Office de la Proprieté
Intellectuelle
du Canada

Un organisme
d'Industrie Canada

Canadian
Intellectual Property
Office

An agency of
Industry Canada

CA 2527526 C 2015/03/24

(11)(21) 2 527 526

(12 BREVET CANADIEN
CANADIAN PATENT

13) C

(22) Date de depot/Filing Date: 2005/11/18

51) Cl.Int./Int.Cl. GO6F 7171/30(2006.01),
GO6F 21/55(2013.01)

(41) Mise a la disp. pub./Open to Public Insp.: 2006/06/21
(45) Date de délivrance/lssue Date: 2015/03/24
(30) Priorité/Priority: 2004/12/21 (US11/019,094)

(72) Inventeurs/Inventors:
ARMSTRONG, BENJAMIN, US;

RAY, KENN

K

RAME

R, MIC

GARMS, JASON, US;
=51

D., US;
AEL, US;

ENGLAND, PAUL, US;
FIELD, SCOTT A, US

(73) Proprietaire/Owner:
MICROSOFT CORPORATION, US

(74) Agent: SMART & BIGGAR

(54) Titre : GESTION DE LA SECURITE INFORMATIQUE,
SYSTEME D'EXPLOITATION DURCI

PAR EXEMPLE DANS UNE MACHINE VIRTUELLE OU UN

54) Title: COMPUTER SECURITY MANAGEMENT, SUCH AS IN A VIRTUAL MACHINE OR HARDENED OPERATING

SYSTEM
200
g T]
~— 118
_—118 (/V’HJaI Machine e 118
(le Macﬁﬁé\ N~ {/thua\ Zlac%
“~ N / \\\E L
< ‘3 /’/Seourlty \ (0
Super\nso */{xpphcatlon o
\\.__ Process _~ y,
\\H - 202 /,/
\\an‘_HOSt Syster_rL -
Computer System (Physical Machine) 100
(57) Abrégé/Abstract:

A security scheme provides security to one or more self-contained operating environment instances executing on a computer. The
security scheme may include implementing a set of security applications that may be controlled by a supervisory process, or the
ike. Both the set of security applications and the supervisory process may operate on a host system of the computer, which may
also provide a platform for execution of the one or more self-contained operating environments. The security scheme protects
processes running in the one or more self-contained operating environment and processes running on the computer outside of the

self-contained operating environments.

C anad a http.//opic.ge.ca + Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca

OPIC - C]

AR .
ey . RN
et '\'l'.'.
AU ¥,
e [[[4
N
A

OPIC

PO 191

10

15

51331-330

CA 02527526 2005-11-18

~]

COMPUTER SECURITY MANAGEMENT,

SUCH AS IN A VIRTUAL MACHIN.

L*]

OR HARDENED OP.

L RAT

(NG SYST!

]
=<

ABSTRACT OF TH.

[*]
-

ISCLOSUR!

L™

A security scheme provides securlty to one or more

self-contained operating environment instances executlng on

a computer.

The security scheme may include implementing a

set of security applications that may be controlled by a

SUPEervisory process,

or the like.

Both the set of security

applications and the supervisory process may operate on a

yr—

host system of the computer, which may also provide a

“Oorm

plat:

operatling environments.

pr—

for execution of the one or more self-contained

The security scheme protects

processes running in the one or more self-contained

operating environment and processes runnling on the computer

outside o1

pr— pr——
—

- the self-contained operating environments.

5

10

15

20

25

30

CA 02527526 2005-11-18

51331-330

COMPUTER SECURITY MANAGEMENT, SUCH AS IN A VIRTUAL MACHINE
OR HARDENED OPERATING SYSTEM

TECHNICAL FIELD

The described technology relates generally to

ﬁ

malntalning the security and 1ntegrity of computer operating

systems.

BACKGROUND

When software that has been designed specifically

to damage or disrupt a system (e.g., malicious software or
"malware") 1nvades a computer system, the 1ntegrity of the
computer's operating system, and hence the entire computer
system, 1s greatly compromised. While the security concerns

P

and requirements of computer users range widely, given the

rise of virus, worm, and Trojan threats, most computer users

are concerned with the i1ntegrity of their computers'

critical infrastructure components such as operating system

processes, memory processes, etc.

P

Some types of malware use the operating system's

privlileged operations to attack the computer. Such

ﬁ

privileged operations typically consist of instructions or

sets of 1nstructions that are accessible only by a

privileged user or process. For example, when malware 1s

ﬁ

somehow able to access one or more of these privileged

h

operations, this may result in the deletion or corruption o:

l

operating system files, the attack of in-memory operating

ﬁ

system components, the deletion of user files, and many

other harmful possibilities. In some cases, even non-

malicious processes may damage a computer system through

1nadvertent behavior that accesses privileged operations.

More generally, almost any process may be able to obtailn

10

15

20

25

30

CA 02527526 2005-11-18

51331-330

access to privileged operatilions by simply assuming the

identity of a privileged user.

Normally, operating systems provide an
infrastructure for hosting processes and providing system
services to those processes. Operating systems typically
provide basic security protections - such as enforcing
access control and ownership rights over system resources.

For example, 1n normal operating system environments,

protective security services such as host firewall,

vulnerability assessment, patch detection, behavioral

pblocking, host or network intrusion detection, and antivirus
technologies are all run as native applications in the
operating system. Despite these measures, the operating
system 1s sometimes unable to accurately determine whether
1t has been attacked. Specifically, once a piece of

mallicious code or other malware attacks a computer system

and gains sufficient control (e.g., administrator-level
access), all further attempts by the operating system to
determine whether 1t is under attack are no longer
trustworthy because the mechanisms for such attempts may

also be corrupted. This is because the malicious code could

effectively modify any of the in-memory or on-disk
structures used by the operating system or the applications

used to protect it.

One approach to protecting a computer system and

1ts operating system involves installing a set of security

applications such as antivirus software, personal firewalls,

and 1ntrusion detection systems. In systems with multiple

computer systems, such as a computer network or a cluster of
computer systems deployed 1n an array, each individual
computer system runs 1ts own set of security applications.

This 1s because each computer system in the network or array

10

15

20

25

30

CA 02527526 2014-06-05

51050-108

1s a physically separate entity with 1ts own network
attachment, 1ts own central processing unit(s), 1ts own

instance of an operating system, etc. While such security

applications may be 1nstalled on each computer system to

prevent the computer system and 1ts operating system from being

compromlsed, such security applications may too fail to protect

the computer system because, just like any of the other

applications running on the computer system, they are also

vulnerable to attack.

In another approach to protectling a computer system

and 1ts operating system, aspects of the computer system, such

as the memory, are protected by 1solating aspects of the

computer system.

