PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : (11) International Publication Number: WO 96/25754
3/00 Al
HO1J 1 ’ GOGF 9700 (43) International Publication Date: 22 August 1996 (22.08.96)
(21) International Application Number: PCT/US96/01942 | (81) Designated States: CA, CN, JP, KR, European patent (AT,
BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL,
(22) International Filing Date: 13 February 1996 (13.02.96) PT, SE).
(30) Priority Data: Published
08/389,881 17 February 1995 (17.02.95) US With international search report.

(71) Applicant: BELL COMMUNICATIONS RESEARCH, INC.
[US/US]; 445 South Street, Morristown, NJ 07960-6438
(US).

(72) Inventors: HEINDEL, Lee, Edward; 3 Dana Place,
Bemardsville, NJ 07924 (US). GENE, Elizabeth, Ann; 239
Lurline Drive, Basking Ridge, NJ 07920 (US). HOFFNER,
Barry, Franklin; 406 Stratford Place, Bridgewater Township,
Bound Brook, NJ 08805 (US). KASTEN, Vincent, Alan;
295 Midway Avenue, Fanwood, NJ 07023 (US). KOH,
Refen; 771 Princeton-Kingston Road, Princeton, NJ 08540
(US). RAMAPRASAD, Thillastanam, Krishnaswamy; 480
Crawford Street, Shrewsbury Township, NJ 07724 (US).

(74) Agents: GIORDANO, Joseph; International Coordinator,
Rm.1G112R, 445 South Street, Morristown, NJ 07960-6438
(US) et al.

(54) Title: METHODS AND APPARATUS FOR IMPLEMENTING DATA NETWORKING SYSTEM HAVING OBJECT-ORIENTED

ARCHITECTURE
OPERATING |_— 15 5
SYSTEM fio /
DATA NETWORK |18
APPLICATION |
cPry
20 ki
(’ 2)
DATA GENERATING {DATA DATA_| APPLICATION
SYSTEM Lﬁ 1 SYSTEM
MILTIPLE DATA © 2 P : |, MULTIPLE DATA
SIURCES) : ST 1 1 - SING
DATA GENERATING |DATA DEVICE ATA_| APPLICATION
SYSTEM SYSTEN
L J
(57) Abstract

A data network system (5) for communicating data between a plurality of data generating systems (20, 22) externally connected
to the data network system and a plurality application systems (30, 32) externally connected to the data network system (10). The data
network system provides source objects corresponding to the data generating systems and destination objects corresponding to the application
systems. The destination objects define processes performed on data provided to corresponding application systems. The data generating
systems generate data to be collected. The data network system creates container objects to contain the collected data, and identifies a
destination object from the container objects to receive the container objects. The data network system (10) also processes the container
objects in accordance with the processes defined by the identified destination object, and transmits data corresponding to the processed
container objects to the application system (30, 32) corresponding to the identified destination object.

applications under the PCT.

AM
AT

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

Armenia
Austria
Australia
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada

Central African Republic
Congo
Switzerland
Cote d'Ivoire
Cameroon
China
Czechoslovakia
Czech Republic
Germany
Denmark
Estonia

Spain

Finland

France

Gabon

GB
GE
GN

IE
IT
JP

5E&

]

LK
LR
LT
LU
LV
MC
MD
MG
ML
MN
MR

United Kingdom
Georgia

Guinea

Greece

Hungary

Treland

Italy

Japan

Kenya

Kyrgystan
Democratic People’s Republic
of Korea

Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka

Liberia

Lithuania
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia
Mauritania

MW
MX
NE
NL
NO
NZ
PL

RO
RU
Sh

SG
S1

SK
SN
Sz

TG
T

UA

us
Uz

Malawi

Mexico

Niger

Netherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore
Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam

WO 96/25754 PCT/US96/01942

Methods and Apparatus for Implementing Data
Networking System Having Object-Oriented Architecture
~a i i o
This invention relates to data networking systems
and, more particularly, to methods for communicating data
petween data generating systems and applications that use
the data. The invention facilitates the communication of
5 data between the data generating systems and the
applications by providing an object-oriented architecture
that defines the necessary processes for this
communication. The invention further facilitates the
development cf applications that use data from data
10 generating systems.
Background Art
Conventional data networking systems collect, track,
analyze, and process data on events, and then route the
data to various applications. For example, in the
15 telephony industry, data networking systems collect data
on calls in Call Data Records (CDRs), which are produced
whenever a chargeable event occurs within a data
generating system such as a central office switch. A
chargeable event is, for example, completion of a call
20 between a caller and a callee. A data networking system
then routes the CDRs to Revenue Accounting Offices (RAOs)
for use in various applications to, for example, bill
customers for calls.
The volume of CDRs is expected to quadruple in the
25 coming years. Keeping up with this increase has
stimulated development of new approaches for processing
CDRs. However, these new approaches suffer from
shortsightedness and inflexibility because they provide
for only one type of event, namely, the chargeable event
30 for billing customers for calls.
The increase in volume of CDRs will be due in part to
the development and implementation of new
telecommunications networks called broadband networks,

WO 96/25754 PCT/US96/01942

16

15

20

25

30

35

2

such as Broadband-Integrated Services Digital Network
(B-ISDN), which can simultaneously transmit sound, video,
and data. Broadband networks include functions based on
new network resources such as multimedia hardware for
mixing, combining, and transcoding sound, video, and data
from different sources. Communication in these broadband
networks will generate large numbers of new types of
events (in addition to the chargeable events for CDRs)
that will need to be processed. For example, a new event
may be a content delivery event for the delivery of sound,
video, or data along with information on the time required
for the delivery and the distance between the content
source and recipient. The new approaches for processing
the increased CDRs fail to consider the growing need to
process information on these new types of events that will
occur in the new telecommunications networks.

The new approaches for processing CDRs also fail to
consider certain advances in computer technology that
permit widespread reuse of program code, which in turn
reduces development time and effort for applications using
the CDRs or records on other events occurring in_the _
broadband networks.

L sc f ¢ .

Accordingly, the present invention is directed to
methods for networking data using an object-oriented
architecture that obviate one or more of the problems due
to limitations and disadvantages of the related art.

Features and advantages of the invention will be set
forth in the description which follows, and in part will
be apparent from the description, or may be learned by
practice of the invention. The objectives and other
advantages of the invention will be realized and attained
by the method and apparatus particularly pointed out in
the written description and claims thereof as well as the
appended drawings.

To achieve the objects of this invention and attain

its advantages, broadly speaking, this invention includes

WO 96/25754 PCT/US96/01942

3

a data network system for communicating data between a
plurality of data generating systems externally connected
to the data network system and a plurality application
systems externally connected to the data network system.
5 The data network system provides source objects
corresponding to the data generating systems and
destination objects corresponding to the application
systems. The destination objects define processes
performed on data provided to corresponding application

10 systems. The data generating systems generate data to be
collected. The data network system creates container
objects to contain the ccllected data, and identifies a
destination object from the container objects to receive
the container objects. The data network system also

15 processes the container objects in accordance with the
processes defined by the identified destination object,
and transmits data corresponding to the processed
container objects to the application system corresponding
to the identified destination object.

20 It is to be understood that both the foregoing
general description and the following detailed description
are exemplary and explanatory and are intended to provide
further explanation of the invention as claimed.

of T . f) .

25 The accompanying drawings which are incorporated in
and which constitute part of this specification,
illustrate a presently preferred implementation of the
invention and, together with the description, serve to
explain the principles of the invention.

30 In the drawings:

Fig. 1 is a block diagram of a system in accordance
with an embodiment of the preferred implementation;

Fig. 2 is a block diagram illustrating data flow
among the software components in accordance with an

35 embodiment of the preferred implementation;

WO 96/25754 PCT/US96/01942

10

15

20

25

30

35

4

Fig. 3 i1s a block diagram of a notation used to
describe the object-oriented architecture of the preferred
implementation;

Figs. 4-10 are class diagrams of the object-oriented
architecture in accordance with an embodiment of the
preferred implementation, specifically:

Fig. 4 is a class diagram of communications
classes,

Fig. 5 is a class diagram of source and
destination classes,

Fig. 6 is a class diagram of data container and
data location classes,

Fig. 7 is a class diagram of record classes,

Fig. 8 is a class diagram of a storage class,

Fig. 9 is a class diagram of program classes,
and

Fig. 10 is a class diagram of state classes;
Fig. 11 is a block diagram showing a main process in

accordance with an embodiment of the preferred
implementation;

Figs. 12 and 13 are block diagrams showing an
operation of a source data collection and safestoring
component in accordance with an embodiment of the
preferred implementation, specifically:

Fig. 12 is an object interaction diagram showing
the interaction of objects of the classes during
operation of the source data collection and
safestoring component, and

Fig. 13 is a timing diagram showing the timing
for the object interaction in Fig. 12;

Figs. 14 and 15 are block diagrams showing an
operation of a source processing component in accordance
with an embodiment of the preferred implementation,
specifically:

Fig. 14 is an object interaction diagram showing
the interaction of objects of the classes during

operation of the source processing component, and

WO 96/25754 PCT/US96/01942

10

15

20

25

30

35

5

Fig. 15 is a timing diagram showing the timing
for the object interaction in Fig. 14;

Figs. 16 and 17 are block diagrams showing an
operation of a user program processing component in
accordance with an embodiment of the preferred
implementation, specifically:

Fig. 16 is an object interaction diagram showing
the interaction of objects of the classes during
operation of the user program processing component,
and
Fig. 17 is a timing diagram showing the timing for

the object interaction in Fig. 16;

Figs. 18 and 19 are block diagrams showing an
operation of a destination processing component in
accordance with an embodiment of the preferred
implementation, specifically:

Fig. 18 is an object interaction diagram showing
the interaction of objects of the classes during
operation of the destination processing component,
and

Fig. 19 is a timing diagram showing the timing
for the object interaction in Fig. 18; and
Figs. 20-23 are block diagrams showing an operation

of a destination transmission component in accordance with
an embodiment of the preferred implementation,
specifically:

Figs. 20 and 22 are object interaction diagrams
showing the interaction of objects of the classes
during two phases of operation of the destination
transmission component, and

Figs. 21 and 23 are timing diagrams showing the
timing for the object interaction in Figs. 20 and 22,
respectively.

lode f : . - he I .

