Title: COSMETIC COMPOSITION COMPRISING A MICELLAR, SHELL CROSS-LINKED COPOLYMER

Abstract: A personal care composition comprising: i) a micellar, shell cross-linked copolymer comprising polymeric units in its centre and cross-linked polymeric units on its exterior; the polymer units in its centre having a Tg of less than 110°C and its homopolymeric units on its exterior shell having a Tg of greater than 90°C; and ii) a cosmetically acceptable diluent or carrier.
Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.
COSMETIC COMPOSITION COMPRISING A MICELLAR, SHELL CROSS-LINKED COPOLYMER

Field of the Invention

The present invention relates to hair care compositions comprising polymers, and to their use in the treatment of hair.

Background and Prior Art

Hair styling sprays, mousses, gels, shampoos and conditioners frequently contain resins, gums and adhesive polymers to provide a variety of benefits, for example, film-forming ability, thickening, sensory properties and hair shaping and setting.

One of the most common methods for imparting these styling benefits to the hair has been the use of hair fixative agents, such as high molecular weight polymers. The problem with using such agents is that they have a tendency to negatively impact on conditioning attributes such as wet and dry stage clean feel and smoothness. They can make the hair feel stiff and they can leave deposits and result in a sticky feel to the hair.

One way in which this problem has been addressed in the past has been to include conditioning agents, for example silicones and cationic surfactants, in the compositions, to counter the negative effects of the styling agents. Although such conditioning agents do provide substantial
improvements in for example the wet and dry combing properties of the hair and in the smoothness of the hair, they tend to have a negative effect on many of the attributes associated with hair body.

WO 02/087522 discloses the incorporation of the small particles covalently grafted with silicone polymer for incorporation into conventional shampoo. The application claims these compositions leads to substantive improvements in the body of the washed and optionally conditioned hair, especially if a subsequent styling regime is followed.

However, there is still a need for a composition that when used to treat hair leaves it feeling well conditioned yet easy to style.

DEFINITION OF THE INVENTION

In a first aspect, the present invention provides a personal care composition:

i) a micellar, shell cross-linked copolymer comprising polymeric units in its centre and cross-linked polymeric units on its exterior; the polymer units in its centre having a Tg of less than 110°C and its homopolymeric units on its exterior shell having a Tg of greater than 90°C; and

i) a cosmetically acceptable diluent or carrier.

In another aspect, the present invention provides a cosmetic method of treating hair which comprises applying to the hair a composition according to the invention.
A further aspect of the invention is the use of a composition of the invention for the cosmetic treatment of hair.

5

DETAILED DESCRIPTION OF THE INVENTION

The compositions of the invention comprise a shell cross-linked copolymer, wherein the polymer has a micellar structure. Such shell cross-linked polymers are usually particulate in nature and are known as cross-linked core-shell polymer particulates. These cross-linked core shell particulates preferably have a hydrodynamic diameter, D_h, from 1 to 100 nm, more preferably from 5 to 50nm, most preferably from 10 to 30 nm. It is also preferable if they have a dried-state average diameter, D_{av}, from 1 to 100 nm, more preferably from 5 to 50 nm, and most preferably from 10 to 30 nm.

20 It is preferable if the polymeric units comprise a block copolymer, this is especially advantageous for the shell of the polymer, AB block copolymers are particularly preferred.

The T_g of the homo polymeric units (polymeric units before cross-linking occurs) on the exterior shell of the micellar structure is greater than 90°C, preferably greater than 100°C, more preferably greater than 110°C, and most preferably greater than 120°C. The T_g on the interior core of the micellar structure is 110°C or less, preferably 100°C or less, and more preferably less than 50°C and most preferably less than 25°C.
It is highly preferable if the outer shell of the micellar structure is cross-linked and the core of the micellar structure is not.

It is advantageous if the polymer units of the copolymer comprise poly(acrylic acid-co-acrylamide) on the exterior shell of the micellar structure and poly(methyl acrylate) on the internal core of the micellar structure or poly(acrylic acid-co-acrylamide) on the exterior shell of the micellar structure and a polystyrene internal core of the micellar structure.

The cross-linked shell polymers for use with this invention preferably have a molecular weight from 1,000 to 500,000 Da, more preferably from 5,000 to 100,000 Da, and most preferably from 10,000 to 50,000 Da.

Preferably the polymer micelles have structure as shown in figure 1:

The method of manufacture of the polymer micelles used in the present invention are described in J. Mater Chem., 13 2885-2795. Alternative methods of manufacture are described in J.Colloid Interface Sci. 2003 nov15, 267(2):320-5 and WO97/49387

Compositions of the invention

Cosmetic or personal care compositions of the present invention are preferably formulated into hair care compositions, and may be formulated into a wide variety of
product types, including mousses, gels, lotions, tonics, sprays, shampoos, conditioners, rinses, hand and body lotions, facial moisturisers, sunscreens, anti-acne preparations, topical analgesics, mascaras, and the like. Compositions of the invention comprise a cosmetically acceptable diluent or carrier. Preferably, the compositions are for use in styling human hair and, more preferably, they are packaged and labelled as such.