SUMMARY

g

According to one aspect of the present 1nvention,

there is provided a computer-implemented method for monitoring

and protecting multiple i1nstances of a contained process

execution environment, wherein each of the multiple 1nstances

pp—
—

accesses emulated resources of a computer, the method

comprising: detecting harmful processes by executing, on the

computer, at least one security application that monitors each

gr—

of the multiple instances of the contalned process execution

environment, wherein the at least one security application

F

executes external to the multiple instances of the contained

process execution environment; and scanning virtual resources

F

of the each of the multiple instances of the contained process

execution environment by the at least one security application,

ﬁ
—

wherein the virtual resources include the emulated resources ot

the computer, and wherein the at least one security application

1S

10

15

20

25

30

CA 02527526 2013-10-11

51050-108

aware of the resources as perceilved by a primary operating

system of the computer.

According to another aspect of the present invention,
there 1s provided a computer-implemented method for protecting
an operating system against damage caused by undesirable
process actions, the method comprising: pausing a kernel

running on the operating system, whereilin the operating system

18 at least partially i1isclated from core aspects of the

computer system’s infrastructure; checking the kernel by
scanning virtual resources of the at least partially i1solated

operating system to determine whether there is evidence of an

undesirable process action, whereln the checking 1s performed,
at least in part, by a supervisory process that 1s separate
from the at least partially isolated operating system; and
where there 1s evidence of an undesirable process action 1n the
at least partially isolated operating system, taking steps to

contain the undesirable process action.

According to still another aspect of the present
invention, there 1is provided a computer system for securing
access to privileged operations associliated with core components
of the computer system, the system comprising: a Processor; a
primary memory storage in communication with the processor; a
secondary storage device; an operating system; and a host
system, wherein the host system includes: one or more virtual
machines, wherein each of the one or more virtual machines 1is

fr—

isolated from the core components of the computer system such

that harmful processes cannot directly access the core

components when running in an environment associated with the

virtual machine, and wherein each one of the one or more

F

virtual machines includes an instance of a virtual operating

3a

10

15

20

25

CA 02527526 2014-06-05

51050-108

system, access to a virtual memory, and at least one virtual
driver; and at least one supervisory process used to monitor
the one or more virtual machines in combination with a security
application, wherein the monitoring i1ncludes possible detection

e —

of a harmful process by scanning virtual resources of the one

or more virtual machines, and wherein the at least one

supervisory process and the security application are 1solated

from the virtual machine.

According to vet another aspect of the present

invention, there 1s provided a computer-readable medium having

computer—-executable instructions stored thereon for execution
by one or more computers, that when executed 1mplement a method

as described above or below.

The computer security techniques described hereiln

fr—
p—

provide various security features, 1ncluding the use of a

#

single security process (or set of security processes) to

monitor, protect, and repalr multiple logically isolated

virtual machines running on a host system. In some
embodiments, the security technigues provide security to one oOr
more self-contained operating environment 1nstances executing
on a computer. The security techniques may 1nclude
implementing a security application that may be controlled by a
supervisory process. The security application may monitor one
or more virtual machines. This monitoring may be done using

F

various techniques, including offline scanning of the virtual

machines by the security application, i1mplementing an agent

H

security process running on each of the virtual machines, etc.

In some embodiments, both the set of security

applications and the supervisory process may operate on a

3b

CA 02527526 2005-11-18

51331-330

host system of the computer, which may also provide a

—

platform for execution of the one or more self-contained

operating environments. The security technigques may protect
processes running 1n the one or more self-contained
5 operating environments and processes running on the computer

outside of the self-contained operating environments.

Other embodiments of the i1nventilion provide
computer-readable media having computer-executable
instructions stored thereon for execution by one or more

10 computers, that when executed implement a method as

summarlzed above or as detailed below.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 1s a block diagram showing an example of

a system for i1mplementing security techniques 1n one

15 embodiment.

Figure 2 1s a block diagram showing an example of

offline scanning of virtual machines in the system of

Figure 1.

Figure 3A 1s a block diagram showing an

F

20 alternative example of offline scanning of the virtual

machines in the system of Figure 1.

Figure 3B 1s a block diagram showing another

F

example of scanning of the virtual machines 1n the system of

)

Figure 1.

25 Figure 3C 1is a block diagram showing yet another

I}

example of scanning of the virtual machines 1n the system of

Figure 1.

10

15

20

25

CA 02527526 2005-11-18

51331-330

Figure 4 is a flow diagram showing a routine
performed by a supervisory process that monitors an

operating system 1n the system of Figure 1.

Figure 5 1s a flow diagram showing an example of a

securlty monitoring routine that monitors the wvirtual

machines 1in the system of Figure 1 using periodic scanning.

Figure 6 1s a flow diagram showling a second

gr—

example of a security monitoring routine that monitors the

virtual machines in the system of Figure 1 using virtual

machine structure mounting.

L1

Figure 7 1s a flow diagram showing a thilird example
of a security monitoring routine that monitors the virtual
machines in the system of Figure 1 without using virtual

machline structure mounting.

Figure 8 1is a flow diagram showing a second

F

example of a security monitoring routine that monitors the

virtual machines in the system of Figure 1 using an agent

process running 1n the virtual machine.

In the drawings, the same reference numbers

1dentify i1dentical or substantially similar elements or

acts. To facilitate the discussion of any particular
element or act, the most significant digit or digits in a
reference number refer to the figure number in which that
element 1s first introduced (e.g., element 204 is first

introduced and discussed with respect to Figure 2).

DETAILED DESCRIPTION

The 1nvention will now be described with respect
Lo various embodiments. The followlng description provides

specific details for a thorough understanding of, and

10

15

20

25

30

CA 02527526 2005-11-18

51331-330

ﬁ

enabling description for, these embodiments of the

invention. However, one skilled 1n the art will understand
that the i1nvention may be practiced without these details.

In other i1nstances, well-known structures and functions have

not pbeen shown or described i1in detaill to avoid unnecessarily
obscuring the description of the embodiments of the

invention.

It 1s 1ntended that the terminology used in the
description presented be interpreted in its broadest

reasonable manner, even though 1t 1s being used in

conjunction with a detailed description of certain specific
embodiments of the i1nvention. Certain terms may even be
emphasized below; however, any terminology intended to be

1nterpreted in any restricted manner will be overtly and

specifically defined as such in this Detailed Description

section.

Overvigﬂ

The computer securlity techniques described herein

provide various security features, including the use of a

single security process (or set of security processes) to
monitor, protect, and repair multiple logically isolated

virtual machines running on a host system.

In some embodiments, a host system, which executes
on a physical machine, provides a virtual machine on which
an operating system and applications can execute. While
many processes may execute on the virtual machine, 1in
general, the operating system and applications executing on
the virtual machiline cannot access resources (e.g., memory

and devices) except as permitted by the host system that

provides the virtual machine or as specified by a quest that

has been assigned to a virtual machine.

