04/079521 A2 IR 0 OO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
16 September 2004 (16.09.2004)

AT Y0

(10) International Publication Number

WO 2004/079521 A2

(51) International Patent Classification’: GO6F
(21) International Application Number:
PCT/US2004/005949

(22) International Filing Date: 26 February 2004 (26.02.2004)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

10/378,503 3 March 2003 (03.03.2003) US

(71) Applicant (for all designated States except US): COM-
PUTER ASSOCIATES THINK, INC. [US/US]; 1 Com-
puter Associates Plaza, Islandia, NY 11749 (US).

(72) Inventors: NARAYANASWAMY, Sreedhara, Sriniva-
sulu; 300 Legacy Drive, Apartment 828, Plano, TX 75024
(US). BOYD, Gerald, L.; 2026 County Road 4640, Tren-
ton, TX 75490 (US).

(74) Agents: JACOBS, James, David et al.; Baker & McKen-
zie, 805 Third Avenue,, New York, NY 10022 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), Euro-
pean (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR,
GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

(54) Title: UNIVERSAL DEPLOYMENT TOOL

jol
Advantage Joe 1h R
nterface Classes I A
[Deployment pplication
Helper Server Deployer
p lug-ins
. e
108 ne. S
< V4
‘I?:.P }ognlf:z:f Server Profile Deployer Plug-in} <
107 ~JYvizard lmeriace Manager Interface 4
A
i
i (Platform
i Selection
Command Line ~iy
Interface
166~

& (57) Abstract: A system and method for a deployment tool is provided. The deployment tool in one aspect assembles and deploys
software components generated by any predetermined standard compliant application tools. The system and method in one aspect
isolates each application server’s specific deployment logic into plug-in modules. A user is provided with a series of input tools or
panels for specifying deployment variables and customizing the deployment as needed. The customization includes the ability to
select the target application server and optionally, the target platform and operating system.

=

10

15

20

25

30

WO 2004/079521 PCT/US2004/005949

UNIVERSAL DEPLOYMENT TOOL

TECHNICAL FIELD

" The present application relates to computer systems, and
particularly, to a system and method for assembling and deploying

software components to a target server or platform.

BACKGROUND

Middle tier applications, also referred to as application
servers, typically sit on top of a wide range of existing
enterprise systems such as database management systems,
transaction monitors, énd naming and directory services. Many of
these application sexrvers are built based on standard
specifications such as the Java 2 Platform, Enterprise Edition
(J2EE) to provide portability and scalability to applications
managing and accessing various enterprise systems.

J2EHZ, for ecxample, defines a specification for developing
enterprise applications to follow as a standard. J2EE bases the
enterprise applications on standardized, modular components, by
providing a set of services to those components, and by handling
many details of application behavior automatically. J2EE
includes support for Enterprise JavaBeans (EJB) components, Java
Servlets API, JavaServer Pages and Extended Markedup Language
(XML)) technology.

Accordingly, an application built conforming to the J2EE
standard specification may be deployed to an application server
that supports the J2EE standards, thus allowing the deployed
application to manage and access various resources provided by
the underlying enterprise systems via the application server.
Briefly, deployment is the process of distributing and
configuring various part of application programs such as J2EE
applications to appropriate locations in application servers.

1

10

15

20

25

30

WO 2004/079521 PCT/US2004/005949

Although J2EE provides standard specifications for
application servers and applications.running on these application
servers, each application must be deployed according to vendor or
application server provider’s specific criteria. In most cases,
each vendor supplying the application server also provides
deployment methods and tools for deploying applications to its
application server specifically. Further, applications developed
in a particular application server development environment are
limited to deploying to that application server only. Thus, to
deploy applications to different application servers, multiple
development environment tools may need to be used to develop the
applications for deploying.

Different deployment methods for different application
servers mean that users need to learn multiple methods of
deployment and keep up with numerous and changing deployment
tools provided by different application server providers.
Similarly, users need to learn and use multiple development
environment tools fér developing the applications for deployment.

Accordingly, what is neeced is a universal deployment tcol that
would allow a user to deploy applications and components built
using any development environment tools to be assembled and

deployed to any other application server.

SUMMARY

A system and method for a deployment tool is provided. The
deployment tool in one aspect assembles and degloys program
modules or software components generated by any predetermined
standard compliant application tools. The system and method in
one aspect isolates each application server’s specific deployment
logic into plug-in modules. A user is provided with a series of
input tools or panels for specifying deployment variables and
customizing the deployment as needed. The customization includes
the ability to select the target application server and

2

10

15

20

25

30

WO 2004/079521 PCT/US2004/005949

optionally, the target platform and operating system. The system
and method provided may be run in a standalone mode and/or may be
integrated into a development tool from which it may be started.
In one aspect, the system comprises a deployment module
operable to determine a target application server to which to
deploy one or more program modules. The system also includes a

common set of program definitions for a plug-in module to

implement for interacting with the deployment module. The common

set of program definitions are used by the plug-in module and the
deployment module to configure target application server specific
information for deploying to the target application server. The
common set of program definitions may include object-oriented
interface definitions defining methods and variables, which the
plug-in module may implement for customizing the plugin for the
particular target application server.

In another aspect, the system may provide one or more plug
in modules. For example, the system may provide a plugin module
covresnonding to each target application server that the . system
a7/ support. The plug-in modules implement the common set of
program definitions, providing customization related to target
agplication server specific configurations for the assocciated
target application server.

Yet in another aspect, a method for deploying program
medules or files comprises determining a target application
server to deploy one or more program modules and dynamically
loading a plug-in module associated with the target application
server for determining configuration information related to the
target application server. Deployment files are updated with the
determined configuration information and the program modules are
repackaged with the updated deployment files. The repackaged
file is then ready to be deployed to the target application
server by invoking a deploy routine implemented in the plugin.

In one aspect, for those application servers that are located

3

10

15

20

25

30

WO 2004/079521 PCT/US2004/005949

remotely from the system that is running the deployment tool of
the present disclosure, the repackaged file is transferred to the
target application serxver, for example, using the FTP (file
transfer protocol), before the deploy routine is invoked.

Further features as well as the structure and operation of
various embodiments are described in detail below with reference
to the accompanying drawings. In the drawings, like reference

numbers indicate identical or functionally similar elements.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is an architectural diagram illustrating the
deployment tool in one embodiment.

Figure 2 is a functional diagram illustrating an overview of
the deployment process in one embodiment.

Figure 3 is process flow diagram that illustrates the
decloyment method in one embodiment.

Figures 4-13 are examples of screen panels in one embodiment
that are presented to a user for guiding the user through.
deploymexl: process and collecting deployment information relating

to particular target application servers.

DETAILED DESCRIPTION

The present disclosure describes a system ard method for -
deploying software or program units, also referred to as program
files or program modules to any middle tier applications or
application servers complying with a predetermined specification
standard. An example of such predetermined specificaion
standard includes J2EE and an example of such software units
includes components. Thus, for example, the system and method in
the present disclosure provides an ability to deploy Enterprise
JavaBeans (EJBs), web applications, and servlets, etc. to vaious

application servers. Deployable EJBs may include stateless

10

20

25

30

WO 2004/079521 PCT/US2004/005949

session beans, stateful session beans, bean managed persistence
entity beans, container managed persistence entity beans, message
driven beans and web components or applications, but not limted
to only such components.

Thus, for example, the system and method provided in the
present disclosure enables deployment to J2EE 1.3 Reference
Implementation and application servers such as Weblogic,
Websphere, iPlanet, Jrun, Oracle9i, or any other gplication
servers on platforms such as NT, Windows 2000, Solaris, AIX, HP,
Linux, and AS/400.

In the following description, well-known functions and
components are not described in detail. Thus, many known
features and definitions related to J2EE standcrd specification
and Java programming methods are not described in detail.
Further, although the system and method disclosed is described
with reference to J2EE and Java environment, this standard
specification is used as an example only. Thus, it should be
understcod that the system and method for a deployment tool
disclosed herein are not limited to use with J2EE and Java
applications only, but may also épply to other such standards and
specifications.

Figure 1 is an architectural diagram illustrating the system
and method for a deployment tool of the present disclosure in one
embodiment. The deployment tool of the present disclosure
implements a deployment wizard interface 102 and is invoked to
begin deploying various application components to an apgdication
server. A deployment wizard interface 102 includes a
functionality to present a user with various input panels and
message panels to guide the user through the deployment process.

Alternatively, deployment wizard interface 102 may be invoked on
a command line interface and the user may run the deployment
process without any presentation panels.

