(19) (11) Publication humber: SG 186103 A1

(51) Int. Cl:

(12) Patent Application

(43) Publication date:

30.01.2013
GO6F 9/48;

(21) Application number: 2012087862 (71) Applicant:
(22) Date of filing: 08.11.2010

(30) Priority: US 12/821,179 23.06.2010
(72) Inventor:

INTERNATIONAL BUSINESS MACHINES
CORPORATION NEW ORCHARD ROAD,
ARMONK, NEW YORK 10504 NY US

SITTMANN, GUSTAV, IIl IBM
CORPORATION M/D 301-2E 325 JAMES
S MCDONNELL BVD. HAZELWOOD,
MISSOURI 63042-2513 MR US
CRADDOCK, DAVID IBM
CORPORATION, M/D P318 DEPT. E57A
2455 SOUTH ROAD POUGHKEEPSIE,
NEW YORK 12601 NY US

GREGG, THOMAS IBM CORPORATION,
M/D P314 2455 SOUTH ROAD
POUGHKEEPSIE, NEW YORK
12601-5400 NY US

SCHMIDT, DONALD, WILLIAM IBM
CORPORATION, M/D 7Q4A/P334 2455
SOUTH ROAD POUGHKEEPSIE, NEW
YORK 12601-5400 NY US

BELMAR, BRENTON, FRANCOIS IBM
CORPORATION, M/D P310 2455 SOUTH
ROAD POUGHKEEPSIE, NEW YORK
12601 NY US

FARRELL, MARK IBM CORPORATION,
MS P310 2455 SOUTH ROAD
POUGHKEEPSIE, NEW YORK 12601 NY
us

OSISEK, DAMIAN, LEO IBM
CORPORATION, DEPT. G28G BLDG.
250-2 1701 NORTH STREET ENDICOTT,
NEW YORK 13760 NY US

TARCZA, RICHARD IBM CORPORATION
BLDG. 707-B13 2455 SOUTH ROAD
POUGHKEEPSIE, NEW YORK 12601 NY
us

EASTON, JANET IBM CORPORATION,
MS P386 INTELLECTUAL

PROPERTY LAW 2455 SOUTH ROAD
POUGHKEEPSIE, NEW YORK 12601 NY
us

(54) Title:
CONTROLLING A RATE AT WHICH ADAPTER
INTERRUPTION REQUESTS ARE PROCESSED

(57) Abstract:

The conditions under which adapter interruptions are made
pending are controlled. Responsive to an interruption being
presented to an operating system, subsequent interruptions are
suppressed on all central processing units in the configuration.
The operating system processes the interruption, including
examining and processing indicators of reported events until the
operating system discontinues the suppression. This enables
the operating system to control the number of pending
interruptions and the number of processors processing those
interruptions.

This PDF First Page has been artificially created from the Singaporian Absiracts

wo 20117160704 A1]I 100000 O K

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

>
J

W

International Bureau Vi,
(43) International Publication Date \::}‘Vi (10) International Publication Number
29 December 2011 (29.12.2011) PCT WO 2011/160704 A1

(51) International Patent Classification: Corporation, M/D P318, Dept. ES7A, 2455 South Road,
GO6F 9/48 (2006.01) Poughkeepsie, New York 12601 (US). GREGG, Thomas
(21) International Application Number: [US/US]; IBM Co.rporation, M/D P314, 2455 South
Road, Poughkeepsie, New York 12601-5400 (US).
PCT/EP2010/067019 SCHMIDT, Donald, William [US/US]; IBM Corpora-
(22) International Filing Date: tion, M/D 7Q4A/P334, 2455 South Road, Poughkeepsie,
8 November 2010 (08.11.2010) New York 12601-5400 (US). BELMAR, Brenton, Fran-
- . cois [US/US]; IBM Corporation, M/D P310, 2455 South
(25) Filing Language: English Road, Poughkeepsie, New York 12601 (US). FARRELL,
(26) Publication Language: Enghsh Mark [US/US], IBM Corporation, MS P310, 2455 South
Road, Poughkeepsie, New York 12601 (US). OSISEK,
(30) Priority Data: Damian, Leo [US/US]; IBM Corporation, Dept. G28G,
12/821,179 23 June 2010 (23.06.2010) us Bldg. 250-2, 1701 North Street, Endicott, New York
(71) Applicant (for all designated States except US): INTER- 13760 (US). TARCZA, Richard [US/US], IBM Corpo-
NATIONAL BUSINESS MACHINES CORPORA- ration, Bldg. 707-B13, 2455 South Road, Poughkeepsie,
TION [US/US]; New Orchard Road, Armonk, New York New York 12601 (US). EASTON, Janet [US/US]; IBM
10504 (US). Corporation, MS P386, Intellectual Property Law, 2455

South Road, Poughkeepsie, New York 12601 (US).
(72) Inventors; and . .
(75) Inventors/Applicants (for US only): SITTMANN, Gus- (74) Agent: WILLIAMS, Julian, David; IBM United King-
tav, III [US/US]; IBM Corporation, M/D 301-2E, 325 dom Limited, Intellectual Property Law, Hursley Park,
James S McDonnell Bvd., Hazelwood, Missouri Winchester Hampshire SO21 2JN (GB).
63042-2513 (US). CRADDOCK, David [GB/US]; IBM

[Continued on next page]

(54) Title: CONTROLLING A RATE AT WHICH ADAPTER INTERRUPTION REQUESTS ARE PROCESSED

(57) Abstract: The conditions under which adapter inter-
ruptions are made pending are controlled. Responsive to an
interruption being presented to an operating system, subse-
quent interruptions are suppressed on all central processing
units in the configuration. The operating system processes
the interruption, including examining and processing indi-
cators of reported events until the operating system discon-
tinues the suppression. This enables the operating system to
control the number of pending interruptions and the num-
ber of processors processing those interruptions.

ALL-
INTERRUPTIONS
SINGLE-
INTERRUPTIONS
NO-
INTERRUPTIONS

EXPLANATION:

VO SYSTEM RESET

SET-SINGLE-INTERRUPTION MODE FOR THE ISC
ADAPTER INTERRUPTION RECOGNIZED FOR THE ISC
SET-SINGLE-INTERRUPTION MODE FOR THE ISC
SET-ALL-INTERRUPTIONS MODE FOR THE ISC
SET-ALL-INTERRUPTIONS MODE FOR THE ISC

SoarNS

FIG. 4

WO 2011/160704 A1 |90 0) A0 0 O

kind of national protection available): AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(81) Designated States (unless otherwise indicated, for every (84) Designated States (unless otherwise indicated, for every

kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,
ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report (Art. 21(3))

10

15

20

25

WO 2011/160704 PCT/EP2010/067019

CONTROLLING A RATE AT WHICH ADAPTER INTERRUPTION REQUESTS
ARE PROCESSED

BACKGROUND

This invention relates, in general, to interruption processing within a computing
environment, and in particular, to controlling processing of interruption requests generated

from adapters of the computing environment.

In some computing environments, such as those based on the z/Architecture® offered by
International Business Machines Corporation, Armonk, New York, interruptions requested
by input/output (I/O) adapters are assigned to interruption subclasses. These subclasses are
used, for instance, in prioritizing the interruptions for processing by an operating system of a

Proccssor.

In order for a processor of the computing environment to process the interruptions of an
interruption subclass (ISC), the processor is to be enabled for that subclass. When enabled,
it may process the interruptions of that subclass, but not of other subclasses for which it is
not enabled. Multiple processors may be enabled for a subclass, and therefore, multiple

processors may be concurrently processing interrupts for a given subclass.

In US Patent No. 7,065,598, issued June 20, 2006, Connor et al., “Method, System, and
Article of Manufacture for Adjusting Interrupt Levels,” provided are a method, system and
article of manufacture for adjusting interrupt levels. A current system interrupt rate at a
computational device is determined, wherein the current system interrupt rate is a sum of
interrupt rates from a plurality of interrupt generating agents. The current system interrupt
rate is compared with at least one threshold interrupt rate associated with the computational
device. Based on the comparison, an interrupt moderation level is adjusted at an interrupt

generating agent of the plurality of interrupt generating agents.

US Patent No. 7,398,343, issued July 8, 2008, Marmash et al., “Interrupt Processing
System,” describes an interrupt processing system having an interrupt holding registers, each
corresponding to a different class of interrupts. A write queue posts servicing required by the

interrupt holding registers. An interrupt vector register has bit positions corresponding to

10

15

20

25

WO 2011/160704 PCT/EP2010/067019

different classes of interrupts. A read queue has inputs coupled to the plurality of interrupt
holding registers and to the interrupt vector register. Detection logic is coupled between an
arbiter, fed by the write and read queues, and a processor for: (a) indicating when an
interrupt has passed from the write arbiter to the processor; (b) detecting the interrupt class
of such passed interrupt; (c) enabling the one of the bit positions corresponding to the
detected interrupt class in the interrupt vector register to store a state indicating the servicing
requirement for such detected class of interrupt; and (d) wherein the data stored in the
interrupt vector register is passed to the processor through the read queue and the arbiter

selector.

In US Patent No. 6,615,305 issued September 2, 2003, Olesen et al., “Interrupt Pacing in
Data Transfer Unit,” an apparatus and method for controlling the number of interrupts a data
transfer unit generates to a CPU is disclosed. A pacing unit is used to register attempted data
transfers (events) from a data transfer unit to a CPU and compares this value to a user
defined threshold limit. When the number of events reaches the threshold limit, an interrupt

is generated to the CPU.

BRIEF SUMMARY

In accordance with an aspect of the present invention, a capability is provided to control how
many processors are concurrently processing interrupts for a given interrupt subclass, and/or

to control the rate at which interrupts are being processed.

The shortcomings of the prior art are overcome and advantages are provided through the
provision of a method , according to claim 1, and corresponding system and computer
program product for controlling interrupt processing in a multiple processor computing

environment.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

One or more aspects of the present invention are particularly pointed out and distinctly

claimed as examples in the claims at the conclusion of the specification. The foregoing and

10

15

20

25

WO 2011/160704 PCT/EP2010/067019

other objects, features, and advantages of the invention are apparent from the following

detailed description taken in conjunction with the accompanying drawings in which:

FIG. 1A depicts one embodiment of a computing environment to incorporate and use

one or more aspects of the present invention;

FIG. 1B depicts one embodiment of a central processing complex in which a host is

executing one or more guests, in accordance with an aspect of the present invention;

FIG. 2A depicts one embodiment of further details of system memory and the I/O

hub of FIG. 1A, in accordance with an aspect of the present invention;

FIG. 2B depicts another embodiment of further details of system memory and the 1/O

hub of FIG. 1A, in accordance with an aspect of the present invention;

FIG. 2C depicts one embodiment of entries of a guest adapter interruption table

(GAIT) used in accordance with an aspect of the present invention;

FIG. 2D depicts one embodiment of a guest interruption state area (GISA) used in

accordance with an aspect of the present invention;

FIG. 2E depicts one embodiment of entries of an adapter interruption forwarding

table (AIFT) used in accordance with an aspect of the present invention;

FIG. 3 depicts one embodiment of an overview of the logic to process message
signaled interruptions received from adapters, in accordance with an aspect of the present

invention;

FIG. 4 depicts one example of a state diagram depicting the transitions between

various interruption processing modes, in accordance with an aspect of the present invention;

FIG. 5A depicts one embodiment of a Set Interruption Controls instruction used in

accordance with an aspect of the present invention;

FIGs. 5B-5D depict examples of contents of fields used by the Set Interruption

Controls instruction of FIG. 5A, in accordance with an aspect of the present invention;

10

15

20

25

WO 2011/160704 PCT/EP2010/067019

FIG. 5E depicts one example of an adapter interruption parameters block (AIPB)

used in accordance with an aspect of the present invention;

FIG. 6 depicts one embodiment of the logic to control the rate at which interrupts are

processed, in accordance with an aspect of the present invention;

FIG. 7 depicts one embodiment of the logic to control the rate at which interrupts are

processed by a guest, in accordance with an aspect of the present invention;

FIG. 8 depicts one embodiment of the state transition diagram of FIG. 4 further
depicting transitioning from one mode to another in a virtual environment, in accordance

with an aspect of the present invention;

FIG. 9A depicts one embodiment of a Modify PCI Function Controls instruction used

in accordance with an aspect of the present invention;

FIG. 9B depicts one embodiment of a field used by the Modify PCI Function

Controls instruction of FIG. 9A, in accordance with an aspect of the present invention;

FIG. 9C depicts one embodiment of another field used by the Modify PCI Function

Controls instruction of FIG. 9A, in accordance with an aspect of the present invention;

FIG. 9D depicts one embodiment of the contents of a function information block

(FIB) used in accordance with an aspect of the present invention;

FIG. 10 depicts one embodiment of an overview of the logic of the Modify PCI

Function Controls instruction, in accordance with an aspect of the present invention;

FIG. 11 depicts one embodiment of the logic associated with a register adapter
interruptions operation that may be specified by the Modify PCI Function Controls

instruction, in accordance with an aspect of the present invention;

FIG. 12 depicts one embodiment of the logic associated with an unregister adapter
interruptions operation that may be specified by the Modify PCI Function Controls

Instruction, in accordance with an aspect of the present invention;

10

15

20

25

WO 2011/160704 PCT/EP2010/067019

FIG. 13A depicts one embodiment of a Call Logical Processor instruction used in

accordance with an aspect of the present invention;

FIG. 13B depicts one embodiment of a request block used by the Call Logical
Processor instruction of FIG. 13A for a list operation, in accordance with an aspect of the

present invention;

FIG. 13C depicts one embodiment of a response block for the list operation of FIG.

13B, in accordance with an aspect of the present invention;

FIG. 13D depicts one embodiment of a function list entry used in accordance with an

aspect of the present invention;

FIG. 14A depicts one embodiment of a request block used by the Call Logical
Processor instruction of FIG. 13A for a query function operation, in accordance with an

aspect of the present invention;

FIG. 14B depicts one embodiment of a response block for the query function

operation of FIG. 14A, in accordance with an aspect of the present invention;

FIG. 15A depicts one embodiment of a request block used by the Call Logical
Processor instruction of FIG. 13A for a query group operation, in accordance with an aspect

of the present invention;

FIG. 15B depicts one embodiment of a response block for the query group operation

of FIG. 15A, in accordance with an aspect of the present invention;

FIG. 16 depicts one embodiment of a computer program product incorporating one or

more aspects of the present invention;

FIG. 17 depicts one embodiment of a host computer system to incorporate

and use one or more aspects of the present invention;

FIG. 18 depicts a further example of a computer system to incorporate and

use one or more aspects of the present invention;

WO 2011/160704 PCT/EP2010/067019

FIG. 19 depicts another example of a computer system comprising a
computer network to incorporate and use one or more aspects of the present

invention;

FIG. 20 depicts one embodiment of various elements of a computer system to

incorporate and use one or more aspects of the present invention;

FIG. 21A depicts one embodiment of the execution unit of the computer
system of FIG. 20 to incorporate and use one or more aspects of the present

invention;

FIG. 21B depicts one embodiment of the branch unit of the computer system

of FIG. 20 to incorporate and use one or more aspects of the present invention;

FIG. 21C depicts one embodiment of the load/store unit of the computer
system of FIG. 20 to incorporate and use one or more aspects of the present

invention; and

FIG. 22 depicts one embodiment of an emulated host computer system to incorporate

and use one or more aspects of the present invention.

DETAILED DESCRIPTION

In accordance with an aspect of the present invention, a capability is provided to control a
rate at which interruption requests are processed. This control includes managing the

number of processors to perform interrupt processing.

To request an interrupt, in one example, an adapter issues a message signaled interruption
(MSI) request. The MSI request is then converted into an input/output (I/O) adapter event
notification, in which one or more specific indicators are set and a request is made to present
an interruption to an operating system (or other software, such as other programs, etc). As

used herein, the term operating system includes operating system device drivers.

In one embodiment, multiple interruption requests (e.g., MSIs) from one or more adapters

are coalesced into a single interruption to the operating system, but with respective

10

15

20

25

30

WO 2011/160704 PCT/EP2010/067019

indicators set. For instance, if the I/O hub has already received an MSI request, has in turn,
provided an interruption request to a CPU, and that interruption is still pending, then if the
hub receives one or more other MSIs, the CPU does not present an additional interruption.
The one interruption replaces and represents the plurality of MSI requests. However, one or

more indicators associated with each additional request are still set.

Responsive to presenting the interruption to the operating system, another interruption may
be presented. This interruption may be handled by either the same CPU or another CPU.
Thus, there may be multiple requests being handled concurrently by multiple CPUs.

In accordance with an aspect of the present invention, a control is provided to throttle the
delivery of adapter interruption requests from adapter functions. For instance, responsive to
an adapter interruption being presented to the operating system, other interruptions are
suppressed, but indicators are set responsive to those suppressed interruptions. Suppression
is continued until, for instance, the operating system determines, if at all, that additional
processors (e.g., CPUs) are needed in processing the indicators (e.g., the rate of adapter
interruptions exceeds a predefined threshold). Alternatively, if all the indicators have been
processed and the operating system has completed its event handling, the operating system
may determine that suppression is no longer needed. At such a point, further interruptions

are allowed once again.