CA 02527526 2005-11-18

51331-330

If a virtual machine executes malware, any damage

1s confined to the operating system, applications, and

g

accessible resources of the virtual machine. In this way,

the computer 1s substantially protected from the effects of

5 malware that executes on the virtual machine.

In some embodiments, the host system may prevent

the operating system and applications executing on the

virtual machines from performing privileged operations that
can cause undesirable changes to the resources or operating
10 system of the physical machine. For example, the operating
system executing on the virtual machine may be given
administrative privileges within the virtual machine, but

not within the physical machine.

In some embodiments, the host system implements

15 proactive security processes. Examples of such security

processes 1nclude host firewall monitors, vulnerability
assessment monitors, patch detection monitors, behavioral
blocking monitors, host or network intrusion detection

monitors, and antivirus technologies. In general, the

20 securilty processes are configured to enhance the security of
the virtual machines, the host system, and, subsequently,

the physical machine.

In some embodiments, the security processes are

embodied as or controlled by a supervisory process running

25 on the host system. The supervisory process may facilitate

or provide the security processes with some level of access

F

and visibility to components of the virtual machines,

including virtual memory, virtual disk, virtual network
adaptors, virtual drivers, etc. (e.g., in the form of in-
30 memory data structures or object models). For example, the

SUpervisory process may allow the security process to scan a

10

15

20

2

30

CA 02527526 2005-11-18

51331-330

data structure in memory or stored on disk corresponding to
a virtual machine's virtual hard disk for signs of malware
or security breaches. 1In addition (or alternatively), when
provided an object model that is supported by the host
system, the supervisory process can facilitate returning

information about the state of the virtual machine (such as

memory state or communilication state) to the host system. In
general, because the host system and supervisory pProcess

provide some level of 1isolation, the security processes may
supervise and monitor the security of the virtual machines,

while still remaining inaccessible to harmful programs

executing 1n these virtual machines. In this way, the
security processes are protected from tampering or defeat by

the programs that they are tasked with monitoring.

In some embodiments, the security processes may be
used to monitor and repalr a virtual machine that 1s 1n a

saved state where the execution of the virtual machine

monitor has been halted and where all information pertaining

to the virtual machine's memory, device and CPU state has

been written out to a physical file. The security processes

may also be used to monitor and repalr a virtual machine
that 1s 1n a paused state, which 1s typically invoked by a
virtual machine manager. Duriling the paused state, the
virtual machine ceases execution, but remains ready to
resume a next 1nstruction and processing. In either the

paused or saved state scenario the virtual operating system

inside of the wvirtual machine has no knowledge of the state

change. Likewlise, the security processes may have the

abi1llty to scan and repair or clean a virtual machine before

1t 1s loaded into the host system.

In some embodiments, the host system can mount a

virtual machine's hard disk as 1f 1t were a physical disk

10

15

20

25

30

CA 02527526 2005-11-18

51331-330

and then scan the virtual hard disk on a block level (like
any other mounted disk). For example, the host system may
employ a disk driver that can be loaded into the physical
machine's operating system. This disk driver may then
interpret the virtual hard disk and present 1t to the host
system as a locally attached disk.

Another approach to monitoring the wvirtual
machines 1s to run an "agent" securility process 1n each
virtual machine. In this approach, the agent security
process 1s assocliated wilith a primary securlity process on the

host system. The agent security process opens a

communication channel to the primary security process and

assists 1n discovery of and recovery from an attack of the

N

virtual machiline. While this scenario may involve a risk o:

1

the agent security process belng compromised during an
attack, the agent may still have an external recovery option
avallable to 1t via the primary security process. In some
scenarios (e.g., scenarios 1involving the use of a
hypervisor), the agent may run in a different virtual

machine than the virtual machine 1t 1s actually monitoring.

n some embodiments, the host system can take
periodic snapshots of the entire state of each virtual
machine. Theoretically, this snap-shotting could be
performed instantaneously, with minor performance overhead.

ﬁ

However, many variations of this technique could be

possible. If a security process detects an anomaly within

the virtual machine (e.g., malware overwriting the operating

system or malware that manifests i1tself as in-memory

ﬁ

program), then the host system can restore the state of the

virtual machine to that of the latest snapshot, take action

p—

to prevent the recurrence of the anomaly, and restart the

virtual machine.

10

15

2.0

23

30

CA 02527526 2005-11-18

51331-330

IT. Representative System

Figures 1-5 and the following discussion provide a

P

brief, general description of a suitable environment in

which the invention can be implemented. Although not
required, aspects of the invention are described in the
general context of computer—-executable instructions, such as
routines executed by a general-purpose computer (e.g., a
server computer, wireless device, or personal/laptop
computer). Those skilled 1in the relevant art will
appreciate that the invention can be practiced with other
communications, data processing, or computer system

configurations, including Internet appliances, hand-held

devices (1ncluding personal digital assistants (PDAs)),

r—

wearable computers, all manner of cellular or mobile phones,

embedded computers (including those coupled to vehicles),
multi-processor systems, microprocessor-based or
programmable consumer electronics, set-top boxes, network

PCs, mini-computers, malinframe computers, and the like.

Aspects of the 1nvention can be embodied in a
speclal purpose computer or data processor that is
specifically programmed, configured, or constructed to

fr—

perform one or more of the computer-executable instructions

explained 1in detail herein. Aspects of the invention can

also be practiced i1in distributed computing environments

where tasks or modules are performed by remote processing
devices, which are linked through a communication network.
In a distributed computing environment, program modules may

be located 1n both local and remote memory storage devices.

Aspects of the 1nvention may be stored or
distributed on computer-readable media, including

magnetically or optically readable computer disks, as

10

10

15

20

29

30

CA 02527526 2005-11-18

51331-330

microcode on semlconductor memory, nanotechnology memory,

organic or optical memory, or other portable data storage

media. Indeed, computer-implemented instructions, data
structures, screen displays, and other data under aspects of
the 1nvention may be distributed over the Internet or over
other networks (including wireless networks), on a
propagated signal on a propagation medium (e.qg., an
electromagnetic wave(s), a sound wave, etc.) over a period
of time, or may be provided on any analog or digital network
(packet switched, circuit switched, or other scheme). Those
skilled in the relevant art will recognize that portions of
the invention reside on a server computer, while
correspondlng portions reside on a client computer, such as

a mobilile device.

