
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2009/0201290 A1

Marrin et al. (43) Pub. Date:

US 20090201290A1

Aug. 13, 2009

(54)

(76)

(21)

(22)

(63)

METHODS AND SYSTEMIS FORSCORING
MULTIPLE TIME-BASED ASSETS AND
EVENTS

Christopher F. Marrin, Los Altos,
CA (US); James R. Kent, Gahanna,
OH (US); Peter G. Broadwell, Palo
Alto, CA (US); Robert K. Myers,
Santa Cruz, CA (US)

Inventors:

Correspondence Address:
BLAKELY SOKOLOFF TAYLOR & ZAFMAN
LLP
1279 OAKMEAD PARKWAY
SUNNYVALE, CA 94085-4040 (US)

Appl. No.: 12/427,529

Filed: Apr. 21, 2009

Related U.S. Application Data

Continuation of application No. 1 1/384.229, filed on
Mar. 17, 2006, now Pat. No. 7,532,217, which is a

(60)

(51)

(52)

(57)

continuation of application No. 10/990,742, filed on
Nov. 16, 2004, now Pat. No. 7,330,186, which is a
continuation-in-part of application No. 10/712.858,
filed on Nov. 12, 2003, now abandoned, which is a
continuation of application No. 09/632.351, filed on
Aug. 3, 2000, now Pat. No. 6,707,456.
Provisional application No. 60/146.972, filed on Aug.
3, 1999.

Publication Classification

Int. C.
G06T I5/00 (2006.01)
U.S. Cl. .. 345/419

ABSTRACT

The methods and systems for scoring multiple time-based
aSSetS and events include declaratively playing a first media
sequence; and declaratively initiating a second media
sequence at a predetermined time prior to an end point of the
first media sequence wherein the predetermined time is inde
pendent from an amount of time utilized to play the first
media Sequence.

s

26F

Patent Application Publication Aug. 13, 2009 Sheet 1 of 7 US 2009/02O1290 A1

Strean

. s
straatseeeeeer-ressess

Buter 12
2s.

2

20 WSO long.
Afth 25
bered
objects as

Media Mgr.

Native stew. Y.
otects

32

Se

Fig. 1A

Patent Application Publication Aug. 13, 2009 Sheet 2 of 7 US 2009/0201290 A1

50
Bring a fite or stream 34 of content from a

Source into a parser

Convert to a raw scene graph

Extract prototypes and populate database
of object prototypes

Build each object

55

60

65

70

Establish all routes in Streat 34

75

initialize each field in the Scene

80

Add initialization logic

85

Deliver to Scene manager

90

Perform behavioral processing

Fig. 1B

Patent Application Publication Aug. 13, 2009 Sheet 3 of 7 US 2009/02O1290 A1

Fig. 2A

Patent Application Publication Aug. 13, 2009 Sheet 4 of 7 US 2009/02O1290 A1

Wait for 1.5 Seconds after start of 21 O
TimeBase

Send get ready signal 1.5 seconds after 215
Start of TimeBase

22O
Pre-load the movie

225 N
{ Request to start? NO

Yes

230
Start movie instantly

Fig. 2B

Patent Application Publication Aug. 13, 2009 Sheet 5 of 7 US 2009/02O1290 A1

374

366

368

370

372

Fig. 3

Patent Application Publication Aug. 13, 2009 Sheet 6 of 7 US 2009/02O1290 A1

Patent Application Publication Aug. 13, 2009 Sheet 7 of 7 US 2009/0201290 A1

515

51O

Y Pre-load Content

535
530

) Pre-load Content

555

550

Pre-load Content

TO T1 T2 T3 Time

Figure 5

US 2009/020 1290 A1

METHODS AND SYSTEMIS FORSCORING
MULTIPLE TIME-BASED ASSETS AND

EVENTS

CROSS REFERENCE RELATED APPLICATIONS

0001. This application is a continuation of Ser. No.
1 1/384,229 filed Mar. 17, 2006 which is a continuation of Ser.
No. 10/990,742 filed Nov. 16, 2004, which is a continuation
in-part of 10/712,858 filed on Nov. 12, 2003, which is a
continuation of application Ser. No. 09/632,351 filed on Aug.
3, 2000 (now issued U.S. Pat. No. 6,707,456), which claims
the benefit of U.S. Provisional Application No. 60/146.972
filed on Aug. 3, 1999.

FIELD OF INVENTION

0002 This invention relates generally to modeling lan
guage for 3D graphics and, more particularly, to temporal
manipulation of media assets.