Reference will now be made in detail to the preferred

implementation of the present invention as illustrated in

the accompanying drawings. Whereever possible, the same

WO 96/25754 PCT/US96/01942

10

15

20

25

30

35

6

reference numbers will be used throughout the drawings and
the following description to refer to the same or like
parts.

The present invention provides the capability for
processing data from multiple data generating systems such
as, e.g., central office switches used in the telephony
business. The present invention also enables many types
of applications to use the data from the data generating
systems. These applications may include, e.g., processes
for billing customers for a variety of types of telephone
services.

A. Majoxr System Components

Fig. 1 illustrates a system 5 in which the present
invention may be implemented. The system 5 includes a
workstation 10. Workstation 10 is a computer workstation,
for example, a Sparcstation (from Sun Microsystems Inc.)
or a RISC SYSTEM/6000 (from International Business
Machines Corp.). Workstation 10 includes a central
processing unit (CPU) 12 and a storage device 14. CPU 12
includes an operating system 16 and a data network
application 18.

Operating system 16 is a standard operating system
like UNIX (from AT&T Corp.) or AIX (from International
Business Machines Corp.), which provides the necessary
operating environment for executing applications like data
network application 18.

Data network application 18 implements the data
networking function of this invention. Preferably, data
network application 18 consists of a computer program
architected using an object-oriented methodology and
implemented in an object-oriented programming language
such as C++ or SmallTalk. Those skilled in the art
understand that object-oriented systems manipulate
"objects." An object is a procedure, function, or process
executed by the workstation 10, or data, which gets

manipulated by the procedure, function, or process.

WO 96/25754 PCT/US96/01942

10

15

20

25

30

35

7

Storage device 14 provides storage for data network
application 18 and operating system 16 and for data
associated with the operation of data network
application 18 and operating system 16.

Connected to workstation 10 are multiple data
sources, i.e., data generating systems 20 and 22, and
multiple data sinks, i.e., application systems 30 and 32.
While Fig. 1 shows two data generating systems 20 and 22
and two application systems 30 and 32 connected to
workstation 10, the present invention contemplates one or
more sources and one or more sinks.

In general, the data generating systems 20 and 22
generate data that is provided to workstation 10 for
processing by data network application 18. Data
generating systems 20 and 22, which generate data for the
data network application 18, may be telephone switches in
a telephony network.

Data network application 18 provides processed data
(originating from data generating systems 20 and 22) to
application systems 30 and 32 located at a destination
site, which may be different from the location of the data
generating systems 20 and 22 and/or the data network
application 18. Application systems 30 and 32 represent
application programs executing on other workstations or
computers (not shown), which are connected to
workstation 10. These application programs process data
from data network application 18, and generate, for
example, bills to customers of the telephony network.

B. The Data Network Application - Data Flow

Fig. 2 is a block diagram illustrating the data flow
among the various process components of the data network
application 18. The data network application 18 is
comprised of the following process components: source data
collection and safestoring component 50, source processing
component 52, user program processing component 54
(including source user program 54a and destination user
program 54b), destination processing component 56, and

WO 96/25754 PCT/US96/01942

10

15

20

25

30

35

8

destination transmission component 58. Each of these
components is made up of one or more objects.

Fig. 2 shows that there may be more than one of each
of the components 50-58. The number of sets of source
components (i.e., source data collection and safestoring
component and source processing component) is determined
by whether existing sets can handle data from a new data
generating system that begins to provide data to the data
network application 18. Where one of the existing sets of
source components cannot handle data from a new data
generating system, an existing set of source components
would have to be modified to handle the data from the new
data generating system. Alternatively, a new source data
collection and safestoring component, a new source
processing component, and a new user program processing
component (i.e., source user program) would be added to
the data network application 18.

There may also be more than one set of destination
components (i.e., destination processing component and
destination transmission component). The number of sets
of destination components is determined by whether
existing sets can handle data for a new application that
begins to use data from the data network application 18.
Where one of the existing sets of destination components
cannot handle data for a new application, an existing set

of destination components would have to be modified to

. handle the data for the new application. Alternatively, a

new destination processing component, a new destination
transmission component, and a new user program processing
component (i.e., destination user program) would be added
to the data network application 18.

While there may be more than one of each of the
components 50-58, only one of each of the components will
be described below.

Source data collection and safestoring component 50
gathers data from data generating systems 40, creates

WO 96/25754 PCT/US96/01942

10

15

20

25

30

35

9

objects for the collected data, and safestores those
objects.

The source processing compenent 52 has a number of
functions. First, the component 52 creates its own
objects for processing the collected data placed in
objects by the source data collection and safestoring
component 50. Second, it executes procedures on those
created objects, such an decompression and decryption
processes, to enable other components of the data network
application 18 to further process the collected data.
Third, the component 52 provides the decompressed and
decrypted data to the user program processing component 54
(i.e., source user program 54a). Fourth, the component 52
receives the output from the source user program 54a,
after that source user program 54a has manipulated the
data. Fifth, the source processing component 52 provides
the manipulated data to the destination processing
component 56.

As stated, the user program processing component 54
has two sides: source user program 54a and destination
user program S4b. The source user program 354a of the user
program processing component 54 reads objects with input
data from the source processing component 52, and
manipulates the data using predetermined instructions,
which, in the preferred implementation, is to identify the
destination that will be receiving the data. So the
source user program S54a, using information on the type of
data generating system 40 that generated the data being
processed, which information is determined by examining
the data, identifies the destination of that data (i.e.,
one of the applications 60). As suggested above, the
source user programs 54a also provide the manipulated data
to the source processing component 52. The destination
user program 54b of the user program processing component
54 will be describe below, after the description of the
destination processing component 56.

WO 96/25754 PCT/US96/01942

10

15

20

25

30

35

10

The destination processing component 56 has a number
of functions. First, the component 56 creates objects
specific to the processing of a destination (e.g., one of
applications 60). Second, it provides those objects to
the user program processing component 54 (i.e.,
destination user program 54b). Third, it receives the
objects back from the user program processing component 54
after that component has processed the data. Fifth, the
component 56 provides (1) objects, including the
decompressed, decrypted, and manipulated data, from the
source processing componenﬁ 52 and/or (2) objects,
including processed data, from the user program processing
component 54 to the destination transmission component 58.

Returning to the user program processing component
54, the destination user program 54b reads objects with
input data from the destination processing component 56,
manipulates the data using predetermined instructions,
which are determined by the type of application (e.g., one
of applications 60) that will be receiving the data.

The two sides to the user program processing
component 54 increases the overall flexibility of the data
network application 18 in two ways. First, when new data
generating systems provide data, only the source
components (i.e., source data collection and safestoring
component 50 and source processing component 52) and
source user programS4a have to be updated (or additional
ones need to be added). The updated (or new) source
components and source user program would be used to
process data for the new data generating systems. But the
destination components (i.e., destination processing
component 56 and destination transmission component 58)
and destination user program 54b need not be changed.

Second, when new applications are developed to use
the data from the data network application 18, only the
destination components and destination user program 54b
need to be updated (or additional ones need to be added) .

WO 96/25754 PCT/US96/01942

10

15

20

25

30

11

The source components and source user program can continue
to function unchanged.

Finally, the destination transmission component 58
has two phases of operation. In the first phase, the
component 58 prepares the data contained in objects for
rransmission to a destination (e.g., one of
applications 60) in accordance with special needs of a
destination. In the second phase, the destination
transmission component 58 transmits the data from its
objects to a destination (e.g., one of applications 60).

As explained in detail below, objects are
communicated among the components 50-58 in the form of
message objects containing data. In one operation of the
data network application 18, source data collection and
safestoring component S0 receives data that it transforms
into an object (messagel) from the data generating
systems.

The destination processing component 56 receives an
object (message 2) from the source processing component 52
for processing by the destination user program 54b. The
destination transmission component 58 then receives an
object (message 3) from the destination processing
component 56. Destination transmission component 58 then
creates an object (message 4) that is transformed to data
to be transmitted to one of applications 60.

Details on this flow and on the object-oriented
architecture of the data network application 18 will now
be explained.

C. The Data Netwoxk Application Architecture

Components 50-58 of data network application 18
consist of a computer program architected using an
object-oriented methodology and implemented in the C++
object-oriented programming language. Thus, this
description includes a pseudo C++ notation.

WO 96/25754 PCT/US96/01942

10

15

20

25

30

35

12

(1) Definitions

The following description of the object-oriented
architecture of the data network application 18 uses the
Object Modeling Technique (OMT) described in J. Rumbaugh
et al.,"Object-Oriented Modeling and Design," Prentice
Hall, Inc., 1991. The following definitions from OMT
relate to the present invention.

Class - A class defines a set of common objects,
which represent the items or instances manipulated by the
data network application 18. Each class has a unique
name. To help identify classes in the following
description, all class names begin with "xoo." For
example, "xooPerson" would be a class name for Person
objects. Classes may include a set of attributes and a
set of operations. Throughout this description class
names may at times be used to specify objects of that
class.

Attribute - An attribute is a data value held by
objects in a class. In the class xooPerson, each object
would have a name attribute that may be used to identify
and to differentiate between the objects in the xooPerson
class (for example, Bob, Carol, Ted, or Alice). Some
classes may not have any attributes.

Operation - An operation is a function or
transformation that may be applied to or by objects in a
class. Thus, objects from one class may invoke or
initiate operations on cbjects in another class. Also,
objects of a class may invoke operations on themselves or
other objects of that same class. But the operations
being invoked belong to the class upon which the
operations are being invoked. To identify operations in
the following description, parentheses follow the names of
operations, for example, "open()."

Each operation has a target object as an implicit
argument, and since each object "knows" its class, the
target object of an operation knows the right
implementation of the operation. In other words,

WO 96/25754 PCT/US96/01942

10

15

20

25

30

35

13

different classes may have operations that have the same
name, but the behavior of each operation will depend on
the class of its target object. For example, the class
xooDoor, which contains all doors in a building, and
xooWindow, which contains all windows in a building, may
both have operations named "open{()." But the
implementation of the operation open() on an object in the
xooDoor class may be different from the implementation of
the operation open() on an object in the xooWindow class.
Also, a class may have operations that are invoked or
operated on objects of that class. In the following
description these "self-operations" are illustrated as
follows: ‘"<operation names>()_", where <operation name> 1is
the name of an operation.