As used herein, the term "adapter” includes any type of adapter (e.g., storage adapter,
network adapter, processing adapter, cryptographic adapter, PCI adapter, other type of
input/output adapter, etc.). In one embodiment, an adapter includes one adapter function.
However, in other embodiments, an adapter may include a plurality of adapter functions.
One or more aspects of the present invention are applicable whether an adapter includes one
adapter function or a plurality of adapter functions. Further, in the examples presented
herein, adapter is used interchangeably with adapter function (e.g., PCI function) unless

otherwise noted.

One embodiment of a computing environment to incorporate and use one or more aspects of
the present invention is described with reference to FIG. 1. In one example, a computing
environment 100 is a System z® server offered by International Business Machines

Corporation. System z" is based on the z/Architecture® offered by International Business

10

15

20

25

WO 2011/160704 PCT/EP2010/067019

Machines Corporation. Details regarding the z/Architecture® are described in an IBM®
publication entitled, "z/Architecture Principles of Operation," IBM Publication No. SA22-
7832-07, February 2009. IBM®, System z® and z/Architecture” are registered trademarks
of International Business Machines Corporation, Armonk, New York. Other names used
herein may be registered trademarks, trademarks or product names of International Business

Machines Corporation or other companies.

In one example, computing environment 100 includes one or more central processing units
(CPUs) 102 coupled to a system memory 104 (a.k.a., main memory) via a memory controller
106. To access system memory 104, a central processing unit 102 issues a read or write
request that includes an address used to access system memory. The address included in the
request is typically not directly usable to access system memory, and therefore, it is
translated to an address that is directly usable in accessing system memory. The address is
translated via a translation mechanism (XLATE) 108. For example, the address is translated
from a virtual address to a real or absolute address using, for instance, dynamic address

translation (DAT).

The request, including the address (translated, if necessary), is received by memory
controller 106. In one example, memory controller 106 is comprised of hardware and is
used to arbitrate for access to the system memory and to maintain the memory's consistency.
This arbitration is performed for requests received from CPUs 102, as well as for requests
received from one or more adapters 110. Like the central processing units, the adapters issue

requests to system memory 104 to gain access to the system memory.

In one example, adapter 110 is a Peripheral Component Interconnect (PCI) or PCI Express
(PClIe) adapter that includes one or more PCI functions. A PCI function issues a request that
is routed to an input/output hub 112 (e.g., a PCI hub) via one or more switches (e.g., PCle
switches) 114. In one example, the input/output hub is comprised of hardware, including

one or more state machines.

The input/output hub includes, for instance, a root complex 116 that receives the request
from a switch. The request includes an input/output address that is used to perform a direct

memory access (DMA) or to request a message signaled interruption (MSI), as examples.

10

15

20

25

30

WO 2011/160704 PCT/EP2010/067019

This address is provided to an address translation and protection unit 118 which accesses

information used for either the DMA or the MSI request.

For a DMA operation, address translation and protection unit 118 may translate the address
to an address usable to access system memory. Then, the request initiated from the adapter,
including the translated address, is provided to memory controller 106 via, for instance, an
I/O-to-memory bus 120. The memory controller performs its arbitration and forwards the

request with the translated address to the system memory at the appropriate time.

For an MSI request, information in address translation and protection unit 118 is obtained to
facilitate conversion of the MSI request to an I/O adapter event notification, as described

herein.

In a further embodiment, in addition to or instead of one or more of central processing units
102, a central processing complex, such as the one shown in FIG. 1B, is coupled to memory
controller 106. In this particular example, central processing complex 150 provides virtual
machine support. Central processing complex 150 includes, for instance, one or more virtual
machines 152, one or more central processors 154, and at least one hypervisor 156, each of

which is described below.

The virtual machine support of the central processing complex provides the ability to operate
large numbers of virtual machines, each capable of executing a guest operating system 158,
such as z/Linux. Each virtual machine 152 is capable of functioning as a separate system.
That is, each virtual machine can be independently reset, execute a guest operating system,
and operate with different programs. An operating system or application program running in
a virtual machine appears to have access to a full and complete system, but in reality, only a

portion of it may be available.

In this particular example, the model of virtual machines is a V=V model, in which the
memory of a virtual machine is backed by virtual memory, instead of real memory. Each
virtual machine has a virtual linear memory space. The physical resources are owned by
hypervisor 156, such as a VM hypervisor, and the shared physical resources are dispatched
by the hypervisor to the guest operating systems, as needed, to meet their processing
demands. This V=V virtual machine model assumes that the interactions between the guest

operating systems and the physical shared machine resources are controlled by the VM

10

15

20

25

30

WO 2011/160704 PCT/EP2010/067019

10

hypervisor, since the large number of guests typically precludes the hypervisor from simply
partitioning and assigning the hardware resources to the configured guest. One or more
aspects of a V=V model are further described in an IBM publication entitled "z/VM:
Running Guest Operating Systems," IBM Publication No. SC24-5997-02, October 2001.

Central processors 154 are physical processor resources that are assignable to a virtual
machine. For instance, virtual machine 152 includes one or more logical processors, each of
which represents all or a share of a physical processor resource 154 that may be dynamically
allocated to the virtual machine. Virtual machines 152 are managed by hypervisor 156. As
examples, the hypervisor may be implemented in firmware running on processors 154 or
may be a part of a host operating system executing on the machine. In one example,
hypervisor 156 is a VM hypervisor, such as zZVM® offered by International Business
Machines Corporation, Armonk, New York. One embodiment of z/V M™ is described in an
IBM publication entitled "z/VM: General Information Manual," IBM Publication No.
GC24-5991-05, May 2003.

As used herein, firmware includes, ¢.g., the microcode, millicode and/or macrocode of the
processor. It includes, for instance, the hardware-level instructions and/or data structures
used in implementation of higher-level machine code. In one embodiment, it includes, for
instance, proprietary code that is typically delivered as microcode that includes trusted
software or microcode specific to the underlying hardware and controls operating system

access to the system hardware.

Referring to FIGs. 1A and 1B, one or more adapters may issue message signaled
interruptions (MSIs). These interruptions are converted to 1/0 adapter event notifications to
one or more operating systems, in which indicators are set and one or more interruptions are
requested. An operating system may be an operating system that is not a guest or a guest
operating system executed by a host (¢.g., zZVM™). To facilitate this processing, various
data structures in the I/0 hub and memory are used, as described with reference to FIGs. 2A-
2B.

In particular, FIG. 2A depicts one embodiment of the structures used to present an adapter
event notification to an operating system that is not a guest, and FIG. 2B depicts one

embodiment of the structures used to present an adapter event notification to a guest. In

10

15

20

25

30

WO 2011/160704 PCT/EP2010/067019

11

these figures, the memory controller is not shown, but may be used. The I/O hub may be

coupled to system memory and/or processor 254 directly or via a memory controller.

Referring to FIG. 2A, in one example, system memory 104 includes one or more data
structures usable in facilitating interruption processing. In this example, system memory
104 includes an adapter interruption bit vector (AIBV) 200 and an optional adapter
interruption summary bit (AISB) 202 associated with a particular adapter. There may be an

AIBYV and a corresponding AISB for each adapter.

In one example, adapter interruption bit vector 200 is a single dimension array of one or
more indicators (e.g., bits) in main storage that are associated with an adapter (e.g., a PCI
function). The bits in the adapter interruption bit vector represent MSI vector numbers. A
bit that is set to one in an AIBV indicates a condition or type of event for the associated
adapter. In the example of a PCI function, each bit in the associated AIBV corresponds to an
MSI vector. Therefore, if a PCI function supports only one MSI vector, its AIBV includes a
single bit; if a PCI function supports multiple MSI vectors, its AIBV includes one bit per
MSI vector. In the example depicted in FIG. 2A, the PCI function supports multiple MSI
vectors (e.g., 3), and therefore, there are multiple bits (e.g., 3) in AIBV 200. Each bit
corresponds to a particular event, e.g., bit 0 of the AIBV, when set to one, indicates a
completed operation; bit 1 of the AIBV, when set to one, corresponds to an error event; etc.

As shown, bit 1 is set, in this example.

In one particular example, an instruction (e.g., a Modify PCI Function Controls instruction)
is used to designate an AIBV for a PCI function. Specifically, the instruction, which is
issued by the operating system and executed by a processor, specifies the identity of the PCI
function, the main storage location of the area that includes the AIBV, the offset from that
location to the first bit of the AIBV, and the number of bits that comprise the AIBV. An
AIBV may be allocated on any byte boundary and any bit boundary. This allows the
operating system the flexibility to pack the AIBVs of multiple adapters into a contiguous
range of bits and bytes.

The 1dentity of the PCI function, in one example, is included in a function handle. A
function handle includes, for instance, an enable indicator that indicates whether the PCI

function handle is enabled; a PCI function number that identifies the function (this is a static

10

15

20

25

30

WO 2011/160704 PCT/EP2010/067019

12

identifier and may be used as an index to a function table to locate a particular entry); and an
instance number which indicates the particular instance of this function handle. For
instance, each time the function handle is enabled, the instance number is incremented to
provide a new instance number. The function handle is used to locate a function table entry
in a function table that includes one or more entrics. For instance, one or more bits of the
function handle are used as an index into the function table to locate a particular function
table entry. The function table entry includes information regarding its associated PCI
function. For example, it may include various indicators regarding the status of its
associated adapter function, and it may include one or more device table entry indices used
to locate device table entries for this adapter function. The device table entries include
information used to provide certain services for their respective adapter functions (e.g.,
address translation, interrupt processing). (To the operating system, the handle, in one

embodiment, is simply an opaque identifier of the adapter.)

In addition to the AIBV, in this example, there is an AISB 202 for the adapter, which
includes a single indicator (e.g., bit) associated with the adapter. An AISB that is one
indicates that one or more bits have been set to one in an AIBV associated with the AISB.
The AISB is optional, and there may be one for each adapter, one for each selected adapter,

or one for a group of adapters.

In one particular implementation for PCI functions, an instruction (e.g., the Modify PCI
Functions Controls instruction) is used to designate an AISB for a PCI function.
Specifically, the instruction, which is issued by the operating system and executed by a
processor, specifies the identity of the PCI function (e.g., the handle), the main storage
location of the area that includes the AISB, the offset from that location to the AISB, and an
adapter interruption summary notification enablement control indicating there is a summary
bit. An AISB may be allocated on any byte boundary and any bit boundary. This allows the
operating system the flexibility to pack the AISBs of multiple adapters into a contiguous
range of bits and bytes.

The operating system may assign a single AISB to multiple PCI functions. This associates
multiple AIBVs with a single summary bit. Therefore, such an AISB that is one indicates

that the operating system should scan multiple AIBVs.

10

15

20

25

WO 2011/160704 PCT/EP2010/067019

13

In one example, the AIBV and the AISB are pointed to by addresses located in a device table
entry 206 of a device table 208 located in I/O hub 112. In one example, device table 208 is

located within the address translation and protection unit of the I/0 hub.

Device table 208 includes one or more entries 206, each of which is assigned to a particular
adapter function 210. A device table entry 206 includes a number of fields, which may be
populated using, for instance, the above-mentioned instruction. The values of one or more

of the fields are based on policy and/or configuration. Examples of the fields include:

Interruption Subclass (ISC) 214: Indicates an interruption subclass for the
interruption. The ISC identifies a maskable class of adapter interruptions that may be
associated with a priority with which the operating system will process the

interruption;

AIBV Address (@) 216: Provides, e.g., an absolute address of the beginning of the
storage location that includes the AIBV for the particular adapter function assigned

to this device table entry;

AIBV Offset 218: An offset into the main storage location to the beginning of the
AIBV;

AISB Address (@) 220: Provides, ¢.g., an absolute address of the beginning of the
storage location that includes the AISB for this PCI function, if the operating system
has designated an AISB;

AISB Offset 222: An offset into the main storage location to the AISB;

Adapter Interruption Summary Notification Enablement Control (Enable) 224: This

control indicates whether there is an AISB;

Number of Interruptions (NOI) 226: Indicates the maximum number of MSI vectors

allowed for this PCI function, with zero indicating none allowed.
In other embodiments, the DTE may include more, less or different information.

In one embodiment, the device table entry to be used for a particular interruption request by

an adapter is located using, for instance, a requestor identifier (RID) (and/or a portion of the

10

15

20

25

WO 2011/160704 PCT/EP2010/067019

14

address) located in a request issued by the adapter (e.g., PCI function 210). The requestor
ID (e.g., a 16-bit value specifying, for instance, a bus number, device number and function
number) is included in the request, as well as an address to be used for the interrupt. The
request, including the RID and the address, are provided to, e.g., a contents addressable
memory (CAM 230) via, e.g., a switch, and the contents addressable memory is used to
provide an index value. For instance, the CAM includes multiple entries, with each entry
corresponding to an index into the device table. Each CAM entry includes the value of a
RID. If, for instance, the received RID matches the value contained in an entry in the CAM,
the corresponding device table index is used to locate the device table entry. That is, the
output of the CAM is used to index into device table 208. If there is no match, the received
packet is discarded. (In other embodiments, a CAM or other lookup is not needed and the
RID is used as the index.) The located DTE is used in processing an interrupt request, as

described herein.

In one particular example, if the interrupt request is for a guest (e.g., a pageable storage
mode guest; i.e., a V=V guest) executing in a particular zone or logical partition, then the
device table entry also includes a zone field 228, as shown in FIG. 2B. This field indicates
the zone to which the guest belongs. In another embodiment, this field is not used, or may
be used even in situations where guests are not provided (e.g., to designate a zone or logical

partition in which an operating system is running).

In one example, in the z/Architecture®, a pageable guest is interpretively executed via the
Start Interpretive Execution (SIE) instruction, at level 2 of interpretation. For instance, the
logical partition (LPAR) hypervisor executes the SIE instruction to begin the logical
partition in physical, fixed memory. If z/ZVM® is the operating system in that logical
partition, it issues the SIE instruction to execute its guests (virtual) machines in its V=V
(virtual) storage. Therefore, the LPAR hypervisor uses level-1 SIE, and the z/VM®

hypervisor uses level-2 SIE.

To facilitate interrupt processing for guests, other data structures are used, some of which are
stored in host memory 270, and others are in guest memory 271. Examples of these

structures are described below.

10

15

20

25

30

WO 2011/160704 PCT/EP2010/067019

15

In one example, host memory 270 includes, for instance, a forwarding AISB array 272 and a
guest adapter interruption table (GAIT) 274. Forwarding AISB array 272 is an array of
AISBs that is used in conjunction with the guest adapter interruption table to determine if an
MSI request is targeted to a guest or its host. The forwarding AISB array includes the host
AISBs of each PCI function the host has assigned to a guest and for which the host, on
behalf of the guest, is requesting adapter event notification interruption. Such an array is

allocated in host storage by a host of the guest (e.g., zZVM®).

The guest adapter interruption table 274 is used in conjunction with the forwarding AISB
array to determine whether an MSI request is targeted to the host or one of its guests, and if
to a guest, which guest. There is a one-to-one correspondence between indicators (e.g., bits)
in the forwarding AISB array and the GAIT entries. This means that when a bit in the
forwarding AISB array is set to one and the corresponding GAIT information contains
forwarding information, an adapter event notification is made pending for the adapter for the

guest associated with the AISB indicator (e.g., bit) and the corresponding GAIT entry.

When a GAIT entry is used and includes a defined value (e.g., all zeros), the target of the
MSI request is the host. When a GAIT entry is used and does not contain the defined value,
the target of the MSI request is a guest. Furthermore, when the target of an MSI request is a
guest, the GAIT entry includes the following information, as depicted in FIG. 2C: the host
address and offset of the guest AISB for the PCI function 290; the host address of a guest
interruption state area (GISA) 291; and the guest interruption subclass (GISC) 292 for the

adapter interruption to be generated for the guest.

Further details regarding a guest interruption state area (GISA) 276 are provided with
reference to FIG. 2D. In one example, GISA 276 is a control block in which the guest
adapter interruption is made pending. In accordance with an aspect of the present invention,
it includes, for instance, a single interruption mode mask (SIMM) 277, which is a mask that
has one bit per guest interruption subclass and is used to indicate if the interruption mode for
the subclass is the single interruption mode, as described below; a no interruptions mode
mask (NIMM) 279, which is a mask that has one bit per guest interruption subclass and used
to indicate if the interruption mode for the ISC is the no interruptions mode, as described
below; an interruption pending mask (IPM) 281, which is a mask associated with the guest

that includes indicators for a plurality of interruption subclasses (ISCs); and an interruption

10

15

20

25

WO 2011/160704 PCT/EP2010/067019
16

alert mask (IAM) 283, which is another mask corresponding to a guest. In one example,
each bit in the masks (e.g., SIMM, NIMM, IPM and IAM masks described herein)

corresponds one for one with a guest ISC.

As examples, the origin or address of the GISA is designated in GAIT 274, as well as in a
state description 280. The state description is, for instance, a control block maintained by
the host that defines a virtual CPU for a guest to the interpretation hardware/firmware. A
unique GISA is used per guest, and there is one and only one GISA per guest, in this
embodiment. Therefore, if the guest is defined to have multiple virtual CPUs, multiple state
descriptions are maintained by the host, each of which contains the origin of the address of

the same GISA.

