylbis(diphenylphosphine) (33 mg), cesium carbonate (174 mg), and dioxane (2.2 mL), palladium acetate (8 mg) was added at room temperature under an argon atmosphere followed by stirring at 100° C. for 4 hours. To the reaction mixture, water was added followed by extraction with ethyl acetate. An organic layer obtained was washed with saturated brine, dried over anhydrous sodium sulfate, and then filtered. After the filtrate was concentrated under reduced pressure, the resulting residue was purified by silica gel column chromatography (chloroform/methanol) and then solidified with ethyl acetate/diisopropyl ether to give 5-[2-(2,6-dichloro-3,5-dimethoxybenzyl)oxy]-N-[2-methoxy-4-(piperidin-4-yl)phenyl]pyrimidin-2-amine (23 mg).

give 5-[2-(2,6-difluoro-3,5-dimethoxyphenyl)ethyl]-N-[1-(1-methylpiperidin-4-yl)-1H-pyrazol-4-yl]pyrimidin-2-amine (43 mg).

Example 10

[0341] To a mixture of 1-(bromomethyl)-2,6-difluorobenzene (14 mg), 2-chloro-5-hydroxypyrimidine (9.1 mg), and N,N-dimethylformamide (1 mL), potassium carbonate (16 mg) was added followed by stirring at room temperature overnight. To the reaction mixture, water was added followed by extraction with chloroform. An organic layer obtained was concentrated under reduced pressure. To the resulting residue, a mixture of 3-methoxy-4-[4-(4-methylpiperazin-1-yl)piperidin-1-yl]aniline (30 mg), cesium carbonate (65 mg), palladium acetate-X-Phos (Pd:P=1:2) ChemDose (trademark) tablet, and tert-butyl alcohol (0.5 mL) was added followed by stirring at 120° C. overnight under a nitrogen atmosphere. To the reaction mixture, water was added followed by extraction with chloroform. An organic layer obtained was concentrated under reduced pressure. The resulting residue was purified by HPLC (0.1% aqueous formic acid solution/methanol) to give 5-[2,6-difluorobenzyl)oxy]-N-[3-methoxy-4-[4-(4-methylpiperazin-1-yl)piperidin-1-yl]phenyl]pyrimidin-2-amine (17 mg).

Example 11

[0342] To a mixture of 5-[(2,6-difluoro-3,5-dimethoxybenzyl)oxy]-N-[1-[(4S)-2,2-dimethyl-1,3-dioxolan-4-yl]methyl]-1H-pyrazol-4-yl]pyrimidin-2-amine (45 mg) and tetrahydrofuran (2 mL), 1M hydrochloric acid (1 mL) was added followed by stirring at 50° C. for 3 hours. To the reaction mixture, a saturated aqueous sodium hydrogen carbonate solution was added followed by extraction with chloroform. An organic layer obtained was washed with saturated brine, dried over anhydrous sodium sulfate, and then filtered. The filtrate was concentrated under reduced pressure, and the resulting residue was purified by silica gel column chromatography (chloroform/methanol) and then solidified with ethyl acetate to give (2S)-3-[4-(5-[(2,6-difluoro-3,5-dimethoxybenzyl)oxy]pyrimidin-2-yl]amino)-1H-pyrazol-1-yl]propane-1,2-diol (27 mg).

Example 12

[0343] A mixture of tert-butyl 4-[4-(5-[(2,6-dichloro-3,5-dimethoxybenzyl)oxy]pyrimidin-2-yl]amino)-3-methoxyphenyl]piperidin-1-carboxylate (298 mg) and chloroform (6 mL) was ice cooled, and trifluoroacetic acid (1 mL) was added thereto followed by stirring at room temperature for 4 hours. After the reaction mixture was ice cooled, a 1M aqueous sodium hydroxide solution (10 mL) and a saturated aqueous sodium hydrogen carbonate solution were added thereto for basification followed by extraction with chloroform. An organic layer obtained was washed with saturated brine, dried over anhydrous magnesium sulfate, and then filtered. The filtrate was concentrated under reduced pressure to give a crude product (273 mg). Further, the crude product (60 mg) was purified by silica gel chromatography (chloroform/methanol/conc. aqueous ammonia solution), and then solidified with ethyl acetate/diisopropyl ether to give 5-[2-(2,6-dichloro-3,5-dimethoxybenzyl)oxy]-N-[2-methoxy-4-(piperidin-4-yl)phenyl]pyrimidin-2-amine (23 mg).

Example 13

[0344] To a mixture of 5-[(2,6-dichloro-3,5-dimethoxybenzyl)oxy]-N-[2-methoxy-4-(piperidin-4-yl)phenyl]pyrimidin-2-amine (63 mg), dichloromethane (2 mL), and methanol (1 mL), 1H-benzotriazol-1-ylmethanol (20 mg) was added followed by stirring at room temperature for 1 hour. Subsequently, sodium triacetoxy borohydride (51 mg) was added thereto followed by stirring at room temperature for 2 hours. To the reaction mixture, a saturated aqueous sodium hydrogen carbonate solution was added and extraction with chloroform was performed. An organic layer obtained was washed with saturated brine, dried over anhydrous magnesium sulfate, and then filtered. The filtrate was concentrated under reduced pressure, and the resulting residue was purified by silica gel column chromatography (chloroform/methanol/conc. aqueous ammonia solution) and then solidified with ethyl acetate/diisopropyl ether to give 5-[(2,6-dichloro-3,5-dimethoxybenzyl)oxy]-N-[2-methoxy-4-(1-methylpiperidin-4-yl)phenyl]pyrimidin-2-amine (28 mg).

Example 14

[0345] To a mixture of 5-[(2,6-dichloro-3,5-dimethoxybenzyl)oxy]-N-[1-(piperidin-4-yl)-1H-pyrazol-4-yl]pyrimidin-2-amine (200 mg), ethanol (3 mL), and N,N-dimethylformamide (3 mL), 2,2-dimethyloxirane (112 μ L) was added followed by stirring at room temperature overnight. To the reaction mixture, a saturated aqueous sodium hydrogen carbonate solution was added followed by extraction with ethyl acetate. An organic layer obtained was washed with saturated brine, dried over anhydrous sodium sulfate, and then filtered. The filtrate was concentrated under reduced pressure, and the resulting residue was purified by basic silica gel column chromatography (ethyl acetate) and then solidified with ethyl acetate to give 1-[4-[4-({5-[(2,6-dichloro-3,5-dimethoxybenzyl)oxy]pyrimidin-2-yl}amino)-1H-pyrazol-1-yl]piperidin-1-yl]-2-methylpropan-2-ol (93 mg).

Example 15

[0346] A mixture of 5-[(2,6-dichloro-3,5-dimethoxybenzyl)oxy]-N-[1-(piperidin-4-yl)-1H-pyrazol-4-yl]pyrimidin-2-amine (150 mg), triethylamine (131 μ L), and dichloromethane (4 mL) was ice cooled, and cyclopropanecarbonyl chloride (29 μ L) was added thereto followed by stirring at room temperature overnight. To the reaction mixture, a saturated aqueous sodium hydrogen carbonate solution was added followed by extraction with chloroform. An organic layer obtained was washed with saturated brine, dried over anhydrous sodium sulfate, and then filtered. The filtrate was concentrated under reduced pressure, and the resulting residue was solidified with ethyl acetate to give cyclopropyl {4-[4-({5-[(2,6-dichloro-3,5-dimethoxybenzyl)oxy]pyrimidin-2-yl}amino)-1H-pyrazol-1-yl]piperidin-1-yl}methanone (159 mg).

Example 16

[0347] To a mixture of 5-[(2,6-dichloro-3,5-dimethoxybenzyl)oxy]-N-[1-(piperidin-4-yl)-1H-pyrazol-4-yl]pyrimidin-2-amine (150 mg), potassium carbonate (130 mg), and N,N-dimethylformamide (4 mL), 2-bromoethyl methyl ether (32 μ L) was added followed by stirring at room temperature

overnight and stirring at 60° C. for 3 hours. Additional 2-bromoethyl methyl ether (12 μ L) was added thereto followed by stirring at 60° C. for 4 hours. To the reaction mixture, water was added followed by extraction with ethyl acetate. An organic layer obtained was washed with saturated brine, dried over anhydrous sodium sulfate, and then filtered. The filtrate was concentrated under reduced pressure, and the resulting residue was purified by basic silica gel column chromatography (ethyl acetate/hexane) and then solidified with ethyl acetate to give 5-[(2,6-dichloro-3,5-dimethoxybenzyl)oxy]-N-[1-[1-(2-methoxyethyl)piperidin-4-yl]-1H-pyrazol-4-yl]pyrimidin-2-amine (41 mg).

Example 17

[0348] To a mixture of ethyl 1-methyl-5-({5-[(2,3,5,6-tetrafluorobenzyl)oxy]pyrimidin-2-yl}amino)-1H-pyrazol-3-carboxylate (663 mg), ethanol (6.6 mL), and tetrahydrofuran (6.6 mL), a 1M aqueous sodium hydroxide solution (3.2 mL) was added followed by stirring at room temperature for 4 hours. To the reaction mixture, 1M hydrochloric acid (3.2 mL) was added, and the resulting solid was collected by filtration, washed with water, and dried under reduced pressure to give 1-methyl-5-({5-[(2,3,5,6-tetrafluorobenzyl)oxy]pyrimidin-2-yl}amino)-1H-pyrazol-3-carboxylic acid (464 mg).

Example 18

[0349] To a mixture of 1-methyl-5-({5-[(2,3,5,6-tetrafluorobenzyl)oxy]pyrimidin-2-yl}amino)-1H-pyrazol-3-carboxylic acid (100 mg), 1-methylpiperazine (83 μ L), 1H-benzotriazol-1-ol (68 mg), and N,N-dimethylformamide (2 mL), N-[3-(diethylamino)propyl]-N'-ethylcarbodiimide hydrochloride (97 mg) was added followed by stirring at room temperature overnight. To the reaction mixture, a saturated aqueous sodium hydrogen carbonate solution was added followed by extraction with ethyl acetate. An organic layer obtained was washed with saturated brine, dried over anhydrous magnesium sulfate, and then filtered. The filtrate was concentrated under reduced pressure and the resulting residue was purified by silica gel column chromatography (chloroform/methanol/conc. aqueous ammonia solution) to give (4-methylpiperazin-1-yl)[1-methyl-5-({5-[(2,3,5,6-tetrafluorobenzyl)oxy]pyrimidin-2-yl}amino)-1H-pyrazol-3-yl]methanone (79 mg).

Example 19

[0350] A mixture of tert-butyl 4-[4-({5-[(2,3,5,6-tetrafluorobenzyl)oxy]pyrimidin-2-yl}amino)-2-methoxyphenyl]-3,9-diazaspiro[5.5]undec-3-carboxylate (232 mg) and dichloromethane (3 mL) was ice cooled, and trifluoroacetic acid (0.5 mL) was added thereto followed by stirring at room temperature for 1 hour. After the reaction mixture was concentrated under reduced pressure, ethyl acetate and a saturated aqueous sodium hydrogen carbonate solution were added to the resulting residue. The resulting solid was collected by filtration, washed with ethyl acetate, and then dried under reduced pressure to give N-[4-(3,9-diazaspiro[5.5]undec-3-yl)-3-methoxyphenyl]-5-[(2,3,5,6-tetrafluorobenzyl)oxy]pyrimidin-2-amine (167 mg).

Example 20

[0351] To a mixture of 2-[3-({5-[(2,3,5,6-tetrafluorobenzyl)oxy]pyrimidin-2-yl}amino)-1H-pyrazol-1-yl]ethyl

methanesulfonate (160 mg) and N-methylpyrrolidone (6 mL), 1-methylpiperazine (382 μ L) was added followed by stirring at 80° C. for 2 hours. To the reaction mixture, water and a saturated aqueous sodium hydrogen carbonate solution were added followed by extraction with ethyl acetate. An organic layer obtained was washed with saturated brine, dried over anhydrous sodium sulfate, and then filtered. The filtrate was concentrated under reduced pressure, and the resulting residue was purified by silica gel column chromatography (chloroform/methanol/conc. aqueous ammonia solution) and then solidified with ethyl acetate/diisopropyl ether to give N-[1-[2-(4-methylpiperazin-1-yl)ethyl]-1H-pyrazol-3-yl]-5-[2,3,5,6-tetrafluorobenzyl]oxy]pyrimidin-2-amine (64 mg).

Example 21

[0352] A mixture of N-[3-methoxy-4-(4-methylpiperazin-1-yl)phenyl]-5-[2,3,5,6-tetrafluorobenzyl]oxy]pyrimidin-2-amine (100 mg) and chloroform (4 mL) was ice cooled, and m-chloroperbenzoic acid (43 mg) was added thereto followed by stirring at 4 to 10° C. for 3 hours and stirring at room temperature for 2 hours. To the reaction mixture, an aqueous sodium thiosulfate solution was added, and the resulting mixture was stirred at room temperature for 1 hour followed by extraction with chloroform. An organic layer obtained was washed with saturated brine, dried over anhydrous magnesium sulfate, and then filtered. The filtrate was concentrated under reduced pressure, and the resulting residue was purified by basic silica gel column chromatography (chloroform/methanol) and then solidified with ethyl acetate/diisopropyl ether to give N-[3-methoxy-4-(4-methyl-4-oxidopiperazin-1-yl)phenyl]-5-[2,3,5,6-tetrafluorobenzyl]oxy]pyrimidin-2-amine (16 mg).

Example 22

[0353] To a mixture of 2-chloro-5-[2,6-dichloro-3,5-dimethoxybenzyl]oxy]pyridine (100 mg), 3-methoxy-4-[4-(4-methylpiperazin-1-yl)piperidin-1-yl]aniline (87 mg), 2-(di-cyclohexylphosphino)-2',4',6'-triisopropyl-1,1'-biphenyl (27 mg), sodium tert-butoxide (41 mg), and N-methylpyrrolidone (3 mL), palladium acetate (6.4 mg) was added under an argon atmosphere followed by stirring at 160° C. for 2 hours under microwave irradiation. To the reaction mixture, water was added followed by extraction with ethyl acetate. An organic layer obtained was washed with saturated brine, dried over anhydrous sodium sulfate, and then filtered. The filtrate was concentrated under reduced pressure, and the resulting residue was purified by basic silica gel column chromatography (chloroform/methanol) to give 5-[2,6-dichloro-3,5-dimethoxybenzyl]oxy]-N-[3-methoxy-4-[4-(4-methylpiperazin-1-yl)piperidin-1-yl]phenyl]pyridin-2-amine (27 mg).

Example 23

[0354] A mixture of 5-[2,6-difluoro-3,5-dimethoxybenzyl]oxy]-N-(1H-pyrazol-4-yl)pyrimidin-2-amine (200 mg), cesium carbonate (215 mg), (2S)-2-methoxyxylane (128 mg), and N-methylpyrrolidone (4 mL) was stirred at 130° C. for 30 minutes under microwave irradiation. To the reaction mixture, a saturated aqueous sodium hydrogen carbonate solution was added followed by extraction with ethyl acetate. An organic layer obtained was washed with saturated brine, dried over anhydrous magnesium sulfate, and

then filtered. The filtrate was concentrated under reduced pressure, and the resulting residue was purified by silica gel column chromatography (ethyl acetate/hexane) and then washed with ethyl acetate/diisopropyl ether to give (2S)-1-[4-(5-[2,6-difluoro-3,5-dimethoxybenzyl]oxy)pyrimidin-2-yl]amino)-1H-pyrazol-1-yl]propan-2-ol (171 mg).

Example 24

[0355] To a mixture of [4-(5-[2,6-difluoro-3,5-dimethoxybenzyl]oxy)pyrimidin-2-yl]amino)-1H-pyrazol-1-yl] acetic acid (50 mg), ammonium chloride (25 mg), triethylamine (66 μ L), 1H-benzotriazol-1-ol (32 mg) and N,N-dimethylformamide (1 mL) was added N-[3-(diethylamino)propyl]-N'-ethylcarbodiimide hydrochloride (45 mg) followed by stirring at room temperature for 12 hours. To the reaction mixture, water was added followed by extraction with ethyl acetate. An organic layer obtained was concentrated under reduced pressure, and the resulted residue was solidified with diisopropyl ether to give 2-[4-(5-[2,6-difluoro-3,5-dimethoxybenzyl]oxy)pyrimidin-2-yl]amino)-1H-pyrazol-1-yl]acetamide (48 mg).

Example 64

[0356] To a mixture of 5-[2,6-dichloro-3,5-dimethoxybenzyl]oxy]-N-[2-methoxy-4-(piperidin-4-yl)phenyl]pyrimidin-2-amine (62 mg), acetone (118 μ L), and dichloromethane (3 mL), sodium triacetoxy borohydride (51 mg) was added followed by stirring at room temperature overnight. To the reaction mixture, a saturated aqueous sodium hydrogen carbonate solution was added followed by extraction with chloroform. An organic layer obtained was washed with saturated brine, dried over anhydrous magnesium sulfate, and then filtered. After the filtrate was concentrated under reduced pressure, the resulting residue was purified by silica gel column chromatography (chloroform/methanol/conc. aqueous ammonia solution) and then solidified with ethyl acetate/diisopropyl ether to give 5-[2,6-dichloro-3,5-dimethoxybenzyl]oxy]-N-[4-(1-isopropylpiperidin-4-yl)-2-methoxyphenyl]pyrimidin-2-amine (14 mg).

Example 106

[0357] To a mixture of 5-[2,6-difluoro-3,5-dimethoxybenzyl]oxy]-N-[4-(piperazin-1-yl)-3-[2-(1H-pyrazol-1-yl)ethoxy]phenyl]pyrimidin-2-amine (229 mg), formaldehyde (37% aqueous solution, 164 μ L), acetic acid (231 μ L), and dichloromethane (6 mL), sodium triacetoxy borohydride (257 mg) was added followed by stirring at room temperature overnight. To the reaction mixture, a saturated aqueous sodium hydrogen carbonate solution was added followed by extraction with chloroform. An organic layer obtained was washed with saturated brine, dried over anhydrous sodium sulfate, and then filtered. After the filtrate was concentrated under reduced pressure, the resulting residue was purified by basic silica gel column chromatography (ethyl acetate/methanol) and then solidified with ethyl acetate/diisopropyl ether to give 5-[2,6-difluoro-3,5-dimethoxybenzyl]oxy]-N-[4-(4-methylpiperazin-1-yl)-3-[2-(1H-pyrazol-1-yl)ethoxy]phenyl]pyrimidin-2-amine (72 mg).

Example 120

[0358] To a mixture of 1-[3-(5-[2,3,5,6-tetrafluorobenzyl]oxy)pyrimidin-2-yl]amino)phenyl]piperidin-4-one (209 mg), 1-methylpiperazine (103 μ L), and dichloromethane (4

mL), sodium triacetoxy borohydride (298 mg) was added followed by stirring at room temperature overnight. To the reaction mixture, a saturated aqueous sodium hydrogen carbonate solution was added followed by extraction with chloroform. An organic layer obtained was washed with saturated brine, dried over anhydrous sodium sulfate, and then filtered. After the filtrate was concentrated under reduced pressure, the resulting residue was purified by silica gel column chromatography (chloroform/methanol/conc. aqueous ammonia solution) and then solidified with ethyl acetate/diisopropyl ether to give N-[3-[4-(4-methylpiperazin-1-yl)piperidin-1-yl]phenyl]-5-[(2,3,5,6-tetrafluorobenzyl)oxy]pyrimidin-2-amine (98 mg).

Example 161

[0359] To a mixture of 5-[(2,6-difluoro-3,5-dimethoxybenzyl)oxy]-N-[4-(piperidin-4-yl)phenyl]pyrimidin-2-amine (52 mg), glycolic acid (26 mg), 1H-benzotriazol-1-ol (31 mg), and N,N-dimethylformamide (1 mL), N-[3-(diethylamino)propyl]-N'-ethylcarbodiimide hydrochloride (44 mg) was added followed by stirring at room temperature for 2 days. To the reaction mixture, a saturated aqueous sodium hydrogen carbonate solution was added followed by extraction with ethyl acetate. An organic layer obtained was washed with saturated brine, dried over anhydrous magnesium sulfate, and then filtered. After the filtrate was concentrated under reduced pressure, the resulting residue was purified by silica gel column chromatography (chloroform/methanol) and then solidified with ethyl acetate/diisopropyl ether to give 1-[4-[4-({5-[(2,6-difluoro-3,5-dimethoxybenzyl)oxy]pyrimidin-2-yl}amino)phenyl]piperidin-1-yl]-2-hydroxyethanone (10 mg).

Example 162

[0360] To a mixture of 5-[(2,6-difluoro-3,5-dimethoxybenzyl)oxy]-N-[3-[4-(4-methylpiperazin-1-yl)piperidin-1-yl]phenyl]pyrimidin-2-amine (123 mg) and ethanol (3 mL), fumaric acid (26 mg) was added followed by heating to reflux. To the reaction mixture, water was added followed by stirring at room temperature overnight, and the resulting solid was collected by filtration. The solid was washed with ethanol and then dried under reduced pressure to give 5-[(2,6-difluoro-3,5-dimethoxybenzyl)oxy]-N-[3-[4-(4-methylpiperazin-1-yl)piperidin-1-yl]phenyl]pyrimidin-2-amine hemifumarate (82 mg).

Example 166

[0361] To a mixture of tert-butyl 4-[4-({5-[2-(2,6-difluoro-3,5-dimethoxyphenyl)ethyl]pyrimidin-2-yl}amino)-1H-pyrazol-1-yl]piperidine-1-carboxylate (276 mg) and ethyl acetate (2 mL), a 4M hydrogen chloride/ethyl acetate solution (2 mL) was added followed by stirring at room temperature for 3 hours. After the reaction mixture was concentrated under reduced pressure, a saturated aqueous sodium hydrogen carbonate solution was added to the resulting residue followed by extraction with ethyl acetate. An organic layer obtained was washed with saturated brine, dried over anhydrous sodium sulfate, and then filtered. After the filtrate was concentrated under reduced pressure, the resulting residue was purified by basic silica gel column chromatography (chloroform/methanol) and then solidified with ethyl acetate/diisopropyl ether to give 5-[2-(2,6-difluoro-3,5-dimethoxyphenyl)ethyl]-N-[1-(piperidin-4-yl)-1H-pyrazol-4-yl]pyrimidin-2-amine (119 mg).

Example 190

[0362] To a mixture of tert-butyl {2-[4-({5-[(2,6-difluoro-3,5-dimethoxybenzyl)oxy]pyrimidin-2-yl}amino)-1H-pyrazol-1-yl]ethyl}carbamate (101 mg) and ethyl acetate (2 mL), a 4M hydrogen chloride/ethyl acetate solution (2 mL) was added followed by stirring at room temperature for 3 hours. The resulting solid was collected by filtration and then dried under reduced pressure to give N-[1-(2-aminoethyl)-1H-pyrazol-4-yl]-5-[(2,6-difluoro-3,5-dimethoxybenzyl)oxy]pyrimidin-2-amine trihydrochloride (100 mg).

Example 212

[0363] To a mixture of 5-[(2,6-difluoro-3,5-dimethoxybenzyl)oxy]-N-[1-[3-(tetrahydro-2H-pyran-2-yloxy)propyl]-1H-pyrazol-4-yl]pyrimidin-2-amine (1.6 g), tetrahydrofuran (6.9 mL), and water (3.4 mL), acetic acid (13.8 mL) was added followed by stirring at 70° C. for 2 days. After the reaction mixture was concentrated under reduced pressure, a saturated aqueous sodium hydrogen carbonate solution was added to the resulting residue followed by extraction with chloroform. An organic layer obtained was dried over anhydrous magnesium sulfate and then filtered. The filtrate was concentrated under reduced pressure, and the resulting residue was dissolved in methanol (30 mL). Potassium carbonate (656 mg) was added thereto followed by stirring at 60° C. for 5 hours. To the reaction mixture, water was added and extraction with chloroform was performed. An organic layer obtained was dried over anhydrous magnesium sulfate and then filtered. The filtrate was concentrated under reduced pressure to give 3-[4-({5-[(2,6-difluoro-3,5-dimethoxybenzyl)oxy]pyrimidin-2-yl}amino)-1H-pyrazol-1-yl]propan-1-ol (510 mg).

Example 213

[0364] To a mixture of 5-[(2,6-difluoro-3,5-dimethoxybenzyl)oxy]-N-[6-[(2-phenyl-1,3-dioxan-5-yl)oxy]pyridin-3-yl]pyrimidin-2-amine (335 mg) and acetic acid (10 mL), water (2 mL) was added followed by stirring at 60° C. for 16 hours. After the solvent was concentrated under reduced pressure, a saturated aqueous sodium hydrogen carbonate solution was added to the resulting residue followed by extraction with chloroform. An organic layer obtained was washed with saturated brine, dried over anhydrous sodium sulfate, and then filtered. After the filtrate was concentrated under reduced pressure, the resulting residue was purified by silica gel column chromatography (chloroform/methanol) and then solidified with ethyl acetate to give 2-[(5-[(2,6-difluoro-3,5-dimethoxybenzyl)oxy]pyrimidin-2-yl)amino]pyridin-2-yl]oxy]propane-1,3-diol (92 mg).

Example 214

[0365] To a mixture of 5-[(2,6-difluoro-3,5-dimethoxybenzyl)oxy]-N-[6-[(2-tetrahydro-2H-pyran-2-yloxy)ethoxy]pyridin-3-yl]pyrimidin-2-amine (1.49 g) and methanol (5 mL), a 4M hydrogen chloride/dioxane solution (5 mL) was added followed by stirring at room temperature for 2 hours. After the reaction mixture was concentrated under reduced pressure, a saturated aqueous sodium hydrogen carbonate solution was added to the resulting residue followed by extraction with chloroform. An organic layer

obtained was washed with saturated brine, dried over anhydrous sodium sulfate, and then filtered. The filtrate was concentrated under reduced pressure, and the resulted residue was solidified with ethyl acetate. The solid was collected by filtration to give 2-[{5-[{2,6-difluoro-3,5-dimethoxybenzyl}oxy]pyrimidin-2-yl}amino]pyridin-2-yl]oxy}ethanol (452 mg). Further the filtrate was purified by silica gel column chromatography (chloroform/methanol) to give the product (701 mg).

Example 217

[0366] To a mixture of 1-[5-[{2,6-difluoro-3,5-dimethoxybenzyl}oxy]pyrimidin-2-yl]amino]pyridin-2-yl]piperidin-4-one (256 mg), 2-aminoethanol (131 μ L), acetic acid (200 μ L), and dichloromethane (9.3 mL), sodium triacetoxy borohydride (243 mg) was added followed by stirring at room temperature overnight. To the reaction mixture, a saturated aqueous sodium hydrogen carbonate solution was added followed by extraction with chloroform/2-propanol. An organic layer obtained was washed with saturated brine, dried over anhydrous sodium sulfate, and then filtered. After the filtrate was concentrated under reduced pressure, the resulting residue was purified by basic silica gel column chromatography (chloroform/methanol) and then solidified with ethyl acetate to give 2-[{1-[5-[{2,6-difluoro-3,5-dimethoxybenzyl}oxy]pyrimidin-2-yl}amino]pyridin-2-yl]piperidin-4-yl]amino]ethanol (137 mg).

Example 239

[0367] A mixture of N-[5-[2-(benzyloxy)ethyl]-1-methyl-1H-pyrazol-3-yl]-5-[{2,6-difluoro-3,5-dimethoxybenzyl}oxy]pyrimidin-2-amine (283 mg) and dichloromethane (47 mL) was cooled to -78° C., and boron tribromide (1.0M dichloromethane solution, 830 μ L) was added thereto followed by stirring at -78° C. for 1 hour and stirring at 0° C. for 1 hour. To the reaction mixture, a saturated aqueous sodium hydrogen carbonate solution was added followed by extraction with chloroform. An organic layer obtained was washed with saturated brine, dried over anhydrous magnesium sulfate, and then filtered. After the filtrate was concentrated under reduced pressure, the resulting residue was purified by silica gel column chromatography (chloroform/methanol) to give 2-[3-[{5-[{2,6-difluoro-3,5-dimethoxybenzyl}oxy]pyrimidin-2-yl}amino]-1-methyl-1H-pyrazol-5-yl]ethanol (38 mg).

Example 246

[0368] A mixture of 5-[{5-[{2,6-difluoro-3,5-dimethoxybenzyl}oxy]pyrimidin-2-yl}amino]-1-methyl-1H-pyrazol-3-carboxylic acid (320 mg) and dioxane (6 mL) was ice cooled, and 1,1'-carbonyldiimidazole (616 mg) was added thereto followed by stirring at room temperature for 2 hours. To the reaction mixture, sodium borohydride (287 mg) was added followed by stirring at room temperature for 12 hours. To the reaction mixture, water and chloroform were added, and insoluble materials were removed by filtration through celite, and then the filtrate was extracted with chloroform. An organic layer obtained was washed with saturated brine, dried over anhydrous sodium sulfate, and then filtered. After the filtrate was concentrated under reduced pressure, the resulting residue was purified by silica gel column chromatography (hexane/ethyl acetate) to give [5-[{5-[{2,6-difluoro-3,5-dimethoxybenzyl}oxy]pyrimidin-2-yl}amino]-1H-pyrazol-3-carboxylic acid (320 mg).

luoro-3,5-dimethoxybenzyl)oxy]pyrimidin-2-yl}amino)-1-methyl-1H-pyrazol-3-yl]methanol (125 mg).

Example 253

[0369] To a mixture of 5-[{5-[{2,6-difluoro-3,5-dimethoxybenzyl}oxy]pyrimidin-2-yl}amino)-1-(2-hydroxyethyl)pyridin-2(1H)-one (90 mg), triethylamine (50 μ L), and dichloromethane (3 mL), methanesulfonyl chloride (20 μ L) was added followed by stirring at room temperature for 1 hour. To the reaction mixture, 1-methylpiperazine (50 μ L) and N,N-dimethylformamide (3 mL) were added followed by stirring at 50° C. for 20 hours. To the reaction mixture, water was added and extraction with ethyl acetate was performed. An organic layer obtained was washed with saturated brine, dried over anhydrous sodium sulfate, and then filtered. After the filtrate was concentrated under reduced pressure, the resulting residue was purified by basic silica gel column chromatography (ethyl acetate/chloroform) and then solidified with diethyl ether to give 5-[{5-[{2,6-difluoro-3,5-dimethoxybenzyl}oxy]pyrimidin-2-yl}amino)-1-[2-(4-methylpiperazin-1-yl)ethyl]pyridin-2(1H)-one (28 mg).

Example 254

[0370] To a mixture of 2-chloro-5-[{2,6-difluoro-3,5-dimethoxybenzyl}oxy]pyrimidine (270 mg), 1-(1-methylpiperidin-4-yl)-1H-imidazol-4-amine (231 mg), 1,1'-binaphthylene-2,2'-diylbis(diphenylphosphine) (80 mg), cesium carbonate (556 mg), and dioxane (5.4 mL), palladium acetate (19 mg) was added under an argon atmosphere followed by stirring at 150° C. for 30 minutes under microwave irradiation. To the reaction mixture, water was added followed by extraction with chloroform. An organic layer obtained was washed with saturated brine, dried over anhydrous sodium sulfate, and then filtered. After the filtrate was concentrated under reduced pressure, the resulting residue was purified by silica gel column chromatography (chloroform/methanol) and then solidified with ethanol/diethyl ether to give 5-[{2,6-difluoro-3,5-dimethoxybenzyl}oxy]-N-[1-(1-methylpiperidin-4-yl)-1H-imidazol-4-yl]pyrimidin-2-amine (241 mg).

Example 278

[0371] To a mixture of 2-chloro-5-[{2-fluoro-3,5-dimethoxybenzyl}oxy]pyrimidine (200 mg), 2-(4-amino-1H-pyrazol-1-yl)ethanol (170 mg), 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene (39 mg), cesium carbonate (655 mg), and dioxane (4 mL), tris(dibenzylideneacetone)dipalladium (31 mg) was added under an argon atmosphere followed by stirring at 80° C. overnight. To the reaction mixture, water was added followed by extraction with ethyl acetate. An organic layer obtained was washed with saturated brine, dried over anhydrous sodium sulfate, and then filtered. After the filtrate was concentrated under reduced pressure, the resulting residue was purified by basic silica gel column chromatography (ethyl acetate/methanol) and then solidified with ethanol to give 2-[4-[{5-[{2-fluoro-3,5-dimethoxybenzyl}oxy]pyrimidin-2-yl}amino]-1H-pyrazol-1-yl]ethanol (58 mg).

Example 282

[0372] To a mixture of 5-[{5-[{2,6-difluoro-3,5-dimethoxybenzyl}oxy]pyrimidin-2-yl}amino)-1H-pyrazol-3-carboxylic acid (320 mg).

aldehyde (100 mg), morpholine (67 μ L), and N,N-dimethylformamide (2 mL), sodium triacetoxy borohydride (243 mg) was added followed by stirring at room temperature for 12 hours. To the reaction mixture, a saturated aqueous sodium hydrogen carbonate solution was added followed by extraction with chloroform. An organic layer obtained was washed with saturated brine, dried over anhydrous sodium sulfate, and then filtered. After the filtrate was concentrated under reduced pressure, the resulting residue was purified by basic silica gel column chromatography (chloroform/methanol) and purified by silica gel column chromatography (chloroform/methanol) and then solidified with ethanol/diisopropyl ether to give 5-[2,6-difluoro-3,5-dimethoxybenzyl)oxy]-N-[3-(morpholin-4-ylmethyl)-1H-pyrazol-5-yl]pyrimidin-2-amine (42 mg).

Example 286

[0373] To a mixture of 2-chloro-5-[(2,6-dichloro-3,5-dimethoxybenzyl)oxy]pyrimidine (159 mg), 3-methoxy-4-(1-methylpiperidin-4-yl)aniline (100 mg), and tert-butanol (5 mL), tris(dibenzylideneacetone)dipalladium (13 mg), 2-(dicyclohexylphosphino)-2',4',6'-triisopropyl-1,1'-biphenyl (20 mg), and potassium carbonate (88 mg) were added under an argon atmosphere followed by stirring at 100° C. for 8 hours. Insoluble materials were removed by filtration, washed with ethyl acetate, and then the filtrate was concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography (chloroform/methanol) to give 5-[(2,6-dichloro-3,5-dimethoxybenzyl)oxy]-N-[3-methoxy-4-(1-methylpiperidin-4-yl)phenyl]pyrimidin-2-amine (35 mg).

Example 302

[0374] To a mixture of 2-[4-({5-[(2,6-difluoro-3,5-dimethoxybenzyl)oxy]pyrimidin-2-yl}amino)phenyl]piperazin-1-yl]ethyl methanesulfonate (100 mg) and methanol (3 mL), sodium methoxide (25% methanol solution, 3 mL) was added followed by stirring at 90° C. for 15 minutes under microwave irradiation. After the reaction mixture was concentrated under reduced pressure, water was added to the resulting residue followed by extraction with ethyl acetate. An organic layer obtained was washed with saturated brine, dried over anhydrous sodium sulfate, and then filtered. After the filtrate was concentrated under reduced pressure, the resulting residue was purified by silica gel column chromatography (chloroform/methanol) to give 5-[(2,6-difluoro-3,5-dimethoxybenzyl)oxy]-N-[4-[4-(2-methoxyethyl)piperazin-1-yl]phenyl]pyrimidin-2-amine (46 mg).

Example 315

[0375] To a mixture of {1'-[4-({5-[(2,6-difluoro-3,5-dimethoxybenzyl)oxy]pyrimidin-2-yl}amino)-2-methoxyphenyl]-1,4'-bipiperidine-4,4-diyl}bis(methylene)diacetate (46 mg) and methanol (3 mL), sodium methoxide (25% methanol solution, 0.2 mL) was added followed by stirring at room temperature for 14 hours. The reaction mixture was concentrated under reduced pressure, and the resulting residue was purified by silica gel column chromatography (chloroform/methanol) to give {1'-[4-({5-[(2,6-difluoro-3,5-dimethoxybenzyl)oxy]pyrimidin-2-yl}amino)-2-methoxyphenyl]-1,4'-bipiperidine-4,4-diyl}dimethanol (34 mg).

Example 336

[0376] A mixture of ethyl 4-[4-({5-[(2,6-difluoro-3,5-dimethoxybenzyl)oxy]pyrimidin-2-yl}amino)-2-fluorophenyl]butanoate (150 mg) and tetrahydrofuran (3 mL) was ice cooled, and lithium aluminum hydride (11 mg) was added thereto followed by stirring at room temperature for 3 hours. The reaction mixture was diluted with diethyl ether under ice cooling and then a saturated aqueous sodium sulfate solution was added thereto. Insoluble materials were separated by filtration and the filtrate was concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography (chloroform/methanol) to give 4-[4-({5-[(2,6-difluoro-3,5-dimethoxybenzyl)oxy]pyrimidin-2-yl}amino)-2-fluorophenyl]butan-1-ol (70 mg).

Example 349

[0377] A mixture of ethyl 4-[4-({5-[(2,6-difluoro-3,5-dimethoxybenzyl)oxy]pyrimidin-2-yl}amino)-2-fluorophenyl]butanoate (150 mg) and tetrahydrofuran (3 mL) was ice cooled, and then methyl magnesium bromide (1.0M tetrahydrofuran solution, 1.2 mL) was added thereto followed by stirring for 3 hours. To the reaction mixture, a saturated aqueous ammonium chloride solution was added followed by extraction with ethyl acetate. An organic layer obtained was washed with saturated brine, dried over anhydrous sodium sulfate, and then filtered. After the filtrate was concentrated under reduced pressure, the resulting residue was purified by silica gel column chromatography (chloroform/methanol) to give 5-[4-({5-[(2,6-difluoro-3,5-dimethoxybenzyl)oxy]pyrimidin-2-yl}amino)-2-fluorophenoxy]-2-methylpentan-2-ol (104 mg).

Example 356

[0378] To a mixture of 2-(4-aminophenoxy)-2-methylpropanoic acid (14.6 mg), cesium carbonate (49 mg), 2-chloro-5-[(2,6-difluoro-3,5-dimethoxybenzyl)oxy]pyrimidine (15.8 mg) and tert-butanol (0.5 mL) was added palladium(II) acetate-2-(dicyclohexylphosphino)-2',4',6'-triisopropyl-1,1'-biphenyl (Pd:P 1:2) ChemDose (trademark) tablet under a nitrogen atmosphere followed by stirring at 120° C. overnight. To the reaction mixture, water was added followed by extraction with chloroform (2 mL), and then the solvent was concentrated under reduced pressure. The resulting residue was purified by HPLC (0.1% aqueous formic acid solution/methanol) to give 2-[4-({5-[(2,6-difluoro-3,5-dimethoxybenzyl)oxy]pyrimidin-2-yl}amino)phenoxy]-2-methylpropanoic acid (0.7 mg).

Example 375

[0379] To a mixture of 4-amino-1-(1-tert-butoxycarbonylazetidin-3-yl)-1H-pyrazole (17.9 mg), cesium carbonate (49 mg), 2-chloro-5-[(2,6-difluoro-3,5-dimethoxybenzyl)oxy]pyrimidine (15.8 mg), tert-butanol (0.34 mL) and N,N-dimethylformamide (0.16 mL) was added palladium(II) acetate-2-(dicyclohexylphosphino)-2',4',6'-triisopropyl-1,1'-biphenyl (Pd:P 1:2) ChemDose (trademark) tablet under a nitrogen atmosphere followed by stirring at 120° C. overnight. To the reaction mixture, water was added followed by extraction with chloroform (2 mL), and then the solvent was concentrated under reduced pressure. To the resulting residue, ethanol (1 mL) and a 4M hydrogen chloride/ethyl acetate solution (0.5 mL) were added followed by stirring at

room temperature overnight. After that, the solvent was concentrated under reduced pressure. The resulting residue was purified by HPLC (0.1% aqueous formic acid solution/methanol) to give N-[1-(azetidin-3-yl)-1H-pyrazol-4-yl]-5-[(2,6-difluoro-3,5-dimethoxybenzyl)oxy]pyrimidin-2-amine (1.7 mg).

[0380] In the same manner as in the examples shown above, the compounds shown in Tables 63 to 137 below were prepared. Tables 63 to 137 show the structures of the compounds of the examples and Tables 138 to 156 show the preparation processes and physical and chemical data of the compounds of the examples.

TABLE 7

PEx	PSyn	Str	DAT
1	1		Me APCI/ESI+: 461,463
2	2		Me APCI/ESI+: 509
3	3		NMR2: 3.68(1H, s), 3.92(6H, s), 6.58(1H, s)
4-1	4		APCI/ESI+: 199
4-2	4		APCI/ESI+: 181
5	5		NMR2: 3.60(1H, s), 3.89(3H, s), 3.91(3H, s), 6.61(1H, d, J = 7.5 Hz)

TABLE 8

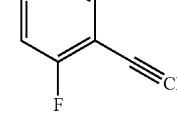
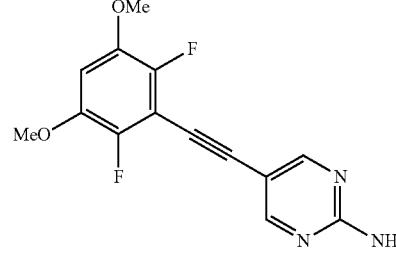
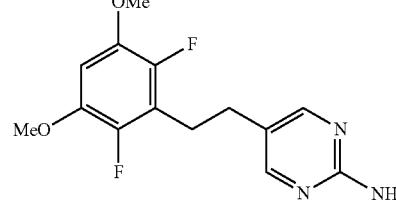
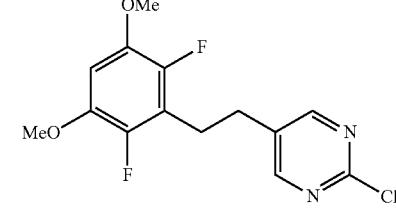
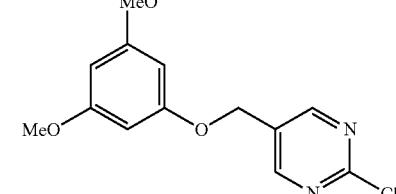





PEx	PSyn	Str	DAT
6	6		EI: 168
7	7		APCI/ ESI+: 292
8	8		APCI/ ESI+: 296
9	9		APCI/ ESI+: 315
10	10		APCI/ ESI+: 281

TABLE 9

PEx	PSyn	Str	DAT
13	13		APCI/ ESI+: 281
14	14		APCI/ ESI+: 349
15	15		ESI+: 295
16-1	16		ESI+: 233
16-2	16		ESI+: 215

TABLE 10

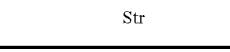

PEx	PSyn	Str	DAT
17	17		ESI+: 205

TABLE 10-continued

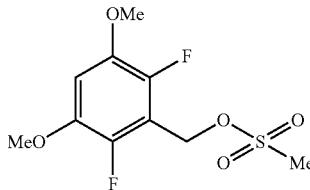
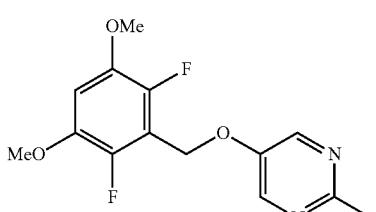
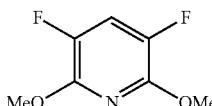
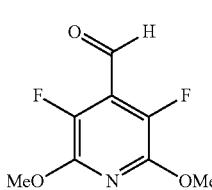
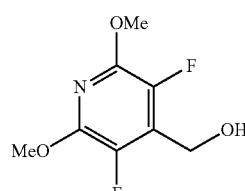
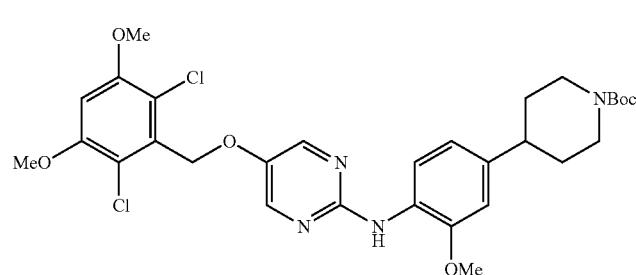






PEx	PSyn	Str	DAT
18	18		NMR2: 3.04(3H, s), 3.88(6H, s), 5.34(2H, s), 6.72 (1H, t, J = 8.2 Hz)
19	19		APCI/ESI+: 317
20	20		APCI/ESI+: 176
21	21		NMR2: 4.03(6H, s), 10.3(1H, s)
22	22		APCI/ESI+: 206
23	23		APCI/ESI+: 619

TABLE 11

PEx	PSyn	Str	DAT
24	24		ESI+: 354
25	25		ESI+: 324
26	26		ESI+: 371
27	27		APCI/ESI+: 341
28	28		NMR2: 1.10-1.19(2H, m), 1.12(6H, s), 1.19(6H, s), 1.69- 1.76(2H, m), 2.27(1H, brs), 2.55-2.59(4H, m), 2.76-2.87 (1H, m), 3.48-3.55(4H, m), 5.13(2H, s), 7.23-7.40(5H, m)
29	29		APCI/ESI+: 226

TABLE 12

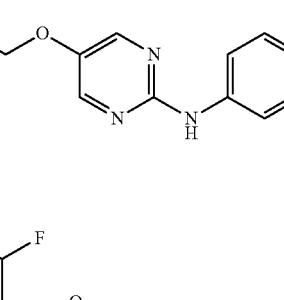
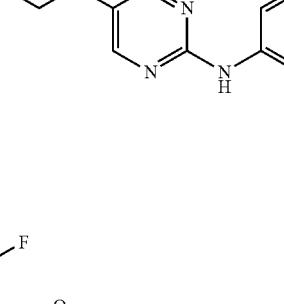
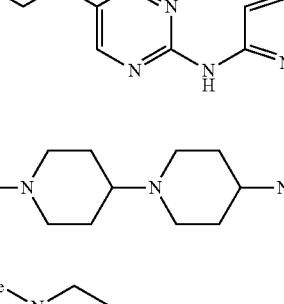
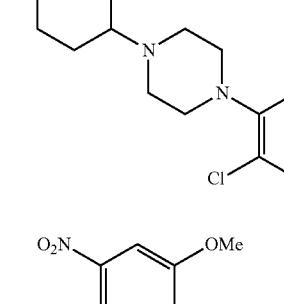
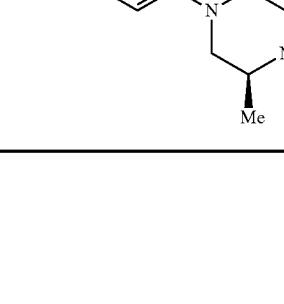





PEx	PSyn	Str	DAT
30	30		ESI+: 632
31	31		ESI+: 447
32	32		APCI/ESI+: 462
33	33		APCI/ESI+: 294
34	34		ESI+: 309
35	35		APCI/ESI+: 366

TABLE 13

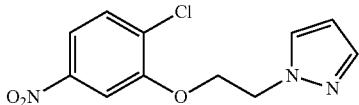
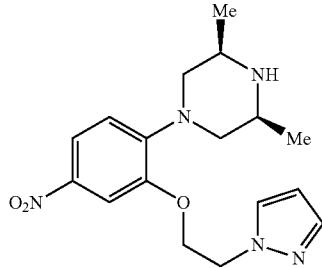
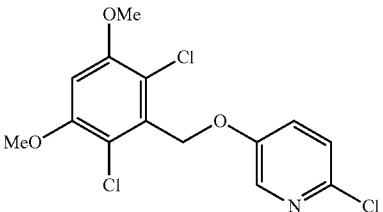
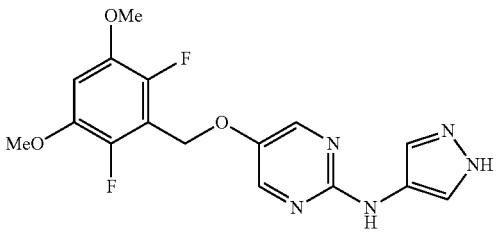
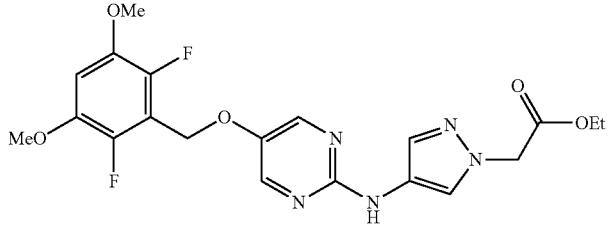
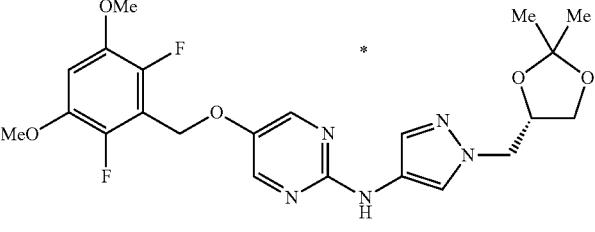






PEx	PSyn	Str	DAT
36	36		APCI/ESI+: 268
37	37		APCI/ESI+: 346
38	38		APCI/ESI+: 348
39	39		APCI/ESI+: 364
40	40		APCI/ESI+: 450
41	41		APCI/ESI+: 478

TABLE 14

PEx	PSyn	Str	DAT
42	2		APCI/ESI+: 497
43	2		APCI/ESI+: 509
44	6		EI: 138
45	6		EI: 174
46	14		APCI/ESI+: 363
47	18		APCI/ESI+: 284

TABLE 15

PEx	PSyn	Str	DAT
48	19		APCI/ESI+: 318
49	13		APCI/ESI+: 293
50	24		NMR2: 1.06-1.26 (14H, m), 1.77-1.84(2H, m), 2.74-2.91(6H, m), 3.22-3.31(4H, m), 3.95 (3H, s), 6.88(1H, d, J = 8.8 Hz), 7.70(1H, s), 7.86(1H, d, J = 8.8 Hz)
51	27		APCI/ESI+: 347
52	23		APCI/ESI+: 579
53	23		APCI/ESI+: 426