Compositions of the invention preferably contain the polymer in an amount of from 0.01% to 30% (more preferably from 0.1 to 10%) by weight. Compositions of the invention may, optionally, comprise a fragrance or perfume and/or one or more of the optional additional components described hereinafter.

The carriers and additional components required to formulate such products vary with product type and can be routinely chosen by one skilled in the art. The following is a description of some of these carriers and additional components.

Hair Treatment Composition Base Formulation

Shampoo compositions preferably comprise one or more cleansing surfactants, which are cosmetically acceptable and suitable for topical application to the hair. Further surfactants may be present as emulsifiers.

Suitable cleansing surfactants, are selected from anionic, amphoteric and zwitterionic surfactants, and mixtures thereof. The
cleansing surfactant may be the same surfactant as the emulsifier, or may be different.

5 **Anionic Cleansing Surfactant**

Shampoo compositions according to the invention will typically comprise one or more anionic cleansing surfactants which are cosmetically acceptable and suitable for topical application to the hair.

Examples of suitable anionic cleansing surfactants are the alkyl sulphates, alkyl ether sulphates, alkaryl sulphonates, alkanoyl isethionates, alkyl succinates, alkyl sulphonolactates, N-alkyl sarcosinates, alkyl phosphates, alkyl ether phosphates, alkyl ether carboxylates, and alpha-olefin sulphonates, especially their sodium, magnesium, ammonium and mono-, di- and triethanolamine salts. The alkyl and acyl groups generally contain from 8 to 18 carbon atoms and may be unsaturated. The alkyl ether sulphates, alkyl ether phosphates and alkyl ether carboxylates may contain from 1 to 10 ethylene oxide or propylene oxide units per molecule.

Typical anionic cleansing surfactants for use in shampoo compositions of the invention include sodium oleyl sulphonate, ammonium lauryl sulphonolactate, ammonium lauryl sulphate, sodium cocoyl isethionate, sodium lauryl isethionate and sodium N-lauryl sarcosinate. The most preferred anionic surfactants are sodium lauryl sulphate, sodium lauryl ether sulphate(n)EO, (where n ranges from 1 to 3), ammonium lauryl sulphate and ammonium lauryl ether sulphate(n)EO, (where n ranges from 1 to 3).

The total amount of anionic cleansing surfactant in shampoo compositions of the invention is generally from 5 to 30,
preferably from 6 to 20, more preferably from 8 to 16 wt% of the total composition.

5 Co-surfactant

The shampoo composition can optionally include co-surfactants, preferably an amphoteric or zwitterionic surfactant, which can be included in an amount ranging from 0 to about 8, preferably from 1 to 4 wt%.

Examples of amphoteric and zwitterionic surfactants include, alkyl betaines, alkyl amidopropyl betaines, alkyl sulphobetaines (sultaines), alkyl glycocinates, alkyl carboxyglycinates, alkyl amphopropionate, alkylamphoglycinates, alkyl amidopropyl hydroxysultaines, acyl taurates and acyl glutamates, wherein the alkyl and acyl groups have from 8 to 19 carbon atoms. Typical amphoteric and zwitterionic surfactants for use in shampoos of the invention include lauryl amine oxide, cocodimethyl sulphopropyl betaine and preferably lauryl betaine, cocamidopropyl betaine and sodium cocamphopropionate.

Another preferred co-surfactant is a nonionic surfactant, which can be included in an amount ranging from 0 to 8 wt%, preferably from 2 to 5 wt% of the total composition.

For example, representative nonionic surfactants that can be included in shampoo compositions of the invention include condensation products of aliphatic (C₈ - C₁₈) primary or secondary linear or branched chain alcohols or phenols with alkylene oxides, usually ethylene oxide and generally having from 6 to 30 ethylene oxide groups.
Further nonionic surfactants which can be included in shampoo compositions of the invention are the alkyl polyglycosides (APGs). Typically, the APG is one which comprises an alkyl group connected (optionally via a bridging group) to a block of one or more glycosyl groups. Preferred APGs are defined by the following formula:

$$RO - (G)_n$$

wherein R is a branched or straight chain C_5 to C_{20} alkyl or alkenyl group, G is a saccharide group and n is from 1 to 10.

Other sugar-derived nonionic surfactants which can be included in shampoo compositions of the invention include the $C_{10}-C_{18}$ N-alkyl (C_1-C_6) polyhydroxy fatty acid amides, such as the $C_{12}-C_{18}$ N-methyl glucamides, as described for example in WO 92 06154 and US 5 194 639, and the N-alkoxy polyhydroxy fatty acid amides, such as $C_{10}-C_{18}$ N-(3-methoxypropyl) glucamide.

The shampoo composition can also optionally include one or more cationic co-surfactants included in an amount ranging from 0.01 to 10, more preferably from 0.05 to 5, most preferably from 0.05 to 2 wt% of the total composition. Useful cationic surfactants are described herein in relation to conditioner compositions.

The total amount of surfactant (including any co-surfactant, and/or any emulsifier) in shampoo compositions of the invention is generally from 5 to 50, preferably from 5 to 30, more preferably from 10 to 25 wt%.
Cationic Deposition Polymer

A cationic polymer is a preferred ingredient, especially in shampoo compositions of the invention.