In addition to the above, in guest memory (which is pinned, i.¢., fixed, made non-pageable,
in host memory), there is a guest AISB array 282 and a guest AIBV array 284. Guest AISB
array 282 includes a plurality of indicators 202'(e.g., AISBs), each of which may be
associated with an 1/0 adapter. The AISB for an I/0 adapter, when one, indicates that one or
more bits have been set to one in the adapter interruption bit vector (AIBV) associated with

the 1I/0O adapter.

AIBYV array 284 includes one or more AIBVs 200'(¢.g., 3 in this example), and each AIBV
200, as described above with reference to AIBV 200, is a single dimension array of one or
more indicators (e.g., bits) that are associated with an I/O adapter. Each bit in the AIBV,

when one, indicates a condition or type of event for the associated I/0 adapter.

In addition to the data structures in host and guest memory, a data structure referred to as an
adapter interruption forwarding table (AIFT) 285 is maintained in secure memory 286 that is
accessible by neither the host nor the guest. The adapter interruption forwarding table is
used by system firmware to determine if an MSI request is targeted to a logical partition in
which a host and guest are running. The AIFT is indexed by the zone number that identifies
the logical partition to which a PCI function is assigned. When an AIFT entry is used and
the entry includes a defined value (e.g., all zeros), the target of the adapter event notification
18 the operating system running in the designated logical partition. When an AIFT entry is

used and the entry does not contain the defined value, the firmware uses the forwarding

10

15

20

25

WO 2011/160704 PCT/EP2010/067019

17

AISB array and the GAIT to determine if the target of the adapter event notification is a host

or a guest running in the logical partition.
In one example, as shown in FIG. 2E, an AIFT entry of AIFT 285 includes, for instance:
The address of the forwarding AISB array in the partition's (host's) storage 294;

The length 295 of the forwarding AISB array, in bits, and of the GAIT in GAIT

entries;
The address of the GAIT 296 in the partition's storage;

The host interruption subclass (ISC) 297 associated with MSI requests that are to be

forwarded to guests for that partition; and

A single interruption mode mask (SIMM), which is set by, for instance, a Set

Interruptions Control (SIC) instruction, described below.

Each bit in this mask represents an interruption subclass. Therefore, and, for
example, when the operating system executes the SIC instruction specifying single-
interruption mode for ISC 4, the result is that bit 4 in the mask is set to one. The
firmware uses this bit to decide whether to transition to no-interruptions mode when

presenting an interruption.

Returning to FIG. 2A and/or FIG. 2B, to request an interruption, adapter function 210 sends
a packet to the I/O hub. This packet has an MSI address 232 and associated data 234. The
I/O hub compares at least a part of the received address to a value in a MSI compare register
250. Ifthere is a match, then an interruption (e.g., MSI) is being requested, as opposed to a
DMA operation. The reason for the request (i.c., type of event that has occurred) is
indicated in associated data 234. For example, one or more of the low order bits of the data
are used to specify a particular interrupt vector (i.e., an MSI vector) that indicates the reason

(event).

The interruption request received from the adapter is converted into an I/O adapter event
notification. That is, one or more indicators (e.g., one or more AIBVs and optionally an

AISB) are set and an interruption to the operating system (host or guest) is requested, if one

10

15

20

25

30

WO 2011/160704 PCT/EP2010/067019

18

is not already pending. In one embodiment, multiple interruption requests (e.g., MSIs) from
one or more adapters are coalesced into a single interruption to the operating system, but
with respective AIBV and AISB indications. For instance, if the I/O hub has already
received an MSI request, has, in turn, provided an interruption request to a processor, and
that interruption is still pending (e.g., for one reason or another, the interruption has not been
presented to the operating system (e.g., interrupts are disabled)), then if the hub receives one
or more other MSIs, the CPU does not generate additional interruptions. The one
interruption replaces and represents the plurality of MSI requests. However, one or more

AIBVs and optionally one or more AISBs are still set.

Further details regarding converting an MSI (or other adapter interruption request) to an 1/O
adapter event notification are described below. Initially, details regarding converting an
MSI to an I/O adapter event notification to be presented to an operating system that is not a
guest are described. Thereafter, details regarding converting an MSI to an 1/O adapter event

notification to be presented to a guest operating system are described.

Referring to FIG. 3, in one example, to convert an MSI request to an 1/O adapter event
notification, certain initialization is performed, STEP 300. During initialization, the
operating system performs a number of steps to configure an adapter for an adapter event
notification via an MSI request. In this example, it is a PCI function being configured;
although, in other embodiments, it can be other adapters, including other types of adapter

functions.

In one embodiment, as part of initialization, a determination is made as to the PCI functions
in the configuration. As an example, an instruction, such as a Query List instruction, is used
to obtain a list of the PCI functions assigned to the requesting configuration (e.g., assigned to
a particular operating system). This information is obtained from a configuration data

structure that maintains this information.

Next, for each of the PCI functions in the list, a determination is made as to the MSI address
to be used for the PCI function and the number of MSI vectors supported by the PCI

function. The MSI address is determined based on the characteristics of the I/O hub and the
system in which it is installed. The number of MSI vectors supported is based on policy and

1s configurable.

10

15

20

25

30

WO 2011/160704 PCT/EP2010/067019

19

Additionally, for each PCI function, the AIBV is allocated, as well as the AISB, if any. In
one example, the operating system determines the allocation of the AIBV to allow for
efficient processing of one or more adapters, typically based on the class of adapter. For
example, the AIBVs for storage adapters may be located adjacent to each other. The AIBV
and AISB are allocated and cleared to zeros, and a register adapter interruption operation is
specified (e.g., using a Modify PCI Function Controls instruction). This operation registers
the AIBV, the AISB, the ISC, the number of interruptions (MSI vectors) and the adapter
interruption summary notification enablement control. These parameters are stored in a
device table entry corresponding to the PCI function for which initialization is performed.
Then, the PCI function's configuration space is written. Specifically, the MSI address and
MSI vector count are written into the configuration address space of the PCI function
consistent with the previous registration. (In one example, a PCI function includes a
plurality of address spaces, including e.g., a configuration space, an 1/O space, and one or

more memory spaces.)

Thereafter, during operation, a PCI function may generate an MSI, which is converted to an
adapter event notification, STEP 302. For example, during operation, when a PCI function
wishes to generate an MS], it typically makes some information available to the operating
system that describes the condition. This causes one or more steps to occur in order to
convert the PCI function's MSI request to an I/O adapter event notification to the operating

System.

For instance, initially, a description of the event to which the interruption is requested is
recorded. That is, the PCI function records a description of the event in one or more adapter-
specific event-description-recording structures stored, for instance, in system memory. This
may include recording the type of the event, as well as recording additional information.
Additionally, a request is initiated by the PCI function specifying the MSI address and the
MSI vector number, as well as a requestor ID. The request is received by the 1/0 hub, and
responsive to receiving the request, the requestor ID in the request is used to locate the
device table entry for the PCI function. The I/O hub compares at least a portion of the
address in the request with the value in the MSI compare register. If they are equal, then an
MSI address has been specified, and thus, an MSI has been requested. Thereafter, a

determination is made as to whether the MSI vector specified in the request is less than or

10

15

20

25

30

WO 2011/160704 PCT/EP2010/067019

20

equal to the number of interruptions (NOI) allowed for this function. If the MSI vector
number is greater than NOI, an error is indicated. Otherwise, the I/O hub issues a set bit
function to set the appropriate AIBV bit in storage. The appropriate bit is determined by
adding the MSI vector number to the AIBV offset specified in the device table entry and
displacing this a number of bits from the AIBV address specified in the device table entry.
Moreover, if an AISB has been designated, the I/O hub uses a set bit function to set the
AISB, using the AISB address and the AISB offset in the device table entry.

Next, in one embodiment, a determination is made (e.g., by the CPU or I/O hub) as to
whether an interruption request is already pending. To make this determination, a pending
indicator is used. For instance, a pending indicator 252 (FIG. 2A, FIG. 2B) stored in
memory of a processor 254, which is accessible to processors of the computing environment
that may process the interrupt, is checked. If it is not set, then it is set. If it is already set,
processing is complete and another interruption request is not requested. Therefore,

subsequent interruption requests are encompassed by the one request already pending.

In one particular example, there may be one pending indicator per interruption subclass, and
therefore, the pending indicator of the interruption subclass assigned to the requesting

function is the indicator that is checked.

Asynchronously, one or more processors check the pending indicator. In particular, each
processor enabled for the ISC (and zone in another embodiment) polls on the indicator when,
for instance, interrupts are enabled for that processor (i.c., for its operating system). If one
of the processors determines that the indicator is set, it arbitrates with the other processors
enabled for the same ISC (and zone in another embodiment) to handle the interruption. The
processor to handle the interrupt then presents the interruption to the operating system, STEP

304, as described below.

In accordance with an aspect of the present invention, processing associated with presenting
the interruption to the operating system is dependent on an interruptions mode (a.k.a.,
control mode) set for the adapter function that issued the interruption (i.e., set for the ISC of
the adapter function). In particular, an adapter interruption suppress facility is provided and
associated with adapter functions. This facility includes, for instance, three modes of

adapter interruptions for adapter functions:

10

15

20

25

30

WO 2011/160704 PCT/EP2010/067019

21

All interruptions mode: All pending adapter interruptions for adapter functions may
be recognized and presented, subject to the ISC enablement. The adapter
interruption suppression facility is placed in the all interruptions mode for all ISCs
following an I/O system reset. The adapter interruption suppression facility is placed
in the all interruptions mode for a specific ISC following successful completion of,
for instance, a Set Interruption Controls instruction that specifies the all interruptions

mode for a particular ISC;

Single interruption mode: A single pending interruption for adapter functions may
be recognized and presented subject to ISC enablement. For instance, when making
the adapter interruption pending, the mode of the adapter interruption suppression
facility changes to the no interruptions mode for the ISC, which is described below.
The adapter interruption suppression facility is placed in the single interruption mode
for a specific ISC following successful completion of the Set Interruption Controls

instruction that specifies the single interruption mode for the ISC;

No interruptions mode: Adapter interruption requests from adapters subject to the
adapter interruption suppression facility for the ISC are ignored. The no
interruptions mode remains in effect until the operating system issues a Set
Interruption Controls instruction specifying either the all interruptions mode or the

single interruption mode, or until I/O subsystem reset is performed.

One example of a state transition diagram showing the various modes is depicted in FIG. 4.
As shown, at 1, an I/O system reset is performed and all interruptions are allowed. At 2, a
single interruption mode is set for the ISC. At 3, an adapter interruption is recognized for
the ISC and the interruption mode transitions to no interruptions. At 4, from the no
interruptions mode, a single interruption mode is provided or at 5, an all interruptions mode
may be provided. Further, from single interruption mode, a request can be made for all

interruptions mode.

To transition between some of the modes, a Set Interruption Controls instruction is used, in
one example. One embodiment of this instruction is described with reference to FIGs. SA-
5E. As depicted in FIG. 5A, in one example, a Set Interruption Controls instruction 500

includes an opcode 502 specifying that this is the Set Interruption Controls instruction; a first

10

15

20

25

WO 2011/160704 PCT/EP2010/067019

22

field (Field 1) 504 including a location (e.g., a register) that specifies an operation control
510 (FIG. 5B) for the instruction; a second field (Field 2) 506 that designates a location (e.g.,
a register) that contains an interruption subclass 520 (FIG. 5C) for the operation control
designated by Field 1; and a third field (Field 3) 508, which as shown in FIG. 5D, includes
the logical address of an adapter interruption parameters block (AIPB) 530, described below.

In one example, operation control 510 may be encoded as follows:

0-Set All Interruptions Mode: The adapter interruption suppression facility is set to

allow the presentation of all adapter interruptions requested for the designated ISC.

1-Set Single Interruption Mode: The adapter interruption suppression facility is set
to allow the presentation of a single adapter interruption request for the designated

ISC. Subsequent adapter interruption requests for the designated ISC are suppressed.

2-Set Adapter Event Notification Interruption Control: The adapter event
notification interpretation controls included in the adapter interruption parameters

block designated by Field 3 are set.

One example of the AIPB 530 is described with reference to FIG. SE. As depicted, AIPB

530 includes, for instance:

Forwarding AISB Array Address 532: This field designates a forwarding AISB
array that is used in conjunction with the guest adapter interruption table (GAIT) and
the specified adapter event notification forwarding interruption subclass (AFI) to
determine whether an adapter interruption request that is signaled by an 1/O adapter

is targeted to a pageable storage mode guest.

When the forwarding AISB array address is zero, the target of the interruption
request is the host. When the forwarding AISB array address is not zero, the target

of the interruption request is further determined from the AFI and the GAIT.

Guest Adapter Interruption Table (GAIT) Address 534: This field provides an
address of the GAIT to be used to determine whether an adapter interruption request

that is signaled by an I/O adapter is targeted to a pageable storage mode guest, and if

10

15

20

25

30

WO 2011/160704 PCT/EP2010/067019
23

targeted to such a guest, the GAIT is also used for the setting of guest AISBs, and for

the delivery of adapter interruption requests to the guest.

Adapter Event Notification Forwarding Interruption Subclass (AFI) 536: This field
indicates an ISC value. A pending and presentable interruption on this ISC initiates
the adapter event notification forwarding process, whereby the contents of the
forwarding AISB array and the GAIT are used to further determine the target (host or
guest) of interruption requests from applicable I/0 adapters for the corresponding
ISC. When an interruption request is made from an applicable adapter for the ISC
designated by the AFI field, the target of the interruption may be a pageable storage
mode guest and the forwarding AISB array and GAIT are used to determine the
actual target (host or guest) of any adapter event notifications indicated in the
forwarding AISB array. When an interruption request is made from an applicable
adapter for an ISC other than the ISC designated by the AFI field, the forwarding
AISB array address and the GAIT address do not apply and the target of interruption

requests for the corresponding ISC is the host.

Forwarding AISB Array Length (FAAL) 538: This field indicates the length of the
forwarding AISB array in bits, or the GAIT in units of GAIT entries.

Responsive to executing the Set Interruption Controls instruction, one or more interruption
controls are set, based on the operation controls specified in Field 1. When the value of the
operation control indicates set all interruptions mode or set single interruptions mode, Field
2 includes a value designating the interruption subclass for which the interruption control is

to be set.

When the value of the operations controls indicates set adapter event notification
interpretation controls, the second operand address (Field 3) is a logical address of an
adapter interruption parameters block (AIPB) that includes the controls to be set. The
adapter interruption parameters block is used by a host to facilitate the interpretation of (that
is, the forwarding of) adapter interruptions originating from I/O adapters associated with the

adapter event notification facility for pageable storage mode guests.

In one example, the set value of the operation control is stored in a location (e.g., control

block) accessible to firmware and the operating system.

10

15

20

25

30

WO 2011/160704 PCT/EP2010/067019
24

One embodiment of the logic associated with presenting adapter interruption requests to an
operating system taking into account the interruptions mode set for the adapter function

(e.g., ISC) is described with reference to FIG. 6.

Referring to FIG. 6, initially, the processor presents the interruption to the operating system,
STEP 600. That is, the processor determines that the pending indicator is set and presents
the interruption to the operating system. In one particular example, there are two pending
indicators: a CPU-facing pending indicator, which is the indicator checked by the processor
(referred to above as the pending indicator), and a hub-facing indicator, which is set, in
response to receiving an interruption request from the hub. The use of these two indicators

18 further described below.

Responsive to presenting the interruption to the operating system, the processor (e.g.,
firmware) determines whether the interruptions control mode for the ISC is the single
interruption mode, INQUIRY 602. This determination is made by checking the stored
operation control value. If the interruptions mode is the single interruption mode, then
responsive to presenting the interruption to the operating system, the interruptions mode
automatically transitions into a no interruptions mode, STEP 604. In this mode, the
processor resets the CPU-facing indicator (e.g., sets it to 0), STEP 606, but the hub-facing
indicator remains set (e.g., =1), STEP 608. Thus, to the processor there are no interrupts to
be presented and to the hub an interrupt is already presented, so other interrupts are

suppressed.

The operating system processes the indicators. For instance, the operating system
determines whether any AISBs are registered. If not, the operating system processes the set
AIBVs, as described below. Otherwise, the operating system processes any set AISBs and
AIBVs. For example, it checks whether any AISBs are set. If so, it uses the AISB to
determine the location of one or more AIBVs. For example, the operating system
remembers the locations of the AISBs and AIBVs. Furthermore, it remembers for which
adapter each AISB and AIBV represents. Therefore, it may maintain a form of a control
block or other data structure that includes the locations of AISBs and AIBVs and the
association between AISBs, AIBVs and adapter id (handle). It uses this control block to
facilitate the location of an AIBV based on its associated AISB. In a further embodiment, an

AISB is not used. in that situation, the control block is used to locate the particular AIBV.

10

15

20

25

WO 2011/160704 PCT/EP2010/067019

25

Responsive to locating the one or more AIBVs, the operating system scans the AIBVs and
processes any AIBVs. It processes the interruption in a manner consistent with the presented
event (e.g., provides status). For example, with a storage adapter, an event may indicate that
an operation has completed. This results in the operating system checking status stored by
the adapter to see if the operation completed successfully and also details of the operation.
In the case of a storage read, this is an indication that the data read from the adapter is now

available in system memory and can be processed.