TABLE 16

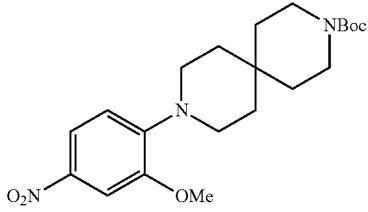
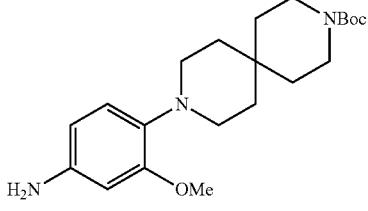
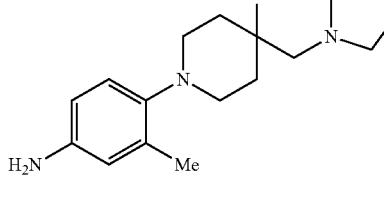
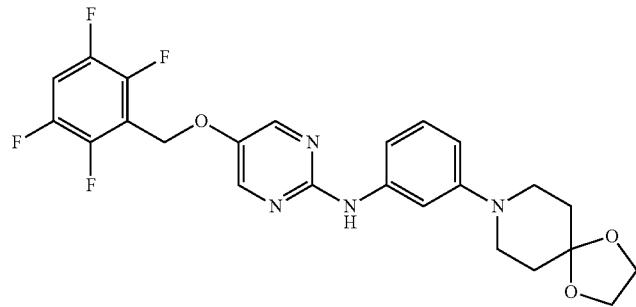
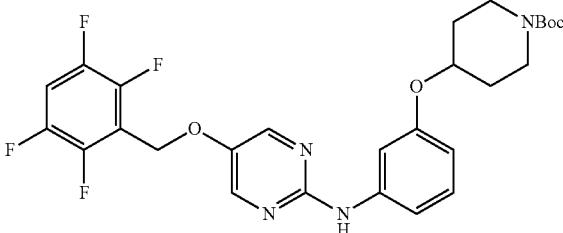
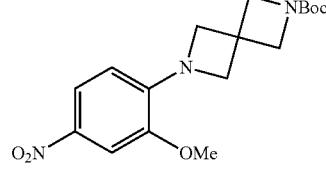




PEx	PSyn	Str	DAT
54	24		NMR2: 1.47-1.71(17H, m), 3.17-3.20(4H, m), 3.40-3.43(4H, m), 3.95(3H, s), 6.89(1H, d, J = 8.8 Hz), 7.69(1H, d, J = 2.7 Hz), 7.85 (1H, dd, J = 8.8, 2.4 Hz)
55	27		NMR2: 1.46-1.87(13H, m), 2.88-2.90(4H, m), 3.38-3.41(4H, m), 3.73-3.81(6H, m), 6.23-6.26 (2H, m), 6.78(1H, d, J = 8.1 Hz)
56	24		ESI+: 320
57	27		ESI+: 290
58	23		ESI+: 491

TABLE 17

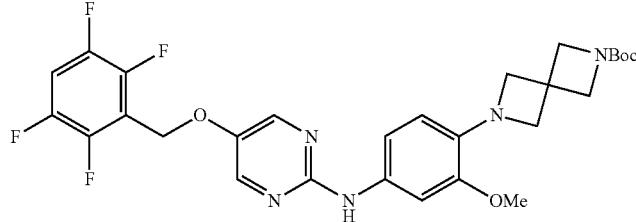
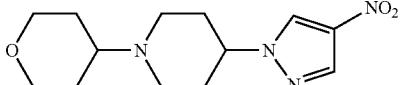
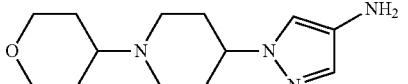



PEx	PSyn	Str	DAT
59	23		ESI+: 549
60	24		NMR2: 1.45 (9H, s), 3.84(3H, s), 4.10(4H, s), 4.26 (4H, s), 6.22 (1H, d, <i>J</i> = 9.0 Hz), 7.60(1H, d, <i>J</i> = 2.4 Hz), 7.82(1H, dd, <i>J</i> = 8.8, 2.4 Hz)
61	27		NMR2: 1.44(9H, s), 3.40(2H, brs), 3.74(3H, s), 3.87 (4H, s), 4.05(4H, s), 6.21-6.31(3H, m)
62	30		ESI+: 576
63	27		APCI/ESI+: 264
64	33		APCI/ESI+: 281
65	27		ESI+: 251

TABLE 18

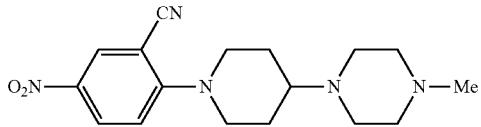

PEx	PSyn	Str	DAT
66	24		ESI+: 330

TABLE 18-continued

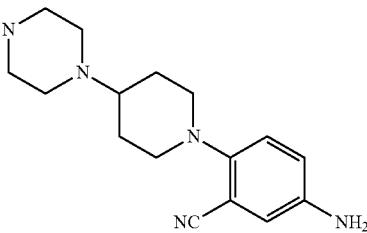
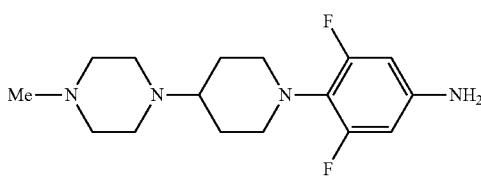
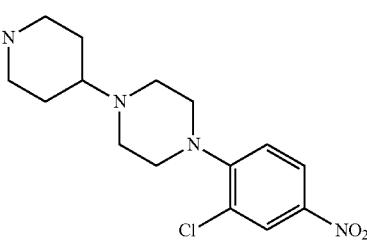
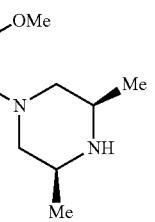
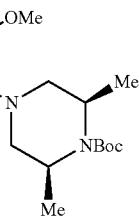





PEx	PSyn	Str	DAT
67	27	Me	ESI+: 300
68	27		ESI+: 311
69	24	Me	ESI+: 339
70	24	O ₂ N	APCI/ESI+: 266
71	27	H ₂ N	APCI/ESI+: 336

TABLE 19

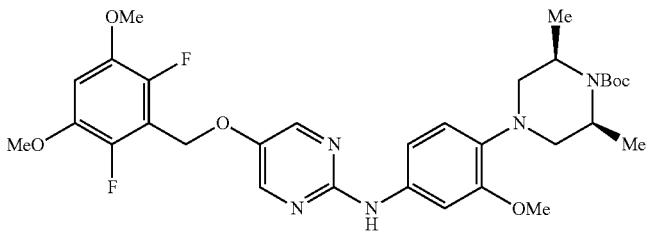

PEx	PSyn	Str	DAT
72	23	APCI/ESI+: 616	

TABLE 19-continued

PEx	PSyn	Str	DAT
73	28		APCI/ESI+: 332
74	35		APCI/ESI+: 432
75	29		APCI/ESI+: 298
76	24		APCI/ESI+: 449
77	27		APCI/ESI+: 419

TABLE 20

PEx	PSyn	Str	DAT
78	23		APCI/ESI+: 699

TABLE 20-continued

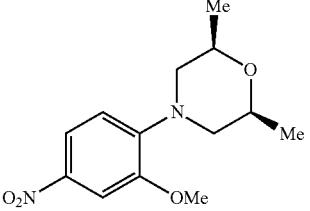
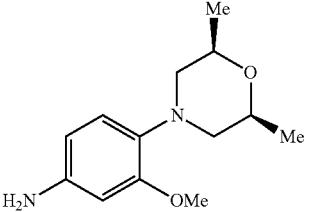
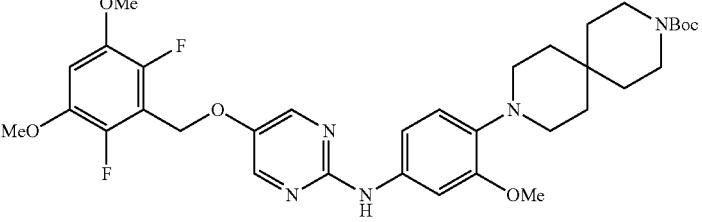
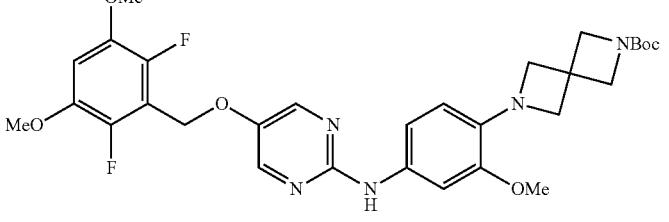




PEx	PSyn	Str	DAT
79	24		NMR2: 1.23 (6H, d, $J = 6.3$ Hz), 2.44-2.50 (2H, m), 3.50-3.52(2H, m), 3.85-3.90(2H, m), 3.95(3H, s), 6.85(1H, d, $J = 9.0$ Hz), 7.71 (1H, d, $J = 2.4$ Hz), 7.85(1H, dd, $J = 8.8, 2.7$ Hz)
80	27		NMR2: 1.20(6H, d, $J = 6.3$ Hz), 2.27-2.32(2H, m), 3.15-3.18 (2H, m), 3.49 (2H, brs), 3.82-3.93(5H, m), 6.23-6.27(2H, m), 6.74(1H, d, $J = 8.1$ Hz)
81	30		ESI+: 656
82	30		ESI+: 600

TABLE 21

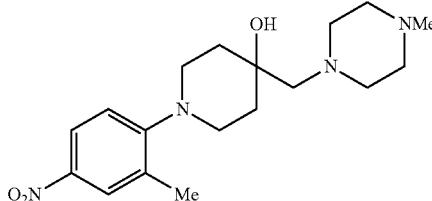

PEx	PSyn	Str	DAT
83	24		ESI+: 349

TABLE 21-continued

PEx	PSyn	Str	DAT
84	27		ESI+: 319
85	28		ESI+: 338 *
86	27		ESI+: 308 *
87	35		APCI/ESI+: 446
88	27		APCI/ESI+: 416

TABLE 22

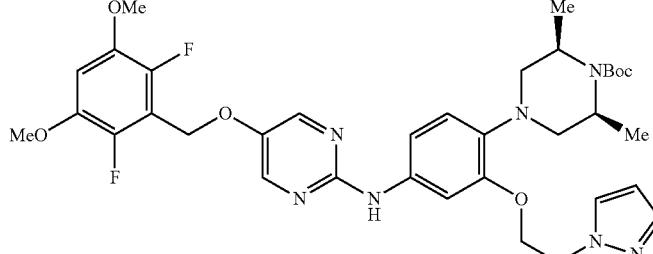
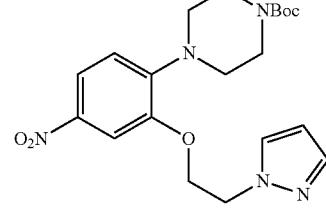
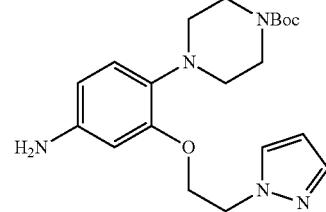
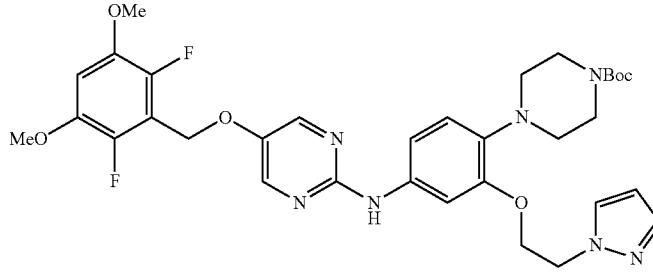
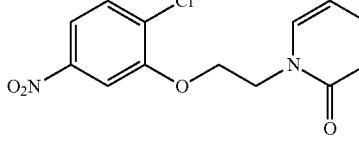





PEx	PSyn	Str	DAT
89	23		APCI/ESI+: 696
90	37		APCI/ESI+: 418
91	27		APCI/ESI+: 388
92	23		APCI/ESI+: 668
93	36		APCI/ESI+: 295

TABLE 23

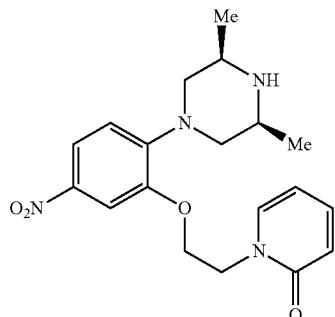
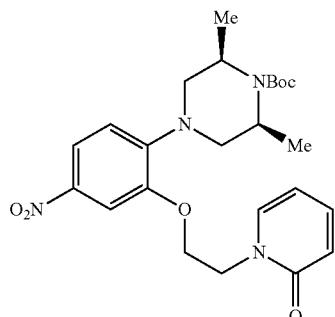
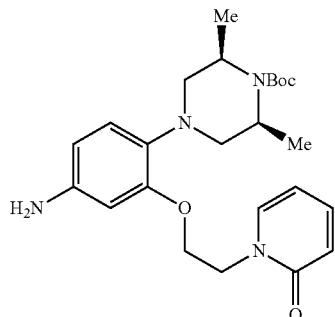
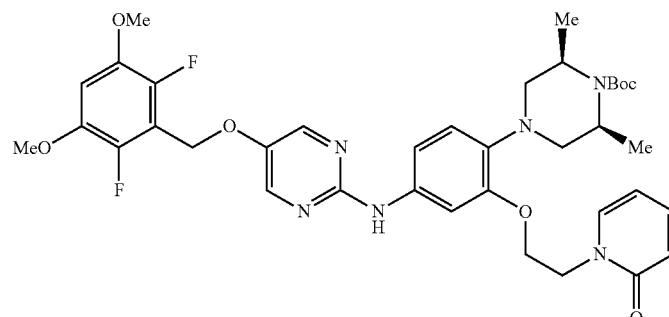
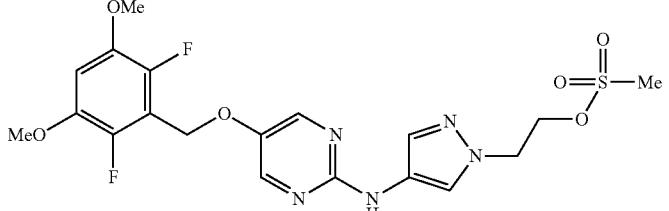
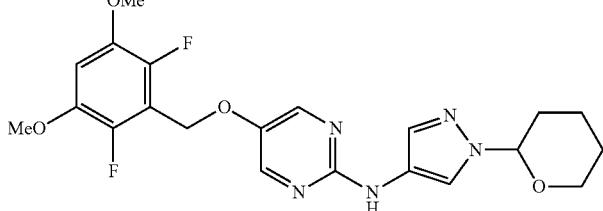
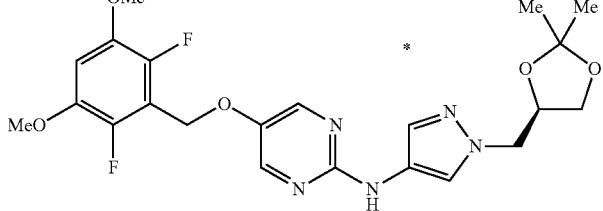
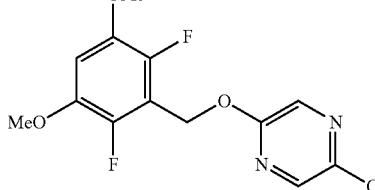




PEx	PSyn	Str	DAT
94	37		APCI/ESI+: 373
95	35		APCI/ESI+: 473
96	27		APCI/ESI+: 443
97	23		ESI+: 723

TABLE 24

PEx	PSyn	Str	DAT
98	30		ESI+: 688
99	30		ESI+: 632
100	13		APCI/ESI+: 280
101	2		APCI/ESI+: 509
102	2		APCI/ESI+: 426
103	2		APCI/ESI+: 456

TABLE 25

PEx	PSyn	Str	DAT
104	32		APCI/ESI+: 486
105	23		APCI/ESI+: 448
106	41		APCI/ESI+: 478
107	19		ESI+: 317
108	32		APCI/ESI+: 462

TABLE 26

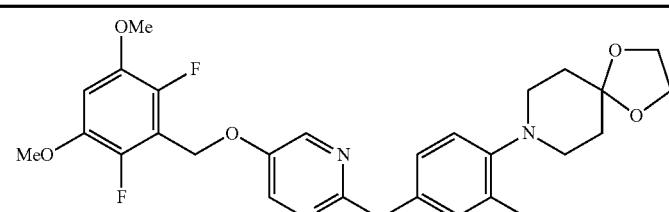

PEx	PSyn	Str	DAT
109	23		APCI/ESI+: 545

TABLE 26-continued

PEx	PSyn	Str	DAT
110	31		APCI/ESI+: 501
111	111		NMR2: 1.50 (9H, s), 1.72-1.81 (2H, m), 1.95-2.24 (6H, m), 4.32- 4.49(2H, m), 4.61- 4.72(1H, m), 8.06(1H, s), 8.12 (1H, s)
112	27		NMR2: 1.49 (9H, s), 1.71-1.81 (2H, m), 1.90-2.12 (6H, m), 2.87 (2H, brs), 4.20-4.45 (2H, m), 4.50- 4.61(1H, m), 6.98 (1H, s), 7.12 (1H, s)

TABLE 27

PEx	PSyn	Str	DAT
113	23		APCI/ESI+: 605
114	23		APCI/ESI+: 523
115	23		APCI/ESI+: 547

TABLE 27-continued

PEx	PSyn	Str	DAT
116	23		ESI+: 557
117	23		APCI/ESI+: 515

TABLE 28

PEx	PSyn	Str	DAT
118	118		APCI/ESI+: 223
119	27		APCI/ESI+: 193
120	23		APCI/ESI+: 558
121	23		APCI/ESI+: 576

TABLE 28-continued

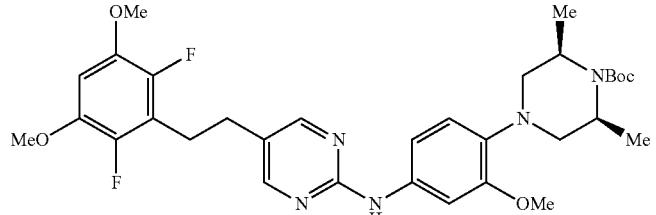
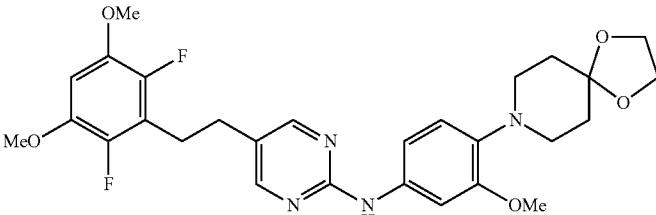
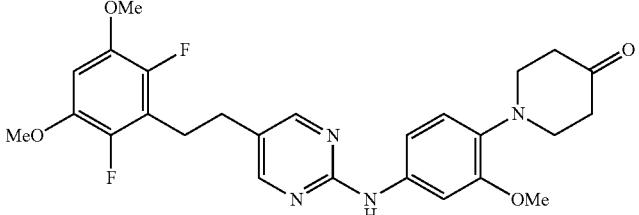
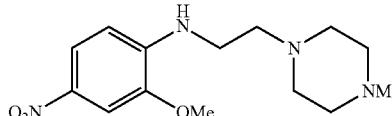


PEx	PSyn	Str	DAT
122	23		APCI/ESI+: 614
123	23		APCI/ESI+: 543

TABLE 29

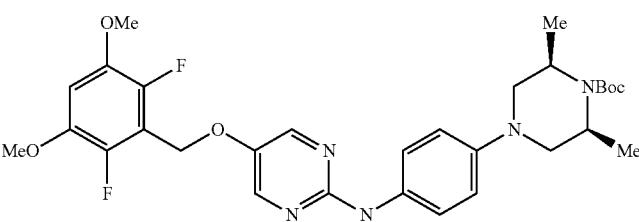

PEx	PSyn	Str	DAT
124	31		APCI/ESI+: 499
125	24		APCI/ESI+: 295
126	17		NMR2: 1.74-1.80(1H, m), 3.79(3H, s), 3.86(3H, s), 4.74(2H, dd, J = 6.2, 1.2 Hz), 6.47(1H, dd, J = 7.0, 3.0 Hz), 6.51(1H, dd, J = 4.8, 3.0 Hz)
127	23		APCI/ESI+: 586

TABLE 29-continued

PEx	PSyn	Str	DAT
128	35		APCI/ESI+: 395
129	27		APCI/ESI+: 365

TABLE 30

PEx	PSyn	Str	DAT
130	27		APCI/ESI+: 265
131	18		NMR2: 3.01(3H, s), 3.79(3H, s), 3.87(3H, s), 5.26(2H, d, J = 1.6 Hz), 6.47(1H, dd, J = 4.7, 3.0 Hz), 6.57(1H, dd, J = 7.0, 3.0 Hz)
132	19		APCI/ESI+: 299
133	133		APCI/ESI+: 279
134	31		APCI/ESI+: 471

TABLE 31

PEx	PSyn	Str	DAT
135	23		APCI/ESI+: 450
136	23		APCI/ESI+: 573
137	23		APCI/ESI+: 545
138	138		APCI/ESI+: 307
139	27		APCI/ESI+: 277
140	27		APCI/ESI+: 208

TABLE 32

PEx	PSyn	Str	DAT
141	24		APCI/ESI+: 320

TABLE 32-continued

PEx	PSyn	Str	DAT
142	27		APCI/ESI+: 290
143	143		ESI+: 184
144	144		ESI+: 198
145	145		ESI+: 255
146	189		ESI+: 671
147	40		APCI/ESI+: 507

TABLE 33

PEx	PSyn	Str	DAT
148	27		APCI/ESI+: 225
149	143		APCI/ESI+: 197

TABLE 33-continued

PEx	PSyn	Str	DAT
150	23		* APCI/ESI+: 505
151	40		ESI+: 575
152	152		ESI+: 255
153	27		ESI+: 225
154	152		ESI+: 303

TABLE 34

PEx	PSyn	Str	DAT
155	27		ESI+: 273
156	24		APCI/ESI+: 336

TABLE 34-continued

PEx	PSyn	Str	DAT
157	27		APCI/ESI+: 306
158	40		APCI/ESI+: 464
159	40		APCI/ESI+: 464
160	40		APCI/ESI+: 478

TABLE 35

PEx	PSyn	Str	DAT
161	40		APCI/ESI+: 464
162	162		ESI+: 576

TABLE 35-continued

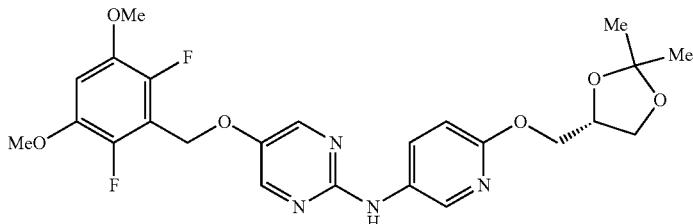
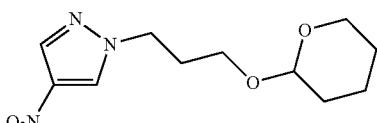
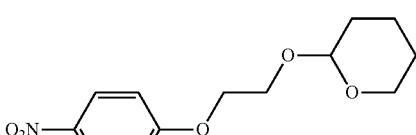
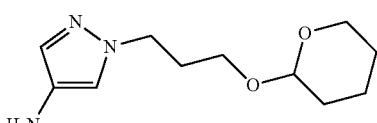




PEx	PSyn	Str	DAT
163	23		*
164	111		ESI+: 256
165	152		ESI+: 269
166	27		ESI+: 226

TABLE 36

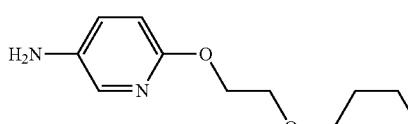
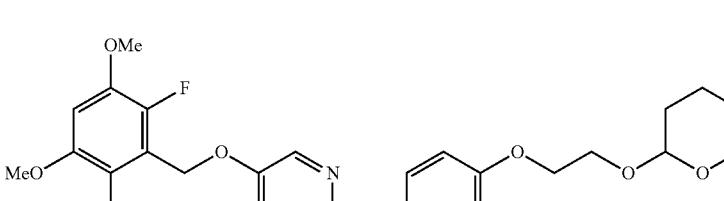


PEx	PSyn	Str	DAT
167	27		APCI/ESI+: 155(-THP)
168	23		APCI/ESI+: 519

TABLE 36-continued

PEx	PSyn	Str	DAT
169	23		ESI+: 506
170	23		APCI/ESI+: 553
171	23		APCI/ESI+: 516

TABLE 37

PEx	PSyn	Str	DAT
172	32		ESI+: 500
173	31		APCI/ESI+: 472

TABLE 37-continued

PEx	PSyn	Str	DAT
174	40		ESI+: 561
175-1	175		APCI/ESI+: 226
175-2	175		APCI/ESI+: 226
176	176		ESI+: 232

TABLE 38

PEx	PSyn	Str	DAT
177	23		ESI+: 512
178	23		APCI/ESI+: 506

TABLE 38-continued

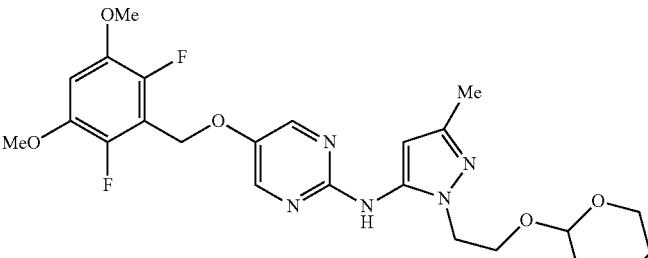
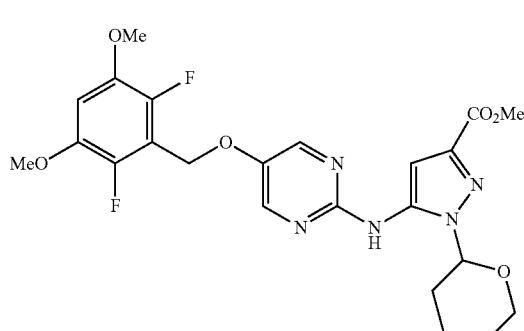


PEx	PSyn	Str	DAT
179	23		APCI/ESI+: 506
180	23		APCI/ESI+: 506

TABLE 39

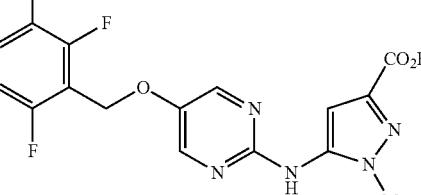
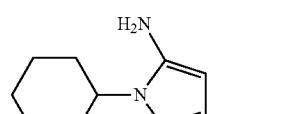
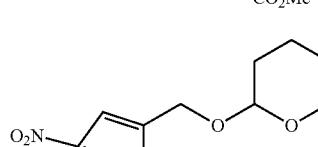
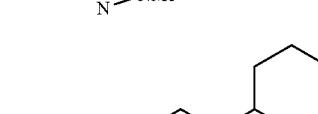




PEx	PSyn	Str	DAT
181	23		APCI/ESI+: 450
182	27		ESI+: 226
183	183		APCI/ESI+: 242
184	27		APCI/ESI+: 212

TABLE 39-continued

PEx	PSyn	Str	DAT
185	23		APCI/ESI+: 492
186	186		APCI/ESI+: 276
187	27		APCI/ESI+: 246

TABLE 40

PEx	PSyn	Str	DAT
188	23		APCI/ESI+: 526
189	189		APCI/ESI+: 267
190	27		APCI/ESI+: 237
191	191		APCI/ESI-: 490

TABLE 40-continued

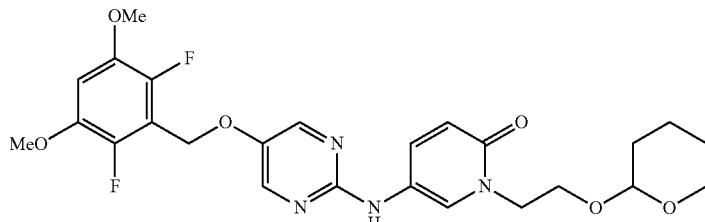

PEx	PSyn	Str	DAT
192	27+23		APCI/ESI+: 435(-THP)

TABLE 41

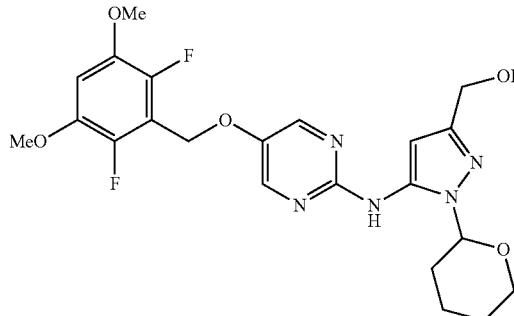
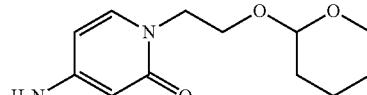
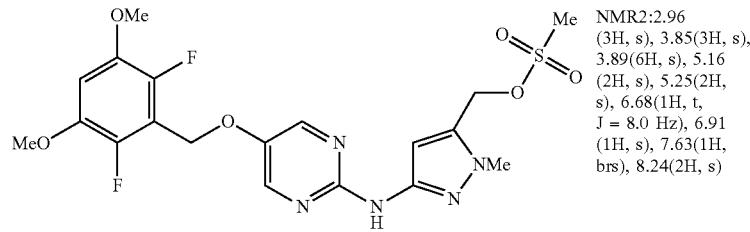
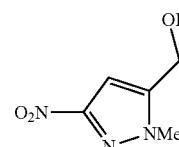
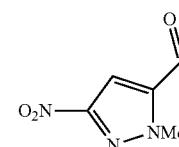
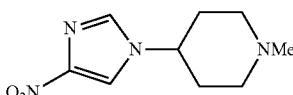






PEx	PSyn	Str	DAT
193	193		APCI/ESI+: 478
194	175		APCI/ESI+: 239
195	32		NMR: 2.96 (3H, s), 3.85(3H, s), 3.89(6H, s), 5.16 (2H, s), 5.25(2H, s), 6.68(1H, t, J = 8.0 Hz), 6.91 (1H, s), 7.63(1H, brs), 8.24(2H, s)
196	193		APCI/ESI+: 158
197	214		NMR: 4.22 (3H, s), 7.77(1H, s), 9.91(1H, s)
198	144		APCI/ESI+: 211

TABLE 42

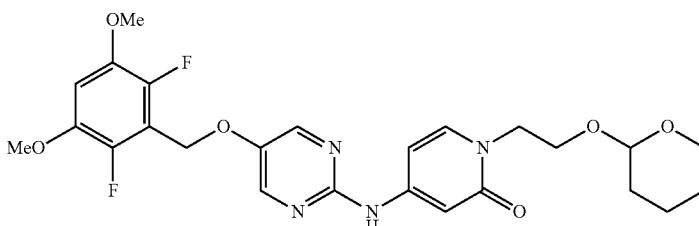
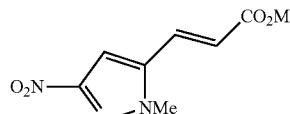
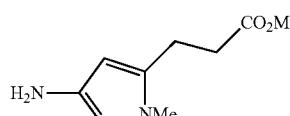
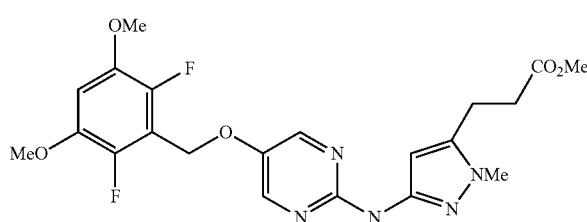
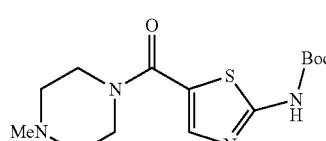
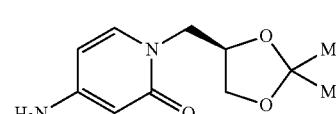






PEx	PSyn	Str	DAT
199	27		APCI/ESI+: 181
200	23		ESI+: 519
201	201		ESI+: 212
202	202		ESI+: 184
203	23		ESI+: 464
204	204		APCI/ESI+: 327
205	205		*

TABLE 43

PEx	PSyn	Str	DAT
206	205	*	ESI+: 225

TABLE 43-continued

PEx	PSyn	Str	DAT
207	23		ESI+: 505 *
208	23		ESI+: 505 *
209	209		APCI/ESI+: 412
210	210		APCI/ESI+: 227

TABLE 44

PEx	PSyn	Str	DAT
211	211		NMR2: 1.36-1.94(9H, m), 1.99-2.07(1H, m), 2.09-2.20(1H, m), 2.35-2.54(1H, m), 3.44-3.75(2H, m), 3.78-4.04(2H, m), 4.51-4.72(2H, m), 4.78-4.90(1H, m), 5.52-5.65(1H, m), 6.87-6.94(1H, m)
212	27		NMR2: 1.31-1.94(10H, m), 2.29-2.44(1H, m), 3.27-3.77(4H, m), 3.81-3.97(1H, m), 4.00-4.11(1H, m), 4.47-4.59(1H, m), 4.61-4.73(2H, m), 5.20-5.33(1H, m), 5.66(1H, s)

TABLE 44-continued

PEx	PSyn	Str	DAT
213	23		APCI/ESI+: 562
214	214		APCI/ESI+: 392

TABLE 45

PEx	PSyn	Str	DAT
215	214		APCI/ESI+: 406
216	204		APCI/ESI+: 324

TABLE 45-continued

PEx	PSyn	Str	DAT
217	27		APCI/ESI+: 294
218	23		APCI/ESI+: 574

TABLE 46

PEx	PSyn	Str	DAT
210	32		ESI+: 500
220	27		ESI+: 221
221	24		ESI+: 251
222	27		ESI+: 294
223	28		ESI+: 324

TABLE 46-continued

PEx	PSyn	Str	DAT
224	24		NMR2: 2.64(4H, t, <i>J</i> = 6.0 Hz), 3.54(4H, t, <i>J</i> = 6.0 Hz), 3.99(3H, s), 6.93(1H, d, <i>J</i> = 8.8 Hz), 7.75(1H, d, <i>J</i> = 2.4 Hz), 7.88(1H, dd, <i>J</i> = 8.8, 2.4 Hz)

TABLE 47

PEx	PSyn	Str	DAT
225	27		ESI+: 322
226	28		ESI+: 352
227	13		EI: 332
228	18		EI: 298
229	229		EI: 220
230	30		ESI+: 613

TABLE 48

PEx	PSyn	Str	DAT
231	27		ESI+: 333
232	232		ESI+: 361
233	27		ESI+: 294
234	28		ESI+: 324
235	30		ESI+: 616
236	27		ESI+: 294
237	28		ESI+: 324

TABLE 49

PEx	PSyn	Str	DAT
238	32		ESI+: 580

TABLE 49-continued

PEx	PSyn	Str	DAT
239	27		ESI+: 336
240	28		ESI+: 366
241	27		EI: 248
242	24		ESI+: 279
243	30		ESI+: 588

TABLE 50

PEx	PSyn	Str	DAT
244	19		NMR2: 3.94 (6H, s), 5.35(2H, s), 6.62(1H, s), 7.24 (1H, d, J = 8.8 Hz), 7.31(1H, dd, J = 8.8, 3.2 Hz), 8.16 (1H, d, J = 3.2 Hz)
245	30		ESI+: 680

TABLE 50-continued

PEx	PSyn	Str	DAT
246	27		ESI+: 400
247	30		ESI+: 430
248	19		NMR2: 3.94 (6H, s), 5.63(2H, s), 6.63(1H, s), 8.02 (1H, s), 8.15(1H, s)

TABLE 51

PEx	PSyn	Str	DAT
249	30		ESI+: 714
250	27		NMR2: 1.93-1.96(6H, m), 2.06-2.09(2H, m), 2.08 (6H, s), 2.54-2.60(3H, m), 2.95-2.97(4H, m), 3.42-3.45(2H, m), 3.81(3H, s), 4.06 (4H, s), 6.22-6.26(2H, m), 6.74 (1H, d, J = 8.0 Hz)

TABLE 51-continued

PEx	PSyn	Str	DAT
251	24		ESI+: 464
252	252		ESI+: 313

TABLE 52

PEx	PSyn	Str	DAT
253	28		ESI+: 413
254	252		ESI+: 230
255	255		NMR2: 1.46-1.52(13H, m), 2.07(6H, s), 3.40-3.43(4H, m), 4.03 (4H, s)
256	27		NMR3: 3.97(2H, t, J = 5.2 Hz), 4.42(2H, t, J = 5.2 Hz), 6.85(1H, dd, J = 2.0, 0.8 Hz), 6.92(1H, dd, J = 8.8, 2.0 Hz), 7.41(1H, dd, J = 8.8, 0.8 Hz), 7.89(1H, d, J = 0.8 Hz)

TABLE 53

PEx	PSyn	Str	DAT
257	40		1H NMR2: 2.91(1H, t, J = 6.0 Hz), 4.15-4.19(2H, m), 4.61(2H, t, J = 4.8 Hz), 7.74(1H, d, J = 9.2 Hz), 8.11(1H, dd, J = 9.2, 2.0 Hz), 8.29(1H, s), 8.73(1H, d, J = 2.4 Hz)
258	27		1H NMR3: 3.95(2H, t, J = 5.6 Hz), 4.37(2H, t, J = 5.6 Hz), 6.65(1H, dd, J = 8.8, 2.0 Hz), 6.72(1H, m), 7.44(1H, dd, J = 8.8, 0.8 Hz), 7.99(1H, s)
259	40		1H NMR2: 2.87(1H, t, J = 6.0 Hz), 4.17-4.20(2H, m), 4.62(2H, t, J = 4.8 Hz), 7.77(1H, dd, J = 9.2, 0.8 Hz), 7.91(1H, dd, J = 9.2, 2.0 Hz), 8.13(1H, s), 8.67-8.68(1H, m)

TABLE 54

PEx	PSyn	Str	DAT
260	30		ESI+: 631
261	27		ESI+: 351
262	24		ESI+: 381

TABLE 54-continued

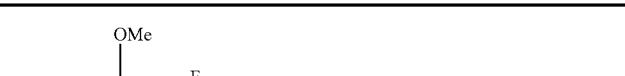

PEx	PSyn	Str	DAT
263	30		ESI+: 482

TABLE 55

TABLE 56

PEx	PSyn	Str	DAT
270	27		NMR2: 2.09(3H, s), 2.29(3H, s), 2.48-2.65(8H, m), 2.83(2H, t, J = 5.6 Hz), 3.54(2H, brs), 4.06(2H, t, J = 5.6 Hz), 6.20-6.22(2H, m), 6.88(1H, d, J = 8.4 Hz)
271	36		NMR2: 2.30-2.66(14H, m), 2.89(2H, t, J = 5.4 Hz), 4.19(2H, t, J = 5.6 Hz), 7.24(1H, d, J = 8.0 Hz), 7.66(1H, d, J = 2.0 Hz), 7.75(1H, dd, J = 8.0, 2.0 Hz)
272	30		ESI+: 490

TABLE 57

PEx	PSyn	Str	DAT
273	27		NMR3: 1.75-1.83(2H, m), 1.95-2.01(6H, m), 2.53-2.59(2H, m), 2.86-2.97(7H, m), 3.81(3H, s), 4.45(4H, s), 6.27(1H, dd, J = 8.4, 2.4 Hz), 6.42(1H, d, J = 2.4 Hz), 6.78(1H, d, J = 8.0 Hz)
274	24		NMR2: 1.69-1.79(2H, m), 1.85-1.90(6H, m), 2.43-2.49(5H, m), 2.67-2.73(2H, m), 3.73-3.76(2H, m), 3.94(3H, s), 4.41(4H, s), 6.87(1H, d, J = 8.8 Hz), 7.69(1H, d, J = 2.4 Hz), 7.84(1H, dd, J = 8.8, 2.4 Hz).
275	252		ESI+: 211
276	28		ESI+: 311

TABLE 58

PEx	PSyn	Str	DAT
277	30		El: 497

TABLE 58-continued

TABLE 59

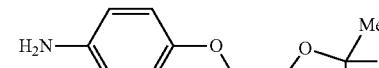
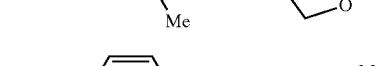
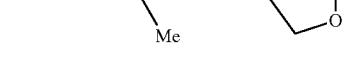



PEx	PSyn	Str	DAT
283	27		ESI+: 238
284	19		EI: 267
285	27		ESI+: 197

TABLE 59-continued

PEx	PSyn	Str	DAT
286	30		ESI+: 506
287	27		ESI+: 264
288	28		ESI+: 294
289	30		ESI+: 631

TABLE 60

PEx	PSyn	Str	DAT
290	27		NMR2: 1.14-1.16(2H, m), 1.45(9H, s), 1.63-1.87(5H, m), 2.70-2.71(2H, m), 3.48-3.49(2H, m), 3.81(3H, s), 3.95-4.07(4H, m), 6.21(1H, dd, J = 8.0, 2.4 Hz), 6.30(1H, d, J = 2.4 Hz), 6.71(1H, d, J = 8.4 Hz)
291	13		NMR2: 1.18-1.22(2H, m), 1.48(9H, s), 1.59(2H, br-s), 1.69-1.75(3H, m), 1.82-1.87(2H, m), 2.71-2.73(2H, m), 3.95(3H, s), 4.16(2H, t, J = 6.4 Hz), 6.89(1H, d, J = 8.8 Hz), 7.73(1H, d, J = 2.4 Hz), 7.89(1H, d, J = 8.8, 2.4 Hz)
292	19		NMR2: 2.22(3H, s), 3.89(3H, s), 3.93(3H, s), 5.33(2H, s), 6.57(1H, s), 8.37(2H, s)

TABLE 60-continued

PEx	PSyn	Str	DAT
293	18		EI: 294

TABLE 61

PEx	PSyn	Str	DAT
294	229		NMR2: 1.85 (1H, t, <i>J</i> = 6.4 Hz), 2.26(3H, s), 3.84 (3H, s), 3.90(3H, s), 4.86(2H, d, <i>J</i> = 6.4 Hz), 6.49(1H, s)
295	295		ESI+: 310
296	296		ESI+: 220
297	27		ESI+: 336
298	35		ESI+: 366

TABLE 62

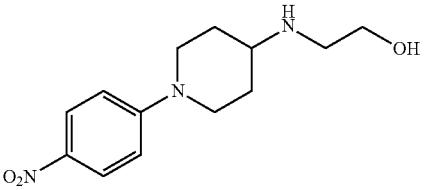
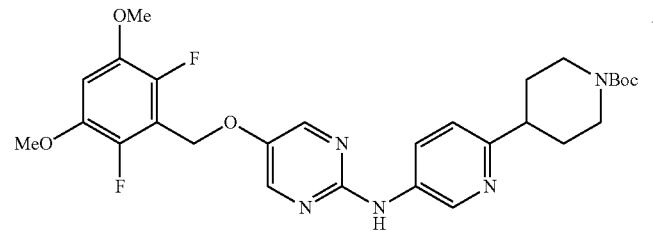
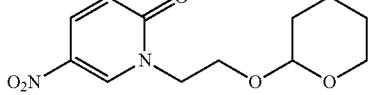
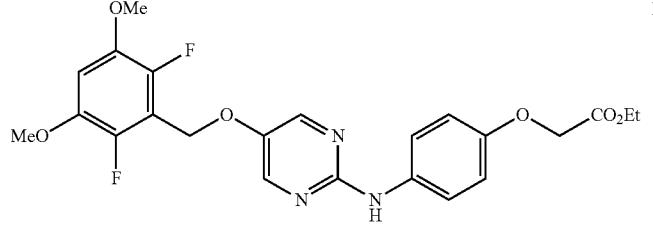
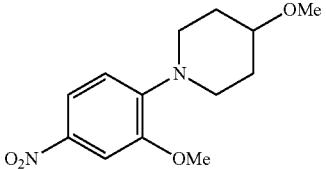
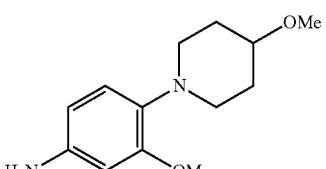






PEx	PSyn	Str	DAT
299	28		ESI+: 266
300	23		APCI/ESI+: 558
301	175		APCI/ESI-: 268
302	23		ESI+: 476
303	24		ESI+: 267
304	27		ESI+: 237

TABLE 63

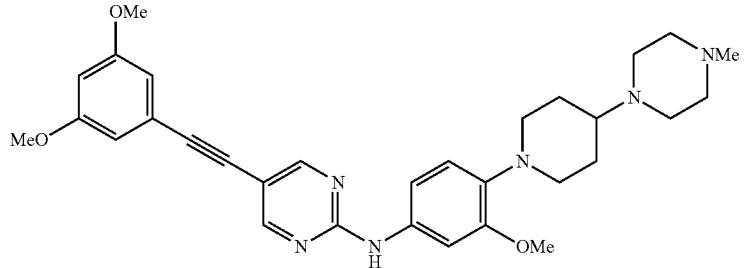
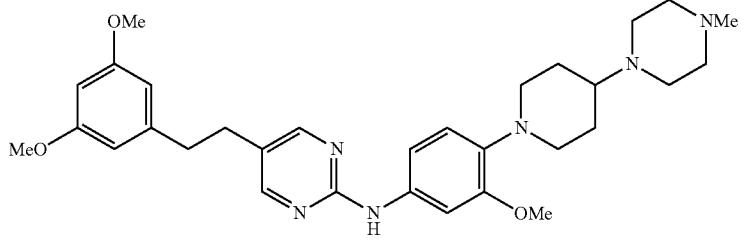
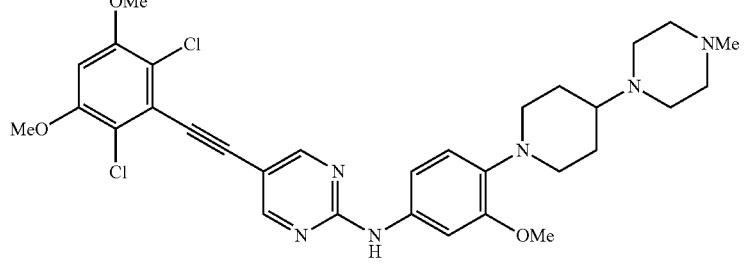
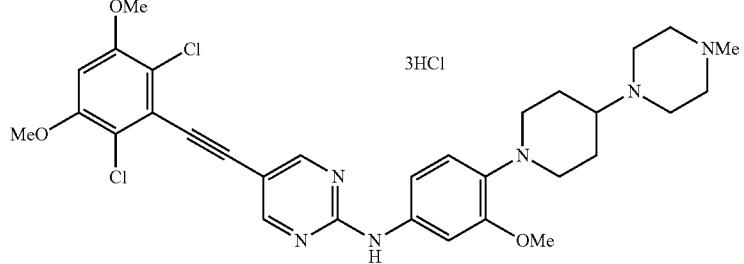
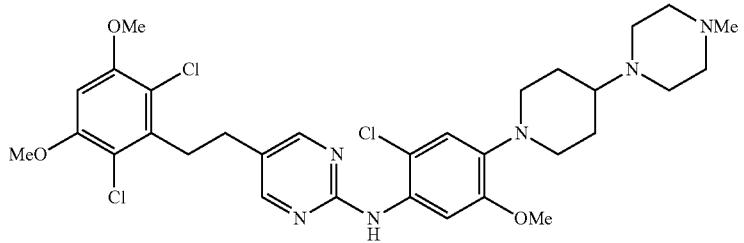





Ex	Str
1	
2	
3	
4	
5	

TABLE 64

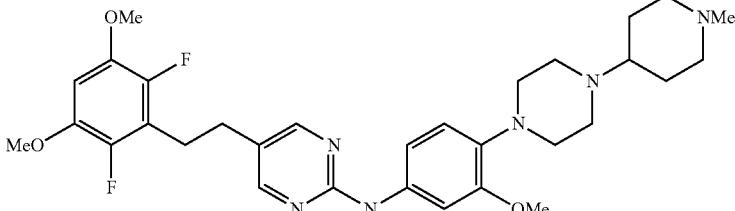
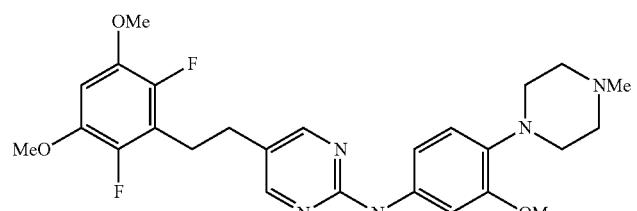
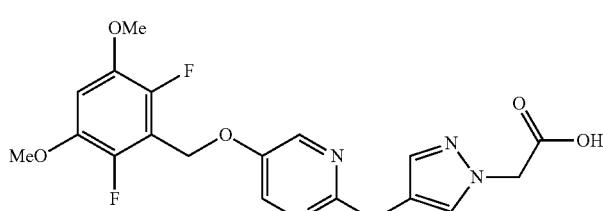
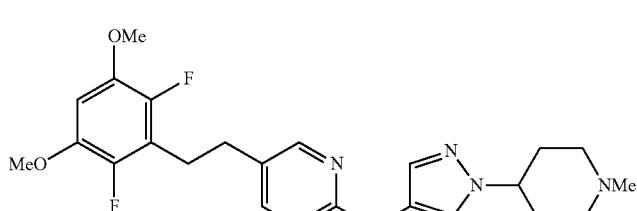
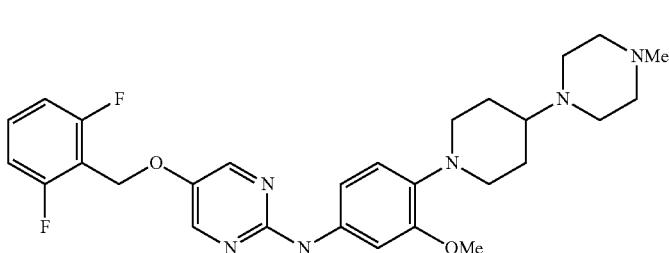
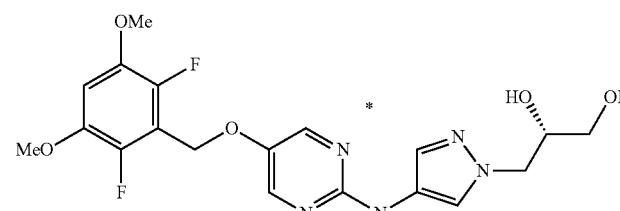