Referring to Figure 1, a computer system (physical
machine) 100 on which the computer security techniques can
be 1mplemented provides various components. These
components 1nclude a host system 102 configured to run on
the computer system 100 1n addition to, in combination with,
or 1n place of a standard or general purpose computer

operating system 104. In some embodiments, the host system

102 may be configured so that 1t 1s 1naccessible to

everything except native and/or privileged supervisory and

security functions. The host system 102 may interface with
one or more computer resources, such as a processor 106 with
a memory management unit (MMU) 108, a disk 110, a memory

112, a communicatlons subsystem 114, and one or more system

drivers 116.

In some embodiments, the one or more virtual

machines 118 run under the control of the host system 102

and may be subordinate to the host system 102. The virtual

e
p—

machines 118 may each be comprised of a collection of

11

10

15

20

25

30

CA 02527526 2005-11-18

51331-330

components that facilitate the virtualization or emulation

of a processor and other machine resources. For example, as

shown 1n the 1llustrated embodiment, each of the virtual
machines 118 has access to a set of emulated resources,

including virtual network adapters 119, virtual memory 120

(which may consist of an allocated portion of the physical
machine's memory 112), virtual disk 122, and one or more
virtual drivers 124 that each represent a virtual instance
of non-virtual system drivers 116. A virtual operating

system instance 126 runs on each of these virtual machines

118. In some embodiments, the virtual operating system
instance 126 may be a full or partial copy of the physical

machine's operating system 104.

In general, the virtual machines 118 may depend on
the MMU 108 to provide various page-level protections. In
general, applications or processes 129 running on the each
of the virtual machines use only the emulated resources
(e.g., virtual memory 120, virtual disk 122, virtual drivers
124, operating system 126, etc.) of their respective virtual

machine. Such applications or processes 129 are sometimes

referred to as "guest" code. The emulated resources are
generally assumed to be trustworthy in the sense that they
honor standard protection mechanisms on the host system 102

and do not expose any host system user data to the guest

code unless explicitly instructed to do so.

In some embodiments, the emulated resources may
exchange data between the host system 102 and the guest code
running on the virtual machine 118 using several integration
techniques, such as I/O port accesses, memory-mapped
registers, direct memory access (DMA), interrupts, etc.
Other data exchange techniques 1nclude clipboard sharing,

file drag and drop, time synchronization, etc. To support

12

10

15

2.0

25

30

CA 02527526 2005-11-18

01331-330

such data exchange techniques, the virtual machines 118 may

provide several facilities i1ncluding asynchronous guest

events, synchronous host calls, data transfer between the
guest code and host system 102, an integration service

reglstry, etc.

The virtual machines 118 may be created or
initiated on the host system 102 using any of several
possible techniques. For example, in one embodiment, the

*

host system 102 may create and launch an instance of a

virtual machine and configure parameters for the virtual

machine at creation time. In some embodiments, the host
system 102 may locate an existing virtual machine image on
disk 110 (perhaps on a share) and load that image as a new
virtual machine instance. In some cases, this loading 1is
referred to as "lmporting" a virtual machine instance and 1is
1n some ways analogous to an "import" function that brings

in data from one application into another.

In some embodiments, a set of one or more

supervisory processes 128 runs on the host system 102. In

some embodiments, the one or more supervisory processes 128
may have full or partial access to the virtual operating

system instances 126, and can provide a security service to
each of the virtual machines 118. In some embodiments, the

sSupervisory processes 128 may also handle activities such as

digital rights management (DRM) and licensing control.
Because thilis configuration provides that any malware running
on the virtual machines 118 cannot access resources outside

each virtual machine, the supervisory process 128 is

generally safe from corruptlion by the malware.

In some embodiments, the one or more supervisory

processes 128 control a set of security applications (e.qg.,

13

10

15

2.0

25

30

CA 02527526 2005-11-18

51331-330

antivirus software, personal firewalls, i1ntrusion detection

systems, etc.) that may protect and/or supervise all of the

virtual machines 118 on the host system 102. For example,

the one or more supervisory processes may facilitate offline

scanning of multiple virtual machines by the set of security

ﬁ

applications. Offline scanning may include configuring the

o ﬁ

set of security applications to be aware of each of the

virtual machines' virtual resources as they reside as

virtual objects on the computer system (physical machine).

ﬁ

In this way, the set of security applications can examine

(scan) those virtual resources from outside the wvirtual

gr—

machine (e.g., using a knowledge of the i1internal format of

A

the virtual machine data structures).

Although the terms "security application" and
"supervisory process" are used herein, such concepts are not

limited to applications or processes. Rather, any utility

or facility that is configured to provide services to a

virtual machine and/or its resources could be 1mplemented on

the host system to achieve the desired results without

departing from the scope of the invention. Some examples of

such a utility or facility include an anti-adware utility,

an anti-spyware utility, a disk defragmenter, etc.

~— p—

The offline scanning of virtual machine resources

may take place while the virtual machines are running or
dormant (e.g., 1in a paused or saved state). For example, 1n
the situation where a virtual machine may be created by

locating and loading an existing virtual machine i1mage onto

P
p—

the host system 102, the offline scanning (and any needed

cleaning or repairs) could occur before the virtual machine
instance is "imported". Virtual machine resources that can
be scanned in a paused or saved state include virtual hard

disks, virtual machine memory contents, virtual

14

15

20

25

30

CA 02527526 2005-11-18

51331-330

communications port buffer structures, etc. In some

implementations, it may not be possible to access the memory

r—

of a paused virtual machine. However, the virtual machine

memory may still be accessible while the virtual machine 1s

#

in a saved state or via a snapshot of a virtual machine.

g—
e

Referring to Figure 2, one example of an offline

scanning configuration 200 is shown, illustrating various

—

components of Figure 1. In this configuration, a security

application 202 and an optional supervisory process 128
reside on the host system 102. The security application

202, which may be at least partially controlled by the

supervisory process 128, views the virtual machine 118's

resources as a data structure or set of data structures that

can be scanned for signs of security breaches. To allow 1t

to access the virtual machine 118's resources 1n raw form
and accurately detect security breaches, the security

application 202 may rely on information about the semantics

and configuration of data structures associated with the

resources. 1In some embodiments, this information 1s updated

to reflect any intentional changes 1n the semantlcs and

configuration of the data structures.

-

For example, the security application 202 of

Figure 2 may be an antivirus scanning engine that scans the

S

virtual machine 118 to determine 1f 1t 1i1s infected with one

or more known viruses or worms. To begin the scanning

process, the antivirus engine 202 loads a current signature

definition file into its program memory. For example, the

signature definition file may define the semantics and

*

configuration of the virtual machine's virtual hard disk

structure, thus providing a reference point for the

antivirus engine as it scans the virtual machine's hard disk

in its current state.