In addition to the target object, invoking an
operation may require additional arguments (or variables
that identify values including other classes, objects,
integers, characters, strings, etc.). Any additional
arguments required for an operation will be specified
within the parentheses following the operation name, for
example, "open(doorl)", which specifies an instance of
xooDoor object to be opened.

Instantiation - Instantiation is an operation used to
create a unique object of a class. In the C++ programming
language, a special constructor operation is used to
create new instances of a class and the name of the method
for a class constructor has the same name as the class,
e.g., "xooPerson()." Thus, "xooPerson()" would be used to
create an object of the xooPerson class. At times in this
description the instantiation operation for a class is
specifically described, and so is the step of
instantiating (or creating an instance of) a class.
However, all classes may be instantiated, and an instance
(read object) of a class must be created before that
instance can, for example, invoke operations to create
instances of other classes and to perform other processes
on previously created objects.

WO 96/25754 PCT/US96/01942

190

15

20

25

30

35

14

Method - A method is the implementation of an
operation for a class on an object of that class. For
example, the class xooFile, which defines a set of file
objects, may have an operation "print()." There may be
several methods used to implement the print () operation
depending upon the type of file (ASCII, binary, digitized
picture, etc.) to be printed. 1In other words, XooFile
would have a file type attribute used to define a file
type for each object in the class and, depending upon the
value of the file type attribute for an object, an
appropriate print () method would be implemented. The
method depends only on the target object.

Event - An event is something that happens at a point
in time. An event conveys information from one object of
a class to another cbject of the same or a different
class.

The OMT method of illustrating classes and associated
attributes and operations is shown in Fig. 3. The class
71 has a class name field 71a, followed by an attributes
field 71b, followed by an operations field 71c. The class
name field 7la includes the name of a class, the
attributes field 71b includes a set of the attributes of
the class, and the operations field 71c includes a set of
the operations of the class. This method is used in Figs.
4-10 to illustrate the classes implemented in the data
networking system 18. The names of attributes listed for
the classes are names assigned to the values of attributes
for objects of a class. Note that in those cases where
the set of attributes or operations for a class is empty,
the appropriate "attribute and/or operations field is
blank. This does not mean that there are no attributes
and/or operations for those classes, but simply that this
description of the preferred implementation does not
require details on those attributes and/or operations.

To understand the concept of classes, it is important
to understand the concept of generalization in OMT.

Generalization is the relationship between a class and one

WO 96/25754 PCT/US96/01942

15

or more refined versions of it. The class being refined
is called a "superclass" and each refined version is
called a "subclass." Attributes and operations common to
a group of subclasses are attached to the superclass and

5 shared by each subclass. Thus, each subclass is said to
inherit the features (i.e., attributes and operations) of
its superclass. The notation in OMT for generalization is
a triangle connecting the superclass to its subclasses.
For example, a superclass named xooEquipment may have

10 attributes including the name, manufacturer, weight, and

cost of equipment.

xXooEquipment
15 name
manufacturer
weight
cost
20
Refined versions of the xooEquipment superclass might
include the subclasses xooPump and xooTank.
xooEquipment
25
name
manufacturer
weight
cost
30
(operations)
|
A
35
| |
xooPump xooTank
40
flow rate size
pressure
(operations) (operations)
45

Each of the subclasses xooPump and xooTank might have
different attributes and operations, but both subclasses

WO 96/25754 PCT/US96/01942

10

15

20

25

30

35

16

would also have (or inherit) the attributes of their
superclass xooEquipment. So while the subclass xooPump
might have attributes like flow rate and pressure, xooPump
would also have (or inherit) the attributes of its
superclass xooEquipment, i.e., name, manufacturer, weight,
and cost. And xooTank might have a size attribute, but it
would also have the attributes of its superclass
xooEquipment.

Another OMT concept is the "link" relationship
between objects of classes. One link relationship is the
"is a" relationship, which is used to describe the
relationship between an object of a subclass and an object
of the subclass' superclass. The object of the subclass
"is a" object of its superclass because it inherits all
features of its superclass. Another link relationship is
the "has a" relationship, which is used to describe a
relationship between objects of different classes where
one of the objects uses the other object during execution.

(2) Classes, Attributes, Operations of

Data Network Application

Fig. 4 illustrates the communications classes 100,
which define objects used for communications throughout
the data network application 18. There are three
communications classes 110, 130, 140 shown in Fig. 4. The
first communications class is named "xooMessage", as
specified in the class name field 110a, the second
communications class is named "xooProtocol", as specified
in the class name filed 130a, and the third is named
"xooTransport" as specified in the class name field 140a.
As illustrated in Fig. 4, the xooProtocol class 130 is
related to the xooTransport class 140 by a "has a"
relationship. As explained above, this relationship means
that objects of the xooProtocol class 130 use objects of
the xooTransport class 140. How the objects of the
xooProtocol class 130 use objects of the xooTransport
class 140 will explained below with reference to Fig. 12.

The xooMessage class 110 defines objects that

WO 96/25754 PCT/US96/01942

17

represent messages sent and received in the data network
application 18. One operation for the xooMessage class
110 is shown in the operations field 110c, "XooMessage()".
As explained, this operation is used to instantiate or

5 create an instance (or object) of the xooMessageClass.
(Objects of a class may at times be referred to by simply
using the name of its class.) Although all of the
constructor operations (i.e., operations that create
instances of a class) are not illustrated in Figs. 4-10,

10 all classes include such constructor operations. Another
operation is
xooMessage (xooMessSType, xooMessDType, fileName) . This
operation is used to create a temporary XooMessage object
using the fileName. xooMessSType,xooMessDType are

15 integers, with the first identifying a data generating
system and the second indicating that the data from that
data generating system is in a file.

The xooProtocol class 130 defines objects that
represent the protocol of the data network application 18,

20 and are used to send and receive objects of the xooMessage
class 110 in the data network application 18. Several
operations are specified in the operations field 130c,
namely "send()", "receive()", "ack()", and "nack()". An
object of the xooMessage class 110 is the only agrument

25 for each of the operations listed above, of the
xooProtocol class 130. This is illustrated by listing
xooMessage in the parentheses for each of the operations
for the xooProtocol class 130, for example,

"send (xooMessage) " .

30 The "send()" operation of the xooPrctocol class 130
is used to send an object of the xooMessage class 110
(i.e., a xooMessage object) within the data network
application 18. The "receive()" operation of the
xooProtocol class 130 is used to receive a xooMessage

35 object. The "ack()" operation of the xooProtocol class
130 is used to acknowledge receipt of a xooMessage object,
while the "nack()" operation of the xooProtocol class 130

WO 96/25754 PCT/US96/01942

10

15

20

25

30

35

18

is used as a negative acknowledgement of a xooMessage
object.

The xooTransport class 140 is a class to define
objects that represent the transport medium (e.g., tcp/ip)
of the data network applicaticn 18. Several xooTransport
class 140 operations are specified in the operations
field 140c, namely "send()", "receive()", "ack()", and
"nack()". An object of the xooMessage class 110 is the
only agrument for each of the operations listed above, of
the xooTransport class 140. This is illustrated by
listing xooMessage in the parentheses for each of the
operations for the xooTransport class 140, for example,
"send (xooMessage) " .

The "send()" operation of the xooTransport class 140
is used to convert an object of the xooMessage class 110
into data and send the data within the data network
application 18 over a transport medium. The "receive()"
operation of the xooTransport class 140 is used to receive
data from a transport medium and convert it to a
xooMessage 110 object. The "ack()" operation of the
xooTransport class 140 is used to acknowledge receipt of a
xooMessage object, while the "nack()" operation of the
xooTransport class 140 is used as a negative
acknowledgement of a xooMessage object.

Fig. 5 illustrates the source and destination

classes 200, which define objects used to identify sources

. of data (e.g., data generating systems 20 and 22 of Fig.

1) and destinations for data (e.g., application systems 30
and 32 of Fig. 1) being processed by the system 5. The
name in the class name field 210a for the class 210 is
"xooSrcDestMain" 210a, which is shorthand notation for
source destination main. The xooSrcDestMain class 210 may
also have attributes (field 210b) and operations
(field 210c).

The xooSrcDestMain class 210 is a superclass for both
source and destination objects with two subclasses: the

class 220 with a class name in the class name field 220a

WO 96/25754 PCT/US96/01942

10

15

20

25

30

35

19

of "xooSource" and the class 230 with a class name in the
class name field 230a "xooDestination." The xooSource
subclass 220 is an abstraction for every data source
(e.g., data generating systems 20 and 22 of Fig. 1) that
will be providing data for processing by the data network
application 18. The xooDestination subclass 230 is an
abstraction for every data destination (e.g., application
systems 30 and 32 of Fig. 1) that will receive data
processed by the data network application 18. The
xooSource subclass 220 and the xooDestination subclass 230
may also have attributes (fields 220b and 230b,
respectively) and operations (fields 220c and 230c,
respectively) .

Both the xooSource subclass 220 and the
xooDestination subclass 230 are superclasses to other
subclasses. The xooSource subclass 220 is a superclass
for objects within two subclasses: the class 221 with a
class name in the class name field 22la of
n"xooSourceCollect" and the class 222 with a class name in
the class name field 222a "xooSourceProcess." Objects of
the xooSourceCollect subclass 221 are used for data
collection (see Figs. 12 and 13) from data sources (e.g.,
data generating systems 20 and 22 of Fig. 1). Objects of
the xooSourceProcess subclass 222 are used for data
processing of data collected from data sources (see Figs.
14 and 15). The subclasses 221 and 222 may also have
attributes (fields 221b and 222b, respectively) and
operations (fields 221c and 222c, respectively). The
operations shown for classes 221 and 222 are ones that
instantiate those classes, namely, xooSourceCollect() and
xooSourceProcess () .

Finally, xooDestination subclass 230 is a superclass
for objects within two subclasses: the class 231 with a
class name in the class name field 23la of
"xooDestinationProcess" and the class 232 with a class
name in the class name field 232a "xooDestinationXmit."
("Xmit" is shorthand for the word "transmit.") The

WO 96/25754 PCT/US96/01942

10

15

20

25

30

35

20

xooDestinationProcess subclass 231 is used for processing
data (see Figs. 18 and 19) specific to destinations (e.g.,
application systems 30 and 32 of Fig. 1). The
xooDestinationXmit subclass 232 is used for transmitting
destination data to a destination (see Figs. 20-23). The
subclasses 231 and 232 have attributes (fields 231b and

232b, respectively) and/or operations (fields 231c and

232c, respectively). The operation for class 231 (i.e.,
xooDestinationProcess()) is one that instantiates that
class.