Ex	Str
6	
7	
8	
9	
10	
11	

TABLE 65

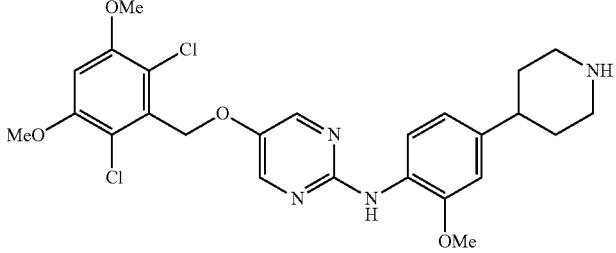
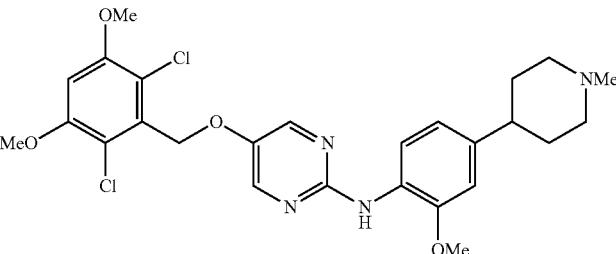
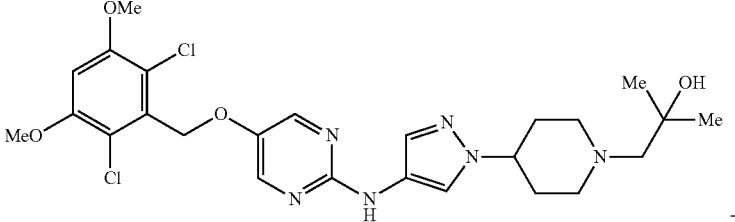
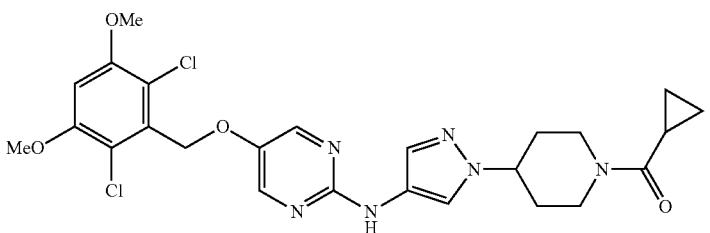
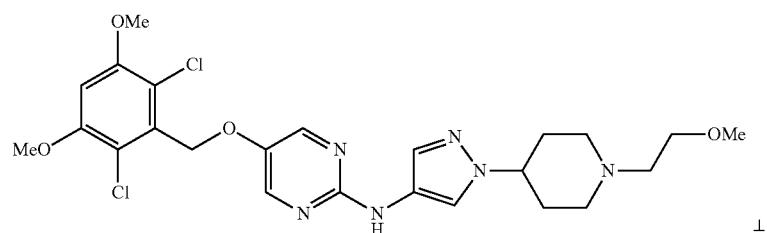





Ex	Str
12	
13	
14	
15	
16	

TABLE 66

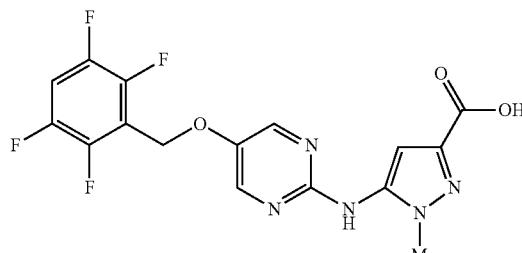
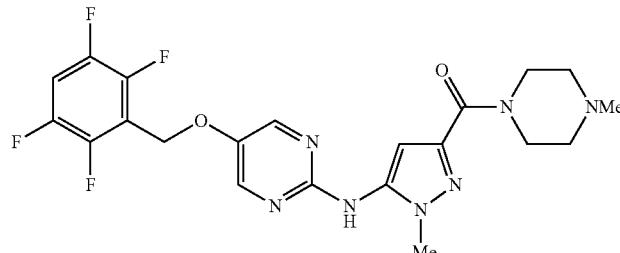
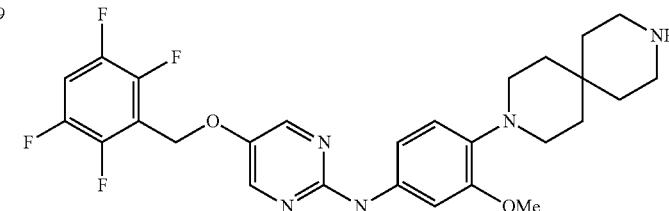
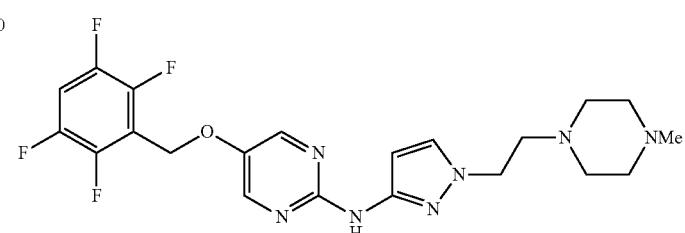
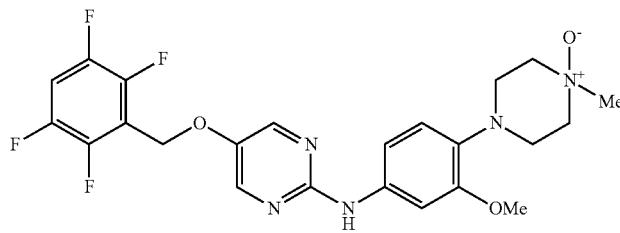





Ex	Str
17	
18	
19	
20	
21	

TABLE 67

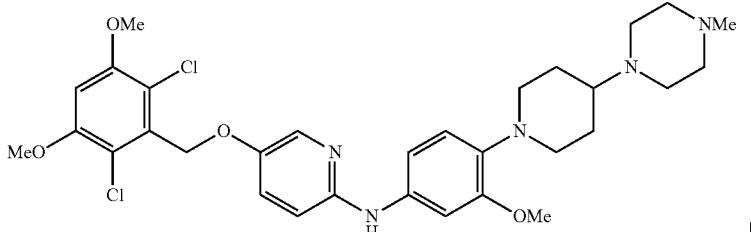
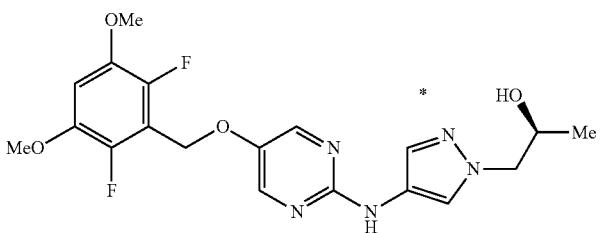
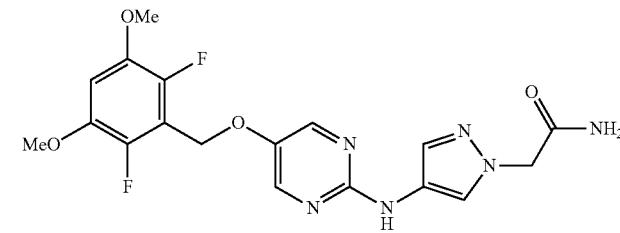
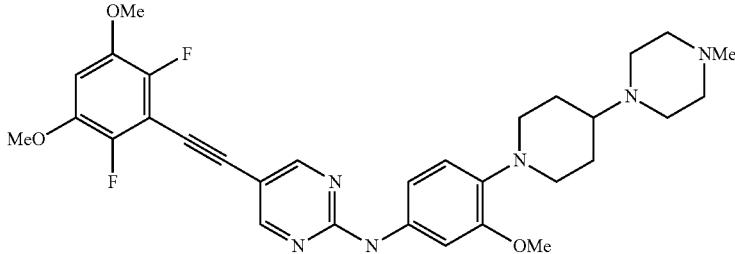
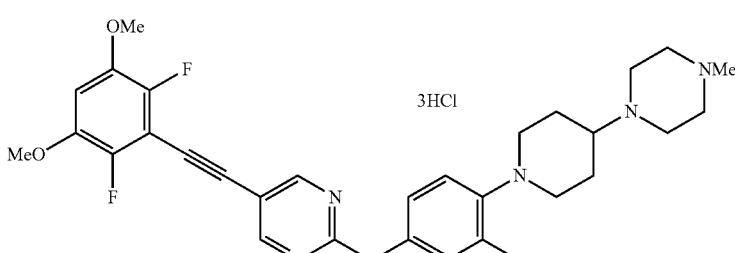
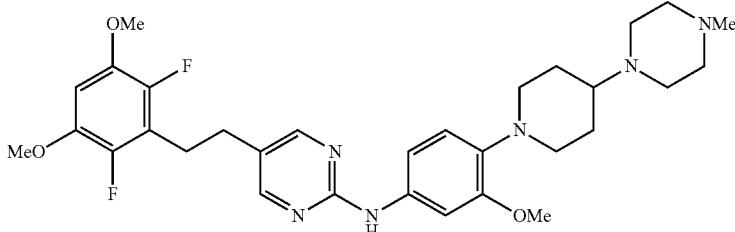
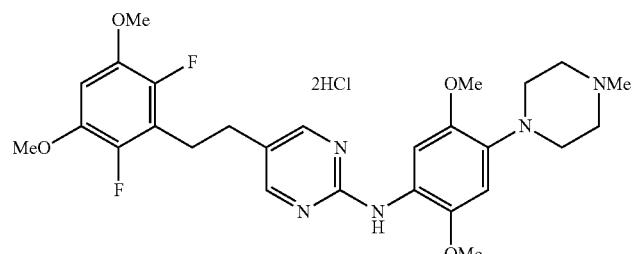
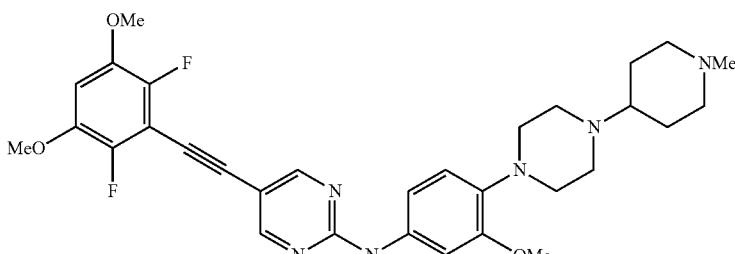





Ex	Str
22	
23	
24	
25	
26	

TABLE 68

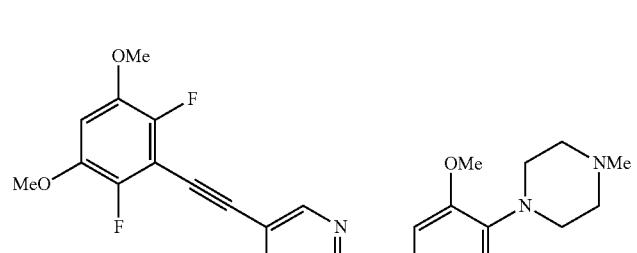

Ex	Str
27	⊥
28	⊥
29	⊥
30	⊥
31	⊥

TABLE 69

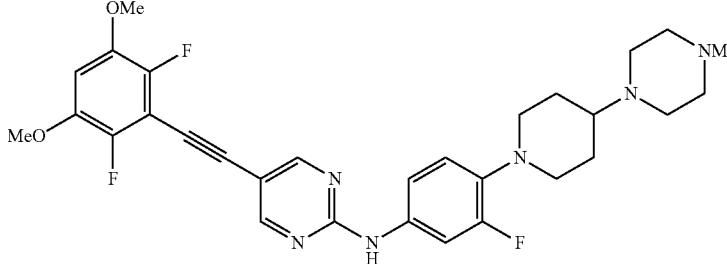
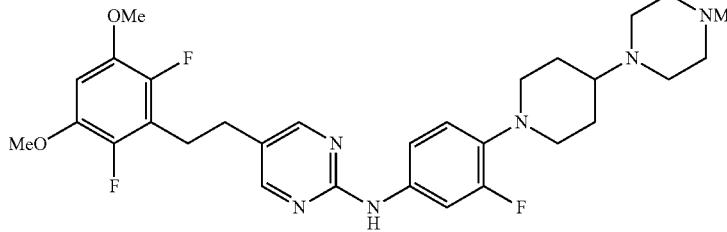
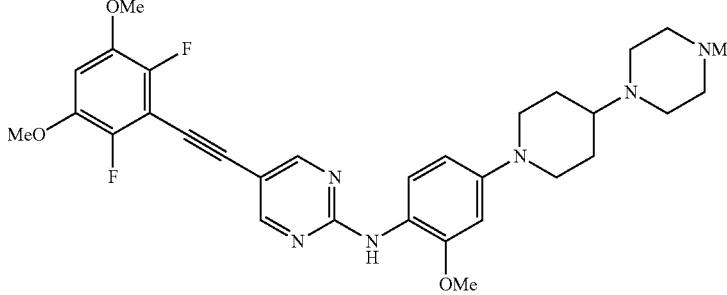
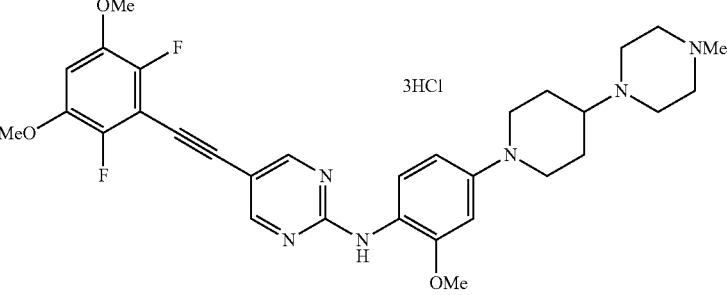
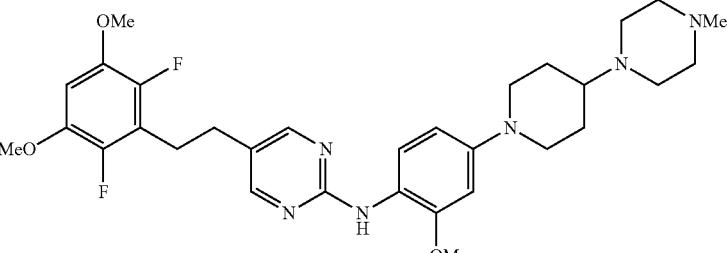





Ex	Str
32	
33	
34	
35	
36	

TABLE 70

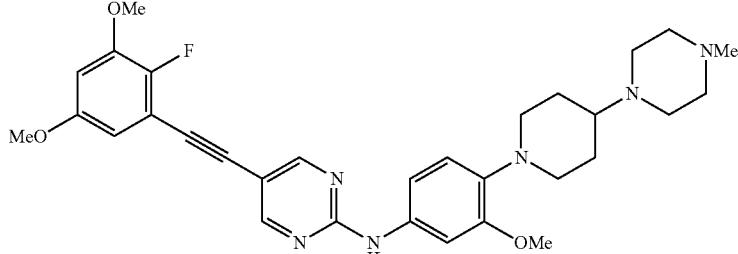
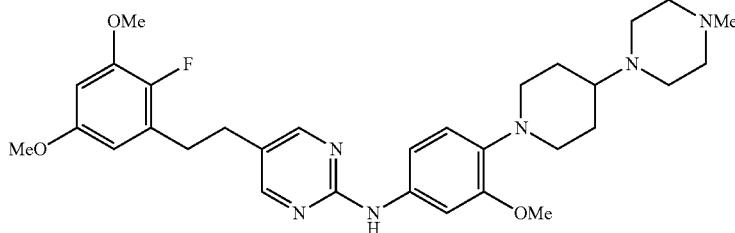
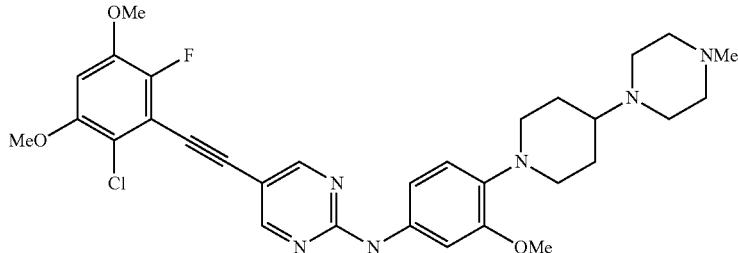
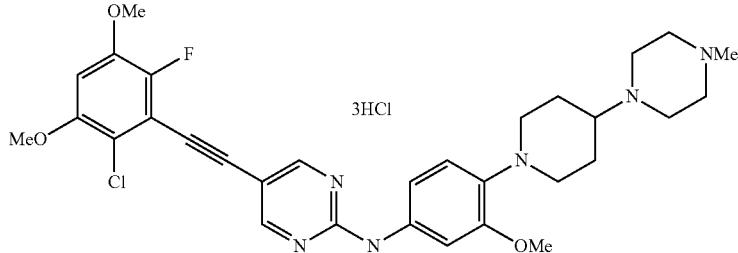
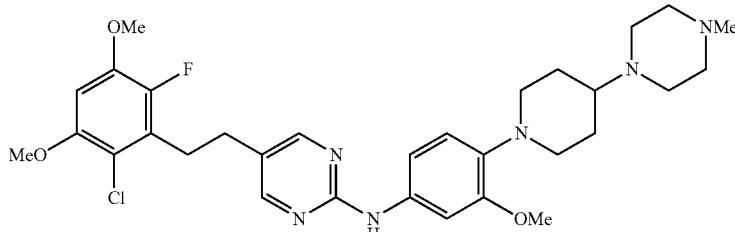





Ex	Str
37	
38	
39	
40	
41	

TABLE 71

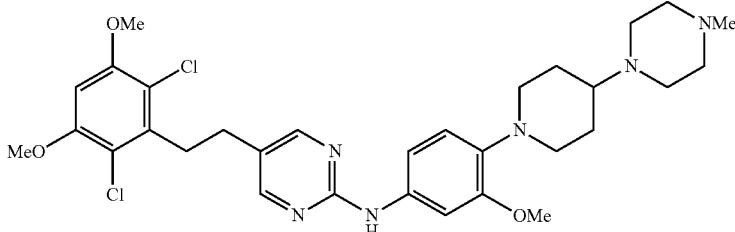
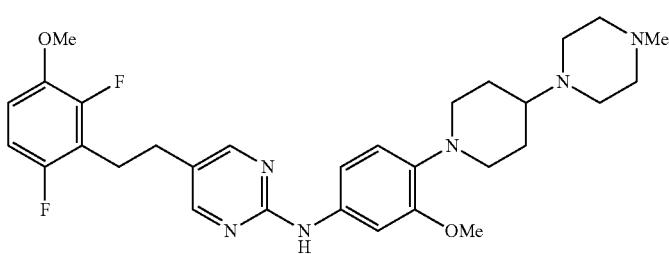
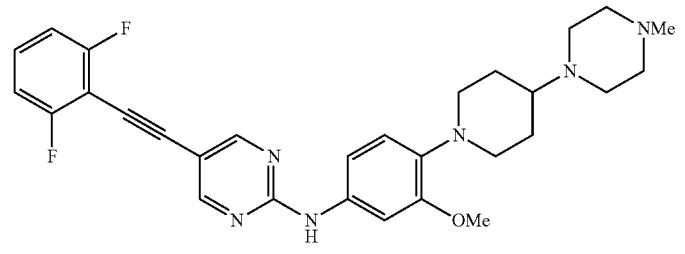
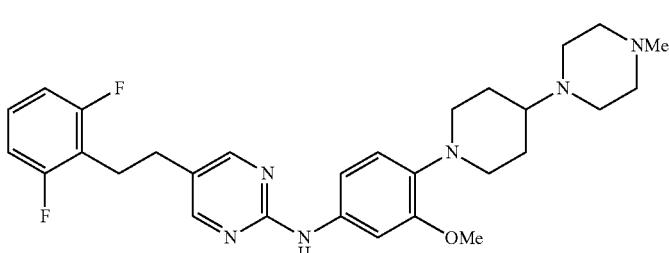




Ex	Str
42	⊥
43	⊥
44	⊥
45	⊥
46	⊥

TABLE 72

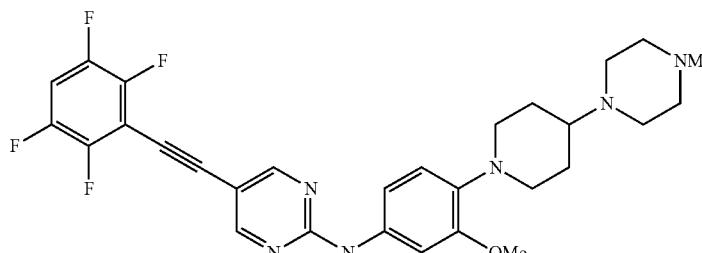
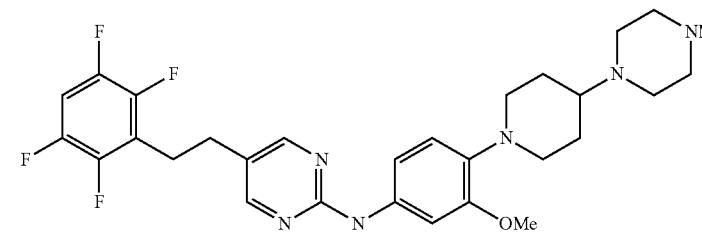
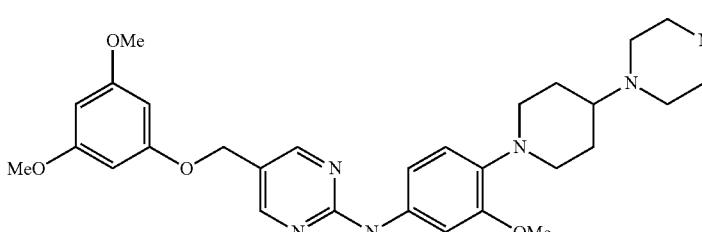
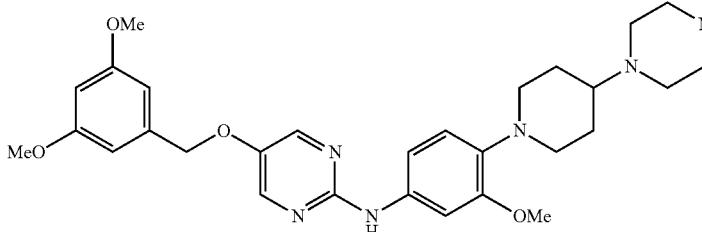
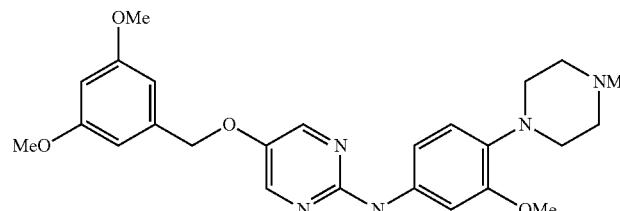





Ex	Str
47	<p>⊥</p>
48	<p>⊥</p>
49	<p>⊥</p>
50	<p>⊥</p>
51	<p>⊥</p>

TABLE 73

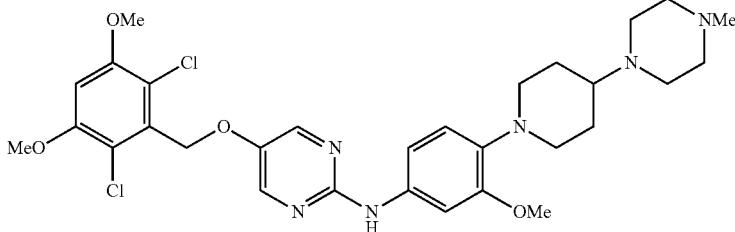
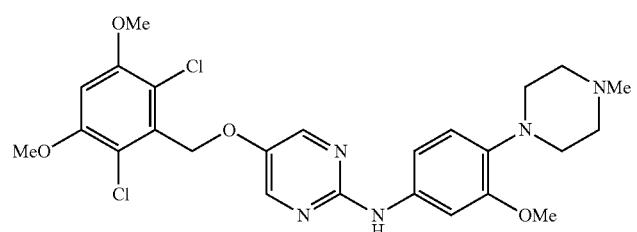
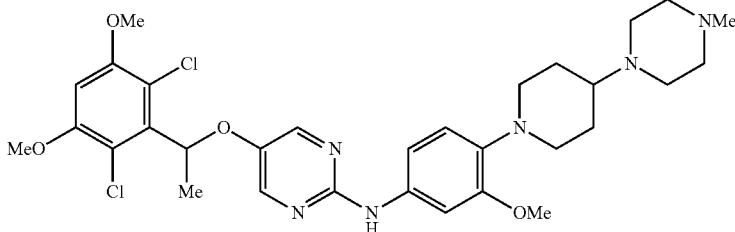
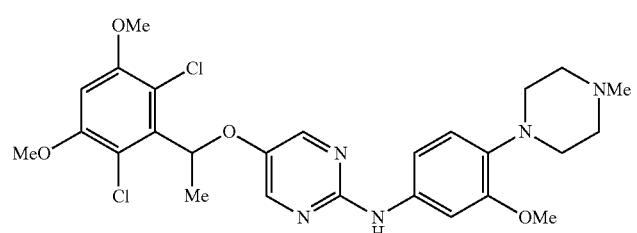
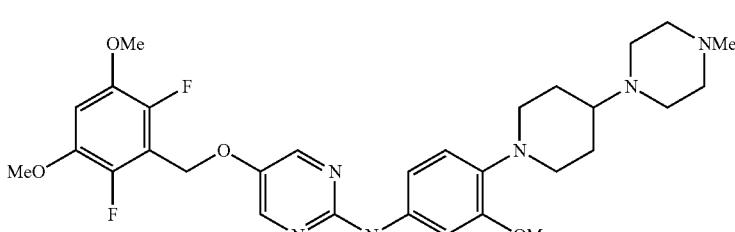





Ex	Str
52	<p style="text-align: right;">⊥</p>
53	<p style="text-align: right;">⊥</p>
54	<p style="text-align: right;">⊥</p>
55	<p style="text-align: right;">⊥</p>
56	<p style="text-align: right;">⊥</p>

TABLE 74

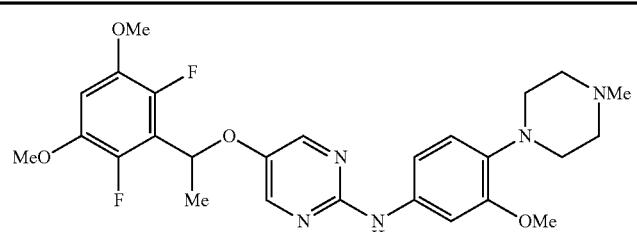
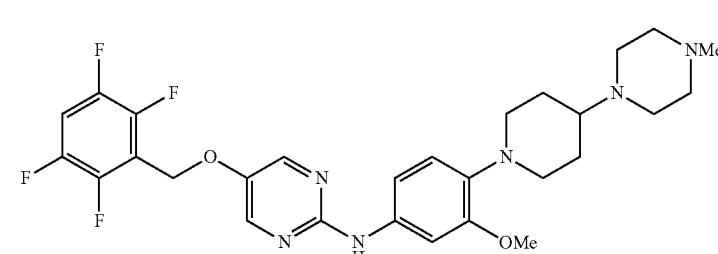
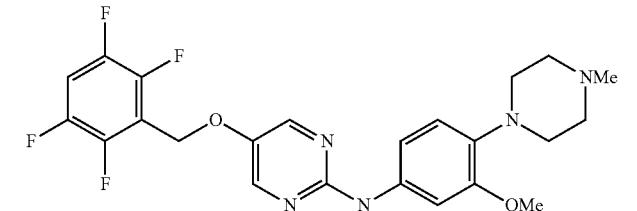
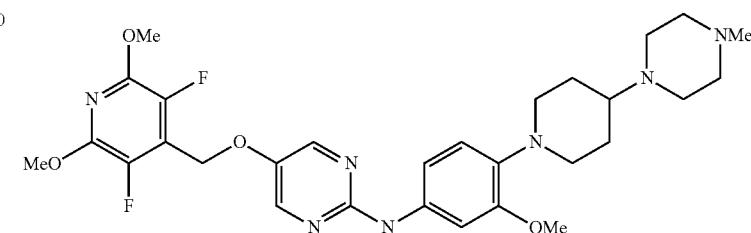
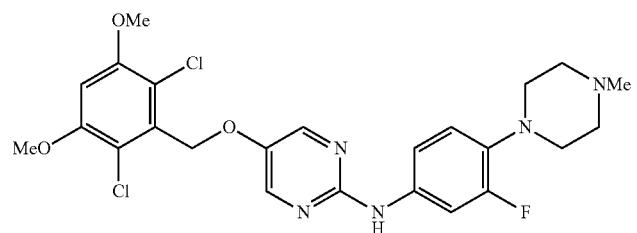





Ex	Str
57	
58	
59	
60	
61	

TABLE 75

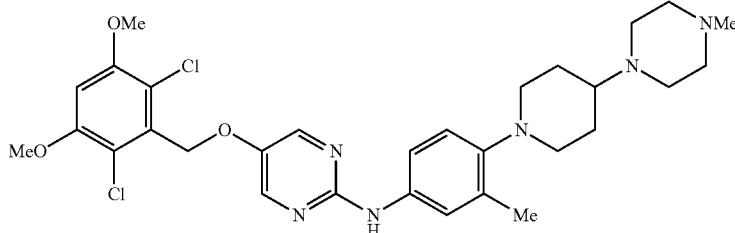
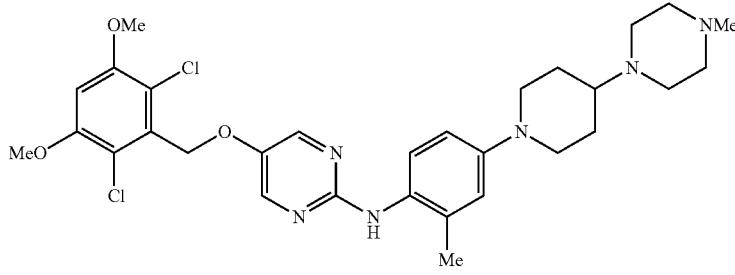
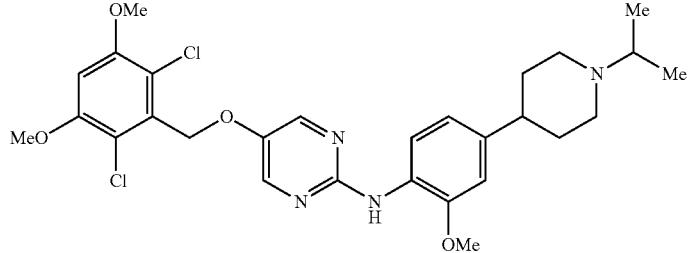
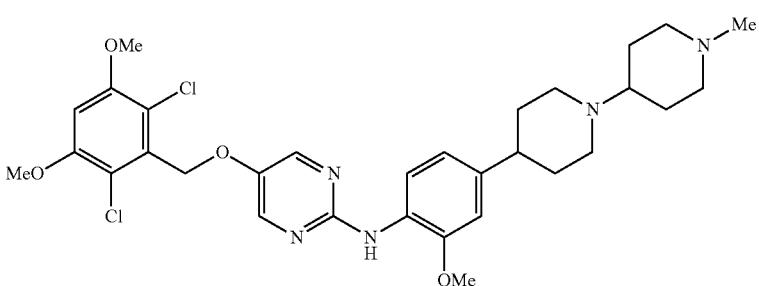
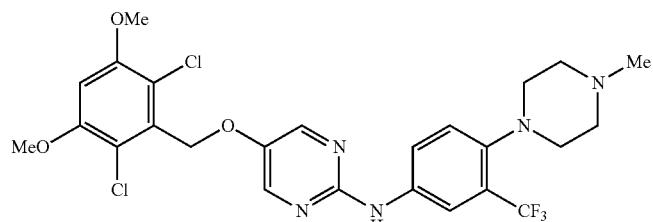





Ex	Str
62	
63	
64	
65	
66	

TABLE 76

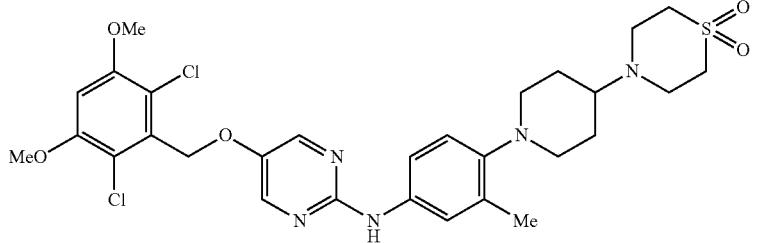
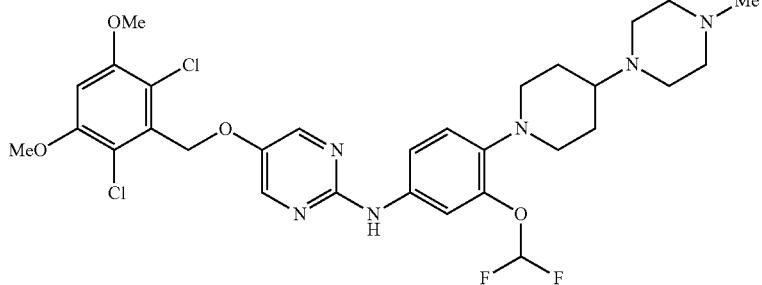
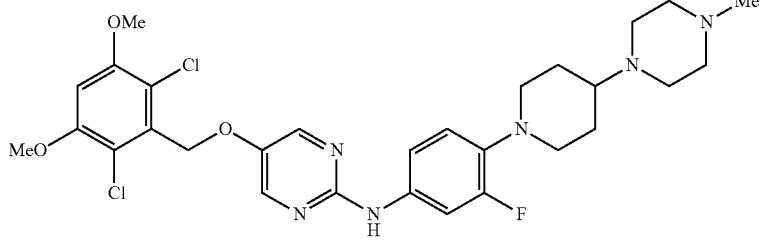
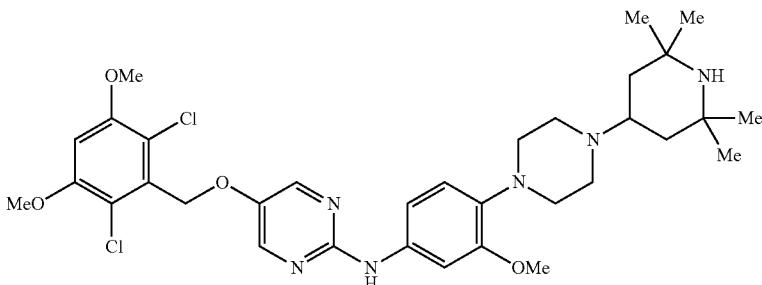
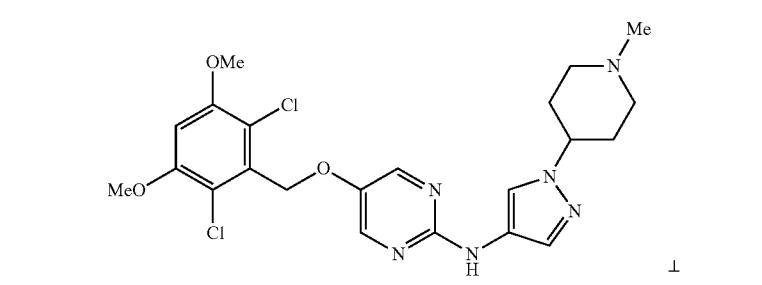





Ex	Str
67	
68	
69	
70	
71	

TABLE 77

Ex	Str
72	
73	
74	
75	
76	

TABLE 78

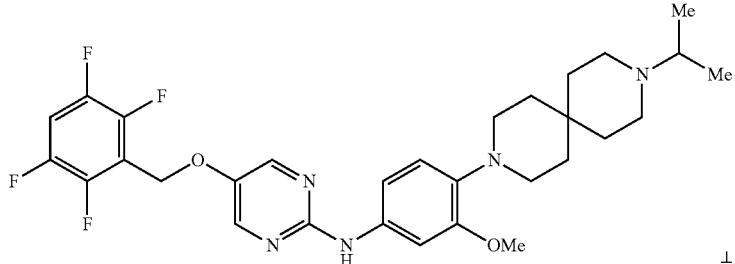
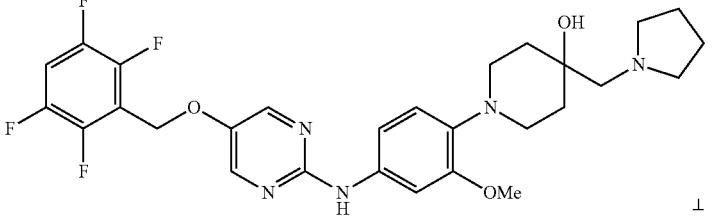
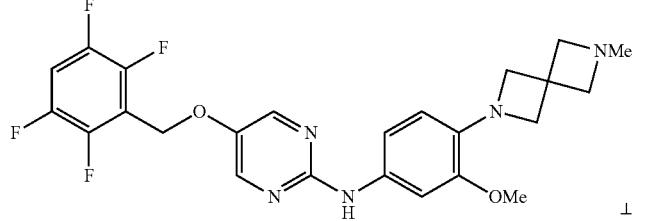
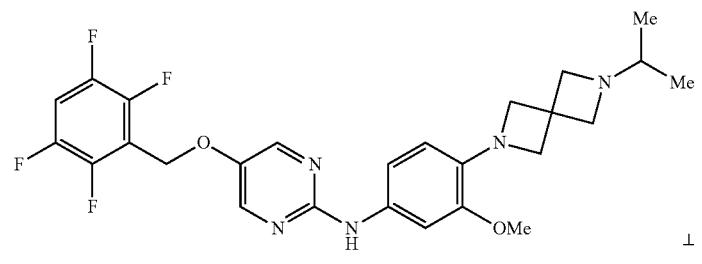
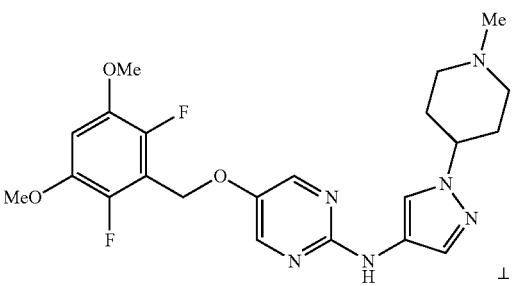





Ex	Str
77	<p>⊥</p>
78	<p>⊥</p>
79	<p>⊥</p>
80	<p>⊥</p>
81	<p>⊥</p>

TABLE 79

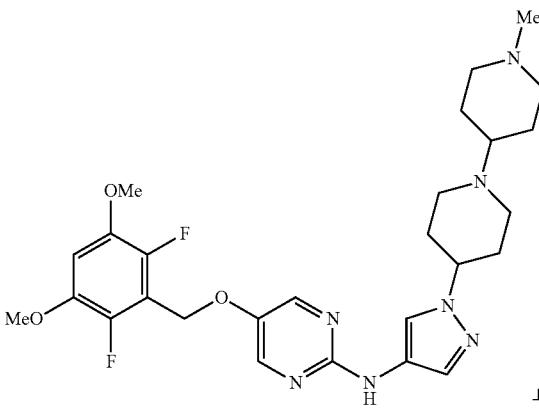
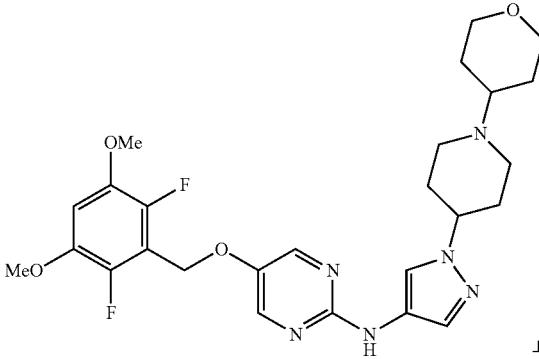
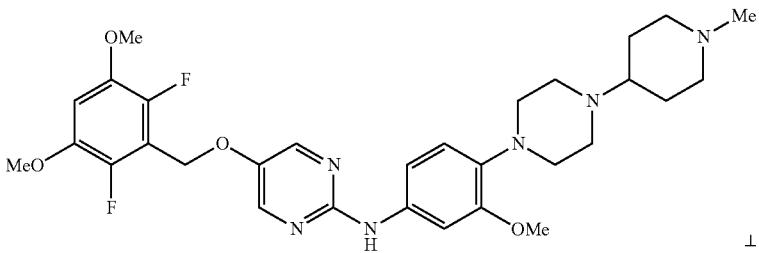
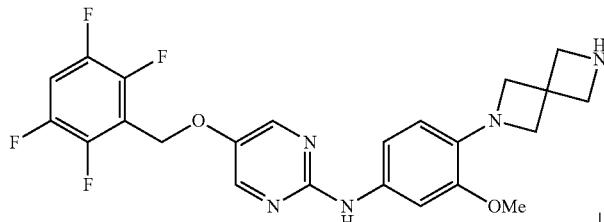




Ex	Str
82	
83	
84	
85	

TABLE 80

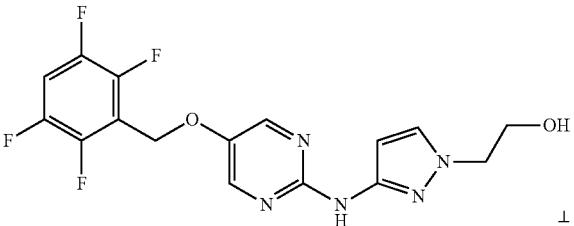
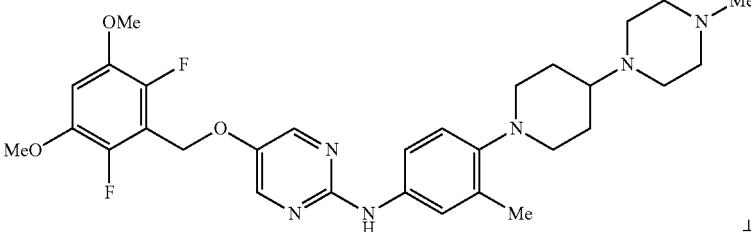
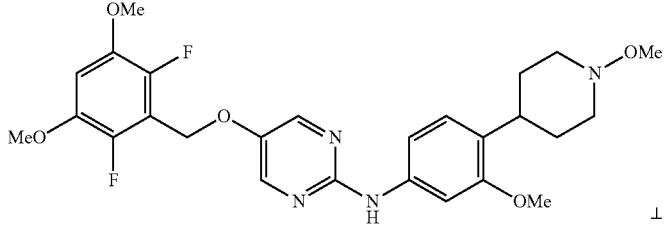
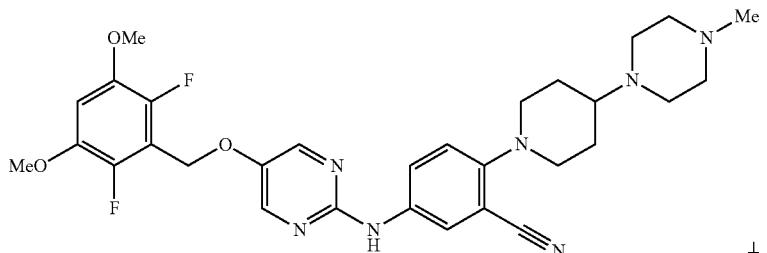
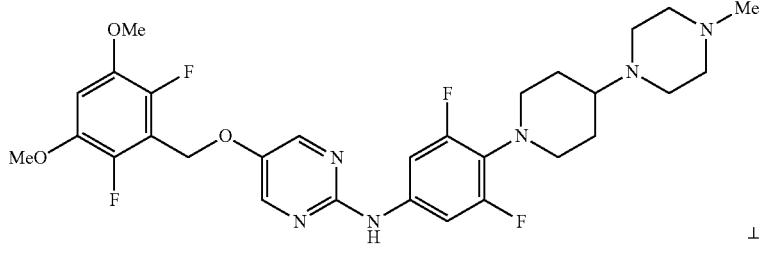





Ex	Str
86	
87	
88	
89	
90	

TABLE 81

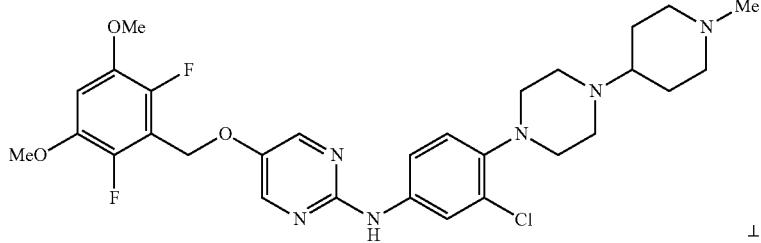
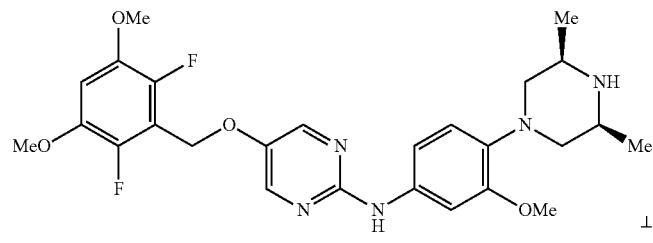
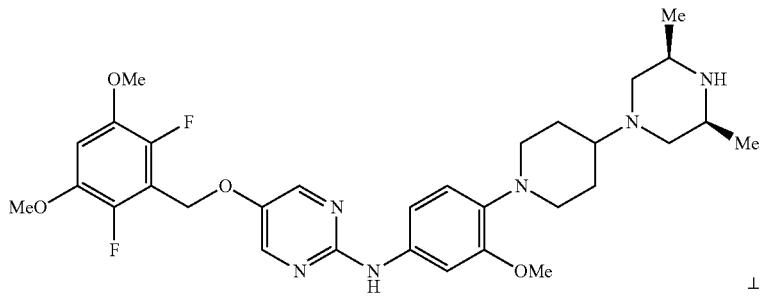
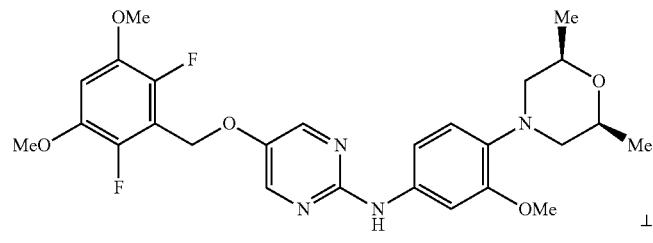
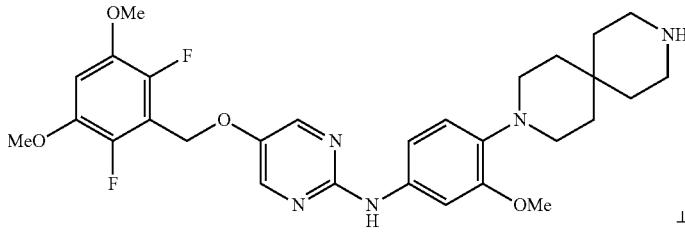





Ex	Str
91	
92	
93	
94	
95	

TABLE 82

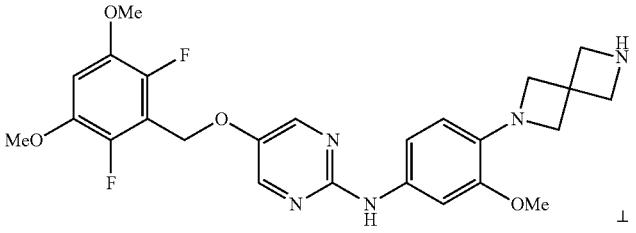
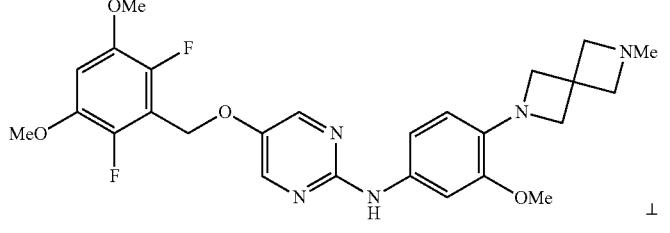
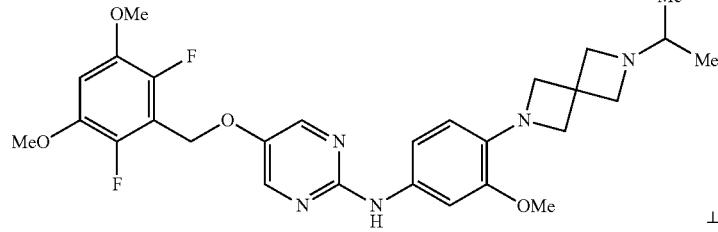
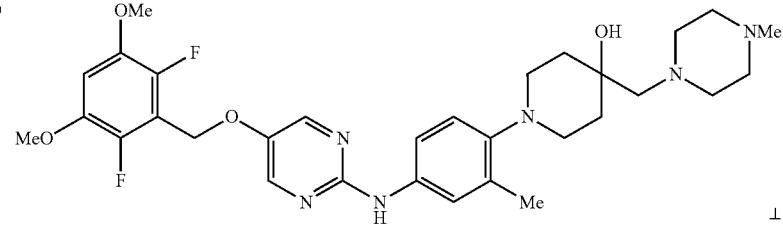




Ex	Str
96	
97	
98	
99	
100	

TABLE 83

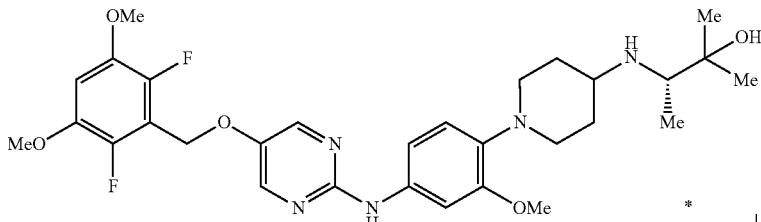
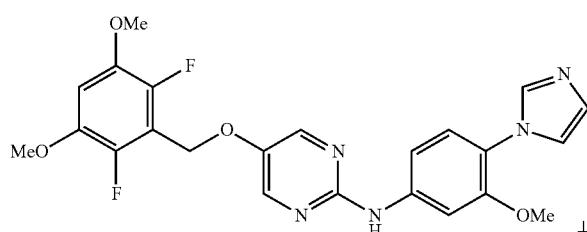
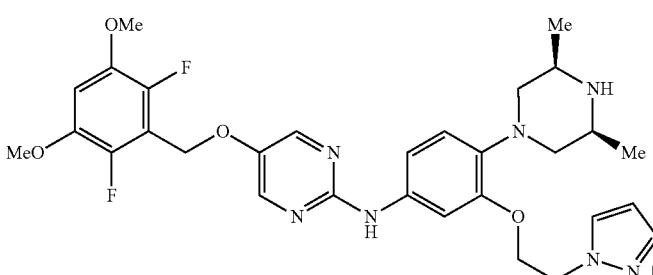
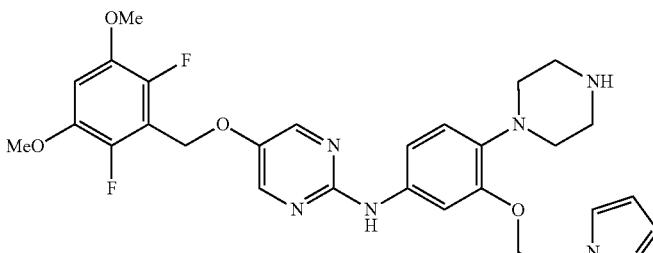




Ex	Str
101	<p style="text-align: center;">*</p> <p style="text-align: center;">⊥</p>
102	<p style="text-align: center;">⊥</p>
103	<p style="text-align: center;">⊥</p>
104	<p style="text-align: center;">⊥</p>
105	<p style="text-align: center;">⊥</p>