BACKGROUND

0003 Conventional modeling languages for real-time 3D
scene rendering have traditionally focused on aspects of
Scene structure, geometry, appearance, and, to Some degree,
animation, and interactivity. This focus has been driven by the
following two factors. First, 3D computer graphics applica
tions have been geared toward user-driven experiences and,
thus, tend to be structured around a rendered response to
events. Second, the majority of these applications take a “ren
der it as fast as you can' approach to scene updates, with little
respect paid to fidelity of the time base. Conventional mod
eling languages fail to provide the accuracy oftemporal rela
tionship between two media assets. For example, if a video
asset and an audio asset are to start at the same time, this can
be achieved by prescribing start time for each asset indepen
dent of other assets. This allows the start times to be slightly
different. It is desirable that the start time for each asset be
controlled by the same field, thereby resulting in accurate
synchronization of the assets. Media assets include audio
media, Video media, animations, audio-visual media, images
Or eventS.

0004 As full motion video and high fidelity audio are
integrated into a scene rendering mix, it is desirable to deliver
high quality television-like viewing experiences while Sup
porting viewer interactivity. It is desirable to provide a passive
viewing experience that is more television-like and not a web
page-like viewing experience.
0005. In a declarative markup language, the semantics
required to attain the desired outcome are implicit in the
description of the outcome. It is not necessary to provide a
separate procedure (i.e., write a script) to get the desired
outcome. One example of a declarative language is Hyper
TextMarkup Language (HTML).
0006 Various approaches to scoring animation and play
back have previously been developed in other computer
based media, including Macromedia Director and the WSC's
Synchronized Multimedia Integration Language (SMIL).
However, these existing scoring systems do not allow for
declarative composition of a real-time scene wherein the
independent scores are dynamically composed and decom
posed hierarchically, structuring time in manner akin to the
spatial scene graph. For example structuring blocks of time to
be next to each other or structuring block of time to be parallel
(synchronized) with each other. The conventional scoring

Aug. 13, 2009

systems do not allow variable rate and direction of score
evaluation to be done declaratively, and neither do they allow
declarative implementation of a modular computation strat
egy based upon a normalized “fraction done output, Suitable
for rapid assembly and reuse of behavioral animation.

SUMMARY

0007. The methods and systems for scoring multiple time
based assets and events include declaratively playing a first
media sequence; and declaratively initiating a second media
sequence at a predetermined time prior to an end point of the
first media sequence wherein the predetermined time is inde
pendent from an amount of time utilized to play the first
media sequence.

BRIEF DESCRIPTION OF THE DRAWINGS

0008 FIG. 1A shows the basic architecture of Blendo.
0009 FIG. 1B is a flow diagram illustrating flow of con
tent through Blendo engine.
0010 FIG. 2A shows time relationship between media
sequences in a score.
0011 FIG. 2B illustrates synchronization of the media
sequence of FIG. 2A requiring preloading
0012 FIG. 3 illustrates one embodiment of time relation
ships between various constituent media of an interactive
presentation.
0013 FIG. 4 illustrates one embodiment of time relation
ships between various constituent media of an interactive
presentation.
0014 FIG. 5 illustrates one embodiment of time relation
ships between various constituent media of an interactive
presentation.

DETAILED DESCRIPTION

00.15 Blendo is an exemplary embodiment of the present
invention that allows temporal manipulation of media assets
including control of animation and visible imagery, and cue
ing of audio media, video media, animation and event data to
a media asset that is being played. FIG. 1A shows basic
Blendo architecture. At the core of the Blendo architecture is
a Core Runtime module 10 (Core hereafter) which presents
various Application Programmer Interface (API hereafter)
elements and the object model to a set of objects present in
system 11. During normal operation, a file is parsed by parser
14 into a raw scene graph 16 and passed on to Core 10, where
its objects are instantiated and a runtime scene graph is built.
The objects can be built-in objects 18, author defined objects
20, native objects 24, or the like. The objects use a set of
available managers 26 to obtain platform services 32. These
platform services 32 include event handling, loading of
assets, playing of media, and the like. The objects use render
ing layer 28 to compose intermediate or final images for
display. A page integration component 30 is used to interface
Blendo to an external environment, such as an HTML or
XML page.
0016. In one embodiment, Blendo contains a system
object with references to the set of managers 26. Each man
ager 26 provides the set of APIs to control some aspect of
system 11. An event manager 26D provides access to incom
ing system events originated by user input or environmental
events. A load manager 26C facilitates the loading of Blendo
files and native node implementations. A media manager 26E
provides the ability to load, control and play audio, image and