The operating system continues to scan and process set bits regardless if they were set by the
interrupt presented to the operating system or a suppressed interrupt. During processing of
the indicators, the operating system may determine, in accordance with an aspect of the
present invention, that another interrupt should be presented allowing at least one other
processor to process set event indicators. In one example, this may be based on policy and is
reconfigurable. For instance, a determination may be made by the operating system that the
adapter event notifications are arriving at a rate faster than can be currently handled by the
operating system (i.e., the operating system cannot timely process the set AIBVs). This
could be determined in a number of ways, including comparing the number of set bits
received or still to be processed to a threshold or by some other mechanism. Many
possibilities exist. Alternatively, the operating system may have completed processing of all
indicators, and prior to exiting the event handler, it may allow additional interruptions to re-

invoke the event handler.

If the operating system determines that another interrupt is not needed, and therefore, the
control mode is not to be changed, INQUIRY 612, then the operating system continues
processing the indicators. Otherwise, the operating system changes the control mode to
either a single or all interruptions mode, STEP 614. This is performed, in one example, by

using the Set Interruptions Controls command.

Responsive to the control mode being set to the single interruption or all interruptions mode,
the CPU-facing indicator and the hub-facing indicator are cleared (e.g., to zeros). Then,
when an interrupt request is received at the hub, those indicators will be set to one enabling a

processor to handle the interruption.

10

15

20

25

30

WO 2011/160704 PCT/EP2010/067019

26

Returning to INQUIRY 602, if it is determined that the operating system is not in a single
interruption mode, then it is assumed that it is in an all interruptions mode and the processor
resets both the CPU and hub-facing indicators (e.g., to zero), STEP 620. This enables other
interrupts to be posted by the hub and other interrupts to be provided to an operating system.
Further, the operating system processes the AISB and AIBV indicators, as described above,
STEP 622. This concludes processing.

As described above, in addition to converting an MSI to an adapter event notification to an
operating system that is not a guest, in a further embodiment, the adapter event notification
may be presented to a guest (e.g., a pageable guest). Further details regarding converting an

MSI request to an adapter event notification to a guest are now described.

Referring again to FIG. 3, initially, certain initialization is performed, STEP 300. In this
example, host initialization and guest initialization are performed. For instance, during host
initialization (or when the first PCI function is assigned to a guest), a host allocates the
forwarding AISB array and the GAIT. The host then registers the locations and lengths of
the forwarding AISB array and the GAIT in, for instance, the adapter interruption
forwarding table (AIFT). In one example, the Set Interruption Controls instruction, is used

to register the locations and lengths of the forwarding AISB array.

Further, the host specifies the host interruption subclass that is to be assigned to PCI adapters
that are assigned to guests. Again, in one example, an instruction, such as the Set
Interruption Controls instruction, is used to specify this information. This information is
also retained in the AIFT entry for the partition for which the host is running. This

concludes host initialization.

During guest initialization, a guest performs a number of tasks to configure its PCI functions
for adapter event notification via an MSI request. In one example, one or more of the
instructions that invoke these functions cause an interception to the host, and therefore, the

host takes action for each interception, as described below.

Initially, the guest determines the PCI functions and the configuration for which it has
access. Inone example, the guest issues an instruction (e.g., a Query List instruction) to
obtain the list of PCI functions, and this instruction is intercepted by the host. Since during

host initialization, the host has already determined which PCI functions are assigned to the

10

15

20

25

30

WO 2011/160704 PCT/EP2010/067019

27

host, responsive to interception of the guest request for the PCI functions, the host constructs
and returns a response to the guest and includes only those PCI functions also further

assigned to the guest by the host.

Thereafter, for each PCI function of the guest configuration, certain processing is performed.
For instance, a determination is made as to the MSI address to be used for the PCI function
and the number of MSI vectors supported by the PCI function. In one example, the MSI
address is determined using a Query Group instruction that provides characteristics common
to a group of adapter functions, and the number of MSI vectors supported by the PCI
function is based on the capabilities of the adapter. The host, during its initialization, has
determined this information, and therefore, responsive to interception of the guest command,
the host constructs and returns a response to the guest that includes the MSI address and the

maximum number of MSI vectors.

Additionally, the AIBV is allocated, as well as the AISB, if any. The AIBV and AISB are
allocated and initialized to zeros, and a register adapter interruption operation is specified.
Responsive to the requested register adapter interruption operation, the host intercepts the
operation and performs registration. This includes, for instance, pinning the guest AIBV in
host storage (that is, fixing the guest page in host memory and making it non-pageable).
Further, if the guest specified an AISB, the host also pins the guest AISB in host storage.
The host assigns an AISB from the forwarding AISB array and implicitly, the corresponding
GAIT entry to the PCI function. Alternatively, if the AISB and the ISC specified by the
guest are the same AISB and ISC registered previously by the guest (for another PCI
function), the host may use the same forwarding AISB and GAIT entry assigned for that
prior request. This reduces overhead. The host copies the guest interruption subclass into
the GAIT array. Ifthe guest specified an AISB, the host copies the host address of the guest
AISB and its offset into GAIT entry. Further, the host copies the guest GISA designation
from its state description into the GAIT entry.

On behalf of the guest, the host executes an instruction, such as a Modify PCI Function
Controls instruction, to specify the register adapter interruptions operation and designates the
following information: the host address and guest offset of the guest AIBV; the host address
and offset of the host AISB and the forwarding AISB array assigned to the adapter; the host

interruption subclass for the adapter; and the number of MSIs specified by the guest.

10

15

20

25

30

WO 2011/160704 PCT/EP2010/067019

28

Responsive to executing the Modify PCI Function Controls instruction, a device table entry
corresponding to the PCI function for which initialization is being performed is selected, and
the various parameters are stored in the device table entry. For instance, the guest AIBV; the
host-selected forwarding AISB; the host ISC; and the number of interruptions are set to
values obtained from configuring the function. Further, various information is registered in
the GAIT, including, for instance, the host address and offset of the guest AISB, the guest
ISC, and the address of the GISA for the guest. This completes the registration process.

Thereafter, the PCI function's configuration space is written. Specifically, the MSI address
and MSI vector count are written into the configuration address space of the PCI function

consistent with the previous registration. This completes guest initialization.

Subsequent to performing initialization, a received MSI is converted to an 1/0O adapter event
notification, STEP 302. Initially, a description of the event for which the interruption is
requested is recorded. Additionally, a request is initiated by the PCI function specifying the
MSI address and the MSI vector number, as well as a requestor ID. This request is received
by the I/O hub and responsive to receiving the request, the requestor ID in the request is used
to locate the device table entry for the PCI function. The I/O hub compares at least a portion
of the address in the request with the value in the MSI compare register. If they are equal, an

MSI is being requested.

Thereafter, a determination is made as to whether the MSI vector number specified in the
request is less than or equal to the number of interruptions (NOIs) allowed for this function.
If the MSI vector number is greater than NOI, an error is indicated. Otherwise, the 1I/0 hub
issues a set bit function to set the appropriate AIBV bit in storage. The appropriate bit is
determined by adding the MSI vector number to the AIBV offset specified in the device
table entry and displacing this a number of bits from the AIBV address specified in the
device table entry. Based on the manner in which the host sets up the registration of the
interruption information, the bit that is set is the guest AIBV that has been pinned in host

storage.

Moreover, if an AISB has been designated, the I/O hub uses a set bit function to set the
AISB, using the zone number (as a relocation zone), the AISB address and the AISB offset

in the device table entry. Again, based on the manner in which the host set up its registration

10

15

20

25

30

WO 2011/160704 PCT/EP2010/067019

29

of the interruption information, the bit that is set is the host AISB in the forwarding AISB
array in host storage. Note that if the system does not support the setting of a single bit,

multiple bits may be set (e.g., a byte) to indicate an adapter event or summary indication.

Next, in one embodiment, a determination is made (e.g., by the CPU or the I/O hub) as to
whether an interruption request is already pending. That is, the pending indicator (e.g.,
CPU-facing pending indicator) is checked to see if it is set. If it is set, then it is not set

again.

Asynchronously, one or more processors check the pending indicator. In particular, each
processor enabled for the ISC (and zone) polls on the indicator when, for instance, interrupts
are enabled for that processor. If one of the processors determines that the indicator is set, it

arbitrates with the other enabled processors to handle the interruption, STEP 304.

To handle the interrupt, the firmware uses the zone number specified in the adapter
interruption request to locate the AIFT entry for the logical partition (zone). Responsive to
locating the AIFT entry, the firmware checks whether the AIFT entry includes a defined
value (e.g., all zeros). Ifthe AIFT entry includes the defined value, there is no host running
guests in the logical partition, and the adapter interruption is made pending for the logical
partition identified by the zone number (or for the operating systems if no logical partitions
are configured). This interruption is then handled as described above with reference to

presenting an interruption to an operating system that is not a guest.

If the AIFT entry does not include the defined value, meaning that there is a host running
one or more guests, then processing continues with checking whether the ISC specified as
part of the adapter interruption request is equal to the ISC in the AIFT entry. If the ISC
specified as part of the adapter interruption request does not equal the ISC in the AIFT entry,
the adapter interruption request is not targeted to a guest, and is made pending for the logical
partition identified by the zone number (i.e., the host). Processing then proceeds as
described above with reference to the presenting an interruption to an operating system that

is not a guest.

Otherwise, the ISC specified as part of the adapter interruption request does equal the ISC in
the AIFT entry, meaning that the adapter interruption request is targeted to a guest. The
firmware uses the forwarding AISB array address and length in the AIFT entry to scan the

10

15

20

25

WO 2011/160704 PCT/EP2010/067019
30

forwarding AISB array designated by the host looking for indicators (e.g., bits) that are set to
one. For each indicator that is set to one, the firmware uses information in the corresponding

GAIT entry to process that indicator.

Initially, a determination is made as to whether the GAIT entry includes a defined value
(e.g., all zeros), meaning that the adapter interruption is not targeted to a guest, INQUIRY
750. Ifthe GAIT entry does include the defined value, the adapter interruption is made

pending for the host. The interrupt is presented to the host as described above.

However, if the GAIT entry does not include the defined value meaning that the adapter
interruption is targeted to the corresponding guest, then a number of steps are performed to
complete the forwarding of the adapter event notification to the guest. For example, if the
guest AISB address in the GAIT entry does not include a defined value (e.g., all zeros), the
guest AISB address and the guest AISB offset are used to set the guest AISB to one.

Further, the guest interruption subclass in the GISA designation in the GAIT entry is used to
make the interruption pending in the GISA for the guest. In accordance with an aspect of the
present invention, as part of this process, the interruption mode is set for the adapter function
(i.e., the ISC). In one example, interruption mode controls are provided in the guest
interruption state area (GISA) for pageable guests. As described above, the guest
interruption state area is where pending adapter interruptions are queued for pageable guests,
and in accordance with an aspect of the present invention, the GISA is extended to include
two bit masks — one for single interruption mode (SIMM) and one for no interruptions mode
(NIMM). This allows interruption suppression to be managed for a virtually unlimited
number of guests, since the state is tracked in a per-guest data structure in host memory
rather than in dedicated per-guest hardware. (One or more aspects of the present invention

pertain to guests without dedicated interruption hardware.)

In this particular example, each mask has one bit per guest interruption subclass. The

following represents an example of the interruption mode for the guest ISC:
SIMM.isc = 0 — all-interruptions mode;

SIMM.isc = 1, NIMM.isc = 0 — single-interruption mode; and

10

15

20

25

WO 2011/160704 PCT/EP2010/067019

31

SIMM.is¢c = 1, NIMM.isc = 1 — no-interruptions mode.

To set the single and all interruption mode controls, the Set Interruption Controls instruction
is used. It is interpreted by performing an interlocked update on these masks and the
interruption pending mask (IPM), which serializes against other accesses to the GISA. As
an example, to set the all interruptions mode for a given ISC, the bit position indexed by the
ISC in the SIMM and NIMM fields of the GISA are set to zero. Further, to set the single
interruption mode, the bit position indexed by the ISC in the SIMM field is set to one and in
the NIMM field to zero. For the no interruptions mode, the bit position indexed by the ISC
in the SIMM and NIMM fields are set to 1.

When an adapter interruption is made pending for an ISC in the GISA, the following bits are

interrogated and updated as appropriate:

If SIMM.1s¢c=0 (all interruptions mode), the interruption is made pending in IPM.isc,
and host alerting is performed if requested by [AM.isc. The SIMM and NIMM bits
are left unchanged. (Interruptions posted in all interruption mode leave the mode

unchanged.)

If SIMM.isc=1 and NIMM.isc=0 (single interruption mode), the interruption is made
pending in IPM.isc, and host alerting is performed, if requested by IAM.isc. In
addition, NIMM.isc is also set to 1 at this time. This reflects a transition from single

to no interruptions mode on posting an interruption.

If SIMM.isc=1 and NIMM.isc=1 (no interruptions mode), then the interruption
request is ignored. No change is made to the IPM, IAM, SIMM, or NIMM fields in
the GISA.

The inspection and update to SIMM and NIMM are incorporated into the existing
interlocked updated used to post the interruption. This ensures that a consistent state is
maintained, and serializes the posting of the interruption against other GISA activity such as

interruption presentation or SIC interpretation.

In addition to the above, as part of forwarding the adapter event notification to the guest, if

host alerting is requested for the GISC (e.g., the bit corresponding to the GISC in the

10

15

20

25

30

WO 2011/160704 PCT/EP2010/067019

32

interruption alerting mask (IAM) of the GISA is set to one), a host alerting adapter

interruption is made pending.

The setting of the IPM bit is equivalent to the CPU's pending indicator and whenever a guest
CPU enables for the ISC, the interruption is presented to the guest CPU absent host
intervention. At the time the IPM bit is set to one, the bit specifying that an adapter
interruption is pending for PCI functions is set in the adapter interruption source mask

corresponding to the GISC.

Responsive to setting the IPM in the GISA, a processor enabled for the guest ISC determines
that this indicator has been set and presents the interruption to the guest operating system.
This processing is described further with reference to FIG. 7. Initially, the interruption is
made pending in the GISA, as described above, STEP 700. A processor polling on this
indicator determines that the bit has been set, and when it is enabled, it presents the
interruption to the operating system, STEP 702. Responsive to receiving this indication, the
operating system begins processing any set AISB and AIBV indicators, as described above,
STEP 704. During this processing, the operating system determines whether the
interruptions control mode is to be changed, STEP 706. That is, if it is keeping pace with
processing the set indicators, then it does not make a change. However, if the operating
system determines that another interrupt request is to be made pending, then it changes the
control mode using, for instance, the Set Interruption Controls instruction, as described

above, STEP 708. This controls the rate of interrupt processing.

Further details regarding the Modify PCI Function Controls instruction used to register
adapter interruptions is described herein. Referring to FIG. 9A, a Modify PCI Function
Controls instruction 900 includes, for instance, an op code 902 indicating the Modify PCI
Function Controls instruction; a first field 904 specifying a location at which various
information is included regarding the adapter function for which the operational parameters
are being established; and a second field 906 specifying a location from which a PCI
function information block (FIB) is fetched. The contents of the locations designated by
Fields 1 and 2 are further described below.

In one embodiment, Field 1 designates a general register that includes various information.

As shown in FIG. 9B, the contents of the register include, for instance, a function handle 910

10

15

20

25

WO 2011/160704 PCT/EP2010/067019

33

that identifies the handle of the adapter function on behalf of which the modify instruction is
being performed; an address space 912 designating an address space in system memory
associated with the adapter function designated by the function handle; an operation control
914 which specifies the operation to be performed for the adapter function; and status 916
which provides status regarding the instruction when the instruction completes with a

predefined code.

In one embodiment, the function handle includes, for instance, an enable indicator indicating
whether the handle is enabled, a function number that identifies an adapter function (this is a
static identifier and may be used to index into a function table); and an instance number
specifying the particular instance of this function handle. There is one function handle for
cach adapter function, and it is used to locate a function table entry (FTE) within the
function table. Each function table entry includes operational parameters and/or other
information associated with its adapter function. As one example, a function table entry

includes:

Instance Number: This field indicates a particular instance of the adapter function

handle associated with the function table entry;

Device Table Entry (DTE) Index 1...n: There may be one or more device table
indices, and each index is an index into a device table to locate a device table entry
(DTE). There are one or more device table entries per adapter function, and each
entry includes information associated with its adapter function, including information
used to process requests of the adapter function (e.g., DMA requests, MSI requests)
and information relating to requests associated with the adapter function (e.g., PCI
instructions). Each device table entry is associated with one address space within
system memory assigned to the adapter function. An adapter function may have one

or more address spaces within system memory assigned to the adapter function.
Busy Indicator: This field indicates whether the adapter function is busy;

Permanent Error State Indicator: This field indicates whether the adapter function is

in a permanent error state;

10

15

20

25

WO 2011/160704 PCT/EP2010/067019

34

Recovery Initiated Indicator: This field indicates whether recovery has been initiated

for the adapter function;

Permission Indicator: This field indicates whether the operating system trying to

control the adapter function has authority to do so;

Enable Indicator: This field indicates whether the adapter function is enabled (e.g.,
I=enabled, 0=disabled);

Requestor Identifier (RID): This is an identifier of the adapter function, and

includes, for instance, a bus number, a device number and a function number.