The attributes for class 232 are xmitQ and
openDataContainerList. The xmitQ attribute defines a list
of recently closed data containers (i.e., objects of the
xooDestOpenListElem class 233) that are queued for
transmission. The openDataContainerList attribute of the
xooDestXmit class 232 defines a list of open data
container objects, namely, objects of the
xooDestOpenListElem class 233. Another attribute is
xmitQIter, which is an iterator used to extract
xooDestOpenListElem objects from xmitQ. This iterator
starts at a current position (to start at the top it has
to be reset) in xmitQ and returns a xooDestOpenListElem
object.

The operations for class 232 include an operation for
instantiating the class 232 (i.e., xooDestinationXmit ()) .
Other operations nclude:
enqueueXmit_(xooDestOpenListElem), dequeueXmit_(destSite),
newOpenListElem_(containerP,compIDCode), and
openListCloseAll_(destSite).
enqueueXmit_(xooDestOpenListElem) is used to queue objects
of the xooDestOpenListElem class 233 for later dequeuing
and transmission. dequeueXmit_(destSite) is used to
dequeue objects of the xooDestOpenListElem class 233 for
transmission to a destination specified by destSite.
newOpenListElem_(containerP,destCompIDCode) is used to
create a new object of xooDestOpenListElem class 233 using
a xooDataContainer object and the destCompIDCode

WO 96/25754 PCT/US96/01942

10

15

20

25

30

35

21

(described below), and openListCloseAll_(destSite) is used
to close all the open data containers at a given destSite
(described below) and queues them on the xmitQ. This
makes the list of data containers ready for transmission.

Another operation in class 232 is
openListFind_(searchName). This operation takes a data
container (xooDataContainer object) from a
xooDataContainerList object, and tries to match the data
container with an already existing open data container,
i.e., xooDestOpenListElem object. Matching here means
comparing the logical names of the data container and the
open data container. The argument searchName is the
logical name of the data container from the
xooDataContainerList object.

Another source and destination classes 200 is
xooDestOpenListElem class 233. The xooDestOpenListElem
class 233 defines open data container objects (see
xooDataContainer in Fig. 6) that will receive processed
data, as explained below. The xooDestOpenListElem
class 233 has two operations. The first operation is
container (). This operation is used to return an the open
data container object in the xooDestOpenListElem class
233. An example of this operation is explained below.

The second operation is xooDestOpenListElem
(containerP,destSite,destComponentIdCode). This operation
creates an instance of the xooDestOpenListElem class 233.
The argument containerP is used to identify an open data
container object (see xooDataContainer in Fig. 6), and
destSite and destComponentIdCode are used to identify the
application system 30 or application system 32. While
destSite is a readable string, destComponentIdCode is
sequence number for a particular destination.

Fig. 6 illustrates the data container and data
location classes 300, which define objects used for
manipulating data is processed by the system 5. The first
class 310 illustrated in Fig. 6 has a class name
"xooDataContainer" in the class name field 310a. The

WO 96/25754 PCT/US96/01942

10

15

20

25

30

35

22

xooDataContainer class 310 defines objects used to hold
objects of the xooRecord class 350, which will be
described below. Objects of the xooDataContainer class
310 attribute is shown in attribute field 310b and several
operations are shown in operations field 310c.

The attribute shown for the xooDataContainer class
310 identified in attribute field 310b is "logicalName."
This attribute is for the name of the logical destination
that will receive the processed data.

There are six operations shown in the
xooDataContainer class 310 identified in operations
field 310c. The first operation is "xooDataContainer()."
As discussed above with respect to the xooMessage class
110, the xooDataContainer() operation is used to
instantiate the xooDataContainer class 310. In other
words, this operation is used to create an object of the
xooDataContainer class 310. Another operation of the
xooDataContainer class 310 is

"xooDataContainer (logicalName) ." This is the same
operation as xooDataContainer(), but it includes an
argument, namely, "logicalName." The value corresponding

to this argument will be used as the name of the
xooDataContainer object created when the
xooDataContainer (logicalName) operaticn is performed.

Note that both the first and second operations have
the same name, i.e., xooDataContainer(), but one has an
argument and the other does not. This is permitted
because the appropriate method corresponding to the
operation name is selected based on the existence (or
nonexistence) of arguments for the operation when it is
invoked. 1In other words, a different method is invoked in
response to the first operation without the argument. The
same is true for all cases where the operation name is
repeated. When the operation is invoked, the appropriate
method corresponding to that operation is determined and
then executed.

WO 96/25754 PCT/US96/01942

10

15

20

25

30

35

23

Another operation of the xooDataContainer class 310
is "getNextRecord()." This operation is used to retrieve
the next xooRecord object (discussed below) from within an
object of the =xooDataContainer class 310. The
xooDataContainer class 310 also includes an
"appendRecord ()" operation that reguires as an argument
the value of an object of the xooRecord class. This
operation will append to a xooDataContainer object a
xooRecord object, which was identified as an argument when
the operation is executed.

Another operation of the xooDataContainer class 310
specified in the operations field 310c is "apply()." This
operation requires as an argument of one of two values,
Procl or Proc2, both of which identify a specific function
to be applied to all data (i.e., xooRecords) contained
within a xooDataContainer object. Details on the
functions performed by the Procl and Proc2 functions will
be described below.

The xooDataContainer class 310 also includes a
nsafeStore ()" operation in the operations field 310c.

This operation requires as an argument the value of an
object of the xooStorage class 410 (discussed below) .
Invoking this operation causes an object of the
xooDataContainer class 310 to be safestored in the object
of the xooStorage class identified in the argument to the
operation.

The xooDataContainer class 310 includes a
"prepareToSendData ()" operation in the operations
field 310c. This operation requires as an argument of the
xooMessage class 110 (discussed above). This operation is
invoked to transform a xooDataContainer object into data
in a xooMessage object specified as the argument to the
operation.

Finally, the xooDataContainer class 310 includes a
"prepareToSendObject () " operation in the operations
field 310c. This operation requires as an argument the
value of an object of the xooMessage class 110 (discussed

WO 96/25754 PCT/US96/01942

10

15

20

25

30

35

24

above). This operation is invoked to transform a
xooDataContainer object into the xooMessage object
specified as the argument to the operation.

The xooDataContainer class 310 has one subclass,
xooAmadnsDataContainer 312, which also has a subclass,
xooAmaDataContainer 314. xooAmadnsDataContainer class 312
defines objects for containing automatic message
accounting data network system data, and the
xooAmaDataContainer class 314 defines objects for
containing "Ama" data, i.e., automatic message accounting
data. The xooAmaDataContainer 314 has one operation shown
in Fig. 6, namely, xooAmaDataContainer (xooMessage). This
operation is used to create an object of class 314 with a
xooMessage object.

The next class 320 illustrated in Fig. 6 has a class
name "xooDataContainerList" in the class name field 320a.
The xooDataContainerList class 320 defines objects used to
contain a list of objects of the xooDataContainer
class 310. For objects of the xooDataContainerList
class 320 several operations are shown in operations
field 320c.

One of the operations of the xooDataContainerList
class 320 identified in operations field 320c is
"xooDataContainerList () ." The xooDataContainerList ()
operation is used to instantiate the xooDataContainerList
class 320. In other words, this operation is used to
create an object of the xooDataContainerList class 320.
This operation requires an argument, namely,
"xooDataContainer." The value corresponding to this
argument (namely an object of the xooDataContainer
class 310) will be added to the object of
xooDataContainerList class 320 when that object of
xooDataContainerList class 320 is created.

Another operation of the xooDataContainerList
class 320 identified in operations field 320c is
"apply()." This operation requires as an argument of one
of two values, Procl or Proc2, both of which identify a

WO 96/25754 PCT/US96/01942

10

15

20

25

30

35

25

specific function to be applied to all data (i.e., objects
of the xooDataContainer class 310) contained within a
xooDataContainerList object. Details on the functions
performed by the Procl and Proc2 functions will be
described below.

Two other operations for class 320 are
xooDataContainerList (xooMessage,xooUnflatDC) and next().
There are two methods for xooDataContainerList (xooMessage,
xooUnflatDC). If the xooMessage object is flattened
(discussed below), in one method the flattened xooMessage
is unflattened (also discussed above) into a
xooDataContainerList object. If the xooMessage object is
already unflattened, then the second method will take the
xooDataContainerList object and flattened in into a
xooMessage object. Which method is invoked in a
particular case will depend upon the state (flattened or
unflattened) of the xooMessage object.

The "next ()" operation extracts that next object of a
xooDataContainer class 310 from within a
xooDataContainerList object.

Another operation for the xooDataContainerList
class 320 is used to add an object of the xooDataContainer
class 310 to an existing object of the
xooDataContainerList class 320. This operation is similar
to the xooDataContainerList () operation, which includes as
an argument a xooDataContainer object to be added to a new
object of the xooDataContainerList class 320 that is
created. However, since the xooDataContainer object in
this case is being added to an existing object of the
xooDataContainerList class 320, using C++ programming
language notation, this operation 1is illustrated as
follows: "xooDataContainerList+=(xooDataContainer)."

The next class of the data container and data
location classes 300 illustrated in Fig. 6 is the
class 340 with a class name "xooDataLocation" in the
class name field 340a. This class 340 is used to define
objects that represent the file or buffer in storage

WO 96/25754 PCT/US96/01942

10

15

20

25

30

35

26

(namely storage device 14 of Fig. 1) that will physically
contain the data associated with objects of the
xooDataContainer class 310. The operation shown in

field 340c is "xooDatalocation()", which is used to
instantiate the xooDatalocation class. In other words,
the xocoDatalocation() operation is used to create an
object of the xooDatalocation class 340.

The last class of the data container and data
location classes 300 illustrated in Fig. 6 is the
xooUnflatDC 345. This class defines objects that operate
on data in a xooMessage object. As explained above,
xooMessage objects contain objects of the
xooDataContainerList class, which in turn includes
xooDataContainer objects. When a xooMessage object is
created all xooDataContainer objects within the
xooDataContainerList object get flattened, that is, the
objects get converted into data. When the reverse takes
place all xooDataContainer objects that have been
flattened or converted in a xooMessage object get
unflattened by xooUnflatDC and are inserted into a
xooDataContainerlList object.