Deployment wizard interface 102 defines a number of methods

5

10

15

25

30

WO 2004/079521 PCT/US2004/005949

and variables that may be implemented to use the deployment tool.
For example, deployment tool classes may implement the following
deployment wizard methods to provide its functionalities.
getDeploymentModules (), which returns a list of EAR files to be
deployed; setDeployer, which sets the deployer for the active
deployment plugin; getDeployer, which returns the deployer for an
active deployment plugin; getHelper, which returns the deployment
helper interface; isStopped, which returns true if the deployment
has been stopped; packageFiles, which packages the EAR files to
be deployed; processFinish, whish is executed when the finish
button is pressed; getPluginBundle, which returns the resource
bundle being used by the active plugin; getBundle(), which
returns the bundle being used by the deployment wizard;
isXmlEditorAllowed, which returns true if the XML editor can be

invoked; isRunningInsideJoe, which returns true if the deploy

- tool has been invoked by Advantage Joe, a development

environment; getContextRoot, which gets the context root for the
project; getEjbRefs, which gets ejb references Hor a war or a
project; setContextRoots, which sets the context root HashMap
using the context root settings from application.xml files in the
ear file; showSund2eeRi (), which returns true if the surrj2ee-
ri.xml file is to be shown in the ejb tree.

In one embodiment, two classes implement the deployment

" wizard interface 102. One class 104 communicates with a

development environment tool interface 104, such as the Advantage
Joe interface, and may be invoked within the development
environment tool. The other class 106 receives input from a
command line and is referred to as a command line interface.

The deployment tool of the present disclosure uses a plugin
architecture to isolate and modularize application specific
functionalities and properties unique to each application server.
Examples of the unique functionalities and properties may include

application server specific security information and factors such

6

10

15

20

25

30

WO 2004/079521 PCT/US2004/005949

as whether caching is to be performed. Other application server
specific criteria include a particular location of an application
server where the EAR file needs to be stored, whether an EAR file
needs to be pre-processed to include application server required
classes. Further, many application servers generally require
that application server specific deployment descriptors be used.

Accordingly, application specific deployment configuration
and functionalities for a given target application server are
encapsulated into a plug-in module 110 for that target
application. The plug-in modules 110 implement a plug-in
deployer interfaces 112 and other helper interfaces to effect
communication between the classes 104 106 that implement the
deployment wizard interface 102.

In one embodiment, the classes 104 and 106, which implement
the deployment wizard interface 102, requests a server profile
selection to determine which server profile is to be used to
deploy a specified package of components or applications such as
the archive J2EE application (EAR) file. For example, one or
more plug-ins that are currently installed are determined and
used to form a list of available target servers. That is, if an
IBM Websphere plug-in is installed, then the Server Profile
Manager 108 returns IBM Websphere application server as one of
the candidate target servers.

In one embodiment, a server profile panel is presented to a

user to select a target server from a list of target servers

‘determined as described above. A user may select one from the

list or may specify a new target application server, creating a

new server profile and installing a plug-in associated with the

- NIew server.

As known to those skilled in the art, a plug-in refers to an
accegsory program that enhances a main application. Plugins are
program units that may be added to the main application without

affecting the main application. Because the deployment tool of

10

15

20

25

30

WO 2004/079521 PCT/US2004/005949

the present disclosure uses a plug-in architecture for
application specific functionalities, additional target
application servers may be added easily by, for example, adding
plug-ins for those new target application servers. Accordingly,
new application servers for deployment may be added dynamically
without having to change or modify other parts of the deployment
tool.

Typically, a deployer, that is, a person performing the
deployment selects a server type and defines a server profile 108
that is used to save deployment settings. Server profile 108 may
already have been created previously, for example, from a
previous deployment session to the same application server.
Server profiles 108 are created for servers that have
corresponding plug-ins 110 that implement the deployer interface
112. For example, server profiles are created and saved by the
server profile manager 108 and are populated with the information
provided by the user during the deployment process. Server
profiles store information needed by the plug-in, including such
information as the profile name, host name, and the port number.

Other information in a server profile may include the type of
deployment platform, file transfer protocol (“ftp”) user
identifier (“id”), ftp password, and deployment directory.
Additional information needed for a particular application server
may be requested from the user during the deployment process and
stored in the server profile.

Once a plug-in implements the deployer interface 112, the
deployment tool class 104 oxr 106 may determine which platforms
are supported by the plug-in by invoking an instance of the plug-
in method that implements the deployer interface 112. For
example, a class in the plug-in implementing an interface
provided for communicating platform information to the deployment
tool class 104 or 106, for instance, the MultiPlatformPlugin

interface defininig getPlatforms method, may provide a list of

8

10

15

20

25

30

WO 2004/079521 PCT/US2004/005949

the platforms supported by that particular plug-in. After a
platform is selected as shown at 114, a corresponding plugin 110
is activated to package the EAR file.

A deployer helper interface 116 may be used by the plugins
110 and provides access to one or more methods for requestng
services of the deployment tool classes 104 or 106 implementing
the deployment wizard interface 116. For instance, after the EAR
file is packaged, a user may edit the deployment descriptors
using the deployer helper interface. The deployer helper
interface 116 is passed to a plug-in, when the plug-in is
activated by the deployment tool 104 or 106. Prior to displaying
a summary page for a packaged EAR file, the deployment tool 104
or 106 may optionally display the contents of the packaged EAR
file to be modified. The modifications may be performed using
the helper interface dialogs or by using a provided XML editor.

The packaged EAR file is then deployed to the selected
target application server using the deploy method implemented by
the plug-ins. For instance, the deploy method ﬁay be invoked
from the deployment tool classes 104, 106 that implement the
deployment wizard interface 102 ‘

Figure 2 illustrates an overview of a deployment process in
one embodiment. Although Figure 2 shows EJB.ear 202 as
components that are being packaged and deployed, the deployment
tool of the present disclosure is enabled to handle a complete
EAR file, which may contain both the EJB and web application
components, and other files. Deployable components may be
created by using any one of the available enterprise development
environment tools. One such tool is Advantage Joe 3.0, which
provides capability for modeling, building, and deploying
components onto an appiication server. The disclosed deployment
tool, in one embodiment, combines the Java archives (JAR) files
and incorporates them into Enterprise archive (EAR) files, which

may then be deployed to a target application server, regardless

9

10

15

20

25

30

WO 2004/079521 PCT/US2004/005949

of which tools were used to create the JAR files and EAR files.

JAR files typically include one or more J2EE modules making
up a J2EE application. A J2EE module is a collection of one or
more J2EE components of the same component type such as web and
EJB. Each J2EE module typically includes a corresponding
deployment descriptor that contains declarative data required
during the deployment of the components in the module.

A J2EE application includes one or more J2EE modules and one
J2EE application deployment descriptor. J2EE application
deployment descriptor generally describes the WAR and EJB JAR
files and includes security and database information specific to
the épplication, if any. A J2EE application is packaged using
the Java archive (JAR) file format into a file with .ear filename
extension. When composing a J2EE application, J2EE modules used
in the application are selected, an application directory
structure is created, J2EE module deployment descriptors are
created, a deployment descriptor for the J2EE application is
created, and the J2EE application is packaged.

Referring back to Figure 2, the EAR file 202 received.
Alternatively, a deployment tool of the present disclosure, may
receive input in the form of module selection and model
information, for example, if the deployment tool is being invoked
as part of a development environment. That is, when operating as
an integrated part of a development tool such as Advantage Joe,
the deployment tool, in one embodiment, is supplied with
develoﬁment tool’s information model, a directory of J2EE modules
packaged in JAR files, and a project selection.

A development tool’s information model may include detailed
information about the application such as description of the
classes and internal logic and relationships between the classes.

A project selection may be used to build and deploy project
related objects, for example, by selecting from a list of objects

including classes, specifications, methods, parameters, projects,

10

10

15

20

25

30

WO 2004/079521 PCT/US2004/005949

and jars. Accordingly, a project selection allows the deployment
tool to locate the particular project outpit built using a
development environment tool. This output may include an output
directory containing classes resulting from the build process and
also any applicable jar files created during the build process in
the development environment tool. The deployment tool in the
present disclosure uses the project selection information to
access the development tool’s information model and the output
directory in order to package the J2EE modules into an EAR file
202.

At 204, input EAR file 202 is processed. Fa example, the
EAR file 202 is expanded into its individual components so that
one or more deployment descriptors in the EAR file 202 may be
extracted and modified. The deployer interfaces provided in the
present disclosure may be used to modify the deplgment
descriptors. For instance, although the supplied or constructed
EAR files 202 contain deployment descriptors, these descriptors
may need to be modified prior to the actual deployment to a
target application server. As known to those skilled in theart,
a deployment descriptor refers to an XML file provided for each
module and application, and describes how the modules and
applications are to be depioyed.

At 206, a target application server to which the EAR file is
to be deployed is selected. The selection may, for example, be
determined by presenting the user with a list of available
application servers that have corresponding plug-ins 208 and
allowing the user to select an application server from the list.

