US007444321B2

az United States Patent (10) Patent No.: US 7,444,321 B2
Cseri et al. 45) Date of Patent: Oct. 28, 2008
(54) TRANSFORMING QUERY RESULTS INTO 6,366,934 Bl 4/2002 Chengetal. 715/513
HIERARCHICAL INFORMATION 6,480,860 Bl 11/2002 Monday
6,484,160 B1* 11/2002 Richardetal. 707/2
(75) Inventors: Istvan Cseri, Redmond, WA (US); 6,591,260 Bl 7/2003 Schwarzhoff et al.
Goetz Graefe, Bellevue, WA (US); 6,604,100 B1* 82003 Fernandez etal. 707/3
Frank Mantek, Wermelskirchen (DE);
Michael Mee, San Diego, CA (US); OTHER PUBLICATIONS
Michael Rys, Issaquah, WA (US);
Gideon Schaller, Bellevue, WA (US); De Sousa, A., et al. “Mapping Rules to Convert from ODL to XML-
Oliver Seeliger, Redmond, WA (US) SCHEMA?”, Proceedings 22nd International Conference of the Chil-
ean Computer Science Society, 2002, 133-141.
(73) Assignee: Microsoft Corporation, Redmond, WA Deutsch, A., “A Query Language for XML”, Computer Networks,
(US) 1999, 31(11-16), 1155-1169.
Du, W.,, “XML Structures for Relational Data”, Proceedings of the
(*) Notice: Subject to any disclaimer, the term of this Second International Conference on Web Information Systems Engi-
patent is extended or adjusted under 35 neering, 2002, 1, 151-160.
U.S.C. 154(b) by 450 days. (Continued)
(21) Appl. No.: 10/765,348 Primary Examiner—Yicun Wu
(74) Attorney, Agent, or Firm—Amin, Turocy & Calvin, LLP
(22) Filed: Jan. 27, 2004
(57) ABSTRACT
(65) Prior Publication Data
US 2005/0004896 A1l Jan. 6, 2005 A computerized system and method for transforming the
results of a query into a hierarchical information stream, such
Related U.S. Application Data as an eXtensible Markup Language (XML) data stream is
(62) Division of application No. 09/528,078, filed on Mar disclosed. A database server receives a query and generates a
17. 2000. now Pat. No. 6 768 164 T ’ rowset. A rowset processor, using the mode specified in the
’ ’ T T query, processes the rowset and query to generate the XML
(51) Int.Cl data stream. For the “autol” mode, the rowset processor
G0;$ F '17 /30 (2006.01) transforms a rowset into an XML data stream using primary-
(52) US.Cl ’ 707/3: 707/4- 707/5 foreign key information specified in the query to determine
53 F'- l‘d fCl """ ﬁ """ S """" h - ’ 707’/1 10 nesting. For the “auto2” mode, the rowset processor trans-
(58) Fieldo 35;2)77?3(())111 Ozalrc by 00206 7 15/501 ;) 3’ forms a rowset into an XML data stream using table ordering
S lication fil f7 o | B il hi ’ information included in the query to determine nesting. For
ee application file for complete search history. the “explicit” mode, the rowset processor transforms a rowset
(56) References Cited into an XML data stream using the explicit organizational

U.S. PATENT DOCUMENTS

information specified in the query.

6,356,920 Bl 3/2002 Vandersluis 715/501.1 11 Claims, 5 Drawing Sheets
,/200
,:203 205 ’1209
< 207
CLIENT ROWSET

QUERY PARSER QUERY o Rggm! ROWSET 10

HIERARCHY

PROCESSOR

MODE INFORMATION

XML/HIERARCHICAL ROWSET

US 7,444,321 B2
Page 2

OTHER PUBLICATIONS

Feng, D., “Research and Implementation of Mapping Relational
Database to Extensible Markup Language Document”, Journal of
Xi’an Jiaotong University, Oct. 2002, 36(10), 1066-1069, 1074.
Jacinto, M. H., et al., “BiDirectional Conversion between XML
Documents and Relational Databases”, 7th International Conference
on Computer Supported Cooperative Work in Design, 2002, 437-
443.

Lee, D., et al., “Constraints-Preserving Inlining Algorithm for Map-
ping XML DTD to Relational Schema”, Data & Knowledge Engi-
neering, 2001, 39(1), 3-25.

Rys, M., “Bringing the Internet to you Database: Using SQL server
2000 and XML to Build Loosely-Coupled Systems”, Conference
Proceedings, Vision for a New Millennium, 2000, 109-122.
Wenwu, L., et al., “Lossless Mapping from Semi-Structured Data to
Structured Data”, Journal of Southeast university (English Edition),
Mar. 2002, 18(1), 46-53.

“XML-QL: A Query Language for XML”, http://www.w3.0org/TR/
1998/NOTE-xml-q1-19980819, Submission to the World Wide Web
Consortium, Aug. 19, 1998, 1-19.

Wadler, P., “XML”, http://www.cs.bell-labs.com/who/wadler/topics/
xml.html, Data Model and Algebra for XML Query, Nov. 1999, 1-3.
Oracle8™ Concepts, Release 8.0, Dec. 1997.