15

10

15

2.0

25

30

CA 02527526 2005-11-18

51331-330

Next, the antivirus engine directs 1ts scanning to

Jr—

read a portion of the physical machine's hard disk that

correlates to the virtual machine's virtual hard disk. In

ﬁ

this way, the antivirus engine effectilively reads the

contents of the virtual hard disk, and compares 1ts content

—

(e.g., a content object) with its list of known malicious

content, using methods and techniques employed by those who

are skilled in the art of detecting malicilous software. For

the purposes of this example, a content object within the

virtual hard disk could be a file, or another object
manipulated by the operating system such as a key from the

Microsoft Windows System Registry, or any other object on

p

disk that could be identified as part of an i1nstance of

malicious or undesirable software. Upon discovery of

malicious software, the antivirus engine may attempt to

—
.

remove any offending objects, or remove an infection that 1s

located within an object.

I

fline

Figure 3A provides a second example of an o:

scanning configuration 300. In this configuration, a

virtual machine object interface 302 that 1s supported Dby

the supervisory process 128 provides a uniform 1nterface

through which a security application 304 can access
resources of the wvirtual machines. The virtual machine

object interface 302 may map virtual machine data structures

that may vary from virtual machine to virtual machine to a

common format that can be accessed by the security

application 304 for scanning and other activitilies. Thus,

the security application 304 need only be developed to

access this common format and not every format variation

that a virtual machine may have. For example, the host

P

system 102 may discover information about the state of the

virtual machines 118 (such as disk state, memory state oOr

communication state) so that a security application 304 can

16

10

15

20

25

30

CA 02527526 2005-11-18

51331-330

monlitor them, looking for security breaches or other

problems. In addition, the virtual machine object interface

302 may provide functionality that can be used by multiple
securlty applications. For example, the virtual machine
object interface 302 may provide a function that allows
another security process to scan the virtual machine's
virtual network adaptors for incoming network packets which

have malicious content, such as worm payloads.

This configuration provides a designer of the

virtual machine and a designer of the security application

with some flexibility. For example, the designer of the

virtual machine can alter data structures of the virtual

fr—

machine without consequence to the designer of the security

application. Thus, the security application 304 need only
be developed to access this common format and not every

format varlation that a virtual machline may have.

In some embodiments, the offline scanning

technique facilitates the synchronization of the wvirtual
machine's current state with what the security application
perceives as the virtual machine's current state, thus

providing more accurate and consistent scanning

capabilities. This synchronization may be useful in the
case where the virtual machine's states are changing

rapidly.

Referring to Figure 3B, one way that this

synchronization can be achieved is by running an agent

process 322 that provides a near-real time self-consistent

view of the virtual machine. The agent process 322, which
may run on the virtual machine 118, can then export this
view 0f the wvirtual machine to the virtual machine object

interface 302, which can then provide appropriate

17

CA 02527526 2005-11-18

51331-330

information to the supervisory process and/or securlty

application. In some embodiments, the agent process 322 may

provide an application programming interface (API) for use
by the virtual machine object interface 30Z.

5 (Alternatively, the security application may provide a

similar API for use by the virtual machine object interface

302.)

An alternative way that this synchronization can

be achieved 1s to have the virtual machine 118 create

10 constant snapshots of its state and store these snapshots 1n

’

memory or on disk. While such snapshots may be a few

seconds "stale", they will nonetheless be self-consistent.

Referring to Figure 3C, an alternative technique

F

for providing security scanning of the virtual machines 1s a

15 system 330 configured so that a security application 336 and

supervisory process 334 are running on a designated virtual

machine 332 (instead of directly on the host system 102).

The security application 336 and supervisory process 334 can

then monitor and/or scan the other virtual machines 118 to
20 detect problems. In this way, the designated virtual

machine 332 (which may be dedicated to providing security

monitoring) can remain protected from attack.

System Flows

Figures 4 through 8 are representative flow

B

25 diagrams that show processes that occur within the system of

Figure 1. These flow diagrams do not show all functions or

P
p—

exchanges of data but, instead, provide an understanding of

commands and data exchanged under the system. Those skilled

in the relevant art will recognize that some functions or

F

30 exchanges of commands and data may be repeated, varied,

18

10

15

20

25

30

CA 02527526 2005-11-18

91331-330

omitted, or supplemented, and other aspects not shown may be

readily i1mplemented.

Referring to Figure 4, a supervisory routine 400

-

performed, for example, by the supervisory process of

Figure 1, may run on (or off) the host system to monitor,

gr—

modify, and/or configure processes or virtual operating

systems running on the virtual machline. Alternatively, the

supervisory routine 400 may monitor, modify, and/or

configure processes running on a hardened (but not virtual)

operating system.

At block 401, the routine 400 pauses the virtual

machine operating system. At decision block 402, the

routine 400 checks for changes that may result from damaging
activities (e.g., rogue processes) occurring within the
virtual machine. For example, the routine 400 may scan a

portion of the virtual machine operating system kernel to

check for problems. As an alternative to (or in addition
to) monitoring the virtual operating system kernel, the
routine 400 may monitor other aspects connected with the
virtual (or hardened) operating system. For example, the
routine 400 may monitor virtual address spaces, monitor
emulated devices, monitor an emulated hard drive, perform

1integrity verifications (e.g., perform checksums), check the

F
p—

fi1les that reside on the virtual disk or 1in

integrity o:

memory, etc.

If, at decision block 402, the routine 400 does

not detect changes that may result from damaging activities,
the routine 400 proceeds to block 404 to restart the virtual
operating system kernel before ending. However, in some

embodiments (not 1llustrated), the routine 400 may loop back

to block 401 (after a time period elapses) to perform the

19

10

15

20

25

30

CA 02527526 2005-11-18

51331-330

pause and check steps again (unless the virtual operating

system instance 1s terminated). If, however, at decision
block 402, the routine 400 detects changes that may result
from damaging activities, the routine proceeds to block 403,
where the routine initiates containment actions. Example
containment actions may include activities such as
suspending the guest operating system to do additional

scanning, suspending select processes, cleaning the malware

and reformatting the virtual operating system to repalr any

damage, shutting down the virtual machine after takiling a

"snapshot" so that the virtual machine environment can be

more or less restored once the virtual machine 1s restarted,

etc.

Figure 5 provides an example of an offline

scanning routine 500 facilitated by a supervisory process

*

that controls a set of security applications (e.g.,

F
—

antivirus software) configured to perform offline scanning

and repair of a virtual machine running on the host system.

ﬁ

At block 501 the routine 500 retrileves a period snapshot ot

the running virtual machine's current state. At block 502,

the routine scans the retrieved periodic snapshot. At

decision block 503, if a problem is detected, the routine

proceeds to block 504, where the routine notifies the

running virtual machine of the problem or, alternatively,

instructs the virtual machine to roll back to a last saved

state before the problem occurred. If at decision block
503, the routine 500 does not detect a problem, the routine
loops back to block 501 to retrieve the next periodic

snapshot.