US 2009/020 1290 A1

Video media assets. A render manager 26G allows the cre
ation and management of objects used to render scenes. A
scene manager 26A controls the scene graph. A Surface man
ager 26F allows the creation and management of Surfaces
onto which scene elements and other assets may be compos
ited. A thread manager 26B gives authors the ability to spawn
and control threads and to communicate between them.
0017 FIG. 1B illustrates in a flow diagram, a conceptual
description of the flow of content through a Blendo engine. In
block 50, a presentation begins with a source which includes
a file or stream 34 (FIG. 1A) of content being brought into
parser 14 (FIG. 1A). The source could be in a native VRML
like textual format, a native binary format, an XML based
format, or the like. Regardless of the format of the source, in
block 55, the source is converted into raw scene graph 16
(FIG. 1A). The raw scene graph 16 can represent the nodes,
fields and other objects in the content, as well as field initial
ization values. It also can contain a description of object
prototypes, external prototype references in the stream 34.
and route statements.
0018. The top level of raw scene graph 16 include nodes,
top level fields and functions, prototypes and routes contained
in the file. Blendo allows fields and functions at the top level
in addition to traditional elements. These are used to provide
an interface to an external environment, such as an HTML
page. They also provide the object interface when a stream 34
is used as the contents of an external prototype.
0019. Each raw node includes a list of the fields initialized
within its context. Each raw field entry includes the name,
type (if given) and data value(s) for that field. Each data value
includes a number, a string, a raw node, and/or a raw field that
can represent an explicitly typed field value.
0020. In block 60, the prototypes are extracted from the
top level of raw scene graph 16 (FIG. 1A) and used to popu
late the database of object prototypes accessible by this scene.
0021. The raw scene graph 16 is then sent through a build

traversal. During this traversal, each object is built (block 65),
using the database of object prototypes.
0022. In block 70, the routes in stream 34 are established.
Subsequently, in block 75, each field in the scene is initial
ized. This is done by sending initial events to non-default
fields of objects. Since the scene graph structure is achieved
through the use of node fields, block 75 also constructs the
scene hierarchy as well. Events are fired using in-order tra
versal. The first node encountered enumerates fields in the
node. If a field is a node, that node is traversed first.
0023. As a result the nodes in that particular branch of the
tree are initialized. Then, an event is sent to that node field
with the initial value for the node field.

0024. After a given node has had its fields initialized, the
author is allowed to add initialization logic (block 80) to
prototyped objects to ensure that the node is fully initialized
at call time. The blocks described above produce a root scene.
In block 85 the scene is delivered to the scene manager 26A
(FIG. 1A) created for the scene. In block 90, the scene man
ager 26A is used to render and perform behavioral processing
either implicitly or under author control.
0025. A scene rendered by the scene manager 26A can be
constructed using objects from the 20 Blendo object hierar
chy. Objects may derive some of their functionality from their
parent objects, and Subsequently extend or modify their func
tionality. At the base of the hierarchy is the Object. The two
main classes of objects derived from the Object are a Node
and a Field. Nodes contain, among other things, a render

Aug. 13, 2009

method, which gets called as part of the render traversal. The
data properties of nodes are called fields. Among the Blendo
object hierarchy is a class of objects called Timing Objects,
which are described in detail below. The following code por
tions are for exemplary purposes. It should be noted that the
line numbers in each code portion merely represent the line
numbers for that particular code portion and do not represent
the line numbers in the original source code.

Timing Objects

0026 Timing objects include a TimeBase node. This is
included as a field of a timed node and Supplies a common set
of timing semantics to the media. Through node instancing,
the TimeBase node can be used for a number of related media
nodes, ensuring temporal synchronization. A set of nodes
including the Score node is utilized for sequencing media
events. The Score node is a timed node and derives its timing
from a TimeBase. The Score node includes a list of Cue
nodes, which emit events at the time specified. Various timing
objects, including Score, are described below.
0027. The following code portion illustrates the
TimeNode node. A description of the functions in the node
follows thereafter.

1) Timed Node ChildNode {
2) field TimeBaseNode timeBase NULL
3) function Time getduration()
4) function void updateStartTime(Time now, Time mediaTime,

Float rate)
5) function void updateStopTime(Time now, Time mediaTime,

Float rate)
6) function void updateMediaTime(Time now, Time mediaTime,

Float rate)

0028. This object is the parent of all nodes controlled by a
TimeBaseNode. In line 2 of the code portion, the TimeBase
field contains the controlling TimeBaseNode, which makes
the appropriate function calls listed below when the time base
starts, stops or advances.
0029. In line 3, the getDuration function returns the dura
tion of the Timed Node. If unavailable, a value of -1 is
returned. This function is typically overridden by derived
objects.
0030 Line 4 lists the updateStartTime function. When
called, this function starts advancing its related events or
controlled media, with a starting offset specified by the
mediaTime value. The updateStartTime function is typically
overridden by derived objects.
0031 Line 5 lists the updateStopTime function, which
when called, stops advancing its related events or controlled
media. This function is typically overridden by derived
objects.
0032. In line 6, the updateMediaTime function is called
whenever mediaTime is updated by the TimeBaseNode. The
updateMediaTime function is used by derived objects to exert
further control over their media or send additional events.