TABLE 84

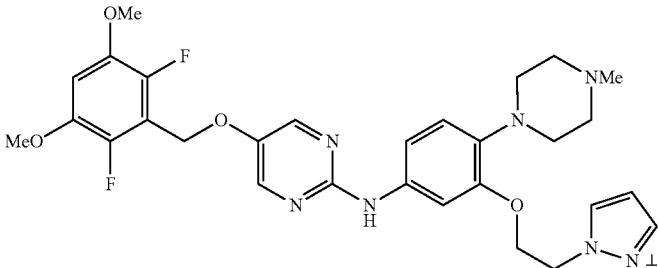
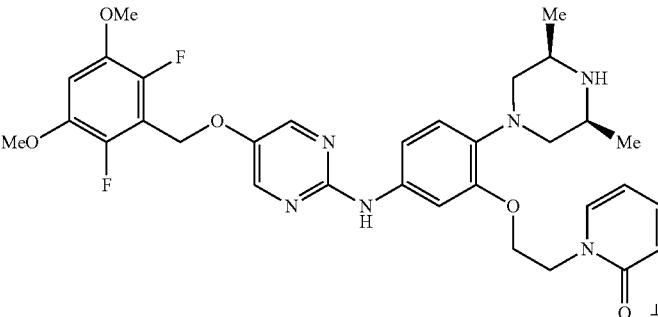
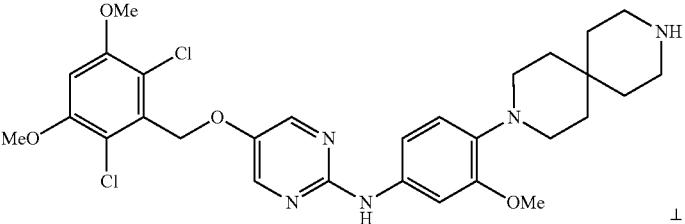
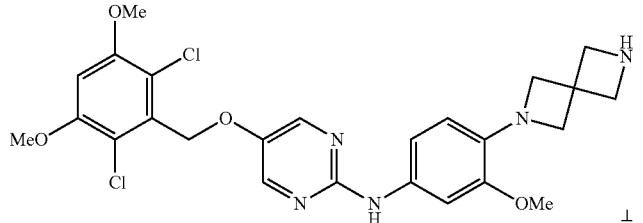
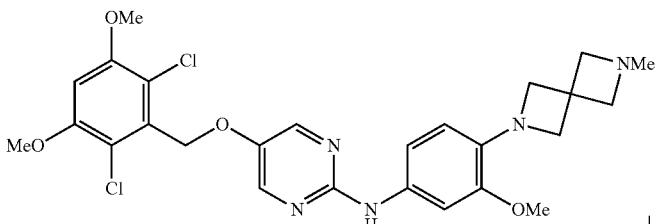





Ex	Str
106	
107	
108	
109	
110	

TABLE 85

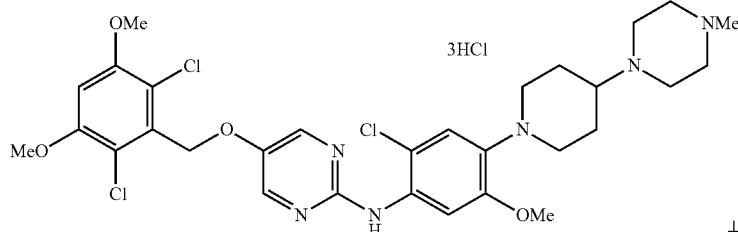
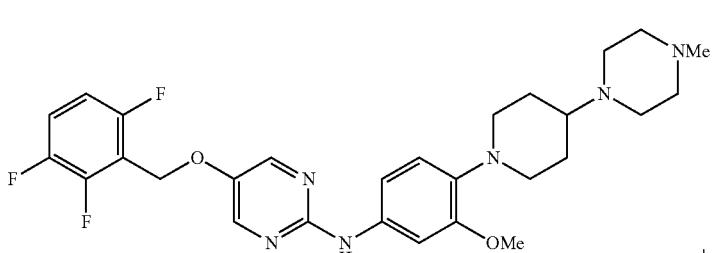
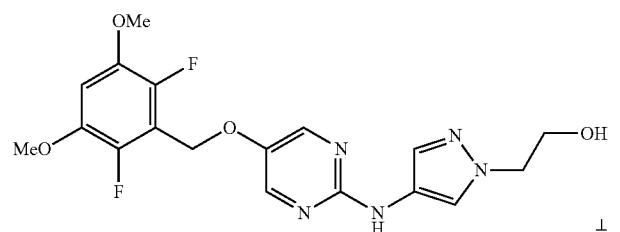
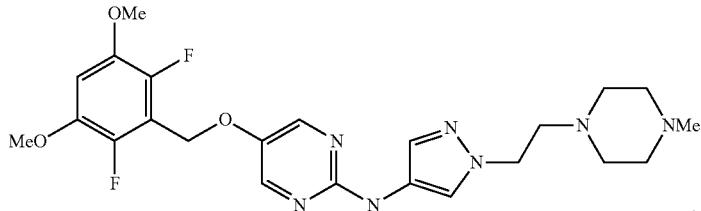
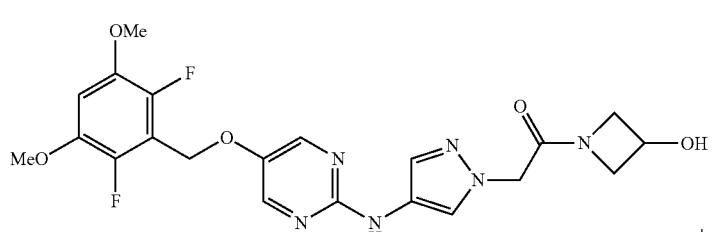





Ex	Str
111	
112	
113	
114	
115	

TABLE 86

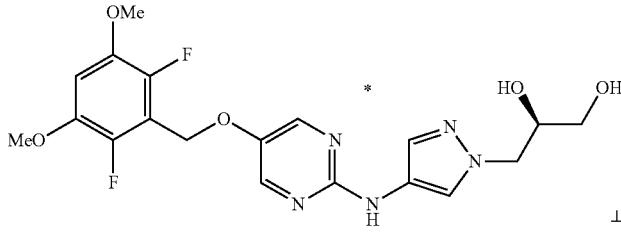
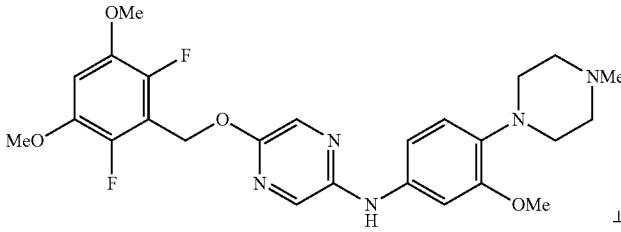
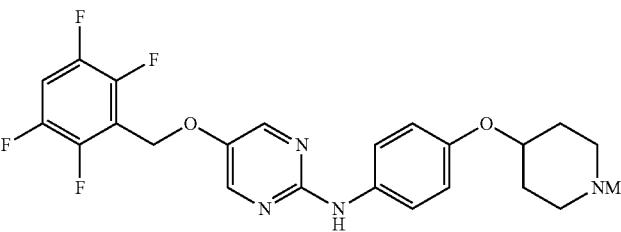
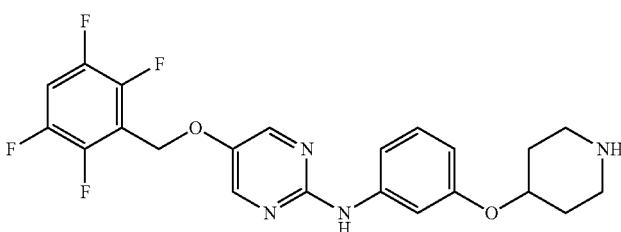




Ex	Str
116	
117	
118	
119	
120	

TABLE 87

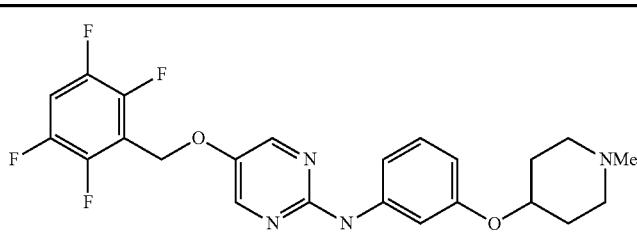
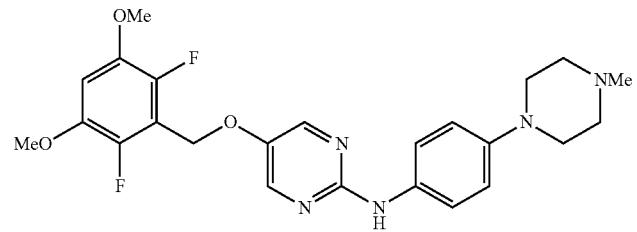
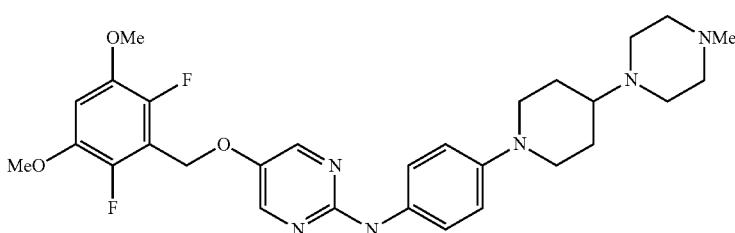
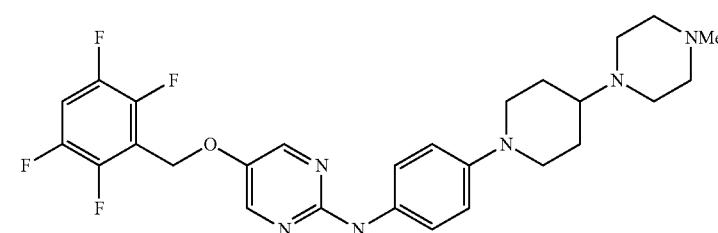
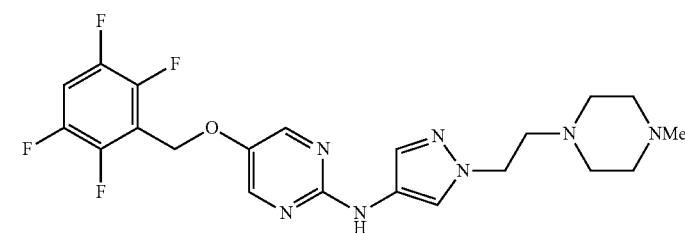





Ex	Str
121	
122	
123	
124	
125	

TABLE 88

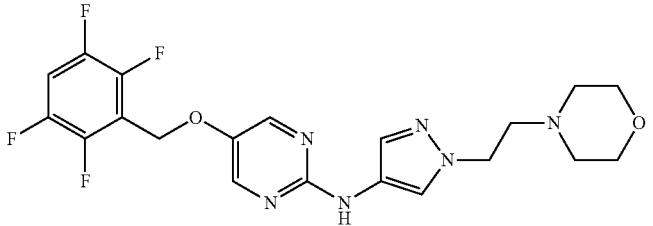
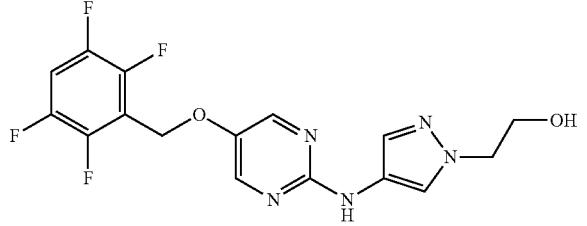
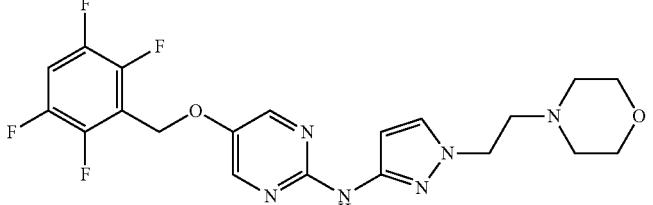
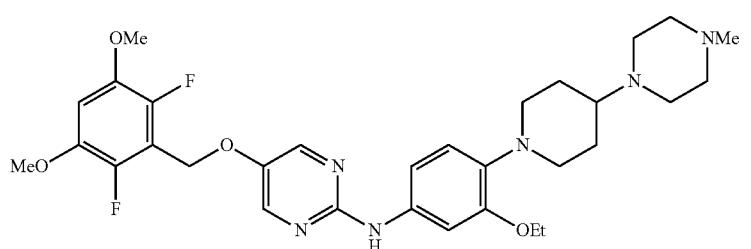
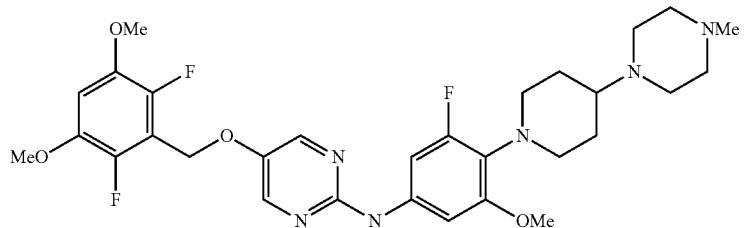





Ex	Str
126	
127	
128	
129	
130	

TABLE 89

Ex	Str
131	
132	
133	
134	
135	

TABLE 90

Ex	Str
136	
137	
138	
139	
140	

TABLE 91

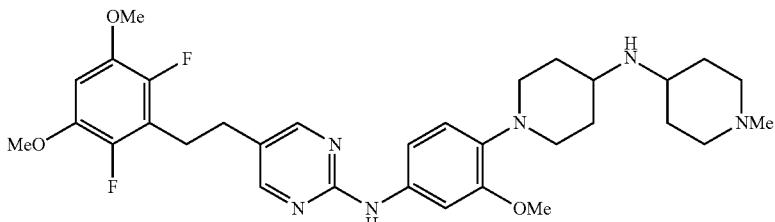
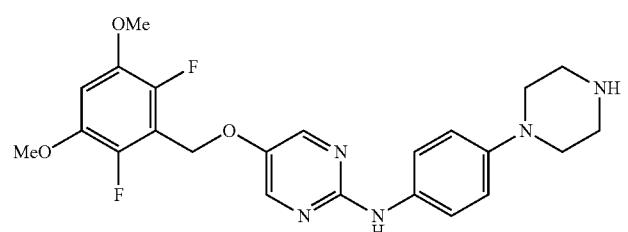
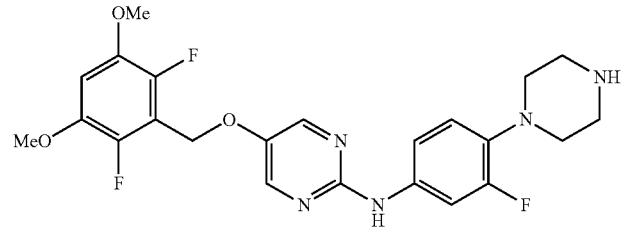
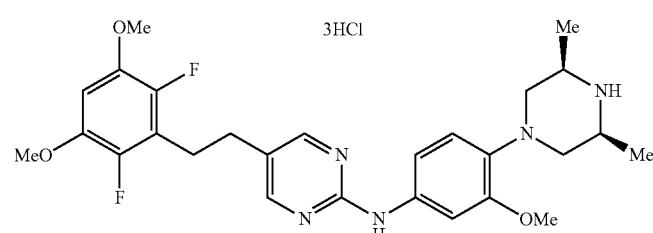
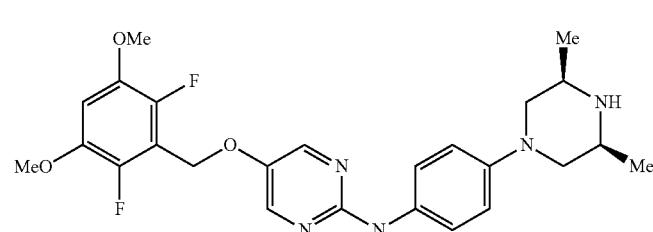





Ex	Str
141	
142	
143	
144	
145	

TABLE 92

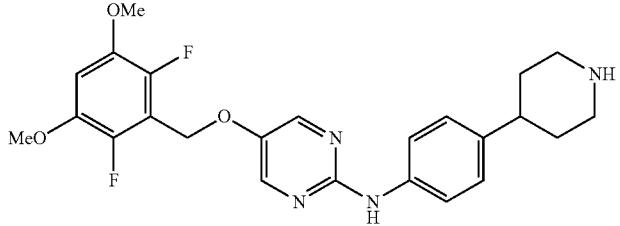
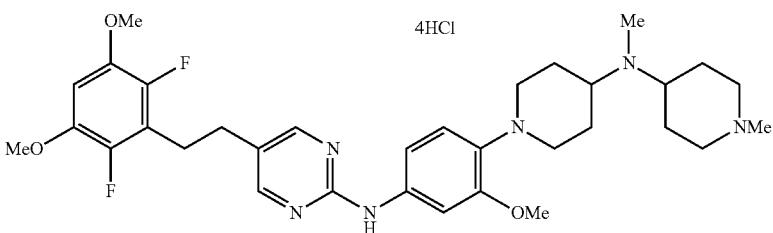
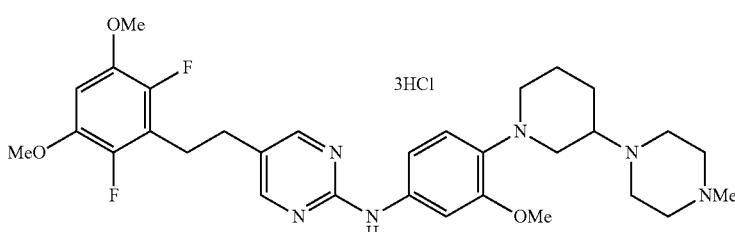
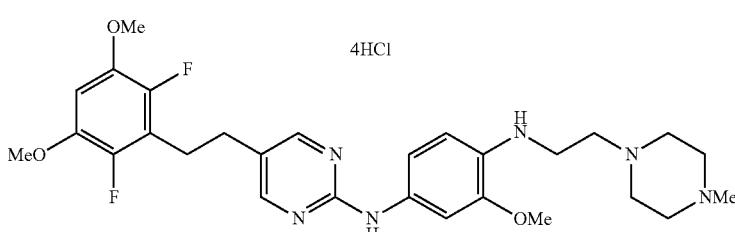
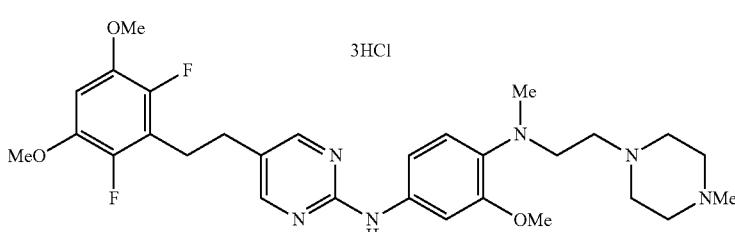
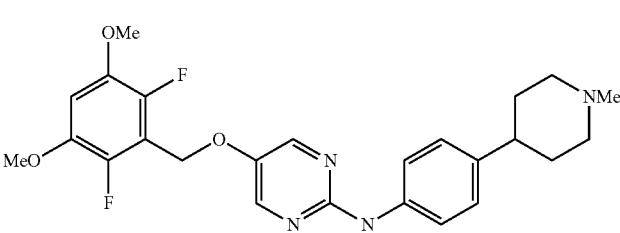






Ex	Str
146	
147	
148	
149	
150	
151	

TABLE 93

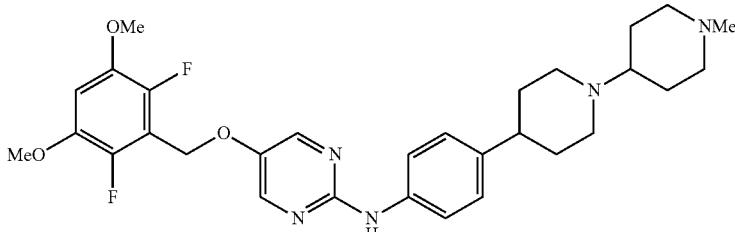
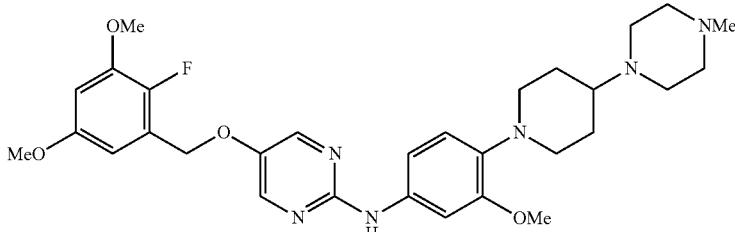
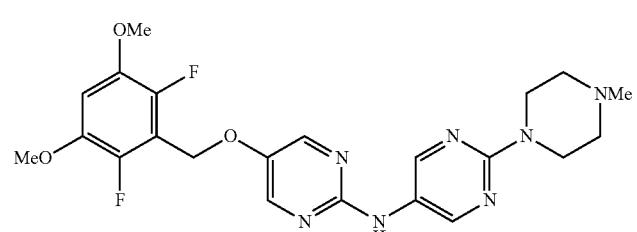
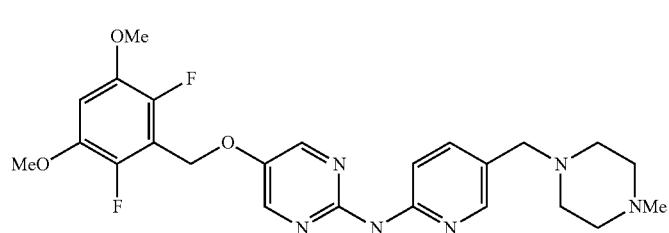
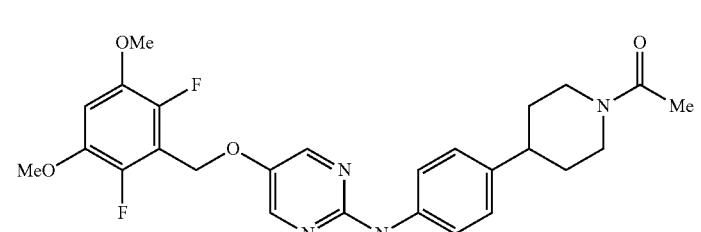





Ex	Str
152	
153	
154	
155	
157	

TABLE 94

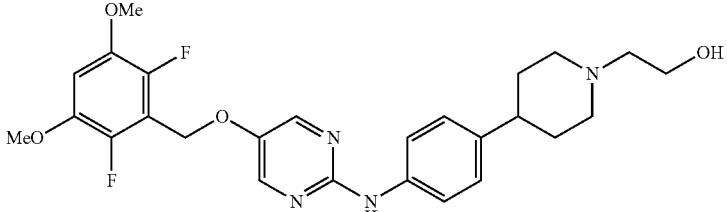
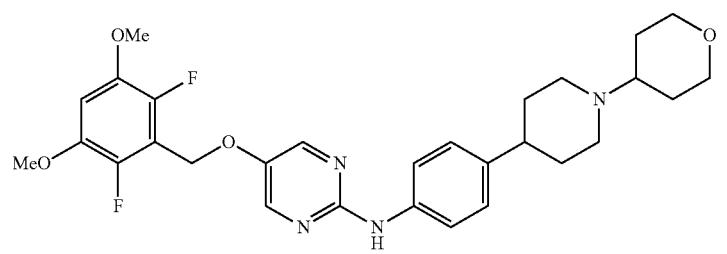
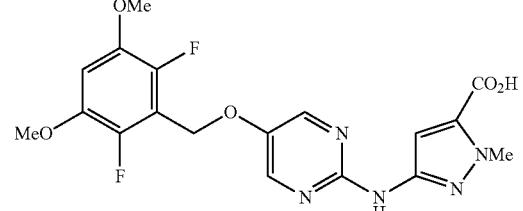
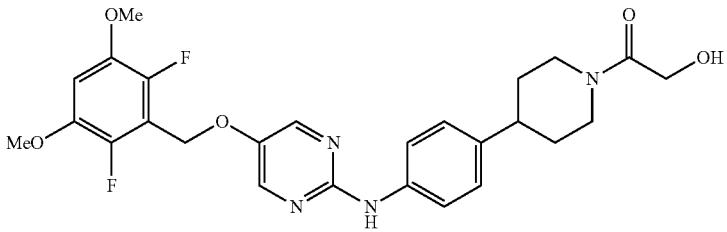
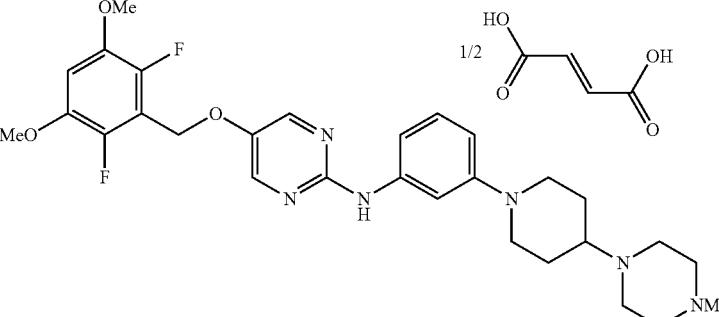





Ex	Str
158	
159	
160	
161	
162	

TABLE 95

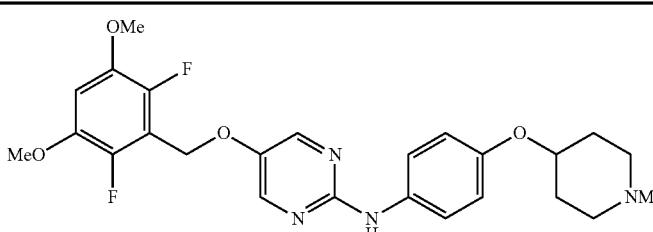
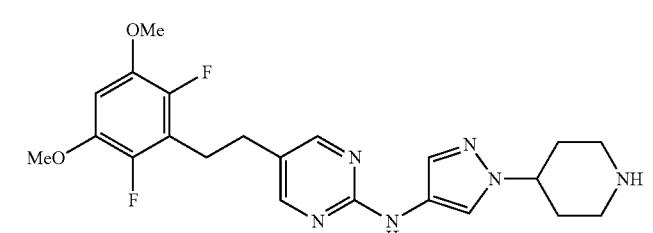
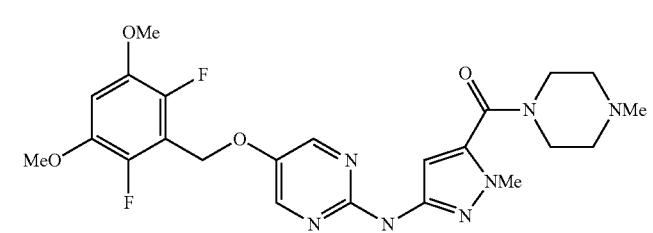
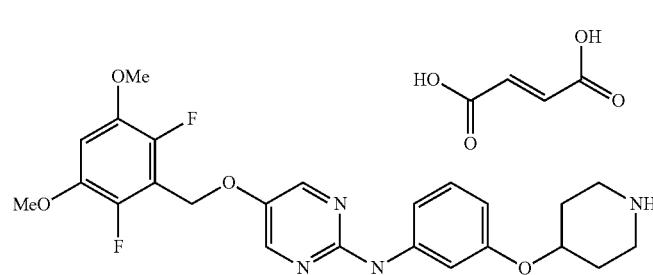
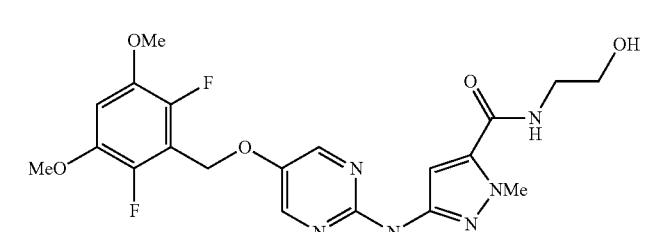





Ex	Str
165	
166	
167	
168	
169	

TABLE 96

Ex	Str
170	
171	
172	
173	
174	

TABLE 97

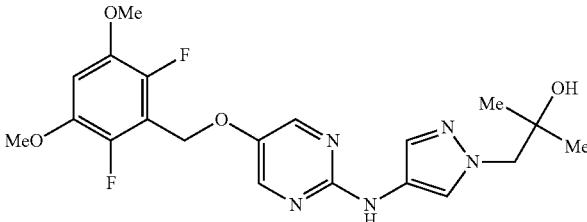
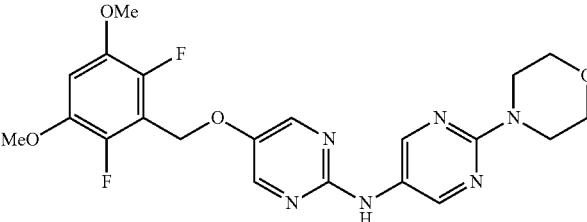
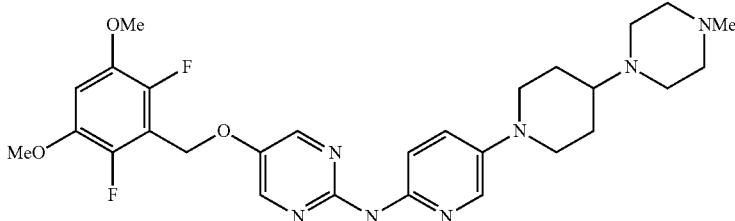
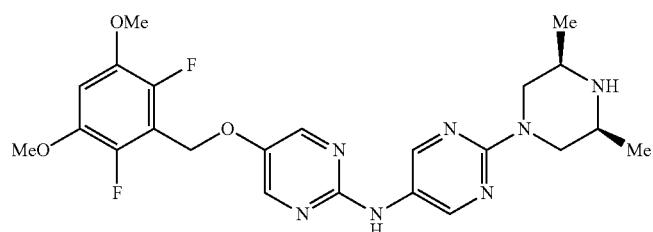
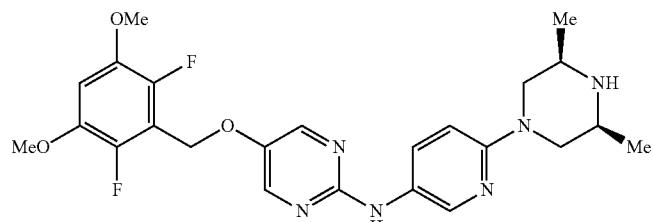





Ex	Str
175	
176	
177	
178	
179	

TABLE 98

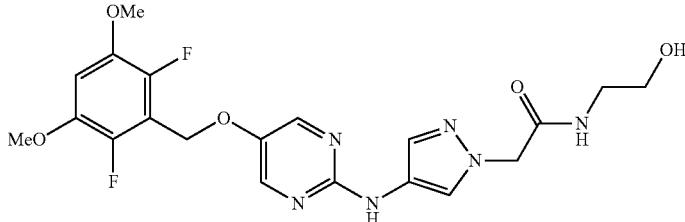
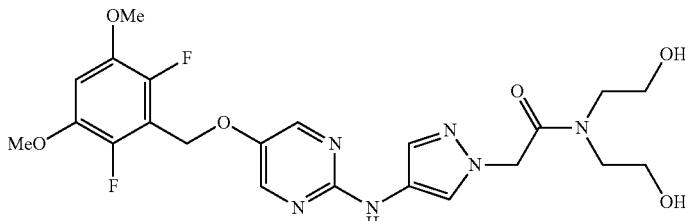
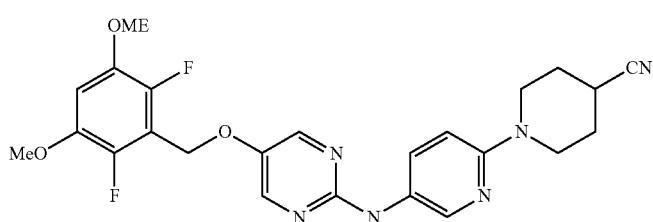
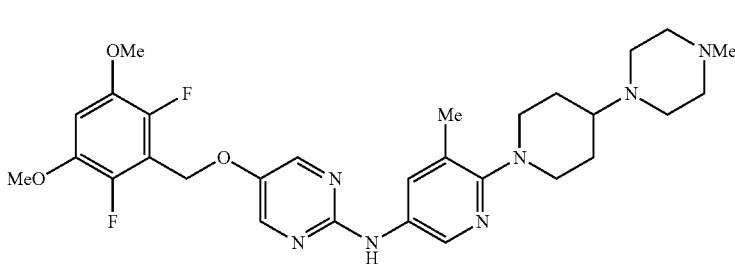
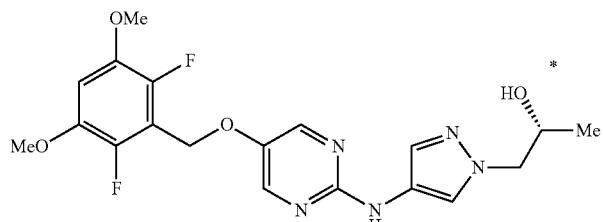





Ex	Str
180	
181	
182	
183	
184	

TABLE 99

Ex	Str
185	
186	
187	
188	
189	

TABLE 100

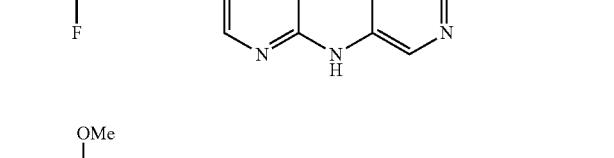
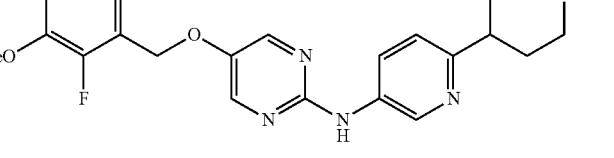



Ex	Str
190	
191	
192	
193	
194	

TABLE 101

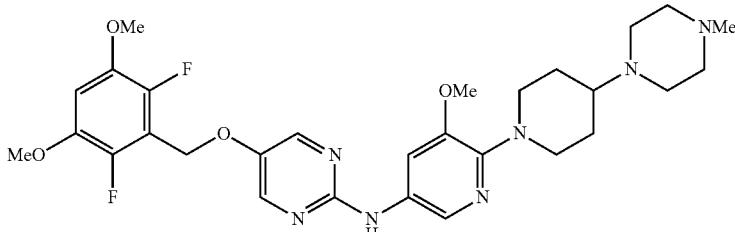
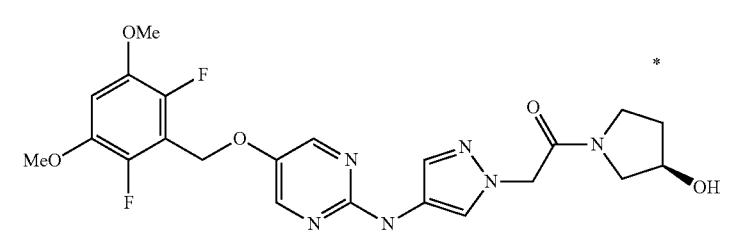
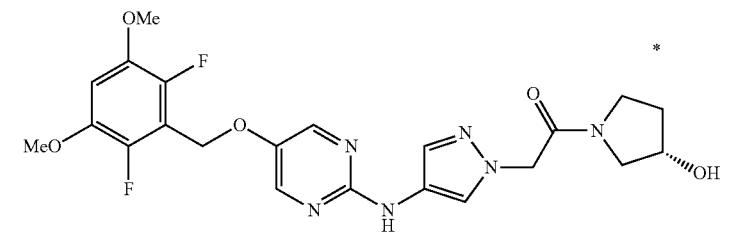
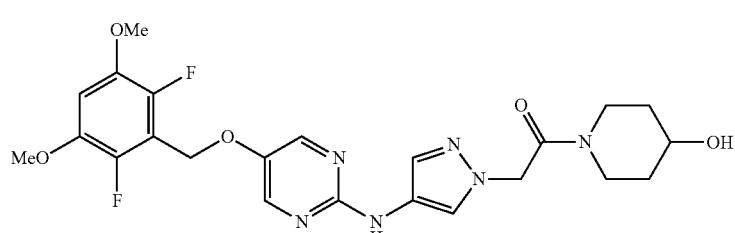
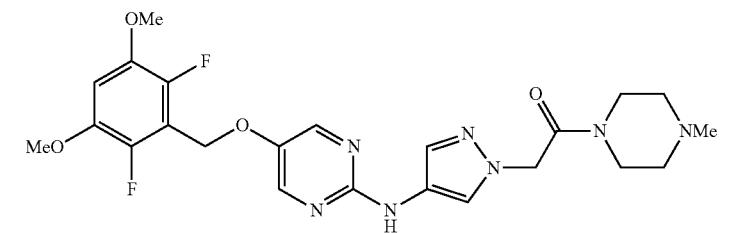





Ex	Str
195	
196	
197	
198	
199	

TABLE 102

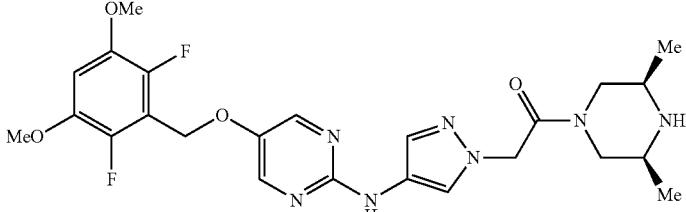
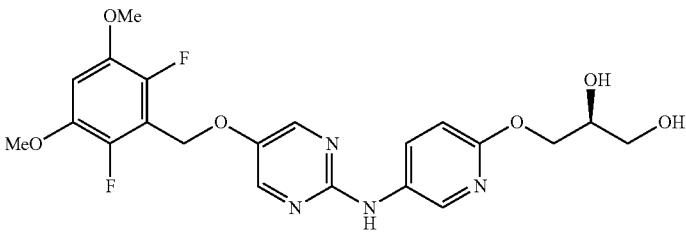
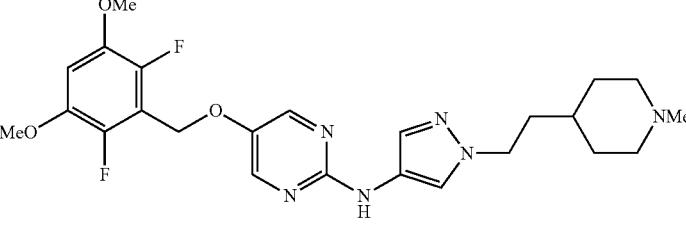
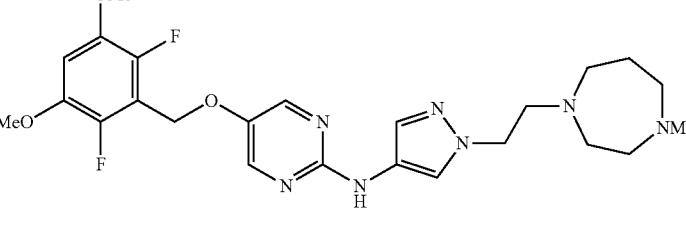
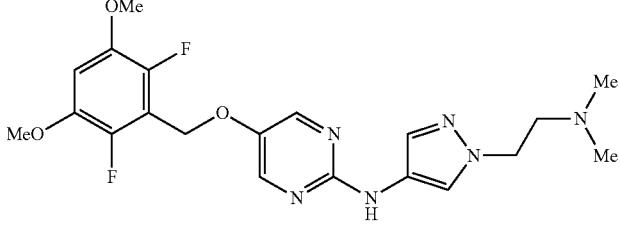





Ex	Str
200	
201	
202	
203	
204	

TABLE 103

Ex	Str	
205		
206	2HCl	
207	3HCl	
208		
209		

TABLE 104

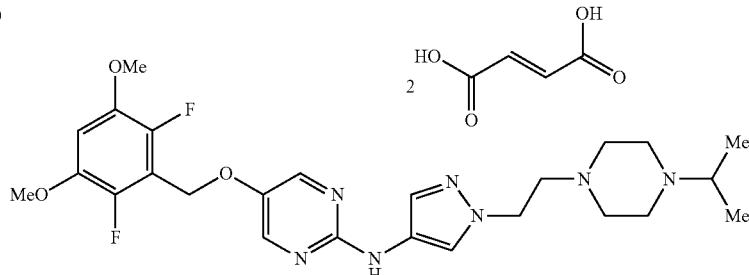
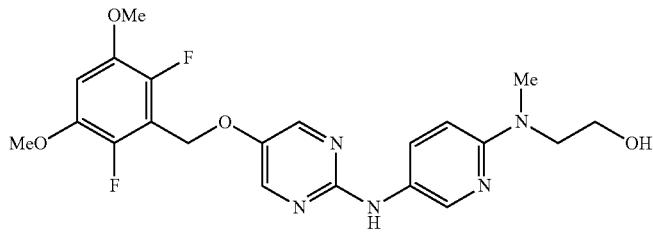
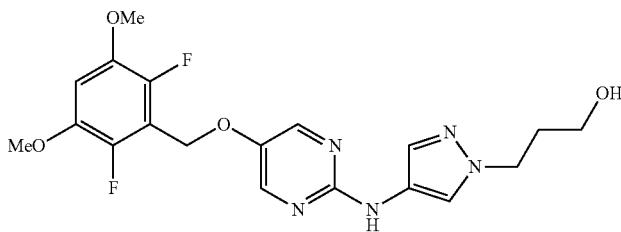
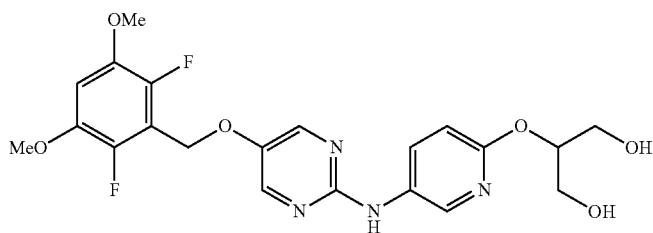
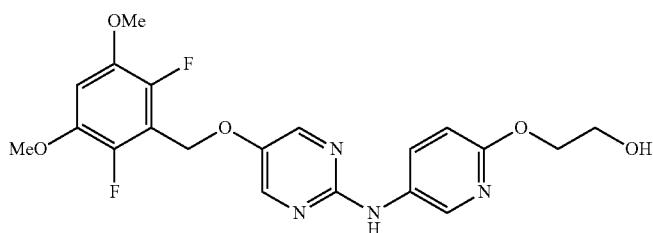





Ex	Str
210	
211	
212	
213	
214	

TABLE 105

Ex	Str
215	
216	
217	
218	
219	

TABLE 106

Ex	Str
220	
221	
222	
223	
224	

TABLE 107

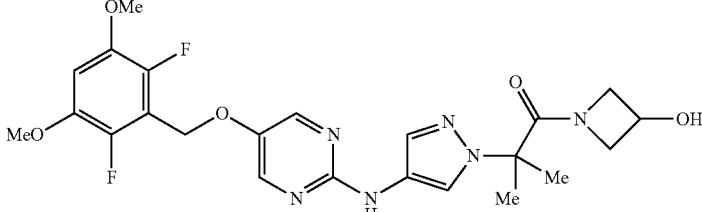
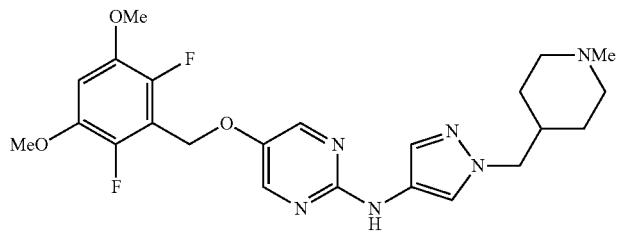
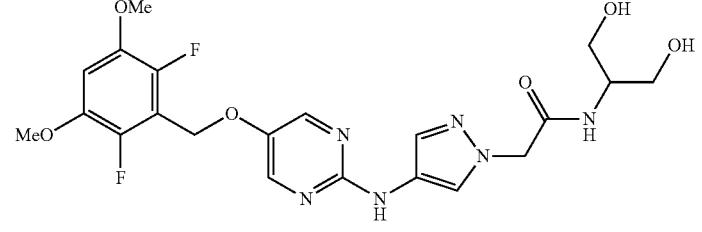
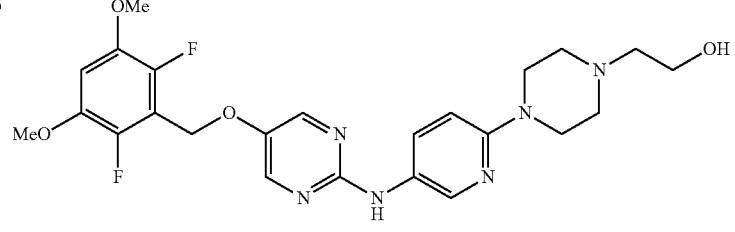




Ex	Str
225	
226	
227	
228	
229	

TABLE 108

Ex	Str
230	
231	
232	
233	
234	

TABLE 109

Ex	Str
235	
236	
237	
238	
239	

TABLE 110

Ex	Str
240	
241	
242	
243	
244	

TABLE 111

Ex	Str
245	
246	
247	
248	
249	2HCl

TABLE 112

Ex	Str
250	
251	
252	
253	
254	

TABLE 113

Ex	Str
255	
256	
257	
258	
259	

TABLE 114

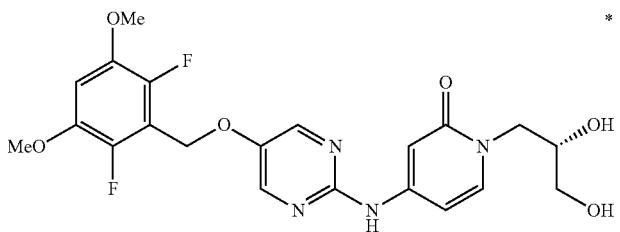
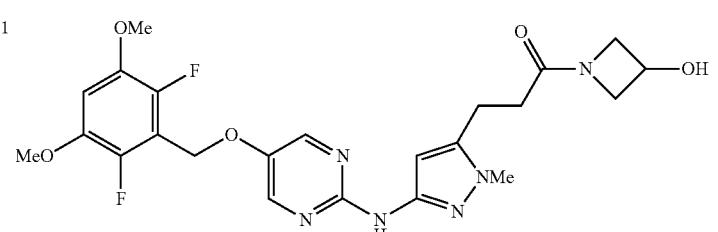
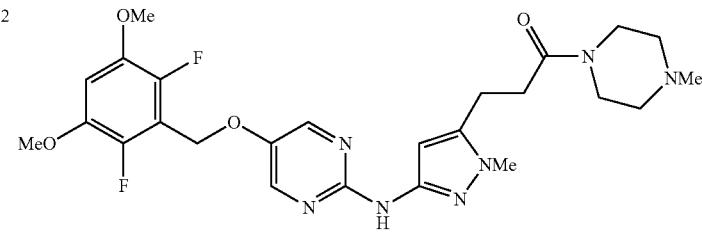
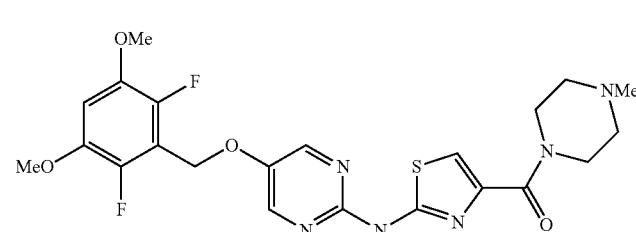




Ex	Str
260	<p style="text-align: center;">*</p>
261	
262	
263	
264	

TABLE 115

Ex	Str
265	
266	
267	
268	
269	

TABLE 116

Ex	Str
270	
271	
272	
273	
274	

TABLE 117

Ex	Str
275	
276	
277	
278	
279	

TABLE 118

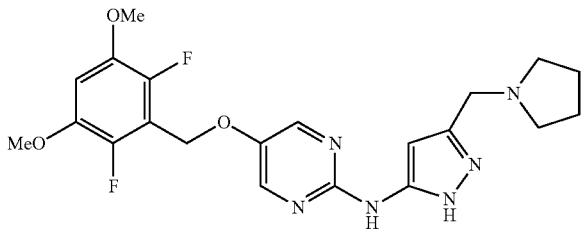
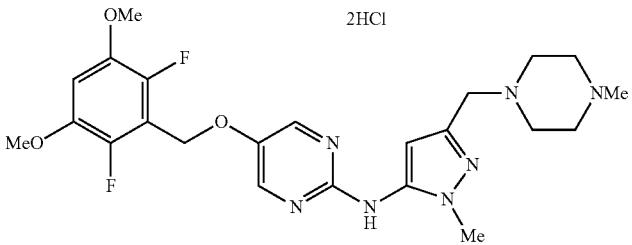
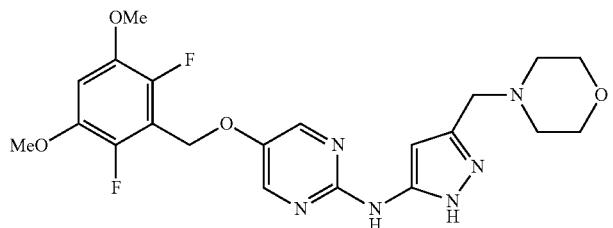
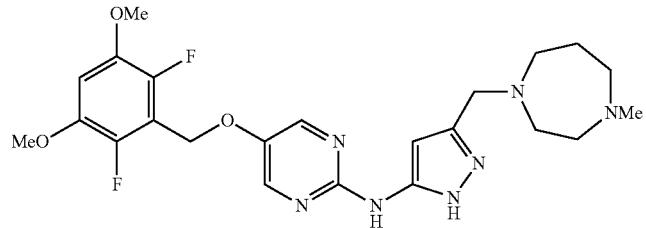
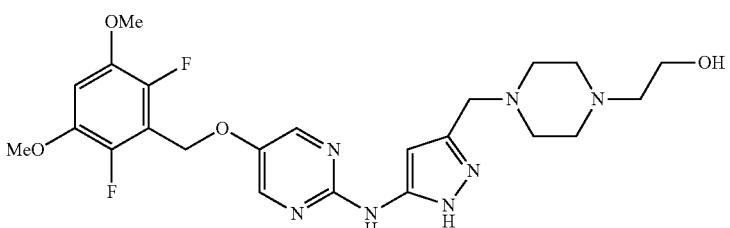