The cationic polymer may be a homopolymer or be formed from two or more types of monomers. The molecular weight of the polymer will generally be between 5,000 and 10,000,000 Dalton, typically at least 10,000 and preferably from 100,000 to 2,000,000. The polymers will have cationic nitrogen-containing groups such as quaternary ammonium or protonated amino groups, or a mixture thereof.

The cationic nitrogen-containing group will generally be present as a substituent on a fraction of the total monomer units of the cationic polymer. Thus when the polymer is not a homopolymer it can contain spacer non-cationic monomer units. Such polymers are described in the CTFA Cosmetic Ingredient Directory, 3rd edition. The ratio of the cationic to non-cationic monomer units is selected to give a polymer having a cationic charge density in the required range.

Suitable cationic deposition polymers include, for example, copolymers of vinyl monomers having cationic amine or quaternary ammonium functionalities with water soluble spacer monomers such as (meth)acrylamide, alkyl and dialkyl (meth)acrylamides, alkyl (meth)acrylate, vinyl caprolactone and vinyl pyrrolidone. The alkyl and dialkyl substituted monomers preferably have C1-C7 alkyl groups, more preferably C1-3 alkyl groups. Other suitable spacers include vinyl esters, vinyl alcohol, maleic anhydride, propylene glycol and ethylene glycol.

The cationic amines can be primary, secondary or tertiary amines, depending upon the particular species and the pH of the
composition. In general secondary and tertiary amines, especially tertiary, are preferred.

Amine substituted vinyl monomers and amines can be polymerized in the amine form and then converted to ammonium by quaternization.

The cationic deposition polymers can comprise mixtures of monomer units derived from amine- and/or quaternary ammonium-substituted monomer and/or compatible spacer monomers.

Suitable cationic deposition polymers include, for example:

- copolymers of 1-vinyl-2-pyrrolidine and 1-vinyl-3-methylimidazolium salt (e.g. chloride salt), referred to in the industry by the Cosmetic, Toiletry, and Fragrance Association, (CTFA) as Polyquaternium-16. This material is commercially available from BASF Wyandotte Corp. (Parsippany, NJ, USA) under the LUVIQUAT tradename (e.g. LUVIQUAT FC 370);

- copolymers of 1-vinyl-2-pyrrolidine and dimethylaminoethyl methacrylate, referred to in the industry (CTFA) as Polyquaternium-11. This material is available commercially from Gaf Corporation (Wayne, NJ, USA) under the GAFQUAT tradename (e.g., GAFQUAT 755N);

- cationic diallyl quaternary ammonium-containing polymers including, for example, dimethyldiallyl ammonium chloride homopolymer and copolymers of acrylamide and dimethyldiallylammonium chloride, referred to in the industry (CTFA) as Polyquaternium 6 and Polyquaternium 7, respectively;
mineral acid salts of amino-alkyl esters of homo-and co-
polymers of unsaturated carboxylic acids having from 3 to 5
carbon atoms, (as described in U.S. Patent 4,009,256);
cationic polyacrylamides (as described in WO95/22311).

Other cationic deposition polymers that can be used include
cationic polysaccharide polymers, such as cationic cellulose
derivatives, cationic starch derivatives, and cationic guar gum
derivatives. Suitably, such cationic polysaccharide polymers have a
charge density from 0.1 to 4 meq/g.

Cationic polysaccharide polymers suitable for use in compositions
of the invention include those of the formula:

\[\text{A-O-[R-N}^+ (R^1)(R^2)(R^3)X^-] \]

wherein: A is an anhydroglucose residual group, such as a starch
or cellulose anhydroglucose residual. R is an alkylene,
oxyalkylene, polyoxyalkylene, or hydroxyalkylene group, or
combination thereof. R^1, R^2 and R^3 independently represent alkyl,
aryl, alkylaryl, arylalkyl, alkoxyalkyl, or alkoxyaryl groups,
each group containing up to about 18 carbon atoms. The total
number of carbon atoms for each cationic moiety (i.e., the sum of
carbon atoms in R^1, R^2 and R^3) is preferably about 20 or less, and
X is an anionic counterion.

Cationic cellulose is available from Amerchol Corp. (Edison, NJ,
USA) in their Polymer JR (trade mark) and LR (trade mark) series
of polymers, as salts of hydroxyethyl cellulose reacted with
trimethyl ammonium substituted epoxide, referred to in the
industry (CTFA) as Polyquaternium 10. Another type of cationic
cellulose includes the polymeric quaternary ammonium salts of
hydroxyethyl cellulose reacted with lauryl dimethyl ammonium-
substituted epoxide, referred to in the industry (CTFA) as
Polyquaternium 24. These materials are available from Amerchol Corp. (Edison, NJ, USA) under the tradename Polymer LM-200.

Other suitable cationic polysaccharide polymers include quaternary nitrogen-containing cellulose ethers (e.g. as described in U.S. Patent 3,962,418), and copolymers of etherified cellulose and starch (e.g. as described in U.S. Patent 3,958,581).

A particularly suitable type of cationic polysaccharide polymer that can be used is a cationic guar gum derivative, such as guar hydroxypropyltrimonium chloride (commercially available from Rhone-Poulenc in their JAGUAR trademark series).