Abiteboul, S. et al., “The Lorel Query Language for Semistructured
Data”, International Journal of Digital Libraries, 1997, 1(1), 68-88.
Deutsch, A. et al., “Storing Semistructured Data with STORED”,
SIGMOD, 1999, 431-442.

Shanmugasundaram, J. et al., “Relational Databases for Querying
XML Documents: Limitations and Opportunities”, VLDB, 1999,
302-314.

Shanmugasundaram, J. et al., “A General Technique for Querying
XML Documents using a Relational Database System”, VLDB, 13

pages.

* cited by examiner

US 7,444,321 B2

Sheet 1 of 5

Oct. 28, 2008

U.S. Patent

0S SHYH90Yd | o | @nbig
g NOLLYONddV STndon
oy . VIVO | AV4904d | SAVMO0Nd | NRISAS
— ¥ WV490Ud | H3HIO | NOLVOMddY | ONLLVA3AO
MANNOI .. (=" \e ; ; ; -
10M3Y ——— @ 88 Le € ¢of -°
T ©
YHOMIN VAW 30M o e e \ I
r—-—-=-===°—°7 i e .rzl - = l\l\ lllllllllllll 1
| o= = @™ (2w |
IS " 3ovRaIN | [3ovaain | | 3ovaine | [3ovaaiN {1 _Nv4304d "
$: L] 3OVREIN | 8¢ _
L OMN 1N0d INN0 3NN0 INN0 .
MIOMEIN V3RV VD01, w3s L0 | | S0 ou3NowM | | SIa QuvH sTingon | |
T T 3) Y NVHO0Ud !
' €5 4 9% ¥S 4 eg ﬁ z€ ﬁ ;&1 a0 _
| J "
: o SN8 MAISAS 1 smvaooud) |
oz~ o¢ | NOUVONddY| | !
" H3LdVOV i W3ISAS !
030IA 1
! : ONISSIO0Nd g NIV ||
I L . it _
[} % |
s0ig
e s ek
| 2z | vz __(now)|
) 3 ANON3N N3LSAS !
YA 4] |

US 7,444,321 B2

Sheet 2 of 5

Oct. 28, 2008

U.S. Patent

Z 94nbi4

J0SS3204d
AHOYVIH

13SMOY

13SMOY TYIIHONVYIIH/TNX

NOLVNSO0iNI 300N

J0SS300Ud [,

60¢

002

13SMOY

A0 P Raad BT

Vad

LOT 07

IN3MD

Y174

US 7,444,321 B2

Sheet 3 of 5

Oct. 28, 2008

U.S. Patent

¢ a4nbi4

Jigvl 33341 K1}
TVSH3AINN J31S3N Q4LS3N
..mn o_...n mmn
119"ndX3 ¢ olnv I olnv

hmn mmn nmn
JOSS3I00dd 1ISMON
602

U.S. Patent Oct. 28, 2008 Sheet 4 of 5 US 7,444,321 B2

CUSTOMER
ORDER

ORDER DETAIL EMPLOYEE
Figure 4A

<Customer name="Smith">
<Order oids="1397">
<Orderdetail quantity="10" product="ABC” price="100"/>
<Orderdetail quontity="5" product="DEF" price="50"/>
<Orderdetail quantity="2" product="GHI"/>
<Employee id="987"/>
</Order>
</Customer>

Figure 4B

US 7,444,321 B2

Sheet 5 of 5

Oct. 28, 2008

U.S. Patent

G ainbiy4
S0S £0S
P/ 2
TINN 19 L | s
TINN 19 z | ¥
TINN 19 z | ¢
TINN TN~ £9661/02/1 TIN 19 L |z
TINN TINN TINN TINN TN | 1
JOIPIPYCIIOIAQUOPIQ | PIPICIIIDIBQIAPIQ | SIDPIZisaPIO | PHZHOPIO [SWDUj|BWOISNY | PojLHAWOISNY | INFUV | VL
A\ N d V4
£0S
Lig

US 7,444,321 B2

1

TRANSFORMING QUERY RESULTS INTO
HIERARCHICAL INFORMATION

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application is a divisional of U.S. application
Ser. No. 09/528,078 filed Mar. 17, 2000 now U.S. Pat. No.
6,708,164. The disclosure of the parent application is incor-
porated herein by reference.

FIELD OF THE INVENTION

This invention relates to data processing, and more particu-
larly to the use of hierarchical information in the context of
transformational systems.

BACKGROUND OF THE INVENTION

Two trends in networked computing are the increasing use
hierarchical information systems, such as the extensible
Markup Language (XML) for information exchange among
networked applications and the continuing and increasing use
of relational database systems for managing businesses.
These trends are likely to continue and accelerate in the
future.

XML is widely used for exchanging hierarchical informa-
tion in networked systems, such as local area networks, wide
area networks, and the internet. XML has several character-
istics that make it an attractive language for exchanging infor-
mation among networked applications. First, XML is a text
based language, so XML data streams are easily transported
across systems with incompatible binary formats. Second,
since information represented in XML is organized hierarchi-
cally, it allows a user to easily understand the relationships
among the different types of information contained in an
XML data stream.