Jr— pr——

Figure 6 provides an example of an o:

fline

scanning routine 600 facilitated by a supervisory process

F

that controls a set of security applications (e.g.,

20

10

15

20

25

30

CA 02527526 2005-11-18

51331-330

antivirus software) configured to perform offline scanning
and repailr of multiple virtual machines running on the host
system. For example, the routine 600 may be used to detect
and recover a virtual machine that has been disabled due to
a malware infection. At block 601, the routine 600 mounts
the virtual machine's next structure or component onto the
host system 1n a way that may be analogous to mounting a
physical disk. In this way, the structure or component 1s
incorporated as part of computer's operating system instead
of being treated as an outside scanned object. The
structure or component may be an emulated component as
viewed from the perspective of the host system. In some

embodiments, the virtual machine's structures or components

can be objectified such that the host system may provide an
interface for the set of security applications to scan them.
For example, the virtual machiline's memory may be objectified

to scan for i1n—-memory malware.

At block 602, the set of security applications
scans the virtual hard drive structure (or i1n-memory
structure, etc.). At decision block 603, if the scanned
structure 1s compromised, then the routine 600 continues at
block 604, where the security applications repair the
virtual hard drive structure (or in-memory structure). If,

however, at decision block 603, the scan component 1s not

compromlsed, the routine proceeds to decision block 605.

At decision block 605, 1f all the structures or
components of the virtual machine have been scanned, the
routine ends. Otherwise, the routine loops back to block
601 to mount the next wvirtual machine structure or

component.

21

10

15

2.0

25

30

51331-330

CA 02527526 2005-11-18

In some embodiments, the routine 600 may be used

in combination with optimization techniques that track

F

changes occurring between scans in each of the virtual

machine hard drives.

In this way, the routine 600 may scan

only changes since the last scan, thereby improving

efficiency in scanning. For example, an optimization

routine could track changes in the virtual machine's hard

drive on a block level. Changes at the block level may then

be mapped to changes

(as typical antiviru

at a file level for scanning purposes

s software scans at the file level).

Alternatively, changes could be tracked by looking at

modifications to master file table structures. This may

ﬁ

involve checkpoint storage of prior master file tables 1n

the host system.

Figure 7/ p
scanning routine 700

that controls a set

antivirus software)

F

rovides an example of an offline

facilitated by a supervisory process

H

of security applications (e.g.,

—

fline scanning

configured to perform O:

and repair of multiple virtual machines running on the host

system. For example

, the routine 700 may be used to detect

and recover a virtual machine that has been disabled due to

a malware infection.

*

routine of Figure 60,

structure or component prior to scanning, the routine of

F'igure 7 scans the s

block 701, the routi

P

As opposed to the offline scanning

which mounts the virtual machine's

F
p—

tructure or component externally. At

ne 700 scans the virtual machine's next

structure or component. The structure or component may be

P

an emulated component as viewed from the perspective of the

host system. In some embodiments, the virtual machine's

structures or components can be objectified such that the

host system may provide an interface for the set of security

applications to scan them. For example, the virtual

22

10

15

20

29

30

CA 02527526 2005-11-18

51331-330

machine's memory may be objectified to scan for in-memory

malware.

—

At decision block 702, 1f the scanned structure 1s

compromised, then the routine 700 continues at block 703,

where the security applications repair the virtual hard

drive structure (or 1n-memory structure). If, however, at
decision block 702, the scanned component 1s not

compromlised, the routine proceeds to decision block 704. At

L}

decision block 704, 1f all the structures or components of
the virtual machine have been scanned, the routine ends.
Otherwlse, the routine loops back to block 701 to mount the

next virtual machine structure or component.

Figure 8 1s a flow diagram that provides a second
example of an offline scanning routine 800 facilitated by a

SUpervisory process that controls a set of security

applications (e.qg., antivirus software) configured to

— —

perform offline scanning and repalr of multiple virtua.

machines running on the host system. 1In the routine 800, an

agent process, such as the agent process 322 of Figure 3B,

* F

enables synchronization of the actual state of the virtual

machine as 1t 1s being scanned, and the state of the virtual

machine as perceived by the security applications.

At block 801 the routine 800 establishes
communlication between the security application (such as the
securlity application 304 of Figure 3B, which runs on the
host system or on a virtual machine object interface) and
the agent process via some 1nter—-machine communications
interface. At block 802 the routine 800 establishes access
to the virtual machine's memory. For example, the agent

process running on the host system may provide access to a

virtual buffer that corresponds to the virtual machine's

23

10

15

2.0

25

30

CA 02527526 2005-11-18

51331-330

application memory. The routine continues at block 803,

where the security application scans the memory for evidence
of a security problem. For example, when the security

application 1s an antivirus scanning engine, the antivirus

scanning engine may scan the memory looking for code

H

patterns that match signatures of known malicious software.

At decision block 804, if any structures or components of
the virtual machine have been compromised, the routine 800
continues at block 805, where the security application
and/or the agent process cleans the computer memory.
Alternatively, the security application could signal the
agent process to take corrective action directed to the
virtual machine. If, however, at decision block 804, no
structures or components have been compromised, then the

routine ends.

IV. Conclusion

Unless the context clearly regquires otherwise,
throughout the description and the claims, the words
"comprise", "comprising", and the like are to be construed
in an i1nclusive sense as opposed to an exclusive or
exhaustive sense; that is to say, in the sense of
"including, but not limited to". Additionally, the words

p—

"herein", "above", "below" and words of similar import, when

used in thils application, shall refer to this application as

a whole and not to any particular portions of this

application. When the claims use the word "or" in reference

to a list of two or more items, that word covers all of the

following 1nterpretations of the word: any of the items in

p—

the list, all of the 1tems in the list, and any combination

of the items in the list.

24

10

15

20

25

CA 02527526 2013-10-11

01050-108

The above detailed description of embodiments of the

invention 1s not i1ntended to be exhaustive or to limit the

1nvention to the precise form disclosed above. While specific
embodiments of, and examples for, the invention are described

above for 1llustrative purposes, various equivalent

g

modlifications are possible within the scope of the invention,

as those skilled 1n the relevant art will recognize. For

example, while processes or blocks are presented in a given

order, alternative embodiments may perform routines having

steps, or employ systems having blocks, 1in a different order,

and some processes or blocks may be deleted, moved, added,

subdivided, combined, and/or modified. Each of these processes

R

or blocks may be 1mplemented 1in a variety of different ways.

Also, while processes or blocks are at times shown as being

performed 1n serlies, these processes or blocks may instead be

-
—

ferent times.

performed 1n parallel, or may be performed at di:
Where the context permits, words 1n the above Detailed
Description using the singular or plural number may also
include the plural or singular number, respectively, where the

context permits.