Ex	Str
280	
281	
282	
283	
284	

TABLE 119

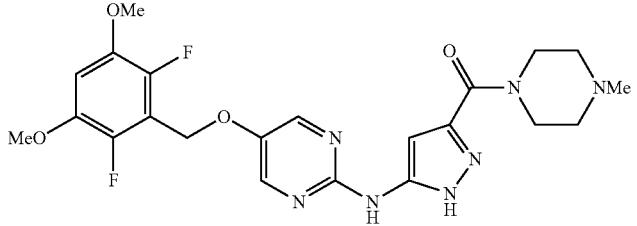
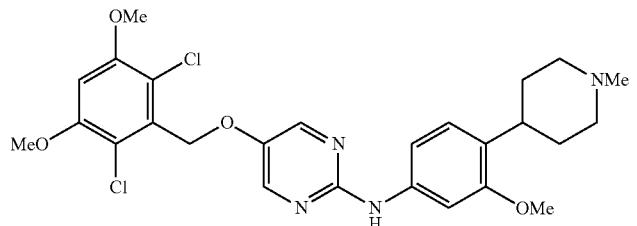
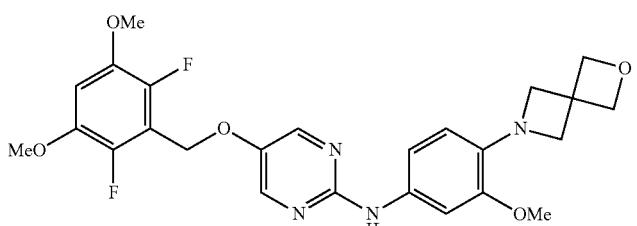
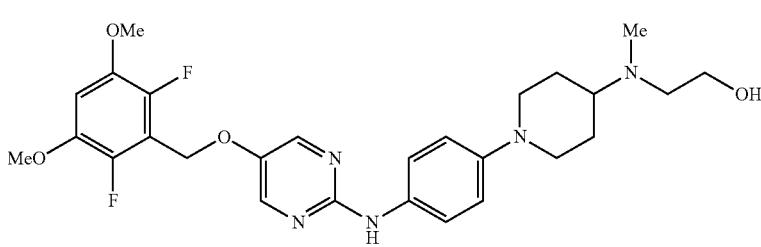
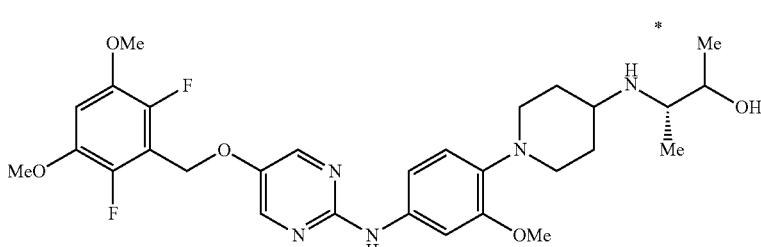





Ex	Str
285	
286	
287	
288	
289	

TABLE 120

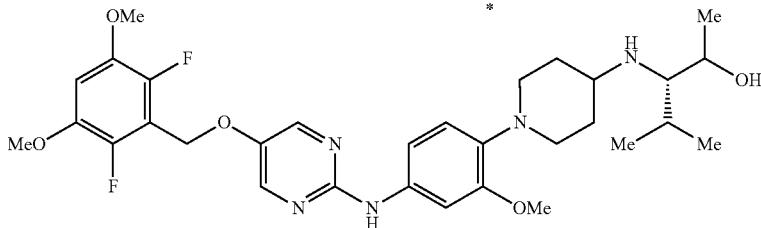
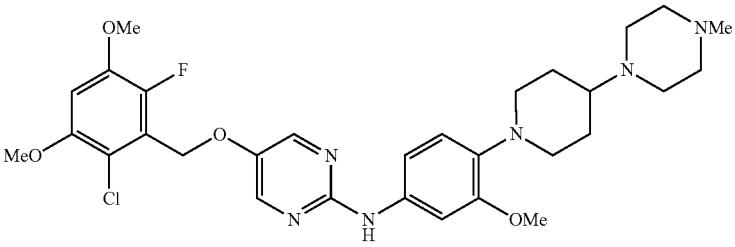
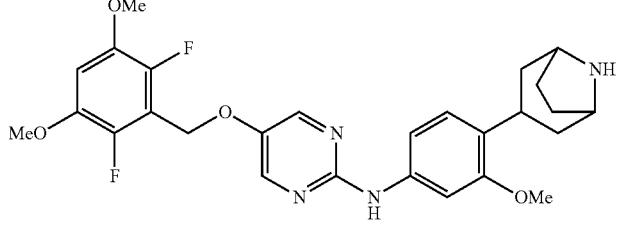
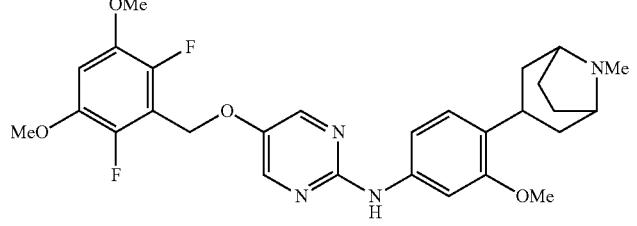
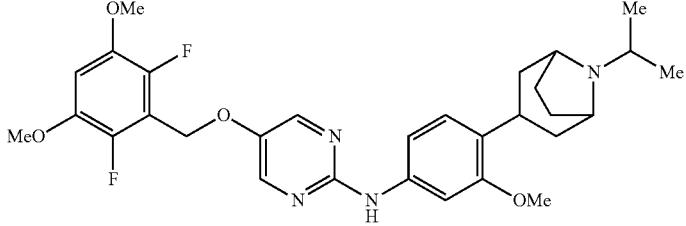





Ex	Str
290	
291	
292	
293	
294	

TABLE 121

Ex	Str
295	
296	
297	
298	
299	
300	

TABLE 122

Ex Str

301

302

303

304

*

305

HCl

TABLE 123

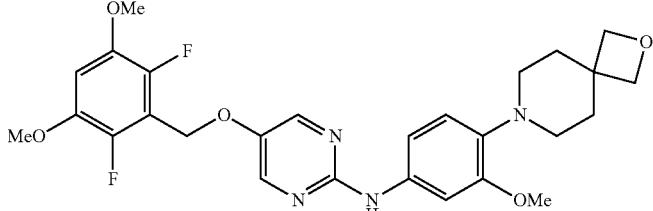
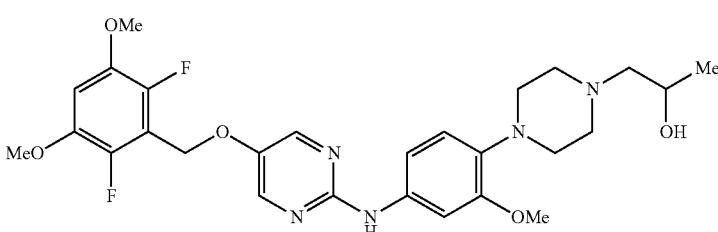
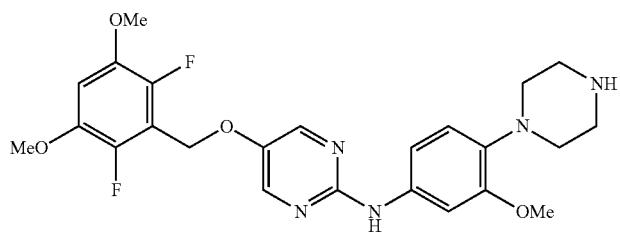
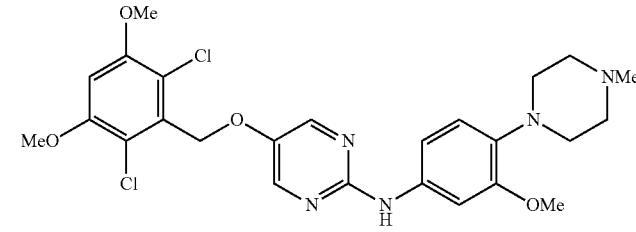




Ex	Str
306	
307	
308	
309	
310	

TABLE 124

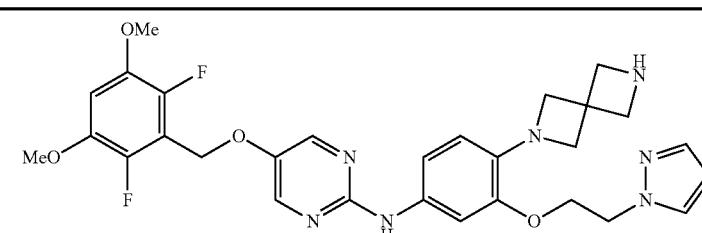

Ex	Str
311	

TABLE 124-continued

Ex	Str
312	
313	
314	
315	

TABLE 125

Ex	Str
316	

TABLE 125-continued

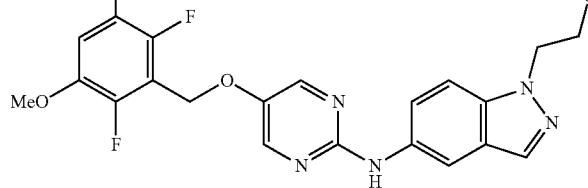
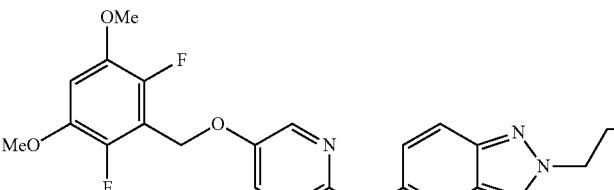
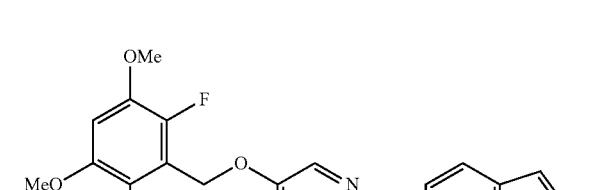
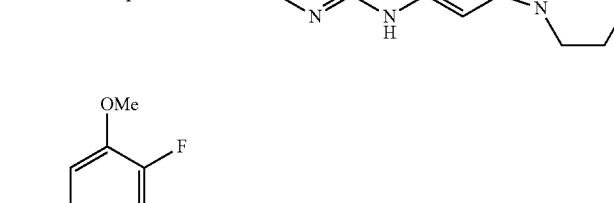




Ex	Str
317	
318	
319	
320	

TABLE 126

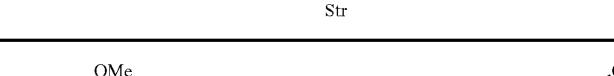
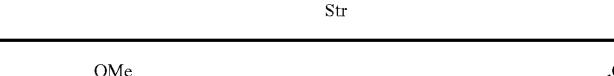


Ex	Str	Str
321		

TABLE 126-continued

Ex	Str
322	
323	
324	
325	

TABLE 127

Ex	Str
326	
327	

TABLE 127-continued

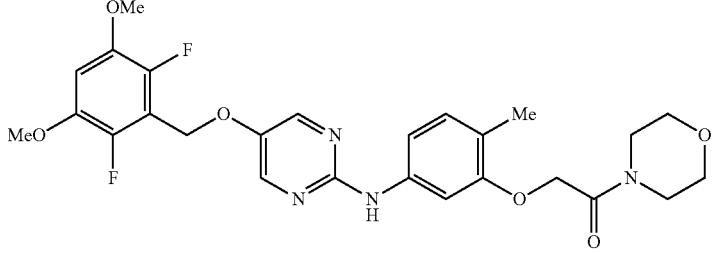
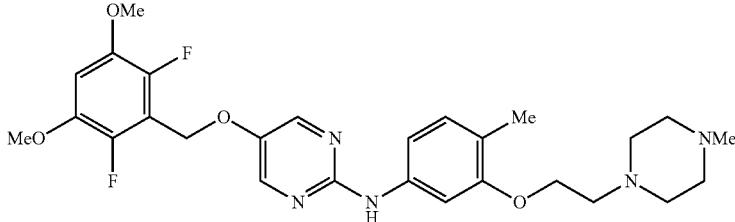
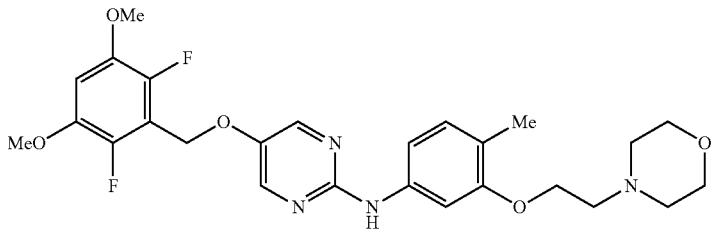



Ex	Str
328	
329	
330	

TABLE 128

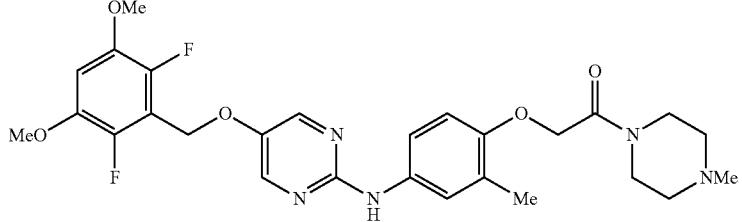


Ex	Str
331	
332	

TABLE 128-continued

Ex	Str
333	
334	
335	
336	

TABLE 129

Ex	Str
337	

TABLE 129-continued

Ex	Str
338	
339	
340	
341	
342	

TABLE 130

Ex	Str
343	

TABLE 130-continued

Ex	Str
344	
345	
346	
347	
348	

TABLE 131

Ex	Str
349	
350	
351	
352	
353	

TABLE 132

Ex	Str
354	

TABLE 132-continued

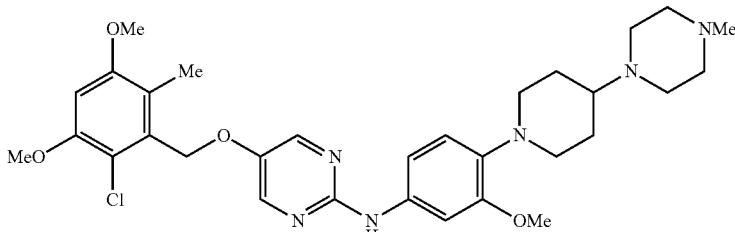
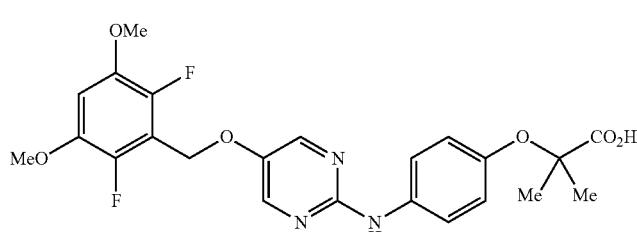
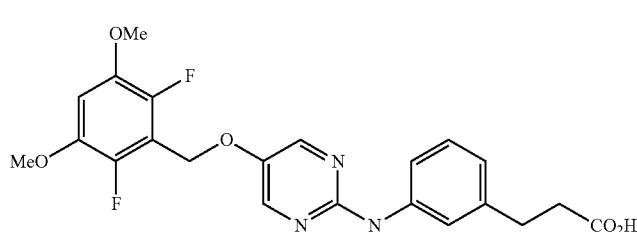
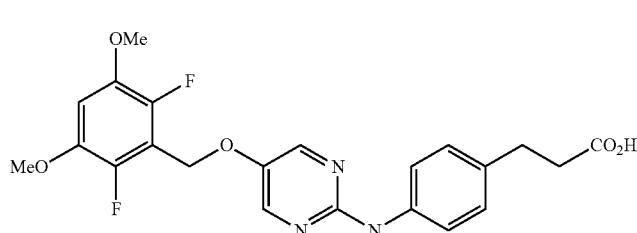
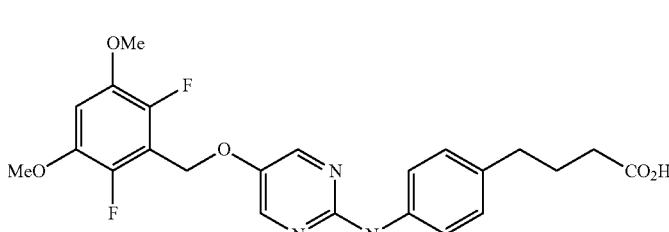





Ex	Str
355	
356	
357	
358	
359	

TABLE 133

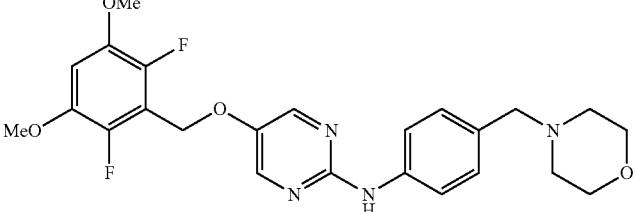
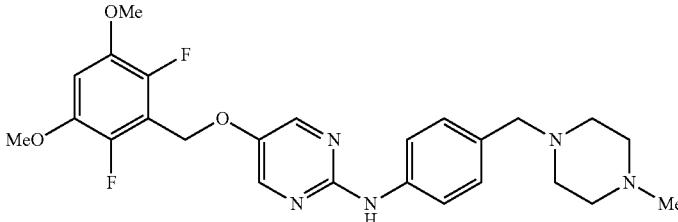
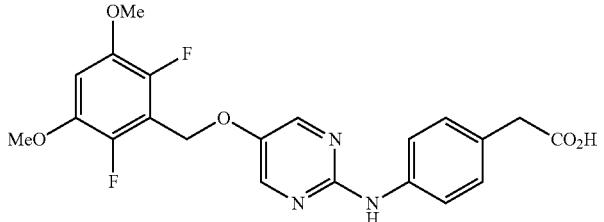
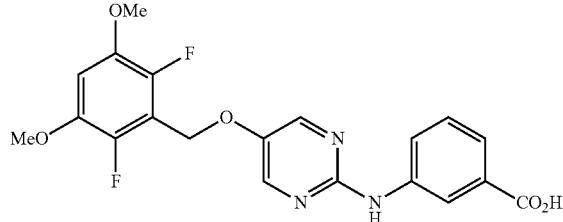
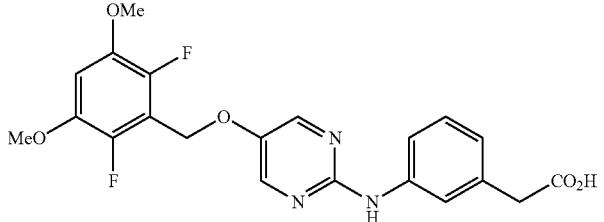
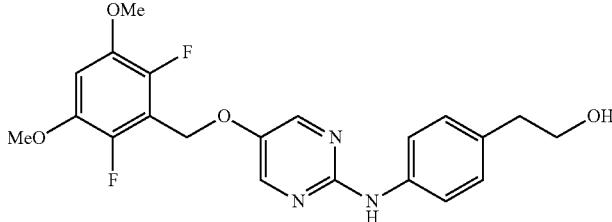






Ex	Str
360	
361	
362	
363	
364	
365	

TABLE 134

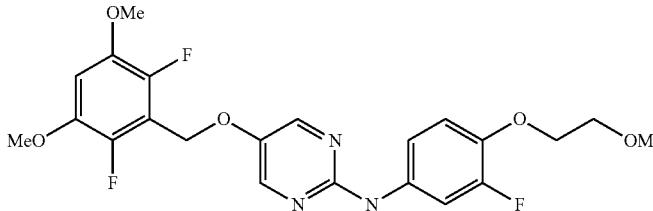
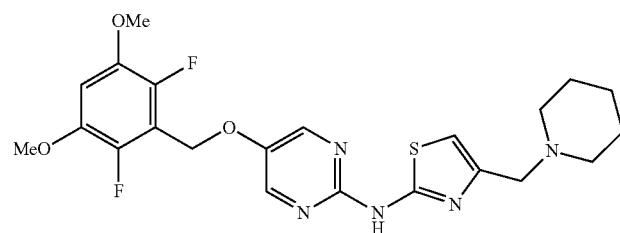
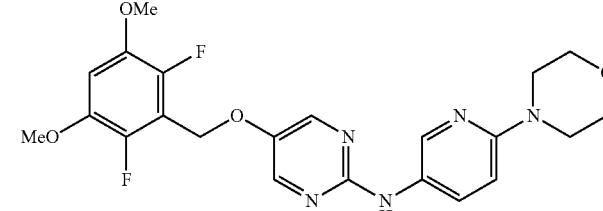
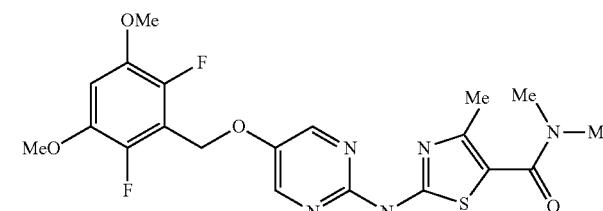
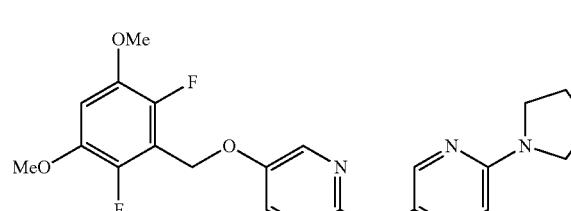





Ex	Str
366	
367	
368	
369	
370	
371	

TABLE 135

Ex	Str
372	
373	
374	
375	
376	
377	

TABLE 136

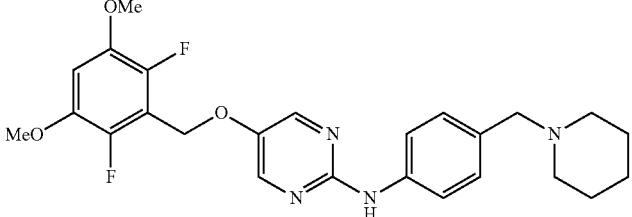
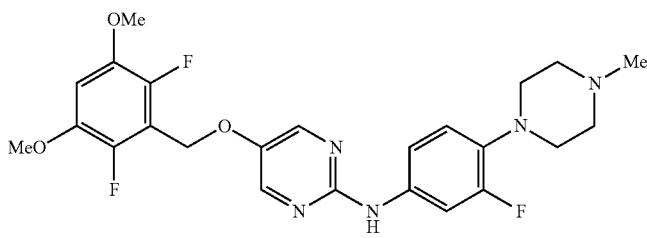
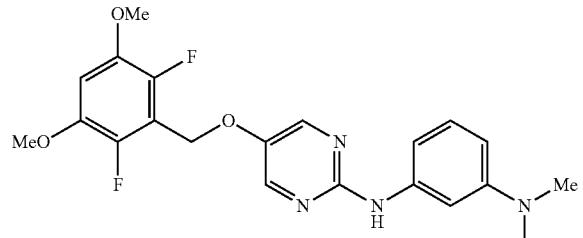
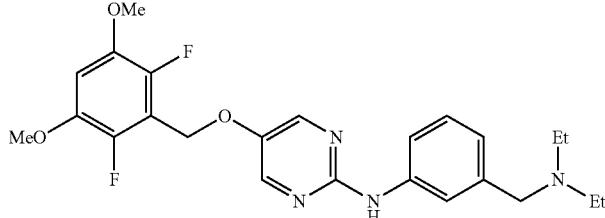
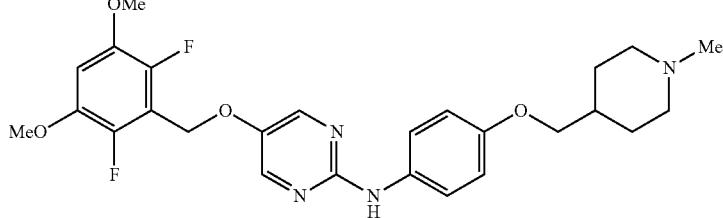





Ex	Str
378	
379	
380	
381	
382	
383	

TABLE 137

Ex	Str
384	
385	
386	
387	
388	

TABLE 138

Ex	Syn	DAT
1	1	ESI ⁺ : 543 NMR ¹ : 1.49-1.61(2H, m), 1.77-1.85(2H, m), 2.19(3H, s), 2.22-2.71(11H, m), 3.28-3.43(2H, m), 3.76(3H, s), 3.77(6H, s), 6.55(1H, t, <i>J</i> = 2.3 Hz), 6.69(2H, d, <i>J</i> = 2.3 Hz), 6.83(1H, d, <i>J</i> = 8.6 Hz), 7.27(1H, dd, <i>J</i> = 8.6, 2.3 Hz), 7.31(1H, d, <i>J</i> = 2.3 Hz), 8.61(2H, s), 9.79(1H, s)

TABLE 138-continued

Ex	Syn	DAT
2	2	ESI ⁺ : 547 NMR ¹ : 1.46-1.59(2H, m), 1.74-1.83(2H, m), 2.14(3H, s), 2.19-2.54(11H, m), 2.71-2.82(4H, m), 3.26-3.36(2H, m), 3.70(6H, s), 3.74(3H, s), 6.30(1H, t, <i>J</i> = 2.3 Hz), 6.38(2H, d, <i>J</i> = 2.3 Hz), 6.79(1H, d, <i>J</i> = 8.6 Hz), 7.24(1H, dd, <i>J</i> = 8.6, 2.3 Hz), 7.35(1H, d, <i>J</i> = 2.3 Hz), 8.26(2H, s), 9.22(1H, s)
3	3	ESI ⁺ : 611

TABLE 138-continued

Ex	Syn	DAT
4	4	ESI+: 611
5	5	ESI+: 649, 651
6	6	ESI+: 583
7	7	ESI+: 500 NMR1: 2.21(3H, s), 2.35-2.59(4H, m), 2.66-2.76(2H, m), 2.81-3.00(6H, m), 3.74(3H, s), 3.81(6H, s), 6.78(1H, d, J = 8.4 Hz), 6.85(1H, t, J = 8.4 Hz), 7.24(1H, dd, J = 8.4, 2.4 Hz), 7.36(1H, d, J = 2.4 Hz), 8.18(2H, s), 9.26(1H, s)
8	8	APCI/ESI+: 422
9	9	APCI/ESI+: 459
10	10	ESI+: 525
11	11	ESI+: 438 NMR1: 3.28-3.37(2H, m), 3.72-3.80(1H, m), 3.83-3.91(7H, m), 4.15(1H, dd, J = 13.8, 4.1 Hz), 4.67(1H, t, J = 5.6 Hz), 4.91(1H, d, J = 5.3 Hz), 5.14(2H, s), 7.06(1H, t, J = 8.4 Hz), 7.45(1H, d, J = 0.6 Hz), 7.87(1Hd, J = 0.6 Hz), 8.26(2H, s), 9.21(1H, s)
12	12	ESI+: 519

TABLE 139

Ex	Syn	DAT
13	13	ESI+: 533
14	14	ESI+: 551
15	15	ESI+: 547
16	16	ESI+: 537
17	17	APCI/ESI+: 398
18	18	ESI+: 480
19	19	ESI+: 532 NMR1: 1.59-1.61(8H, m), 2.84-2.86(4H, m), 3.04-3.05(4H, m), 3.74(3H, s), 5.26(2H, s), 6.82(1H, d, J = 8.4 Hz), 7.24(1H, d, J = 8.4 Hz), 7.32(1H, s), 7.97-8.03(1H, m), 8.34(2H, s), 8.53(1H, brs), 9.27(1H, s)
20	20	ESI+: 466
21	21	ESI+: 494
22	22	ESI+: 616
23	23	ESI+: 422 NMR1: 0.97-1.05(3H, m), 3.87(6H, s), 3.92-3.96(3H, m), 4.82-4.86(1H, m), 5.14(2H, s), 7.06(1H, t, J = 8.4 Hz), 7.44(1H, d, J = 0.6 Hz), 7.86(1H, d, J = 0.6 Hz), 8.26(2H, s), 9.21(1H, s)
24	24	ESI+: 421 NMR1: 3.87(6H, s), 4.69(2H, s), 5.15(2H, s), 7.06(1H, t, J = 8.4 Hz), 7.19(1H, brs), 7.34(1H, brs), 7.46(1H, s), 7.89(1H, s), 8.26(2H, s), 9.26(1H, s)
25	3	ESI+: 579
26	4	ESI+: 579

TABLE 140

Ex	Syn	DAT
27	2	ESI+: 583 NMR1: 1.46-1.59(2H, m), 1.74-1.82(2H, m), 2.14(3H, s), 2.18-2.58(11H, m), 2.65-2.75(2H, m), 2.84-2.93(2H, m), 3.24-3.38(2H, m), 3.74(3H, s), 3.81(6H, s), 6.79(1H, d, J = 8.8 Hz), 6.85(1H, t, J = 8.4 Hz), 7.23(1H, dd, J = 8.8, 2.4 Hz), 7.34(1H, d, J = 2.4 Hz), 8.17(2H, s), 9.25(1H, s)
28	7 + 4	ESI+: 530
29	3	ESI+: 579
30	3	ESI+: 496
31	3	ESI+: 526
32	3	ESI+: 567

TABLE 140-continued

Ex	Syn	DAT
33	6	APCI/ESI+: 571 NMR1: 1.48-1.61(2H, m), 1.77-1.87(2H, m), 2.13(3H, s), 2.20-2.64(11H, m), 2.69-2.76(2H, m), 2.85-2.93(2H, m), 3.22-3.34(2H, m), 3.81(6H, s), 6.85(1H, t, J = 8.4 Hz), 6.95(1H, dd, J = 9.9, 9.0 Hz), 7.32(1H, dd, J = 8.8, 1.8 Hz), 7.65(1H, dd, J = 15.2, 2.4 Hz), 8.21(2H, s), 9.50(1H, s)
34	3	ESI+: 579
35	4	ESI+: 579
36	7	ESI+: 583
37	3	ESI+: 561
38	6	ESI+: 565

TABLE 141

Ex	Syn	DAT
39	3	ESI+: 595
40	4	ESI+: 595
41	6	ESI+: 599
42	6	ESI+: 615
43	3	ESI+: 549
44	6	ESI+: 553
45	3	ESI+: 519
46	6	ESI+: 523
47	3	ESI+: 555
48	6	ESI+: 559
49	9	ESI+: 549
50	9	ESI+: 549 NMR1: 1.43-1.62(2H, m), 1.68-1.87(2H, m), 2.14(3H, s), 2.17-2.70(11H, m), 3.23-3.35(2H, m), 3.74(6H, s), 3.74(3H, s), 5.07(2H, s), 6.46(1H, t, J = 2.4 Hz), 6.60(2H, d, J = 2.4 Hz), 6.78(1H, d, J = 8.6 Hz), 7.23(1H, dd, J = 8.6, 2.2 Hz), 7.32(1H, d, J = 2.2 Hz), 8.29(2H, s), 9.15(1H, s)
51	9	ESI+: 466
52	9	ESI+: 617 NMR1: 1.40-1.60(2H, m), 1.73-1.84(2H, m), 2.14(3H, s), 2.17-2.70(11H, m), 3.24-3.36(2H, m), 3.75(3H, s), 3.94(6H, s), 5.29(2H, s), 6.79(1H, d, J = 8.6 Hz), 7.00(1H, s), 7.24(1H, dd, J = 8.6, 2.3 Hz), 7.33(1H, d, J = 2.3 Hz), 8.32(2H, s), 9.21(1H, s)
53	9	ESI+: 534

TABLE 142

Ex	Syn	DAT
54	9	ESI+: 631
55	9	ESI+: 548
56	9	ESI+: 585 NMR1: 1.45-1.60(2H, m), 1.73-1.84(2H, m), 2.14(3H, s), 2.17-2.58(11H, m), 3.24-3.36(2H, m), 3.75(3H, s), 3.87(6H, s), 5.16(2H, s), 6.79(1H, d, J = 8.8 Hz), 7.07(1H, t, J = 8.4 Hz), 7.24(1H, dd, J = 8.8, 2.4 Hz), 7.32(1H, d, J = 2.4 Hz), 8.29(2H, s), 9.21(1H, s)
57	9	ESI+: 502 NMR1: 2.21(3H, s), 2.37-2.53(4H, m), 2.83-2.94(4H, m), 3.75(3H, s), 3.87(6H, s), 5.16(2H, s), 6.79(1H, d, J = 8.4 Hz), 7.07(1H, t, J = 8.4 Hz), 7.25(1H, dd, J = 8.4, 2.4 Hz), 7.34(1H, d, J = 2.4 Hz), 8.30(2H, s), 9.23(1H, s)
58	9	ESI+: 561
59	9	ESI+: 478
60	9	ESI+: 586
61	9	ESI+: 522
62	9	ESI+: 601
63	9	ESI+: 601
64	64	ESI+: 561

TABLE 142-continued

Ex	Syn	DAT
65	64	ESI+: 616
66	9	ESI+: 572

TABLE 143

Ex	Syn	DAT
67	9	ESI+: 636
68	9	ESI+: 653
69	9	ESI+: 605
70	9	APCI/ESI+: 659
71	9	ESI+: 493
		NMR1: 1.80-2.12(6H, m), 2.19(3H, s), 2.77-2.89(2H, m), 3.94(6H, s), 3.98-4.10(1H, m), 5.27(2H, s), 7.00(1H, s), 7.46(1H, s), 7.88(1H, s), 8.28(2H, s), 9.19(1H, s)
72	12	ESI+: 479
		NMR1: 1.66-1.78(2H, m), 1.85-1.95(2H, m), 2.50-2.61(2H, m), 2.98-3.06(2H, m), 3.94(6H, s), 4.06-4.16(1H, m), 5.27(2H, s), 7.00(1H, s), 7.45(1H, s), 7.87(1H, s), 8.29(2H, s), 9.19(1H, s)
73	64	ESI+: 535
74	9	ESI+: 437
75	9	ESI+: 549
76	64	ESI+: 546
77	64	ESI+: 574
		NMR2: 1.07(6H, d, $J = 6.8$ Hz), 1.51-1.72(8H, m), 2.51(4H, t, $J = 5.2$ Hz), 2.69-2.73(1H, m), 2.95(4H, t, $J = 5.2$ Hz), 3.87(3H, s), 5.14(2H, d, $J = 1.2$ Hz), 6.91-7.03(3H, m), 7.10-7.15(1H, m), 7.20(1H, d, $J = 2.4$ Hz), 8.20(2H, s)
78	286	ESI+: 546
		NMR2: 1.67-1.71(4H, m), 1.76-1.78(4H, m), 2.31(3H, s), 2.54(2H, s), 2.71-2.72(4H, m), 2.85-3.00(4H, m), 5.14(2H, s), 6.84(1H, s), 7.05-7.15(2H, m), 7.30(1H, brs), 7.34-7.60(1H, m), 8.19(2H, s)
79	64	ESI+: 490
		NMR2: 2.43(3H, s), 3.56(4H, brs), 3.81(3H, s), 3.96(4H, s), 5.14(2H, s), 6.41(1H, d, $J = 8.3$ Hz), 6.81(1H, brs), 6.93(1H, dd, $J = 8.3, 2.4$ Hz), 7.10-7.12(2H, m), 8.17(2H, s)
80	64	ESI+: 518
		NMR2: 0.95(6H, d, $J = 5.4$ Hz), 2.30(1H, brs), 3.37(4H, brs), 3.80-3.94(7H, m), 5.14(2H, s), 6.41(1H, d, $J = 8.1$ Hz), 6.81(1H, brs), 6.93(1H, d, $J = 8.5$ Hz), 7.11-7.14(2H, m), 8.17(2H, s)
81	9	ESI+: 461
		NMR1: 1.83-2.07(6H, m), 2.19(3H, s), 2.78-2.88(2H, m), 3.87(6H, s), 3.98-4.09(1H, m), 5.14(2H, s), 7.07(1H, t, $J = 8.4$ Hz), 7.45(1H, s), 7.88(1H, s), 8.25(2H, s), 9.19(1H, s)

TABLE 144

Ex	Syn	DAT
82	9	ESI+: 544
83	9	ESI+: 531
84	9	ESI+: 585
		NMR1: 1.34-1.50(2H, m), 1.68-1.89(4H, m), 2.07-2.19(4H, m), 2.47-2.64(4H, m), 2.73-2.95(6H, m), 3.74(3H, s), 3.87(6H, s), 5.16(2H, s), 6.78(1H, d, $J = 8.6$ Hz), 7.07(1H, t, $J = 8.4$ Hz), 7.25(1H, dd, $J = 8.6, 2.2$ Hz), 7.33(1H, d, $J = 2.2$ Hz), 8.29(2H, s), 9.22(1H, s)
85	19	ESI+: 476
86	9	ESI+: 384
87	9	ESI+: 569
		NMR1: 1.45-1.63(2H, m), 1.75-1.88(2H, m), 2.14(3H, s), 2.16-2.70(14H, m), 2.92-3.08(2H, m), 3.87(6H, s),

TABLE 144-continued

Ex	Syn	DAT
88	9	ESI+: 501
89	9	ESI+: 580
90	9	ESI+: 591
91	9	ESI+: 589
92	12	ESI+: 516
		NMR1: 0.96(6H, d, $J = 6.4$ Hz), 1.98-2.10(2H, m), 2.82-2.95(2H, m), 3.06-3.15(2H, m), 3.74(3H, s), 3.87(6H, s), 5.16(2H, s), 6.76(1H, d, $J = 8.8$ Hz), 7.07(1H, t, $J = 8.4$ Hz), 7.24(1H, dd, $J = 8.8, 2.4$ Hz), 7.32(1H, d, $J = 2.4$ Hz), 8.29(2H, s), 9.21(1H, s)

TABLE 145

Ex	Syn	DAT
93	12	ESI+: 599
94	286	ESI+: 517
95	12	ESI+: 556
		NMR2: 1.76-1.81(8H, m), 2.97(4H, brs), 3.15(4H, brs), 3.88(9H, s), 5.14(2H, s), 6.67(1H, t, $J = 8.2$ Hz), 6.88-6.90(2H, m), 7.01(1H, dd, $J = 8.4, 2.4$ Hz), 8.20(2H, s), 9.26(1H, brs)
96	64	ESI+: 570
		NMR2: 1.62-1.68(8H, m), 2.32(3H, s), 2.43-2.45(4H, m), 2.94-2.97(4H, m), 3.88(9H, s), 5.14(2H, s), 6.67(1H, t, $J = 8.2$ Hz), 6.88-7.00(3H, m), 7.21-7.22(1H, m), 8.19(2H, t, $J = 2.2$ Hz)
97	12	ESI+: 500
		NMR2: 3.81-4.01(17H, m), 5.13(2H, s), 6.40(1H, d, $J = 8.3$ Hz), 6.64-6.68(1H, m), 6.77(1H, d, $J = 7.1$ Hz), 6.92(1H, d, $J = 8.5$ Hz), 7.12(1H, brs), 8.17(2H, s)
98	64	ESI+: 514
		NMR2: 2.38(3H, s), 3.47-3.58(4H, m), 3.81-3.94(13H, m), 5.13(2H, s), 6.40(1H, d, $J = 8.5$ Hz), 6.64-6.68(1H, m), 6.78(1H, brs), 6.92(1H, dd, $J = 8.5, 2.0$ Hz), 7.12(1H, d, $J = 2.7$ Hz), 8.17(2H, s)
99	64	ESI+: 542
		NMR2: 0.90-0.94(6H, m), 2.10(1H, brs), 3.40-3.96(17H, m), 5.13(2H, s), 6.41(1H, d, $J = 8.3$ Hz), 6.66(1H, d, $J = 8.0$ Hz), 6.76(1H, brs), 6.91-6.93(1H, m), 7.13(1H, s), 8.17(2H, s)
100	286	ESI+: 599
		NMR2: 1.66-1.69(4H, m), 2.29(3H, s), 2.30(2H, s), 2.40(3H, s), 2.45(4H, brs), 2.70(4H, brs), 2.84-2.87(2H, m), 2.96-3.01(2H, m), 3.88(6H, s), 5.13(2H, s), 6.67(1H, t, $J = 8.2$ Hz), 6.87(1H, s), 7.04(1H, d, $J = 8.8$ Hz), 7.29(1H, d, $J = 2.8$ Hz), 7.34(1H, d, $J = 8.4$ Hz), 8.18(2H, s)
101	286	ESI+: 588
		NMR3: 1.08(3H, d, $J = 6.4$ Hz), 1.12(3H, s), 1.20(3H, s), 1.49-1.52(1H, m), 1.64-1.66(1H, m), 1.94-1.96(1H, m), 2.03-2.04(1H, m), 2.59-2.68(4H, m), 3.29-3.34(2H, m), 3.87(9H, s), 5.15(2H, d, $J = 2.0$ Hz), 6.89-6.93(2H, m), 7.10-7.13(1H, m), 7.37(1H, d, $J = 2.0$ Hz), 8.19(2H, d, $J = 2.0$ Hz)

TABLE 146

Ex	Syn	DAT
102	286	ESI+: 470
103	9	ESI+: 502
104	19	ESI+: 596
105	12	ESI+: 568
106	106	ESI+: 582

TABLE 146-continued

Ex	Syn	DAT
107	12	ESI+: 623
108	19	ESI+: 588 NMR2: 1.76-1.81(8H, m), 2.96-2.97(4H, m), 3.15-3.16(4H, m), 3.88(3H, s), 3.94(6H, s), 5.33(2H, s), 6.61(1H, s), 6.89-6.91(2H, m), 7.01(1H, dd, $J = 8.0, 2.4$ Hz), 7.22-7.26(1H, m), 8.23(2H, s)
109	19	ESI+: 532

TABLE 147

Ex	Syn	DAT
110	64	ESI+: 546 NMR2: 2.36(3H, brs), 3.45-3.50(4H, m), 3.81(3H, s), 3.93(10H, s), 5.32(2H, s), 6.40(1H, d, $J = 8.5$ Hz), 6.60(1H, s), 6.76(1H, brs), 6.92-6.95(1H, m), 7.14(1H, s), 8.20(2H, s)
111	4	ESI+: 649
112	10	ESI+: 543
113	9	ESI+: 408 NMR1: 3.69(2H, dd, $J = 11.0, 5.6$ Hz), 3.87(6H, s), 4.07(2H, t, $J = 5.6$ Hz), 4.83(1H, t, $J = 5.4$ Hz), 5.14(2H, s), 7.07(1H, t, $J = 8.4$ Hz), 7.45(1H, d, $J = 0.6$ Hz), 7.88(1H, d, $J = 0.6$ Hz), 8.26(2H s), 9.20(1H, s)
114	20	ESI+: 490 NMR1: 2.13(3H, s), 2.17-2.54(8H, m), 2.66(2H, t, $J = 6.8$ Hz), 3.87(6H, s), 4.14(2H, t, $J = 6.8$ Hz), 5.14(2H, s), 7.06(1H, t, $J = 8.4$ Hz), 7.43(1H, d, $J = 0.6$ Hz), 7.89(1H, d, $J = 0.6$ Hz), 8.25(2H, s), 9.20(1H, s)
115	18	ESI+: 477 NMR1: 3.58-3.65(1H, m), 3.75-3.84(1H, m), 3.87(6H, s), 4.04-4.10 (1H, m), 4.17-4.24(1H, m), 4.41-4.49(1H, m), 4.78(2H, s), 5.15(2H, s), 5.72(1H, s), 7.07(1H, t, $J = 8.4$ Hz), 7.46(1H, d, $J = 0.4$ Hz), 7.88(1H, d, $J = 0.4$ Hz), 8.26(2H, s), 9.27(1H, s)
116	11	ESI+: 438 NMR1: 3.23-3.38(2H, m), 3.72-3.80(1H, m), 3.84-3.96(7H, m), 4.15(1H, dd, $J = 13.8, 4.1$ Hz), 4.67(1H, t, $J = 5.6$ Hz), 4.91(1H, d, $J = 5.3$ Hz), 5.14(2H, s), 7.06(1H, t, $J = 8.4$ Hz), 7.45(1H, d, $J = 0.6$ Hz), 7.87(1H, d, $J = 0.6$ Hz), 8.26(2H, s), 9.21(1H, s)
117	286	ESI+: 502
118	9	ESI+: 463
119	12	APCI/ESI+: 449
120	120	ESI+: 531
121	13	ESI+: 463
122	9	ESI+: 472 NMR1: 2.21(3H, s), 2.41-2.48(4H, m), 2.98-3.08(4H, m), 3.87(6H, s), 5.15(2H, s), 6.81-6.90(2H, m), 7.07(1H, t, $J = 8.4$ Hz), 7.47-7.55(2H, m), 8.26(2H, s), 9.15(1H, s)

TABLE 148

Ex	Syn	DAT
123	9	ESI+: 555
124	9	ESI+: 531
125	20	ESI+: 466
126	20	ESI+: 453
127	9	APCI/ESI+: 384
128	20	ESI+: 453
129	9	ESI+: 599
130	9	ESI+: 603
131	120	ESI+: 599

TABLE 148-continued

Ex	Syn	DAT
132	120	ESI+: 613
133	120	ESI+: 572
134	12	ESI+: 505
135	9	ESI+: 499
136	12	ESI+: 423
137	12	ESI+: 447
138	9	ESI+: 573
139	9	ESI+: 470
140	9	ESI+: 505
141	120	ESI+: 597
142	12	ESI+: 458
143	12	ESI+: 476
144	166 + 4	ESI+: 514
145	12	ESI+: 486
146	12	ESI+: 457
147	13 + 4	ESI+: 611
148	9 + 4	ESI+: 583
149	9 + 4	ESI+: 543
150	9 + 4	ESI+: 557
151	13	ESI+: 471
152	64	ESI+: 554
153	9	ESI+: 567

TABLE 149

Ex	Syn	DAT
154	9	ESI+: 474
155	9	ESI+: 487
157	15	ESI+: 499
158	16	ESI+: 501
159	64	ESI+: 541
160	17	ESI+: 422
161	161	ESI+: 515
162	120 + 162	ESI+: 555
165	9	ESI+: 487
166	166	ESI+: 445
167	18	ESI+: 504
168	12 + 162	ESI+: 473
169	18	ESI+: 465
170	13 + 162	ESI+: 487
171	9	ESI+: 557
172	18	ESI+: 491
173	20	ESI+: 477
174	20	ESI+: 504
175	23	ESI+: 436
176	9	ESI+: 461
177	9	ESI+: 556
178	9	ESI+: 488

TABLE 150

Ex	Syn	DAT
179	9	APCI/ESI+: 487
180	18	ESI+: 465
181	18	ESI+: 509
182	9	ESI+: 483
183	9	ESI+: 570
184	23	ESI+: 422
185	9	ESI+: 556
186	17	ESI+: 448
187	166	ESI+: 458
188	16	ESI+: 422
189	16	ESI+: 378
190	190	APCI/ESI+: 407
191	64	ESI+: 555
192	106	ESI+: 502
193	19	ESI+: 571
194	12	ESI+: 475

TABLE 150-continued

Ex	Syn	DAT
195	9	ESI+: 586
196	18	ESI+: 491
197	18	ESI+: 491
198	18	ESI+: 505

TABLE 151

Ex	Syn	DAT
199	18	ESI+: 504
200	18	ESI+: 518
201	11	ESI+: 465
202	13	ESI+: 489
203	20	ESI+: 504
204	20	ESI+: 435
205	11	ESI+: 465
206	20 + 4	ESI+: 463
207	12 + 4	ESI+: 476
208	9	ESI+: 461
209	20	ESI+: 504
210	20 + 162	ESI+: 518
211	9	ESI+: 448
212	212	ESI+: 422
213	213	ESI+: 465
214	214	ESI+: 435
215	12	ESI+: 461
216	120	ESI+: 531
217	217	ESI+: 517
218	17	ESI+: 436
219	17	ESI+: 450
220	17	ESI+: 436
221	17	ESI+: 450
222	18	ESI+: 491
223	18	ESI+: 505
224	18	ESI+: 491
225	18	ESI+: 505
226	13	ESI+: 475

TABLE 152

Ex	Syn	DAT
227	18	ESI+: 495
228	18	ESI+: 479
229	9	ESI+: 503
230	214	ESI+: 422
231	20 + 162	ESI+: 504
232	217	ESI+: 531
233	214	ESI+: 422
234	217	ESI+: 547
235	213	ESI+: 438
236	9 + 4	ESI+: 517
237	9	ESI+: 517
238	17	APCI/ESI+: 422
239	239	ESI+: 422
240	214	ESI+: 408
241	20 + 162	ESI+: 504
242	18	ESI+: 504
243	18	ESI+: 505
244	24	ESI+: 421
245	214	ESI+: 408
246	246	APCI/ESI+: 408
247	214	ESI+: 435
248	20	ESI+: 490
		NMR1: 2.14(3H, s), 2.18-2.53(8H, m), 3.45(2H, s), 3.67(3H, s), 3.87(6H, s), 5.15(2H, s), 6.46(1H, s), 7.06(1H, t, $J = 8.4$ Hz), 8.26(2H, s), 9.42(1H, s)
249	20 + 4	ESI+: 491
250	64	ESI+: 514

TABLE 152-continued

Ex	Syn	DAT
251	214	ESI+: 435
252	9	ESI+: 478
253	253	ESI+: 517
254	254	ESI+: 461
255	253	ESI+: 517
256	17	ESI+: 450

TABLE 153

Ex	Syn	DAT
257	246	ESI+: 436
258	24	ESI+: 449
259	11	ESI+: 465
260	11	ESI+: 465
261	18	ESI+: 505
262	18	ESI+: 532
263	20	ESI+: 476
264	254	ESI+: 507
265	254	ESI+: 507
266	18	ESI+: 491
267	18	ESI+: 463
268	18	ESI+: 504
269	24	ESI+: 407
270	214	APCI/ESI+: 394
271	20	ESI+: 504
272	20	ESI+: 477
273	20	ESI+: 461
274	20	ESI+: 504
275	20	ESI+: 504
276	20	ESI+: 520
277	20	ESI+: 477
278	278	ESI+: 390
279	20	ESI+: 490
280	282	ESI+: 447
281	282 + 4	ESI+: 490
282	282	ESI+: 463
283	282	ESI+: 490
284	282	ESI+: 506
285	214	ESI+: 490
286	286	ESI+: 533

TABLE 154

Ex	Syn	DAT
287	286	ESI+: 501
288	286	ESI+: 530
289	286	ESI+: 574
290	286	ESI+: 602
291	286	ESI+: 601
292	12	ESI+: 513
293	64	ESI+: 527
294	64	ESI+: 555
295	286	ESI+: 574
		NMR3: 1.23(6H, s), 1.61-1.64(2H, m), 1.97-1.99(2H, m), 2.57-2.62(5H, m), 3.31-3.34(2H, m), 3.87(9H, s), 5.16(2H, t, $J = 1.6$ Hz), 6.89-6.94(2H, m), 7.11(1H, dd, $J = 8.8, 2.4$ Hz), 7.36(1H, d, $J = 2.4$ Hz), 8.20(2H, s)
296	16	ESI+: 544
297	286	ESI+: 532
298	286	ESI+: 502
		NMR2: 2.61(2H, t, $J = 5.6$ Hz), 2.69(4H, t, $J = 4.8$ Hz), 3.16(4H, t, $J = 4.8$ Hz), 3.66(2H, t, $J = 5.6$ Hz), 3.88(6H, s), 5.13(2H, s), 6.66(1H, t, $J = 8.0$ Hz), 6.80(1H, br-s), 6.92(2H, d, $J = 9.2$ Hz), 7.43(2H, d, $J = 9.2$ Hz), 8.18(2H, s)

TABLE 154-continued

Ex	Syn	DAT
299	12	ESI+: 516 NMR2: 1.67-1.69(2H, m), 2.06-2.09(2H, m), 2.70-2.81(3H, m), 2.98(2H, t, J = 5.2 Hz), 3.60(2H, d, J = 12.4 Hz), 3.76-3.77(2H, m), 3.88(6H, s), 5.13(2H, s), 6.66(1H, t, J = 8.0 Hz), 6.82(1H, s), 6.92(2H, d, J = 8.8 Hz), 7.41(2H, d, J = 8.8 Hz), 8.18(2H, s)
300	286	ESI+: 574
301	16	ESI+: 571
302	302	ESI+: 516
303	64	ESI+: 540
304	286	ESI+: 616
305	4	ESI+: 529
306	286	ESI+: 529
307	16	ESI+: 546
308	12	ESI+: 488
309	286	ESI+: 533
310	336	ESI+: 560
311	12	ESI+: 580
312	64	ESI+: 594
313	64	ESI+: 622
314	286	ESI+: 534

TABLE 155

Ex	Syn	DAT
315	315	ESI+: 630
316	286	ESI+: 585
317	286	ESI+: 458
318	286	ESI+: 458
319	286	ESI+: 458
320	286	ESI+: 458
321	315	ESI+: 547
322	16	ESI+: 533
323	16	ESI+: 546
324	11	ESI+: 482
325	17	ESI+: 494
326	17	ESI-: 460
327	286	ESI+: 448
328	18	ESI+: 531
329	286	ESI+: 530
330	286	ESI+: 517
331	17	ESI-: 460
332	18	ESI+: 544
333	286	ESI+: 516
334	286	ESI+: 612
335	16	ESI+: 549
336	336	ESI+: 480
337	12	ESI+: 548
338	286	ESI+: 530
339	11	ESI+: 478
340	286	ESI+: 408
341	286	ESI+: 490
342	286	ESI+: 477
343	17	ESI-: 476
344	286	ESI+: 438 NMR1: 3.26-3.40(2H, m), 3.76-3.78(1H, m), 3.87(6H, s), 3.89-3.94(1H, m), 4.15(1H, dd, J = 14.0, 4.0 Hz), 4.71(1H, t, J = 5.6 Hz), 4.95(1H, d, J = 5.2 Hz), 5.27(2H, s), 7.05(1H, t, J = 8.4 Hz), 7.41(1H, s), 7.74(1H, d, J = 1.6 Hz), 7.84(1H, d, J = 1.6 Hz), 7.88(1H, s), 8.95(1H, brs)
345	64	ESI+: 562
346	286	ESI+: 544
347	18	ESI+: 563
348	18	ESI+: 521
349	349	ESI+: 508

TABLE 156

Ex	Syn	DAT
350	18	ESI+: 576
351	286	ESI+: 473
352	286	ESI+: 422
353	12	ESI+: 531
354	64	ESI+: 545
355	286	ESI+: 597
356	356	ESI+: 476
357	356	ESI+: 446
358	356	ESI+: 446
359	356	ESI+: 460
360	356	ESI+: 473
361	356	ESI+: 486
362	356	ESI+: 432
363	356	ESI+: 418
364	356	ESI+: 432
365	356	ESI+: 418
366	356	ESI+: 466
367	356	ESI+: 478
368	356	ESI+: 460
369	356	ESI+: 466
370	356	ESI+: 378
371	356	ESI+: 444
372	356	ESI+: 473
373	375	ESI+: 459
374	375	ESI+: 433
375	375	ESI+: 419
376	356	ESI+: 458
377	356	ESI+: 447
378	356	ESI+: 471
379	356	ESI+: 490
380	356	ESI+: 417
381	375	ESI+: 403
382	356	ESI+: 459
383	356	ESI+: 501
384	356	ESI+: 519
385	356	ESI+: 477
386	356	ESI+: 459
387	356	ESI+: 476
388	286	ESI+: 517

INDUSTRIAL APPLICABILITY

[0381] The compound of formula (I) or a salt thereof according to the present invention has inhibitory action on FGFR1, FGFR2, and/or FGFR3, particularly, mutant FGFR3, and can be used as a therapeutic agent for various cancers related to FGFR1, FGFR2, and/or FGFR3, such as lung cancer and hormone therapy-resistant breast cancer, stomach cancer, triple negative breast cancer, endometrial cancer, and bladder cancer, particularly as a therapeutic agent for mutant FGFR3-positive bladder cancer.