Relational database systems provide access to a significant
percentage of all the information stored in modern business
information processing systems. Relational database systems
also allow users of the data to easily access and process the
information stored in the systems from both local and remote
locations. Unfortunately, database queries executed against a
relational database return information in the form of rowsets
encoded either in binary or in nonstandard character format.

For these and other reasons there is a need for the present
invention.

SUMMARY OF THE INVENTION

The above-mentioned shortcomings, disadvantages and
problems are addressed by the present invention, which will
be understood by reading and studying the following speci-
fication.

A database, such as a relational database, typically pro-
cesses a query and returns rowsets to the process initiating the
query. The present invention provides for the transformation
of the rowsets into an XML data stream.

A request for an XML data stream is included in the query.
The request specifies a mode for organizing the information
returned in the XML data stream. In a first example mode
primary-foreign key information is utilized in the transforma-
tion from the rowset to XML. For this mode, the returned
rowsets are transformed into a graph. The graph is trans-
formed into a tree, which defines the organization of the
information included in the XML data stream, by using the
primary-foreign key information. In a second example mode,

20

25

30

35

40

45

50

55

60

65

2

the order of the tables in the query defines the organization of
the XML data stream. In a third example mode, an explicit
definition of the organization of the rowset stream is con-
tained in the query. The definition includes nesting informa-
tion. The rowsets returned from the query are in a universal
table format which includes the aforementioned nesting
information. The universal table is transformed into an XML
data stream. The present invention is not limited to a rowset
stream. A buffered rowset may also be used in connection
with the present invention. In addition, the listed example
modes are not intended to be an exhaustive list of modes in
which the present invention may be practiced.

The invention includes systems, methods, computers, and
computer-readable media of varying scope. Besides the
embodiments, advantages and aspects of the invention
described here, the invention also includes other embodi-
ments, advantage and aspects, as will become apparent by
reading and studying the drawings and the following descrip-
tion.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates example embodiments of a hardware and
operating environment in conjunction with which embodi-
ments of the invention may be practiced;

FIG. 2 is a block diagram of example embodiments of a
computerized system for transforming query results into an
XML data stream;

FIG. 3 is a block diagram of example embodiments of a
rowset processor shown in FIG. 2;

FIG. 4A is an illustration of a nested tree shown in FIG. 3;

FIG. 4B is an illustration of an XML representation of the
nested tree shown in FIG. 4A; and

FIG. 5 is an example diagram of a universal table of FIG. 3.

DETAILED DESCRIPTION OF ILLUSTRATIVE
EMBODIMENTS

In the following detailed description of the preferred
embodiments, reference is made to the accompanying draw-
ings that form a part hereof, and in which are shown by way
of illustration specific embodiments in which the invention
may be practiced. It is understood that other embodiments
may be utilized and structural changes may be made without
departing from the scope of the present invention.

Hardware Operating Environment

Referring to FIG. 1, a diagram of the hardware and oper-
ating environment in conjunction with which embodiments
of'the invention may be practiced is shown. The description of
FIG. 1 is intended to provide a brief, general description of
suitable computer hardware and a suitable computing envi-
ronment in conjunction with which the invention may be
implemented. Although not required, the invention is
described in the general context of computer-executable
instructions, such as program modules, being executed by a
computer, such as a personal computer. Generally, program
modules include routines, programs, objects, components,
data structures, etc. that perform particular tasks or imple-
ment particular abstract data types.

Moreover, those skilled in the art will appreciate that the
invention may be practiced with other computer system con-
figurations, including hand-held devices, multiprocessor sys-
tems, microprocessor-based or programmable consumer
electronics, network PCS, minicomputers, mainframe com-
puters, and the like. The invention may also be practiced in

US 7,444,321 B2

3

distributed computing environments where tasks are per-
formed by remote processing devices that are linked through
a communications network. In a distributed computing envi-
ronment, program modules may be located in both local and
remote memory storage devices.

The exemplary hardware and operating environment of
FIG. 1 for implementing the invention includes a general
purpose computing device in the form of a computer 20,
including a processing unit 21, a system memory 22, and a
system bus 23 that operatively couples various system com-
ponents, including the system memory 22, to the processing
unit 21. There may be only one or there may be more than one
processing unit 21, such that the processor of computer 20
comprises a single central-processing unit (CPU), or a plu-
rality of processing units, commonly referred to as a parallel
processing environment. The computer 20 may be a conven-
tional computer, a distributed computer, or any other type of
computer; the invention is not so limited.

The system bus 23 may be any of several types of bus
structures including a memory bus or memory controller, a
peripheral bus, and a local bus using any of a variety of bus
architectures. The system memory may also be referred to as
simply the memory, and includes read only memory (ROM)
24 and random access memory (RAM) 25. A basic input/
output system (BIOS) 26, containing the basic routines that
help to transfer information between elements within the
computer 20, such as during start-up, is stored in ROM 24.
The computer 20 further includes a hard disk drive 27 for
reading from and writing to a hard disk (not shown), a mag-
netic disk drive 28 for reading from or writing to a removable
magnetic disk 29, and an optical disk drive 30 for reading
from or writing to a removable optical disk 31 such as a CD
ROM or other optical media.