The teachings of the invention provided herein can be

applied to other systems, not necessarily the system described

F

herein. The elements and acts of the varilious embodiments

described above can be combined to provide further embodiments.

This application is related to commonly owned U.S.

Patent No. 7,024,443, entitled "Method and System for a Self-

healing Device" filed December 21, 2004. Aspects of the

invention can be modified, 1f necessary, to employ the systems,

iy

functions, and concepts of the wvarious

23

10

15

20

20

30

CA 02527526 2005-11-18

51331-330

references described above to provide yet further

ﬁ

embodiments of the 1nvention.

These and other changes can be made to the

pr—

invention in light of the above Detailed Description. While

p—

the above description details certain embodiments of the

invention and describes the best mode contemplated, no

matter how detailed the above appears in text, the 1nvention

can be practiced in many ways. As noted above, particular

terminology used when describing certain features or aspects

ﬁ

of the invention should not be taken to 1mply that the

terminology 1s being re-defined herein to be restricted to

any specific characteristics,

features, or aspects of the

invention with which that terminology 1s associated. In

general, the terms used in the following claims should not

pr=— »

be construed to limit the invention to the specific

embodiments disclosed in the specification, unless the above

Detailed Description section explicitly defines such terms.

Accordingly, the actual scope of the invention encompasses

not only the disclosed embodiments, but also all equivalent

ways of practicing or implementing the invention under the

claims.

While certain aspects of the i1nvention are

presented below in certain claim forms, the 1nventors

g
P

contemplate the various aspects of the invention in any

y—

number of claim forms. For example, while only one aspect

F

of the invention is recited as embodied 1n a computer-

readable medium, other aspects may likewise be embodied 1n a

computer-readable medium. Accordingly, the 1nventors

reserve the right to add additional claims after filing the

application to pursue such additional claim forms for other

aspects of the i1nvention.

26

CA 02527526 2014-06-05

51050-108

CLAIMS:

1. A computer-implemented method for monitoring and

protecting multiple instances of a contalned process execution

F

environment, wherein each of the multiple 1nstances accesses

5 emulated resources of a computer, the method comprising:

detecting harmful processes by executing, on the computer, at

P

least one security application that monitors each of the

g—

multiple i1nstances of the contained process execution

environment, wherein the at least one security application

gr—

10 executes external to the multiple instances of the contained

process execution environment; and

F F

scanning virtual resources of the each of the multiple

p

instances of the contained process execution environment by the

at least one security application, wherein the virtual

15 resources include the emulated resources of the computer, and

wherein the at least one security application 1s aware of the

pr—

resources as perceived by a primary operating system of the

computer.

2 . The method of claim 1 wherein the at least one

ﬁ

20 security application accesses each of the multiple instances of

B

the contained process execution environment via communlication

A

with corresponding agent security processes that run 1n each of

ﬁ

the multiple instances of the contained process execution

environment 1n a one-to-one correspondence.

ﬁ

25 3. - The method of claim 1 wherein the at least one

security application accesses each of the multiple 1instances of

the contained process execution environment via a virtual

machine object interface that provides a uniform 1nterface

21

10

15

20

29

CA 02527526 2014-06-05

21050-108

through which the at least one security application can access

the emulated resources.

ﬁ

4 The method of claim 1 wherein the at least one

securlty application executes 1n a host system provided by the

ﬁ

computer, and wherein each of the multiple instances of the

contained process execution environment also executes 1n the

host system.

#

5. The method of claim 1 wherein the at least one

securlty appllcation executes 1n a host system provided by the

ﬁ ﬁ
.

computer, wherein each of the multiple 1nstances of the

contalned process execution environment also executes 1n the
host system, and wherein the at least one security application
1s controlled, at least 1n part, by a supervisory pProcess

executing 1n the host system.

#

0 . The method of claim 1 wherein scanning virtual

p— —

resources of each of the multiple instances of the contained

process execution environment by the at least one security

application 1s facilitated by providing to the at least one

securlity application access to a virtual memory structure

gr—

associated with one of the multiple 1nstances of the contained

process execution environment.

7. The method of clalm 1 wherein scannlng vilirtual

i —

resources of the each of the multiple instances of the

contalned process execution environment by the at least one

security application is facilitated by providing to the at

least one security application access to a virtual hard disk

ﬁ ﬁ

structure assoclated with one of the multiple i1nstances of the

contained process execution environment.

28

10

15

20

25

CA 02527526 2014-06-05

51050-108

—

3 . The method of claim 1 wherelin scanning virtual

yr— —

resources of the each of the multiple i1nstances of the

contained process execution environment by the at least one

securlity application 1s facintated'by providing to the at

least one security applilication access to a virtual network

adaptor structure assocliated with one of the multiple instances

Jr—

of the contalned process execution environment.

9. The method of claim 1 wherein scanning virtual

#

resources of the each of the multiple instances of the

contalned process executlion environment by the at least one

security application 1s facilitated by providing to the at

least one securility applilication access to a virtual driver

ﬁ

structure associated with one of the multiple instances of the

contained process execution environment.

10. The method of claim 1, further comprising:

—

where a harmful process 1s detected 1n one of the multiple

instances of the contalined process execution environment,

ﬁ

deactivating the instance 1if 1t i1s not already deactivated;

repalring the instance; and

loading the repaired instance 1nto a host environment of the

computer so that 1t becomes active.

L

11. A computer-implemented method for protecting an

operating system against damage caused by undesirable process

actions, the method comprising:

pausing a kernel running on the operating system, wherein the

operating system 1s at least partially i1isolated from core

*

aspects of the computer system’s infrastructure;
29

10

15

20

25

CA 02527526 2014-06-05

01050-108

checking the kernel by scanning virtual resources of the at

least partially i1solated operating system to determine whether

there 1s evidence of an undesirable process action, wherein the

checking 1s performed, at least 1n part, by a supervisory

process that 1s separate from the at least partially i1solated

operating system; and

—

where there 1s evidence of an undesirable process actlon 1n the

at least partially 1solated operating system, taking steps to

contaln the undesirable process action.

12, The method of claim 11 wherein the steps to contailn

the undesirable process action i1nclude suspending the at least

partially 1solated operating system and performing further

monlitoring.

F

13. The method of claim 11 wherein the steps to contain

the undesirable process action 1nclude suspending select

processes running on the at least partially 1solated operating

system.

14. The method of claim 11 wherein the steps to contailn
the undesirable process action i1nclude terminating a process

assoclated with the undesirable process action.