Examples are JAGUAR C13S, which has a low degree of substitution of the cationic groups and high viscosity. JAGUAR C15, having a moderate degree of substitution and a low viscosity, JAGUAR C17 (high degree of substitution, high viscosity), JAGUAR C16, which is a hydroxypropylated cationic guar derivative containing a low level of substituent groups as well as cationic quaternary ammonium groups, and JAGUAR 162 which is a high transparency, medium viscosity guar having a low degree of substitution.

Preferably the cationic deposition polymer is selected from cationic cellulose and cationic guar derivatives. Particularly preferred cationic polymers are JAGUAR C13S, JAGUAR C15, JAGUAR C17 and JAGUAR C16 and JAGUAR C162.

The cationic deposition polymer will generally be present in compositions of the invention at levels of from 0.01 to 5, preferably from 0.02 to 1, more preferably from 0.04 to 0.5 percent by weight of the composition.
 Conditioning Surfactant

Conditioner compositions usually comprise one or more conditioning surfactants which are cosmetically acceptable and suitable for topical application to the hair.

Suitable conditioning surfactants are selected from cationic surfactants, used singly or in a mixture.

Cationic surfactants useful in compositions of the invention contain amino or quaternary ammonium hydrophilic moieties which are positively charged when dissolved in the aqueous composition of the present invention.

Examples of suitable cationic surfactants are those corresponding to the general formula:

\[\text{[N}(R_1)(R_2)(R_3)(R_4)]^+(X)^- \]

in which \(R_1, R_2, R_3,\) and \(R_4\) are independently selected from (a) an aliphatic group of from 1 to 22 carbon atoms, or (b) an aromatic, alkoxy, polyoxyalkylene, alkylamido, hydroxyalkyl, aryl or alkylaryl group having up to 22 carbon atoms; and \(X\) is a salt-forming anion such as those selected from halogen, (e.g. chloride, bromide), acetate, citrate, lactate, glycolate, phosphate nitrate, sulphate, and alkylsulphate radicals.

The aliphatic groups can contain, in addition to carbon and hydrogen atoms, ether linkages, and other groups such as amino groups. The longer chain aliphatic groups, e.g., those of about 12 carbons, or higher, can be saturated or unsaturated.
The most preferred cationic surfactants for conditioner compositions of the present invention are monoalkyl quaternary ammonium compounds in which the alkyl chain length is C16 to C22.

Examples of suitable cationic surfactants include quaternary ammonium compounds, particularly trimethyl quaternary compounds.

Preferred quaternary ammonium compounds include cetyltrimethylammonium chloride, benzyltrimethylammonium chloride (BTAC), cetylpyridinium chloride, tetramethylammonium chloride, tetraethylammonium chloride, octyltrimethylammonium chloride, dodecyltrimethylammonium chloride, hexadecyltrimethylammonium chloride, octyldecylbenzylammonium chloride, decyldimethylbenzylammonium chloride, stearyldimethylbenzylammonium chloride, didodecyltrimethylammonium chloride, dioctadecylammonium chloride, tallowtrimethylammonium chloride, cocotrimethylammonium chloride, PEG-2 oleylammonium chloride and salts of these where the chloride is replaced by halogen (e.g., bromide), acetate, citrate, lactate, glycolate, phosphate nitrate, sulphate, or alkyl sulphate. Further suitable cationic surfactants include those materials having the CTFA designations Quaternium-5, Quaternium-31 and Quaternium-18. Mixtures of any of the foregoing materials may also be suitable. A particularly useful cationic surfactant for use in hair conditioners of the invention is cetyltrimethylammonium chloride, available commercially, for example as GENAMIN CTAC, ex Hoechst Celanese.

Salts of primary, secondary, and tertiary fatty amines are also suitable cationic surfactants. The alkyl groups of such amines preferably have from 12 to 22 carbon atoms, and can be substituted or unsubstituted.
Particularly useful are amido substituted tertiary fatty amines, in particular tertiary amines having one C₁₂ to C₂₂ alkyl or alkenyl chain. Such amines, useful herein, include stearamidopropyl(dimethyl)amine, stearamidopropyl(ethyl)amine, stearamidoethyl(diethyl)amine, stearamidoethyl(dimethyl)amine, palmitamidopropyl(dimethyl)amine, palmitamidopropyl(ethyl)amine, palmitamidoethyl(diethyl)amine, palmitamidoethyl(dimethyl)amine, behenamidopropyl(dimethyl)amine, behenamidopropyl(ethyl)amine, behenamidoethyl(diethyl)amine, behenamidoethyl(dimethyl)amine, arachidamidopropyl(dimethyl)amine, arachidamidoethyl(ethyl)amine, arachidamidoethyl(dimethyl)amine, diethylaminoethylstearamide. Also useful are dimethylstearamine, dimethylsoyamine, soyamine, myristylamine, tridecylamine, ethylstearylamine, N-tallowpropane diamine, ethoxylated (with 5 moles of ethylene oxide) stearylamine, dihydroxyethylstearylamine, and arachidyl behenylamine.