In one example, this field is used for accesses of a configuration space of the adapter
function. (Memory of an adapter may be defined as address spaces, including, for
instance, a configuration space, an I/0 space, and/or one or more memory spaces.)
In one example, the configuration space may be accessed by specifying the
configuration space in an instruction issued by the operating system (or other
configuration) to the adapter function. Specified in the instruction is an offset into
the configuration space and a function handle used to locate the appropriate function
table entry that includes the RID. The firmware receives the instruction and
determines it is for a configuration space. Therefore, it uses the RID to generate a
request to the I/O hub, and the I/O hub creates a request to access the adapter. The
location of the adapter function is based on the RID, and the offset specifies an offset

into the configuration space of the adapter function.

Base Address Register (BAR) (1 to n): This field includes a plurality of unsigned
integers, designated as BARy — BAR,, which are associated with the originally
specified adapter function, and whose values are also stored in the base address
registers associated with the adapter function. Each BAR specifies the starting
address of a memory space or 1/0 space within the adapter function, and also
indicates the type of address space, that is whether it is a 64 or 32 bit memory space,

or a 32 bit I/O space, as examples;

In one example, it is used for accesses to memory space and/or I/O space of the

adapter function. For instance, an offset provided in an instruction to access the

10

15

20

25

WO 2011/160704 PCT/EP2010/067019

35

adapter function is added to the value in the base address register associated with the
address space designated in the instruction to obtain the address to be used to access
the adapter function. The address space identifier provided in the instruction
identifies the address space within the adapter function to be accessed and the

corresponding BAR to be used;

Size 1...n: This field includes a plurality of unsigned integers, designated as SIZE;—
SIZE,. The value of a Size field, when non-zero, represents the size of each address

space with each entry corresponding to a previously described BAR.

Further details regarding BAR and Size are described below.

1. When a BAR is not implemented for an adapter function, the BAR field and its

corresponding size field are both stored as zeros.

2. When a BAR field represents either an I/0 address space or a 32-bit memory
address space, the corresponding size field is non-zero and represents the size of the

address space.
3. When a BAR field represents a 64-bit memory address space,
a. The BAR,, field represents the least significant address bits.

b. The next consecutive BAR,; field represents the most significant address

bits.

c. The corresponding SIZE, field is non-zero and represents the size of the

address space.
d. The corresponding SIZE,;, field is not meaningful and is stored as zero.

Internal Routing Information: This information is used to perform particular routing
to the adapter. It includes, for instance, node, processor chip, and hub addressing

information, as examples.

Status Indication: This provides an indication of, for instance, whether load/store

operations are blocked or the adapter is in the error state, as well as other indications.

10

15

20

25

WO 2011/160704 PCT/EP2010/067019
36

In one example, the busy indicator, permanent error state indicator, and recovery initiated
indicator are set based on monitoring performed by the firmware. Further, the permission
indicator is set, for instance, based on policy; and the BAR information is based on
configuration information discovered during a bus walk by the processor (e.g., firmware of
the processor). Other fields may be set based on configuration, initialization, and/or events.
In other embodiments, the function table entry may include more, less or different
information. The information included may depend on the operations supported by or

enabled for the adapter function.

Referring to FIG. 9C, in one example, Field 2 designates a logical address 920 of a PCI
function information block (FIB), which includes information regarding an associated
adapter function. The function information block is used to update a device table entry
and/or function table entry (or other location) associated with the adapter function. The
information is stored in the FIB during initialization and/or configuration of the adapter,

and/or responsive to particular events.

Further details regarding a function information block (FIB) are described with reference to

FIG. 9D. In one embodiment, a function information block 950 includes the following
fields:

Format 951: This field specifies the format of the FIB.

Interception Control 952: This field is used to indicate whether guest execution of

specific instructions by a pageable mode guest results in instruction interception;

Error Indication 954: This field includes the error state indication for direct memory
access and adapter interruptions. When the bit is set (e.g., 1), one or more errors
have been detected while performing direct memory access or adapter interruption

for the adapter function;

Load/Store Blocked 956: This field indicates whether load/store operations are
blocked;

10

15

20

25

WO 2011/160704 PCT/EP2010/067019

37

PCI Function Valid 958: This field includes an enablement control for the adapter
function. When the bit is set (e.g., 1), the adapter function is considered to be

enabled for I/0 operations;

Address Space Registered 960: This field includes a direct memory access
enablement control for an adapter function. When the field is set (e.g., 1) direct

memory access is enabled;

Page Size 961: This field indicates the size of the page or other unit of memory to be

accessed by a DMA memory access;

PCI Base Address (PBA) 962: This field is a base address for an address space in
system memory assigned to the adapter function. It represents the lowest virtual
address that an adapter function is allowed to use for direct memory access to the

specified DMA address space;

PCI Address Limit (PAL) 964: This field represents the highest virtual address that

an adapter function is allowed to access within the specified DMA address space;

Input/Output Address Translation Pointer (IOAT) 966: The input/output address
translation pointer designates the first of any translation tables used by a PCI virtual
address translation, or it may directly designate the absolute address of a frame of

storage that is the result of translation;

Interruption Subclass (ISC) 968: This field includes the interruption subclass used to

present adapter interruptions for the adapter function;

Number of Interruptions (NOI) 970: This field designates the number of distinct
interruption codes accepted for an adapter function. This field also defines the size,
in bits, of the adapter interruption bit vector designated by an adapter interruption bit

vector address and adapter interruption bit vector offset fields;

Adapter Interruption Bit Vector Address (AIBV) 972: This field specifies an address
of the adapter interruption bit vector for the adapter function. This vector is used in

interrupt processing;

10

15

20

25

WO 2011/160704 PCT/EP2010/067019

38

Adapter Interruption Bit Vector Offset 974: This field specifies the offset of the first

adapter interruption bit vector bit for the adapter function;

Adapter Interruption Summary Bit Address (AISB) 976: This field provides an
address designating the adapter interruption summary bit, which is optionally used in

interrupt processing;

Adapter Interruption Summary Bit Offset 978: This field provides the offset into the

adapter interruption summary bit vector;

Function Measurement Block (FMB) Address 980: This field provides an address of
a function measurement block used to collect measurements regarding the adapter

function;

Function Measurement Block Key 982: This field includes an access key to access

the function measurement block;

Summary Bit Notification Control 984: This field indicates whether there is a

summary bit vector being used;

Instruction Authorization Token 986: This field is used to determine whether a
pageable storage mode guest is authorized to execute PCI instructions without host

intervention; and

Address Translation Format 987: This field indicates a selected format for address
translation of the highest level translation table to be used in translation (e.g.,

segment table, region 3rd, etc).

The function information block designated in the Modify PCI Function Controls instruction
is used to modify a selected device table entry, a function table entry and/or other firmware
controls associated with the adapter function designated in the instruction. By modifying the
device table entry, function table entry and/or other firmware controls, certain services are
provided for the adapter. These services include, for instance, adapter interruptions; address
translations; reset error state; reset load/store blocked; set function measurement parameters;

and set interception control.

10

15

20

25

WO 2011/160704 PCT/EP2010/067019

39

One embodiment of the logic associated with the Modify PCI Function Controls instruction
is described with reference to FIG. 10. In one example, the instruction is issued by an
operating system (or other configuration) and executed by the processor (e.g., firmware)
executing the operating system. In the examples herein, the instruction and adapter
functions are PCI based. However, in other examples, a different adapter architecture and

corresponding instructions may be used.

In one example, the operating system provides the following operands to the instruction
(e.g., in one or more registers designated by the instruction): the PCI function handle; the
DMA address space identifier; an operation control; and an address of the function

information block.

Referring to FIG. 10, initially, a determination is made as to whether the facility allowing for
a Modify PCI Function Controls instruction is installed, INQUIRY 1000. This
determination is made by, for instance, checking an indicator stored in, for instance, a
control block. Ifthe facility is not installed, an exception condition is provided, STEP 1002.
Otherwise, a determination is made as to whether the instruction was issued by a pageable
storage mode guest (or other guest), INQUIRY 1004. If yes, the host operating system will
emulate the operation for that guest, STEP 1006.

Otherwise, a determination is made as to whether one or more of the operands are aligned,
INQUIRY 1008. For instance, a determination is made as to whether the address of the
function information block is on a double word boundary. In one example, this is optional.
If the operands are not aligned, then an exception condition is provided, STEP 1010.
Otherwise, a determination is made as to whether the function information block is
accessible, INQUIRY 1012. If not, then an exception condition is provided, STEP 1014.
Otherwise, a determination is made as to whether the handle provided in the operands of the
Modify PCI Function Controls instruction is enabled, INQUIRY 1016. In one example, this
determination is made by checking an enable indicator in the handle. If the handle is not

enabled, then an exception condition is provided, STEP 1018.

If the handle is enabled, then the handle is used to locate a function table entry, STEP 1020.

That is, at least a portion of the handle is used as an index into the function table to locate the

10

15

20

25

30

WO 2011/160704 PCT/EP2010/067019

40

function table entry corresponding to the adapter function for which operational parameters

are to be established.

A determination is made as to whether the function table entry was found, INQUIRY 1022.
If not, then an exception condition is provided, STEP 1024. Otherwise, if the configuration
issuing the instruction is a guest, INQUIRY 1026, then an exception condition (e.g.,
interception to the host) is provided, STEP 1028. This inquiry may be ignored if the

configuration is not a guest or other authorizations may be checked, if designated.

A determination is then made as to whether the function is enabled, INQUIRY 1030. In one
example, this determination is made by checking an enable indicator in the function table

entry. If it is not enabled, then an exception condition is provided, STEP 1032.

If the function is enabled, then a determination is made as to whether recovery is active,
INQUIRY 1034. Ifrecovery is active as determined by a recovery indicator in the function
table entry, then an exception condition is provided, STEP 1036. However, if recovery is
not active, then a further determination is made as to whether the function is busy,
INQUIRY 1038. This determination is made by checking the busy indicator in the function
table entry. Ifthe function is busy, then a busy condition is provided, STEP 1040. With the

busy condition, the instruction can be retried, instead of dropped.

If the function is not busy, then a further determination is made as to whether the function
information block format is valid, INQUIRY 1042. For instance, the format ficld of the FIB
is checked to determine if this format is supported by the system. If it is invalid, then an
exception condition is provided, STEP 1044. If the function information block format is
valid, then a further determination is made as to whether the operation control specified in
the operands of the instruction is valid, INQUIRY 1046. That is, is the operation control one
of the specified operation controls for this instruction. If it is invalid, then an exception
condition is provided, STEP 1048. However, if the operation control is valid, then

processing continues with the specific operation control being specified.

In one example, the operation control is a register adapter interruptions operation, which is
used for controlling adapter interruptions. Responsive to this operation control, the adapter
function parameters relevant to adapter interruptions are set in the device table entry based

on the appropriate contents of the function information block.

10

15

20

25

30

WO 2011/160704 PCT/EP2010/067019
41

One embodiment of the logic associated with this operation is described with reference to
FIG. 11. As one example, the operands for this operation, which are obtained from the
function information block, include for instance: an interruption subclass (ISC); number of
interruptions allowed (NOI); an adapter interruption bit vector offset (AIBVO); a summary
notification (S); an adapter interruption summary bit vector offset (ABVSO); an adapter
interruption bit vector (AIBV) address; and an adapter interruption summary bit vector
(AISB) address.

Referring to FIG. 11, initially, a determination is made as to whether the number of
interruptions (NOIs) specified in the FIB is greater than a model-dependent maximum,
INQUIRY 1100. Ifso, then an exception condition is provided, STEP 902. However, if the
number of interruptions is not greater than the model-dependent maximum, then a further
determination is made as to whether the number of interruptions added to the adapter
interruption bit vector offset (NOI + AIBVO) is greater than a model-dependent maximum,
INQUIRY 1104. If so, then an exception condition is provided, STEP 1106. If the NOI plus
the AIBVO is not greater than a model-dependent maximum, then a further determination is
made as to whether the AIBV address plus the NOI spans a 4k boundary, INQUIRY 1108.
If it does span the 4k boundary, then an exception condition is provided, STEP 1110.
Otherwise, a determination is made as to whether sufficient resources are available for any
resources needed, STEP 1112. If there are not sufficient resources, then an exception

condition is provided, STEP 1114.

Otherwise, a determination is made as to whether adapter interruptions are already registered
for this function, STEP 1116. In one embodiment, this would be determined by checking
one or more of the parameters (e.g., in the DTE/FTE). In particular, parameters associated
with interruptions, such as NOI, are checked. If the fields are populated, then the adapter is
registered for interrupts. If the adapter is already registered, then an exception condition is
provided, STEP 1118. Otherwise, the interruption parameters are obtained from the FIB and
placed in the device table entry and optionally, in the corresponding function table entry
(FTE) (or other specified location). Also, an MSI enablement indicator is set in the DTE,
STEP 1120. That is, the PCI function parameters relevant to adapter interruption are set in

the DTE and optionally, in the FTE based on the information retrieved from the function

10

15

20

25

WO 2011/160704 PCT/EP2010/067019
42

information block. These parameters include, for instance, the ISC, NOI, AIBVO, S,
AIBVSO, AIBV address and the AISB address.

In addition to the above, another operation control that can be specified is an unregister
adapter interruptions operation, an example of which is described with reference to FIG. 12.
With this operation, the adapter function parameters relevant to adapter interruption are

reset.

Referring to FIG. 12, initially, a determination is made as to whether the adapter specified by
the function handle is registered for interrupts, INQUIRY 1200. If not, then an exception
condition is provided, STEP 1202. Otherwise, the interruption parameters in the function
table entry (or other location) and corresponding device table entry are set to zeros,
INQUIRY 1204. In one example, these parameters include the ISC, NOI, AIBVO, S,
AIBSO, AIBV address and AISB address.

As described above, in one embodiment, to obtain the information regarding an adapter
function, a Call Logical Processor instruction is used. One embodiment of this instruction is
depicted in FIG. 13A. As shown, in one example, a Call Logical Processor (CLP)
instruction 1300 includes an operation code 1302 indicating that it is the Call Logical
Processor instruction; and an indication for a command 1304. In one example, this
indication is an address of a request block that describes the command to be performed, and
the information in the request block is dependent on the command. Examples of request
blocks and corresponding response blocks for various commands are described with

reference to FIGs. 13B-15B.

Referring initially to FIG. 13B, a request block for a list PCI functions command is
provided. The list PCI functions command is used to obtain a list of PCI functions that are
assigned to the requesting configuration (e.g., the requesting operating system). A request

block 1320 includes a number of parameters, such as, for instance:
Length field 1322: This field indicates the length of the request block;

Command Code 1324: This ficld indicates the list PCI functions command; and

10

15

20

25

WO 2011/160704 PCT/EP2010/067019
43

Resume Token 1326: This field is an integer that is used to either start a new list PCI
functions command or resume a previous list PCI functions command, as described

in further detail below.

When the resume token field in the command request block includes, for instance, a
value of zero, a new list of PCI functions is requested. When the resume token field
includes, for instance, a non-zero value, which was returned from a previous list PCI

functions command, a continuation of a previous list of PCI functions is requested.

Responsive to issuing and processing the Call Logical Processor instruction for a list PCI
functions command, a response block is returned. One embodiment of the response block is
depicted in FIG. 13C. In one example, a response block 1350 for a list PCI functions

command includes:
Length field 1352: This field indicates the length of the response block;
Response Code 1354: This field indicates a status of the command;

PCI Function List 1356: This field indicates a list of one or more PCI functions

available to the requesting operating system;

Resume Token 1358: This field indicates whether a continuation of a previous list of
PCI functions is requested. In one example, when the resume token in the request
block and the resume token in the response block are zero, all PCI functions assigned
to the requesting configuration are represented in the PCI function list; if the resume
token in the request block is zero and the resume token in the response block is not
zero, additional PCI functions assigned to the request configuration may exist that
have not been represented in the list; if the resume token in the request block is not
zero and the resume token in the response block is zero, from the resume point,
remaining PCI functions assigned to the requesting configuration are represented in
the list; when both the resume tokens in the request and response block are not zero
from the resume point, additional PCI functions assigned to the requesting
configuration may exist that have not been represented in any associated PCI

function list. The resume token remains valid for an indefinite period of time after

10

15

20

25

WO 2011/160704 PCT/EP2010/067019

44

being returned, but it may be invalid due to a variety of model dependent reasons,

including system load elapse time;
Model Dependent Data 1360: This field includes data that depends on the system;

Number of PCI Functions 1362: This field indicates the maximum number of PCI

functions supported by the facility; and
Entry Size 1364: This field indicates the size of each entry in the PCI function list.