US 2009/020 1290 A1

0033. The following code portion illustrates the Interval
Sensor node.

1) IntervalSensor: Timed Node {
2) field TimecycleInterval 1
3) field Float fraction 0
4) field Float time O

0034. The IntervalSensor node generates events as time
passes. IntervalSensor node can be used for many purposes
including but not limited to drive continuous simulations and
animations; to control periodic activities (e.g., one per
minute); and to initiate single occurrence events such as an
alarm clock.
0035. The IntervalSensor node sends initial fraction and
time events when its updateStartTime() function is called. In
one embodiment, this node also sends a fraction and time
event every time updateMediaTime() is called. Finally, final
fraction and time events are sent when the updateStopTime()
function is called.
0036. In line 2 of the code portion, the cycleInterval field

is set by the author to determine the length of time, measured
in seconds, it takes for the fraction to go from 0 to 1. This
value is returned when the getDuration() function is called.
0037 Line 3 lists the fraction field, which generates events
whenever the TimeBaseNode is running using equation (1)
below:

fraction=max(min(mediaTime? cycleInterval, 1), 0)

0038 Line 4 lists the time field, which generates events
whenever the TimeBaseNode is running. The value of the
time field is the current wall clock time.

Eqn. (1)

0039. The following code portion illustrates the Score
node.

1) Score: Timed Node {
2) field ME CueNode cue

0040. This object calls each entry in the cue field for every
updateStartTime(), updateMediaTime(), and updateStop
Time() call received. Calls to each cue entry returns the
currently accumulated relative time. This value is passed to
subsequent cue entries to allow relative offsets between cue
entries to be computed.
0041. In line 2 of the code portion, the cuefield holds the

list of CueNode entries to be called 20 with the passage of
mediaTime.
0042. The following code portion illustrates the Time
BaseNode node.

1) TimeBaseNode: Node {
2) field Time media Time O
3) function void evaluate(Time time)
4) function void addClient(Timed Node node)
5) function void removeClient(Timed Node node)
6) function 1nt32 getNumClients O
7) function Timed Node getClient(1nt32 index)

Aug. 13, 2009

0043. This object is the parent of all nodes generating
mediaTime. Line 2 of the code portion lists the mediaTime
field, which generates an event whenever mediaTime
advances. MediaTime field is typically controlled by derived
objects.
0044) Line 3 lists the evaluate function, which is called by
the scene manager when time advances if this TimeBaseNode
has registered interest in receiving time events.
0045 Line 4 lists addClient function, which is called by
each TimedNode when this TimeBaseNode is set in their
timeBase field. When mediaTime starts, advances or stops,
each client in the list is called. If the passed node is already a
client, this function performs no operations.
0046 Line 5 lists the remove(Client function, which is
called by each TimedNode when this TimeBaseNode is no
longer set in their timeBase field. If the passed node is not in
the client list, this function performs no operations.
0047 Line 6 lists the getNumClients function, which
returns the number of clients currently in the client list.
0048 Line 7 lists the getClient function, which returns the
client at the passed index. If the index is out of range, a NULL
value is returned.
0049. The following code portion illustrates the TimeBase
node.

1) TimeBase: TimeBaseNode {
2) field Bool loop false
3) field Time startTime O
4) field Time play TimeO
5) field Time stopTime O
6) field Time mediastartTime O
7) field Time mediaStopTime O
8) field Float rate 1
9) field Time duration O
10) field Bool enabled true
11) field fool is Active false

0050. This object controls the advancement of media
Time. TimeBase can start, stop and resume this value, as well
as make mediaTime loop continuously. Time Base allows
mediaTime to be played over a Subset of its range.
0051. In line 2 of the code portion, the loop field controls
whether or not mediaTime repeats its advancement when
mediaTime reaches the end of its travel.
0052. In line 3, the startTime field controls when media
Time starts advancing. When startTime, which is in units of
wall clock time, is reached the TimeBase begins running. This
is true as long as stopTime is less than startTime. When this
occurs mediaTime is set to the value of mediastartTime ifrate
is greater than or equal to 0. If mediaStartTime is out of range
(see mediaStartTime for a description of its valid range),
mediaTime is set to 0. If the rate is less than 0, mediaTime is
set to mediaStopTime. If mediaStopTime is out of range,
mediaTime is set to duration. The TimeBase continues to run
until stopTime is reached or mediaStopTime is reached (me
diastartTime if rate is less than 0). If a startTime event is
received while the TimeBase is running, it is ignored.
0053. In lines 4 and 5, the playTime field behaves identi
cally to startTime except that mediaTime is not reset upon
activation. The playTime field allows mediaTime to continue
advancing after the TimeBase is stopped with stopTime. If
both playTime and startTime have the same value, startTime
takes precedence. If a playTime event is received while the