The hard disk drive 27, magnetic disk drive 28, and optical
disk drive 30 are connected to the system bus 23 by a hard disk
drive interface 32, a magnetic disk drive interface 33, and an
optical disk drive interface 34, respectively. The drives and
their associated computer-readable media provide nonvola-
tile storage of computer-readable instructions, data struc-
tures, program modules and other data for the computer 20. It
should be appreciated by those skilled in the art that any type
of computer-readable media which can store data that is
accessible by a computer, such as magnetic cassettes, flash
memory cards, digital video disks, Bernoulli cartridges, ran-
dom access memories (RAMs), read only memories (ROMs),
and the like, may be used in the exemplary operating envi-
ronment.

A number of program modules may be stored or encoded in
a machine readable medium such as the hard disk, magnetic
disk 29, optical disk 31, ROM 24, RAM 25, or an electrical
signal such as an electronic data stream through a communi-
cations channel, including an operating system 35, one or
more application programs 36, other program modules 37,
and program data 38. As described below in more detail,
operating system 35 may allocate memory such as RAM 25
into kernel-mode memory or user-mode memory. A user may
enter commands and information into the personal computer
20 through input devices such as a keyboard 40 and pointing
device 42. Other input devices (not shown) may include a
microphone, joystick, game pad, satellite dish, scanner, or the
like. These and other input devices are often connected to the
processing unit 21 through a serial port interface 46 that is
coupled to the system bus, but may be connected by other
interfaces, such as a parallel port, game port, or a universal
serial bus (USB). A monitor 47 or other type of display device
is also connected to the system bus 23 via an interface, such as

20

25

30

35

40

45

50

55

60

65

4

a video adapter 48. In addition to the monitor, computers
typically include other peripheral output devices (not shown),
such as speakers and printers.

The computer 20 may operate in a networked environment
using logical connections to one or more remote computers,
such as remote computer 49. These logical connections are
achieved by a communications device coupled to or a part of
the computer 20; the invention is not limited to a particular
type of communications device. The remote computer 49
may be another computer, a server, a router, a network PC, a
client, a peer device or other common network node, and
typically includes many or all of the elements described
above relative to the computer 20, although only a memory
storage device 50 has been illustrated in FIG. 1. The logical
connections depicted in FIG. 1 include a local-area network
(LAN) 51 and a wide-area network (WAN) 52. Such network-
ing environments are commonplace in office networks, enter-
prise-wide computer networks, intranets and the Internet,
which are all types of networks.

When used in a LAN-networking environment, the com-
puter 20 is connected to the local network 51 through a
network interface or adapter 53, which is one type of com-
munications device. When used in a WAN-networking envi-
ronment, the computer 20 typically includes a modem 54, a
type of communications device, or any other type of commu-
nications device for establishing communications over the
wide area network 52, such as the Internet. The modem 54,
which may be internal or external, is connected to the system
bus 23 via the serial port interface 46. In a networked envi-
ronment, program modules depicted relative to the personal
computer 20, or portions thereof, may be stored in the remote
memory storage device. It is appreciated that the network
connections shown are exemplary and other means of and
communications devices for establishing a communications
link between the computers may be used.

The hardware and operating environment in conjunction
with which embodiments of the invention may be practiced
has been described. The computer in conjunction with which
embodiments of the invention may be practiced may be a
conventional computer, a distributed computer, an embedded
computer or any other type of computer; the invention is not
so limited. Such a computer typically includes one or more
processing units as its processor, and a computer-readable
medium such as a memory. The computer may also include a
communications device such as a network adapter or a
modem, so that it is able to communicatively couple other
computers.

Example Embodiments of the Invention
Overview

The present invention includes embodiments of a comput-
erized system and methods for processing a row producing
query, such as SQL, and returning hierarchical data, such as
an XML data stream. The SQL query provides several select-
able modes of operation. In the “auto1” mode, elements of the
relational schema, such as primary-foreign key information,
are utilized to generate a hierarchical mapping of the rowsets
for use in defining the organization of the information in the
XML data stream. In the “auto2” mode, the ordering infor-
mation of the tables as used in the query is utilized to generate
a mapping of the rowsets into the XML data stream. Finally,
in the “explicit” mode, information in the query explicitly
defines the organization of the information in the SQL query.
The syntax of the information in the SQL query that define an
“explicit” mode query or the particular keywords selected to

US 7,444,321 B2

5

define the method of generating a rowset in the explicit mode
are only design choices and may be expressed in a number of
ways without limiting the present invention.