These amines are typically used in combination with an acid to provide the cationic species. The preferred acid useful herein includes L-glutamic acid, lactic acid, hydrochloric acid, malic acid, succinic acid, acetic acid, fumaric acid, tartaric acid, citric acid, L-glutamic hydrochloride, and mixtures thereof; more preferably L-glutamic acid, lactic acid, citric acid. Cationic amine surfactants included among those useful in the present invention are disclosed in U.S. Patent 4,275,055 to Nachtigal, et al., issued June 23, 1981.

The molar ratio of protonatable amines to H⁺ from the acid is preferably from about 1:0.3 to 1:1.2, and more preferably from about 1:0.5 to about 1:1.1.

In the conditioners of the invention, the level of cationic surfactant is preferably from 0.01 to 10, more preferably 0.05 to 5 of the total composition (is this low - I think our current
conditioners are possibly higher than 2wt% than this already. I would like to keep range 0.05 to 5 as tightest spec).

The cationic surfactants detailed in this section are also suitable for use in the aspect of the invention wherein a cationic surfactant is intimately mixed with the thermotropic mesogenic material and with oily conditioning material prior to the incorporation of the conditioning material into the final hair conditioning composition

Fatty Materials

Conditioner compositions of the invention preferably additionally comprise fatty materials. The combined use of fatty materials and cationic surfactants in conditioning compositions is believed to be especially advantageous, because this leads to the formation of a structured phase, in which the cationic surfactant is dispersed.

By “fatty material” is meant a fatty alcohol, an alkoxylated fatty alcohol, a fatty acid or a mixture thereof.

Preferably, the alkyl chain of the fatty material is fully saturated.

Representative fatty materials comprise from 8 to 22 carbon atoms, more preferably 16 to 22. Examples of suitable fatty alcohols include cetyl alcohol, stearyl alcohol and mixtures thereof. The use of these materials is also advantageous in that they contribute to the overall conditioning properties of compositions of the invention.

Alkoxylated, (e.g. ethoxylated or propoxylated) fatty alcohols having from about 12 to about 18 carbon atoms in the alkyl chain can be used in place of, or in addition to, the fatty alcohols
themselves. Suitable examples include ethylene glycol cetyl ether, polyoxyethylene (2) stearyl ether, polyoxyethylene (4) cetyl ether, and mixtures thereof.

The level of fatty alcohol material in conditioners of the invention is suitably from 0.01 to 15, preferably from 0.1 to 10 wt%, The weight ratio of cationic surfactant to fatty alcohol is suitably from 10:1 to 1:10, preferably from 4:1 to 1:8, optimally from 1:1 to 1:7, for example 1:3.

Suspending Agents

In one preferred embodiment, the shampoo compositions of this invention further comprises from 0.1 to 5 wt% of a suspending agent. Suitable suspending agents are selected from polyacrylic acids, cross-linked polymers of acrylic acid, copolymers of acrylic acid with a hydrophobic monomer, copolymers of carboxylic acid-containing monomers and acrylic esters, cross-linked copolymers of acrylic acid and acrylate esters, heteropolysaccharide gums and crystalline long chain acyl derivatives. The long chain acyl derivative is desirably selected from ethylene glycol stearate, alkanolamides of fatty acids having from 16 to 22 carbon atoms and mixtures thereof. Ethylene glycol distearate and polyethylene glycol 3 distearate are preferred long chain acyl derivatives. Polyacrylic acid is available commercially as Carbopol 420, Carbopol 488 or Carbopol 493. Polymers of acrylic acid cross-linked with a polyfunctional agent may also be used, they are available commercially as Carbopol 910, Carbopol 934, Carbopol 940, Carbopol 941 and Carbopol 980. An example of a suitable copolymer of a carboxylic acid containing a monomer and acrylic acid esters
is Carbopol 1342. All Carbopol (trade mark) materials are available from Goodrich.

Suitable cross-linked polymers of acrylic acid and acrylate esters are Pemulen TR1 or Pemulen TR2. A suitable heteropolysaccharide gum is xanthan gum, for example that available as Kelzan mu.

Styling polymers

In some instances a further styling polymer may also be present.

The hair styling polymer if present is preferably present in the compositions of the invention in an amount of from 0.001% to 10% by weight, more preferably from 0.1% to 10% by weight, such as from 1% to 8% by weight.

Hair styling polymers are well known. Suitable hair styling polymers include commercially available polymers that contain moieties that render the polymers cationic, anionic, amphoteric or nonionic in nature. Suitable hair styling polymers include, for example, block and graft copolymers. The polymers may be synthetic or naturally derived.

The amount of the polymer may range from 0.5 to 10%, preferably 0.75 to 6% by weight based on total weight of the composition.