In addition, the user is given an option to enter a new
application server not listed in the list. At 210, a plugin
corresponding to the selected application server is dynamically
loaded. At 212, any other plug-ins that are available may also
be dynamically loaded at this time. At 214, a profile is created

for the selected application server if one does not exist

11

10

15

20

25

30

WO 2004/079521 PCT/US2004/005949

already. For example, a new application server may need a
corresponding application server profile created. This
application server profile includes information such as the host
name and the port number of the target application server to
which the EAR files is being deployed. At 216, a validity check
is performed to make sure that the EAR file includes a valid
version of a deployment descriptor and conforms to valid data
type definitions (DTD). As known to those skilled in the art,
the deployment descriptors are XML files and, therefore, need to
be associated with a valid document type declaration provided in
a DTD. At 218, it is determined whether the DTD needs to be
edited, and if so, at 220, appropriate changes are made to DTD.
For example, a user wanting to include any application server
security tags for the deployment may edit the DID file.

At 222, the EAR file is repackaged. The repackaged EAR file

may contain modified DID FILE and descriptors. At 224, a target

platform for the selected application server is selected. The
selection may be determined, for example, by presenting a list of
platforms that the selected application server runs on, and
allowing the user to select a platform server from the list. The
list of platforms supported by the selected application server is
provided by the corresponding plug-in via, for example, the plug-
in interface method implemented by the corresponding plugin.

At 226, deployment process begins. The deployment process
may begin, for example, if a user presses a finish button after
having selected a platform from the list of the platform
presented to the user. 1In this case, the user pressing the
finish button, or performing any analayous activity to indicate
that all customizations pertaining to the selected application
server are complete, triggers a deploy method implemented by the
plug-in to be invoked.

" The following steps are processed within the plugin. At

228, a determination is made as to whether the deployment is to

12

10

15

20

25

30

WO 2004/079521 PCT/US2004/005949

take place to the local server or to a remote server connected by
a network, by for example, examining the deployment properties
listed in the deployment descriptors in the EAR file or the user
inputs. If it is determined that the EAR file is being deployed
to a remote server, application server specific deployment
descriptor files are generated at 230. If the deployment tool is
being invoked as part of an integrated development environment
tool, these application server specific deployment descriptor
files may be generated within the environment tool. If the
deployment tool is being invoked on a command line interface,
these application server specific deployment descriptor files may
be generated using the data from the processed EAR file shown at
204 and any other input obtained from the user during the
deployment process. For example, if the target application
server is a weblogic application server, a weblogic-ejb-jar.xml
file may be generated as the deployment descriptor.

The deployment descriptor files may include, for example,
the platform selected by the user as described above, and any
other EJB properties that the user specified. For example,
deployment of message driven EJBs requires that the user supply
several pieces of information about the message queues to be
supported. The system and method of the present disclosure
provides one or more user interface panels to collect this
information. That is, the one or more user interface panels help
a person doing the deployment to specify information relating to
message driven beans. The deployment tool of the present
disclosure also allows the user to edit the deployment
descriptors directly. After the deployment descriptors have been
updated or generated, the EAR is reconstructed or repackaged with
the modified deployment descriptors at 232. The resulting EAR
file is-then sent to the target application server & 234, for
example, by using a file transfer protocol (FTP), and the process

proceeds to step 240.

13

10

15

20

25

30

WO 2004/079521 PCT/US2004/005949

At 228, if it is determined that the EAR file is being
deployed to a local server, that is, the server sitting on the
same platform as the depléyment tool, application server specific
deployment files are generated. At 238, the generated
application server specific deployment files are repackaged into
EAR file.

At 240, a deployment procedure is executed by invoking a
deploy method of the deployer interface implemented by the
application server specific plug-in. At 242, it is determined
whether the deployment was successful, and at 244, an appropriate
deployment status report is generated.

In one embodiment, as described above, a plugin is
implemented for a corresponding application server to which
applications and components are being deployed. In om
embodiment, one or more interfaces are provided for plugins to
implement for modifying existing deployment descriptors,
repackaging, and deploying the files to a target application
server and interacting with the deployment tool provided in the
system and method of the present disclosure.

For example, a plug-in for an application server implements
a Deployer interface. The Deployer interface provides various
methods that a plug-in may use to deploy files to a desired
target application servers. When the plug-in is instantiated,
the “setHelper” method of the “DeploymentHelper” interface is
called as a first method. The DeploymentHelper interface
provides a way for a plug-in to get the information and services
it needs after the plug-in is dynamically loaded, for example, by
a class implementing the deployment wizard interface. Through
the setHelper method, a DeploymentHelper object may be passed
into the plug-in. In one embodiment, each plug-in keeps a local
copy of this object and uses its methods to interact with the
deployment tool of the present disclosure.

For plug-ins that support multiplatforms, a

14

10

15

20

25

30

WO 2004/079521 PCT/US2004/005949

MultiPlatformPlugin interface is provided. If, for example, a
plug-in does not implement this interface, the deployment tool of
the present disclosure in one embodiment, assumes that the plug-
in supports a single platform.

Replacer interface may be implemented by a plug-in. The
plug-in supplies this interface when using the convertContainers
method on the DeploymentHelper interface. ConvertContainers
method opens the EAR files and scans through the deployment
descriptors. The strings read from the deployment descriptor are
passed to the Replacer interface as long as the Replacer remains
active, for example, isActive method of the Replacer interface
returns true. The methods in this interface are used to modify
or update the deployment descriptors.

The checkForStart and checkForkEnd methods of the Replacer
interface are called to locate the beginning and end of strings
that may need to be replaced. A string that may need to be
replaced is passed to “willReplace,” which returns true if the
string will be replaced. The newString method of the Replacer
interface returns the replacement string. The initialize method
of the Replacer interface is called wlenever a new deployment
descriptor is about to be processed.

WindowsServerPageUser interface is provided for plugins to
implement in case a plug-in uses a default windows platform
profile details page provided by the ExtendedHelper interface’s
method getWindowsServerPage. This interface provides a generic
information retrieving panel, which a plug-in can use to obtain
windows platform profile details from a user.

The ExtendedHelper interface generally allows a plug-in to
make use of the extended features of the deployment helper
interface. These extended features, in one embodiment, provide
default implementations of the packaging and deployment features.

UnixServerPageUser interface is provided for plugins to

implement in case a plug-in uses a default Unix platform profile

15

10

15

20

25

30

WO 2004/079521 PCT/US2004/005949

details page provided by ExtendedHelper interface’s method,
getUnixServerPage method. This interface may be used by a plug
in that supports Unix or Linux based platforms to get Unix
platform profile detail information. Alternatively, a plug-in
may implement its own profile detail page for retrieving
information related to a specific platform.

In one embodiment, a deployment tool provided in the system
and method of the present disclosure may be started as a separate
process using a command line interface. A batch file, for
example, JoeDeployTool.bat, may be provided to help in starting
the tool. The batch file sets the appropriate classpath for the
tool and activates the tool. In one embodiment, the batch file is
invoked with a location of the EAR file to be deployed, for
example, as a parameter. Thus, for example, one usage of the
batch file.may be:

JoeDeployTool <EAR file locations> [-ejbTree] [-xmlEditor] [-
noProgress] [-contextRoot warName rootName]

where,

EAR file location specifies the path of the EAR file;

-ejbTree causes display of a tree view of the EAR file;

-xmlEditor allows the XML editor to be invoked to edit
deployment descriptors;

-noProgress prevents display of the final deployment
progress panel, in which case, output that is normally displayed
on progress page is sent to standard output;

-contextRoot warName rootName specifies the name of the
context root to be used when deploying a web archive (war) file;
this parameter may be repeated as many times as necessary to
specify context roots for every war.

When the batch file, e.g., JoeDeployTool above, finishes, it
leaves a status code in the ERRORLEVEL. A status of zero, for
example, indicates a successful deployment and a status of two,

for example, indicates that deployment failed. If a user

16

10

15

20

25

30

WO 2004/079521 PCT/US2004/005949

terminates or cancels the deployment, a status of two may be
returned.

Similarly, the deployment tool provided in the system and
method of the present disclosure may be started from within a
development environment tool such as Advantage Joe. For example,
a class ih the Advantage Joe implementing a deployment wizard
interface may be started by right clicking on a project in the
project tree. The menu option, “Deploy EJB’s/War’s” may be use
to start the class which implement the deployment wizard
interface.