SEQUENCE LISTING FREE TEXT

[0382] The numerical heading <223> in the Sequence Listing shown below contains an explanation of “Artificial Sequence”. More specifically, the base sequences represented by SEQ ID NOS: 7, 8, 17, 20, and 21 in the Sequence Listing are artificially synthesized primer sequences. The base sequence represented by SEQ ID NO: 24 in the Sequence Listing is an artificially synthesized FLAG tag sequence.

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 24

<210> SEQ ID NO 1

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Description of Artificial Sequence: an artificially synthesized primer sequence

<400> SEQUENCE: 1

cctggactac tccttcgaca 20

<210> SEQ ID NO 2

<211> LENGTH: 23

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Description of Artificial Sequence: an artificially synthesized primer sequence

<400> SEQUENCE: 2

tcttctccat cttggagatg agg 23

<210> SEQ ID NO 3

<211> LENGTH: 23

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Description of Artificial Sequence: an artificially synthesized primer sequence

<400> SEQUENCE: 3

tgttgaccg agtctacact cac 23

<210> SEQ ID NO 4

<211> LENGTH: 24

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Description of Artificial Sequence: an artificially synthesized primer sequence

<400> SEQUENCE: 4

ttctccatgg agttcagatc tgtg 24

<210> SEQ ID NO 5

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Description of Artificial Sequence: an artificially synthesized primer sequence

<400> SEQUENCE: 5

tcctgctctg ccggtcgcac 20

<210> SEQ ID NO 6

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Description of Artificial Sequence: an artificially synthesized primer sequence

-continued

<400> SEQUENCE: 6

cagcggtccc gtggagggtca 20

<210> SEQ ID NO 7

<211> LENGTH: 27

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Description of Artificial Sequence: an artificially synthesized primer sequence

<400> SEQUENCE: 7

ggatccggcca ccatggggcgc ccctgcc 27

<210> SEQ ID NO 8

<211> LENGTH: 26

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Description of Artificial Sequence: an artificially synthesized primer sequence

<400> SEQUENCE: 8

gaattctca gatcttctcca tcttgg 26

<210> SEQ ID NO 9

<211> LENGTH: 2856

<212> TYPE: DNA

<213> ORGANISM: Homo sapiens

<220> FEATURE:

<221> NAME/KEY: CDS

<222> LOCATION: (1)...(2856)

<400> SEQUENCE: 9

atg ggc gcc cct gcc tgc gcc ctc gcg ctc tgc gtg gcc gtg atc	48
Met Gly Ala Pro Ala Cys Ala Leu Ala Leu Cys Val Ala Val Ala Ile	
1 5 10 15	
gtg gcc ggc tcc tcg gag tcc ttg ggg acg gag cag cgc gtc gtg	96
Val Ala Gly Ala Ser Ser Glu Ser Leu Gly Thr Glu Gln Arg Val Val	
20 25 30	
ggg cga gcg gca gaa gtc ccg ggc cca gag ccc ggc cag cag gag cag	144
Gly Arg Ala Ala Glu Val Pro Gly Pro Glu Pro Gly Gln Gln Glu Gln	
35 40 45	
ttg gtc ttc ggc agc ggg gat gct gtg gag ctg agc tgt ccc ccg ccc	192
Leu Val Phe Gly Ser Gly Asp Ala Val Glu Leu Ser Cys Pro Pro Pro	
50 55 60	
ggg ggt ggt ccc atg ggg ccc act gtc tgg gtc aag gag gat ggc aca ggg	240
Gly Gly Pro Met Gly Pro Thr Val Trp Val Lys Asp Gly Thr Gly	
65 70 75 80	
ctg gtg ccc tcg gag cgt gtc ctg gtg ggg ccc cag cgg ctg cag gtg	288
Leu Val Pro Ser Glu Arg Val Leu Val Gly Pro Gln Arg Leu Gln Val	
85 90 95	
ctg aat gcc tcc cac gag gac tcc ggg gcc tac agc tgc cgg cag cgg	336
Leu Asn Ala Ser His Glu Asp Ser Gly Ala Tyr Ser Cys Arg Gln Arg	
100 105 110	
ctc acg cag cgc gta ctg tgc cac ttc agt gtg cgg gtg aca gac gct	384
Leu Thr Gln Arg Val Leu Cys His Phe Ser Val Arg Val Thr Asp Ala	
115 120 125	
cca tcc tcg gga gat gac gaa gac ggg gag gac gag gct gag gac aca	432
Pro Ser Ser Gly Asp Asp Glu Asp Gly Glu Asp Glu Ala Glu Asp Thr	
130 135 140	

-continued

ggt gtg gac aca ggg gcc cct tac tgg aca cgg ccc gag cgg atg gac	480
Gly Val Asp Thr Gly Ala Pro Tyr Trp Thr Arg Pro Glu Arg Met Asp	
145 150 155 160	
aag aag ctg ctg gcc gtc ccc gac aac acc gtc cgc ttc cgc tgc	528
Lys Lys Leu Leu Ala Val Pro Ala Ala Asn Thr Val Arg Phe Arg Cys	
165 170 175	
cca gcc gct ggc aac ccc act ccc tcc atc tcc tgg ctg aag aac ggc	576
Pro Ala Ala Gly Asn Pro Thr Pro Ser Ile Ser Trp Leu Lys Asn Gly	
180 185 190	
agg gag ttc cgc ggc gag cac cgc att gga ggc atc aag ctg cgg cat	624
Arg Glu Phe Arg Gly Glu His Arg Ile Gly Gly Ile Lys Leu Arg His	
195 200 205	
cag cag tgg agc ctg gtc atg gaa agc gtc gtc ccc tcc gac cgc ggc	672
Gln Gln Trp Ser Leu Val Met Glu Ser Val Val Pro Ser Asp Arg Gly	
210 215 220	
aac tac acc tgc gtc gtc gag aac aag ttt ggc agc atc cgg cag acg	720
Asn Tyr Thr Cys Val Val Glu Asn Lys Phe Gly Ser Ile Arg Gln Thr	
225 230 235 240	
tac acg ctg gac gtc ctg gag cgc tcc ccg cac cgg ccc atc ctg cag	768
Tyr Thr Leu Asp Val Leu Glu Arg Ser Pro His Arg Pro Ile Leu Gln	
245 250 255	
gcg ggg ctg ccg gcc aac cag acg gcg gtc ctg ggc agc gac gtc gag	816
Ala Gly Leu Pro Ala Asn Gln Thr Ala Val Leu Gly Ser Asp Val Glu	
260 265 270	
ttc cac tgc aag gtc tac agt gac gca cag ccc cac atc cag tgg ctc	864
Phe His Cys Lys Val Tyr Ser Asp Ala Gln Pro His Ile Gln Trp Leu	
275 280 285	
aag cac gtc gag gtc aat ggc agc aag gtc ggc ccg gac ggc aca ccc	912
Lys His Val Glu Val Asn Gly Ser Lys Val Gly Pro Asp Gly Thr Pro	
290 295 300	
tac gtt acc gtc aag tcc tgg atc agt gag agt gtc gag gcc gac	960
Tyr Val Thr Val Leu Lys Ser Trp Ile Ser Glu Ser Val Glu Ala Asp	
305 310 315 320	
gtg cgc ctc cgc ctg gcc aat gtc tcg gag cgg gac ggg ggc gag tac	1008
Val Arg Leu Arg Leu Ala Asn Val Ser Glu Arg Asp Gly Glu Tyr	
325 330 335	
ctc tgt cga gcc acc aat ttc ata ggc gtc gcc gag aag gcc ttt tgg	1056
Leu Cys Arg Ala Thr Asn Phe Ile Gly Val Ala Glu Lys Ala Phe Trp	
340 345 350	
ctg agc gtt cac ggg ccc cga gca gcc gag gag gag ctg gtc gag gct	1104
Leu Ser Val His Gly Pro Arg Ala Ala Glu Glu Leu Val Glu Ala	
355 360 365	
gac gag gcg ggc agt gtc tat gca ggc atc ctc agc tac ggg gtc ggc	1152
Asp Glu Ala Gly Ser Val Tyr Ala Gly Ile Leu Ser Tyr Gly Val Gly	
370 375 380	
ttc ttc ctg ttc atc ctg gtc gtc gct gtc acg ctc tgc cgc ctg	1200
Phe Phe Leu Phe Ile Leu Val Ala Ala Val Thr Leu Cys Arg Leu	
385 390 395 400	
cgc agc ccc ccc aag aaa ggc ctg ggc tcc ccc acc gtg cac aag atc	1248
Arg Ser Pro Pro Lys Lys Gly Leu Gly Ser Pro Thr Val His Lys Ile	
405 410 415	
tcc cgc ttc ccg ctc aag cga cag gtc tcc ctg gag tcc aac ggc tcc	1296
Ser Arg Phe Pro Leu Lys Arg Gln Val Ser Leu Glu Ser Asn Ala Ser	
420 425 430	
atg agc tcc aac aca cca ctg gtc cgc atc gca agg ctg tcc tca ggg	1344
Met Ser Ser Asn Thr Pro Leu Val Arg Ile Ala Arg Leu Ser Ser Gly	
435 440 445	

-continued

gag ggc ccc acg ctg gcc aat gtc tcc gag ctc gag ctg cct gcc gac Glu Gly Pro Thr Leu Ala Asn Val Ser Glu Leu Glu Leu Pro Ala Asp 450 455 460	1392
ccc aaa tgg gag ctg tct cgg gcc cgg ctg acc ctc ggc aag ccc ctt Pro Lys Trp Glu Leu Ser Arg Ala Arg Leu Thr Leu Gly Lys Pro Leu 465 470 475 480	1440
ggg gag ggc tgc ttc ggc cag gtg gtc atg ggc gag gcc atc ggc att Gly Glu Gly Cys Phe Gly Gln Val Val Met Ala Glu Ala Ile Gly Ile 485 490 495	1488
gac aag gac cgg gcc gcc aag cct gtc acc gta gcc gtg aag atg ctg Asp Lys Asp Arg Ala Ala Lys Pro Val Thr Val Ala Val Lys Met Leu 500 505 510	1536
aaa gac gat gcc act gac aag gac ctg tcg gac ctg gtg tct gag atg Lys Asp Asp Ala Thr Asp Lys Asp Leu Ser Asp Leu Val Ser Glu Met 515 520 525	1584
gag atg atg aag atg atc ggg aaa cac aaa aac atc atc aac ctg ctg Glu Met Met Lys Met Ile Gly Lys His Lys Asn Ile Ile Asn Leu Leu 530 535 540	1632
ggc gcc tgc acg cag ggc ggg ccc ctg tac gtg ctg gtg gag tac gcg Gly Ala Cys Thr Gln Gly Gly Pro Leu Tyr Val Leu Val Glu Tyr Ala 545 550 555 560	1680
gcc aag ggt aac ctg cgg gag ttt ctg cgg gcg cgg cgg ccc ccg ggc Ala Lys Gly Asn Leu Arg Glu Phe Leu Arg Ala Arg Arg Pro Pro Gly 565 570 575	1728
ctg gac tac tcc ttc gac acc tgc aag ccg ccc gag gag cag ctc acc Leu Asp Tyr Ser Phe Asp Thr Cys Lys Pro Pro Glu Glu Gln Leu Thr 580 585 590	1776
ttc aag gac ctg gtg tcc tgt gcc tac cag gtg gcc cgg ggc atg gag Phe Lys Asp Leu Val Ser Cys Ala Tyr Gln Val Ala Arg Gly Met Glu 595 600 605	1824
tac ttg gcc tcc cag aag tgc atc cac agg gac ctg gct gcc cgc aat Tyr Leu Ala Ser Gln Lys Cys Ile His Arg Asp Leu Ala Ala Arg Asn 610 615 620	1872
gtg ctg gtg acc gag gac aac gtg atg aag atc gca gac ttc ggg ctg Val Leu Val Thr Glu Asp Asn Val Met Lys Ile Ala Asp Phe Gly Leu 625 630 635 640	1920
gcc cgg gac gtg cac aac ctc gac tac tac aag aag aca acc aac ggc Ala Arg Asp Val His Asn Leu Asp Tyr Tyr Lys Lys Thr Thr Asn Gly 645 650 655	1968
cgg ctg ccc gtg aag tgg atg gcg cct gag gcc ttg ttt gac cga gtc Arg Leu Pro Val Lys Trp Met Ala Pro Glu Ala Leu Phe Asp Arg Val 660 665 670	2016
tac act cac cag agt gac gtc tgg tcc ttt ggg gtc ctg ctc tgg gag Tyr Thr His Gln Ser Asp Val Trp Ser Phe Gly Val Leu Leu Trp Glu 675 680 685	2064
atc ttc acg ctg ggg ggc tcc ccg tac ccc ggc atc cct gtg gag gag Ile Phe Thr Leu Gly Gly Ser Pro Tyr Pro Gly Ile Pro Val Glu Glu 690 695 700	2112
ctc ttc aag ctg ctg aag gag ggc cac cgc atg gac aag ccc gcc aac Leu Phe Lys Leu Leu Lys Glu Gly His Arg Met Asp Lys Pro Ala Asn 705 710 715 720	2160
tgc aca cac gac ctg tac atg atc atg cgg gag tgc tgg cat gcc gcg Cys Thr His Asp Leu Tyr Met Ile Met Arg Glu Cys Trp His Ala Ala 725 730 735	2208
ccc tcc cag agg ccc acc ttc aag cag ctc gtg gag gag ctg gac cgt Pro Ser Gln Arg Pro Thr Phe Lys Gln Leu Val Glu Asp Leu Asp Arg 740 745 750	2256

-continued

gtc ctt acc gtg acg tcc acc gac gta aag gcg aca cag gag gag aac Val Leu Thr Val Thr Ser Thr Asp Val Lys Ala Thr Gln Glu Glu Asn 755 760 765	2304
cgg gag ctg agg agc agg tgt gag gag ctc cac ggg aag aac ctg gaa Arg Glu Leu Arg Ser Arg Cys Glu Glu Leu His Gly Lys Asn Leu Glu 770 775 780	2352
ctg ggg aag atc atg gac agg ttc gaa gag gtt gtg tac cag gcc atg Leu Gly Lys Ile Met Asp Arg Phe Glu Glu Val Val Tyr Gln Ala Met 785 790 795 800	2400
gag gaa gtt cag aag cag aag gaa ctt tcc aaa gct gaa atc cag aaa Glu Glu Val Gln Lys Gln Lys Glu Leu Ser Lys Ala Glu Ile Gln Lys 805 810 815	2448
gtt cta aaa gaa aaa gac caa ctt acc aca gat ctg aac tcc atg gag Val Leu Lys Glu Lys Asp Gln Leu Thr Thr Asp Leu Asn Ser Met Glu 820 825 830	2496
aag tcc ttc tcc gac ctc ttc aag cgt ttt gag aaa cag aaa gag gtg Lys Ser Phe Ser Asp Leu Phe Lys Arg Phe Glu Lys Glu Val Val 835 840 845	2544
atc gag ggc tac cgc aag aac gaa gag tca ctg aag aag tgc gtg gag Ile Glu Gly Tyr Arg Lys Asn Glu Glu Ser Leu Lys Lys Cys Val Glu 850 855 860	2592
gat tac ctg gca agg atc acc cag gag ggc cag agg tac caa gcc ctg Asp Tyr Leu Ala Arg Ile Thr Gln Glu Gly Gln Arg Tyr Gln Ala Leu 865 870 875 880	2640
aag gcc cac gcg gag gag aag ctg cag ctg gca aac gag gag atc gcc Lys Ala His Ala Glu Glu Lys Leu Gln Leu Ala Asn Glu Ile Ala 885 890 895	2688
cag gtc cgg agc aag gcc cag gcg gaa gcg ttg gcc ctc cag gcc agc Gln Val Arg Ser Lys Ala Gln Ala Glu Ala Leu Ala Leu Gln Ala Ser 900 905 910	2736
ctg agg aag gag cag atg cgc atc cag tcg ctg gag aag aca gtg gag Leu Arg Lys Glu Gln Met Arg Ile Gln Ser Leu Glu Lys Thr Val Glu 915 920 925	2784
cag aag act aaa gag aac gag gag ctg acc agg atc tgc gac gac ctc Gln Lys Thr Lys Glu Asn Glu Glu Leu Thr Arg Ile Cys Asp Asp Leu 930 935 940	2832
atc tcc aag atg gag aag atc tga Ile Ser Lys Met Glu Lys Ile 945 950	2856
<210> SEQ ID NO 10	
<211> LENGTH: 951	
<212> TYPE: PRT	
<213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 10	
Met Gly Ala Pro Ala Cys Ala Leu Ala Leu Cys Val Ala Val Ala Ile 1 5 10 15	
Val Ala Gly Ala Ser Ser Glu Ser Leu Gly Thr Glu Gln Arg Val Val 20 25 30	
Gly Arg Ala Ala Glu Val Pro Gly Pro Glu Pro Gly Gln Gln Glu Gln 35 40 45	
Leu Val Phe Gly Ser Gly Asp Ala Val Glu Leu Ser Cys Pro Pro Pro 50 55 60	
Gly Gly Gly Pro Met Gly Pro Thr Val Trp Val Lys Asp Gly Thr Gly 65 70 75 80	

-continued

Leu Val Pro Ser Glu Arg Val Leu Val Gly Pro Gln Arg Leu Gln Val
85 90 95

Leu Asn Ala Ser His Glu Asp Ser Gly Ala Tyr Ser Cys Arg Gln Arg
100 105 110

Leu Thr Gln Arg Val Leu Cys His Phe Ser Val Arg Val Thr Asp Ala
115 120 125

Pro Ser Ser Gly Asp Asp Glu Asp Gly Glu Asp Glu Ala Glu Asp Thr
130 135 140

Gly Val Asp Thr Gly Ala Pro Tyr Trp Thr Arg Pro Glu Arg Met Asp
145 150 155 160

Lys Lys Leu Leu Ala Val Pro Ala Ala Asn Thr Val Arg Phe Arg Cys
165 170 175

Pro Ala Ala Gly Asn Pro Thr Pro Ser Ile Ser Trp Leu Lys Asn Gly
180 185 190

Arg Glu Phe Arg Gly Glu His Arg Ile Gly Ile Lys Leu Arg His
195 200 205

Gln Gln Trp Ser Leu Val Met Glu Ser Val Val Pro Ser Asp Arg Gly
210 215 220

Asn Tyr Thr Cys Val Val Glu Asn Lys Phe Gly Ser Ile Arg Gln Thr
225 230 235 240

Tyr Thr Leu Asp Val Leu Glu Arg Ser Pro His Arg Pro Ile Leu Gln
245 250 255

Ala Gly Leu Pro Ala Asn Gln Thr Ala Val Leu Gly Ser Asp Val Glu
260 265 270

Phe His Cys Lys Val Tyr Ser Asp Ala Gln Pro His Ile Gln Trp Leu
275 280 285

Lys His Val Glu Val Asn Gly Ser Lys Val Gly Pro Asp Gly Thr Pro
290 295 300

Tyr Val Thr Val Leu Lys Ser Trp Ile Ser Glu Ser Val Glu Ala Asp
305 310 315 320

Val Arg Leu Arg Leu Ala Asn Val Ser Glu Arg Asp Gly Glu Tyr
325 330 335

Leu Cys Arg Ala Thr Asn Phe Ile Gly Val Ala Glu Lys Ala Phe Trp
340 345 350

Leu Ser Val His Gly Pro Arg Ala Ala Glu Glu Leu Val Glu Ala
355 360 365

Asp Glu Ala Gly Ser Val Tyr Ala Gly Ile Leu Ser Tyr Gly Val Gly
370 375 380

Phe Phe Leu Phe Ile Leu Val Val Ala Ala Val Thr Leu Cys Arg Leu
385 390 395 400

Arg Ser Pro Pro Lys Lys Gly Leu Gly Ser Pro Thr Val His Lys Ile
405 410 415

Ser Arg Phe Pro Leu Lys Arg Gln Val Ser Leu Glu Ser Asn Ala Ser
420 425 430

Met Ser Ser Asn Thr Pro Leu Val Arg Ile Ala Arg Leu Ser Ser Gly
435 440 445

Glu Gly Pro Thr Leu Ala Asn Val Ser Glu Leu Glu Leu Pro Ala Asp
450 455 460

Pro Lys Trp Glu Leu Ser Arg Ala Arg Leu Thr Leu Gly Lys Pro Leu
465 470 475 480

Gly Glu Gly Cys Phe Gly Gln Val Val Met Ala Glu Ala Ile Gly Ile

-continued

485	490	495
Asp Lys Asp Arg Ala Ala Lys Pro Val Thr Val Ala Val Lys Met Leu		
500	505	510
Lys Asp Asp Ala Thr Asp Lys Asp Leu Ser Asp Leu Val Ser Glu Met		
515	520	525
Glu Met Met Lys Met Ile Gly Lys His Lys Asn Ile Ile Asn Leu Leu		
530	535	540
Gly Ala Cys Thr Gln Gly Gly Pro Leu Tyr Val Leu Val Glu Tyr Ala		
545	550	555
Ala Lys Gly Asn Leu Arg Glu Phe Leu Arg Ala Arg Arg Pro Pro Gly		
565	570	575
Leu Asp Tyr Ser Phe Asp Thr Cys Lys Pro Pro Glu Glu Gln Leu Thr		
580	585	590
Phe Lys Asp Leu Val Ser Cys Ala Tyr Gln Val Ala Arg Gly Met Glu		
595	600	605
Tyr Leu Ala Ser Gln Lys Cys Ile His Arg Asp Leu Ala Ala Arg Asn		
610	615	620
Val Leu Val Thr Glu Asp Asn Val Met Lys Ile Ala Asp Phe Gly Leu		
625	630	635
Ala Arg Asp Val His Asn Leu Asp Tyr Tyr Lys Lys Thr Thr Asn Gly		
645	650	655
Arg Leu Pro Val Lys Trp Met Ala Pro Glu Ala Leu Phe Asp Arg Val		
660	665	670
Tyr Thr His Gln Ser Asp Val Trp Ser Phe Gly Val Leu Leu Trp Glu		
675	680	685
Ile Phe Thr Leu Gly Gly Ser Pro Tyr Pro Gly Ile Pro Val Glu Glu		
690	695	700
Leu Phe Lys Leu Leu Lys Glu Gly His Arg Met Asp Lys Pro Ala Asn		
705	710	715
720		
Cys Thr His Asp Leu Tyr Met Ile Met Arg Glu Cys Trp His Ala Ala		
725	730	735
Pro Ser Gln Arg Pro Thr Phe Lys Gln Leu Val Glu Asp Leu Asp Arg		
740	745	750
Val Leu Thr Val Thr Ser Thr Asp Val Lys Ala Thr Gln Glu Glu Asn		
755	760	765
Arg Glu Leu Arg Ser Arg Cys Glu Glu Leu His Gly Lys Asn Leu Glu		
770	775	780
Leu Gly Lys Ile Met Asp Arg Phe Glu Glu Val Val Tyr Gln Ala Met		
785	790	795
800		
Glu Glu Val Gln Lys Gln Lys Glu Leu Ser Lys Ala Glu Ile Gln Lys		
805	810	815
Val Leu Lys Glu Lys Asp Gln Leu Thr Thr Asp Leu Asn Ser Met Glu		
820	825	830
Lys Ser Phe Ser Asp Leu Phe Lys Arg Phe Glu Lys Gln Lys Glu Val		
835	840	845
Ile Glu Gly Tyr Arg Lys Asn Glu Glu Ser Leu Lys Lys Cys Val Glu		
850	855	860
Asp Tyr Leu Ala Arg Ile Thr Gln Glu Gly Gln Arg Tyr Gln Ala Leu		
865	870	875
880		
Lys Ala His Ala Glu Glu Lys Leu Gln Leu Ala Asn Glu Glu Ile Ala		
885	890	895

-continued

Gln Val Arg Ser Lys Ala Gln Ala Glu Ala Leu Ala Leu Gln Ala Ser
900 905 910

Leu Arg Lys Glu Gln Met Arg Ile Gln Ser Leu Glu Lys Thr Val Glu
915 920 925

Gln Lys Thr Lys Glu Asn Glu Glu Leu Thr Arg Ile Cys Asp Asp Leu
930 935 940

Ile Ser Lys Met Glu Lys Ile
945 950

<210> SEQ ID NO 11

<211> LENGTH: 2961

<212> TYPE: DNA

<213> ORGANISM: Homo sapiens

<220> FEATURE:

<221> NAME/KEY: CDS

<222> LOCATION: (1)..(2961)

<400> SEQUENCE: 11

atg ggc gcc cct gcc tgc gcc ctc gcg ctc tgc gtg gcc gtg gcc atc	48
Met Gly Ala Pro Ala Cys Ala Leu Ala Leu Cys Val Ala Val Ala Ile	
1 5 10 15	

gtg gcc ggc tcc tgc gag tcc ttg ggg acg gag cag cgc gtc gtg	96
Val Ala Gly Ala Ser Ser Glu Ser Leu Gly Thr Glu Gln Arg Val Val	
20 25 30	

ggg cga gcg gca gaa gtc ccg ggc cca gag ccc ggc cag cag gag cag	144
Gly Arg Ala Ala Glu Val Pro Gly Pro Glu Pro Gly Gln Gln Glu Gln	
35 40 45	

ttg gtc ttc ggc agc ggg gat gct gtg gag ctg agc tgt ccc ccg ccc	192
Leu Val Phe Gly Ser Gly Asp Ala Val Glu Leu Ser Cys Pro Pro Pro	
50 55 60	

ggg ggt ggt ccc atg ggg ccc act gtc tgg gtc aag gat ggc aca ggg	240
Gly Gly Gly Pro Met Gly Pro Thr Val Trp Val Lys Asp Gly Thr Gly	
65 70 75 80	

ctg gtg ccc tcg gag cgt gtc ctg gtg ggg ccc cag cgg ctg cag gtg	288
Leu Val Pro Ser Glu Arg Val Leu Val Gly Pro Gln Arg Leu Gln Val	
85 90 95	

ctg aat gcc tcc cac gag gac tcc ggg gcc tac agc tgc cgg cag cgg	336
Leu Asn Ala Ser His Glu Asp Ser Gly Ala Tyr Ser Cys Arg Gln Arg	
100 105 110	

ctc acg cag cgc gta ctg tgc cac ttc agt gtg cgg gtg aca gac gct	384
Leu Thr Gln Arg Val Leu Cys His Phe Ser Val Arg Val Thr Asp Ala	
115 120 125	

cca tcc tcg gga gat gac gaa gac ggg gag gac gag gag gct gag gac aca	432
Pro Ser Ser Gly Asp Asp Glu Asp Gly Glu Asp Glu Ala Glu Asp Thr	
130 135 140	

ggt gtg gac aca ggg gcc cct tac tgg aca cgg ccc gag cgg atg gac	480
Gly Val Asp Thr Gly Ala Pro Tyr Trp Thr Arg Pro Glu Arg Met Asp	
145 150 155 160	

aag aag ctg ctg gcc gtg cgc gcc gcc aac acc gtc cgc ttc cgc tgc	528
Lys Lys Leu Leu Ala Val Pro Ala Ala Asn Thr Val Arg Phe Arg Cys	
165 170 175	

cca gcc gct ggc aac ccc act ccc tcc atc tcc tgg ctg aag aac ggc	576
Pro Ala Ala Gly Asn Pro Thr Pro Ser Ile Ser Trp Leu Lys Asn Gly	
180 185 190	

agg gag ttc cgc ggc gag cac cgc att gga ggc atc aag aac cgc	624
Arg Glu Phe Arg Gly Glu His Arg Ile Gly Gly Ile Lys Leu Arg His	
195 200 205	

-continued

cag cag tgg agc ctg gtc atg gaa agc gtg gtg ccc tcg gac cgc ggc Gln Gln Trp Ser Leu Val Met Glu Ser Val Val Pro Ser Asp Arg Gly 210 215 220	672
aac tac acc tgc gtc gtg gag aac aag ttt ggc agc atc cgg cag acg Asn Tyr Thr Cys Val Val Glu Asn Lys Phe Gly Ser Ile Arg Gln Thr 225 230 235 240	720
tac acg ctg gac gtg ctg gag cgc tcc ccg cac cgg ccc atc ctg cag Tyr Thr Leu Asp Val Leu Glu Arg Ser Pro His Arg Pro Ile Leu Gln 245 250 255	768
gcg ggg ctg ccg gcc aac cag acg gcg gtg ctg ggc agc gac gtg gag Ala Gly Leu Pro Ala Asn Gln Thr Ala Val Leu Gly Ser Asp Val Glu 260 265 270	816
ttc cac tgc aag gtg tac agt gac gca cag ccc cac atc cag tgg ctc Phe His Cys Lys Val Tyr Ser Asp Ala Gln Pro His Ile Gln Trp Leu 275 280 285	864
aag cac gtg gag gtg aat ggc agc aag gtg ggc ccg gac ggc aca ccc Lys His Val Glu Val Asn Gly Ser Lys Val Gly Pro Asp Gly Thr Pro 290 295 300	912
tac gtt acc gtg ctc aag tcc tgg atc agt gag agt gtg gag gcc gac Tyr Val Thr Val Leu Lys Ser Trp Ile Ser Glu Ser Val Glu Ala Asp 305 310 315 320	960
gtg cgc ctc cgc ctg gcc aat gtg tcg gag cgg gac ggg ggc gag tac Val Arg Leu Arg Leu Ala Asn Val Ser Glu Arg Asp Gly Gly Glu Tyr 325 330 335	1008
ctc tgt cga gcc acc aat ttc ata ggc gtg gcc gag aag gcc ttt tgg Leu Cys Arg Ala Thr Asn Phe Ile Gly Val Ala Glu Lys Ala Phe Trp 340 345 350	1056
ctg agc gtt cac ggg ccc cga gca gcc gag gag ctg gtg gag gct Leu Ser Val His Gly Pro Arg Ala Ala Glu Glu Leu Val Glu Ala 355 360 365	1104
gac gag gcg ggc agt gtg tat gca ggc atc ctc agc tac ggg gtg ggc Asp Glu Ala Gly Ser Val Tyr Ala Gly Ile Leu Ser Tyr Gly Val Gly 370 375 380	1152
ttc ctc ctg ttc atc ctg gtg gct gtg acg ctc tgc cgc ctg Phe Leu Leu Phe Ile Leu Val Ala Ala Val Thr Leu Cys Arg Leu 385 390 395 400	1200
cgc agc ccc ccc aag aaa ggc ctg ggc tcc ccc acc gtg cac aag atc Arg Ser Pro Pro Lys Lys Gly Leu Gly Ser Pro Thr Val His Lys Ile 405 410 415	1248
tcc cgc ttc ccg ctc aag cga cag gtg tcc ctg gag tcc aac gcg tcc Ser Arg Phe Pro Leu Lys Arg Gln Val Ser Leu Glu Ser Asn Ala Ser 420 425 430	1296
atg agc tcc aac aca cca ctg gtg cgc atc gca agg ctg tcc tca ggg Met Ser Ser Asn Thr Pro Leu Val Arg Ile Ala Arg Leu Ser Ser Gly 435 440 445	1344
gag ggc ccc acg ctg gcc aat gtc tcc gag ctc gag ctg cct gcc gac Glu Gly Pro Thr Leu Ala Asn Val Ser Glu Leu Glu Leu Pro Ala Asp 450 455 460	1392
ccc aaa tgg gag ctg tct cgg gcc cgg ctg acc ctg ggc aag ccc ctt Pro Lys Trp Glu Leu Ser Arg Ala Arg Leu Thr Leu Gly Lys Pro Leu 465 470 475 480	1440
ggg gag ggc tgc ttc ggc cag gtg gtc atg gcg gag gcc atc ggc att Gly Glu Gly Cys Phe Gly Gln Val Val Met Ala Glu Ala Ile Gly Ile 485 490 495	1488
gac aag gac cgg gcc gcc aag cct gtc acc gta gcc gtg aag atg ctg Asp Lys Asp Arg Ala Ala Lys Pro Val Thr Val Ala Val Lys Met Leu 500 505 510	1536

-continued

aaa gac gat gcc act gac aag gac ctg tcg gac ctg gtg tct gag atg Lys Asp Asp Ala Thr Asp Lys Asp Leu Ser Asp Leu Val Ser Glu Met 515 520 525	1584
gag atg atg aag atg atc ggg aaa cac aaa aac atc atc aac ctg ctg Glu Met Met Lys Met Ile Gly Lys His Lys Asn Ile Ile Asn Leu Leu 530 535 540	1632
ggc gcc tgc acg cag ggc ggg ccc ctg tac gtg ctg gtg gag tac gcg Gly Ala Cys Thr Gln Gly Gly Pro Leu Tyr Val Leu Val Glu Tyr Ala 545 550 555 560	1680
gcc aag ggt aac ctg cgg gag ttt ctg cgg gcg cgg cgg ccc ccg ggc Ala Lys Gly Asn Leu Arg Glu Phe Leu Arg Ala Arg Arg Pro Pro Gly 565 570 575	1728
ctg gac tac tcc ttc gac acc tgc aag ccg ccc gag gag cag ctc acc Leu Asp Tyr Ser Phe Asp Thr Cys Lys Pro Pro Glu Glu Gln Leu Thr 580 585 590	1776
ttc aag gac ctg gtg tcc tgt gcc tac cag gtg gcc cgg ggc atg gag Phe Lys Asp Leu Val Ser Cys Ala Tyr Gln Val Ala Arg Gly Met Glu 595 600 605	1824
tac ttg gcc tcc cag aag tgc atc cac agg gac ctg gct gcc cgc aat Tyr Leu Ala Ser Gln Lys Cys Ile His Arg Asp Leu Ala Ala Arg Asn 610 615 620	1872
gtg ctg gtg acc gag gac aac gtg atg aag atc gca gac ttc ggg ctg Val Leu Val Thr Glu Asp Asn Val Met Lys Ile Ala Asp Phe Gly Leu 625 630 635 640	1920
gcc cgg gac gtg cac aac ctc gac tac tac aag aag aca acc aac ggc Ala Arg Asp Val His Asn Leu Asp Tyr Tyr Lys Lys Thr Thr Asn Gly 645 650 655	1968
cgg ctg ccc gtg aag tgg atg gcg cct gag gcc ttg ttt gac cga gtc Arg Leu Pro Val Lys Trp Met Ala Pro Glu Ala Leu Phe Asp Arg Val 660 665 670	2016
tac act cac cag agt gac gtc tgg tcc ttt ggg gtc ctg ctc tgg gag Tyr Thr His Gln Ser Asp Val Trp Ser Phe Gly Val Leu Leu Trp Glu 675 680 685	2064
atc ttc acg ctg ggg ggc tcc ccg tac ccc ggc atc cct gtg gag gag Ile Phe Thr Leu Gly Gly Ser Pro Tyr Pro Gly Ile Pro Val Glu Glu 690 695 700	2112
ctc ttc aag ctg ctg aag gag ggc cac cgc atg gac aag ccc gcc aac Leu Phe Lys Leu Leu Lys Glu Gly His Arg Met Asp Lys Pro Ala Asn 705 710 715 720	2160
tgc aca cac gac ctg tac atg atc atg cgg gag tgc tgg cat gcc gcg Cys Thr His Asp Leu Tyr Met Ile Met Arg Glu Cys Trp His Ala Ala 725 730 735	2208
ccc tcc cag agg ccc acc ttc aag cag ctg gtg gag gac ctg gac cgt Pro Ser Gln Arg Pro Thr Phe Lys Gln Leu Val Glu Asp Leu Asp Arg 740 745 750	2256
gtc ctt acc gtg acg tcc acc gac gtg cca ggc cca ccc cca ggt gtt Val Leu Thr Val Thr Ser Thr Asp Val Pro Gly Pro Pro Gly Val 755 760 765	2304
ccc gcg cct ggg ggc cca ccc ctg tcc acc gga cct ata gtg gac ctg Pro Ala Pro Gly Gly Pro Pro Leu Ser Thr Gly Pro Ile Val Asp Leu 770 775 780	2352
ctc cag tac agc cag aag gac ctg gat gca gtg gta aag gcg aca cag Leu Gln Tyr Ser Gln Lys Asp Leu Asp Ala Val Val Lys Ala Thr Gln 785 790 795 800	2400
gag gag aac cgg gag ctg agg agc agg tgt gag gag ctc cac ggg aag Glu Glu Asn Arg Glu Leu Arg Ser Arg Cys Glu Glu Leu His Gly Lys 805 810 815	2448

-continued

aac ctg gaa ctg ggg aag atc atg gac agg ttc gaa gag gtt gtg tac	2496
Asn Leu Glu Leu Gly Lys Ile Met Asp Arg Phe Glu Glu Val Val Tyr	
820 825 830	
cag gcc atg gag gaa gtt cag aag cag aag gaa ctt tcc aaa gct gaa	2544
Gln Ala Met Glu Glu Val Gln Lys Gln Lys Glu Leu Ser Lys Ala Glu	
835 840 845	
atc cag aaa gtt cta aaa gaa aaa gac caa ctt acc aca gat ctg aac	2592
Ile Gln Lys Val Leu Lys Glu Lys Asp Gln Leu Thr Thr Asp Leu Asn	
850 855 860	
tcc atg gag aag tcc ttc tcc gac ctc ttc aag cgt ttt gag aaa cag	2640
Ser Met Glu Lys Ser Phe Ser Asp Leu Phe Lys Arg Phe Glu Lys Gln	
865 870 875 880	
aaa gag gtg atc gag ggc tac cgc aag aac gaa gag tca ctg aag aag	2688
Lys Glu Val Ile Glu Gly Tyr Arg Lys Asn Glu Glu Ser Leu Lys Lys	
885 890 895	
tgc gtg gag gat tac ctg gca agg atc acc cag gag ggc cag agg tac	2736
Cys Val Glu Asp Tyr Leu Ala Arg Ile Thr Gln Glu Gly Gln Arg Tyr	
900 905 910	
caa gcc ctg aag gcc cac gcg gag gag aag ctg cag ctg gca aac gag	2784
Gln Ala Leu Lys Ala His Ala Glu Glu Lys Leu Gln Leu Ala Asn Glu	
915 920 925	
gag atc gcc cag gtc cgg agc aag gcc cag gcg gaa gcg ttg gcc ctc	2832
Glu Ile Ala Gln Val Arg Ser Lys Ala Gln Ala Glu Ala Leu Ala Leu	
930 935 940	
cag gcc agc ctg agg aag gag cag atg cgc atc cag tcg ctg gag aag	2880
Gln Ala Ser Leu Arg Lys Glu Gln Met Arg Ile Gln Ser Leu Glu Lys	
945 950 955 960	
aca gtg gag cag aag act aaa gag aac gag gag ctg acc agg atc tgc	2928
Thr Val Glu Gln Lys Thr Lys Glu Asn Glu Glu Leu Thr Arg Ile Cys	
965 970 975	
gac gac ctc atc tcc aag atg gag aag atc tga	2961
Asp Asp Leu Ile Ser Lys Met Glu Lys Ile	
980 985	
<210> SEQ ID NO 12	
<211> LENGTH: 986	
<212> TYPE: PRT	
<213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 12	
Met Gly Ala Pro Ala Cys Ala Leu Ala Leu Cys Val Ala Val Ala Ile	
1 5 10 15	
Val Ala Gly Ala Ser Ser Glu Ser Leu Gly Thr Glu Gln Arg Val Val	
20 25 30	
Gly Arg Ala Ala Glu Val Pro Gly Pro Glu Pro Gly Gln Gln Gln	
35 40 45	
Leu Val Phe Gly Ser Gly Asp Ala Val Glu Leu Ser Cys Pro Pro Pro	
50 55 60	
Gly Gly Gly Pro Met Gly Pro Thr Val Trp Val Lys Asp Gly Thr Gly	
65 70 75 80	
Leu Val Pro Ser Glu Arg Val Leu Val Gly Pro Gln Arg Leu Gln Val	
85 90 95	
Leu Asn Ala Ser His Glu Asp Ser Gly Ala Tyr Ser Cys Arg Gln Arg	
100 105 110	
Leu Thr Gln Arg Val Leu Cys His Phe Ser Val Arg Val Thr Asp Ala	
115 120 125	

-continued

Pro Ser Ser Gly Asp Asp Glu Asp Gly Glu Asp Glu Ala Glu Asp Thr
 130 135 140
 Gly Val Asp Thr Gly Ala Pro Tyr Trp Thr Arg Pro Glu Arg Met Asp
 145 150 155 160
 Lys Lys Leu Leu Ala Val Pro Ala Ala Asn Thr Val Arg Phe Arg Cys
 165 170 175
 Pro Ala Ala Gly Asn Pro Thr Pro Ser Ile Ser Trp Leu Lys Asn Gly
 180 185 190
 Arg Glu Phe Arg Gly Glu His Arg Ile Gly Gly Ile Lys Leu Arg His
 195 200 205
 Gln Gln Trp Ser Leu Val Met Glu Ser Val Val Pro Ser Asp Arg Gly
 210 215 220
 Asn Tyr Thr Cys Val Val Glu Asn Lys Phe Gly Ser Ile Arg Gln Thr
 225 230 235 240
 Tyr Thr Leu Asp Val Leu Glu Arg Ser Pro His Arg Pro Ile Leu Gln
 245 250 255
 Ala Gly Leu Pro Ala Asn Gln Thr Ala Val Leu Gly Ser Asp Val Glu
 260 265 270
 Phe His Cys Lys Val Tyr Ser Asp Ala Gln Pro His Ile Gln Trp Leu
 275 280 285
 Lys His Val Glu Val Asn Gly Ser Lys Val Gly Pro Asp Gly Thr Pro
 290 295 300
 Tyr Val Thr Val Leu Lys Ser Trp Ile Ser Glu Ser Val Glu Ala Asp
 305 310 315 320
 Val Arg Leu Arg Leu Ala Asn Val Ser Glu Arg Asp Gly Glu Tyr
 325 330 335
 Leu Cys Arg Ala Thr Asn Phe Ile Gly Val Ala Glu Lys Ala Phe Trp
 340 345 350
 Leu Ser Val His Gly Pro Arg Ala Ala Glu Glu Leu Val Glu Ala
 355 360 365
 Asp Glu Ala Gly Ser Val Tyr Ala Gly Ile Leu Ser Tyr Gly Val Gly
 370 375 380
 Phe Leu Leu Phe Ile Leu Val Val Ala Ala Val Thr Leu Cys Arg Leu
 385 390 395 400
 Arg Ser Pro Pro Lys Lys Gly Leu Gly Ser Pro Thr Val His Lys Ile
 405 410 415
 Ser Arg Phe Pro Leu Lys Arg Gln Val Ser Leu Glu Ser Asn Ala Ser
 420 425 430
 Met Ser Ser Asn Thr Pro Leu Val Arg Ile Ala Arg Leu Ser Ser Gly
 435 440 445
 Glu Gly Pro Thr Leu Ala Asn Val Ser Glu Leu Glu Leu Pro Ala Asp
 450 455 460
 Pro Lys Trp Glu Leu Ser Arg Ala Arg Leu Thr Leu Gly Lys Pro Leu
 465 470 475 480
 Gly Glu Gly Cys Phe Gly Gln Val Val Met Ala Glu Ala Ile Gly Ile
 485 490 495
 Asp Lys Asp Arg Ala Ala Lys Pro Val Thr Val Ala Val Lys Met Leu
 500 505 510
 Lys Asp Asp Ala Thr Asp Lys Asp Leu Ser Asp Leu Val Ser Glu Met
 515 520 525
 Glu Met Met Lys Met Ile Gly Lys His Lys Asn Ile Ile Asn Leu Leu

-continued

530	535	540
Gly Ala Cys Thr Gln Gly Gly Pro Leu Tyr Val Leu Val Glu Tyr Ala		
545 550 555 560		
Ala Lys Gly Asn Leu Arg Glu Phe Leu Arg Ala Arg Arg Pro Pro Gly		
565 570 575		
Leu Asp Tyr Ser Phe Asp Thr Cys Lys Pro Pro Glu Glu Gln Leu Thr		
580 585 590		
Phe Lys Asp Leu Val Ser Cys Ala Tyr Gln Val Ala Arg Gly Met Glu		
595 600 605		
Tyr Leu Ala Ser Gln Lys Cys Ile His Arg Asp Leu Ala Ala Arg Asn		
610 615 620		
Val Leu Val Thr Glu Asp Asn Val Met Lys Ile Ala Asp Phe Gly Leu		
625 630 635 640		
Ala Arg Asp Val His Asn Leu Asp Tyr Tyr Lys Lys Thr Thr Asn Gly		
645 650 655		
Arg Leu Pro Val Lys Trp Met Ala Pro Glu Ala Leu Phe Asp Arg Val		
660 665 670		
Tyr Thr His Gln Ser Asp Val Trp Ser Phe Gly Val Leu Leu Trp Glu		
675 680 685		
Ile Phe Thr Leu Gly Gly Ser Pro Tyr Pro Gly Ile Pro Val Glu Glu		
690 695 700		
Leu Phe Lys Leu Leu Lys Glu Gly His Arg Met Asp Lys Pro Ala Asn		
705 710 715 720		
Cys Thr His Asp Leu Tyr Met Ile Met Arg Glu Cys Trp His Ala Ala		
725 730 735		
Pro Ser Gln Arg Pro Thr Phe Lys Gln Leu Val Glu Asp Leu Asp Arg		
740 745 750		
Val Leu Thr Val Thr Ser Thr Asp Val Pro Gly Pro Pro Gly Val		
755 760 765		
Pro Ala Pro Gly Gly Pro Pro Leu Ser Thr Gly Pro Ile Val Asp Leu		
770 775 780		
Leu Gln Tyr Ser Gln Lys Asp Leu Asp Ala Val Val Lys Ala Thr Gln		
785 790 795 800		
Glu Glu Asn Arg Glu Leu Arg Ser Arg Cys Glu Glu Leu His Gly Lys		
805 810 815		
Asn Leu Glu Leu Gly Lys Ile Met Asp Arg Phe Glu Glu Val Val Tyr		
820 825 830		
Gln Ala Met Glu Glu Val Gln Lys Gln Lys Glu Leu Ser Lys Ala Glu		
835 840 845		
Ile Gln Lys Val Leu Lys Glu Lys Asp Gln Leu Thr Thr Asp Leu Asn		
850 855 860		
Ser Met Glu Lys Ser Phe Ser Asp Leu Phe Lys Arg Phe Glu Lys Gln		
865 870 875 880		
Lys Glu Val Ile Glu Gly Tyr Arg Lys Asn Glu Glu Ser Leu Lys Lys		
885 890 895		
Cys Val Glu Asp Tyr Leu Ala Arg Ile Thr Gln Glu Gly Gln Arg Tyr		
900 905 910		
Gln Ala Leu Lys Ala His Ala Glu Glu Lys Leu Gln Leu Ala Asn Glu		
915 920 925		
Glu Ile Ala Gln Val Arg Ser Lys Ala Gln Ala Glu Ala Leu Ala Leu		
930 935 940		