US 2009/020 1290 A1

TimeBase is running, the event is ignored. The stopTime field
controls when the TimeBase stops.
0054 Inline 6, the mediastartTimefield sets the start of the
sub range of the media duration over which mediaTime shall
run. The range of mediastartTime is from Zero to the end of
the duration (O. . . duration). If the value of mediaStartTime
field is out of range, 0 is used in its place.
0055. In line 7, the mediaStopTimefield sets the end of the
Sub range of the media duration over which mediaTime runs.
The range of mediaStopTime is from Zero to the end of the
duration (0...duration). If the value of mediaStopTime is out
of range, the duration value is used in its place.
0056. In line 8, the rate field allows mediaTime to run at a
rate other than one second per second of wall clock time. The
rate provided in the rate field is used as an instantaneous rate.
When the evaluate function is called, the elapsed time since
the last call is multiplied by rate and the result is added to the
current mediaTime.
0057. In line 9, the duration field generates an event when
the duration of all clients of this TimeBase have determined
their duration. The value of the duration field is the same as
the client with the longest duration.
0058. In line 10, the enabled field enables the TimeBase.
When enabled goes false, is Active goes false if it was true and
mediaTime stops advancing. While false, startTime and play
Time are ignored. When enabled field goes true, startTime
and playTime are evaluated to determine if the TimeBase
should begin running. If so, the behavior as described in
startTime or playTime is performed.
0059 Line 11 lists the is Active field, which generates a
true event when the TimeBase becomes active and a false
event when the timefalse becomes inactive.
0060. The following code snippet illustrates the CueNode
node.

1) CueNode: Node {
2) field Float offset -1
3) field float delay 0
4) field Bool enabled true
5) field Int32 direction 0
6) function void updateStartTime(Time now, Time mediaTime,

Float rate)
7) function void updateStopTime(Time now, Time mediaTime,

Float rate)
8) function Time evaluate(Time accumulated, Time now, Time

mediaTime, Float rate)
9) function Time getAccumulatedTime(Time accumulated)

10) function void fire(Time now, Time mediaTime)

0061 This object is the parent for all objects in the Score's
cue list. In line 2 of the code portion, the offset field estab
lishes a 0 relative offset from the beginning of the sequence.
For instance, a value of 5 will fire the CueNode when the
incoming mediaTime reaches a value of 5.
0062. In line 3, the delay field establishes a relative delay
before the CueNode fires. If offset is a value other than-1 (the
default), this delay is measured from offset. Otherwise the
delay is measured from the end of the previous CueNode or
from 0 if this is the first CueNode. For instance, if offset has
a value of 5 and delay has a value of 2, this node will fire when
mediaTime reaches 7. If offset has a value of-1 and delay has
a value of 2, this node will fire 2 seconds after the previous
CueNode ends.
0063. In line 4, if the enabled field is false, the CueNode is
disabled. The CueNode behaves as though offset and delay

Aug. 13, 2009

were their default values and it does not fire events. If it is true,
the CueNode behaves normally.
0064. In line 5, the direction field controls how this node
fires relative to the direction of travel of mediaTime. If this
field is 0, this node fires when this node's offset and/or delay
are reached, whether mediaTime is increasing (rate greater
than Zero) or decreasing (rate less than Zero). If direction field
is less than Zero, this node fires only if its offset and/or delay
are reached when mediaTime is decreasing. If direction field
is greater than Zero, this node fires only if this node's offset
and/or delay are reached when mediaTime is increasing.
0065 Line 6 lists the updateStartTime function, which is
called when the parent Score receives an updateStartTime()
function call. Each CueNode is called in sequence.
0.066 Line 7 lists the updateStopTime function, which is
called when the parent Score 25 receives an updateStopTime(
) function call. Each CueNode is called in sequence.
0067. Line 8 lists the evaluate function, which is called
when the parent Score receives an updateMediaTime func
tion call. Each CueNode is called in sequence and must return
its accumulated time. For instance, if offset is 5 and delay is 2,
the CueNode would return a value of 7. If offset is -I and
delay is 2, the CueNode would return a value of the incoming
accumulated time plus 2. This is the default behavior. Some
CueNodes (such as IntervalCue) have a well defined duration
as well as a firing time.
0068. In line 9, the getAccumulatedTime function returns
the accumulated time using the same calculation as in the
evaluate() function.
0069. Line 10 lists the fire function, which is called from
the default evaluates function when the CueNode reaches its
firing time. The fire function is intended to be overridden by
the specific derived objects to perform the appropriate action.
0070 The following code portion illustrates the Medi
aCue node.

1) MediaCue CueNode TimeBaseNode {
2) field Time mediastartTime O
3) field Time mediaStopTime O
4) field Time duration O
5) field Bool is Active false

0071. This object controls the advancement of mediaTime
when this CueNode is active. MediaCue allows mediaTime to
be played over a subset of its range. MediaCue is active from
the time determined by the offset and/or delay field for a
length of time determined by mediaStopTime minus media
StartTime. The value MediaCue returns from getAccumulat
edTime() is the value computed by adding the default func
tion to the mediaStopTime and subtracting the
mediaStartTime. This node generates mediaTime while
active, which is computed by Subtracting the firing time plus
mediaStartTime from the incoming mediaTime. MediaCue
therefore advances mediaTime at the same rate as the incom
ing mediaTime.
0072. In line 2 of the code portion, the mediaStartTime
field sets the start of the sub range of the media duration over
which mediaTime runs. The range of mediaStartTime is from
Zero to the end of the duration (0... duration). If the value of
mediaStartTime field is out of range, 0 is utilized in its place.
(0073. In line 3, the mediastopTime field sets the end of the
Sub range of the media duration over which mediaTime runs.