Further details regarding the PCI function list are described with reference to FIG.
13D. In one example, the PCI function list includes a plurality of entries and each

entry 1356 includes the following information, as an example:

Device ID 1370: This field indicates the 1/0 adapter associated with the

corresponding PCI function;

Vendor ID 1372: This field identifies the manufacturer of the I/O adapter associated

with the corresponding PCI function;

Function Identifier 1374: This field includes a persistent identifier of the PCI

function;

Function Handle 1376: This field identifies a PCI function. The PCI function handle
stored is a general handle when a specified bit of the handle is zero, and it is an
enabled handle when that bit is one. If the PCI function is disabled, a general PCI
function handle is stored. Ifthe PCI function is enabled, an enabled PCI function
handle is stored. A PCI function handle is not, in one example, persistent beyond an
IPL, which differs from the PCI function ID, which is persistent and is set for the life

of the I/O configuration definition; and

Configuration State 1378: This field indicates the state of the PCI function. When
this indicator is, for instance, zero, the state is standby, and when, for instance, one,
the state is configured. When in standby, the PCI function handle is the general PCI
function handle, and when configured, it is either the general or enabled PCI function

handle depending on whether the PCI function is enabled.

10

15

20

25

WO 2011/160704 PCT/EP2010/067019

45

Subsequent to obtaining the list of adapter functions, information may be obtained regarding
the attributes of a selected function as designated by a specified PCI function handle. This

information may be obtained by issuing a CLP instruction with a query function command.

One embodiment of the request block for a query PCI function command is described with

reference to FIG. 14A. In one example, request block 1400 includes, for instance:
Length field 1402: This field indicates the length of the request block;
Command Code 1404: This field indicates the query PCI function command; and

Function Handle 1406: This field includes the PCI function handle (e.g., general or
enabled) that designates the PCI function to be queried.

Responsive to issuing the Call Logical Processor instruction for the query PCI function
command, a response block is returned. One embodiment of the response block is depicted

in FIG. 14B. In one example, a response block 1250 includes the following:
Length 1452: This field indicates the length of the response block;
Response Code 1454: This field indicates a status of the command,;

Function Group ID 1456: This field indicates the PCI function group identifier. A
PCI function group identifier is used to associate a group of PCI functions with a set
of attributes (also referred to herein as characteristics). Each PCI function with the

same PCI function group identifier has the same set of attributes;

Function ID 1458: The PCI function id is a persistent identifier of the PCI function
originally specified by the PCI function handle and is set for the life of the I/O

configuration definition;

Physical Channel Adapter 1460: This value represents a model dependent
identification of the location of the physical I/O adapter which corresponds to the

PCI function;

Base Address Registers (BARs) 1...n 1462: This field includes a plurality of
unsigned integers, designated as BAR, — BAR,,, which are associated with the

10

15

20

25

WO 2011/160704 PCT/EP2010/067019

46

originally specified PCI function, and whose values are also stored in the base
address registers associated with the PCI function. Each BAR specifies the starting
address of a memory space or 1/0O space within the adapter, and also indicates the
type of address space, that is whether it is a 64 or 32 bit memory space, or a 32 bit

I/O space, as examples;

Size 1....n 1464: This field includes a plurality of unsigned integers, designated as
SIZE,— SIZE,. The value of a Size field, when non-zero, represents the size of each

address space with each entry corresponding to a previously described BAR.

Start Available DMA 1466: This field includes an address which indicates the

beginning of a range of PCI addresses that are available for DMA operations;

End Available DMA 1468: This ficld includes a value which indicates the end of a

range of PCI addresses that are available for DMA operations.

In addition to obtaining attributes regarding the specific adapter function, attributes may also
be obtained regarding the group that includes this function. These common attributes may
be obtained from issuing a CLP instruction with a query PCI function group command. This
command is used to obtain a set of characteristics that are supported for a group of one or
more PCI functions designated by the specified PCI function group identifier. A PCI
function group identifier is used to associate a group of PCI functions with the same set of
characteristics. One embodiment of request block for the query PCI function group
command is described with reference to FIG. 15A. In one example, request block 1500

includes the following:
Length field 1502: This field indicates the length of the request block;

Command Code 1504: This field indicates the query PCI function group command;

and

Function Group ID 1506: This field specifies the PCI function group identifier for

which attributes are to be obtained.

10

15

20

25

WO 2011/160704 PCT/EP2010/067019

47

Responsive to issuing and processing the Call Logical Processor instruction with a query
PCI function group command, a response block is returned. One embodiment of the

response block is depicted in FIG. 15B. In one example, a response block 1550 includes:
Length Field 1552: This field indicates the length of the response block;
Response Code 1554: This field indicates a status of the command;

Number of Interruptions 1556: This field indicates the maximum number of
consecutive MSI vector numbers (i.e., interruption event indicators) that are
supported by the PCI facility for each PCI function in the specified PCI function
group. The possible valid values of the number of interruptions are in the range of

zero to 2,048, in one example;

Version 1558: This field indicates the version of the PCI specification that is
supported by the PCI facility to which the group of PCI functions designated by the
specified PCI group identifier are attached;

Frame 1562: This field indicates the frame (or page) sizes supported for I/O address

translation;

Measurement Block Update Interval 1564: This is a value indicating the
approximate time interval (e.g., in milliseconds) at which the PCI function

measurement block is updating;

DMA Address Space Mask 1566: This is a value used to indicate which bits in a PCI
address are used to identify a DMA address space; and

MSI Address 1568: This is a value that is to be used for message signal interruption

requests.

The query list and function commands described above retrieve information from, for
instance, the function table. At initialization time, or after a hot plug of an adapter, firmware
performs a bus walk to determine the location of the adapter and determines its basic
characteristics. This information is stored by the firmware into the function table entry

(FTE) for each adapter. Accessibility to the adapter is determined based on policy set by a

10

15

20

25

30

WO 2011/160704 PCT/EP2010/067019

48

system administrator and is also set by firmware into the FTE. The query list and function
commands can then retrieve this information and store it in their respective response blocks

accessible to the operating system.

Further, the group information is based on a given system 1/0O infrastructure and the
capabilities of the firmware and the I/O hub. This may be stored in the FTE or any other
convenient location for later retrieval during the query processing. In particular, the query
group command retrieves the information and stores it in its response block accessible to the

operating system.

In accordance with an aspect of the present invention, fine-grained controls are provided to
throttle the delivery of adapter interruptions to an operating system. These controls provide
the operating system with the capability to control the number of interruptions pending for
all CPUs, and therefore, presented. This further enables the number of CPUs running
interruption handling tasks for PCI functions to be controlled. In one aspect, with one single
execution of an instruction, for any CPUs enabled for a given ISC, an interruption can be
processed by any of those enabled CPUs. An instruction does not need to be executed on

each CPU.

In one example, a control is provided to the operating system that enables the operating
system to suppress requests for additional adapter interruptions from adapter functions (e.g.,
of a specific type, such as PCI) for the entire configuration, responsive to recognition of a
single adapter interruption request for an interruption subclass. This provides adapter
interruption handling initiative on a single CPU. As long as the interruption handling on the
single CPU is maintaining pace (¢.g., within a defined range or based on thresholds) with the
arrival of new adapter event indications, no additional adapter interruption is necessary.

This reduces the context switching overhead that would be incurred by additional adapter

interruptions.

However, if the operating system determines that adapter event notifications are arriving at a
rate that is faster than can be currently handled, the controls allow the operating system to
remove the adapter interruption suppression so that an additional adapter interruption request
can be recognized by another CPU, thereby giving an additional initiative to adapter

interruption handling.

10

15

20

25

30

WO 2011/160704 PCT/EP2010/067019

49

Further, in another aspect, when the interruptions mode is the no interruptions mode and
there is no more work for the operating system to perform (that is, when all the AISBs and
AIBVs are zero), the operating system can choose to place the system back in single
interruption mode or in all interruptions mode. This enables the operating system to perform

other types of work until another interruption request is posted.

In the embodiments described herein, the adapters are PCI adapters. PCI, as used herein,
refers to any adapters implemented according to a PCI-based specification as defined by the
Peripheral Component Interconnect Special Interest Group (PCI-SIG)
(www.pcisig.com/home), including but not limited to, PCI or PCle. In one particular
example, the Peripheral Component Interconnect Express (PCle) is a component level
interconnect standard that defines a bi-directional communication protocol for transactions
between I/0 adapters and host systems. PCle communications are encapsulated in packets
according to the PCle standard for transmission on a PCle bus. Transactions originating at
I/O adapters and ending at host systems are referred to as upbound transactions.
Transactions originating at host systems and terminating at 1/O adapters are referred to as
downbound transactions. The PCle topology is based on point-to-point unidirectional links
that are paired (e.g., one upbound link, one downbound link) to form the PCle bus. The
PCle standard is maintained and published by the PCI-SIG.

As will be appreciated by one skilled in the art, aspects of the present invention may be
embodied as a system, method or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware embodiment, an entirely
software embodiment (including firmware, resident software, micro-code, etc.) or an
embodiment combining software and hardware aspects that may all generally be referred to

herein as a "circuit,” "module" or "system". Furthermore, aspects of the present invention
may take the form of a computer program product embodied in one or more computer

readable medium(s) having computer readable program code embodied thereon.

Any combination of one or more computer readable medium(s) may be utilized. The
computer readable medium may be a computer readable storage medium. A computer
readable storage medium may be, for example, but not limited to, an electronic, magnetic,
optical, electromagnetic, infrared or semiconductor system, apparatus, or device, or any

suitable combination of the foregoing. More specific examples (a non-exhaustive list) of the

10

15

20

25

30

WO 2011/160704 PCT/EP2010/067019

50

computer readable storage medium include the following: an electrical connection having
one or more wires, a portable computer diskette, a hard disk, a random access memory
(RAM), a read-only memory (ROM), an erasable programmable read-only memory
(EPROM or Flash memory), an optical fiber, a portable compact disc read-only memory
(CD-ROM), an optical storage device, a magnetic storage device, or any suitable
combination of the foregoing. In the context of this document, a computer readable storage
medium may be any tangible medium that can contain or store a program for use by or in

connection with an instruction execution system, apparatus, or device.

Referring now to FIG. 16, in one example, a computer program product 900 includes, for
instance, one or more computer readable storage media 1602 to store computer readable
program code means or logic 1604 thereon to provide and facilitate one or more aspects of

the present invention.

Program code embodied on a computer readable medium may be transmitted using an
appropriate medium, including but not limited to wireless, wireline, optical fiber cable, RF,

etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for aspects of the present invention may
be written in any combination of one or more programming languages, including an object
oriented programming language, such as Java, Smalltalk, C++ or the like, and conventional
procedural programming languages, such as the "C" programming language, assembler or
similar programming languages. The program code may execute entirely on the user's
computer, partly on the user's computer, as a stand-alone software package, partly on the
user's computer and partly on a remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be connected to the user's computer
through any type of network, including a local area network (LAN) or a wide area network
(WAN), or the connection may be made to an external computer (for example, through the

Internet using an Internet Service Provider).

Aspects of the present invention are described herein with reference to flowchart illustrations
and/or block diagrams of methods, apparatus (systems) and computer program products
according to embodiments of the invention. It will be understood that each block of the

flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart

10

15

20

25

30

WO 2011/160704 PCT/EP2010/067019

51

illustrations and/or block diagrams, can be implemented by computer program instructions.
These computer program instructions may be provided to a processor of a general purpose
computer, special purpose computer, or other programmable data processing apparatus to
produce a machine, such that the instructions, which execute via the processor of the
computer or other programmable data processing apparatus, create means for implementing

the functions/acts specified in the flowchart and/or block diagram block or blocks.

These computer program instructions may also be stored in a computer readable medium
that can direct a computer, other programmable data processing apparatus, or other devices
to function in a particular manner, such that the instructions stored in the computer readable
medium produce an article of manufacture including instructions which implement the

function/act specified in the flowchart and/or block diagram block or blocks.

The computer program instructions may also be loaded onto a computer, other
programmable data processing apparatus, or other devices to cause a series of operational
steps to be performed on the computer, other programmable apparatus or other devices to
produce a computer implemented process such that the instructions which execute on the
computer or other programmable apparatus provide processes for implementing the

functions/acts specified in the flowchart and/or block diagram block or blocks.

The flowchart and block diagrams in the figures illustrate the architecture, functionality, and
operation of possible implementations of systems, methods and computer program products
according to various embodiments of the present invention. In this regard, each block in the
flowchart or block diagrams may represent a module, segment, or portion of code, which
comprises one or more executable instructions for implementing the specified logical
function(s). It should also be noted that, in some alternative implementations, the functions
noted in the block may occur out of the order noted in the figures. For example, two blocks
shown in succession may, in fact, be executed substantially concurrently, or the blocks may
sometimes be executed in the reverse order, depending upon the functionality involved. It
will also be noted that each block of the block diagrams and/or flowchart illustration, and
combinations of blocks in the block diagrams and/or flowchart illustration, can be
implemented by special purpose hardware-based systems that perform the specified

functions or acts, or combinations of special purpose hardware and computer instructions.

10

15

20

25

30

WO 2011/160704 PCT/EP2010/067019

52

In addition to the above, one or more aspects of the present invention may be provided,
offered, deployed, managed, serviced, etc. by a service provider who offers management of
customer environments. For instance, the service provider can create, maintain, support, etc.
computer code and/or a computer infrastructure that performs one or more aspects of the
present invention for one or more customers. In return, the service provider may receive
payment from the customer under a subscription and/or fee agreement, as examples.
Additionally or alternatively, the service provider may receive payment from the sale of

advertising content to one or more third parties.

In one aspect of the present invention, an application may be deployed for performing one or
more aspects of the present invention. As one example, the deploying of an application
comprises providing computer infrastructure operable to perform one or more aspects of the

present invention.

As a further aspect of the present invention, a computing infrastructure may be deployed
comprising integrating computer readable code into a computing system, in which the code
in combination with the computing system is capable of performing one or more aspects of

the present invention.

As yet a further aspect of the present invention, a process for integrating computing
infrastructure comprising integrating computer readable code into a computer system may be
provided. The computer system comprises a computer readable medium, in which the
computer medium comprises one or more aspects of the present invention. The code in
combination with the computer system is capable of performing one or more aspects of the

present invention.

Although various embodiments are described above, these are only examples. For example,
computing environments of other architectures can incorporate and use one or more aspects
of the present invention. As examples, servers other than System z® servers, such as Power
Systems servers or other servers offered by International Business Machines Corporation, or
servers of other companies can include, use and/or benefit from one or more aspects of the
present invention. Further, although in the example herein, the adapters and PCI hub are
considered a part of the server, in other embodiments, they do not have to necessarily be

considered a part of the server, but can simply be considered as being coupled to system

10

15

20

25

30

WO 2011/160704 PCT/EP2010/067019

53

memory and/or other components of a computing environment. The computing environment
need not be a server. Further, although tables are described, any data structure can be used
and the term table is to include all such data structures. Yet further, although the adapters
are PCI based, one or more aspects of the present invention are usable with other adapters or
other I/O components. Adapter and PCI adapter are just examples. Moreover, the device
table entries, function table entries and/or other data structures may include more, less or
different information than described herein. Further, although instructions are described
herein to set certain bits, in other embodiments, instructions may not be used. Instead, the

bits are set without using an instruction. Many other variations are possible.

Further, other types of computing environments can benefit from one or more aspects of the
present invention. As an example, a data processing system suitable for storing and/or
executing program code is usable that includes at least two processors coupled directly or
indirectly to memory elements through a system bus. The memory elements include, for
instance, local memory employed during actual execution of the program code, bulk storage,
and cache memory which provide temporary storage of at least some program code in order

to reduce the number of times code must be retrieved from bulk storage during execution.

Input/Output or I/O devices (including, but not limited to, keyboards, displays, pointing
devices, DASD, tape, CDs, DVDs, thumb drives and other memory media, etc.) can be
coupled to the system either directly or through intervening I/O controllers. Network
adapters may also be coupled to the system to enable the data processing system to become
coupled to other data processing systems or remote printers or storage devices through
intervening private or public networks. Modems, cable modems, and Ethernet cards are just

a few of the available types of network adapters.

Referring to FIG. 17, representative components of a Host Computer system 5000 to
implement one or more aspects of the present invention are portrayed. The representative
host computer 5000 comprises one or more CPUs 5001 in communication with computer
memory (i.c., central storage) 5002, as well as I/O interfaces to storage media devices 5011
and networks 5010 for communicating with other computers or SANs and the like. The
CPU 5001 is compliant with an architecture having an architected instruction set and
architected functionality. The CPU 5001 may have dynamic address translation (DAT) 5003

for transforming program addresses (virtual addresses) into real addresses of memory. A

10

15

20

25

30

WO 2011/160704 PCT/EP2010/067019

54

DAT typically includes a translation lookaside buffer (TLB) 5007 for caching translations so
that later accesses to the block of computer memory 5002 do not require the delay of address
translation. Typically, a cache 5009 is employed between computer memory 5002 and the
processor 5001. The cache 5009 may be hierarchical having a large cache available to more
than one CPU and smaller, faster (lower level) caches between the large cache and each
CPU. In some implementations, the lower level caches are split to provide separate low
level caches for instruction fetching and data accesses. In one embodiment, an instruction is
fetched from memory 5002 by an instruction fetch unit 5004 via a cache 5009. The
instruction is decoded in an instruction decode unit 5006 and dispatched (with other
instructions in some embodiments) to instruction execution unit or units 5008. Typically
several execution units 5008 are employed, for example an arithmetic execution unit, a
floating point execution unit and a branch instruction execution unit. The instruction is
executed by the execution unit, accessing operands from instruction specified registers or
memory as needed. If an operand is to be accessed (loaded or stored) from memory 5002, a
load/store unit 5005 typically handles the access under control of the instruction being
executed. Instructions may be executed in hardware circuits or in internal microcode

(firmware) or by a combination of both.