Examples of interface definitions for the above-described
interfaces provided to the plug-ins will now be described in more
detail.. As described above, the Deployer interface is
implemented by each deployment plug-in. The following code
defines the Deployer interface in one embodiment:

public interface Deployer {

public void deploy() throws Deployment Exception;

public void packageFiles () throws DeploymentException;

public DeplWizPanel getNextPanel () ;

public ServerProfile addProfile (String sType);

public String getResourceString (String key);

public void setHelper (DeploymentHelper dm) ;

public DeploymentHelper getHelper ();

}

The deploy() method is called to begin a deployment process,
for example, when a user clicks a finish button from user
interface panel that is provided by a deployment tool for
stepping the user through the deployment process. These user
interface panels allow the user to enter application server
specific variables and start the deployment. The deploy() mthod
performs the deployment of all modules packaged in an EAR file as
specified in the deployment descriptors. If an error occurs, it

throws a DeploymentException. Each plug-in may have its own

17

10

15

20

25

30

WO 2004/079521 PCT/US2004/005949

status and error messages displayed during execution.

The packageFiles() method is called prior to displaying a
summary page. The summary page, for example, may allows a
deployer to verify the deployment options before initiating
deployment to the target application server. This method
packages one or more files to be deployed. The packaged files in
general result in an EAR file, but need not be limited to an EAR
file only. If an error occurs, it throws a DeploymentException.

Each plug-in may have its own status and error messages
displayed during execution.

The getNextPanel() is used to display panels for collecting
input data related to deployment from a user. Typically, a
deployment tool provided in the system and method of the present
disclosure displays an introductory page and a server profile
selection page. Each plug-in implements the subsequent panels
through this method. Each panel may extend either DeplWizPanel
or DeplWizSummary. The DeplWizSummary extends DeplWizPanel.

The addProfile(String sType) is used to create a new default
server profile for a selected application server type. For
example, when a user clicks on add server profile button on the
server profile selection page, this method of a corresponding
plug-in is invoked. Each plug-in may includes its customized
ServerProfile object, for example, J2EE _RIServerProfile, which
extends ServerProfile. The ServerProfile class provides one or
more useful attributes, and set and get methods for these
attributes. A plug-in, however may add new attributes to a child
of Server Profile object.

The getResourceString(String key) method may be used to
access resource strings, for example, via plug-in’s user
interface(UI) panels. The plug-in class that implements the
Deployer interface has a local ResourceBundle object, from which
resource strings may be accessed or returned using this method.

Generally, a ResouceBundle contains resource strings that are

18

10

15

20

25

30

WO 2004/079521 PCT/US2004/005949

paired sequences of strings. One string represents a key and the
other string represents a value associated with the key. A Java
program access the ResourceBundle using the key string and the
ResourceBundle returns the value to be used. ResourceBundles are
used to allow a Java program to be customized for specific
environments including different language environments.

The setHelper (DeploymentHelper dm) method is used to access
the DeploymentHelper object, and returns a local copy of that
object in one embodiment. The DeploymentHelper object will be
described in more detail with reference to the DeploymentHelper
interface.

The MultiPlatformPlugin interface is implemented by a plug-
in if the plug-in supports multiple platforms. In one
embodiment, if this interface is not implemented, the deployment
tool provided in the system and method of the present disclosure
assumes that only a single platform is supported.

The MultiPlatformPlugin interface defines the following
methods:

public Iterator getPlatforms() ;

public int getNumPlatforms() ;

public DeplWizPanel getNextPanel (String platform).

The getPlatforms () method returns Iterator of String
objects, each String object containing the name of a platform.
Each String object is used to list available platforms from which
a user may select. The getNumPlatforms() method returns the
number of platforms supported by this plug-in. The
getNextPanel (String platform) method retrieves next panel for
selecting a platform among multiple platforms supported by the
plug-in.

The Replacer interface is implemented by a plug-in and is
supplied when using the convertContainers method on the
DeploymentHelper interface. CmvertContainers method opens the

EAR files and scans through the deployment descriptors. The

19

10

15

20

25

30

WO 2004/079521 PCT/US2004/005949

strings read from the deployment descriptor are passed to the
Replacer interface when the isActive method returns true. The
isActive method returns true as long as a plug-in still needs to
convert portions of the deployment descriptor. When the plugin
is done with the deployment descriptor conversion, the isActive
method returns false, at which time the Replacer may complete the
conversion process. The checkForStart and checkForEnd methods
are called to locate the beginning and end of strings which may
need to be replaced. A string that may need to be replaced is
passed to “willReplace,” which returns true if the string is to
be replace. The newString method returns the replacement string.
The initialize method is called whenever a new deployment
descriptor is about to be processed. The following methods are
defined in the Replacer interface:

public boolean isActive();

public boolean willReplace (String strToReplace) ;

public String newString() ;

public int checkForStart (String str, int startingIndex);

public int checkForEnd(String str, int startingIndex) ;

public int endingSize() ;

public void initialize().

The isActive() method returns true if additional searches or
scans through the deployment descriptor are needed. The
willReplace (String strToReplace) method returns true if the
specified string is to be replaced. The parameter strToReplace
includes the string that may need to be replaced.

The newString() method returns the replacement string. The
checkForStart (String str, int startingIndex) method returns index
in specified string where substring to be replaced is located.
For example, parameter str includes a string in which a starting
sequence is searched, and parameter startingIndex includes a
location in str at which to start looking. The

checkForEnd (String str, int startingIndex) returns index of

20

10

15

20

25

30

WO 2004/079521 PCT/US2004/005949

ending substring. For example, parameter str includes a string
to search for the ending sequence and parameter startIndex
includes a location in str at which to start search. The
endingSize () method returns size of the ending sequence. The
initialize() method is used to reinitialize, typically before
starting to convert another file.

The UnixServerPageUser interface defines the following
methods in one embodiment for getting the labels needed for the
fields on the panel:

public String getServerNameLabel () ;

public String getHostNameLabel () ;

public String getPortLabel () ;

public String getUserIdLabel () ;

public String getPasswordLabel () ;

public String getDeploylLocationLabel ().

The UnixServerPageUser also defines public void
validateFields (String serverName, String hostname, String
portNumber, String userId, String password, String
DeployLocation) to determine whether the fields are complete.
The DeploymentHelper interface’s method, “setValidationStatus” is
called by the plug-in that implements this method to set fields
as valid or invalid. If the fields are incomplete or invalid,
the plug-in may use setValidateStatus to return a false
indicator.

The WindowsServerPageUser interface defines the following
methods to get the labels needed for the fields on the panel:
public String getServerNamelLabel () ;

public String getHostNameLabel () ;

public String getPortLabel ().

This interface also defines public void validateFields
(String serverName, String hostName, String portNumber) to
determine whether the fields are complete. The DeploymentHelper

interface’s method, “setValidationStatus” is called by the

21

10

15

20

25

30

WO 2004/079521 PCT/US2004/005949

implementor of this method.

The system and method of the present disclosure also
provides one or more additional interfaces that plug-ins may
implement. For example, The Deployment Helper interface is
provided to the plug-ins to provide a way for a plug-in to get
the information and services it needs after being dynamically
loaded by the deployment wizard. The plug-in may be built and
released independent of the deployment tool.

An example definition of the DeployerHelper interface may
be:

public interface DeployerHelper ({

public static final int SUCCESS = 0;

public static final int FAILED = 2;

public Vector getJ2eeApplications ();

public Vector getEjbJars (DeploymentModule de) ;

public ResourceBundle getBundle () ;

public void saveProfile();

public ServerProfile getWorkingPrafile () ;

public Vector getHosts();

public Boolean isStopped() ;

public void log(String text);

public void logError (String text) ;

public void logWarning(String text);

public void logInformation (String text) ;

public void setFinishButtonEnabled (boolean b) ;

public void setNextButtonEnabled (Boolean b);

public void setCursor(int cursorType) ;

public DeplWizPanel getNextPage (Deployer deployer) ;

public void updateFrameStatus() ;

public void saveState (DeploymentModule de, String earPath) ;

public int getResult () ;

public void setDocTypeInfo(String defaultEarDocType, String
defaultEarDtdPath, String defaultEjbDocType, String

22

10

15

20

25

30

WO 2004/079521 PCT/US2004/005949

defaultEjbDtdPath) ;

public void setDocTypeInfor (ResourceBundle bundle) ;

public void .setEJB11 (Boolean wvalue) ;

public void setEJIB11();

public void convertContainer (Replacer stringReplacer) ;

public Boolean isEjbOrWarAvailable();

public StringWriter executCommand(String cmd, Boolean
verboseOnException) throws DeploymentException;

public StringWriter executeCommand (String cmd) throws
DeploymentException;

public String getVariableValue (String variableName) ; }

DeploymentModules are objects that correspond to any J2EE
deployment modules. For example, DeploymentModules include a
collection of deployment modules such as ejb-jars, web archives,
client jars that J2EE modules contain. Thus, in the above
interface definition, the getJ2eeApplication() method returns a
Vector of DeploymentModule objects that correspond to J2EE
applications, which were selected to be deployed by a user.

The getEjbJars (DeploymentModule de) method returns a Vector
of DeploymentModule objects that correspond to ejbjars for a
given J2EE Application.