US 2009/020 1290 A1

The range of mediaStopTime is from Zero to the end of the
duration. (0... duration). If the value of mediaStopTime field
is out of range, duration is utilized in its place.
0074. In line 4, the duration field generates an event when
the duration of all clients of this TimeBaseNode have deter
mined their duration. The value of duration field is the same as
the client with the longest duration.
0075 Line 5 lists the is Active field, which generates a true
event when this node becomes active and a false event when
this node becomes inactive.
0076. The following code portion illustrates the Interval
Cue node.

1) IntervalCue CueNode {
2) field Float period 1
3) field Bool rampup true
4) field Float fraction 0
5) field Bool is Active false

0077. This object sends fraction events from 0 to 1 (or 1 to
0 if rampup is false) as time advances. Line 2 of the code
snippet lists the period field, which determines the time, in
seconds, over which the fraction ramp advances.
0078. In line 3, if the ramp Up field is true (the default) the
fraction goes up from 0 to 1 over the duration of the Interval
Cue. Iffalse, the fraction goes down from 1 to 0. If mediaTime
is running backwards (when the rate is less than Zero), the
fraction goes down from 1 to 0 when rampUpfield is true, and
the fraction goes up from 0 to I when the rampUpfield is false.
0079. In line 4, the fraction field sends an event with each
call to evaluates while this node is active. If mediaTime is
moving forward, fraction starts to output when this node fires
and stops when this nodes reaches its firing time plus period.
The value of fraction is described as:

fraction=(mediaTime-firing time)*period

0080 Line 5 lists the is Active field, which sends a true
event when the node becomes active and false when the node
becomes inactive. If mediaTime is moving forward, the node
becomes active when mediaTime becomes greater than or
equal to firing time. This node becomes inactive when media
Time becomes greater than or equal to firing time plus period.
If mediaTime is moving backward, the node becomes active
when mediaTime becomes less than or equal to firing time
plus period and inactive when mediaTime becomes less than
or equal to firing time. The firing of these events is affected by
the direction field.

Eqn. (2)

0081. The following code portion illustrates the FieldCue
node.

1) FieldCite: CueNode {
2) field Field cueValue NULL
3) field Field cueCut NULL

0082. This object sends cueValue as an event to cueCut
when FieldCue fires. FieldCue allows any field type to be set
and emitted. The cueCut value can be routed to a field of any
type. Undefined results can occur if the current type of
cueValue is not compatible with the type of the destination
field.

Aug. 13, 2009

I0083 Inline 2 of the code portion, the cue Value field is the
authored value that will be emitted when this node fires. Line
3 lists the cueCutfield, which sends an event with the value of
cueValue when this node fires.
I0084. The following code portion illustrates the TimeCue
node.

1) Timecue: CueNode {
2) field Time cueTime O

I0085. This object sends the current wall clock time as an
event to cueTime when TimeCue fires. Line 2 of the code
portion lists the cueTime field, which sends an event with the
current wall clock time when this node fires.
I0086. The scoring construct within the context of real
time scene composition enables the author to declaratively
describe temporal control over a wide range of presentation
and playback techniques, including: image flipbooks and
image composite animations (e.g., animated GIF); video and
audio clips and streams; geometric animation clips and
streams, such as joint transformations, geometry morphs, and
texture coordinates; animation of rendering parameters. Such
as lighting, fog, and transparency; modulation of parameters
for behaviors, simulations, or generative systems; and
dynamic control of asset loading, event muting, and logic
functions. For instance, the following example emits a string
to pre-load an image asset, then performs an animation using
that image, then runs a movie. The string in the following
example can also be run in reverse (i.e., first the movie plays
backwards then the animation plays backward and then the
image disappears).

1) Score {
2) timeBase DEFTB TimeBase {
3) cue
4) Fieldcue {
5) cueValue String “
6) cueout TOISURF.URL
7) direction -1

9) FieldCue {
10) cueValue String imagel.png
11) cutOut TOISURFurl
12) direction -10
13) }
14) IntervalCue{
15) delay 0.5
16) period 2.5 # 2.5 second animation
17) Fraction TO Plfraction
18) }
19) DEF MC MediaCue {
20) offset 2

22) Fieldcue {
23) cueValue String”
24) cueCut TOISURF.URL
25) direction -1
26) delay -0.5
27) }
28) Fieldcue {
29) cue Value String “imagel.png
30) cueCut TOISURF.URL
31) direction -1
32) delay -0.5
33) }
34)