-continued

Gln Ala Ser Leu Arg Lys Glu Gln Met Arg Ile Gln Ser Leu Glu Lys
945 950 955 960

Thr Val Glu Gln Lys Thr Lys Glu Asn Glu Glu Leu Thr Arg Ile Cys
965 970 975

Asp Asp Leu Ile Ser Lys Met Glu Lys Ile
980 985

<210> SEQ ID NO 13

<211> LENGTH: 3003

<212> TYPE: DNA

<213> ORGANISM: Homo sapiens

<220> FEATURE:

<221> NAME/KEY: CDS

<222> LOCATION: (1)..(3003)

<400> SEQUENCE: 13

atg ggc gcc cct gcc tgc gcc ctc gcg ctc tgc gtg gcc gtg gcc atc 48
Met Gly Ala Pro Ala Cys Ala Leu Ala Leu Cys Val Ala Val Ala Ile
1 5 10 15

gtg gcc ggc tcc tcc gag tcc ttg ggg acg gag cag cgc gtc gtg 96
Val Ala Gly Ala Ser Ser Glu Ser Leu Gly Thr Glu Gln Arg Val Val
20 25 30

ggg cga gcg gca gaa gtc ccg ggc cca gag ccc ggc cag cag gag cag 144
Gly Arg Ala Ala Glu Val Pro Gly Pro Glu Pro Gly Gln Gln Glu Gln
35 40 45

ttg gtc ttc ggc agc ggg gat gct gtg gag ctg agc tgt ccc ccg ccc 192
Leu Val Phe Gly Ser Gly Asp Ala Val Glu Leu Ser Cys Pro Pro Pro
50 55 60

ggg ggt ggt ccc atg ggg ccc act gtc tgg gtc aag gat ggc aca ggg 240
Gly Gly Pro Met Gly Pro Thr Val Trp Val Lys Asp Gly Thr Gly
65 70 75 80

ctg gtg ccc tcg gag cgt gtc ctg gtg ggg ccc cag cgg ctg cag gtg 288
Leu Val Pro Ser Glu Arg Val Leu Val Gly Pro Gln Arg Leu Gln Val
85 90 95

ctg aat gcc tcc cac gag gac tcc ggg gcc tac agc tgc cgg cag cgg 336
Leu Asn Ala Ser His Glu Asp Ser Gly Ala Tyr Ser Cys Arg Gln Arg
100 105 110

ctc acg cag cgc gta ctg tgc cac ttc agt gtg cgg gtg aca gac gct 384
Leu Thr Gln Arg Val Leu Cys His Phe Ser Val Arg Val Thr Asp Ala
115 120 125

cca tcc tcg gga gat gac gaa gac ggg gag gac gag gac gct gag gac aca 432
Pro Ser Ser Gly Asp Asp Glu Asp Gly Glu Asp Glu Ala Glu Asp Thr
130 135 140

ggt gtg gac aca ggg gcc cct tac tgg aca cgg ccc gag cgg atg gac 480
Gly Val Asp Thr Gly Ala Pro Tyr Trp Thr Arg Pro Glu Arg Met Asp
145 150 155 160

aag aag ctg ctg gcc gtg cgg gcc aac acc gtc cgc ttc cgc tgc 528
Lys Lys Leu Leu Ala Val Pro Ala Ala Asn Thr Val Arg Phe Arg Cys
165 170 175

cca gcc gct ggc aac ccc act ccc tcc atc tcc tgg ctg aag aac ggc 576
Pro Ala Ala Gly Asn Pro Thr Pro Ser Ile Ser Trp Leu Lys Asn Gly
180 185 190

agg gag ttc cgc ggc gag cac cgc att gga ggc atc aag ctg cgg cat 624
Arg Glu Phe Arg Gly Glu His Arg Ile Gly Gly Ile Lys Leu Arg His
195 200 205

cag cag tgg agc ctg gtc atg gaa agc gtc gtg ccc tgg gac cgc ggc 672
Gln Gln Trp Ser Leu Val Met Glu Ser Val Val Pro Ser Asp Arg Gly
210 215 220

-continued

aac tac acc tgc gtc gtg gag aac aag ttt ggc agc atc cgg cag acg	720
Asn Tyr Thr Cys Val Val Glu Asn Lys Phe Gly Ser Ile Arg Gln Thr	
225 230 235 240	
tac acg ctg gac gtg ctg gag cgc tcc ccg cac cgg ccc atc ctg cag	768
Tyr Thr Leu Asp Val Leu Glu Arg Ser Pro His Arg Pro Ile Leu Gln	
245 250 255	
gcg ggg ctg ccg gcc aac cag acg gcg gtg ctg ggc agc gac gtg gag	816
Ala Gly Leu Pro Ala Asn Gln Thr Ala Val Leu Gly Ser Asp Val Glu	
260 265 270	
ttc cac tgc aag gtg tac agt gac gca cag ccc cac atc cag tgg ctc	864
Phe His Cys Lys Val Tyr Ser Asp Ala Gln Pro His Ile Gln Trp Leu	
275 280 285	
aag cac gtg gag gtg aat ggc agc aag gtg ggc ccg gac ggc aca ccc	912
Lys His Val Glu Val Asn Gly Ser Lys Val Gly Pro Asp Gly Thr Pro	
290 295 300	
tac gtt acc gtg ctc aag tcc tgg atc agt gag agt gtg gag gcc gac	960
Tyr Val Thr Val Leu Lys Ser Trp Ile Ser Glu Ser Val Glu Ala Asp	
305 310 315 320	
gtg cgc ctc cgc ctg gcc aat gtg tcg gag cgg gac ggg ggc gag tac	1008
Val Arg Leu Arg Leu Ala Asn Val Ser Glu Arg Asp Gly Gly Glu Tyr	
325 330 335	
ctc tgt cga gcc acc aat ttc ata ggc gtg gcc gag aag gcc ttt tgg	1056
Leu Cys Arg Ala Thr Asn Phe Ile Gly Val Ala Glu Lys Ala Phe Trp	
340 345 350	
ctg agc gtt cac ggg ccc cga gca gcc gag gag ctg gtg gag gct	1104
Leu Ser Val His Gly Pro Arg Ala Ala Glu Glu Leu Val Glu Ala	
355 360 365	
gac gag ggc agt gtg tat gca ggc atc ctc agc tac ggg gtg ggc	1152
Asp Glu Ala Gly Ser Val Tyr Ala Gly Ile Leu Ser Tyr Gly Val Gly	
370 375 380	
ttc ttc ctg atc ctg gtg gct gtg acg ctc tgc cgc ctg	1200
Phe Phe Leu Phe Ile Leu Val Val Ala Ala Val Thr Leu Cys Arg Leu	
385 390 395 400	
cgc agc ccc ccc aag aaa ggc ctg ggc tcc ccc acc gtg cac aag atc	1248
Arg Ser Pro Pro Lys Lys Gly Leu Gly Ser Pro Thr Val His Lys Ile	
405 410 415	
tcc cgc ttc ccg ctc aag cga cag gtg tcc ctg gag tcc aac gcg tcc	1296
Ser Arg Phe Pro Leu Lys Arg Gln Val Ser Leu Glu Ser Asn Ala Ser	
420 425 430	
atg agc tcc aac aca cca ctg gtg cgc atc gca agg ctg tcc tca ggg	1344
Met Ser Ser Asn Thr Pro Leu Val Arg Ile Ala Arg Leu Ser Ser Gly	
435 440 445	
gag ggc ccc acg ctg gcc aat gtc tcc gag ctc gag ctg cct gcc gac	1392
Glu Gly Pro Thr Leu Ala Asn Val Ser Glu Leu Glu Leu Pro Ala Asp	
450 455 460	
ccc aaa tgg gag ctg tct cgg gcc cgg ctg acc ctg ggc aag ccc ctt	1440
Pro Lys Trp Glu Leu Ser Arg Ala Arg Leu Thr Leu Gly Lys Pro Leu	
465 470 475 480	
ggg gag ggc tgc ttc ggc cag gtg gtc atg gcg gag gcc atc ggc att	1488
Gly Glu Gly Cys Phe Gly Gln Val Val Met Ala Glu Ala Ile Gly Ile	
485 490 495	
gac aag gac cgg gcc gcc aag cct gtc acc gta gcc gtg aag atg ctg	1536
Asp Lys Asp Arg Ala Ala Lys Pro Val Thr Val Ala Val Lys Met Leu	
500 505 510	
aaa gac gat gcc act gac aag gac ctg tcg gac ctg gtg tct gag atg	1584
Lys Asp Asp Ala Thr Asp Lys Asp Leu Ser Asp Leu Val Ser Glu Met	
515 520 525	

-continued

gag atg atg aaa atg atc ggg aaa cac aaa aac atc atc aac ctg ctg Glu Met Met Lys Met Ile Gly Lys His Lys Asn Ile Ile Asn Leu Leu 530 535 540	1632
ggc gcc tgc acg cag ggc ggg ccc ctg tac gtg ctg gtg gag tac gcg Gly Ala Cys Thr Gln Gly Pro Leu Tyr Val Leu Val Glu Tyr Ala 545 550 555 560	1680
gcc aag ggt aac ctg cgg gag ttt ctg cgg gcg cgg ccc ccc ggc Ala Lys Gly Asn Leu Arg Glu Phe Leu Arg Ala Arg Arg Pro Pro Gly 565 570 575	1728
ctg gac tac tcc ttc gac acc tgc aag ccg ccc gag gag cag ctc acc Leu Asp Tyr Ser Phe Asp Thr Cys Lys Pro Pro Glu Glu Gln Leu Thr 580 585 590	1776
ttc aag gac ctg gtg tcc tgt gcc tac cag gtg gcc cgg ggc atg gag Phe Lys Asp Leu Val Ser Cys Ala Tyr Gln Val Ala Arg Gly Met Glu 595 600 605	1824
tac ttg gcc tcc cag aag tgc atc cac agg gac ctg gct gcc cgc aat Tyr Leu Ala Ser Gln Lys Cys Ile His Arg Asp Leu Ala Ala Arg Asn 610 615 620	1872
gtg ctg gtg acc gag gac aac gtg aag atc gca gac ttc ggg ctg Val Leu Val Thr Glu Asp Asn Val Met Lys Ile Ala Asp Phe Gly Leu 625 630 635 640	1920
gcc cgg gac gtg cac aac ctc gac tac tac aag aag aca acc aac ggc Ala Arg Asp Val His Asn Leu Asp Tyr Tyr Lys Lys Thr Thr Asn Gly 645 650 655	1968
cgg ctg ccc gtg aag tgg atg gcg cct gag gcc ttg ttt gac cga gtc Arg Leu Pro Val Lys Trp Met Ala Pro Glu Ala Leu Phe Asp Arg Val 660 665 670	2016
tac act cac cag agt gac gtc tgg tcc ttt ggg gtc ctg ctc tgg gag Tyr Thr His Gln Ser Asp Val Trp Ser Phe Gly Val Leu Leu Trp Glu 675 680 685	2064
atc ttc acg ctg ggg ggc tcc ccg tac ccc ggc atc cct gtg gag gag Ile Phe Thr Leu Gly Gly Ser Pro Tyr Pro Gly Ile Pro Val Glu Glu 690 695 700	2112
ctc ttc aag ctg ctg aag gag ggc cac cgc atg gac aag ccc gcc aac Leu Phe Lys Leu Leu Lys Glu Gly His Arg Met Asp Lys Pro Ala Asn 705 710 715 720	2160
tgc aca cac gac ctg tac atg atc atg cgg gag tgc tgg cat gcc gcg Cys Thr His Asp Leu Tyr Met Ile Met Arg Glu Cys Trp His Ala Ala 725 730 735	2208
ccc tcc cag agg ccc acc ttc aag cag ctg gtg gag gac ctg gac cgt Pro Ser Gln Arg Pro Thr Phe Lys Gln Leu Val Glu Asp Leu Asp Arg 740 745 750	2256
gtc ctt acc gtg acg tcc acc gac gag tac ctg gac ctg tgg cct Val Leu Thr Val Thr Ser Thr Asp Glu Tyr Leu Asp Leu Ser Ala Pro 755 760 765	2304
ttc gag cag tac tcc ccg ggt ggc cag gac acc ccc agc tcc agc tcc Phe Glu Gln Tyr Ser Pro Gly Gly Gln Asp Thr Pro Ser Ser Ser Ser 770 775 780	2352
tca ggg gac gac tcc gag gtc ctg gga ggg tca gtc tgg ccc gcc tgc Ser Gly Asp Asp Ser Glu Val Leu Gly Gly Ser Val Trp Pro Ala Cys 785 790 795 800	2400
ctg ctg act tgg gtg tgg cct gag cag gta aag gcg aca cag gag gag Leu Leu Thr Trp Val Trp Pro Glu Gln Val Lys Ala Thr Gln Glu Glu 805 810 815	2448
aac cgg gag ctg agg agc agg tgt gag gag ctc cac ggg aag aac ctg Asn Arg Glu Leu Arg Ser Arg Cys Glu Glu Leu His Gly Lys Asn Leu 820 825 830	2496

-continued

gaa ctg ggg aag atc atg gac agg ttc gaa gag gtt gtg tac cag gcc Glu Leu Gly Lys Ile Met Asp Arg Phe Glu Glu Val Val Tyr Gln Ala 835 840 845	2544
atg gag gaa gtt cag aag cag aag gaa ctt tcc aaa gct gaa atc cag Met Glu Glu Val Gln Lys Gln Lys Glu Leu Ser Lys Ala Glu Ile Gln 850 855 860	2592
aaa gtt cta aaa gaa aaa gac caa ctt acc aca gat ctg aac tcc atg Lys Val Leu Lys Glu Lys Asp Gln Leu Thr Thr Asp Leu Asn Ser Met 865 870 875 880	2640
gag aag tcc ttc tcc gac ctc ttc aag cgt ttt gag aaa cag aaa gag Glu Lys Ser Phe Ser Asp Leu Phe Lys Arg Phe Glu Lys Gln Lys Glu 885 890 895	2688
gtg atc gag ggc tac cgc aag aac gaa gag tca ctg aag aag tgc gtg Val Ile Glu Gly Tyr Arg Lys Asn Glu Ser Leu Lys Lys Cys Val 900 905 910	2736
gag gat tac ctg gca agg atc acc cag gag ggc cag agg tac caa gcc Glu Asp Tyr Leu Ala Arg Ile Thr Gln Glu Gly Gln Arg Tyr Gln Ala 915 920 925	2784
ctg aag gcc cac gcg gag gag aag ctg cag ctg gca aac gag gag atc Leu Lys Ala His Ala Glu Glu Lys Leu Gln Leu Ala Asn Glu Glu Ile 930 935 940	2832
gcc cag gtc cgg agc aag gcc cag gcg gaa ggc ttg gcc ctc cag gcc Ala Gln Val Arg Ser Lys Ala Gln Ala Glu Ala Leu Ala Leu Gln Ala 945 950 955 960	2880
agc ctg agg aag gag cag atg cgc atc cag tcg ctg gag aag aca gtc Ser Leu Arg Lys Glu Gln Met Arg Ile Gln Ser Leu Glu Lys Thr Val 965 970 975	2928
gag cag aag act aaa gag aac gag gag ctg acc agg atc tgc gac gac Glu Gln Lys Thr Lys Glu Asn Glu Leu Thr Arg Ile Cys Asp Asp 980 985 990	2976
ctc atc tcc aag atg gag aag atc tga Leu Ile Ser Lys Met Glu Lys Ile 995 1000	3003

<210> SEQ ID NO 14
<211> LENGTH: 1000
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 14

Met Gly Ala Pro Ala Cys Ala Leu Ala Leu Cys Val Ala Val Ala Ile 1 5 10 15
Val Ala Gly Ala Ser Ser Glu Ser Leu Gly Thr Glu Gln Arg Val Val 20 25 30
Gly Arg Ala Ala Glu Val Pro Gly Pro Glu Pro Gly Gln Gln Glu Gln 35 40 45
Leu Val Phe Gly Ser Gly Asp Ala Val Glu Leu Ser Cys Pro Pro Pro 50 55 60
Gly Gly Gly Pro Met Gly Pro Thr Val Trp Val Lys Asp Gly Thr Gly 65 70 75 80
Leu Val Pro Ser Glu Arg Val Leu Val Gly Pro Gln Arg Leu Gln Val 85 90 95
Leu Asn Ala Ser His Glu Asp Ser Gly Ala Tyr Ser Cys Arg Gln Arg 100 105 110
Leu Thr Gln Arg Val Leu Cys His Phe Ser Val Arg Val Thr Asp Ala 115 120 125

-continued

Pro Ser Ser Gly Asp Asp Glu Asp Gly Glu Asp Glu Ala Glu Asp Thr
 130 135 140
 Gly Val Asp Thr Gly Ala Pro Tyr Trp Thr Arg Pro Glu Arg Met Asp
 145 150 155 160
 Lys Lys Leu Leu Ala Val Pro Ala Ala Asn Thr Val Arg Phe Arg Cys
 165 170 175
 Pro Ala Ala Gly Asn Pro Thr Pro Ser Ile Ser Trp Leu Lys Asn Gly
 180 185 190
 Arg Glu Phe Arg Gly Glu His Arg Ile Gly Gly Ile Lys Leu Arg His
 195 200 205
 Gln Gln Trp Ser Leu Val Met Glu Ser Val Val Pro Ser Asp Arg Gly
 210 215 220
 Asn Tyr Thr Cys Val Val Glu Asn Lys Phe Gly Ser Ile Arg Gln Thr
 225 230 235 240
 Tyr Thr Leu Asp Val Leu Glu Arg Ser Pro His Arg Pro Ile Leu Gln
 245 250 255
 Ala Gly Leu Pro Ala Asn Gln Thr Ala Val Leu Gly Ser Asp Val Glu
 260 265 270
 Phe His Cys Lys Val Tyr Ser Asp Ala Gln Pro His Ile Gln Trp Leu
 275 280 285
 Lys His Val Glu Val Asn Gly Ser Lys Val Gly Pro Asp Gly Thr Pro
 290 295 300
 Tyr Val Thr Val Leu Lys Ser Trp Ile Ser Glu Ser Val Glu Ala Asp
 305 310 315 320
 Val Arg Leu Arg Leu Ala Asn Val Ser Glu Arg Asp Gly Glu Tyr
 325 330 335
 Leu Cys Arg Ala Thr Asn Phe Ile Gly Val Ala Glu Lys Ala Phe Trp
 340 345 350
 Leu Ser Val His Gly Pro Arg Ala Ala Glu Glu Leu Val Glu Ala
 355 360 365
 Asp Glu Ala Gly Ser Val Tyr Ala Gly Ile Leu Ser Tyr Val Gly
 370 375 380
 Phe Phe Leu Phe Ile Leu Val Val Ala Ala Val Thr Leu Cys Arg Leu
 385 390 395 400
 Arg Ser Pro Pro Lys Lys Gly Leu Gly Ser Pro Thr Val His Lys Ile
 405 410 415
 Ser Arg Phe Pro Leu Lys Arg Gln Val Ser Leu Glu Ser Asn Ala Ser
 420 425 430
 Met Ser Ser Asn Thr Pro Leu Val Arg Ile Ala Arg Leu Ser Ser Gly
 435 440 445
 Glu Gly Pro Thr Leu Ala Asn Val Ser Glu Leu Glu Leu Pro Ala Asp
 450 455 460
 Pro Lys Trp Glu Leu Ser Arg Ala Arg Leu Thr Leu Gly Lys Pro Leu
 465 470 475 480
 Gly Glu Gly Cys Phe Gly Gln Val Val Met Ala Glu Ala Ile Gly Ile
 485 490 495
 Asp Lys Asp Arg Ala Ala Lys Pro Val Thr Val Ala Val Lys Met Leu
 500 505 510
 Lys Asp Asp Ala Thr Asp Lys Asp Leu Ser Asp Leu Val Ser Glu Met
 515 520 525

-continued

Glu	Met	Met	Lys	Met	Ile	Gly	Lys	His	Lys	Asn	Ile	Ile	Asn	Leu	Leu	
530						535									540	
Gly	Ala	Cys	Thr	Gln	Gly	Gly	Pro	Leu	Tyr	Val	Leu	Val	Glu	Tyr	Ala	
545						550									560	
Ala	Lys	Gly	Asn	Leu	Arg	Glu	Phe	Leu	Arg	Ala	Arg	Arg	Pro	Pro	Gly	
	565						570								575	
Leu	Asp	Tyr	Ser	Phe	Asp	Thr	Cys	Lys	Pro	Pro	Glu	Glu	Gln	Leu	Thr	
	580						585								590	
Phe	Lys	Asp	Leu	Val	Ser	Cys	Ala	Tyr	Gln	Val	Ala	Arg	Gly	Met	Glu	
	595						600								605	
Tyr	Leu	Ala	Ser	Gln	Lys	Cys	Ile	His	Arg	Asp	Leu	Ala	Ala	Arg	Asn	
	610						615								620	
Val	Leu	Val	Thr	Glu	Asp	Asn	Val	Met	Lys	Ile	Ala	Asp	Phe	Gly	Leu	
625							630								640	
Ala	Arg	Asp	Val	His	Asn	Leu	Asp	Tyr	Tyr	Lys	Lys	Thr	Thr	Asn	Gly	
	645						650								655	
Arg	Leu	Pro	Val	Lys	Trp	Met	Ala	Pro	Glu	Ala	Leu	Phe	Asp	Arg	Val	
	660						665								670	
Tyr	Thr	His	Gln	Ser	Asp	Val	Trp	Ser	Phe	Gly	Val	Leu	Leu	Trp	Glu	
	675						680								685	
Ile	Phe	Thr	Leu	Gly	Gly	Ser	Pro	Tyr	Pro	Gly	Ile	Pro	Val	Glu	Glu	
	690						695								700	
Leu	Phe	Lys	Leu	Leu	Lys	Glu	Gly	His	Arg	Met	Asp	Lys	Pro	Ala	Asn	
705						710									720	
Cys	Thr	His	Asp	Leu	Tyr	Met	Ile	Met	Arg	Glu	Cys	Trp	His	Ala	Ala	
	725						730								735	
Pro	Ser	Gln	Arg	Pro	Thr	Phe	Lys	Gln	Leu	Val	Glu	Asp	Leu	Asp	Arg	
	740						745								750	
Val	Leu	Thr	Val	Thr	Ser	Thr	Asp	Glu	Tyr	Leu	Asp	Leu	Ser	Ala	Pro	
	755						760								765	
Phe	Glu	Gln	Tyr	Ser	Pro	Gly	Gly	Gln	Asp	Thr	Pro	Ser	Ser	Ser		
	770						775								780	
Ser	Gly	Asp	Asp	Ser	Glu	Val	Leu	Gly	Gly	Ser	Val	Trp	Pro	Ala	Cys	
	785						790								800	
Leu	Leu	Thr	Trp	Val	Trp	Pro	Glu	Gln	Val	Lys	Ala	Thr	Gln	Glu	Glu	
	805						810								815	
Asn	Arg	Glu	Leu	Arg	Ser	Arg	Cys	Glu	Glu	Leu	His	Gly	Lys	Asn	Leu	
	820						825								830	
Glu	Leu	Gly	Lys	Ile	Met	Asp	Arg	Phe	Glu	Glu	Val	Val	Tyr	Gln	Ala	
	835						840								845	
Met	Glu	Glu	Val	Gln	Lys	Gln	Lys	Glu	Leu	Ser	Lys	Ala	Glu	Ile	Gln	
	850						855								860	
Lys	Val	Leu	Lys	Glu	Lys	Asp	Gln	Leu	Thr	Thr	Asp	Leu	Asn	Ser	Met	
	865						870								880	
Glu	Lys	Ser	Phe	Ser	Asp	Leu	Phe	Lys	Arg	Phe	Glu	Lys	Gln	Lys	Glu	
	885						890								895	
Val	Ile	Glu	Gly	Tyr	Arg	Lys	Asn	Glu	Glu	Ser	Leu	Lys	Lys	Cys	Val	
	900						905								910	
Glu	Asp	Tyr	Leu	Ala	Arg	Ile	Thr	Gln	Glu	Gly	Gln	Arg	Tyr	Gln	Ala	
	915						920								925	
Leu Lys Ala His Ala Glu Glu Lys Leu Gln Leu Ala Asn Glu Glu Ile																

-continued

930	935	940
Ala Gln Val Arg Ser Lys Ala Gln Ala Glu Ala Leu Ala Leu Gln Ala		
945	950	955
Ser Leu Arg Lys Glu Gln Met Arg Ile Gln Ser Leu Glu Lys Thr Val		
965	970	975
Glu Gln Lys Thr Lys Glu Asn Glu Glu Leu Thr Arg Ile Cys Asp Asp		
980	985	990
Leu Ile Ser Lys Met Glu Lys Ile		
995	1000	

<210> SEQ ID NO 15
 <211> LENGTH: 4467
 <212> TYPE: DNA
 <213> ORGANISM: Homo sapiens
 <220> FEATURE:
 <221> NAME/KEY: CDS
 <222> LOCATION: (1)...(4467)

<400> SEQUENCE: 15

atg ggc gcc cct gcc tgc gcc ctc gcg ctc tgc gtg gcc gtg gcc atc	48
Met Gly Ala Pro Ala Cys Ala Leu Ala Leu Cys Val Ala Val Ala Ile	
1 5 10 15	
gtg gcc ggc gcc tcc tgc gag tcc ttg ggg acg gag cag cgc gtc gtg	96
Val Ala Gly Ala Ser Ser Glu Ser Leu Gly Thr Glu Gln Arg Val Val	
20 25 30	
ggg cga gcg gca gaa gtc ccg ggc cca gag ccc ggc cag cag gag cag	144
Gly Arg Ala Ala Glu Val Pro Gly Pro Glu Pro Gly Gln Gln Glu Gln	
35 40 45	
ttg gtc ttc ggc agc ggg gat gct gtg gag ctg agc tgt ccc ccg ccc	192
Leu Val Phe Gly Ser Gly Asp Ala Val Glu Leu Ser Cys Pro Pro Pro	
50 55 60	
ggg ggt ggt ccc atg ggg ccc act gtc tgg gtc aag gat ggc aca ggg	240
Gly Gly Pro Met Gly Pro Thr Val Trp Val Lys Asp Gly Thr Gly	
65 70 75 80	
ctg gtg ccc tcg gag cgt gtc ctg gtg ggg ccc cag cgg ctg cag gtg	288
Leu Val Pro Ser Glu Arg Val Leu Val Gly Pro Gln Arg Leu Gln Val	
85 90 95	
ctg aat gcc tcc cac gag gac tcc ggg gcc tac agc tgc cgg cag cgg	336
Leu Asn Ala Ser His Glu Asp Ser Gly Ala Tyr Ser Cys Arg Gln Arg	
100 105 110	
ctc acg cag cgc gta ctg tgc cac ttc agt gtg cgg gtg aca gac gct	384
Leu Thr Gln Arg Val Leu Cys His Phe Ser Val Arg Val Thr Asp Ala	
115 120 125	
cca tcc tcg gga gat gac gaa gac ggg gag gac gag gct gag gac aca	432
Pro Ser Ser Gly Asp Asp Glu Asp Gly Glu Asp Glu Ala Glu Asp Thr	
130 135 140	
ggt gtg gac aca ggg gcc cct tac tgg aca cgg ccc gag cgg atg gac	480
Gly Val Asp Thr Gly Ala Pro Tyr Trp Thr Arg Pro Glu Arg Met Asp	
145 150 155 160	
aag aag ctg ctg gcc gtg ccg gcc aac acc gtc cgc ttc cgc tgc	528
Lys Lys Leu Leu Ala Val Pro Ala Ala Asn Thr Val Arg Phe Arg Cys	
165 170 175	
cca gcc gct ggc aac ccc act ccc tcc atc tcc tgg ctg aag aac ggc	576
Pro Ala Ala Gly Asn Pro Thr Pro Ser Ile Ser Trp Leu Lys Asn Gly	
180 185 190	
agg gag ttc cgc ggc gag cac cgc att gga ggc atc aag ctg cgg cat	624
Arg Glu Phe Arg Gly Glu His Arg Ile Gly Gly Ile Lys Leu Arg His	
195 200 205	

-continued

cag cag tgg agc ctg gtc atg gaa agc gtg gtg ccc tcg gac cgc ggc Gln Gln Trp Ser Leu Val Met Glu Ser Val Val Pro Ser Asp Arg Gly 210 215 220	672
aac tac acc tgc gtc gtg gag aac aag ttt ggc agc atc cgg cag acg Asn Tyr Thr Cys Val Val Glu Asn Lys Phe Gly Ser Ile Arg Gln Thr 225 230 235 240	720
tac acg ctg gac gtg ctg gag cgc tcc ccg cac cgg ccc atc ctg cag Tyr Thr Leu Asp Val Leu Glu Arg Ser Pro His Arg Pro Ile Leu Gln 245 250 255	768
gcg ggg ctg ccg gcc aac cag acg gcg gtg ctg ggc agc gac gtg gag Ala Gly Leu Pro Ala Asn Gln Thr Ala Val Leu Gly Ser Asp Val Glu 260 265 270	816
ttc cac tgc aag gtg tac agt gac gca cag ccc cac atc cag tgg ctc Phe His Cys Lys Val Tyr Ser Asp Ala Gln Pro His Ile Gln Trp Leu 275 280 285	864
aag cac gtg gag gtg aac ggc agc aag gtg ggc ccg gac ggc aca ccc Lys His Val Glu Val Asn Gly Ser Lys Val Gly Pro Asp Gly Thr Pro 290 295 300	912
tac gtt acc gtc aag tcc tgg atc agt gag agt gtg gag gcc gac Tyr Val Thr Val Leu Lys Ser Trp Ile Ser Glu Ser Val Glu Ala Asp 305 310 315 320	960
gtg cgc ctc ctg gcc aat gtg tcg gag cgg gac ggg ggc gag tac Val Arg Leu Ala Asn Val Ser Glu Arg Asp Gly Glu Tyr 325 330 335	1008
ctc tgt cga gcc acc aat ttc ata ggc gtg gcc gag aag gcc ttt tgg Leu Cys Arg Ala Thr Asn Phe Ile Gly Val Ala Glu Lys Ala Phe Trp 340 345 350	1056
ctg agc gtt cac ggg ccc cga gca gcc gag gag ctg gtg gag gct Leu Ser Val His Gly Pro Arg Ala Ala Glu Glu Leu Val Glu Ala 355 360 365	1104
gac gag ggc agt gtg tat gca ggc atc ctc agc tac ggg gtg ggc Asp Glu Ala Gly Ser Val Tyr Ala Gly Ile Leu Ser Tyr Gly Val Gly 370 375 380	1152
ttc ttc ctg ttc atc ctg gtg gct gtg acg ctc tgc cgc ctg Phe Phe Leu Phe Ile Leu Val Val Ala Val Thr Leu Cys Arg Leu 385 390 395 400	1200
cgc agc ccc ccc aag aaa ggc ctg ggc tcc ccc acc gtg cac aag atc Arg Ser Pro Pro Lys Lys Gly Leu Gly Ser Pro Thr Val His Lys Ile 405 410 415	1248
tcc cgc ttc ccg ctc aag cga cag gtg tcc ctg gag tcc aac gcg tcc Ser Arg Phe Pro Leu Lys Arg Gln Val Ser Leu Glu Ser Asn Ala Ser 420 425 430	1296
atg agc tcc aac aca cca ctg gtg cgc atc gca agg ctg tcc tca ggg Met Ser Ser Asn Thr Pro Leu Val Arg Ile Ala Arg Leu Ser Ser Gly 435 440 445	1344
gag ggc ccc acg ctg gcc aat gtc tcc gag ctc gag ctg cct gcc gac Glu Gly Pro Thr Leu Ala Asn Val Ser Glu Leu Glu Leu Pro Ala Asp 450 455 460	1392
ccc aaa tgg gag ctg tct cgg gcc cgg ctg acc ctg ggc aag ccc ctt Pro Lys Trp Glu Leu Ser Arg Ala Arg Leu Thr Leu Gly Lys Pro Leu 465 470 475 480	1440
ggg gag ggc tgc ttc ggc cag gtg gtc atg gcg gag gcc atc ggc att Gly Glu Gly Cys Phe Gly Gln Val Val Met Ala Glu Ala Ile Gly Ile 485 490 495	1488
gac aag gac cgg gcc gcc aag cct gtc acc gta gcc gtg aag atg ctg Asp Lys Asp Arg Ala Ala Lys Pro Val Thr Val Ala Val Lys Met Leu 500 505 510	1536

-continued

aaa gac gat gcc act gac aag gac ctg tcg gac ctg gtg tct gag atg Lys Asp Asp Ala Thr Asp Lys Asp Leu Ser Asp Leu Val Ser Glu Met 515 520 525	1584
gag atg atg aag atg atc ggg aaa cac aaa aac atc atc aac ctg ctg Glu Met Met Lys Met Ile Gly Lys His Lys Asn Ile Ile Asn Leu Leu 530 535 540	1632
ggc gcc tgc acg cag ggc ggg ccc ctg tac gtg ctg gtg gag tac gcg Gly Ala Cys Thr Gln Gly Gly Pro Leu Tyr Val Leu Val Glu Tyr Ala 545 550 555 560	1680
gcc aag ggt aac ctg cgg gag ttt ctg cgg gcg cgg ccc ccg ggc Ala Lys Gly Asn Leu Arg Glu Phe Leu Arg Ala Arg Arg Pro Pro Gly 565 570 575	1728
ctg gac tac tcc ttc gac acc tgc aag ccg ccc gag gag cag ctc acc Leu Asp Tyr Ser Phe Asp Thr Cys Lys Pro Pro Glu Glu Gln Leu Thr 580 585 590	1776
ttc aag gac ctg gtg tcc tgt gcc tac cag gtg gcc cgg ggc atg gag Phe Lys Asp Leu Val Ser Cys Ala Tyr Gln Val Ala Arg Gly Met Glu 595 600 605	1824
tac ttg gcc tcc cag aag tgc atc cac agg gac ctg gct gcc cgc aat Tyr Leu Ala Ser Gln Lys Cys Ile His Arg Asp Leu Ala Ala Arg Asn 610 615 620	1872
gtg ctg gtg acc gag gac aac gtg atg aag atc gca gac ttc ggg ctg Val Leu Val Thr Glu Asp Asn Val Met Lys Ile Ala Asp Phe Gly Leu 625 630 635 640	1920
gcc cgg gac gtg cac aac ctc gac tac tac aag aag aca acc aac ggc Ala Arg Asp Val His Asn Leu Asp Tyr Tyr Lys Lys Thr Thr Asn Gly 645 650 655	1968
cgg ctg ccc gtg aag tgg atg gcg cct gag gcc ttg ttt gac cga gtc Arg Leu Pro Val Lys Trp Met Ala Pro Glu Ala Leu Phe Asp Arg Val 660 665 670	2016
tac act cac cag agt gac gtc tgg tcc ttt ggg gtc ctg ctc tgg gag Tyr Thr His Gln Ser Asp Val Trp Ser Phe Gly Val Leu Leu Trp Glu 675 680 685	2064
atc ttc acg ctg ggg ggc tcc ccg tac ccc ggc atc cct gtg gag gag Ile Phe Thr Leu Gly Gly Ser Pro Tyr Pro Gly Ile Pro Val Glu Glu 690 695 700	2112
ctc ttc aag ctg ctg aag gag ggc cac cgc atg gac aag ccc gcc aac Leu Phe Lys Leu Leu Lys Glu Gly His Arg Met Asp Lys Pro Ala Asn 705 710 715 720	2160
tgc aca cac gac ctg tac atg atc atg cgg gag tgc tgg cat gcc gcg Cys Thr His Asp Leu Tyr Met Ile Met Arg Glu Cys Trp His Ala Ala 725 730 735	2208
ccc tcc cag agg ccc acc ttc aag cag ctg gtg gag gac ctg gac cgt Pro Ser Gln Arg Pro Thr Phe Lys Gln Leu Val Glu Asp Leu Asp Arg 740 745 750	2256
gtc ctt acc gtg acg tcc acc gac gtg agt gct ggc tct ggc ctg gtg Val Leu Thr Val Thr Ser Thr Asp Val Ser Ala Gly Ser Gly Leu Val 755 760 765	2304
cca ccc gcc tat gcc cct ccc cct gcc gtc ccc ggc cat cct gcc ccc Pro Pro Ala Tyr Ala Pro Pro Ala Val Pro Gly His Pro Ala Pro 770 775 780	2352
cag agt gct gag gtg tgg ggc ggg cct tct ggc cca ggt gcc ctg gct Gln Ser Ala Glu Val Trp Gly Gly Pro Ser Gly Pro Gly Ala Leu Ala 785 790 795 800	2400
gac ctg gac tgc tca agc tct tcc cag agc cca gga agt tct gag aac Asp Leu Asp Cys Ser Ser Ser Gln Ser Pro Gly Ser Ser Glu Asn 805 810 815	2448

-continued

caa atg gtg tct cca gga aaa gtg tct ggc agc cct gag caa gcc gtg Gln Met Val Ser Pro Gly Lys Val Ser Gly Ser Pro Glu Gln Ala Val 820 825 830	2496
gag gaa aac ctt agt tcc tat tcc tta gac aga aga gtg aca ccc gcc Glu Glu Asn Leu Ser Ser Tyr Ser Leu Asp Arg Arg Val Thr Pro Ala 835 840 845	2544
tct gag acc cta gaa gac cct tgc agg aca gag tcc cag cac aaa gcg Ser Glu Thr Leu Glu Asp Pro Cys Arg Thr Glu Ser Gln His Lys Ala 850 855 860	2592
gag act ccg cac gga gcc gag gaa tgc aaa gcg gag act ccg cac Glu Thr Pro His Gly Ala Glu Glu Glu Cys Lys Ala Glu Thr Pro His 865 870 875 880	2640
gga gcc gag gaa tgc cgg cac ggt ggg gtc tgt gct ccc gca gca Gly Ala Glu Glu Cys Arg His Gly Gly Val Cys Ala Pro Ala Ala 885 890 895	2688
gtg gcc act tcg cct cct ggt gca atc cct aag gaa gcc tgc gga gga Val Ala Thr Ser Pro Pro Gly Ala Ile Pro Lys Glu Ala Cys Gly Gly 900 905 910	2736
gca ccc ctg cag ggt ctg cct ggc gaa gcc ctg ggc tgc cct gcg ggt Ala Pro Leu Gln Gly Leu Pro Gly Glu Ala Leu Gly Cys Pro Ala Gly 915 920 925	2784
gtg ggc acc ccc gtg cca gca gat ggc act cag acc ctt acc tgt gca Val Gly Thr Pro Val Pro Ala Asp Gly Thr Gln Thr Leu Thr Cys Ala 930 935 940	2832
cac acc tct gct cct gag agc aca gcc cca acc aac cac ctg gtg gct His Thr Ser Ala Pro Glu Ser Thr Ala Pro Thr Asn His Leu Val Ala 945 950 955 960	2880
ggc agg gcc atg acc ctg agt cct cag gaa gaa gtg gct gca ggc caa Gly Arg Ala Met Thr Leu Ser Pro Gln Glu Glu Val Ala Ala Gly Gln 965 970 975	2928
atg gcc agc tcc tcg agg agc gga cct gta aaa cta gaa ttt gat gta Met Ala Ser Ser Arg Ser Gly Pro Val Lys Leu Glu Phe Asp Val 980 985 990	2976
tct gat ggc gcc acc agc aaa agg gca ccc cca cca agg aga ctg gga Ser Asp Gly Ala Thr Ser Lys Arg Ala Pro Pro Arg Arg Leu Gly 995 1000 1005	3024
gag agg tcc ggc ctc aag cct ccc ttg agg aaa gca gca gtg agg Glu Arg Ser Gly Leu Lys Pro Pro Leu Arg Lys Ala Ala Val Arg 1010 1015 1020	3069
cag caa aag gcc ccg cag gag gtg gag gag gac gac ggt agg agc Gln Gln Lys Ala Pro Gln Glu Val Glu Glu Asp Asp Gly Arg Ser 1025 1030 1035	3114
gga gca gga gag gac ccc ccc atg cca gct tct cgg ggc tct tac Gly Ala Gly Glu Asp Pro Pro Met Pro Ala Ser Arg Gly Ser Tyr 1040 1045 1050	3159
cac ctc gac tgg gac aaa atg gat gac cca aac ttc atc ccg ttc His Leu Asp Trp Asp Lys Met Asp Asp Pro Asn Phe Ile Pro Phe 1055 1060 1065	3204
gga ggt gac acc aag tct ggt tgc agt gag gcc cag ccc cca gaa Gly Gly Asp Thr Lys Ser Gly Cys Ser Glu Ala Gln Pro Pro Glu 1070 1075 1080	3249
agc cct gag acc agg ctg ggc cag cca gcg gct gaa cag ttg cat Ser Pro Glu Thr Arg Leu Gly Gln Pro Ala Ala Glu Gln Leu His 1085 1090 1095	3294
gct ggg cct gcc acg gag gag cca ggt ccc tgt ctg agc cag cag Ala Gly Pro Ala Thr Glu Glu Pro Gly Pro Cys Leu Ser Gln Gln 1100 1105 1110	3339

-continued

ctg cat tca gcc tca gcg gag gac acg cct gtg gtg cag ttg gca	3384
Leu His Ser Ala Ser Ala Glu Asp Thr Pro Val Val Gln Leu Ala	
1115 1120 1125	
gcc gag acc cca aca gca gag agc aag gag aga gcc ttg aac tct	3429
Ala Glu Thr Pro Thr Ala Glu Ser Lys Glu Arg Ala Leu Asn Ser	
1130 1135 1140	
gcc agc acc tcg ctt ccc aca agc tgt cca ggc agt gag cca gtg	3474
Ala Ser Thr Ser Leu Pro Thr Ser Cys Pro Gly Ser Glu Pro Val	
1145 1150 1155	
ccc acc cat cag cag ggg cag cct gcc ttg gag ctg aaa gag gag	3519
Pro Thr His Gln Gln Gly Gln Pro Ala Leu Glu Leu Lys Glu Glu	
1160 1165 1170	
agc ttc aga gac ccc gct gag gtt cta ggc acg ggc gcg gag gtg	3564
Ser Phe Arg Asp Pro Ala Glu Val Leu Gly Thr Gly Ala Glu Val	
1175 1180 1185	
gat tac ctg gag cag ttt gga act tcc tcg ttt aag gag tcg gcc	3609
Asp Tyr Leu Glu Gln Phe Gly Thr Ser Ser Phe Lys Glu Ser Ala	
1190 1195 1200	
ttg agg aag cag tcc tta tac ctc aag ttc gac ccc ctc ctg agg	3654
Leu Arg Lys Gln Ser Leu Tyr Leu Lys Phe Asp Pro Leu Leu Arg	
1205 1210 1215	
gac agt cct ggt aga cca gtg ccc gtg gcc acc gag acc agc agc	3699
Asp Ser Pro Gly Arg Pro Val Pro Val Ala Thr Glu Thr Ser Ser	
1220 1225 1230	
atg cac ggt gca aat gag act ccc tca gga cgt ccg cgg gaa gcc	3744
Met His Gly Ala Asn Glu Thr Pro Ser Gly Arg Pro Arg Glu Ala	
1235 1240 1245	
aag ctt gtg gag ttc gat ttc ttg gga gca ctg gac att cct gtg	3789
Lys Leu Val Glu Phe Asp Phe Leu Gly Ala Leu Asp Ile Pro Val	
1250 1255 1260	
cca ggc cca ccc cca ggt gtt ccc gcg cct ggg ggc cca ccc ctg	3834
Pro Gly Pro Pro Pro Gly Val Pro Ala Pro Gly Gly Pro Pro Leu	
1265 1270 1275	
tcc acc gga cct ata gtg gac ctg ctc cag tac agc cag aag gac	3879
Ser Thr Gly Pro Ile Val Asp Leu Leu Gln Tyr Ser Gln Lys Asp	
1280 1285 1290	
ctg gat gca gtg gta aag gcg aca cag gag gag aac cgg gag ctg	3924
Leu Asp Ala Val Val Lys Ala Thr Gln Glu Asn Arg Glu Leu	
1295 1300 1305	
agg agc agg tgt gag gag ctc cac ggg aag aac ctg gaa ctg ggg	3969
Arg Ser Arg Cys Glu Glu Leu His Gly Lys Asn Leu Glu Leu Gly	
1310 1315 1320	
aag atc atg gac agg ttc gaa gag gtt gtg tac cag gcc atg gag	4014
Lys Ile Met Asp Arg Phe Glu Glu Val Val Tyr Gln Ala Met Glu	
1325 1330 1335	
gaa gtt cag aag cag aag gaa ctt tcc aaa gct gaa atc cag aaa	4059
Glu Val Gln Lys Gln Lys Glu Leu Ser Lys Ala Glu Ile Gln Lys	
1340 1345 1350	
gtt cta aaa gaa aaa gac caa ctt acc aca gat ctg aac tcc atg	4104
Val Leu Lys Glu Lys Asp Gln Leu Thr Thr Asp Leu Asn Ser Met	
1355 1360 1365	
gag aag tcc ttc tcc gac ctc ttc aag cgt ttt gag aaa cag aaa	4149
Glu Lys Ser Phe Ser Asp Leu Phe Lys Arg Phe Glu Lys Gln Lys	
1370 1375 1380	
gag gtg atc gag ggc tac cgc aag aac gaa gag tca ctg aag aag	4194
Glu Val Ile Glu Gly Tyr Arg Lys Asn Glu Glu Ser Leu Lys Lys	
1385 1390 1395	

-continued

tgc gtg gag gat tac ctg gca agg atc acc cag gag ggc cag agg 4239
 Cys Val Glu Asp Tyr Leu Ala Arg Ile Thr Gln Glu Gly Gln Arg
 1400 1405 1410

tac caa gcc ctg aag gcc cac gcg gag gag aag ctg cag ctg gca 4284
 Tyr Gln Ala Leu Lys Ala His Ala Glu Glu Lys Leu Gln Leu Ala
 1415 1420 1425

aac gag gag atc gcc cag gtc cgg agc aag gcc cag gcg gaa gcg 4329
 Asn Glu Glu Ile Ala Gln Val Arg Ser Lys Ala Ala Glu Ala
 1430 1435 1440

ttg gcc ctc cag gcc agc ctg agg aag gag cag atg cgc atc cag 4374
 Leu Ala Leu Gln Ala Ser Arg Lys Glu Gln Met Arg Ile Gln
 1445 1450 1455

tcg ctg gag aag aca gtg gag cag aag act aaa gag aac gag gag 4419
 Ser Leu Glu Lys Thr Val Glu Gln Lys Thr Lys Glu Asn Glu Glu
 1460 1465 1470

ctg acc agg atc tgc gac gac ctc atc tcc aag atg gag aag atc 4464
 Leu Thr Arg Ile Cys Asp Asp Leu Ile Ser Lys Met Glu Lys Ile
 1475 1480 1485

tga 4467

<210> SEQ ID NO 16
 <211> LENGTH: 1488
 <212> TYPE: PRT
 <213> ORGANISM: Homo sapiens

<400> SEQUENCE: 16

Met Gly Ala Pro Ala Cys Ala Leu Ala Leu Cys Val Ala Val Ala Ile
 1 5 10 15

Val Ala Gly Ala Ser Ser Glu Ser Leu Gly Thr Glu Gln Arg Val Val
 20 25 30

Gly Arg Ala Ala Glu Val Pro Gly Pro Glu Pro Gly Gln Gln Glu Gln
 35 40 45

Leu Val Phe Gly Ser Gly Asp Ala Val Glu Leu Ser Cys Pro Pro Pro
 50 55 60

Gly Gly Gly Pro Met Gly Pro Thr Val Trp Val Lys Asp Gly Thr Gly
 65 70 75 80

Leu Val Pro Ser Glu Arg Val Leu Val Gly Pro Gln Arg Leu Gln Val
 85 90 95

Leu Asn Ala Ser His Glu Asp Ser Gly Ala Tyr Ser Cys Arg Gln Arg
 100 105 110

Leu Thr Gln Arg Val Leu Cys His Phe Ser Val Arg Val Thr Asp Ala
 115 120 125

Pro Ser Ser Gly Asp Asp Glu Asp Gly Glu Asp Glu Ala Glu Asp Thr
 130 135 140

Gly Val Asp Thr Gly Ala Pro Tyr Trp Thr Arg Pro Glu Arg Met Asp
 145 150 155 160

Lys Lys Leu Leu Ala Val Pro Ala Ala Asn Thr Val Arg Phe Arg Cys
 165 170 175

Pro Ala Ala Gly Asn Pro Thr Pro Ser Ile Ser Trp Leu Lys Asn Gly
 180 185 190

Arg Glu Phe Arg Gly Glu His Arg Ile Gly Gly Ile Lys Leu Arg His
 195 200 205

Gln Gln Trp Ser Leu Val Met Glu Ser Val Val Pro Ser Asp Arg Gly
 210 215 220

-continued

Asn Tyr Thr Cys Val Val Glu Asn Lys Phe Gly Ser Ile Arg Gln Thr
 225 230 235 240
 Tyr Thr Leu Asp Val Leu Glu Arg Ser Pro His Arg Pro Ile Leu Gln
 245 250 255
 Ala Gly Leu Pro Ala Asn Gln Thr Ala Val Leu Gly Ser Asp Val Glu
 260 265 270
 Phe His Cys Lys Val Tyr Ser Asp Ala Gln Pro His Ile Gln Trp Leu
 275 280 285
 Lys His Val Glu Val Asn Gly Ser Lys Val Gly Pro Asp Gly Thr Pro
 290 295 300
 Tyr Val Thr Val Leu Lys Ser Trp Ile Ser Glu Ser Val Glu Ala Asp
 305 310 315 320
 Val Arg Leu Arg Leu Ala Asn Val Ser Glu Arg Asp Gly Gly Glu Tyr
 325 330 335
 Leu Cys Arg Ala Thr Asn Phe Ile Gly Val Ala Glu Lys Ala Phe Trp
 340 345 350
 Leu Ser Val His Gly Pro Arg Ala Ala Glu Glu Glu Leu Val Glu Ala
 355 360 365
 Asp Glu Ala Gly Ser Val Tyr Ala Gly Ile Leu Ser Tyr Gly Val Gly
 370 375 380
 Phe Phe Leu Phe Ile Leu Val Val Ala Ala Val Thr Leu Cys Arg Leu
 385 390 395 400
 Arg Ser Pro Pro Lys Lys Gly Leu Gly Ser Pro Thr Val His Lys Ile
 405 410 415
 Ser Arg Phe Pro Leu Lys Arg Gln Val Ser Leu Glu Ser Asn Ala Ser
 420 425 430
 Met Ser Ser Asn Thr Pro Leu Val Arg Ile Ala Arg Leu Ser Ser Gly
 435 440 445
 Glu Gly Pro Thr Leu Ala Asn Val Ser Glu Leu Glu Leu Pro Ala Asp
 450 455 460
 Pro Lys Trp Glu Leu Ser Arg Ala Arg Leu Thr Leu Gly Lys Pro Leu
 465 470 475 480
 Gly Glu Gly Cys Phe Gly Gln Val Val Met Ala Glu Ala Ile Gly Ile
 485 490 495
 Asp Lys Asp Arg Ala Ala Lys Pro Val Thr Val Ala Val Lys Met Leu
 500 505 510
 Lys Asp Asp Ala Thr Asp Lys Asp Leu Ser Asp Leu Val Ser Glu Met
 515 520 525
 Glu Met Met Lys Met Ile Gly Lys His Lys Asn Ile Ile Asn Leu Leu
 530 535 540
 Gly Ala Cys Thr Gln Gly Pro Leu Tyr Val Leu Val Glu Tyr Ala
 545 550 555 560
 Ala Lys Gly Asn Leu Arg Glu Phe Leu Arg Ala Arg Arg Pro Pro Gly
 565 570 575
 Leu Asp Tyr Ser Phe Asp Thr Cys Lys Pro Pro Glu Glu Gln Leu Thr
 580 585 590
 Phe Lys Asp Leu Val Ser Cys Ala Tyr Gln Val Ala Arg Gly Met Glu
 595 600 605
 Tyr Leu Ala Ser Gln Lys Cys Ile His Arg Asp Leu Ala Ala Arg Asn
 610 615 620