The getBundle() method returns the ResourceBundle for the
deployment tool of the present disclosure. The saveProfile()
method is invoked if a profile for a given server is to be saved,
for example, for a future use. For example, when a user is
finished with a panel that collects server profile information,
this method may be invoked to save the profile data that the user
entered using the panel. In one embodiment, the deployment tool
provided in the present disclosure automatically manages saving
and retrieving of the ServerProfile objects for a plugin. This
method, however, is available for the plug-ins to also implement
if desired.

The getWorkingProfile() method is invoked to get the

23

10

15

20

25

30

WO 2004/079521 PCT/US2004/005949

information on the target server that a user specified for
deployment. For example, when a user selects one of the server
profile objects, the deployment tool provided in the system and
method of the present disclosure sets a working profile using the
selected server profile object.

The getHosts() method returns a list of unique host names
used in all saved Server Profile objects. If a plugin desires
to provide this list, for example, in a drop down list, as a
convenience to the user, this method may be used.

The isStopped() method is invoked to test if a deployment
wizard, through which the deployment process began, has stopped.

The plug-in then may terminated itself when this method returns
true.

The log(String text) method is used to display any normal
status messages once the deploy method is called. Any
information related to the deployment process such as steps
completed may be sent to an output window.

The logError (String text) method is invoked to disgay any
error status messages once the deploy method is called. Any
information related to the deployment process, such as
exceptions, may be sent to an output window.

The logWarning(String text) method is used to display any
warning status messages once the deploy method is called. Any
information related to the deployment process such as incomplete
steps may be sent to an output window.

The logInformation(String text) method is used to display
any informational status messages once the deploy method is
called. Information related to the deployment process such as
unusual conditions that do not affect the output may be sent to
an output window.

The setFinishButtonEnabled (boolean b) method is used to
enable or disable a Finish button. The enabling and disbling of

this button may depend on a previous user input.

24

10

15

20

25

30

WO 2004/079521 PCT/US2004/005949

The setNextButtonEnabled(boolean b) method is used to enable
or disable a Next button. The enabling and disabling of this
button may depend on a previous user input.

The setCursor (int cursorType) method is used to change the
cursor fype, for example, to change the cursor to wait cursor
during a long running process.

The getNextPage (Deployer deployer) method is called to get
the next page to display in a deployment tool, for example, the
deployment wizard.

The updateFrameStatus () method is used to notify deployment
helper interface classes that some action occurred on a plugin
panel. These actions may include updating a data field or
pressing certain buttons on the panel. The actions which warrar
a call to the deployment helper interface classes may be
determined by a plug-in.

The getResut () method returns an execution result of a
deployment tool that is invoking the plug-in, for example, the
deployment tool of the present disclosure.

The setDocTypelInfo(String defaultEarDocType, String
defaultEarDtdPath, String defaultEjbDocType, String
defaultEjbDtdPath) method is used to optionally override a
default DOCTYPE informatiom.

The setDocTypeInfor (ResourceBundle bundle) method is used to
optionally override a default DOCTYPE information from the
properties file.

The setEJB11(Boolean value) and setEJB11() methods are used
to optionally indicate that the target is compatible with EJB 1.1
version.

The convertContainer (Replacer stringReplacer) method is used
to convert containers using plug-in supplied string replacer.
This method is used to modify the deployment descriptors and to
update the JARS and EARS with modified deployment descriptors.

The isEjbOrWarAvailable() returns true if an EJB or Web

25

10

15

20

25

30

WO 2004/079521 PCT/US2004/005949

application is available to deploy.

executeCommand (String cmd, Boolean verboseOnException) and
executeCommand (String cmd) methods execute command indicated in
the parameter “cmd” in a separate process. The results of the
cmd are returned in a StringWriter object. The
verboseOnException parameter tells the method to put results in a
log on an exception.

getVariableValue (String variableName) method returns the
value of an environmental variables. The method returns null if
the variables are not defined.

Another interface provided for plug-ins to implement is
ExtendedHelper interface. This interface allows a plugin to
make use of the extended features of the helper interface, which
provide default implementations of the packaging and deployment
features.

An example definition of the ExtendeHelper interface may
include the following methods:

public Boolean isEarInput();

public DeplWizPanel
getWindowsServerPage (WindowsServerPageUser pageUser) ;

public DeplWizPanel getUnixServerPage (UnixServerPageUser
pageUser) ;

public String createEarFile (DeploymentModule de, int
appCount) throws DeploymentException;

public void createRuntimeXml (DeploymnetModule de, String
earPath) throws Deployment Exception;

public void invokeCommandLine (String[] progArray, String
processID, String prevErrorMsg) throws DeploymentException;

public void invokeCommandLine (String[] progArray, String
processID) throws DeploymentException;

public void invokeCommandLine (String progString, String
processID) throws DeploymentException;

public void genFTPContainers (ResourceBundle bundle) throws

26

10

15

20

25

30

WO 2004/079521 PCT/US2004/005949

DeploymentException;

public void deployFTPContainers (ResourceBundle bundle)
throws Deployment Exception;

public void genContainers (ResrouceBundle bundle) throws
DeploymnetException;

public Vector getEarPath();

pubic void deployContainers (ResourceBundel bundle) throws
Deployment Exception;

public void setGenerateSql (boolean value).

In the above definition, the isEarInput () method returns
true if an EAR file was input to the deployment tool, for
example, when called as a standalone mode.

The getWindowsServerPage (WindowsServerPageUser pageUser)
method returns a default server details page for a windows based
server.

The getUnixServerPage (UnixServerPageUser pageUser) method
returns a default server details page for a Unix kased server.
This page, for example, collects ftp (file transfer protocol)
parameters.

The createEarFile (DeploymentModule de, int appCount) method
is used to specify modules and sub-modules to build an EAR file.

The createRuntimeXml (DeploymnetModule de, String earPath)
method is used to create a sun-j2ee-ri.xml file for the EAR file,
a deployment descriptor to J2EE Reference Implementation.

The invokeCommandLine (String[] progArray, String processiID,
String prevErrorMsg), invokeCommandLine (String progString, String
processID) and invokeCommandLine (String[] progArray, String
processID) methods are used to invoke a command using a command
line interface.

The genFTPContainers (ResourceBundle bundle) method generates
EAR files to be sent via ftp.

The deployFTPContainers (ResourceBundle bundle) method
transfers the EAR files, for example, by ftp.

27

10

15

20

25

30

WO 2004/079521 PCT/US2004/005949

The genContainers (ResrouceBundle bundle) method generates
the EAR files.

The getEarPath() method returns the local paths to access
the EAR files.

The deployContainers(RescurceBundel bundle) method deploys
the EAR files.

The setGenerateSql (boolean value) method allows a plugin to
specify whether to attempt to generate SQL (sequential query
language) using the J2EE deploy tool. The parameter “value,” for
example, returns true if SQL is to be generated. The default is
false.

The interfaces and the defined methods shown above are
described only as examples, and should not be construed as being
the only way of implementing the system and method provided in
the present disclosure. Rather, those skilled in the art of
computer programming will appreciate that methods and interface
definitions can vary while still implementing similar functional
procedures for achieving similar results.

A deployment method using the deployment tool provided in
the system and method of the present disclosure in one embodiment
will now be described with reference to Figure 3 and Figure 413,
which illustrate a plurality of panels used during the deployment
process. Figure 3 is a process flow diagrmm that illustrates the
deployment method in one embodiment and also refers to the
examples of classes and methods that are invoked during the
process. Typically, a person acting in a role of an EJB
deployer, referred to as a user, uses the deployment tod. When
the deployment tool is initiated, for example, on a command line
or via a development environment tool, a method of a deployment
wizard interface implemented by the deployment tool is invoked to
present the user with an initial panel shown in Figwe 4. The
panel 400 lists a list of available application servers 402 and
also a “+” button 404 and a “X” button 406. This panel allows

28

10

15

20

25

30

WO 2004/079521 PCT/US2004/005949

the user to select a target application server and to define a
server profile for the selected target application serwer as
shown at 304.

If no profile exists for a particular application server, a
new server profile may be added, for example, by clicking on the
“+” button 404. An “X” button 406 may be used to delete an
existing server profile. Server profiles may be crated for any
application server for which there exists a deployment plugin.
Server profiles are saved between invocations of the deployment
tool.

At 306, a deployment plug-in is dynamically loaded and
instantiated. The deployment plug-ins implement the interfaces
described above. Multiple profiles may be maintained for each
server type. At 308, plug-in implemented methods are invoked to
obtain application server specific configuration information.
This information is used to modify deployment descriptr files
used during deployment. At 310, EAR file having application
server specific configuration information is repackaged. At 312,
if the selected target application server is located on a remote
machine, EAR file is transferred, for example, by FTP, to that
target application server. At 314, a deploy method implemented
by the plug-in is invoked to deploy the EAR file to the selected
target application server.