As noted, a computer system includes information in local (or main) storage, as well as
addressing, protection, and reference and change recording. Some aspects of addressing
include the format of addresses, the concept of address spaces, the various types of
addresses, and the manner in which one type of address is translated to another type of
address. Some of main storage includes permanently assigned storage locations. Main
storage provides the system with directly addressable fast-access storage of data. Both data
and programs are to be loaded into main storage (from input devices) before they can be

processed.

Main storage may include one or more smaller, faster-access buffer storages, sometimes
called caches. A cache is typically physically associated with a CPU or an 1/O processor.
The effects, except on performance, of the physical construction and use of distinct storage

media are generally not observable by the program.

Separate caches may be maintained for instructions and for data operands. Information

within a cache is maintained in contiguous bytes on an integral boundary called a cache

10

15

20

25

30

WO 2011/160704 PCT/EP2010/067019

55

block or cache line (or line, for short). A model may provide an EXTRACT CACHE
ATTRIBUTE instruction which returns the size of a cache line in bytes. A model may also
provide PREFETCH DATA and PREFETCH DATA RELATIVE LONG instructions which
effects the prefetching of storage into the data or instruction cache or the releasing of data

from the cache.

Storage is viewed as a long horizontal string of bits. For most operations, accesses to storage
proceed in a left-to-right sequence. The string of bits is subdivided into units of eight bits.
An eight-bit unit is called a byte, which is the basic building block of all information
formats. Each byte location in storage is identified by a unique nonnegative integer, which
1s the address of that byte location or, simply, the byte address. Adjacent byte locations have
consecutive addresses, starting with 0 on the left and proceeding in a left-to-right sequence.

Addresses are unsigned binary integers and are 24, 31, or 64 bits.

Information is transmitted between storage and a CPU or a channel subsystem one byte, or a
group of bytes, at a time. Unless otherwise specified, in, for instance, the z/Architecture®, a
group of bytes in storage is addressed by the leftmost byte of the group. The number of
bytes in the group is either implied or explicitly specified by the operation to be performed.
When used in a CPU operation, a group of bytes is called a field. Within each group of
bytes, in, for instance, the z/Architecture®, bits are numbered in a left-to-right sequence. In
the z/Architecture”™, the leftmost bits are sometimes referred to as the “high-order” bits and
the rightmost bits as the “low-order” bits. Bit numbers are not storage addresses, however.
Only bytes can be addressed. To operate on individual bits of a byte in storage, the entire
byte is accessed. The bits in a byte are numbered 0 through 7, from left to right (in, e.g., the
z/Architecture™). The bits in an address may be numbered 8-31 or 40-63 for 24-bit
addresses, or 1-31 or 33-63 for 31-bit addresses; they are numbered 0-63 for 64-bit
addresses. Within any other fixed-length format of multiple bytes, the bits making up the
format are consecutively numbered starting from 0. For purposes of error detection, and in
preferably for correction, one or more check bits may be transmitted with each byte or with a
group of bytes. Such check bits are generated automatically by the machine and cannot be
directly controlled by the program. Storage capacities are expressed in number of bytes.
When the length of a storage-operand field is implied by the operation code of an

instruction, the field is said to have a fixed length, which can be one, two, four, eight, or

10

15

20

25

30

WO 2011/160704 PCT/EP2010/067019

56

sixteen bytes. Larger fields may be implied for some instructions. When the length of a
storage-operand field is not implied but is stated explicitly, the field is said to have a variable
length. Variable-length operands can vary in length by increments of one byte (or with some
instructions, in multiples of two bytes or other multiples). When information is placed in
storage, the contents of only those byte locations are replaced that are included in the
designated field, even though the width of the physical path to storage may be greater than
the length of the field being stored.

Certain units of information are to be on an integral boundary in storage. A boundary is
called integral for a unit of information when its storage address is a multiple of the length of
the unit in bytes. Special names are given to fields of 2, 4, 8, and 16 bytes on an integral
boundary. A halfword is a group of two consecutive bytes on a two-byte boundary and is

the basic building block of instructions. A word is a group of four consecutive bytes on a
four-byte boundary. A doubleword is a group of eight consecutive bytes on an eight-byte
boundary. A quadword is a group of 16 consecutive bytes on a 16-byte boundary. When
storage addresses designate halfwords, words, doublewords, and quadwords, the binary
representation of the address contains one, two, three, or four rightmost zero bits,
respectively. Instructions are to be on two-byte integral boundaries. The storage operands

of most instructions do not have boundary-alignment requirements.

On devices that implement separate caches for instructions and data operands, a significant
delay may be experienced if the program stores into a cache line from which instructions are
subsequently fetched, regardless of whether the store alters the instructions that are

subsequently fetched.

In one embodiment, the invention may be practiced by software (sometimes referred to
licensed internal code, firmware, micro-code, milli-code, pico-code and the like, any of
which would be consistent with the present invention). Referring to FIG. 17, software
program code which embodies the present invention is typically accessed by processor 5001
of the host system 5000 from long-term storage media devices 5011, such as a CD-ROM
drive, tape drive or hard drive. The software program code may be embodied on any of a
variety of known media for use with a data processing system, such as a diskette, hard drive,

or CD-ROM. The code may be distributed on such media, or may be distributed to users

10

15

20

25

30

WO 2011/160704 PCT/EP2010/067019

57

from computer memory 5002 or storage of one computer system over a network 5010 to

other computer systems for use by users of such other systems.

The software program code includes an operating system which controls the function and
interaction of the various computer components and one or more application programs.
Program code is normally paged from storage media device 5011 to the relatively higher-
speed computer storage 5002 where it is available for processing by processor 5001. The
techniques and methods for embodying software program code in memory, on physical
media, and/or distributing software code via networks are well known and will not be further
discussed herein. Program code, when created and stored on a tangible medium (including
but not limited to electronic memory modules (RAM), flash memory, Compact Discs (CDs),
DVDs, Magnetic Tape and the like is often referred to as a “computer program product”.
The computer program product medium is typically readable by a processing circuit

preferably in a computer system for execution by the processing circuit.

FIG. 18 illustrates a representative workstation or server hardware system in which the
present invention may be practiced. The system 5020 of FIG. 18 comprises a representative
base computer system 5021, such as a personal computer, a workstation or a server,
including optional peripheral devices. The base computer system 5021 includes one or more
processors 5026 and a bus employed to connect and enable communication between the
processor(s) 5026 and the other components of the system 5021 in accordance with known
techniques. The bus connects the processor 5026 to memory 5025 and long-term storage
5027 which can include a hard drive (including any of magnetic media, CD, DVD and Flash
Memory for example) or a tape drive for example. The system 5021 might also include a
user interface adapter, which connects the microprocessor 5026 via the bus to one or more
interface devices, such as a keyboard 5024, a mouse 5023, a printer/scanner 5030 and/or
other interface devices, which can be any user interface device, such as a touch sensitive
screen, digitized entry pad, etc. The bus also connects a display device 5022, such as an

LCD screen or monitor, to the microprocessor 5026 via a display adapter.

The system 5021 may communicate with other computers or networks of computers by way
of a network adapter capable of communicating 5028 with a network 5029. Example
network adapters are communications channels, token ring, Ethernet or modems.

Alternatively, the system 5021 may communicate using a wireless interface, such as a CDPD

10

15

20

25

WO 2011/160704 PCT/EP2010/067019

58

(cellular digital packet data) card. The system 5021 may be associated with such other
computers in a Local Area Network (LAN) or a Wide Area Network (WAN), or the system
5021 can be a client in a client/server arrangement with another computer, etc. All of these
configurations, as well as the appropriate communications hardware and software, are

known in the art.

FIG. 19 illustrates a data processing network 5040 in which the present invention may be
practiced. The data processing network 5040 may include a plurality of individual networks,
such as a wireless network and a wired network, each of which may include a plurality of
individual workstations 5041, 5042, 5043, 5044. Additionally, as those skilled in the art will
appreciate, one or more LANs may be included, where a LAN may comprise a plurality of

intelligent workstations coupled to a host processor.

Still referring to FIG. 19, the networks may also include mainframe computers or servers,
such as a gateway computer (client server 5046) or application server (remote server 5048
which may access a data repository and may also be accessed directly from a workstation
5045). A gateway computer 5046 serves as a point of entry into each individual network. A
gateway is needed when connecting one networking protocol to another. The gateway 5046
may be preferably coupled to another network (the Internet 5047 for example) by means of a
communications link. The gateway 5046 may also be directly coupled to one or more
workstations 5041, 5042, 5043, 5044 using a communications link. The gateway computer
may be implemented utilizing an IBM eServer System z* server available from

International Business Machines Corporation.

Referring concurrently to FIG. 18 and FIG. 19, software programming code which may
embody the present invention may be accessed by the processor 5026 of the system 5020
from long-term storage media 5027, such as a CD-ROM drive or hard drive. The software
programming code may be embodied on any of a variety of known media for use with a data
processing system, such as a diskette, hard drive, or CD-ROM. The code may be distributed
on such media, or may be distributed to users 5050, 5051 from the memory or storage of one
computer system over a network to other computer systems for use by users of such other

systems.

10

15

20

25

30

WO 2011/160704 PCT/EP2010/067019

59

Alternatively, the programming code may be embodied in the memory 5025, and accessed
by the processor 5026 using the processor bus. Such programming code includes an
operating system which controls the function and interaction of the various computer
components and one or more application programs 5032. Program code is normally paged
from storage media 5027 to high-speed memory 5025 where it is available for processing by
the processor 5026. The techniques and methods for embodying software programming
code in memory, on physical media, and/or distributing software code via networks are well
known and will not be further discussed herein. Program code, when created and stored on a
tangible medium (including but not limited to electronic memory modules (RAM), flash
memory, Compact Discs (CDs), DVDs, Magnetic Tape and the like is often referred to as a
“computer program product”. The computer program product medium is typically readable
by a processing circuit preferably in a computer system for execution by the processing

circuit.

The cache that is most readily available to the processor (normally faster and smaller than
other caches of the processor) is the lowest (L1 or level one) cache and main store (main
memory) is the highest level cache (L3 if there are 3 levels). The lowest level cache is often
divided into an instruction cache (I-Cache) holding machine instructions to be executed and

a data cache (D-Cache) holding data operands.

Referring to FIG. 20, an exemplary processor embodiment is depicted for processor 5026.
Typically one or more levels of cache 5053 are employed to buffer memory blocks in order
to improve processor performance. The cache 5053 is a high speed buffer holding cache
lines of memory data that are likely to be used. Typical cache lines are 64, 128 or 256 bytes
of memory data. Separate caches are often employed for caching instructions than for
caching data. Cache coherence (synchronization of copies of lines in memory and the
caches) is often provided by various “snoop” algorithms well known in the art. Main
memory storage 5025 of a processor system is often referred to as a cache. In a processor
system having 4 levels of cache 5053, main storage 5025 is sometimes referred to as the
level 5 (L5) cache since it is typically faster and only holds a portion of the non-volatile
storage (DASD, tape etc) that is available to a computer system. Main storage 5025
“caches” pages of data paged in and out of the main storage 5025 by the operating system.

10

15

20

25

30

WO 2011/160704 PCT/EP2010/067019
60

A program counter (instruction counter) 5061 keeps track of the address of the current
instruction to be executed. A program counter in a z/Architecture”™ processor is 64 bits and
can be truncated to 31 or 24 bits to support prior addressing limits. A program counter is
typically embodied in a PSW (program status word) of a computer such that it persists
during context switching. Thus, a program in progress, having a program counter value,
may be interrupted by, for example, the operating system (context switch from the program
environment to the operating system environment). The PSW of the program maintains the
program counter value while the program is not active, and the program counter (in the
PSW) of the operating system is used while the operating system is executing. Typically,
the program counter is incremented by an amount equal to the number of bytes of the current
mnstruction. RISC (Reduced Instruction Set Computing) instructions are typically fixed
length while CISC (Complex Instruction Set Computing) instructions are typically variable
length. Instructions of the IBM z/Architecture® are CISC instructions having a length of 2, 4
or 6 bytes. The Program counter 5061 is modified by either a context switch operation or a
branch taken operation of a branch instruction for example. In a context switch operation,
the current program counter value is saved in the program status word along with other state
information about the program being executed (such as condition codes), and a new program
counter value is loaded pointing to an instruction of a new program module to be executed.
A branch taken operation is performed in order to permit the program to make decisions or
loop within the program by loading the result of the branch instruction into the program

counter 5061.

Typically an instruction fetch unit 5055 is employed to fetch instructions on behalf of the
processor 5026. The fetch unit either fetches “next sequential instructions”, target
instructions of branch taken instructions, or first instructions of a program following a
context switch. Modern Instruction fetch units often employ prefetch techniques to
speculatively prefetch instructions based on the likelihood that the prefetched instructions
might be used. For example, a fetch unit may fetch 16 bytes of instruction that includes the

next sequential instruction and additional bytes of further sequential instructions.

The fetched instructions are then executed by the processor 5026. In an embodiment, the
fetched instruction(s) are passed to a dispatch unit 5056 of the fetch unit. The dispatch unit

decodes the instruction(s) and forwards information about the decoded instruction(s) to

10

15

20

25

30

WO 2011/160704 PCT/EP2010/067019
61

appropriate units 5057, 5058, 5060. An execution unit 5057 will typically receive
information about decoded arithmetic instructions from the instruction fetch unit 5055 and
will perform arithmetic operations on operands according to the opcode of the instruction.
Operands are provided to the execution unit 5057 preferably either from memory 5025,
architected registers 5059 or from an immediate field of the instruction being executed.
Results of the execution, when stored, are stored either in memory 5025, registers 5059 or in

other machine hardware (such as control registers, PSW registers and the like).

A processor 5026 typically has one or more units 5057, 5058, 5060 for executing the
function of the instruction. Referring to FIG. 21A, an execution unit 5057 may
communicate with architected general registers 5059, a decode/dispatch unit 5056, a load
store unit 5060, and other 5065 processor units by way of interfacing logic 5071. An
execution unit 5057 may employ several register circuits 5067, 5068, 5069 to hold
information that the arithmetic logic unit (ALU) 5066 will operate on. The ALU performs
arithmetic operations such as add, subtract, multiply and divide as well as logical function
such as and, or and exclusive-or (XOR), rotate and shift. Preferably the ALU supports
specialized operations that are design dependent. Other circuits may provide other
architected facilities 5072 including condition codes and recovery support logic for example.
Typically the result of an ALU operation is held in an output register circuit 5070 which can
forward the result to a variety of other processing functions. There are many arrangements
of processor units, the present description is only intended to provide a representative

understanding of one embodiment.

An ADD instruction for example would be executed in an execution unit 5057 having
arithmetic and logical functionality while a floating point instruction for example would be
executed in a floating point execution having specialized floating point capability.
Preferably, an execution unit operates on operands identified by an instruction by performing
an opcode defined function on the operands. For example, an ADD instruction may be
executed by an execution unit 5057 on operands found in two registers 5059 identified by

register fields of the instruction.

The execution unit 5057 performs the arithmetic addition on two operands and stores the
result in a third operand where the third operand may be a third register or one of the two

source registers. The execution unit preferably utilizes an Arithmetic Logic Unit (ALU)

10

15

20

25

30

WO 2011/160704 PCT/EP2010/067019

62

5066 that is capable of performing a variety of logical functions such as Shift, Rotate, And,
Or and XOR as well as a variety of algebraic functions including any of add, subtract,
multiply, divide. Some ALUs 5066 are designed for scalar operations and some for floating
point. Data may be Big Endian (where the least significant byte is at the highest byte
address) or Little Endian (where the least significant byte is at the lowest byte address)
depending on architecture. The IBM z/Architecture® is Big Endian. Signed fields may be
sign and magnitude, 1’s complement or 2’s complement depending on architecture. A 2’s
complement number is advantageous in that the ALU does not need to design a subtract
capability since either a negative value or a positive value in 2’s complement requires only
an addition within the ALU. Numbers are commonly described in shorthand, where a 12 bit
field defines an address of a 4,096 byte block and is commonly described as a 4 Kbyte (Kilo-
byte) block, for example.

Referring to FIG. 21B, branch instruction information for executing a branch instruction is
typically sent to a branch unit 5058 which often employs a branch prediction algorithm such
as a branch history table 5082 to predict the outcome of the branch before other conditional
operations are complete. The target of the current branch instruction will be fetched and
speculatively executed before the conditional operations are complete. When the conditional
operations are completed the speculatively executed branch instructions are either completed
or discarded based on the conditions of the conditional operation and the speculated
outcome. A typical branch instruction may test condition codes and branch to a target
address if the condition codes meet the branch requirement of the branch instruction, a target
address may be calculated based on several numbers including ones found in register fields
or an immediate field of the instruction for example. The branch unit 5058 may employ an
ALU 5074 having a plurality of input register circuits 5075, 5076, 5077 and an output
register circuit 5080. The branch unit 5058 may communicate with general registers 5059,

decode dispatch unit 5056 or other circuits 5073, for example.