15. A computer system for securing access to privileged

pr—

operations assoclated with core components of the computer

system, the system comprising:
a4 processor;

a primary memory storage 1n communication with the processor;

a secondary storage device;

30

10

15

20

25

CA 02527526 2014-06-05

51050-108

an operating system; and

a host system, wherein the host system includes:

r—

one or more virtual machines, wherein each of the one or more

—

virtual machines 1s 1solated from the core components of the

computer system such that harmful processes cannot directly

access the core components when running in an environment

b

assoclated with the virtual machine, and wherein each one of

—
—

the one or more virtual machines 1ncludes an i1nstance of a

virtual operating system, access to a virtual memory, and at

least one wvirtual driver; and

at least one supervisory process used to monitor the one or
more virtual machines 1n combination with a security
application, whereiln the monitoring i1ncludes possible detection

ﬁ F
pm

of a harmful process by scanning virtual resources of the one

or more virtual machines, and wherein the at least one

supervisory process and the security application are 1solated

from the virtual machilne.

gr—

16. The system of claim 15 wherein the monitoring further

pr——

includes monitoring address spaces of the virtual memory.

—

17. The system of claim 15 wherelin the virtual machine

further includes access to one or more emulated devices, and

wherein the monitoring further includes monitoring the emulated

devices.

pr—

18. The system of claim 15 wherein the virtual machine

further i1includes access to an emulated hard drive, and wherein

the monitoring further includes monitoring the emulated hard

drive.

31

10

15

CA 02527526 2014-06-05

51050-108

b

further

19. The system of claim 15 wherein the monitoring

includes performing integrity verifications on input to, or

output from, processes running on the virtual machine.

gr—

20. The system of claim 15 wherein the virtual machine

further i1ncludes access to an emulated hard drive, and wherein

the monitoring further includes checking the integrity of files

that reside on the virtual memory or the emulated hard drive.

21. A computer-readable medium having computer-executable

instructions stored thereon for execution by one or more

computers, that when executed i1mplement a method according to

any one of claims 1 to 10.

22 . A computer-readable medium having computer-executable
instructions stored thereon for executlon by one or more
computers, that when executed i1mplement a method according to

any one of claims 11 to 14.

32

CA 02527526 2010-11-18

1/10

bt —rr—r—— e e e eyl ey e el eyl P

WaISAS 1soy

4 ({Usbeuew

!

J

|

|

gz N

1| Aosinedns

e S T
e —

A)11ND3S)
$5920.d

wi\%

6Z1 \ﬁ/j\ﬁ odde |
— (@oue)su

|

9z T N\

|

— —

aulyoew
[eNpIA

uoljediidde |

SQ) WalsAs
Bunesado
1senb

g

vel

SIBALP WA
e

e —

021~ T N Fowsuwrwa |

m_oﬂMmlm@

———_———————————— e

s

\
;
|
J

Wo)SAS |
- Bunesado V0l
AW
108$320.d 901
B Ja
Alowsw Y\UZLL

] SISALID |
1] weyshs |
7 on
|
WwaysAsgns AL

e s—e—n . e———p—.

SUONEIIUNWWOD

— b —————— eyt eyl e a P S

CA 02527526 2010-11-18

2/10

001

40)°

CA 02527526 2010-11-18

3/10

Ve OIA

001

40

(aulyoe|\ |eoisAud) Wo1SAg J81ndwo)

WoI1SAS 1SOH
uoneodl|ddy
vOe Aj14N038S
aoelJolu|
<08 ™ _102lq0 INA

¢

gL —

S$S920.d
Alosintedng

qzlL—

L

gL, —

CA 02527526 2010-11-18

4/10

g8 D14

401"

wol1SAg 1SOH
uoneoijddy
vOt AIN03S
SS900.d
aoelIaju| AJOSIAIBANG
COE™_100[q0 NA =

$$800.d
1uaby

@

w_‘_‘

7 SUIYOeN _mst_>

Aoc_com_\/_ _mo_nfnm &Em\ﬂw ,_quEoo

L SUIYOBIA _mzt_>

w_‘_‘ |

) ommt&

CA 02527526 2010-11-18

5/10

001

¢Ol

D€ DI

i e pp—Hr-E

iilli

A p—

(BuIyoeN _mo_m\mcn: Wa1sAg J81ndwo)

Wo1SAS 1SOH

7 QUIYOEBN |ENHIA 9E€

uoijed!day
Aj1IN08S

QLL—

bipyP—

4%

\

429

$$800.d
AlosIAladng

U SUIUOBIN [BNLIA

| SUIYOEWN [ENHIA

gLl —

e —— - AP ——

rl.llllil

0cc

CA 02527526 2010-11-18

6/10

y OIA

pud

gutioyuowr Iayuny
10 JUDWIUTRIUOD

SO X

[P210219p

1elsal

sa8ueyd [nJjuLiey

ON
cOv

_ [QUIdY |

SO Tenia asned
40)7

QuIInNoI Juisiatadns

00¥ .\,

14827

CA 02527526 2010-11-18

710

§ OIA

UTYORW [eNUIIA

yoeq [[04 10 AJT30U
140

SO X

(Pa10219p weyqord

£0G

joysdeus uros

31838
JUSLIND S, duIydoew

[emuIIA JO joysdeus
JXQU 9AJIJA

10S

CA 02527526 2010-11-18

8/10

9 OIA

009

DU

S A

; PaUUBDS
SOINIOTULIS [[B

G09

ON

uea[o/aredal |

709 S9A

(, pastwoxduwod
SOIMIITUIIS

c09

SOINIONIIS

SUI[JJO UBDS

¢09 .

'019 ‘JOALIP "AlowowW

‘OALID pJeY) ITIONIS
INA 1XSu junou |

09 _

N

N

duruueds JuIfJo

CA 02527526 2010-11-18

9/10

L OIH

0.

04

c0L

; pastoldwod

[POUUEIS
SQINJOTLIS |]®

ugayo/dtedal

$3 X

SQINJOTLI)S

'019 ‘JSALID
‘QALIp paeY) 2JMIONNS

1X9U UBOS

ON

ON

CA 02527526 2010-11-18

10/10

§ OIA

uea]o/diedal

$08 A

;pastwordwod
$INIONAS

ON
708

3uruueds wojrad

!

c08 H

(Arowsw
“J'9) 2110118
QUIYJBW [BNLIA
0} $$2008 USI|QB}SD

ss9201d

Jusde pue uonesljdde
AILIMo3as Usamiaq
U0 BITUNUWILIOD

UST[qeIsa

|

3UIuuedS QUIJJoO

008 ——~

200
f

_— 118

_—118 @Jal Mao® _— 118
@al Machine 1 @al MachiD
n 2

/"""—' 128 ,
S . Security 0
upervisory Application
Process

Lo

Host System

Computer System (Physical Machine) 100

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - claims
	Page 32 - claims
	Page 33 - claims
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - abstract drawing