Examples of anionic hair styling polymers are:

copolymers of vinyl acetate and crotonic acid;
terpolymers of vinyl acetate, crotonic acid and a vinyl ester of an alpha-branched saturated aliphatic monocarboxylic acid such as vinyl neodecanoate;

copolymers of methyl vinyl ether and maleic anhydride (molar ratio about 1:1) wherein such copolymers are 50% esterified with a saturated alcohol containing from 1 to 4 carbon atoms such as ethanol or butanol;

acrylic copolymers containing acrylic acid or methacrylic acid as the anionic radical-containing moiety with other monomers such as: esters of acrylic or methacrylic acid with one or more saturated alcohols having from 1 to 22 carbon atoms (such as methyl methacrylate, ethyl acrylate, ethyl methacrylate, n-butyl acrylate, t-butyl acrylate, t-butyl methacrylate, n-butyl methacrylate, n-hexyl acrylate, n-octyl acrylate, lauril methacrylate and behenyl acrylate); glycols having from 1 to 6 carbon atoms (such as hydroxypropyl methacrylate and hydroxyethyl acrylate); styrene; vinyl caprolactam; vinyl acetate; acrylamide; alkyl acrylamides and methacrylamides having 1 to 8 carbon atoms in the alkyl group (such as methacrylamide, t-butyl acrylamide and n-octyl acrylamide); and other compatible unsaturated monomers.

The polymer may also contain grafted silicone, such as polydimethylsiloxane.

Specific examples of suitable anionic hair styling polymers are:

RESYN® 28-2930 available from National Starch (vinyl acetate/crotonic acid/vinyl neodecanoate copolymer);
ULTRAHOLD® 8 available from BASF (CTFA designation Acrylates/acrylamide copolymer);

the GANTREZ®ES series available from ISP corporation esterified copolymers of methyl vinyl ether and maleic anhydride).

Other suitable anionic hair styling polymers include carboxylated polyurethanes. Carboxylated polyurethane resins are linear, hydroxyl-terminated copolymers having pendant carboxyl groups. They may be ethoxylated and/or propoxylated at least at one terminal end. The carboxyl group can be a carboxylic acid group or an ester group, wherein the alkyl moiety of the ester group contains one to three carbon atoms. The carboxylated polyurethane resin can also be a copolymer of polyvinylpyrrolidone and a polyurethane, having a CTFA designation PVP/polycarbamyl polyglycol ester. Suitable carboxylated polyurethane resins are disclosed in EP-A-0619111 and US Patent No. 5,000,955. Other suitable hydrophilic polyurethanes are disclosed in US Patent Nos. 3,822,238; 4,156,066; 4,156,067; 4,255,550; and 4,743,673.

Amphoteric hair styling polymers which can contain cationic groups derived from monomers such as t-butyl aminoethyl methacrylate as well as carboxyl groups derived from monomers such as acrylic acid or methacrylic acid can also be used in the present invention. One specific example of an amphoteric hair styling polymer is Amphomer® (Octylacrylamide/ acrylates/butylaminoethyl methacrylate copolymer) sold by the National Starch and Chemical Corporation.

Examples of nonionic hair styling polymers are homopolymers of N-vinylpyrrolidone and copolymers of N-vinylpyrrolidone with compatible nonionic monomers such as vinyl acetate. Nonionic polymers containing N-vinylpyrrolidone in various weight average
molecular weights are available commercially from ISP Corporation - specific examples of such materials are homopolymers of N-vinylpyrrolidone having an average molecular weight of about 630,000 sold under the name PVP K-90 and are homopolymers of N-vinylpyrrolidone having an average molecular weight of about 1,000,000 sold under the name of PVP K-120.

Other suitable nonionic hair styling polymers are cross-linked silicone resins or gums. Specific examples include rigid silicone polymers such as those described in EP-A-0240350 and cross-linked silicone gums such as those described in WO 96/31188.

Examples of cationic hair styling polymers are copolymers of amino-functional acrylate monomers such as lower alkyl aminoalkyl acrylate, or methacrylate monomers such as dimethylaminoethyl methacrylate, with compatible monomers such as N-vinylpyrrolidone, vinyl caprolactam, alkyl methacrylates (such as methyl methacrylate and ethyl methacrylate) and alkyl acrylates (such as ethyl acrylate and n-butyl acrylate).

Specific examples of suitable cationic polymers are:

copolymers of N-vinylpyrrolidone and dimethylaminoethyl methacrylate, available from ISP Corporation as Copolymer 845,

Copolymer 937 and Copolymer 958;

copolymers of N-vinylpyrrolidone and dimethylaminopropylacrylamide or methacrylamide, available from ISP Corporation as Styleze® CC10;

copolymers of N-vinylpyrrolidone and dimethylaminoethyl methacrylate;
copolymers of vinylcaprolactam, N-vinylpyrrolidone and dimethylaminoethylmethacrylate;

Polyquaternium-4 (a copolymer of diallyldimonium chloride and hydroxyethylcellulose);

Polyquaternium-11 (formed by the reaction of diethyl sulphate and a copolymer of vinyl pyrrolidone and dimethyl aminoethylmethacrylate), available from ISP as Gafquat® 734, 755 and 755N, and from BASF as Luviquat® PQ11;

Polyquaternium-16 (formed from methylvinylimidazolium chloride and vinylpyrrolidone), available from BASF as Luviquat® FC 370, FC 550, FC 905 and HM-552;

Polyquaternium-46 (prepared by the reaction of vinylcaprolactam and vinylpyrrolidone with methylvinylimidazolium methosulphate), available from BASF as Luviquat®Hold.