FIG. 2 is a block diagram of example embodiments of
computerized system 200 for transforming query results into
an XML data stream. An XML data stream is an unbuffered
data stream. Although this example shows an unbuffered data
stream, the present invention is not limited to use in connec-
tion with an unbuffered data stream. A buffered datastream
may also be used in connection with the present invention. In
one embodiment, computerized system 200 comprises client
203, parser 205, query processor 207, and rowset processor
209. For client 203 executing as a process on remote com-
puter 49 as shown in FIG. 1 and for parser 205, query pro-
cessor 207, and rowset processor 209 executing as processes
on computer system 20 also as shown in FIG. 1, client 203
transmits a query to parser 205. Parser 205 strips mode infor-
mation from the query and sends the mode information to
rowset processor 209. Parser 205 also sends the query to
query processor 207. Query processor 207 generates a rowset
and sends the rowset to rowset processor 209. Rowset pro-
cessor 209 processes the rowset received from query proces-
sor 207 and the mode information received from parser 205 to
generate an XML datastream. The XML data stream is
returned to client 203. In an alternate embodiment, client 203,
parser 205, query processor 207, and rowset processor 209 all
execute on the same computer system. In another alternate
embodiment, parser 205, query processor 207, and rowset
processor 209 are combined into a single software system. It
is important to note that parser 205, query processor 207, and
rowset processor 209 may operate on the same or a different
computer. Alternatively parser 205 and query processor 207
may operate on a database server. Each of the operation
modes of rowset processor 207 are described in greater detail
below.

A particular XML mode of operation is communicated to
database server 205 by defining the mode of operation in a
SELECT statement. For example, the syntax for a SELECT
statement requesting that the results of the query be returned
as XML information under the “autol” mode may be formed
as follows:

SELECT ...
FROM ...
WHERE ...

AND ...

ORDER BY ...
FOR XML autol;

The syntax of the SELECT statement shown above is only
one example of a syntax suitable for use in connection with
the present invention. Any syntax that provides for specitying
that XML information is to be returned and that provides for
specifying a mode of operation is also suitable for use in
connection with the present invention. In addition, the present
invention is not limited to a syntax incorporating only flat
queries. Nested queries, which are common in SQL state-
ments, are also suitable for use in connection with the present
invention.

The “auto2” mode is selected by substituting “auto2” for
“auto1” in the SELECT statement shown above. Similarly,
the “explicit” mode is requested by substituting “explicit for
“autol” in the SELECT statement shown above.

After a mode is set, the result of an SQL query is trans-
formed into an XML data stream according to mode specific

5

20

25

30

35

40

45

50

55

60

65

6

rules. If a schema is requested, it can be prepended to the
returned XML data as inline schema.

The scope of the mode specification for each of the
described modes, in one embodiment, is limited in several
ways and only affects the final result. First, the selected mode
is in effect only for the execution of the statement in which it
is specified. Second the selected mode does not affect the
form of the results of subqueries or user defined function
calls.

For any SQL text column (type char, nchar, varchar, nvar-
char, text, ntext) that is mapped to an attribute (or element in
the case of the element-centric option), the attribute contains
the entitized text. If the text column is a binary data column,
the default is that the attribute (or element) contains a URI
single object access query that allows the retrieval of the data.
Inlined base 64 encoding is returned in any mode, if the option
BINARY base64 is specified.

In summary, to use one of the modes described above in a
client program, in one embodiment, a “FOR XML” clause is
included in a SELECT statement. Specifying “FOR XML”
results in an XML data stream being returned to the client in
response to the SELECT statement. A mode designation in
the “FOR XML statement further defines the rules by which
the results of the SQL query are converted to an XML data
stream. After the SELECT statement is executed, streamed
XML is returned to the client. Schema for the returned XML
may also be requested and prepended to the streamed XML
data.

Embodiments of the modes identified as “autol” 303,
“auto2” 305, and “explicit” 307 are shown in FIG. 3 as sub-
systems in rowset processor 209. “Auto1” 303 and “auto2”
305 include nested trees 309 and 310, respectively. Nested
trees 309 and 310 are intermediate structures created during
the generation of an XML data stream in the “auto1” 303 and
“auto2” 305 modes. Universal table 311 is an intermediate
structure created during the generation of an XML data
stream in the “explicit” 307 mode. Universal table 311 is
described in more detail below. Rowset processor 207 is not
limited to a particular combination of modes. One or more of
the listed modes may be included in rowset processor 207. A
more detailed description of each mode is provided below.

Autol Mode

In one embodiment of the “auto1” 303 mode, each rowset
returned from a query is transformed into a nested XML tree
309, which defines an XML data stream.

The transformation maps table and column information
into the XML data stream. Each table listed in the SELECT
clause that has at least one column in the query result is
represented as an XML element. The table name (or alias if
provided) maps to the XML element name. The column name
(or alias if provided) maps to an attribute name or non-com-
plex subelement. The default “autol” 303 mode in one
embodiment maps table columns to XML attributes.

The transformation also determines the correct organiza-
tion or nesting of information included in the XML data
stream. Each column in the query result or rowset is associ-
ated with a table. This provides a collection of tables partici-
pating in the query. A primary-foreign key graph is generated
from the primary-foreign key relationships identified in the
collection of tables. The organization of the graph is deter-
mined by examining the system catalog information.

FIG. 4A is an illustration of an example embodiment of a
nested tree associated with the “auto1” 303 mode shown in
FIG. 3. FIG. 4B is an illustration of an XML data stream
derived from the nested tree shown in FIG. 4A. The indenta-

US 7,444,321 B2

7

tions in the illustrated XML data stream indicate the nesting
of the data stream elements. As can be seen by comparing
FIG. 4A with FIG. 4B, the nesting of the XML data stream
matches the nesting defined by the tree shown in FIG. 4A.