Fig. 7 illustrates the record classes 345, including
a class hierarchy. As shown in Fig. 7, the xooRecord
class 350 is a superclass with two subclasses:
xooBafRecord 351 and xooEmrRecord 352. As explained
above, subclasses inherit all of the attributes and
operations of their superclasses. The prefix "Baf" is
used to connote a preferred data format for applications
(e.g., application system 30) used for billing telephone
customers. The prefix "Emr" is used to connote another
data format, which is generally used to bill customers in
exchanges different from where the telephone call was
made. For example, if a user makes a call from one
telephone in one network (called the out -of -network
telephone) and bills the call to another telephone in
another network (called the in-network telephone), an
"Emr" record is generated and provided to the operator of

WO 96/25754 PCT/US96/01942

10

15

20

25

30

35

27

the network for the in-network telephone to bill the user
for the call.

The xooRecord class encapsulates a record of data
that came from data generating system 20 or 22. The data
within the record has several partitions (called fields).
Each partition starts at a particular position within the
record (offset) and has a certain length. The xooRecord
class 350 attributes are not listed in the attributes
field 350b, but one operation, namely, "getFieldValue()",
is specified in the operations field 350c. This operation
retrieves the value of a field within the xooRecord.

The xooBafRecord class 351 defines objects that
represent data associated with, for example, telephone
calls that occur in a telephony network for billing
purposes. Objects of the xooBafRecord class 351 have a
variety of attributes, which are listed in the attributes
field 351b. The attributes are "recordDescriptorWord",
"hexID", "structureCode", "callCode", "sensorType",
"sensorID", "recordingOfficeType", "recordingOfficelID."
The first attribute "recordDescriptorWord" is used to hold
a value corresponding to the size of an event record. The
second attribute "hexID" is used to hold a value of an
identifier for an event record, while the third attribute
"structureCode" is used to hold a set of data fields that
constitute a recording structure. For example, structure
codes identify a type of telephone call such as collect
call, calling card call, and the like. The next
attribute, namely, "callCode", holds a value that defines
the type of event record, and the "sensorType" attribute
holds a value that defines the type of sensor (e.g.,
switch circuit) that originated the event record. The
nsensorID" attribute provides the value of an identifier
for a particular sensor, the "recordingOfficeType"
attribute holds a value that defines the type of office
that generated the event record. Types of offices include
switching systems that comprise a telephony network.

WO 96/25754 PCT/US96/01942

10

15

20

25

30

35

28

Finally, the "recordingOfficelID" attribute holds a value
for the identificaticn of a particular recording office.

The one operator for the xooBafRecord class 351 is
putFieldval (). This operation requires three arguments:
offset, length, and xooRecordField. The putFieldval ()
operation puts the value of an attribute from an object of
the xooRecordField class in an object of the xooBafRecord
class 351 at an cffset position with length. 1In other
words, the data corresponding to a xooBafRecord object is
comprised of partitions (or fields). The offset argument
identifies the distance from the beginning of that string
to the field where the value of an attribute from an
object of the xooRecordField class will be placed in the
xooBafRecord object. The length argument specifies the
length in the xooBafRecord object for the value of an
attribute from an object of the xooRecordField class.
xooRecordField is an abstraction for any field (i.e.,
partition) within the data corresponding to a xooRecord.

The last class of the record class 345 illustrated in
Fig. 7 is the xooRecordField class 360. This class is
used to define an abstraction for the fields of a record
of input data to be processed by data network application
18. The xooRecordField class 360 has two attributes and
one operation. As specified in the attributes field 360b,
the attributes for the xooRecordField class 360 are

"fieldType" and "value." The first attribute, fieldType

_is used to describe a type of field in a record that is

being abstracted by an object of the xooRecord Class 360
(e.g., string, character, integer, etc.). The second
attribute is the used to hold the value contained in the
field in that record being abstracted by an object of the
xooRecord Class 360.

Fig. 8 illustrates the xooStorage class 410. The
xooStorage class 410 is used as a base class for
identifying data stored by the data network application 18
during operation. The xooStorage class 410 has no
attributes listed in the attributes field 410b, but it has

WO 96/25754 PCT/US96/01942

10

15

20

25

30

35

29

one operation, namely, "safeStore()", specified in the
operations field 410c.

As explained above, different classes may have
operaticns that have the same operation name. For
example, the xooDataContainer class 310 also has a
"safeStore ()" operation (see field 310c). But since
objects know their classes, there is no concern that
having operations with the same name in different classes
will cause execution problems during operation of the data
network application 18. Invoking the safeStore()
operation on an object of the xooDataContainer class 310
will cause different processing than invoking the
safeStore () operation on an object of the xooStorage
class 417, each operation being defined differently.

The safeStore() operation of the xooStorage class 410
safestores in storage device 14 the data identified by two
arguments, an object from the xooDatalocation class 340
and a value. The value is identified in Fig. 7 by the
variable name "baseName." The variable baseName
represents the name of a file in a temporary partition of
the storage device 14.

The Program Manager and User Program classes 500 are
illustrated in Fig. 9. The two classes 500 are
xooProgramManager class 710 and xooUserProgram class 520.
The xooProgramManager class 710 defines a class of objects
for managing user programs and the xooUserProgram
class 520 defines a class of objects, each representing a
user program. There are two categories of user programs:
(1) a preprocessing operation required by an application
(e.g., applications 30 and 32) destined to receive data
from the data network application 18; and (2) a source
processing operation or an operation requested by the
source of the data (e.g., data generating systems 20 and
22) .

One operation is shown for each of the classes 510
and 520 (see operation fields 510c and 520c). The
operation of xooProgramManager class 510 is run{(), which

WO 96/25754 PCT/US96/01942

10

15

20

25

30

35

30

is invoked to run a user program. The run() operation
requires two arguments, both of which are objects of the
xooDataContainerList class 320. The first argument of the
run() operation represents an object of the
xooDataContainerList class 320 that includes a list of
objects of the xooDataContainer class 310 to be processed
by the user programs (also known as an "in list"). The
second argument of the run() operation also represents an
object of the xooDataContainerList class 320 that includes
a list of objects of the xooDataContainer class 310, but
the second argument is for a list of objects of the
xooDataContainer class 310 processed by the user programs
(also known as an "out list").

The operation of xooUserProgram class 520 is firel(),
which is invoked to fire a user program. The fire()
operation requires two arguments, both of which are
objects of the xooDataContainerList class 320. The first
argument of fire() is the same as the first argument to
the run() operation of the xooProgramManager class (i.e,
inList) and the second argument of fire() is the same as
the second argument to the run() operation of the
xooProgramManager's class (i.e, outList)

Fig. 10 illustrates the state classes 700, including
the xooDataState class 710 and the xooArglist class 720.
The xooDataState class 710 represents objects that define
the data state of the data network application 18 during
processing. The objects of this class 710 are used for
recovery purposes in case of system failures. These
objects record the states of processing by the data
network application 18, which is used to recreate process
states should the application 18 fail during execution.

The xooDataState class's 710 operation is journal().
There are five possible journal() operations,
differentiated by the arguments specified when the
operation is invoked. They are: (1) journal source
collection; (2) journal source processing; (3) journal
destination processing; (4) journal destination

WO 96/25754 PCT/US96/01942

31

preparation for transmission; and (5) journal destination
transmission.

The arguments required to invoke the operation to
journal source collection include xoo_DS_PHASE_COLLECT,

5 which is an integer that indicates the source collecticn
process (see Figs. 12 and 13). The remaining arguments
are xooDataContainer, an object of the xcoDataContainer
class, and tempName, a string (explained below with
reference to Figs. 11 and 12). This operation is used to

10 record the source collection phase of the data network
application's 18 data state.

The arguments required to invoke the operation to
journal source processing include xoo_DS_PHASE_SRCPROC,
which is an integer that indicates source processing (see

15 Figs. 14 and 15). The remaining arguments are an object
of the xooDataContainerList class 320, another object of
the xooDataContainerList class 32C, and an object of the
x00Arglist class (discussed below). This operation is
used to record the source processing phase of the data

20 network application's 18 data state.

The arguments required to invoke the operation to
journal destination processing include
xoo DS_PHASE_DSTPROC, which is an integer that indicates
destination processing (see Figs. 18 and 19). The

25 remaining arguments are an object of the
xooDataContainerList class 320 (that contain the output of
source processing and is the input to destination
processing, an "in list") and another object of the
xooDataContainerList class 320 (that contain the output of

30 destination processing, an "out list"). This operation is
used to record the destination processing phase of the
data network application's 18 data state. The data state
of the system is recorded in a journal for recovery
processing.

35 The arguments required to invoke the operation to
journal prepare for transmission include
xoo_DS_PHASE_PREXMIT, an integer that indicates the data

WO 96/25754 PCT/US96/01942

10

15

20

25

30

35

32

state of application 18 before the destination
transmission (see Figs. 20 and 21). The remaining
arguments include an object of the xooDataContainer
class 310 and an object of the xooDataContainerList
class 320. This operation is used to record the prepare
for transmission phase of the data network application's
18 data state.

Finally, the arguments required to invoke the
operation to journal destination transmission include
xoo DS_PHASE_XMIT, an integer that indicates the data
state of application 18 at the destination transmission
processing (see Figs. 22 and 23). The remaining argument
is a fileName, which corresponds to a data name for the
file being transmitted by the data network application 18.
This operation is used to record the destination
transmission phase of the data network application's 18
data state for recovery processing.

Another xcoDataState operation is getNextInput ().
This operation has two arguments, recovName and tempName.
As discussed below, either of these arguments identifies a
file name for data that came from a data generating system
and was contained in a xooDataContainer object.

xooArglist class 720 is used to define the various
arguments to be used when invoking operations on objects
of various classes. These processes will be discussed
more fully below. The xooArglist() cperation is used to
instantiate the xooArglist class 720.

In addition to the classes described above with
regard to Figs. 4-10, the data network application 18 uses
other classes of objects, the details of which are not
required to understand the present invention.

D. The Data Network Application Operation

There are five process components to the operation of
the data network application 18, which are used to process
input data from data generating systems (e.g., system 20
and 22) and output processed data to applications (e.g.,
applications 30 and 32). These process components are the

WO 96/25754 PCT/US96/01942

10

15

20

25

30

35

33

source data collection and safestoring component 50,
source processing component 52, user program processing
component 54, destination processing component 56, and
destination transmission component 58, all of which have
been discussed briefly. Each of these process components
will be explained in detail below.