Examples of suitable naturally-derived polymers include shellac, alginates, gelatins, pectins, cellulose derivatives and chitosan or salts and derivatives thereof. Commercially available examples include Kytamer® (ex Amerchol) and Amaze® (ex National Starch).

Adjuvants

The compositions of the present invention may also contain adjuvants suitable for hair care. Generally such ingredients are included individually at a level of up to 2, preferably up to 1 wt% of the total composition.

Suitable hair care adjuvants, include amino acids and ceramides.
The invention also involves a method of styling hair by applying thereto a styling composition as is hereinabove described.

The following non-limiting Examples further illustrate the preferred embodiments of the invention. All percentages referred to are by weight based on total weight unless otherwise indicated.

EXAMPLES

The following Examples were prepared according to *J. Mater Chem.*, **13** 2885-2795.

Example 1
0.02 wt % - 50% cross-linked poly(acrylic acid-co-acrylamide) shell, poly(methyl acrylate) core, n is 164, m is 93 (n and m are as defined in figure 1).

Example 2
0.02 wt% - 50% cross-linked poly(acrylic acid-co-acrylamide) shell, polystyrene core. n is 650, m is 93 (N and m are as defined in figure 1).

Example A
0.02 wt% Ludox W50 in an aqueous solution.
(Ludox is colloidal Al₂O₃ ex Grace)

Example B
0.02 wt% 1785 Silicone
Polymers	Glass transition temperature (°C)
Polyacrylic acid | 105
Polyacrylamide | 165
Polymethylacrylate | 10
Polystyrene | 100

Evaluation

The above Examples were tested using the Protocol for Instron Pullthrough Method.

The Instron pullthrough technique was developed as a method of measuring tactile attributes relating to "body".

2g/10" hair switches were used. Five are used per product and five pull-throughs are recorded per switch. Each set of five switches is treated with test product together, rinsed and dried.

A single switch was hung from the clamp so that the aperture was in line with the first half an inch. The aperture was reduced to 7.5mm and the position adjusted so that the switch hung in the centre. The force cell is zeroed and the test started. The switch was pulled upwards and the forces recorded by the Instron force cell. The peak value was noted. The aperture was opened, the switch returned to its starting position and the test repeated 4 times on that
switch. The test was repeated for all five switches per product tested and the results recorded.

<table>
<thead>
<tr>
<th>Material</th>
<th>Peak Force</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example 1</td>
<td>109.28</td>
</tr>
<tr>
<td>Example 2</td>
<td>161.91</td>
</tr>
<tr>
<td>Example A</td>
<td>140.96</td>
</tr>
<tr>
<td>Example B</td>
<td>95.64</td>
</tr>
</tbody>
</table>

Using the same treatment method described above for the hair switches a ranking panel test was performed to observe the feel properties of the different materials using the scale 0-100. Attributes asked included, smoothness, ease of combing and coated feel.

<table>
<thead>
<tr>
<th>Material</th>
<th>Smooth</th>
<th>Coated</th>
<th>Ease of combing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example 1</td>
<td>650</td>
<td>590</td>
<td>490</td>
</tr>
<tr>
<td>Example 2</td>
<td>450</td>
<td>500</td>
<td>320</td>
</tr>
<tr>
<td>Example A</td>
<td>400</td>
<td>650</td>
<td>350</td>
</tr>
<tr>
<td>Example B</td>
<td>650</td>
<td>640</td>
<td>700</td>
</tr>
</tbody>
</table>

Smooth - a higher score means the hair feels smoother.
Combing - a higher score means the hair is easier to comb.
Coated - a higher score means the hair feels more coated - a negative attribute.

It can thus be seen that compositions according to the invention gave an overall affect of acceptable volume scores without detrimental effects on the overall sensory performance.
The following formulations were prepared:

Example 3

5 A styling gel is formulated as follows:

<table>
<thead>
<tr>
<th>Material</th>
<th>wt %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polymer of any of Examples 1 to 2</td>
<td>0.8</td>
</tr>
<tr>
<td>Carbopol 980</td>
<td>0.4</td>
</tr>
<tr>
<td>Water</td>
<td>to 100%</td>
</tr>
<tr>
<td>Sepicide LD</td>
<td>0.4</td>
</tr>
<tr>
<td>Sodium hydroxide (8% 2M)</td>
<td>0.1</td>
</tr>
<tr>
<td>Ethanol</td>
<td>10.0</td>
</tr>
<tr>
<td>Cremaphor RH410</td>
<td>0.4</td>
</tr>
<tr>
<td>Jaguar HP-105</td>
<td>0.2</td>
</tr>
<tr>
<td>Perfume</td>
<td>0.15</td>
</tr>
</tbody>
</table>
Example 4 - Shampoo Formulation

<table>
<thead>
<tr>
<th>Trade Name</th>
<th>Chemical Name</th>
<th>wt %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Texapon N701</td>
<td>SodiumLaurylEtherSulfate 1-EO</td>
<td>12.00</td>
</tr>
<tr>
<td>Tegobetain CK</td>
<td>Cocoamidopropyl betaine</td>
<td>1.60</td>
</tr>
<tr>
<td>Carbopol 980</td>
<td>Carboxymethylcellulose</td>
<td>0.40</td>
</tr>
<tr>
<td>Jaguar Cl3S</td>
<td>Cationic guar polymer</td>
<td>0.10</td>
</tr>
<tr>
<td>Sodium Chloride</td>
<td>Sodium Chloride</td>
<td>1.00</td>
</tr>
<tr>
<td>Polymer of</td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>Examples 2, 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water and</td>
<td></td>
<td>To</td>
</tr>
<tr>
<td>minors</td>
<td></td>
<td>100%</td>
</tr>
</tbody>
</table>