The plug-in implemented classes invoked at 308 include
MultiPlatformPlugin interface classes for those plug-ins that
support more than one platform. For example, the display panel
shown in Figure 5 may be displayed when the plug-in’s
getNextPanel method is invoked with a list of platform supported
by this plug-in. The list of platform is obtained by invoking
the getPlatforms method implemented by this plugin.

This panel 500 allows a user, that is, the person doing the
deployment, to select a type of platform that will be used as the
target for this deployment operation. The platforms displaye in

29

10

15

20

25

30

WO 2004/079521 PCT/US2004/005949

the drop-down list are supported by the plug-in.

Application server specific properties obtained through a
plug-in may include various server profile details. The server
profile details can vary depending on the information needed to
deploy to the specified application server and platform. These
profile details are saved in the server profile and are made
available as default values the next time the server profile is
requested. The profile details are retrieved and displayed, for
example, using a panel shown in Figure 6 as default values by
invoking UnixServerPageUser or WindowsServerPageUser class
methods. These panels are available for use by a plugin and may
be obtained from a particular plug-in by accessing the
DeploymentHelper interface.

If the information acquired via the panel shown in Figure 6

is sufficient for a plug-in, then it may be used by a plug-in via

.the DeploymentHelper interface. Alternatively, plugins may

implement a different profile detail panels to obtain server
profile detail information.

Once the deployment details have been specified for a
server, the EAR file is packaged and displayed. The user may
then modify the deployment descriptors for the J2EE modules. The:
deployment descriptor may be modified in a number of dfferent
ways. An XML editor may be used to edit the XML files selected,
for example, from a panel showing EJB display tree illustrated in
Figure 7. Once a user selects an XML file, other panels may be
activated to open an editor to modify selected portions of the
deployment descriptors as shown in Figure 8. Also from the EAR
file contents panel shown in Figure 7, a message driven bean, for
example, may be selected by a user if the user desires to specify
parameters related to the message driven bean. @ce the message
driven bean is selected, a panel for specifying the parameters
may be invoked.

Generally, an implemented class in the deployment tool of

30

10

15

20

25

30

WO 2004/079521 PCT/US2004/005949

the present disclosure displays a panel showing a EJB display
tree 702. The objects on the tree may be modified by selecting
different buttons 704 on the panel. The buttons are connected to
methods in the class, which then activate additional panels.

Referring to Figure 8, an XML editor provides a user with
the capability to modify the deployment descriptors in any way
the user desires. Alternatively, the XML editor may be disabled
by the deployment tool when it is first invoked. The XML editor
may provide formatting and highlighting specific to XML.

A JMS destination properties panel shown in Figuw 9, for
example, allows a user to specify one or more parameters
necessary to configure an EJB as a JMS (Java message service)
destination. The name of the connection factory may default to
either TopicConnectionFactory or QueueConnectionFactory,
depending upon the message type being used. If desired, a user
may enter in this field the JNDI name of any JMS connection
factory installed on the target J2EE application server.

The JMS message selector 902 is an expression that causes
incoming messages to be filtered based upon their properties.
For example, a message selector expression may appear as:

NewsType = ‘Weather’ OR NewsTypes = ‘Politics’

This message selector 902 causes only messages having a
“NewsType” property defined with a value of ‘Weather’ or
‘Politics’ to be received by the message consumer.

The information collected using the above-described panels,
also referred to as deployment properties panels, is used to
generate respective fields in the appropriate deployment
descriptors.

As known to those skilled in the art, EJB deployment
descriptor is an XML descriptor included in a Java Archive (JAR)
of an enterprise bean. This file, ejb-jar-xml, contains the
message bean definition, its JMS message selector, the

destination type, and its subscription durability for Topics.

31

WO 2004/079521 PCT/US2004/005949

The descriptor fields used to represent these properties are
shown in the following example. Some of the information
collected in the above-described example panels are indicated in
italics:
<ejb-jars>
<description>no description</descriptions>
<display names>NewsReceiverJar</display-name>
<enterprise-beans>
<message-driven>
<description>no description</descriptions>
<display names>NewsReceiver</display-names
<ejb-name>NewsReceiverMessageBean</ejb-name>
<ejb-class>NewsReceiverMessageBean</ejb-class>
<transaction-type>Container</transaction-type>
<message-selector>
NewsType='Weather’ OR NewsType=’Politics’
</message-selectors
<message-driven-destinations>
<destination-type>
javax.jms.Topic</destination type>
<subscription-durability>
Durable</subscription-durability>
</message-driven-destinations>
<security-identity>
<description></descriptions>
<run-as-specified-identity>
<description></descriptions>
<role-name></role-name>
</run-as-specified-identity>
</security-identity>
</message-drivens>

</enterprise-beans>

32

10

15

20

25

30

WO 2004/079521 PCT/US2004/005949

<assembly-descriptors>
<container-transaction>
<method>
<ejb-name>NewsReceiveMessageBean</ejb-name>
<method-intf>Bean</method-intfs>
<method-names>onMessage< /method-name>
<method-parms>
<method-param>
javax.jms.Message</method-param>
</method-parms>
</method>
<trans-attributesRequired</trans-attributes>
</container-transactions
</assembly-descriptor>

</ejb-jars>

The EAR descriptor format may differ among application

server vendors. The following example shows the format used by
the J2EE Reference Implementation application server. Examples
of information that may be collected using the above-described

panel and used to update the descriptor is shown in italics’:

<j2ee-ri-specific-informations>
<gerver-name></server-name>
<rolemapping></rolemappings>
<enterprise-beans>
<module-name>NewsReceiver.jar</module-name>
<unique-id>0</unique-ids>
<ejb>
<ejb-name>NewsReceiverMessageDrivenBean
</ejb-name>
<jndi-name>NewsTopic</jndi-name>

<ior-security-configs>

33

10

15

20

25

30

WO 2004/079521 PCT/US2004/005949

<transport-config>
<integrityssupported</integritys
<confidentiality>supported</confidentiality>
<establish-trust-in-target>supported
</establish-trust-in-target>
<establish-trust-in-client>supported
</establish-trust-in- clients
</transport-config>
<as-contexts>
<auth-method>username password</auth-method>
<realm>default</realms>
<required>true</requireds>
</as-context>
<sas-context>
<caller-propagation>supported
</caller-propagation>
</sas-context>
</ior-security-configs>
<principals>
<name></name>
</principals>
<jms-durable-subscription-name>MySub
</jms-durable-subscription-names
<mdb-connection-factory>NewsConnectionFactory
</mdb-connection-factory>
</ejb>
</enterprise-beans>

</j2ee-ri-specific-information>

EJB’s that reference other resources may have the
appropriate information added to their deployment descriptor
using a resource references panel provided by the system and

method of the present disclosure. Figure 10 shows a resource

34

10

15

20

25

30

WO 2004/079521 PCT/US2004/005949

references panel in one embodiment. The JNDI name, user name,
and password fields are associated with the selected resource
reference.

If the resource references panel 1000 is used to add
additional information related to resources referenced by the
EJB’s, the EJUB deployment descriptor, for example, ejb-jar.xml,
shown above, need to include resource reference definitions for
the JMS objects accessed via JNDI. For message producers sending
messages to a single topic or queue, there are only two JNDI
references: the connection factory and the topic/queue. For
example, the following session bean deployment descriptor shows
how JMS references (in italic) are defined for a message producer
that publishes a message to a topic:

<ejb-jar>

<description>no description</descriptions>
<display-name>NewsBroadcasterJar</display-name>
<enterprise-beans>
<session>
<description>no description</descriptions>
<display-name>NewsBroadcaster</desplay-name>
<ejb-name>NewsBroadcastersessionBean</ejb-name>
<home>NewsBroadcasterHome</home>
<remote>NewsBroadcasterRemote</remotes>
<ejb-class>NewsBroadcasterSessionBean
</ejb-class>
<session-type>Stateless</session-types>
<transaction-type>Container<transaction-type>
<gecurity-identity>
<description></description>
<use-caller-identity></use-caller-identity>
</security-identity>
<resource-ref>

<res-ref-name>jms/NewsConnectonFactory

35

10

15

20

25

30

WO 2004/079521 PCT/US2004/005949

</res-ref -names>
<res-types>javax.jms.TopicConnectionFactory
</res-type>
<res-auth>Container</res-auth>
<res-sharing-scope>Shareable
</res-sgharing-scopes>
</resource-refs>
<resource-env-ref>
<resource-env-ref-name>jms/NewsTopic
</resource-env-ref-name>
<resource-env-ref-typesjavax.jms.Topic
</resource-env-ref-type>
</resource-env-ref>
</session>
</enterprise-beans>
<assembly-descriptors>
<container-transaction>
<method>
<ejb-names>NewsBroadcasterSessionBean
</ejb-name>
<method-intf>Remote</method-intf>
<method-name>broadcastNews</method-names>
<method-params></method-params>
</method>
<trans-attribute>Required</trans-attribute>
</container-transaction>
</assembly-descriptor>