The execution of a group of instructions can be interrupted for a variety of reasons including
a context switch initiated by an operating system, a program exception or error causing a
context switch, an I/O interruption signal causing a context switch or multi-threading activity
of a plurality of programs (in a multi-threaded environment), for example. Preferably a

context switch action saves state information about a currently executing program and then

10

15

20

25

30

WO 2011/160704 PCT/EP2010/067019

63

loads state information about another program being invoked. State information may be
saved in hardware registers or in memory for example. State information preferably
comprises a program counter value pointing to a next instruction to be executed, condition
codes, memory translation information and architected register content. A context switch
activity can be exercised by hardware circuits, application programs, operating system
programs or firmware code (microcode, pico-code or licensed internal code (LIC)) alone or

in combination.

A processor accesses operands according to instruction defined methods. The instruction
may provide an immediate operand using the value of a portion of the instruction, may
provide one or more register fields explicitly pointing to either general purpose registers or
special purpose registers (floating point registers for example). The instruction may utilize
implied registers identified by an opcode field as operands. The instruction may utilize
memory locations for operands. A memory location of an operand may be provided by a
register, an immediate field, or a combination of registers and immediate field as
exemplified by the z/Architecture® long displacement facility wherein the instruction defines
a base register, an index register and an immediate field (displacement field) that are added
together to provide the address of the operand in memory for example. Location herein

typically implies a location in main memory (main storage) unless otherwise indicated.

Referring to FIG. 21C, a processor accesses storage using a load/store unit 5060. The
load/store unit 5060 may perform a load operation by obtaining the address of the target
operand in memory 5053 and loading the operand in a register 5059 or another memory
5053 location, or may perform a store operation by obtaining the address of the target
operand in memory 5053 and storing data obtained from a register 5059 or another memory
5053 location in the target operand location in memory 5053. The load/store unit 5060 may
be speculative and may access memory in a sequence that is out-of-order relative to
instruction sequence, however the load/store unit 5060 is to maintain the appearance to
programs that instructions were executed in order. A load/store unit 5060 may communicate
with general registers 5059, decode/dispatch unit 5056, cache/memory interface 5053 or
other elements 5083 and comprises various register circuits, ALUs 5085 and control logic
5090 to calculate storage addresses and to provide pipeline sequencing to keep operations in-

order. Some operations may be out of order but the load/store unit provides functionality to

10

15

20

25

WO 2011/160704 PCT/EP2010/067019

64

make the out of order operations to appear to the program as having been performed in

order, as is well known in the art.

Preferably addresses that an application program “sees” are often referred to as virtual
addresses. Virtual addresses are sometimes referred to as “logical addresses” and “effective
addresses”. These virtual addresses are virtual in that they are redirected to physical
memory location by one of a variety of dynamic address translation (DAT) technologies
including, but not limited to, simply prefixing a virtual address with an offset value,
translating the virtual address via one or more translation tables, the translation tables
preferably comprising at least a segment table and a page table alone or in combination,
preferably, the segment table having an entry pointing to the page table. In the
z/Architecture”®, a hierarchy of translation is provided including a region first table, a region
second table, a region third table, a segment table and an optional page table. The
performance of the address translation is often improved by utilizing a translation lookaside
buffer (TLB) which comprises entries mapping a virtual address to an associated physical
memory location. The entries are created when the DAT translates a virtual address using
the translation tables. Subsequent use of the virtual address can then utilize the entry of the
fast TLB rather than the slow sequential translation table accesses. TLB content may be

managed by a variety of replacement algorithms including LRU (Least Recently used).

In the case where the processor is a processor of a multi-processor system, each processor
has responsibility to keep shared resources, such as 1/0, caches, TLBs and memory,
interlocked for coherency. Typically, “snoop” technologies will be utilized in maintaining
cache coherency. In a snoop environment, each cache line may be marked as being in any
one of a shared state, an exclusive state, a changed state, an invalid state and the like in order

to facilitate sharing.

I/O units 5054 (FIG. 20) provide the processor with means for attaching to peripheral
devices including tape, disc, printers, displays, and networks for example. I/O units are often
presented to the computer program by software drivers. In mainframes, such as the System
z" from IBM®, channel adapters and open system adapters are I/O units of the mainframe

that provide the communications between the operating system and peripheral devices.

10

15

20

25

30

WO 2011/160704 PCT/EP2010/067019

65

Further, other types of computing environments can benefit from one or more aspects of the
present invention. As an example, an environment may include an emulator (e.g., software
or other emulation mechanisms), in which a particular architecture (including, for instance,
instruction execution, architected functions, such as address translation, and architected
registers) or a subset thereof is emulated (e.g., on a native computer system having a
processor and memory). In such an environment, one or more emulation functions of the
emulator can implement one or more aspects of the present invention, even though a
computer executing the emulator may have a different architecture than the capabilities
being emulated. As one example, in emulation mode, the specific instruction or operation
being emulated is decoded, and an appropriate emulation function is built to implement the

individual instruction or operation.

In an emulation environment, a host computer includes, for instance, a memory to store
instructions and data; an instruction fetch unit to fetch instructions from memory and to
optionally, provide local buffering for the fetched instruction; an instruction decode unit to
receive the fetched instructions and to determine the type of instructions that have been
fetched; and an instruction execution unit to execute the instructions. Execution may include
loading data into a register from memory; storing data back to memory from a register; or
performing some type of arithmetic or logical operation, as determined by the decode unit.
In one example, each unit is implemented in software. For instance, the operations being
performed by the units are implemented as one or more subroutines within emulator

software.

More particularly, in a mainframe, architected machine instructions are used by
programmers, usually today “C” programmers, often by way of a compiler application.
These instructions stored in the storage medium may be executed natively in a
z/Architecture®™ IBM® Server, or alternatively in machines executing other architectures.
They can be emulated in the existing and in future IBM® mainframe servers and on other
machines of IBM® (c.g., Power Systems servers and System x” Servers). They can be
executed in machines running Linux on a wide variety of machines using hardware
manufactured by IBM®, Intel®, AMDTM, and others. Besides execution on that hardware
under a z/Architecture”, Linux can be used as well as machines which use emulation by

Hercules (see www.hercules-390.org) , or FSI (Fundamental Software, Inc) (see

10

15

20

25

30

WO 2011/160704 PCT/EP2010/067019

66

www.funsoft.com), where generally execution is in an emulation mode. In emulation mode,
emulation software is executed by a native processor to emulate the architecture of an

emulated processor.

The native processor typically executes emulation software comprising either firmware or a
native operating system to perform emulation of the emulated processor. The emulation
software is responsible for fetching and executing instructions of the emulated processor
architecture. The emulation software maintains an emulated program counter to keep track
of instruction boundaries. The emulation software may fetch one or more emulated machine
instructions at a time and convert the one or more emulated machine instructions to a
corresponding group of native machine instructions for execution by the native processor.
These converted instructions may be cached such that a faster conversion can be
accomplished. Notwithstanding, the emulation software is to maintain the architecture rules
of the emulated processor architecture so as to assure operating systems and applications
written for the emulated processor operate correctly. Furthermore, the emulation software is
to provide resources identified by the emulated processor architecture including, but not
limited to, control registers, general purpose registers, floating point registers, dynamic
address translation function including segment tables and page tables for example, interrupt
mechanisms, context switch mechanisms, Time of Day (TOD) clocks and architected
interfaces to I/O subsystems such that an operating system or an application program
designed to run on the emulated processor, can be run on the native processor having the

emulation software.

A specific instruction being emulated is decoded, and a subroutine is called to perform the
function of the individual instruction. An emulation software function emulating a function
of an emulated processor is implemented, for example, in a “C” subroutine or driver, or
some other method of providing a driver for the specific hardware as will be within the skill
of those in the art after understanding the description of the preferred embodiment. Various
software and hardware emulation patents including, but not limited to U.S. Letters Patent
No. 5,551,013, entitled “Multiprocessor for Hardware Emulation”, by Beausoleil et al.; and
U.S. Letters Patent No. 6,009,261, entitled “Preprocessing of Stored Target Routines for
Emulating Incompatible Instructions on a Target Processor”, by Scalzi et al; and U.S. Letters

Patent No. 5,574,873, entitled “Decoding Guest Instruction to Directly Access Emulation

10

15

20

25

30

WO 2011/160704 PCT/EP2010/067019

67

Routines that Emulate the Guest Instructions”, by Davidian et al; and U.S. Letters Patent No.
6,308,255, entitled “Symmetrical Multiprocessing Bus and Chipset Used for Coprocessor
Support Allowing Non-Native Code to Run in a System”, by Gorishek et al; and U.S. Letters
Patent No. 6,463,582, entitled “Dynamic Optimizing Object Code Translator for
Architecture Emulation and Dynamic Optimizing Object Code Translation Method”, by
Lethin et al; and U.S. Letters Patent No. 5,790,825, entitled “Method for Emulating Guest
Instructions on a Host Computer Through Dynamic Recompilation of Host Instructions”, by
Eric Traut; and many others, illustrate a variety of known ways to achieve emulation of an
mnstruction format architected for a different machine for a target machine available to those

skilled in the art.

In FIG. 22, an example of an emulated host computer system 5092 is provided that emulates
a host computer system 5000’ of a host architecture. In the emulated host computer system
5092, the host processor (CPU) 5091 is an emulated host processor (or virtual host
processor) and comprises an emulation processor 5093 having a different native instruction
set architecture than that of the processor 5091 of the host computer 5000'. The emulated
host computer system 5092 has memory 5094 accessible to the emulation processor 5093.
In the example embodiment, the memory 5094 is partitioned into a host computer memory
5096 portion and an emulation routines 5097 portion. The host computer memory 5096 is
available to programs of the emulated host computer 5092 according to host computer
architecture. The emulation processor 5093 executes native instructions of an architected
instruction set of an architecture other than that of the emulated processor 5091, the native
instructions obtained from emulation routines memory 5097, and may access a host
instruction for execution from a program in host computer memory 5096 by employing one
or more instruction(s) obtained in a sequence & access/decode routine which may decode the
host instruction(s) accessed to determine a native instruction execution routine for emulating
the function of the host instruction accessed. Other facilities that are defined for the host
computer system 5000' architecture may be emulated by architected facilities routines,
including such facilities as general purpose registers, control registers, dynamic address
translation and I/O subsystem support and processor cache, for example. The emulation
routines may also take advantage of functions available in the emulation processor 5093

(such as general registers and dynamic translation of virtual addresses) to improve

10

15

20

WO 2011/160704 PCT/EP2010/067019

68

performance of the emulation routines. Special hardware and off-load engines may also be

provided to assist the processor 5093 in emulating the function of the host computer 5000'".

The terminology used herein is for the purpose of describing particular embodiments only
and is not intended to be limiting of the invention. As used herein, the singular forms “a”,
“an” and “the” are intended to include the plural forms as well, unless the context clearly
indicates otherwise. It will be further understood that the terms “comprises” and/or
“comprising”’, when used in this specification, specify the presence of stated features,
integers, steps, operations, elements, and/or components, but do not preclude the presence or
addition of one or more other features, integers, steps, operations, elements, components

and/or groups thereof.

The corresponding structures, materials, acts, and equivalents of all means or step plus
function elements in the claims below, if any, are intended to include any structure, material,
or act for performing the function in combination with other claimed elements as specifically
claimed. The description of the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaustive or limited to the invention in
the form disclosed. Many modifications and variations will be apparent to those of ordinary
skill in the art without departing from the scope and spirit of the invention. The embodiment
was chosen and described in order to best explain the principles of the invention and the
practical application, and to enable others of ordinary skill in the art to understand the
invention for various embodiment with various modifications as are suited to the particular

use contemplated.

10

15

20

25

WO 2011/160704 PCT/EP2010/067019

69

CLAIMS

1. A method for controlling interrupt processing in a computing environment,

comprising steps of:

determining that a first pending indicator has been set indicating an interrupt request

by an adapter of the computing environment;

presenting the interrupt request to an operating system, the operating system to
process one or more set event indicators corresponding to the interrupt request and one or

more other set event indicators corresponding to one or more other interrupt requests;

resetting, in response to the presenting, the first pending indicator indicating to one or
more processors that an interrupt request is not pending, wherein a second pending indicator

remains set to suppress other interrupt requests from being made pending;

determining that the first pending indicator has been set indicating another interrupt
request has been made pending, the first pending indicator set responsive to a determination
that at least one other interruption request is not to be suppressed, this determination
responsive to at least one of an indication that event indicators set responsive to other
interrupt requests are not being processed timely or an indication that event indicators set

responsive to other interruptions requests have been processed; and
presenting the another interrupt request to the operating system.

2. The method of claim 1, wherein the one or more set event indicators comprise one or
more adapter event indicators set in an adapter interruption vector accessible to the operating
system, the adapter interruption vector corresponding to the adapter and included in an array

of one or more adapter interruption vectors accessible to the operating system.

3. The method of claim 1, wherein the first pending indicator is set indicating another
interrupt request responsive to the operating system determining that a rate at which interrupt
indicators are being set to be processed by the operating system exceeds a defined value or

event indicators to be processed have been processed.

10

15

20

25

WO 2011/160704 PCT/EP2010/067019

70

4. The method of claim 3, wherein the first pending indicator is set responsive to an
instruction issued by the operating system resetting the second pending indicator and
responsive to the another interrupt request being issued by the adapter resulting in the setting

of the second pending indicator reset by the instruction.
5. The method of claim 4, wherein the method further comprises:
receiving by a hub coupled to the adapter the another interrupt request; and

responsive to receiving the interrupt request, setting the first pending

indicator and the second pending indicator.

6. The method of claim 1, wherein an interruptions mode for the adapter as set by the
operating system is a single interruption mode, and wherein the presenting the interrupt
request automatically changes the interruptions mode to a no interruptions mode, the no

interruptions mode resulting in the resetting of the first pending indicator.

7. The method of claim 6, wherein the interruptions mode is set for an interruption
subclass and applies to a plurality of processors, and wherein the adapter is included in the

interruptions subclass.

8. The method of claim 7, wherein the interruption subclass exclusively includes one

type of adapter, and wherein the interruptions mode is set for that type of adapter.

9. The method of claim 1, wherein the operating system is a guest operating system and
the first pending indicator and the second pending indicator are stored in a guest interruption

state area in host memory.

10. A system comprising mean adapted for carrying out all the steps of the method

according to any preceding method claim.

11. A computer program comprising instructions for carrying out all the steps of the
method according to any preceding method claim, when said computer program is executed

on a computer system.

	Page 1 - BIBLIOGRAPHY
	Page 2 - ABSTRACT
	Page 3 - ABSTRACT
	Page 4 - DESCRIPTION
	Page 5 - DESCRIPTION
	Page 6 - DESCRIPTION
	Page 7 - DESCRIPTION
	Page 8 - DESCRIPTION
	Page 9 - DESCRIPTION
	Page 10 - DESCRIPTION
	Page 11 - DESCRIPTION
	Page 12 - DESCRIPTION
	Page 13 - DESCRIPTION
	Page 14 - DESCRIPTION
	Page 15 - DESCRIPTION
	Page 16 - DESCRIPTION
	Page 17 - DESCRIPTION
	Page 18 - DESCRIPTION
	Page 19 - DESCRIPTION
	Page 20 - DESCRIPTION
	Page 21 - DESCRIPTION
	Page 22 - DESCRIPTION
	Page 23 - DESCRIPTION
	Page 24 - DESCRIPTION
	Page 25 - DESCRIPTION
	Page 26 - DESCRIPTION
	Page 27 - DESCRIPTION
	Page 28 - DESCRIPTION
	Page 29 - DESCRIPTION
	Page 30 - DESCRIPTION
	Page 31 - DESCRIPTION
	Page 32 - DESCRIPTION
	Page 33 - DESCRIPTION
	Page 34 - DESCRIPTION
	Page 35 - DESCRIPTION
	Page 36 - DESCRIPTION
	Page 37 - DESCRIPTION
	Page 38 - DESCRIPTION
	Page 39 - DESCRIPTION
	Page 40 - DESCRIPTION
	Page 41 - DESCRIPTION
	Page 42 - DESCRIPTION
	Page 43 - DESCRIPTION
	Page 44 - DESCRIPTION
	Page 45 - DESCRIPTION
	Page 46 - DESCRIPTION
	Page 47 - DESCRIPTION
	Page 48 - DESCRIPTION
	Page 49 - DESCRIPTION
	Page 50 - DESCRIPTION
	Page 51 - DESCRIPTION
	Page 52 - DESCRIPTION
	Page 53 - DESCRIPTION
	Page 54 - DESCRIPTION
	Page 55 - DESCRIPTION
	Page 56 - DESCRIPTION
	Page 57 - DESCRIPTION
	Page 58 - DESCRIPTION
	Page 59 - DESCRIPTION
	Page 60 - DESCRIPTION
	Page 61 - DESCRIPTION
	Page 62 - DESCRIPTION
	Page 63 - DESCRIPTION
	Page 64 - DESCRIPTION
	Page 65 - DESCRIPTION
	Page 66 - DESCRIPTION
	Page 67 - DESCRIPTION
	Page 68 - DESCRIPTION
	Page 69 - DESCRIPTION
	Page 70 - DESCRIPTION
	Page 71 - DESCRIPTION
	Page 72 - DESCRIPTION
	Page 73 - DESCRIPTION