Some attributes and columns are considered separately
from the tables for the purposes of determining the correct
nesting. If an attribute of a table reference appears after the
first occurrence of the table reference, then the attribute is
added to the nesting level associated with the first occurrence
of the table reference. If a column in the selected rowset
cannot be associated with a table (e.g. it is an aggregation or
a computed column), the column is added to the deepest

8

top element, etc. If an attribute for a table reference appears
later, it is added to the level of its table reference instead of
opening a new level. Ifa column in the selected rowset cannot
be associated with a table (e.g. it is an aggregation or a
computed column (even if based on the same table)), the
column is added to the deepest nesting level in place when the
column is encountered in the list. If such a column appears as
the first element, it is added to the top element. If the user
specifies * as the sole entry in the selection clause, the nesting
is determined as described above, based on the order in which
the rows are returned by the query engine.

For example:

SELECT C.customerid, ‘foo” as bar, O.orderid, C.contactname as name, O.orderdate as date
FROM Customers C left outer join Orders O on C. customerid = O.customerid
ORDER BY C.customerid

FOR XML auto2

nesting level in place at the time the column is encountered. If
such a column appears as the first element, it is added to the
top element.

Ensuring the correct nesting for a many-to-many, a many-
to-one, or mutiple one-to-many relationships is achieved by
arranging the order of the tables included in the SELECT
statement to generate the desired result. Alternatively, if the
first table is taken as a container, then all other relationships
are disregarded. In a second alternative, if a relational schema
provides information about cascading delete constraints, then
the cascading delete constraints is taken to indicate nesting. In
a relational system, a cascading delete constraint permits
specifying that children of a parent are automatically deleted,
if the parent is deleted.

In one embodiment, an ELEMENTS option is provided for
use with the “autol” 303 mode and the alternative modes
described below. Selecting the ELEMENTS option causes
table columns to be returned as non-complex subelements.

Auto2 Mode

In one embodiment, the operation of the “auto2” 305 mode
is similar to the operation of the “auto1” 303 mode. However,
one difference between the operation of the two modes is that
the “auto2” 305 mode does not rely on primary-foreign key
relationships to determine the correct nesting for the XML
data stream. The nesting for the XML data stream in the
“auto2” 305 mode is determined by the left-to-right ordering
of the tables listed in the SELECT clause of the query. The
first table listed maps to the top level element, and each table
listed after the first table is nested within the preceding ele-
ment. For example, for a three table list, the first table maps to
the top level element. The second table listed is the second
element and is nested within the top level element. And the
third table listed is the third element and is nested within the
second element.

Each table included in a query and that has at least one
column in the query result is represented as an XML element.
A table name (or alias if provided) maps to the XML element
name. A column name (or alias if provided) maps to an
attribute name or non-complex subelement name, if the ELE-
MENTS option is specified. The “auto2” 305 mode, in one
embodiment, uses the first appearance, when reading from
left to right, of a table in the select clause to determine the
nesting level for the table. The left-outermost table is the top
element, the second left-outermost table is nested within the

25

30

35

40

45

50

55

60

65

Results in the following XML data:

<C customerid="... ’bar="foo” name="...”>
<O orderid="...” date="...”"/>
</C>

The “auto2” 305 mode can also express nesting against the
1:n direction (e.g. to deal with m:n relationships such as
Address<->Customer). A user can specify whether to group
customers according to addresses or to group addresses
according to customers. This is accomplished by positioning
the tables in the select list accordingly.

The heuristics can use primary key-foreign key informa-
tion, if available, to determine when a new element is gener-
ated. If the executed query plan does not provide the desired
ordering of the rows, then in order to get the desired ordering,
the use of order by clauses is recommended.

The “auto2” 305 mode, in one embodiment, is also capable
of supporting several features related to names, views and
subselects, and schemas. Names are changed by renaming the
columns and the tables in the SQL statement. Some names
may need to be translated into valid XML names. Views and
subselects, in a FROM clause, are treated like tables. A set
operation query only returns a schema based on the first
selection of the union.

Explicit Mode

The “explicit” 307 mode embodiment permits a developer
to process a specific rowset format that is then transformed to
hierarchical data, such as XML. In the “explicit” 307 mode,
information defining the nesting of the requested data and
information defining the naming of the requested columns is
explicitly included in the query.

In the “explicit” 307 mode example embodiment, a query
is constructed to generate a universal table. A universal table
includes meta data columns for element tags and meta data
columns for parent tags. A universal table also encodes the
XML generic identifiers and attribute names in the table
column names. Once the element tags and the parent tags are
added to a universal table, the universal table fully describes
an XML data stream. The present invention is not limited to
use with a particular universal table format. Hierarchical
results, such as XML data can be produced from a number of

US 7,444,321 B2

9

universal table formats. F1G. 5 shows a tagged universal table
having a simple Customer, Order, OrderDetail nesting.