-continued

Val	Leu	Val	Thr	Glu	Asp	Asn	Val	Met	Lys	Ile	Ala	Asp	Phe	Gly	Leu
625				630				635							640
Ala	Arg	Asp	Val	His	Asn	Leu	Asp	Tyr	Tyr	Lys	Lys	Thr	Thr	Asn	Gly
	645					650				655					
Arg	Leu	Pro	Val	Lys	Trp	Met	Ala	Pro	Glu	Ala	Leu	Phe	Asp	Arg	Val
	660					665					670				
Tyr	Thr	His	Gln	Ser	Asp	Val	Trp	Ser	Phe	Gly	Val	Leu	Leu	Trp	Glu
	675					680				685					
Ile	Phe	Thr	Leu	Gly	Gly	Ser	Pro	Tyr	Pro	Gly	Ile	Pro	Val	Glu	Glu
	690					695				700					
Leu	Phe	Lys	Leu	Leu	Lys	Glu	Gly	His	Arg	Met	Asp	Lys	Pro	Ala	Asn
	705					710			715				720		
Cys	Thr	His	Asp	Leu	Tyr	Met	Ile	Met	Arg	Glu	Cys	Trp	His	Ala	Ala
	725					730			735						
Pro	Ser	Gln	Arg	Pro	Thr	Phe	Lys	Gln	Leu	Val	Glu	Asp	Leu	Asp	Arg
	740					745				750					
Val	Leu	Thr	Val	Thr	Ser	Thr	Asp	Val	Ser	Ala	Gly	Ser	Gly	Leu	Val
	755					760				765					
Pro	Pro	Ala	Tyr	Ala	Pro	Pro	Pro	Ala	Val	Pro	Gly	His	Pro	Ala	Pro
	770					775			780						
Gln	Ser	Ala	Glu	Val	Trp	Gly	Gly	Pro	Ser	Gly	Pro	Gly	Ala	Leu	Ala
	785					790			795				800		
Asp	Leu	Asp	Cys	Ser	Ser	Ser	Ser	Gln	Ser	Pro	Gly	Ser	Ser	Glu	Asn
	805					810			815						
Gln	Met	Val	Ser	Pro	Gly	Lys	Val	Ser	Gly	Ser	Pro	Glu	Gln	Ala	Val
	820					825			830						
Glu	Glu	Asn	Leu	Ser	Ser	Tyr	Ser	Leu	Asp	Arg	Arg	Val	Thr	Pro	Ala
	835					840			845						
Ser	Glu	Thr	Leu	Glu	Asp	Pro	Cys	Arg	Thr	Glu	Ser	Gln	His	Lys	Ala
	850					855			860						
Glu	Thr	Pro	His	Gly	Ala	Glu	Glu	Glu	Cys	Lys	Ala	Glu	Thr	Pro	His
	865					870			875				880		
Gly	Ala	Glu	Glu	Cys	Arg	His	Gly	Gly	Val	Cys	Ala	Pro	Ala	Ala	
	885					890			895						
Val	Ala	Thr	Ser	Pro	Pro	Gly	Ala	Ile	Pro	Lys	Glu	Ala	Cys	Gly	Gly
	900					905			910						
Ala	Pro	Leu	Gln	Gly	Leu	Pro	Gly	Glu	Ala	Leu	Gly	Cys	Pro	Ala	Gly
	915					920			925						
Val	Gly	Thr	Pro	Val	Pro	Ala	Asp	Gly	Thr	Gln	Thr	Leu	Thr	Cys	Ala
	930					935			940						
His	Thr	Ser	Ala	Pro	Glu	Ser	Thr	Ala	Pro	Thr	Asn	His	Leu	Val	Ala
	945					950			955				960		
Gly	Arg	Ala	Met	Thr	Leu	Ser	Pro	Gln	Glu	Glu	Val	Ala	Ala	Gly	Gln
	965					970			975						
Met	Ala	Ser	Ser	Ser	Arg	Ser	Gly	Pro	Val	Lys	Leu	Glu	Phe	Asp	Val
	980					985			990						
Ser	Asp	Gly	Ala	Thr	Ser	Lys	Arg	Ala	Pro	Pro	Arg	Arg	Leu	Gly	
	995					1000			1005						
Glu	Arg	Ser	Gly	Leu	Lys	Pro	Pro	Leu	Arg	Lys	Ala	Ala	Val	Arg	
	1010					1015			1020						
Gln	Gln	Lys	Ala	Pro	Gln	Glu	Val	Glu	Glu	Asp	Asp	Gly	Arg	Ser	

-continued

1025	1030	1035	
Gly Ala	Gly Glu Asp Pro Pro	Met Pro Ala Ser Arg	Gly Ser Tyr
1040	1045	1050	
His Leu	Asp Trp Asp Lys Met	Asp Asp Pro Asn Phe	Ile Pro Phe
1055	1060	1065	
Gly Gly	Asp Thr Lys Ser Gly	Cys Ser Glu Ala Gln	Pro Pro Glu
1070	1075	1080	
Ser Pro	Glu Thr Arg Leu Gly	Gln Pro Ala Ala Glu	Gln Leu His
1085	1090	1095	
Ala Gly	Pro Ala Thr Glu Glu	Pro Gly Pro Cys Leu	Ser Gln Gln
1100	1105	1110	
Leu His	Ser Ala Ser Ala Glu	Asp Thr Pro Val Val	Gln Leu Ala
1115	1120	1125	
Ala Glu	Thr Pro Thr Ala Glu	Ser Lys Glu Arg Ala	Leu Asn Ser
1130	1135	1140	
Ala Ser	Thr Ser Leu Pro Thr	Ser Cys Pro Gly Ser	Glu Pro Val
1145	1150	1155	
Pro Thr	His Gln Gln Gly Gln	Pro Ala Leu Glu Leu	Lys Glu Glu
1160	1165	1170	
Ser Phe	Arg Asp Pro Ala Glu	Val Leu Gly Thr Gly	Ala Glu Val
1175	1180	1185	
Asp Tyr	Leu Glu Gln Phe Gly	Thr Ser Ser Phe Lys	Glu Ser Ala
1190	1195	1200	
Leu Arg	Lys Gln Ser Leu Tyr	Leu Lys Phe Asp Pro	Leu Leu Arg
1205	1210	1215	
Asp Ser	Pro Gly Arg Pro Val	Pro Val Ala Thr Glu	Thr Ser Ser
1220	1225	1230	
Met His	Gly Ala Asn Glu Thr	Pro Ser Gly Arg Pro	Arg Glu Ala
1235	1240	1245	
Lys Leu	Val Glu Phe Asp Phe	Leu Gly Ala Leu Asp	Ile Pro Val
1250	1255	1260	
Pro Gly	Pro Pro Pro Gly Val	Pro Ala Pro Gly Gly	Pro Pro Leu
1265	1270	1275	
Ser Thr	Gly Pro Ile Val Asp	Leu Leu Gln Tyr Ser	Gln Lys Asp
1280	1285	1290	
Leu Asp	Ala Val Val Lys Ala	Thr Gln Glu Asn	Arg Glu Leu
1295	1300	1305	
Arg Ser	Arg Cys Glu Glu Leu	His Gly Lys Asn Leu	Glu Leu Gly
1310	1315	1320	
Lys Ile	Met Asp Arg Phe Glu	Glu Val Val Tyr Gln	Ala Met Glu
1325	1330	1335	
Glu Val	Gln Lys Gln Lys Glu	Leu Ser Lys Ala Glu	Ile Gln Lys
1340	1345	1350	
Val Leu	Lys Glu Lys Asp Gln	Leu Thr Thr Asp Leu	Asn Ser Met
1355	1360	1365	
Glu Lys	Ser Phe Ser Asp Leu	Phe Lys Arg Phe Glu	Lys Gln Lys
1370	1375	1380	
Glu Val	Ile Glu Gly Tyr Arg	Lys Asn Glu Glu Ser	Leu Lys Lys
1385	1390	1395	
Cys Val	Glu Asp Tyr Leu Ala	Arg Ile Thr Gln Glu	Gly Gln Arg
1400	1405	1410	

-continued

Tyr Gln Ala Leu Lys Ala His Ala Glu Glu Lys Leu Gln Leu Ala
1415 1420 1425

Asn Glu Glu Ile Ala Gln Val Arg Ser Lys Ala Gln Ala Glu Ala
1430 1435 1440

Leu Ala Leu Gln Ala Ser Leu Arg Lys Glu Gln Met Arg Ile Gln
1445 1450 1455

Ser Leu Glu Lys Thr Val Glu Gln Lys Thr Lys Glu Asn Glu Glu
1460 1465 1470

Leu Thr Arg Ile Cys Asp Asp Leu Ile Ser Lys Met Glu Lys Ile
1475 1480 1485

<210> SEQ ID NO 17

<211> LENGTH: 60

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Description of Artificial Sequence: an artificially synthesized primer sequence

<400> SEQUENCE: 17

ggatccgcca ccatggacta caaggacgac gatgacaagg gcgccctgc ctgcgcctc 60

<210> SEQ ID NO 18

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Description of Artificial Sequence: an artificially synthesized primer sequence

<400> SEQUENCE: 18

tcctgctctg cccgtcgac 20

<210> SEQ ID NO 19

<211> LENGTH: 22

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Description of Artificial Sequence: an artificially synthesized primer sequence

<400> SEQUENCE: 19

aggatgcgcc catcattccg ca 22

<210> SEQ ID NO 20

<211> LENGTH: 29

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Description of Artificial Sequence: an artificially synthesized primer sequence

<400> SEQUENCE: 20

ggatccgcca ccatggcgcc cccctgcctg 29

<210> SEQ ID NO 21

<211> LENGTH: 28

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Description of Artificial Sequence: an artificially synthesized primer sequence

-continued

<400> SEQUENCE: 21

gcggccgctc atcgaatgat gggtgccg 28

<210> SEQ ID NO 22

<211> LENGTH: 3765

<212> TYPE: DNA

<213> ORGANISM: Homo sapiens

<220> FEATURE:

<221> NAME/KEY: CDS

<222> LOCATION: (1)...(3765)

<400> SEQUENCE: 22

atg ggc gcc cct gcc tgc gcc ctc gcg ctc tgc gtg gcc gtg gcc atc 48
Met Gly Ala Pro Ala Cys Ala Leu Ala Leu Cys Val Ala Val Ala Ile
1 5 10 15gtg gcc ggc gcc tcc tcc tcc tcc gag tcc ttg ggg acg gag cag cgc gtc gtg 96
Val Ala Gly Ala Ser Ser Glu Ser Leu Gly Thr Glu Gln Arg Val Val
20 25 30ggg cga gcg gca gaa gtc ccc ggc cca gag ccc ggc cag cag gag cag 144
Gly Arg Ala Ala Glu Val Pro Gly Pro Glu Pro Gly Gln Gln Glu Gln
35 40 45ttg gtc ttc ggc agc ggg gat gct gtg gag ctg agc tgt ccc ccc ccc 192
Leu Val Phe Gly Ser Gly Asp Ala Val Glu Leu Ser Cys Pro Pro Pro
50 55 60ggg ggt ggt ccc atg ggg ccc act gtc tgg gtc aag gat ggc aca ggg 240
Gly Gly Pro Met Gly Pro Thr Val Trp Val Lys Asp Gly Thr Gly
65 70 75 80ctg gtg ccc tcg gag cgt gtc ctg gtg ggg ccc cag cgg ctg cag gtg 288
Leu Val Pro Ser Glu Arg Val Leu Val Gly Pro Gln Arg Leu Gln Val
85 90 95ctg aat gcc tcc cac gag gac tcc ggg gcc tac agc tgc cgg cag cgg 336
Leu Asn Ala Ser His Glu Asp Ser Gly Ala Tyr Ser Cys Arg Gln Arg
100 105 110ctc acg cag cgc gta ctg tgc cac ttc agt gtg cgg gtg aca gac gct 384
Leu Thr Gln Arg Val Leu Cys His Phe Ser Val Arg Val Thr Asp Ala
115 120 125cca tcc tcg gga gat gac gaa gac ggg gag gac gag gag gct gag gac aca 432
Pro Ser Ser Gly Asp Asp Glu Asp Gly Glu Asp Glu Ala Glu Asp Thr
130 135 140ggt gtg gac aca ggg gcc cct tac tgg aca cgg ccc gag cgg atg gac 480
Gly Val Asp Thr Gly Ala Pro Tyr Trp Thr Arg Pro Glu Arg Met Asp
145 150 155 160aag aag ctg ctg gcc gtg cgg gcc aac acc gtc cgc ttc cgc tgc 528
Lys Lys Leu Leu Ala Val Pro Ala Ala Asn Thr Val Arg Phe Arg Cys
165 170 175cca gcc gct ggc aac ccc act ccc tcc atc tcc tgg ctg aag aac ggc 576
Pro Ala Ala Gly Asn Pro Thr Pro Ser Ile Ser Trp Leu Lys Asn Gly
180 185 190agg gag ttc cgc ggc gag cac cgc att gga ggc atc aag ctg cgg cat 624
Arg Glu Phe Arg Gly Glu His Arg Ile Gly Gly Ile Lys Leu Arg His
195 200 205cag cag tgg agc ctg gtc atg gaa agc gtg gtg ccc tcc gac cgc ggc 672
Gln Gln Trp Ser Leu Val Met Glu Ser Val Val Pro Ser Asp Arg Gly
210 215 220aac tac acc tgc gtc gtg gag aac aag ttt ggc agc atc cgg cag acg 720
Asn Tyr Thr Cys Val Val Glu Asn Lys Phe Gly Ser Ile Arg Gln Thr
225 230 235 240

-continued

tac acg ctg gac gtg ctg gag cgc tcc ccg cac cgg ccc atc ctg cag Tyr Thr Leu Asp Val Leu Glu Arg Ser Pro His Arg Pro Ile Leu Gln 245 250 255	768
gcg ggg ctg ccg gcc aac cag acg gcg gtg ctg ggc agc gac gtg gag Ala Gly Leu Pro Ala Asn Gln Thr Ala Val Leu Gly Ser Asp Val Glu 260 265 270	816
ttc cac tgc aag gtg tac agt gac gca cag ccc cac atc cag tgg ctc Phe His Cys Lys Val Tyr Ser Asp Ala Gln Pro His Ile Gln Trp Leu 275 280 285	864
aag cac gtg gag gtg aat ggc agc aag gtg ggc ccg gac ggc aca ccc Lys His Val Glu Val Asn Gly Ser Lys Val Gly Pro Asp Gly Thr Pro 290 295 300	912
tac gtt acc gtg ctc aag tcc tgg atc agt gag agt gtg gag gcc gac Tyr Val Thr Val Leu Lys Ser Trp Ile Ser Glu Ser Val Glu Ala Asp 305 310 315 320	960
gtg cgc ctc cgc ctg gcc aat gtg tcg gag cgg gac ggg ggc gag tac Val Arg Leu Ala Asn Val Ser Glu Arg Asp Gly Gly Glu Tyr 325 330 335	1008
ctc tgt cga gcc acc aat ttc ata ggc gtg gcc gag aag gcc ttt tgg Leu Cys Arg Ala Thr Asn Phe Ile Gly Val Ala Glu Lys Ala Phe Trp 340 345 350	1056
ctg agc gtt cac ggg ccc cga gca gcc gag gag ctg gtg gag gct Leu Ser Val His Gly Pro Arg Ala Ala Glu Glu Leu Val Glu Ala 355 360 365	1104
gac gag ggc agt gtg tat gca ggc atc ctc agc tac ggg gtg ggc Asp Glu Ala Gly Ser Val Tyr Ala Gly Ile Leu Ser Tyr Gly Val Gly 370 375 380	1152
ttc ttc ctg ttc atc ctg gtg gct gtg acg ctc tgc cgc ctg Phe Phe Leu Phe Ile Leu Val Ala Ala Val Thr Leu Cys Arg Leu 385 390 395 400	1200
cgc agc ccc ccc aag aaa ggc ctg ggc tcc ccc acc gtg cac aag atc Arg Ser Pro Pro Lys Lys Gly Leu Gly Ser Pro Thr Val His Lys Ile 405 410 415	1248
tcc cgc ttc ccg ctc aag cga cag gtg tcc ctg gag tcc aac gcg tcc Ser Arg Phe Pro Leu Lys Arg Gln Val Ser Leu Glu Ser Asn Ala Ser 420 425 430	1296
atg agc tcc aac aca cca ctg gtg cgc atc gca agg ctg tcc tca ggg Met Ser Ser Asn Thr Pro Leu Val Arg Ile Ala Arg Leu Ser Ser Gly 435 440 445	1344
gag ggc ccc acg ctg gcc aat gtc tcc gag ctc gag ctg cct gcc gac Glu Gly Pro Thr Leu Ala Asn Val Ser Glu Leu Glu Leu Pro Ala Asp 450 455 460	1392
ccc aaa tgg gag ctg tct cgg gcc cgg ctg acc ctg ggc aag ccc ctt Pro Lys Trp Glu Leu Ser Arg Ala Arg Leu Thr Leu Gly Lys Pro Leu 465 470 475 480	1440
ggg gag ggc tgc ttc ggc cag gtg gtc atg gcg gag gcc atc ggc att Gly Glu Gly Cys Phe Gly Gln Val Val Met Ala Glu Ala Ile Gly Ile 485 490 495	1488
gac aag gac cgg gcc gcc aag cct gtc acc gta gcc gtg aag atg ctg Asp Lys Asp Arg Ala Ala Lys Pro Val Thr Val Ala Val Lys Met Leu 500 505 510	1536
aaa gac gat gcc act gac aag gac ctg tcg gac ctg gtg tct gag atg Lys Asp Asp Ala Thr Asp Lys Asp Leu Ser Asp Leu Val Ser Glu Met 515 520 525	1584
gag atg atg aag atg atc ggg aaa cac aaa aac atc atc aac ctg ctg Glu Met Met Lys Met Ile Gly Lys His Lys Asn Ile Ile Asn Leu Leu 530 535 540	1632

-continued

ggc gcc tgc acg cag ggc ggg ccc ctg tac gtg ctg gtg gag tac gcg Gly Ala Cys Thr Gln Gly Gly Pro Leu Tyr Val Leu Val Glu Tyr Ala 545 550 555 560	1680
gcc aag ggt aac ctg cgg gag ttt ctg cgg gcg cgg cgg ccc ccg ggc Ala Lys Gly Asn Leu Arg Glu Phe Leu Arg Ala Arg Arg Pro Pro Gly 565 570 575	1728
ctg gac tac tcc ttc gac acc tgc aag ccg ccc gag gag cag ctc acc Leu Asp Tyr Ser Phe Asp Thr Cys Lys Pro Pro Glu Glu Gln Leu Thr 580 585 590	1776
ttc aag gac ctg gtg tcc tgt gcc tac cag gtg gcc cgg ggc atg gag Phe Lys Asp Leu Val Ser Cys Ala Tyr Gln Val Ala Arg Gly Met Glu 595 600 605	1824
tac ttg gcc tcc cag aag tgc atc cac agg gac ctg gct gcc cgc aat Tyr Leu Ala Ser Gln Lys Cys Ile His Arg Asp Leu Ala Ala Arg Asn 610 615 620	1872
gtg ctg gtg acc gag gac aac gtg atg aag atc gca gac ttc ggg ctg Val Leu Val Thr Glu Asp Asn Val Met Lys Ile Ala Asp Phe Gly Leu 625 630 635 640	1920
gcc cgg gac gtg cac aac ctc gac tac tac aag aag aca acc aac ggc Ala Arg Asp Val His Asn Leu Asp Tyr Tyr Lys Lys Thr Thr Asn Gly 645 650 655	1968
cgg ctg ccc gtg aag tgg atg gcg cct gag gcc ttg ttt gac cga gtc Arg Leu Pro Val Lys Trp Met Ala Pro Glu Ala Leu Phe Asp Arg Val 660 665 670	2016
tac act cac cag agt gac gtc tgg tcc ttt ggg gtc ctg ctc tgg gag Tyr Thr His Gln Ser Asp Val Trp Ser Phe Gly Val Leu Leu Trp Glu 675 680 685	2064
atc ttc acg ctg ggg ggc tcc ccc tac ccc ggc atc cct gtg gag gag Ile Phe Thr Leu Gly Gly Ser Pro Tyr Pro Gly Ile Pro Val Glu Glu 690 695 700	2112
ctc ttc aag ctg ctg aag gag ggc cac cgc atg gac aag ccc gcc aac Leu Phe Lys Leu Leu Lys Glu Gly His Arg Met Asp Lys Pro Ala Asn 705 710 715 720	2160
tgc aca cac gac ctg tac atg atc atg cgg gag tgc tgg cat gcc gcg Cys Thr His Asp Leu Tyr Met Ile Met Arg Glu Cys Trp His Ala Ala 725 730 735	2208
ccc tcc cag agg ccc acc ttc aag cag ctg gtg gag gac ctg gac cgt Pro Ser Gln Arg Pro Thr Phe Lys Gln Leu Val Glu Asp Leu Asp Arg 740 745 750	2256
gtc ctt acc gtg acg tcc acc gac aat gtt atg gaa cag ttc aat cct Val Leu Thr Val Thr Ser Thr Asp Asn Val Met Glu Gln Phe Asn Pro 755 760 765	2304
ggg ctg cga aat tta ata aac ctg ggg aaa aat tat gag aaa gct gta Gly Leu Arg Asn Leu Ile Asn Leu Gly Lys Asn Tyr Glu Lys Ala Val 770 775 780	2352
aac gct atg atc ctg gca gga aaa gcc tac tac gat gga gtg gcc aag Asn Ala Met Ile Leu Ala Gly Lys Ala Tyr Tyr Asp Gly Val Ala Lys 785 790 795 800	2400
atc ggt gag att gcc act ggg tcc ccc gtg tca act gaa ctg gga cat Ile Gly Glu Ile Ala Thr Gly Ser Pro Val Ser Thr Glu Leu Gly His 805 810 815	2448
gtc ctc ata gag att tca agt acc cac aag aaa ctc aac gag agt ctt Val Leu Ile Glu Ile Ser Ser Thr His Lys Lys Leu Asn Glu Ser Leu 820 825 830	2496
gat gaa aat ttt aaa aaa ttc cac aaa gag att atc cat gag ctg gag Asp Glu Asn Phe Lys Lys Phe His Lys Glu Ile Ile His Glu Leu Glu 835 840 845	2544

-continued

aag aag ata gaa ctt gac gtg aaa tat atg aac gca act cta aaa aga Lys Lys Ile Glu Leu Asp Val Lys Tyr Met Asn Ala Thr Leu Lys Arg 850 855 860	2592
tac caa aca gaa cac aag aat aaa tta gag tct ttg gag aaa tcc caa Tyr Gln Thr Glu His Lys Asn Lys Leu Glu Ser Leu Glu Lys Ser Gln 865 870 875 880	2640
gct gag ttg aag aag atc aga agg aaa agc caa gga agc cga aac gca Ala Glu Leu Lys Ile Arg Arg Lys Ser Gln Gly Ser Arg Asn Ala 885 890 895	2688
ctc aaa tat gaa cac aaa gaa att gag tat gtg gag acc gtt act tct Leu Lys Tyr Glu His Lys Glu Ile Glu Tyr Val Glu Thr Val Thr Ser 900 905 910	2736
cgt cag agt gaa atc cag aaa ttc att gca gat ggt tgc aaa gag gct Arg Gln Ser Glu Ile Gln Lys Phe Ile Ala Asp Gly Cys Lys Glu Ala 915 920 925	2784
ctg ctt gaa gag aag agg cgc ttc tgc ttt ctg gtt gat aag cac tgt Leu Leu Glu Lys Arg Arg Phe Cys Phe Leu Val Asp Lys His Cys 930 935 940	2832
ggc ttt gca aac cac ata cat tat tat cac tta cag tct gca gaa cta Gly Phe Ala Asn His Ile His Tyr Tyr His Leu Gln Ser Ala Glu Leu 945 950 955 960	2880
ctg aat tcc aag ctg cct cgg tgg cag gag acc tgt gtt gat gcc atc Leu Asn Ser Lys Leu Pro Arg Trp Gln Glu Thr Cys Val Asp Ala Ile 965 970 975	2928
aaa gtg cca gag aaa atc atg aat atg atc gaa gaa ata aag acc cca Lys Val Pro Glu Lys Ile Met Asn Met Ile Glu Glu Ile Lys Thr Pro 980 985 990	2976
gcc tct acc ccc gtg tct gga act cct cag gct tca ccc atg atc gag Ala Ser Thr Pro Val Ser Gly Thr Pro Gln Ala Ser Pro Met Ile Glu 995 1000 1005	3024
aga agc aat gtg gtt agg aaa gat tac gac acc ctt tct aaa tgc Arg Ser Asn Val Val Arg Lys Asp Tyr Asp Thr Leu Ser Lys Cys 1010 1015 1020	3069
tca cca aag atg ccc ccc gct cct tca ggc aga gca tat acc agt Ser Pro Lys Met Pro Pro Ala Pro Ser Gly Arg Ala Tyr Thr Ser 1025 1030 1035	3114
ccc ttg atc gat atg ttt aat aac cca gcc acg gct gcc ccg aat Pro Leu Ile Asp Met Phe Asn Asn Pro Ala Thr Ala Ala Pro Asn 1040 1045 1050	3159
tca caa agg gta aat aat tca aca ggt act tcc gaa gat ccc agt Ser Gln Arg Val Asn Asn Ser Thr Gly Thr Ser Glu Asp Pro Ser 1055 1060 1065	3204
tta cag cga tca gtt tcg gtt gca acg gga ctg aac atg atg aag Leu Gln Arg Ser Val Ser Val Ala Thr Gly Leu Asn Met Met Lys 1070 1075 1080	3249
aag cag aaa gtg aag acc atc ttc ccg cac act gcg ggc tcc aac Lys Gln Lys Val Lys Thr Ile Phe Pro His Thr Ala Gly Ser Asn 1085 1090 1095	3294
aag acc tta ctc agc ttt gca cag gga gat gtc atc acg ctg ctc Lys Thr Leu Leu Ser Phe Ala Gln Gly Asp Val Ile Thr Leu Leu 1100 1105 1110	3339
atc ccc gag gag aag gat ggc tgg ctc tat gga gaa cac gac gtg Ile Pro Glu Glu Lys Asp Gly Trp Leu Tyr Gly Glu His Asp Val 1115 1120 1125	3384
tcc aag gcg agg ggt tgg ttc ccg tcg tcg tac acg aag ttg ctg Ser Lys Ala Arg Gly Trp Phe Pro Ser Ser Tyr Thr Lys Leu Leu 1130 1135 1140	3429

-continued

gaa gaa aat gag aca gaa gca	gtg acc gtg ccc acg	cca agc ccc	3474
Glu Glu Asn Glu Thr Glu Ala	Val Thr Val Pro Thr	Pro Ser Pro	
1145	1150	1155	
aca cca gtg aga agc atc agc	acc gtg aac ttg tct	gag aat agc	3519
Thr Pro Val Arg Ser Ile Ser	Thr Val Asn Leu Ser	Glu Asn Ser	
1160	1165	1170	
agt gtt gtc atc ccc cca ccc	gac tac ttg gaa tgc	tta tcc atg	3564
Ser Val Val Ile Pro Pro Pro	Asp Tyr Leu Glu Cys	Leu Ser Met	
1175	1180	1185	
ggg gca gct gcc gac agg aga	gca gat tcg gcc agg	acg aca tcc	3609
Gly Ala Ala Ala Asp Arg Arg	Ala Asp Ser Ala Arg	Thr Thr Ser	
1190	1195	1200	
acc ttt aag gcc cca gcg tcc	aag ccc gag acc gcg	gct cct aac	3654
Thr Phe Lys Ala Pro Ala Ser	Lys Pro Glu Thr Ala	Ala Pro Asn	
1205	1210	1215	
gat gcc aac ggg act gca aag	ccg cct ttt ctc agc	gga gaa aac	3699
Asp Ala Asn Gly Thr Ala Lys	Pro Pro Phe Leu Ser	Gly Glu Asn	
1220	1225	1230	
ccc ttt gcc act gtg aaa ctc	cgt ccg act gtg acg	aat gat cgc	3744
Pro Phe Ala Thr Val Lys Leu	Arg Pro Thr Val Thr	Asn Asp Arg	
1235	1240	1245	
tca gca ccc atc att cga tga			3765
Ser Ala Pro Ile Ile Arg			
1250			

<210> SEQ ID NO: 23

<211> LENGTH: 1254

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 23

Met Gly Ala Pro Ala Cys Ala Leu Ala Leu Cys Val Ala Val Ala Ile			
1	5	10	15
Val Ala Gly Ala Ser Ser Glu Ser Leu Gly Thr Glu Gln Arg Val Val			
20	25	30	
Gly Arg Ala Ala Glu Val Pro Gly Pro Glu Pro Gly Gln Gln Glu Gln			
35	40	45	
Leu Val Phe Gly Ser Gly Asp Ala Val Glu Leu Ser Cys Pro Pro Pro			
50	55	60	
Gly Gly Gly Pro Met Gly Pro Thr Val Trp Val Lys Asp Gly Thr Gly			
65	70	75	80
Leu Val Pro Ser Glu Arg Val Leu Val Gly Pro Gln Arg Leu Gln Val			
85	90	95	
Leu Asn Ala Ser His Glu Asp Ser Gly Ala Tyr Ser Cys Arg Gln Arg			
100	105	110	
Leu Thr Gln Arg Val Leu Cys His Phe Ser Val Arg Val Thr Asp Ala			
115	120	125	
Pro Ser Ser Gly Asp Asp Glu Asp Gly Glu Asp Glu Ala Glu Asp Thr			
130	135	140	
Gly Val Asp Thr Gly Ala Pro Tyr Trp Thr Arg Pro Glu Arg Met Asp			
145	150	155	160
Lys Lys Leu Leu Ala Val Pro Ala Ala Asn Thr Val Arg Phe Arg Cys			
165	170	175	
Pro Ala Ala Gly Asn Pro Thr Pro Ser Ile Ser Trp Leu Lys Asn Gly			
180	185	190	

-continued

Arg Glu Phe Arg Gly Glu His Arg Ile Gly Gly Ile Lys Leu Arg His
 195 200 205
 Gln Gln Trp Ser Leu Val Met Glu Ser Val Val Pro Ser Asp Arg Gly
 210 215 220
 Asn Tyr Thr Cys Val Val Glu Asn Lys Phe Gly Ser Ile Arg Gln Thr
 225 230 235 240
 Tyr Thr Leu Asp Val Leu Glu Arg Ser Pro His Arg Pro Ile Leu Gln
 245 250 255
 Ala Gly Leu Pro Ala Asn Gln Thr Ala Val Leu Gly Ser Asp Val Glu
 260 265 270
 Phe His Cys Lys Val Tyr Ser Asp Ala Gln Pro His Ile Gln Trp Leu
 275 280 285
 Lys His Val Glu Val Asn Gly Ser Lys Val Gly Pro Asp Gly Thr Pro
 290 295 300
 Tyr Val Thr Val Leu Lys Ser Trp Ile Ser Glu Ser Val Glu Ala Asp
 305 310 315 320
 Val Arg Leu Arg Leu Ala Asn Val Ser Glu Arg Asp Gly Gly Glu Tyr
 325 330 335
 Leu Cys Arg Ala Thr Asn Phe Ile Gly Val Ala Glu Lys Ala Phe Trp
 340 345 350
 Leu Ser Val His Gly Pro Arg Ala Ala Glu Glu Glu Leu Val Glu Ala
 355 360 365
 Asp Glu Ala Gly Ser Val Tyr Ala Gly Ile Leu Ser Tyr Gly Val Gly
 370 375 380
 Phe Phe Leu Phe Ile Leu Val Val Ala Ala Val Thr Leu Cys Arg Leu
 385 390 395 400
 Arg Ser Pro Pro Lys Lys Gly Leu Gly Ser Pro Thr Val His Lys Ile
 405 410 415
 Ser Arg Phe Pro Leu Lys Arg Gln Val Ser Leu Glu Ser Asn Ala Ser
 420 425 430
 Met Ser Ser Asn Thr Pro Leu Val Arg Ile Ala Arg Leu Ser Ser Gly
 435 440 445
 Glu Gly Pro Thr Leu Ala Asn Val Ser Glu Leu Glu Leu Pro Ala Asp
 450 455 460
 Pro Lys Trp Glu Leu Ser Arg Ala Arg Leu Thr Leu Gly Lys Pro Leu
 465 470 475 480
 Gly Glu Gly Cys Phe Gly Gln Val Val Met Ala Glu Ala Ile Gly Ile
 485 490 495
 Asp Lys Asp Arg Ala Ala Lys Pro Val Thr Val Ala Val Lys Met Leu
 500 505 510
 Lys Asp Asp Ala Thr Asp Lys Asp Leu Ser Asp Leu Val Ser Glu Met
 515 520 525
 Glu Met Met Lys Met Ile Gly Lys His Lys Asn Ile Ile Asn Leu Leu
 530 535 540
 Gly Ala Cys Thr Gln Gly Gly Pro Leu Tyr Val Leu Val Glu Tyr Ala
 545 550 555 560
 Ala Lys Gly Asn Leu Arg Glu Phe Leu Arg Ala Arg Arg Pro Pro Gly
 565 570 575
 Leu Asp Tyr Ser Phe Asp Thr Cys Lys Pro Pro Glu Glu Gln Leu Thr
 580 585 590
 Phe Lys Asp Leu Val Ser Cys Ala Tyr Gln Val Ala Arg Gly Met Glu

-continued

595	600	605
Tyr Leu Ala Ser Gln Lys Cys Ile His Arg Asp Leu Ala Ala Arg Asn		
610	615	620
Val Leu Val Thr Glu Asp Asn Val Met Lys Ile Ala Asp Phe Gly Leu		
625	630	635
Ala Arg Asp Val His Asn Leu Asp Tyr Tyr Lys Lys Thr Thr Asn Gly		
645	650	655
Arg Leu Pro Val Lys Trp Met Ala Pro Glu Ala Leu Phe Asp Arg Val		
660	665	670
Tyr Thr His Gln Ser Asp Val Trp Ser Phe Gly Val Leu Leu Trp Glu		
675	680	685
Ile Phe Thr Leu Gly Gly Ser Pro Tyr Pro Gly Ile Pro Val Glu Glu		
690	695	700
Leu Phe Lys Leu Leu Lys Glu Gly His Arg Met Asp Lys Pro Ala Asn		
705	710	715
Cys Thr His Asp Leu Tyr Met Ile Met Arg Glu Cys Trp His Ala Ala		
725	730	735
Pro Ser Gln Arg Pro Thr Phe Lys Gln Leu Val Glu Asp Leu Asp Arg		
740	745	750
Val Leu Thr Val Thr Ser Thr Asp Asn Val Met Glu Gln Phe Asn Pro		
755	760	765
Gly Leu Arg Asn Leu Ile Asn Leu Gly Lys Asn Tyr Glu Lys Ala Val		
770	775	780
Asn Ala Met Ile Leu Ala Gly Lys Ala Tyr Tyr Asp Gly Val Ala Lys		
785	790	795
Ile Gly Glu Ile Ala Thr Gly Ser Pro Val Ser Thr Glu Leu Gly His		
805	810	815
Val Leu Ile Glu Ile Ser Ser Thr His Lys Lys Leu Asn Glu Ser Leu		
820	825	830
Asp Glu Asn Phe Lys Lys Phe His Lys Glu Ile Ile His Glu Leu Glu		
835	840	845
Lys Lys Ile Glu Leu Asp Val Lys Tyr Met Asn Ala Thr Leu Lys Arg		
850	855	860
Tyr Gln Thr Glu His Lys Asn Lys Leu Glu Ser Leu Glu Lys Ser Gln		
865	870	875
Ala Glu Leu Lys Ile Arg Arg Lys Ser Gln Gly Ser Arg Asn Ala		
885	890	895
Leu Lys Tyr Glu His Lys Glu Ile Glu Tyr Val Glu Thr Val Thr Ser		
900	905	910
Arg Gln Ser Glu Ile Gln Lys Phe Ile Ala Asp Gly Cys Lys Glu Ala		
915	920	925
Leu Leu Glu Lys Arg Arg Phe Cys Phe Leu Val Asp Lys His Cys		
930	935	940
Gly Phe Ala Asn His Ile His Tyr Tyr His Leu Gln Ser Ala Glu Leu		
945	950	955
Leu Asn Ser Lys Leu Pro Arg Trp Gln Glu Thr Cys Val Asp Ala Ile		
965	970	975
Lys Val Pro Glu Lys Ile Met Asn Met Ile Glu Glu Ile Lys Thr Pro		
980	985	990
Ala Ser Thr Pro Val Ser Gly Thr Pro Gln Ala Ser Pro Met Ile Glu		
995	1000	1005

-continued

Arg Ser Asn Val Val Arg Lys Asp Tyr Asp Thr Leu Ser Lys Cys
 1010 1015 1020

Ser Pro Lys Met Pro Pro Ala Pro Ser Gly Arg Ala Tyr Thr Ser
 1025 1030 1035

Pro Leu Ile Asp Met Phe Asn Asn Pro Ala Thr Ala Ala Pro Asn
 1040 1045 1050

Ser Gln Arg Val Asn Asn Ser Thr Gly Thr Ser Glu Asp Pro Ser
 1055 1060 1065

Leu Gln Arg Ser Val Ser Val Ala Thr Gly Leu Asn Met Met Lys
 1070 1075 1080

Lys Gln Lys Val Lys Thr Ile Phe Pro His Thr Ala Gly Ser Asn
 1085 1090 1095

Lys Thr Leu Leu Ser Phe Ala Gln Gly Asp Val Ile Thr Leu Leu
 1100 1105 1110

Ile Pro Glu Glu Lys Asp Gly Trp Leu Tyr Gly Glu His Asp Val
 1115 1120 1125

Ser Lys Ala Arg Gly Trp Phe Pro Ser Ser Tyr Thr Lys Leu Leu
 1130 1135 1140

Glu Glu Asn Glu Thr Glu Ala Val Thr Val Pro Thr Pro Ser Pro
 1145 1150 1155

Thr Pro Val Arg Ser Ile Ser Thr Val Asn Leu Ser Glu Asn Ser
 1160 1165 1170

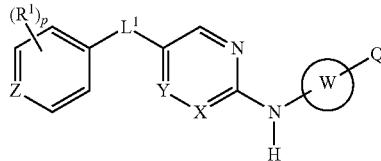
Ser Val Val Ile Pro Pro Pro Asp Tyr Leu Glu Cys Leu Ser Met
 1175 1180 1185

Gly Ala Ala Ala Asp Arg Arg Ala Asp Ser Ala Arg Thr Thr Ser
 1190 1195 1200

Thr Phe Lys Ala Pro Ala Ser Lys Pro Glu Thr Ala Ala Pro Asn
 1205 1210 1215

Asp Ala Asn Gly Thr Ala Lys Pro Pro Phe Leu Ser Gly Glu Asn
 1220 1225 1230

Pro Phe Ala Thr Val Lys Leu Arg Pro Thr Val Thr Asn Asp Arg
 1235 1240 1245


Ser Ala Pro Ile Ile Arg
 1250

<210> SEQ ID NO 24
 <211> LENGTH: 27
 <212> TYPE: DNA
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: Description of Artificial Sequence: an artificially synthesized FLAG tag sequence

<400> SEQUENCE: 24

atggactaca aggacgacga tgacaag

1: A compound of formula (I) or a salt thereof:

wherein X and Y are each independently CH or N, with the proviso that X and Y are not N simultaneously;
 L¹ is -lower alkylene-, -lower alkylene-O—, —O-lower alkylene-, or -lower alkynylene-;
 Z is N or CH;
 each R¹ is independently lower alkyl optionally substituted with halogen, —O-(lower alkyl optionally substituted with halogen), halogen, cyano, or —N(lower alkyl)₂;
 p is an integer of from 2 to 4;
 ring W is an optionally substituted aromatic carbocyclic ring, an optionally substituted aromatic heterocyclic ring, or an optionally substituted non-aromatic heterocyclic ring;
 Q is -L²-R² or R³;
 L² is an optionally substituted aromatic heterocyclic ring or an optionally substituted non-aromatic heterocyclic ring;
 R² is a non-aromatic heterocyclic group optionally substituted with lower alkyl, optionally substituted cycloalkyl, lower alkyl optionally substituted with at least one selected from the group consisting of —OH and —O-lower alkyl, —C(O)—R⁰, —C(O)-optionally substituted cycloalkyl, —NH—R⁰, —N(lower alkyl)-R⁰, an -L³-optionally substituted non-aromatic heterocyclic group, or H;
 R⁰ is lower alkyl optionally substituted with —OH;
 L³ is a bond, —NH—, —N(lower alkyl)-, or lower alkylene; and
 R³ is:
 a lower alkyl optionally substituted with at least one selected from the group consisting of —C(O)OH, —OH, —O—R⁰, amino optionally substituted with one or two R⁰, carbamoyl optionally substituted with one or two R⁰, an optionally substituted aromatic heterocyclic group, an optionally substituted non-aromatic heterocyclic group, and a —C(O)-optionally substituted non-aromatic heterocyclic group;
 —O-lower alkyl optionally substituted with at least one selected from the group consisting of —C(O)OH, —OH, —O—R⁰, carbamoyl optionally substituted with one or two R⁰, an optionally substituted non-aromatic heterocyclic group, and a —C(O)-optionally substituted non-aromatic heterocyclic group;
 —NH-lower alkyl optionally substituted with at least one selected from the group consisting of —OH, a non-aromatic heterocyclic group optionally substituted with lower alkyl, and carbamoyl optionally substituted with one or two R⁰);
 —N(lower alkyl)-(lower alkyl optionally substituted with at least one selected from the group consisting of —OH, a non-aromatic heterocyclic group optionally

substituted with lower alkyl, and carbamoyl optionally substituted with one or two R⁰),
 —C(O)OH,

—C(O)-optionally substituted non-aromatic heterocyclic group,
 —O-(a non-aromatic heterocyclic group optionally substituted with lower alkyl), or
 carbamoyl optionally substituted with one or two R⁰.

2: The compound or salt thereof according to claim 1, wherein X is N;
 Y is CH; and

L¹ is lower alkylene or -lower alkylene-O—.

3: The compound or salt thereof according to claim 2, wherein Z is CH;
 each R¹ is independently —O-lower alkyl or halogen;
 p is 2 or 4; and

ring W is an optionally substituted aromatic carbocyclic ring or an optionally substituted aromatic heterocyclic ring.

4: The compound or salt thereof according to claim 3, wherein L¹ is ethylene or -methylene-O—;
 p is 4; and

ring W is an optionally substituted benzene ring or optionally substituted pyrazole.

5: The compound or salt thereof according to claim 2, wherein Q is -L²-R²;

L² is an optionally substituted non-aromatic heterocyclic ring; and

R² is lower alkyl optionally substituted with at least one selected from the group consisting of —OH and —O-lower alkyl, —NH-(lower alkyl optionally substituted with —OH), an optionally substituted non-aromatic heterocyclic group, -lower alkylene-(an optionally substituted non-aromatic heterocyclic group), or H.

6: The compound or salt thereof according to claim 5, wherein p is 4;

L² is piperazine optionally substituted with one or more methyl, piperidine optionally substituted with one or more methyl, or 3,9-diazaspiro[5.5]undecane; and

R² is piperazine optionally substituted with methyl, piperidine optionally substituted with methyl, 2-hydroxyethylamino, or H.

7: The compound or salt thereof according to claim 6, wherein each R¹ is independently —O-methyl or F;

L¹ is -methylene-O—; ring W is a benzene ring optionally substituted with —O-methyl;

L² is piperidine or 4-methylpiperazine; and

R² is 4-methylpiperazine, 2-hydroxyethylamino, or H.

8: The compound or salt thereof according to claim 2, wherein ring W is optionally substituted pyrazole;

Q is R³; and

R³ is lower alkyl substituted with at least one selected from the group consisting of —C(O)OH, carbamoyl optionally substituted with one or two R⁰, —OH, an optionally substituted non-aromatic heterocyclic group, and —C(O)-(an optionally substituted non-aromatic heterocyclic group).

9: The compound or salt thereof according to claim 8, wherein p is 4; and

R³ is lower alkyl substituted with at least one selected from the group consisting of —OH, a non-aromatic heterocyclic group optionally substituted with lower

alkyl, and —C(O)-(a non-aromatic heterocyclic group optionally substituted with —OH).

10: The compound or salt thereof according to claim **9**, wherein each R¹ is independently —O-methyl or F; L¹ is -methylene-O—; ring W is pyrazole optionally substituted with methyl; and R³ is 2-hydroxyethyl, 2,3-dihydroxypropyl, or 4-methylpiperazin-1-ylmethyl.

11: The compound or salt thereof according to claim **1**, wherein the compound is selected from the group consisting of:

5-[2-(2,6-difluoro-3,5-dimethoxyphenyl)ethyl]-N-[3-methoxy-4-(4-methylpiperazin-1-yl)phenyl]pyrimidin-2-amine,
 (2S)-3-[4-(5-[2,6-difluoro-3,5-dimethoxybenzyl]oxy)pyrimidin-2-yl]amino)-1H-pyrazol-1-yl]propane-1,2-diol,
 5-[2-(2,6-difluoro-3,5-dimethoxyphenyl)ethyl]-N-[3-methoxy-4-[4-(4-methylpiperazin-1-yl)piperidin-1-yl]phenyl]pyrimidin-2-amine,
 5-[2-(2,6-difluoro-3,5-dimethoxyphenyl)ethyl]-N-[3-fluoro-4-[4-(4-methylpiperazin-1-yl)piperidin-1-yl]phenyl]pyrimidin-2-amine,
 5-[2,6-difluoro-3,5-dimethoxybenzyl]oxy]-N-[3-methoxy-4-[4-(4-methylpiperazin-1-yl)piperidin-1-yl]phenyl]pyrimidin-2-amine,
 5-[2,6-difluoro-3,5-dimethoxybenzyl]oxy]-N-[3-methoxy-4-(4-methylpiperazin-1-yl)phenyl]pyrimidin-2-amine,
 5-[(2,6-dichloro-3,5-dimethoxybenzyl)oxy]-N-[1-(1-methylpiperidin-4-yl)-1H-pyrazol-4-yl]pyrimidin-2-amine,
 5-[(2,6-dichloro-3,5-dimethoxybenzyl)oxy]-N-[1-(piperidin-4-yl)-1H-pyrazol-4-yl]pyrimidin-2-amine,
 5-[2,6-difluoro-3,5-dimethoxybenzyl]oxy]-N-[3-methoxy-4-[4-(1-methylpiperidin-4-yl)piperazin-1-yl]phenyl]pyrimidin-2-amine,
 5-[2,6-difluoro-3,5-dimethoxybenzyl]oxy]-N-[3-methyl-4-[4-(4-methylpiperazin-1-yl)piperidin-1-yl]phenyl]pyrimidin-2-amine,
 5-[2,6-difluoro-3,5-dimethoxybenzyl]oxy]-N-[4-[(3R,5S)-3,5-dimethylpiperazin-1-yl]-3-methoxyphenyl]pyrimidin-2-amine,

N-[4-(3,9-diazaspiro[5.5]undec-3-yl)-3-methoxyphenyl]-5-[2,6-difluoro-3,5-dimethoxybenzyl]oxy]pyrimidin-2-amine,

2-[4-(5-[2,6-difluoro-3,5-dimethoxybenzyl]oxy)pyrimidin-2-yl]amino)-1H-pyrazol-1-yl]ethanol,

5-[2,6-difluoro-3,5-dimethoxybenzyl]oxy]-N-[1-[2-(4-methylpiperazin-1-yl)ethyl]-1H-pyrazol-4-yl]pyrimidin-2-amine,

2-[4-(5-[2,6-difluoro-3,5-dimethoxybenzyl]oxy)pyrimidin-2-yl]amino)-1H-pyrazol-1-yl]-1-(3-hydroxyazetidin-1-yl)ethanone,

(2R)-3-[4-(5-[2,6-difluoro-3,5-dimethoxybenzyl]oxy)pyrimidin-2-yl]amino)-1H-pyrazol-1-yl]propane-1,2-diol,

2-[1-[4-(5-[2,6-difluoro-3,5-dimethoxybenzyl]oxy)pyrimidin-2-yl]amino)phenyl]piperidin-4-yl]amino)ethanol,

5-[2,6-difluoro-3,5-dimethoxybenzyl]oxy]-N-[1-methyl-5-[4-(4-methylpiperazin-1-yl)methyl]-1H-pyrazol-3-yl]pyrimidin-2-amine, and

5-[2,6-difluoro-3,5-dimethoxybenzyl]oxy]-N-[4-(4-methylpiperazin-1-yl)phenyl]pyrimidin-2-amine.

12: A pharmaceutical composition, comprising: the compound or salt thereof according to claim **1** and a pharmaceutically acceptable excipient.

13: The pharmaceutical composition according to claim **12**, wherein the compound is suitable for treatment of mutant FGFR3-positive cancer.

14: A method of manufacturing a pharmaceutical composition, the method comprising:

manufacturing the pharmaceutical composition with the compound or salt thereof according to claim **1**, wherein the pharmaceutical composition is suitable for treatment of mutant FGFR3-positive cancer.

15. (canceled)

16: The compound or salt thereof according to claim **1**, wherein the compound is suitable for treatment of mutant FGFR3-positive cancer.

17: A method of treating mutant FGFR3-positive cancer, the method comprising:

administering an effective amount of the compound or salt thereof according to claim **1** to a subject in need thereof.

* * * * *