</ejb-jars>

In addition to specifying references in the EJB deployment
descriptor, references to the connection factory and topic/queue
names are also specified in the EAR deployment descriptor. The
EAR descriptor format may differ among application server

36

WO 2004/079521 PCT/US2004/005949

vendors. The following EAR descriptor shows how these references

(shown in italic) may be specified for deployment of a session

10

15

20

25

30

bean publishing messages to a topic:
<j2ee-ri-speific-information>
<server-name></server-name>
<rolemapping></rolemapping>
<enterprise-beans>
<module-name>NewsBroadcaster.jar</module-name>
<unique-id>0</unique-id>
<ejb>
<ejb-name>NewsBroadcasterSessionBean
</ejb-name>
<jndi-name>NewsBroadcaster</jndi-name>
<lor-security-config>
<transport-config>
<integrityssupported</integrity>
<confidentialitys>supparted</confidentiality>
<establish-trust-in-target>supported
</establish-trust-in-target>
<establish-trust-in-client>supported
</establish-trust-in- client>
</transport-configs>
<as-contexts>
<auth-method>username password</auth-method>
<realm>default</realms>
<requireds>true</requireds
</as-context>
<sas-contexts>
<caller-propagation>supported
</caller-propagations>
</sas-context>
</ior-security-configs>

<regsource-refs>

37

10

15

20

25

30

WO 2004/079521 PCT/US2004/005949

<res-ref-name>jms/NewsConnectionFactory
</res-ref-name>
<jndi-name>TopicConnectionFactory</jndi-name>
<default-resource-principals>
<namesname</name>
<password>password</passwords>
</default-resource-principal>
</resource-ref>
<resource-env-ref>
<resource-env-ref-namesjms/NewsName
</resource-env-ref-name>
<jndi-name>NewsTopic<jndi-name>
</resource-env-ref>
</ejb>
</enterprise-beans>

</j2ee-ri-gpeific-information>

Figure 11 shows a resource environment references panel.
Resource environment references allow a resource to be referred
to by a different name in the source code of the application
compared to its JNDI name. This panel 1100 may be used to allow
a user, for example, a person doing the deployment, to specify a
correlation between the coded name and the JNDI name. This
allows the JNDI name to vary between deployment environments
without having to modify the EJB source code.

Figure 12 shows a summary panel in one embodiment. The
summary panel allows a user to verify the deployment options
before initiating deployment to the target application server.
Figure 13 illustrates a progress panel in one embodiment. The
progress panel shows the progress and results of the deployment
operations. This panel is optional and may be disabled by the
deployment tool. -

In one embodiment, the individual plug-ins are isolated from

38

10

15

20

WO 2004/079521 PCT/US2004/005949

each other. Thus, failures in a particular plug-in typically do
not impact other plug-ins. The deployment tool infrastructure
described herein is used by the plug-ins to accomplish the
deployment of specified EAR files.

The system and method of the present invention may be
implemented and run on a general-purpose computer. The
deployment tool provided in the present system and method, for
example, may be based on EJB 2.0 specification and J2EE 1.3
blueprint. This deployment tool enables deployment of EJBs to
various application servers that are, for example, EJB 2.0
compliant and J2EE certified.

The embodiments described above are illustrative examples
and it should not be construed as limiting to these particular
embodiments. Various changes and modifications may be effected
by one skilled in the art without departing from the spirit or
scope of the invention as defined in the appended claims. For
example, although the system and method disclosed herein has been
described with respect to J2EE and Java environment as an exampk
for ease of explanation, it is not limited only to such
programming environment. Further, although interfaces and
classes defined have been described to explain the operational
details of the deployment tool, it should be understood that
programming codes may vary. Accordingly, the present invention

is not limited except as by the appended claims.

39

10

15

20

25

30

WO 2004/079521 PCT/US2004/005949

CLAIMS

We claim:

1. A system for deploying program modules, comprising:

a deployment module operable to run in an integrated
development environment or in a standalone mode, the deployment
module operable to determine a target application server to which
to deploy one or more program modules; and

one or more plug-in modules dynamically loadable by the
deployment module to process application server specific
deployment configurations associated with one or more target
application servers for deploying the one or more program modules
to the one or more target application servers from the deployment

module.

2. The system of claim 1, wherein the deployment modile is
operable to provide a user with a list of available target
application servers to allow the user to select the target

application server.

3. The system of claim 2, wherein the deployment module is
operable to allow the user to add a new target application

server.

4. The system of claim 3, wherein a new plug-in module
associated with the new target application server may be
dynamically loaded to run with the deployment module without
updating the deployment module.

5. The system of claim 1, further including a common set of
program definitions for the one or more plug-in modulesg to

implement for interacting with the deployment module.

40

10

15

20

25

30

WO 2004/079521 PCT/US2004/005949

6. The system of claim 4, wherein the common set of program

definitions includes object oriented interface definitions.

7. The system of claim 1, wherein the application server
specific deployment configurations include one or more platforms

on which the one or more target application servers run.

8. The system of claim 7, wherein the application server
specific deployment configurations include information related to

the one or more platforms.

9. The system of claim 1, wherein the application server
specific deployment configurations include directory structure of

the target application server.

10. The system of claim 1, wherein the application server
specific deployment configurations include security information

associated with the target application server.

11. The system of claim 1, wherein the application server
specific deployment configurations include information related to

the one or more program modules.

12. A method for deploying program modules, comprising:

determining a target application server to deploy one or
more program modules;

dynamically loading a plug-in associated with the target
application server for determining configuration information
related to the target application server;

updating a deployment file with the determined configuration
information;

packaging the one or more program modules and the updated

41

10

15

20

25

30

WO 2004/079521 PCT/US2004/005949

deployment file; and
deploying the packaged one or more program modules to the

target application server.

13. The method of claim 12, further including transferring
the packaged one or more program modules to the target

application server.

14. The method of claim 13, wherein the transferring

includes transferring by file transfer protocol (FTP).

15. The method of claim 12, wherein the determining a
target application server includes determining a target
application server among a plurality of application servers

provided by different application server providers.

16. A method for providing a deployment tool for deploying
programs to one or more target application servers, comprising:

providing a deployment module operable to determine a target
application server;

providing a set of common definitions for a plugin module
to implement, the set of common definitions used to provide.
interaction between the deployment module and the plug-in module
and also used to process one or more target application server
specific configurations for deploying one or more program modules

to the target application server.

17. The method of claim 16, further including:
providing one or more plug-in modules implementing the set
of common definitions, the one or more plug-in modules associated

with respective one or more target application servers.

18. A program storage device readable by machine, tangibly

42

10

15

20

25

30

WO 2004/079521 PCT/US2004/005949

embodying a program of instructions executable by the machine to
perform method steps'of deploying program modules, comprising:

determining a target application server to deploy one or
more program modules;

dynamically loading a plug-in module associated with the
target application server for determining configuration
information related to the target application server;

updating a deployment file with the determined configuration
information;

packaging the one or more program modules and the updated
deployment file; and

deploying the packaged one or more program modules to the

target application server.

19. A system for deploying one or more program modules to a
target application server, compriging:

a deployment module operable to run in an integrated
development environment or in a standalone mode, the deployment
module operable to determine a target application server to which
to deploy one or more program modules; and

a common set of program definitions for a plug-in module to
implement for interacting with the deployment module, the common
set of program definitions used by the plug-in module and the
deployment module to configure target application server specific

information for deploying to the target application server.

20. The system of claim 19, further including:

one or more plug-in modules associated with respective one
or more target application servers, the one or more plug-in
modules implementing the common set of program definitions to
determine application server specific configurations associated

with respective one or more target application servers.

43

PCT/US2004/005949

WO 2004/079521

T \m»:mi

sur-Znyd
IAorde 1ealeg

kit~

208]183U]
u-gnjg tokordacy

998110}
ouI"] PUBWILIOY)

uoneorddy]

o:\

uoro9[ag
uLIogeldj
Jo3eueA
. 3[IyoIJ Iaaleg
%Q. ’
Jodjop]
1uswhorde
-
91!