One way of illustrating operation of object-oriented
processes is to describe them in terms of invoking
operations on objects in defined classes. This invocation
causes certain operations to be applied to those objects,
which in turn leads to the invocation of other operations
on objects of the classes. In Figs. 12, 14, 16, 18, 20,
and 22, the invocation process is illustrated by the
arrows pointing to objects. An arrow pointing to an
objects means that an operétion is being invoked on that
object that is being pointed to.

Because operations are invoked on objects of classes,
objects of classes are numbered in the figures using the
number of a class preceded by a "1." For example, the
number for the xooMessage class is 110. To show an object
of the class 110, a "1" is added in front of the number
for the class; thus, the number "1110" is used to identify
an object of the xooMessage class 110. Because during
operation of the preferred implementation more than one
object of the same class may be created, the numbers for
all objects are also succeeded by a number in parentheses
that indicates the number of the object. For example, the
number 1110(1) indicates the an object of the xooMessage
class 110 and the number 1110(4) also indicates an object
of the xooMessage class 110. The first xooMessage object
1110(1), however, is a different instance (or object) of
the xooMessage class 110.

(1) Main

When a user starts the data network application 18, a
main process 900 begins executing in the workstation 10.
The main process 900 is illustrated in Fig. 11.

WO 96/25754 PCT/US96/01942

10

15

20

25

30

35

34

At the root of the main process 900 is a system
manager process 902. System manager 902 initiates the
other processes of the data network application 18, so
system manager 902 determines when other processes are
initiated. The six processes shown in Fig. 11 are:
SourceCollect 904, SourceProcess 906, DestinationProcess
908, Schedule 909, DestinationXmit 910, and Recover 911.
The process Recover 911 restores the state of the data
processing. The process Schedule 909 manages
notifications that must occur at certain configured times.
The processes 904, 906, 908, and 910 invoke operations to
create objects of the xooSourceCollect class, the
xooSourceProcess class, the xooDestinationProcess class,
and the xooDestinationXmit class, respectively.
SourceCollect process 904 invokes the operation to create
xooSourceCollect object 1221(1), SourceProcess process 906
invokes the operation to create xooSourceProcess object
1222 (1), DestinationProcess process 908 invokes the
operation to create xooDestinationProcess object 1231(1),
and DestinationXmit process 910 invokes the operation to
create the xooDestinationXmit object 1232(1). Once these
objects are created, processing continues in the manner
described below with reference to Figs. 12-23.

As explained in more detail below with reference to
Figs. 22-23, the schedule process 909 notifies the
xooDestinationXmit object 1232(1) to begin processing in
response to commands from the system manager 302. This
notification is illustrated in the main 900 by the circle
at the end of the lines from the Schedule process 909 to
the xooDestinationXmit object 1232(1).

Processes 904, 906, 908, and 910 invoke other
operations, including operations to create other objects.
Further, in the following description, operations are at
times invoked on other objects without first specifying
the creation of the objects being operated on. As the
creation of objects is the precursor to invoking

operations on the objects, one skilled in the art will

WO 96/25754 PCT/US96/01942

10

15

20

25

30

35

35

recognize that all objects (not specified otherwise) must
have been previocusly created prior to the invocation of
any operations on them.

(2) Source Data Collection and Safestoring

Figs. 12 and 13 show object-oriented data process
flow of the source data collection and safestoring
component S0. Fig. 12 shows the interaction of objects of
the classes of the data network application 18 during
operation of the source data collection and safestoring
component 50, and Fig. 13 is a corresponding event trace
(timing) diagram that illustrates the order of steps for
the object interaction shown in Fig. 12. These figures
must be read together because, while one is used to
illustrate object interaction, the other provides further
details on the order in which the objects interact.

In the event trace diagram in Fig. 13, each object is
represented as a vertical line and each event (see
definitions section above) as a horizontal arrow from the
sender object to the receiver object. Time increases from
top to bottom, but the spacing is irrelevant; it is only
the sequence of events that are shown, not their exact
timing.

Processing of the source data collection and
safestoring component 50 is initiated when data is
received from data generating system 1100. As explained
above, data generating system 1100 may be, for example, a
telephone switch. Data generating system 1100 may also be
an intelligent telephone network, like one that provides a
single telephone number for a user and connects callers to
that user regardless of where the user is at any time
(e.g., in the home, car, plane, etc.).

Figs. 12 and 13 show that when data is received from
data generating system 1100, an object 1130(1) of the
xooProtocol class 130 invokes the xooMessage() operation
on the xooMessage class 110 (step tl). (The xooProtocol
object 1130(1) was previously created.) This invocation

instantiates the xooMessage class 110, or creates a

WO 96/25754 PCT/US96/01942

10

15

20

25

30

35

36

xooMessage object 1110(1). This is illustrated in Fig. 12
by the arrow pointing from the xooProtocol object 1130(1)
to the xooMessage object 1100(1). The created xooMessage
object 1110(1) is set equal to the variable "messagel."
This is shown in Fig. 12 by "messagel=xooMessage() ."
Similar notation, which is common C++ notation, is used
throughout the remaining description. Next, the
xooSourceCollect object 1221(1l) invokes the receive()
operation on the xooProtocol object 1130 with the messagel
as an argument (step t2). As explained above, the
receive () operation is used by the xooProtocol object
1130(1) to receive a xooMessage object (i.e., messagel).
In other words, the xooSourceCollect object 1221(1)
invokes the receive() operation on the xooProtocol object
1130(1) to cause the xooProtocol object 1130(1) to receive
the xooMessage object 1110(1) (i.e., messagel).

Internally within the xooProtocol object, a xooTransport
object is created and the receive() on the Protocol object
in turn results in the invocation of the receive()
operation on the xooTransport object. This receive () on
the xooTransport object does the actual work by receiving
the xooMessage object.

If the receive() operation is unsuccessful (step t2),
then the xooSourceCollect object 1221(1) invokes the
nack () operation (step t3), which signals the unsuccessful
receive () operation. If this is the case, then the data
generating system 1100 has to resend the data. If the
receive () operation was, however, successful then the
nack() operation is not invoked.

The xooSourceCollect object 1221(1) invokes the
xooDataContainer () operation to create a xooDataContainer
object 1310(1) (step t4). This is illustrated in Fig. 12
by "dataContainer=xooDataContainer (messagel)." This C++
notation indicates that the variable "dataContainer" is
set equal to the result of the invocation of the
xooDataContainer () operation with messagel as the

argument. As explained above, this xooDataContainer ()

WO 96/25754 PCT/US96/01942

37

operation will create the xooDataContainer object 1310(1)
with messagel in the xooDataContainer object 1310(1). The
variable dataContainer is set equal to the
xooDataContainer object 1310(1).

5 After the xooDataContainer object 1310(1) is created
(step t4), the xooDataContainer object 1310(1) invokes the
xooDatalocation() operation on an object of the
xooDataLocation class 340 (step tS5). This invocation will
create a xooDatalocation object 1340(1l). As notated in

10 Fig. 12, a variable "dataloc" is set equal to the
xooDatalocation object 1340(1).

The xooSourceCollect object 1310(1) invokes the
safeStore () operation on the xooDataContainer object
1310(1) to safestore that object using a special variable

15 name, "recovName", which will make it easier to recover
the object 1310(1) should processing fail during operation
of the component 50 (step té6).

Then the xooDataContainer object 1310(1) invokes the
safeStore () operation on a xooStorage object 1410(1)

20 (step t7).

This operation requires two variables, dataloc and
recovName. The variable datalLoc was defined in step t5
and recovName is a string.

Then the xooSourceCollect object 1221 (1) invokes the

25 journal() operation on a xooDataState object 1710(1)

(step £8). This operation requires three variables:
xoo_DS_PHASE_COLLECT, dataContainer, and recovName. The
first of these variables indicates the type of journal ()
operation that has been invoked, namely, a journal ()

30 operation during the execution of the source data
collection and safestoring component 50. (Since the
components 50-58 of the data network application 18 are
asynchronous, meaning that they run independently and
simultaneously, it is important to record the state of

35 data processed by each component separately for error
recovery processing.) The dataContainer variable is
associated with the xooDataContainer safestored and

WO 96/25754 PCT/US96/01942

10

15

20

25

30

35

38

recovName, the special file name used to recover
xooDataContainer 1310(1).

A temporary copy, named tempName, of the file for
recovName is created within the xooDataState
object 1710(1). tempName will be described further below.

Next, the xooSourceCollect object 1221(1l) invcokes the
ack () operation on the xooProtocol object 1130(1)
(step t9). This operation signals the successful receipt
of data.

Thus, data from data generating system 1110 is
safestored and journaled to provide fail safe error
recovery processing.

(3) Source Processing

Object-oriented data process flow of the source
processing component 52 1is illustrated in Figs. 14 and 15.
Fig. 14 shows the interaction of objects of the classes of
the data network application 18 during operation of the
source processing component 52, and Fig. 15 is a
corresponding event trace diagram that illustrates the
order of steps for the object interaction shown in Fig.
14. These figures must be read together because, while
one is used to illustrate object interaction, the other
provides further details on the order in which the objects
interact.

In the first interval of operation of the source
processing component 52, a xooSourceProcess object 1222(1)
invokes the getNextInput () on xooDataState object 1710(1)
(step tl). The arguments are recovName and tempName, and
under normal processing the getNextInput () operation would
return the file.for tempName. (However, if recovery
processing is being done the file for recovName is
returned.) The xooSourceProcess object 1222(1) invokes a
xooMessage () operation: tmpMsg =
xooMessage (xooMessExternal, xooMessFile, tempName) (step
t2). This step creates a temporary xooMessage object,
namely, tmpMsg, using the file for tempName.

xooMessExternal and xooMessFile are integers, with

WO 96/25754 PCT/US96/01942

10

15

20

25

30

35

39

xooMessExternal identifying a data generating system and
xooMessFile indicating that the data from that data
generating system 1is in a file.

The xooSourceProcess object 1222(1) then invokes an
operation on xooDataContainer 1310(2) (step t3). This
operation reads
dataContainer= (xooDataContainer)xooAmaDataContainer (cmpMsg
), which means xooSourceProcess object 1222(1) is invoking
the xooAmaDataContainer() operation with tmpMsg as the
argument, which is a xooMessage object (see step t2). The
notation indicates the invocation of a
xooRmaDataContainer () operation on a xooAmaDataContainer
object and making a xooDataContainer object 1310(2).
"dataContainer" is set to the xooDataContainer object
1310(2) .