Example 5 Conditioner Formulation

<table>
<thead>
<tr>
<th></th>
<th>wt%</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEG-2 oleammonium chloride</td>
<td>2.0</td>
</tr>
<tr>
<td>& propylene glycol</td>
<td></td>
</tr>
<tr>
<td>Cetyl/stearyl alcohol</td>
<td>8.0</td>
</tr>
<tr>
<td>Disodium EDTA</td>
<td>0.1</td>
</tr>
<tr>
<td>DMDM hydantoin 55%active</td>
<td>0.1</td>
</tr>
<tr>
<td>Silicone DC245</td>
<td>1.8</td>
</tr>
<tr>
<td>Polymer micelle of Example 1</td>
<td>0.2</td>
</tr>
<tr>
<td>Water and minors</td>
<td>to 100</td>
</tr>
</tbody>
</table>
CLAIMS

1. A personal care composition comprising:
 i) a micellar, shell cross-linked copolymer comprising
 polymeric units in its centre and cross-linked
 polymeric units on its exterior; the polymer units in
 its centre having a Tg of less than 110°C and its
 homopolymeric units on its exterior shell having a Tg
 of greater than 90°C; and
 ii) a cosmetically acceptable diluent or carrier.

2. A personal care composition according to claim 1 in
 which the exterior shell comprises a cross-linked
 copolymers and the interior core is not cross linked.

3. A personal care composition according to claims 1 or 2
 in which the polymeric units comprise a block
 copolymer.

4. A personal care composition according to claim 3 in
 which the block copolymer comprises a AB block
 copolymer.

5. A personal care composition according to any preceding
 claim in which the Tg of the polymer units on the
 exterior shell of the micellar structure is greater
 than 110°C and the Tg on the interior core of the
 micellar structure is 50°C

6. A personal care composition according to any preceding
 claim in which the polymer units of the copolymer
comprise poly(acrylic acid-co-acrylamide) on the exterior shell of the micellar structure and poly(methyl acrylate) on the internal core of the micellar structure or poly(acrylic acid-co-acrylamide) on the exterior shell of the micellar structure and a polystyrene internal core of the micellar structure.

7. A personal care composition according to any preceding claim in which the shell cross-linked copolymer is a nanoparticulate.

8. A personal care composition according to any preceding claim in which the molecular weight of the shell cross-linked copolymer is from 1,000 to 500,000

9. A personal care composition according to any preceding claim wherein the cosmetically acceptable diluent or carrier is selected from water, ethanol and mixtures thereof.

10. A personal care composition according to any preceding claim, further comprising a fragrance or perfume.

11. A personal care composition according to any preceding claim which is a hair styling composition.

12. A personal care composition according to any preceding claim which comprises from 0.001 to 10% by weight of the polymer.
13. A personal care composition according to any preceding claim further comprising an additional hair styling polymer.

14. A personal care composition according to any preceding claim, further comprising from 0.01\% to 7.5\% by weight of a surfactant.

15. A method of treating hair which comprises applying to the hair a composition according to any preceding claim.

16. Use of a composition according to any one of Claims 1 to 14 for the cosmetic treatment of hair.
in which \(x \) is 5 to 100, more preferably 10 to 70, and most preferably 20 to 50; \(m \) is preferably from 10 to 5000, more preferably 50 to 1000, most preferably 100 to 500; and \(n \) is preferably from 10 to 5000, more preferably 50 to 1000, most preferably 100 to 500.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. A61K8/11 A61K8/81 A61Q5/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)
EPO-Internal, EMBASE, CHEM ABS Data, PAJ, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 97/49387 A (G.D. SEARLE AND CO) 31 December 1997 (1997-12-31) cited in the application</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>page 6, lines 17-22; claims 1,19,20,22</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>US 6 491 903 B1 (FORSTER DENIS ET AL) 10 December 2002 (2002-12-10) paragraphs [0026], [2456], [2480]</td>
<td>1</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

Date of the actual completion of the international search

28 July 2006

Date of mailing of the international search report

04/08/2006

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Pettenlaan 2 NL – 2280 HV Rijswijk
Tel: (+31-70) 340-2040, Tx: 31 651 epo nl, Fax: (+31-70) 340-3016

Authorized officer

Yon, J-M

Form PCT/ISA/2/10 (second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>WO 9749387</td>
<td>31-12-1997</td>
<td>AU 3585397 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 3649697 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2258744 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2258851 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2001508762 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2000514791 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9749736 A2</td>
</tr>
<tr>
<td>US 6491903</td>
<td>B1</td>
<td>10-12-2002</td>
</tr>
</tbody>
</table>

Form PCT/IP/A/2/10 (patent family annex) (April 2005)