90BLIOIY PIEZIA]

yuswmAopdo(]]

SaSSL[D) 90BJIS1U]]
20[93eyRApY

~

\jo~

. 90l

1/13

PCT/US2004/005949

WO 2004/079521

9¢¢
1

Ohl

sa1y Juswkojday

Z aunbi4

Ve $CT

ThT

hhd ~

5590014 juswhodacy

+

I0AT5S UOHEDNddY

e 9T

107 untogyed L~ ?N T
19818) 9y} 109j08
4
leogryg
a3 a8expoeday e Tt
*‘

0] spewt ss3ue
O N\m A~ Qlaorsp Lo

Jo Suipeo] oneulg

[~ Ioddng usald |
1ea10g woneoddy ko~ T\
10 A1IqeeAY
1
(s)udnjd 10A10g
uoneoddy pjlo/menN | 0 p.ﬁ

A

amoaydsy wisnyg
Jaateg uonesnddy

Jea grg uswiforde
< o1p199dg Iaase < <
o8eyjordas/aBiap o .MW.: d nw ouﬂowumu N {8001 §]
2INPa00Id M $3]1 Juswikojdaqy o
tuswforda anoaxyg | ou198dg 1oateg \r ¢ N,
uonestiddy ajelouan)
v
Jed grg
TET aBexoedoy/eSio
PAL G BN
juawioldap s &
uuopnerd
13A155 uoneariddy
198181 91 03 14
Hodsy T m.ﬂ \\
selg Juetkojdecy |
sdira
9T~ 0°Z/1°1 drd sHoddng
Joalag
uoneoydde ayy Jog
T F.N ~ sjiy0id & gjeal)
& o N | eamg uoneoiddy
198123 2} 193158
A
(s18y30/aZ/*01d/uRDy/R0f) .
180°grA 185°g (7] 9UI 59001
0T

4

Ha T

A

34T

2/13

WO 2004/079521 PCT/US2004/005949

deployment vz 5 0 2

wizard interface
class invoked

y

display server
profile selection "
panel to enable 5 Y H
a user to select
target application server

y

dynamically load
a plug-in corresponding
to the selected o~
target application 5 Oé’
server

y

plug-in implemented
classes and methods |~ 2,08
invoked to obtain
application server specific
configuration

r

Repackage EAR !
file to include ol 3 10
application server
specific configuration

transfer, e.g., FTP i~ "77 , 1
EAR fileto

target application /J 3 'L.I

server, if remote
invoke
N plug-in
i implemented
deploy method
Figure 3

3/13

PCT/US2004/005949

WO 2004/079521

00h
L T Eﬁm.,w \&Q,T
|__dieH | [moueo | [Tuswg | [<pen][owed» |
mma
=
a lsMag unpesyddy 'z ssogp
18A188 UORRI||ddY |6 8]2810
. dsneg uojieajddy 9'g sieudsgap
A 0 f —_——— Janies uopesydey 0°g 3BOIYBAA 3
0°'0 18ue|d}
JaMag uoieayddy o°¢ sl1aydsgen Mes b 33PN nm__.._
- I8A18S Uopeal|ddy 0'g unyp [B18S 8ULI0L SBIYoId

uoRelusUBIdW edueleley L' L Sacr] :edALJenes arg T

$35A13
§ UORRRAdY 30 1677 jefiley uawiiojdap au se 8|U0id Janies grg ue augsq

\ _% a=%£§mmnnm.ua~_3~=asiannmuw
Hof

4/13

PCT/US2004/005949

WO 2004/079521

5 Ssmﬁ

[disH | [woweo | [[uswd | [=ven][pems]

aluen ulogeld

wiiofle|d 1aajag

[I]E[I]

XIEE

moje|d 199jag - prezig Juaudojdag m._.w%ﬁ

00§~

5/13

PCT/US2004/005949

WO 2004/079521

009 “9amb]
N gambid
[deH | [weoues | [uswig | [<pen || owea- |
| A0 Aopang fojds _m
o1 lded [xx]
[s | “:plomssed =
_ Kii3h| . :qlsasn
660 | JaguinN Hod faaas gra
|~1 1s0y[e30]| ‘alulef IS0 JaMas g
_) d8rIaS L'$'Z mwomw%__ ‘BUeN ajuald
JlaAlsg gra palss|ss syl aZiLIoISns
X5

sie1aq S§o1d 19A1ag grd - PlEzM ueudaldaq By

6/13

PCT/US2004/005949

WO 2004/079521

| 24m m.~ -

dsF | [_feoueg | | uswid | [<meN | [ope@» |

TaL ~

(i uonealdde ﬂ ,

1e87198[01d90400p mmv %

uofeziwiolsng loduasaq wawihojdad

XEA

guaung a4 Uy - piezim jusudojdeg m.w.w
ool "~ .

7/13

PCT/US2004/005949

WO 2004/079521

0 2mb)
[dem] [ewes | | S0 |
biog| paun Apesy
4 _ _ b

<{AMBU~JIT-AUI-FDIN0SBT/ > 2 H<AME U~ T =AU~ 2TNOSIT>
<I3T-AUS~BIINOSIT>
£133-301IN083TS>
<1edTouTId-301N083 -3 ThEIIDS >
<paonsssed/>CeviszN<DIonssed>
LIMBUS FIISIIS ZHLRTBUY
£1edroutad-ananosai-3 Thegap>
<mBU-TPUL/>IANLS ZHLBMRU-TPUL>
<AMBU-TII~S3T/ 3G ZN<IWBU-TIT-ED1>
£3J33~-323N0S3T>
<AMeU-TPUL/>0ZA%/ sul<ameu~Tpul>
Zameu-¢La/sueagafnesayramenoghsi<aneu-qlan
<qlaz
<PT-3nh T/ >0<PT-anb T
<IMRU-ITNRON/>18 [* Y07 I00RLIMBU-3THROWS
£sUBRaAq-ISTIAAIIIUI>
</ furddemaTozs
<U0TABWIOIUT-OTITOds~TI-30z L

17/ *0UT sWeASASOTOTH WNG//-, JITNd WOTABWIOIUT-OTITodS-T1-9920 HIALIOAI >

£¢,,8-d410,=RUTpoous ,0°1,=U0T8I04 TUXE

3=]

10)1p3 THX Prezis waudodag B

8/13

PCT/US2004/005949

WO 2004/079521

.@ w,_sm_,u,

’

den_ | [wweo | [0 |

L m
Tob o
4 . =
Jons|ag efiesssi SHP
G0l ~
_ bcuumu:a%mccoouanﬂ Aloj0e 4 uopasuuog
_ ozagswi| :aweu GNP uoteursaq
aweN uofduIsyng @
ajgemgas) [
18LUNSU0Y U 84 [IIM 81T SIUL Y3IYM IO} Lofeulsap SHrJo add) ayl Alosdg
XEE sanradoid uoyeunsag SHE m.W

9/13

PCT/US2004/005949

WO 2004/079521

000] at -ambyy
[den | [euweo | [0 | h
| B ‘plomssed “
_ _ ‘auieN Jasn
_ | eweniane

sfugas uatuAoldeq aausisiay sanosey—

8doag fuleys | uonesguayny |

ada),

| auwep papod T

Ssiuaiglay alingsay -

XIE

sajualejay alnosay =3

10/13

PCT/US2004/005949

WO 2004/079521

j U;SQ,,HW.

_ diaq ~ | edueg | |

S0]

‘BweN [ane

shumag Jwswioldeq asuslalay awiuoiiaug m?:.:.._mmm_L

&

adi)

BUEN PapoD

==

Sallaislay Juauusliaug mn::ammmL

ﬂ |
N

XQE

Faduasajay Juamuonaul aomnosay B3

11/13

PCT/US2004/005949

WO 2004/079521

Q0T
~ ~_ 7\ esgw
L_dieH | | woueg | [Tuswid | [=y][wems]
4 » __M
_~
6601:1501e00] w0 2aateg uoneonddy [ssogy
Pe1oatas sumageaRy asudzayuy
m[paopoop joalargyooptoop
- Busordacy
‘safueys
axew o} safied snojsald of LINIaI 0] 4aBE %210 ‘pajI8ias nod suoldo au) el alaH
G

indu| uyuo’ - preziy, Juawdoidag Ex

12/13

PCT/US2004/005949

WO 2004/079521

Qo.m./ ¢l fiﬁ

[(C@sH] [wid] [dwegebey [“svews] | ssop | [omm]

|

"SI0U3 () Lk Papua Bussanory
(660T:150TRa0D) 2aaxag wonwandily 'z ssogp wo puoukopdep paysmury
paysnILy
. *ssa001d xnpowe £q pasn Suraq sty asmeday g A
853208 Jouues szasoxd myf, - uocpr-oazf-una INT-V, Laoaforopeapducyy durap :a
FRERELPRFLLE L
Axopaax1p poaferprooproopdur ydurayza
SABUERT PUT SUAUOG LI0LITIP N Hafap
RITERTTT RPN Ly]
..Eoaoaﬂpﬁuqﬂanﬁtm?ﬂmu%g%:&:ﬁme_.mwﬁﬁéﬁna?"o
yoaforppaoiroopdin g duray:s teqireparepdniurg aopaBenreapinaofe;y
reasaforppaoproop :aqg wyy pedopdag

0T] — [

3

paysiuld smels - prezpy, Juawifojdag BS

13/13

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