US 2009/020 1290 A1

-continued

35) }
36) # Slide out image
37) DEFT Transform {
38) children Shape {
39) appearance Appearance {
40) texture Texture {
41) surface DEFISURF ImageSurface { }
42) }
43) }
44) geometry IndexedFaceSet {...}
45) }

47) DEF P1 PositionInterpolator
48) key...
49) keyValue.
50) value TOT. translation

52) # Movie
53) Shape {
54) appearance Appearance {
55) texture Texture {
56) surface MovieSurface {
57) url “myMovie.mpg
58) timeBase USE MC
59)
60)
61)
62)
63)

eometry IndexedFaceSet {...}

0087. In one embodiment, the Cue nodes in a Score fire
relative to the media time of the TimeBase, providing a com
mon reference and thereby resulting in an accurate relation
ship between timing of various media assets. In the code
snippet above, the FieldCue (line 9) fires as soon as the
TimeBase starts because this FieldCue has default offset and
delay fields thereby making the image appear. Lines 35-45 of
the code portion loads the image (200, FIG. 2A) on a surface.
The IntervalCue (line 13) then starts 0.5 seconds later and
runs for the next 2.5 seconds, increasing its fraction output
from 0 to 1. The firing of the IntervalCue starts the animation
(202, FIG. 2A) of the image. Lines 46-50 control the anima
tion. The MediaCue (line 18) starts 2 seconds after the Time
Base starts, or when the IntervalCue is 1.5 seconds into its
animation thereby starting the movie.
I0088 Lines 51-62 load the first frame (204, FIG. 2A) of
the movie on the surface. When this string is played back
wards, first the movie plays in reverse. Then 0.5 seconds later
the image appears, and 0.5 seconds after the image appears
the animation starts. Animation is played in reverse for 2.5
seconds, when it stops and 0.5 seconds after that the image
disappears. This example shows the ability of the Cues to be
offset from each other or from the TimeBase and shows that
a Subsequent Cue can start before the last one has finished.
0089. In one embodiment, the MediaCue gives a synchro
nization tool to the author. A MediaCue is a form of a Cue,
which behaves similar to a TimeBase. In fact, in some
instances, a MediaCue can be used where a TimeBase can, as
shown in the above example. However, since a MediaCue is
embedded in a timed sequence of events, an implementation
has enough information to request pre-loading on an asset.
0090 FIG. 2B illustrates synchronization of the media
sequence of FIG. 2A utilizing a preloading function. For
instance, in the above example, if the implementation knows
that a movie takes 0.5 seconds to pre load and play instantly,
after waiting (Block 210) 1.5 seconds after the start of the
TimeBase, in Block 215, a “get ready” signal is sent to the

Aug. 13, 2009

MovieSurface. Upon receipt of get ready signal, in Block 220
the movie is pre-loaded. This would provide the requested 0.5
seconds to pre-load.
0091. In Block 225, a request to start is received, and upon
receipt of the request to start, Block 230 starts the movie
instantly.
0092. The combination of the TimeBase and media
sequencing capabilities allowed in the system 11 makes it
possible to create presentations with complex timing. FIG. 3
shows time relationships of various components of the system
11. A viewer, upon selecting news presentation (360), sees a
screen wherein he can select a story (362). Upon the user
selecting story S3 from a choice of five stories S1, S2, S3, S4
and S5, a welcome screen with an announcer is displayed
(364). On the welcome screen the viewer can choose to switch
to another story (374) thereby discontinuing story S3. After
the welcome statement, the screen transitions to the site of the
story (366) and the selected story is played (368). At this
point, the viewer can go to the next story, the previous story,
rewind the present story or select to play an extended version
of story (370) S3 or jump to (372), for example, another story
S5. After the selected story is played the user can make the
next selection.
0093. The integration of surface model with rendering
production and texture consumption allows nested Scenes to
be rendered declaratively. Recomposition of subscenes ren
dered as images enables open-ended authoring. In particular,
the use of animated Sub-scenes, which are then image
blended into a larger video context, enables a more relevant
aesthetic for entertainment computer graphics. For example,
the image blending approach provides visual artists with
alternatives to the crude hard-edged clipping of previous gen
erations of windowing systems.
0094 FIG. 4 shows time relationships of various compo
nents of the system 11. Similar to FIG. 3, a viewer, upon
selecting news presentation (460), sees a screen wherein he
can select a story (462). The welcome screen with an
announcer is displayed (464). On the welcome screen the
viewer can choose to switch to another story (474) thereby
discontinuing story S3. After the welcome statement, the
screen transitions to the site of the story (466) and the selected
story is played (468). At this point, the viewer can go to the
next story, the previous story, rewind the present story or
select to play an extended version of story (470) S3 or jump to
(472), for example, another story S5. In one embodiment,
after the selected Story is played the user can make the next
selection. In another embodiment, the user can make the next
selection at any time.
0095. In addition, TimeBase also allows a “stopping time'
function that pauses the current actions to occur. By pausing
the current actions, the clock is temporarily stopped. In one
embodiment, pausing the current action allows debugging
operations to be performed. In another embodiment, pausing
the current actions allows the viewer to experience the current
actions at a slower pace.
0096. In one embodiment, a stop block (479) is utilized to
pause the display of various selections after the selection of
the news presentation (460) and prior to the display of the
screen to select the story (462). In another embodiment, a stop
block (489) is utilized to pause the display of a user's choice
prior to a selection being made. For example, the stop block
(489) allows the possible selections to be presented on the
welcome screen (464) and prevents the selection of the story
(474) or the story (466). In another embodiment, a stop block