Next, the xooSourceProcess object 1222(1) invokes the
xooDataContainerList () operation on xooDataContainerList
object 1320(2) (step t4). This operation creates an
object 1320(2) of the xooDataContainerList class 320. The
notation shown in Fig. 14 for this operation invocation is
nilList=xooDataContainerList (dataContainer)." This C++
instruction means that the iList variable gets set to the
created xooDataContainerList 1320(2) containing the
xooDataContainer object 1310(1l), which is now identified
by the variable name dataContainer.

With the xooDataContainer object 1310(1l) in the
xooDataContainerList object 1320(2), the apply() operation
is invoked by the xooSourceProcess object 1222(1) on the
xooDataContainerList object 1320(2) (step t5). In this
step, the Procl process is applied to all objects of the
xooDataContainer class 310 contained in the
xooDataContainerList object 1320(2) (i.e.,
xooDataContainer object 1310(1)). In this example, only
one object of the xooDataContainer class 310 is in the
xooDataContainerList object 1320(2), while objects of the
xooDataContainerList class 320 may contain multiple
objects of the xooDataContainer class 310. With more than

WO 96/25754 PCT/US96/01942

10

15

20

25

30

35

40

one object of the xooDataContainer class 310 in the
xooDataContainerList object 1320(2), the Procl process
would be applied to all of those objects in the
xooDataContainerList object 1320(2).

The Procl process is defined as a process of
decompressing and deencrypting the data defined by the
objects of the xooDataContainer class 310, which are in
turn defined by the xooDataContainerList object 1320(2).
In other words, data from the data generating system 1100
(Fig. 11) is provided to the data network application 18
in a compressed and encrypted format. Procl decompresses
and decrypts of that data.

Next, the xooDataContainerList object 1320(2) invokes
the apply() operation on the xooDataContainer object
1310(2) with the argument Procl (step t6). This instructs
the invocation of Procl on the xooDataContainer object
1310(2). (The operations in steps t5 and té constitute a
loop, but this description only includes one iteration of
the loop.)

The xooSourceProcess object 1222(1) invokes the
xooDataContainerList () operation to create a new
xooDataContainerList object 1320(3) (step t7). The new
object 1320(3) is set equal to the variable name bList as
indicated in the C++ instruction:
"bList=xooDataContainerList () ." The xooSourceProcess
object 1222(1) invokes the run() operation on an object
1510 of the xooProgramManager class 510 (step t8). This
operation has two arguments, the iList and the bList. As
explained above, both the iList and bList are objects of
the xooDataContainerList class 320. The differences
between these objects have already been explained, i.e.,
the bList is empty, while the iList 1is not.

Next, the xooSourceProcess object 1222(1) then
journals the data state of the source processing component
S2 (step t9). This is done by invoking the journal ()
operation on an object 1710(2) of the xooDataState
class 710. The arguments in this operation identify the

WO 96/25754 PCT/US96/01942

10

15

20

25

30

35

41

source processing component 52, namely,
"xoo_DS_PHASE_SRCPROC." The other arguments are ilList,
bList, and destinationList. The ilList represents the
state of the xooDataContainerlList object 1320(2) before
the apply() operation was invoked in step tS5 and the bList
represents the state of the xooDataContainerList object
1320(3) after the apply() operation was invoked in step
t7. Finally, destinationList is a xooArglist object that
specifies the logical name of the xooDestinationProcess
object 1231(1).

The xooSourceProcess object 1222(1) invokes the
xooMessage () operation to create another instance of the
xooMessage class 110 (step tl1l0). The new xooMessage
object 1110(3) is set equal to the variable name message3.

The xooSourceProcess object 1222(1) invokes the
prepareToSendObject () operation on the
xooDataContainerList 1320(3) (step tll). As illustrated
in Fig. 14, the C++ notation for this invocation is
"bList .prepareToSendObject (message3)." This
prepareToSendObject () operation prepares message3 with the
xooDataContainerList object 1320(3).

Having completed step tll, the xooSourceProcess
object 1222(1) invokes the send() operation on an object
1130(3) of the xooProtocol class 130 (step tl2). The
argument for this operation is message3, which, as
explained, contains the bList (i.e., xooDataContainerList
object 1320(3)).

During the operation of the source processing
component 52, the bList is converted to message3 for
transmission to the destination processing component 56
via an object 1130(3) of the xooProtocol class 130.

(4) User Program Processing

Object-oriented data process flow of an example of a
user program processing component 54 is illustrated in
Figs. 16 and 17. Fig. 16 shows the interaction of objects
of the classes of the data network application 18 during
operation of the user program processing component 54, and

WO 96/25754 PCT/US96/01942

10

15

20

25

30

35

42

Fig. 17 is a corresponding event trace diagram that
illustrates the crder of steps for the object interaction
shown in Fig. 16. The user program processing component
54 may be separately executed by the source processing
component 52 or the destination processing component 56.

The first step in processing by the user program
component 54 occurs when an object 1220(1) of the
xooSource class 220 invokes the run() operation on an
object 1510(1) of the xooProgramManager class 510 (see
Fig. 14) (step tl). Alternatively, an object 1230(1) of
the xooDestination class 230 may invoke run() on another
object 1510(2) of the xcoProgramManager class 510 (see
Fig. 18). Which object (1915(1) or 1510(2)) is invoked is
determined by whether source process 906 has been started
by the system manager 902 or destination process 908 has
been started by system manager 902.

In the first case, the ilList and bList in the run()
operation from the object 1220(1) correspond to
xooDataContainerList objects 1320(2) and 1320(3),
respectively (see Fig. 14). 1In the second case, the bList
and cList in the run() operation from the object 1510 (1)
correspond to xooDataContainerList objects 1320(6) and
1320(7), respectively (see Fig. 18). In either case, the
object 1510(1) or object 1510(2) invokes the fire()
operation on the xooUserProgram object 1520(1) (step t2).
But when the xooProgramManager object 1510(1) invokes the
fire() operation the iList and bList map to the inList and
outList arguments of the fire() operation, and when the
xooProgramManager object 1510(2) invokes the fire()
operation the bList and cList map to the inList and
outList arguments.

The xooUserProgram object 1520(1) invokes next ()
operation on an ocbject 1320 (4) of the xooDataContainerList
class 320 (step t3). The C++ notation used in Fig. 16 is
"inDC=inList.next () ." This means that the
xooDataContainerList object 1320(4) is identified by the

variable name "iList" and the next() operation extracts

WO 96/25754 PCT/US96/01942

10

15

20

25

30

35

43

that next object of the xooDataContainer class 310 from
within the iList (or xooDataContainerList object 1320(4))
and sets the variable "inDC" equal to that extracted
object.

The xooDataContainerList object 1320(4) invokes the
xooDataContainer () to create the xoocDataContainer object
1310(3) (step t4). The new xooDataContainer object
1310(3) is set equal to the variable inDC.

The xooUserProgram object 1520 then invokes the
getNextRecord () operation on the object 1310(3) of the
xooDataContainer class 310 (step tS5). The C++ notation
for this is "inREC=inDC.getNextRecord()." This translates
to get the next record object from within the
xooDataContainer object 1310(3), which DataContainer
object 1310(3) is identified by the variable name "inDC",
as discussed above. The record object taken from the
xooDataContainer object 1310(3) is set equal to the
variable "inRec." The xooDataContainer object 1310(3)
invokes the xooEmrRecord() operation (step té6); thus,
creating an object 1352(1) of the xooEmrRecord class 352.

Steps t7, t8, and t9 in Fig. 17 can be viewed as
occurring as a unit. The xooUserProgram object 1520(1)
invokes the getFieldValue() operation on the xooEmrRecord
1352 (step t7). The getFieldValue() operation is notated
in Fig. 16 as "inRec.getFieldValue()." The variable name

"inRec" is the name of the variable assigned to the record

_taken from the xooDataContainer object 1310(3), and the

operation extracts a data value from that inRec
xooDataContainer object 1310(3). The xooUserProgram
1520(1) invokes the xocoBafRecord() operation (step t8);
thus, creating a xooBafRecord object 1351. That object
1351(1) is identified by the variable name "outRec", as
specified in the C++ notation "outRec=xooBafRecord() ."

The xooUserProgram object 1520(1) takes the value from the
record taken from the xooEmrRecord 1352(1) in steps 6 and
puts that value in the created xooBafRecord object 1351(1)
at the location in the xooBafRecord object 1351(1)

WO 96/25754 PCT/US96/01942

10

15

20

25

30

35

44

specified by the arguments in the operation (step t9).
Again, the xooBafRecord 1351(1) is identified by the
variable outRec so the C++ notaticn for this step 1is
"outRec.putFieldvVal (offset,length, xooRecordField) ." This
operation creates xooRecordField object corresponding to
the field within the xooBafRecord object 1351(1) that is
being updated. The value attribute of the of
xooRecordField object is then populated in the
xooBafRecord 1351(1) at the appropriate position based on
the offset and length arguments.

Then the xooUserProgram object 1520(1) invokes the
xooDataContainer () operation to create ancther object
1310(4) of the xocDataContainer class 310 (step tlO0).
This operation is illustrated in Fig. 16 by the C++
notation "outDC=xooDataContainer (logicalName)", in which
the argument logicalName is the destination for which the
data in the xooDataContainer is intended. The
xooUserProgram object 1520(1) invokes the appendRecord ()
operation on the object 1310(4) (step tll). In the C++
notation of Fig. 16, "outDC.appendRecord(outRec)",
"outRec" is the variable name for an object of the
xooRecord class 350 contained within the object 1310(4),
which is being identified by the variable name "outDC."

The last step of the user program processing
component 54 is specified in C++ notation as
"outList+=outDC" (step t12). This means that the
xooDataContainerList object 1320(5), which is identified
by the variable name "outList", and adding to that object
1320(5S) the xooDataContainer object 1310(4) identified by
the variable name "outDC."

As a result of the operation of the user program
processing component 54, explained above, a value from one
record (i.e., a xooEmrRecord object) is placed in an
appropriate location in a another record (i.e., a
xooBafRecord). This operation may be done multiple times
for many record values as well as many records using the

container structures identified as objects of the

WO 96/25754 PCT/US96/01942

10

15

20

25

30

35

45

xooDataContainer class 310 and the xooDataContainerList
class 320.