A universal table is generated, in one embodiment, by
applying a union over all selections that retrieve the desired
element information. Each selection, in addition to the
requested data columns, includes a tag number (>0) in a
column named Tag and a parent tag number (>=0 or NULL)
in a column named Parent. A parent tag number of zero or null
indicates that a row is located directly under the top level
element. In one embodiment, the tag column is the first col-
umn in the universal table and the parent column is the second
column in the universal table. Each tag having a specific
number is associated with only one parent number. To allow
streaming of the result through an XML translator, the uni-
versal table is ordered by the element identifiers.

Referring to FIG. 5, the data in the illustrated embodiment
of'universal table 311 is vertically partitioned into groups that
become XML elements in the result returned from the query.
In this example, the results are the data shown in dashed
boxes. Columns 503 and 505 contain the Tag and Parent
numbers used for determining the nesting of the XML data
stream. Column 507 contains data for inclusion in the XML
data stream.

In one embodiment, the generic identifiers (GI), tag num-
bers, attribute names, and directives are encoded in the col-
umn names as GI!'TagNumber!AttributeName! Directive. A
generic identifier provides the resulting element’s generic
identifier, which for example universal table 311 shown in
FIG. 5 is Customer and Order. The generic identifier may also
be empty. An empty generic identifier produces no mark-up
tags. TagNumber in combination with the Tag column and the
Parent column defines the nesting of the resulting XML data.
The Tag column provides the currently “active” tag number
for each row, and the Parent column provides the tag number
of'the parent element for the row. AttributeName provides the
name of the XML attribute (if directive is not set) or the name
of'the contained element (if directive is either xml, element or
xmltext). In the later case, AttributeName can be empty. In the
case where AttributeName is empty, the values contained in
the column are directly contained by the element with the
specified generic identifier. Specifying a directive is optional
and is used to encode type information, such as ID/IDREF(S),
by using the keywords id, idref, and idrefs, respectively, and
to indicate how text data is mapped to XML using the key-
words hide, element, xml, xmltext, and cdata.

Each of the keywords hide, element, xml, xmltext, and
cdata provide alternate embodiments for including text and
XML data in the XML data stream. The hide keyword blocks
display or transmission of the associated attribute. The ele-
ment keyword triggers the generation of a contained element
with the specified name (or contain directly if no AttributeN-
ame is specified). In addition, the contained data is entitized.
Entitization in XML uses specific markup to encode the stan-
dard markup characters such as <,>,&.',", so that the parser
does not try to interpret them as markup. The xml keyword
triggers the generation of a contained element with the speci-
fied name (or contain directly if no AttributeName is speci-
fied). However, unlike the element keyword, the contained
data is not entitized. The xmltext keyword assumes the wrap-
ping of column content by a single tag that is integrated with
the rest of the document. If an AttributeName is specified, the
name of the tag is replaced by the specified name, otherwise,
the attributes are appended to the current list of attributes of
the enclosing element and the content is placed without entiti-
zation at the beginning of the containment. If an attribute
appears in the xmltext element that conflicts with an attribute
that is retrieved on the same element level, the attribute in the

20

25

30

35

40

45

50

55

60

65

10

xmltext is ignored and overwritten. The cdata keyword trig-
gers containment of data by wrapping it with a CDATA sec-
tion. The content is not entitized. If no directive is provided,
an attribute is specified. If no attribute name is specified and
no directive is specified, an element directive is implied and
the data is contained. Directives influence the generation of
schemas in several ways. First, during the generation of sche-
mas, the data types are inferred from the table attribute
datatypes unless a datatype directive such as id, idref, idrefs,
nmtoken, or nmtokens is specified. Second, none of the xml
or xmltext subelements or attributes are added to the schema,
however they imply an open content model. Third, the speci-
fied directives are also used to generate nesting information
for the schema. Thus, while the embodiments of the invention
have been described with specific focus on their embodiment
in a software implementation, the invention as described
above is not limited to software embodiments. For example,
the invention may be implemented in whole or in part in
hardware, firmware, software, or any combination thereof.
The software of the invention may be embodied in various
forms such as a computer program encoded in a machine
readable medium, such as a CD-ROM, magnetic medium,
ROM or RAM, or in an electronic signal. Further, as used in
the claims herein, the term “module” shall mean any hard-
ware or software component, or any combination thereof. In
addition, database server includes not only relational data-
base servers, but also other database servers, such as object
oriented database servers.

What is claimed:

1. A computerized system comprising:

a database server operable for receiving a query, the query
including mode information designating a mode from
multiple modes including a mode that specifies one or
more table names, amode that specifies an ordered list of
one or more tables and a mode that explicitly defines a
nesting of requested data and a naming of requested
columns in a hierarchical data stream, where the mode
information specifies, within the query itself, a hierar-
chical data stream organization, and generating a rowset
in response to the query; and

a rowset processor, operable for receiving and processing
the mode information of the query and the rowset, to
generate a data stream organized according to the hier-
archical data stream organization specified by the mode
information.