US 2009/020 1290 A1

(487) is utilized to pause the display content (472) after the
choice for the content (472) has been selected.
0097. In one embodiment, the stop blocks (479, 489, and
487) pauses the action for a predetermined amount of time. In
another embodiment, the stop blocks (479, 489, and 487)
pauses the action until additional input is received to resume
the action.
0098 FIG. 5 illustrates exemplary embodiments of play
ing current content and pre-loading based on the system 11. In
one embodiment, the current content 510,530, and 550 con
tain identical content. In one embodiment, the current content
510,530, and 550 are initiated and begin playing at the same
time T0.
0099 For example, the current content 510 is shown to be
arbitrarily played at a rate of 25 frames per second. In this
embodiment, the pre-load instructions 515 are transmitted at
time T2. In one embodiment, the pre-load instructions 515 are
transmitted 1.5 seconds prior to the completion of playing the
current content 510. The pre-load instructions 515 instruct the
content that follows the current content 510 to be loaded.
0100. In one embodiment, the current content 530 is
shown to be played at a rate of 30 frames per second which is
faster than the play rate of the current content 510. In this
embodiment, the preload instructions 535 are transmitted at
time T1. In one embodiment, the preload instructions 535 are
transmitted 1.5 seconds prior to the completion of playing the
current content 530. The pre-load instructions 535 instruct the
content that follows the current content 530 to be loaded.
0101. In one embodiment, the current content 550 is
shown to be played with an interruption or pause after the
initiation of the current content 550 at time T0. In this
embodiment, the pre-load instructions 555 are transmitted at
time T3. In one embodiment, the pre-load instructions 555 are
transmitted 1.5 seconds prior to the completion of the current
content 550. In one embodiment, the current content 550 is
shown with the same play rate as the current content 510. The
preload instructions 555 instruct the content that follows the
current content 550 to be loaded.
0102 Although the play rates are identified in one
embodiment for the current content 510, 530, and 550, any
play rate may be utilized.
0103 For this embodiment, the actual time that the pre
load instructions 515,535, and 555 are transmitted depend on
the play rate of the current content 510, 530, and 550 and
depend on any pauses or interruptions when playing the cur
rent content 510, 530, and 550. Further, the exact location
within the current content 510,530, and 550 when the corre

Aug. 13, 2009

sponding pre-load instructions are transmitted depends on the
play rate of each current content and their relationship to each
other in time.
0104 For example, although the transmission of the pre
load instructions 555 at time T3 occurs later than the trans
mission of the pre-load instructions 515 at time T2, the loca
tion of the current content 510 and 550 when the
corresponding pre-load instructions 515 and 555 are trans
mitted are the same, because the play rate of the current
content 510 and 550 are the same. Further, the pause within
the current content 550 shifts the transmission of the pre-load
instructions 555 by a predetermined time (T3-T2) compared
to when the preload instructions 515 are transmitted. In one
embodiment, the pause or interruption in the playing of the
current content 550 occurs for the predetermined time (T3
T2).
0105. In another example, the pre-load instructions 535
are transmitted at an earlier location of the current content 530
compared to the location of the current content 510 when the
pre-load instructions 515 are transmitted. This occurs
because the play rate of the current content 530 is faster than
the current content 510, and their presented content slip into
alignment as they play back.
0106 The foregoing descriptions of specific embodiments
of the invention have been presented for purposes of illustra
tion and description. The invention may be applied to a vari
ety of other applications.
0107 They are not intended to be exhaustive or to limit the
invention to the precise embodiments disclosed, and naturally
many modifications and variations are possible in light of the
above teaching. The embodiments were chosen and described
in order to explain the principles of the invention and its
practical application, to thereby enable others skilled in the
art to best utilize the invention and various embodiments with
various modifications as are Suited to the particular use con
templated. It is intended that the scope of the invention be
defined by the Claims appended hereto and their equivalents.
What is claimed is:
1. A method comprising:
declaratively playing a first media sequence; and
declaratively initiating a second media sequence at a pre

determined time prior to an end point of the first media
sequence wherein the predetermined time is indepen
dent from an amount of time utilized to play the first
media sequence.

2-23. (canceled)