2. A computerized system comprising:

a database server operable for receiving a structured query
language (SQL) query, the query including mode infor-
mation designating a mode from multiple modes includ-
ing a mode that specifies one or more table names, a
mode that specifies an ordered list of one or more tables
and a mode that explicitly defines a nesting of requested
data and a naming of requested columns in a hierarchical
data stream, where the mode information specifies,
within the query itself, a hierarchical data stream orga-
nization, and generating a rowset in response to the
query; and

a rowset processor, operable for receiving and processing
the mode information of the query and the rowset, to
generate a data stream organized according to the hier-
archical data stream organization specified by the mode
information.

3. The computerized system of claim 2, further compris-

ing:

a client coupled to the rowset processor, the client is
capable of receiving the hierarchical data stream.

US 7,444,321 B2

11

4. A computerized system comprising:

a database server operable for receiving a query, the query
including mode information designating a mode from
multiple modes including a mode that specifies one or
more table names, a mode that specifies an ordered list of
one or more tables and a mode that explicitly defines a
nesting of requested data and a naming of requested
columns in a hierarchical data stream, where the mode
information specifies, within the query itself, an exten-
sible Markup Language (XML) data stream-organiza-
tion, and generating a rowset in response to the query;
and

a rowset processor, operable for receiving and processing
the mode information of the query and the rowset, to
generate a data stream organized according to the XML
data stream organization specified by the mode informa-
tion.

5. The computerized system of claim 4, further compris-

ing:

a client capable of providing the query to the database
server and receiving the XML data stream from the
rowset processor.

6. A computerized system for generating an XML data
stream from a nested query, the computerized system com-
prising:

a database server operable for receiving the nested query
including information defining the XML data stream,
the nested query specifying a mode from a plurality of
modes for organizing information, including a mode
specifying an XML data stream organization with pri-
mary-foreign key information included in the nested
query and a mode defining the XML data stream orga-
nization with the ordering of a number of tables included
in the nested query, and generating a rowset in response
to the query; and

a rowset processor operable for receiving and processing
the nested query and the rowset to generate the XML
data stream organized according to the specified mode.

7. A method of generating an XML data stream from a
query, the method comprising:

forming the query, the query including mode information
designating a mode from a plurality of modes defining
the XML data stream:;

transmitting the query to a database server to generate a
rowset;

extracting the mode information from the query;

utilizing the mode information in transforming the rowset
into an XML element including mapping each non-null
column value of the rowset to an attribute of the XML
element; and

returning the XML element in the XML data stream orga-
nized according to the specified mode.

8. A method of generating an XML data stream from a

query, the method comprising:

creating a query, the query including mode information
designating a mode from a plurality of modes that speci-
fies, within the query itself, an extensible Markup Lan-
guage (XML) data stream organization by a primary-
foreign key relationship;

transmitting the query to a database sewer to generate a
rowset;

transforming the rowset into a nested XML tree by using
the primary-foreign key relationship to determine nest-
ing in the nested XML tree including ordering tables in

10

15

20

25

30

35

40

45

50

55

60

12

the query to produce an organization of the XML data
stream for a one to many relationship or forming a nest-
ing schema from the nested XML tree and utilizing the
nesting schema to transform the rowset into a nested
XML tree; and

processing the nested XML tree to return the XML data
stream, organized according to the determined nesting in
response to the query including representing each table
listed in the query that has at least one column in a query
result as an XML element.

9. A method of generating an XML data stream from a

query having a table ordering, the method comprising:
forming a query identifying a mode from a set of rowset
transformation modes that specify how at least one
rowset is to be transformed based on the query and
having a number of tables included in the query that
define the XML data stream;

transmitting the query to a database server to generate a
rowset; and

transforming the rowset into the XML data stream in
response to the query based on the mode identified in the
query including forming a nesting schema from the
number of tables included in the query and utilizing the
nesting schema to transform the rowset into the XML
data stream, the data stream organized according to the
order of the tables in the query.

10. A tangibly embodied computer-readable medium hav-
ing computer-executable instructions for performing opera-
tions comprising:

forming a query in which an XML data stream has an
organizational structure defined by a mode of a plurality
of pre-defined modes in the query;

transmitting the query to a database server to generate a
rowset; and

processing the rowset to produce the XML data stream in
response to the query including transforming the rowset
into a universal table including executing a union over
all selections in the query and processing the universal
table to produce the XML data stream, wherein the XML
data stream is organized according to the organization
structure defined by the mode.

11. A computerized system comprising:

a parser operable for receiving a query for data to a data-
base and parsing the query, the query including mode
information designating a mode from a plurality of
modes that specifies, within the query itself, a hierarchi-
cal data stream organization for an output of the query,
wherein the parser extracts the mode information from
the query during parsing, and wherein the mode infor-
mation includes at least one table name, an ordered list
of at least one table or an explicit definition of a nesting
of requested data and a naming of requested columns in
a hierarchical data stream;

a query processor for processing the query to generate at
least one rowset based on the query without reference to
the mode information extracted during parsing;

a rowset to hierarchical representation processor that pro-
cesses the mode information extracted from the query to
set the mode for rowset processing, and the at least one
rowset, to generate a data stream organized according to
the hierarchical data stream organization specified by
the mode information.