It is the second record that may be used by the
applications 30 and 32. But first, destination processing
of component 56 and destination transmission processing of
component 58 must be performed.

(5) esri i -

Object-oriented data process flow of the destination
processing component 56 is illustrated in Figs. 18 and 19.
Fig. 11 shows the interaction of objects of the classes of
the data network application 18 during operation of the
destination processing component 56, and Fig. 19 is a
corresponding event trace diagram that illustrates the
order of steps for the object interaction shown in
Fig. 18.

The xooDestinationProcess object 1231(1) invokes the
receive () operation on the xooProtocol object 1130(3) to
receive the xooMessage object identified by the variable
name message3 (receive(message3) in the C++ notation)
(step tl).

The xooDestinationProcess object 1231 invokes the
xooDataContainerList () operation on an object 1320(6) of
the xooDataContainerList class 320 (step t2). This
operation creates a new object 1320(6) of that
xooDataContainerList class 320. As illustrated in Fig.
18, the C++ notation for this operation is
nbList=xooDataContainerList (message3,xooUnFlatDC)." This
instruction creates the xooDataContainerList object
1320(6) and assigns it to the variable name bList. In
this operation an empty xooDataContainerList object is
created, a xooUnFlatDC object is created, and data within
message3 is converted by the xooUnFlatDC object into
xooDataContainer objects and inserted into
xooDataContainerlList object.

Next, the xooDestinationProcess object 1231(1)
invokes the xooDataContainerList () operation on an object
of the 1320(7) to create a new instance of the

WO 96/25754 PCT/US96/01942

10

15

20

25

30

35

46

xooDataContainerList class 320 (step t3). The new object
is set equal to the variable clist.

Next, the xooDestinationProcess object 1231 invokes
the run() operation on an cbject 1510(2) of the
xooProgramManager class 510 (step t4). The arguments for
this operation are the bList (xooDataContainerList object
1320(6)), which represents an object of the
xooDataContainerList class 320 provided to the
xooProgramManager object 1510(2) and a cList, which
represents an object 1320(7) of the xooDataContainerList
class 320.

The xooDestinationProcess object 1231(1) invokes a
xooMessage () operation to create a new instance 1110(4) of
the xooMessage class 110 (step tS5). The new object
1110(4) is set equal to the variable message4.

The xooDestinationProcess object 1231 invokes the
journal () operation on an object 1710(3) of the
xooDataState class 710 (step t6). The argument for this
operation, xoo_DS_PHASE_DSTPROC, signals that object
1710(3) that the data state being journaled (or recorded)
corresponds to processing being done by the destination
processing component 56. The remaining arguments are
bList and cList. As explained, both of these are variable
names for objects (i.e., object 1320(6) and object
1320(7)) of the xooDataContainerList class 320.

The xooDestinationProcess object 1231 invokes the
prepareToSendObject () operation on the clList
xooDataContainerList object 1320(7) (step t7). This
operation takes the clist object 1320(7) and places it
into a xooMessage object, message4. Finally, the
xooDestinationProcess object 1231 invokes the send()
operation on a xooProtocol object 1130(4) to send the
xooMessage object 1130(4), i.e., message4, to the
destination transmission component 58 for processing (step
t8) .

(6) Destination Transmission

WO 96/25754 PCT/US96/01942

10

15

20

25

30

35

47

Object-oriented data process flow of the destination
transmission component 58 is illustrated in Figs. 20-23.
Figs. 20 (Phase 1) and 22 (Phase 2) show the interaction
of objects of the classes of the data network application
18 during operation of the destination processing
component 58, and Figs. 21 and 23 are corresponding event
trace diagrams that illustrate the order of steps for the
object interaction shown in Figs. 20 and 22, respectively.

The xooDestinationXmit object 1232(1) controls the
object interaction during Phase 1 of the operation by the
destination transmission component 58. The
xooDestinationXmit object 1232(1) first invokes a
receive () operation on the xooProtocol object 1130(4) to
receive the xooMessage object 1110(4), which is identified
by the variable name message4 (step tl).

The xooDestinationXmit object 1232(1) then invokes
the xooDataContainerList() operation on a xooDataContainer
object 1320(6) (step t2). The C++ instruction for this
operation is
"cList=xooDataContainerList (message4,xooUnFlatDC)." This
operation sets the variable clist as the identifier for
the object 1320(6). In this operation an empty
xooDataContainer object 1320(6) is created, a xooUnflatDC
object is created (not shown), and data within message4 1is
converted by the xooUnFlatDC cbject into xooDataContainer
objects and inserted into the xooDataConatinerList object.

The xooDestinationXmit object 1232(1) then invokes
the next () operation on the xooDataContainerList object
1320(6) (step t3). This set in C++ instruction format
reads "containerP=clList.next ()", and containerP is set
equal to the next xooDataContainer object in list object
1320(6). The next object of the xooDataContainer
class 310 is extracted from within the cList (or
xooDataContainerList object 1320(6)) and is set to
variable containerP.

WO 96/25754 PCT/US96/01942

10

15

20

25

30

35

48

The xocoDestinationXmit cbject 1232(1) then invokes
two operations on itself (steps t4 and t5). 1In step t4,
xooDestinationXmit object 1232(1) invokes the
openListFind_() operation with the argument
"containerP.logicalName". This operation takes the
xooDataContainer cbject defined by containerP, and tries
to match the data container with an already existing open
data container, i.e., xooDestOpenListElem object.
Matching here means comparing the logical names of the
data container and the open data container. The argument
is the logical name of the containerP. If openListFind_()
does not find a match, xooDestinationXmit object 1232(1)
invokes another operation on itself:

"newOpenListElem (containerP,destCompIdCode)" (step tS).
This operation in turn invokes another operation,
"elem=xooDestOpenListElem(containerP,destSite,destCompIdCo
de) to to create a new object of xooDestOpenListElem
class 233 using a xooDataContainer object, i.e.,
containerP, and the destCompIDCode and destSite (step té6).
However, if openListFind_() does find a match, then
containerP is simply added to the matching open data
container (i.e., a xooDestListElem object that already
exists). This internal function is within openListFind_()
is not shown in Fig. 20.

The xooDestinationXmit object 1232(1) then invokes
its enqueueXmit () operation on elem (step t7). elem is
the xooDestOpenListElem object created in step té. This
queues an object of the xooDestOpenListElem class 233,
i.e., elem, for later dequeuing and transmission.

Finally, the xooDestinationXmit object 1232(1)
invokes the journal() operation on a xooDataState object
1710(4) to journal the current data state during Phase 1
of the operation of the destination transmission component
58 (step t8). This operation has three arguments. The
first is xoo DS_PHASE_PREXMIT, which indicates that the
state being journaled is the phase 1 operation of the
destination transmission component 58. The second

WO 96/25754 PCT/US96/01942

10

15

20

25

30

35

49

argument containerP is described above and the third is
xList, which is list of all data containers from clist
(described earlier) that went into xooDestOpenListElam
either by cpenListFind_() or by newOpenListElem, both
described eariliier.

The second phase of operation of the destination
transmission component 58 is illustrated in Figs. 22 and
23. Phase 2 processing begins when the schedule
process 909 notifies the xooDestinationXmit object 1232(2)
to begin transmitting to an application 2100 (e.g.,
application 30 or 32 in Fig. 1) (step tl).

The xooDestinationXmit object 1232(2) then invokes an
operation on itself to openListCloseAll_ (destSite)

(step t2). This operation closes all the open data
containers at destSite.

Next, the xooDestinationXmit object 1232(2) invokes
another operation on itself, namely,
dequeueXmit (destSite) (step t3). As explained above,
this operation dequeues objects of the xooDestOpenListElem
class 233 for transmission. The variable elem is set to
the xooDestOpenListElem object 1233(2) dequeued, with the
xmitQIter iterator choosing the next object of class 233
to be dequeued. For this operation to be completed, the
xooDestOpenListElem is obtained from xmitQIter and set to
elem. Then the variable name containerP is set to the
xooDataContainer object 1310(5) obtained by invoking the
container () operation of elem (i.e., xooDestOpenListElem
object 1233(2)) (steo t4).

Then, the xooDestinationXmit object 1232(2) invokes
an operation containerP.prepareToSendData (message5) on the
xooDataContainer object 1310(5) (step t5). This operation
in turn causes the object 1310(5) to invoke an operation
xooMessage () to create messageS, a XooMessage
object 1110(5) (step t6). Steps t5 and té combined put
the xooDataContainer object 1310(5) into the message5 to
prepare to send message5 with that object 1310(5).

W0 96/25754 PCT/US96/01942

10

15

20

S0

Subsequently, the xooDestinationXmit object 1232(2)
invokes the send{) operation on the xooProtocol
object 1130(5) (step t7), which transmits the messageS
(xooMessage object 1110(5) to the application 2100. After
transmission of messageS, the xooDestinationXmit
object 1232(2) invokes the journal () operation to journal
the processing state following the successful transmission
(step t8). The journal() operation has two arguments,
xoo DS_PHASE_XMIT and fileName. The first specifies that
the data state being journaled in the xooDataState
object 1710(5) is for the phase 2 of the destination
transmission operation. The second argument identifies
the filename corresponding to the xooDataContainer
1310(5) .

Throughout the above description of the preferred
implementation, other implementations and changes to the
preferred implementation were discussed. Thus, this
invention in its broader aspects is therefore not limited
to the specific details or representative methods shown
and described.

WO 96/25754 PCT/US96/01942

10

15

20

25

30

35

51
We claim:

1. A data network system for communicating data
petween a plurality of data generating systems externally
connected to the data network system and a plurality
application systems externally connected to the data
network system, wherein the data network system includes
source objects corresponding to the data generating
systems and destination objects corresponding to the
application systems, the destination objects defining
processes performed on data provided to corresponding
application systems, and wherein the data generating
systems generate data to be collected, the data network
system comprising:

means for creating container objects to contain the
collected data;

means for identifying, from the container objects, a
selected one of the destination objects to receive the
container cbjects;

means for determining processing conditions from the
selected destination object and for processing the
container objects in accordance with the determined
conditions; and

means for transmitting data corresponding to the
processed ccntainer objects to the one of the application
systems corresponding to the selected destination object.

2. The data network system of claim 1 wherein the
creating means comprises:

means for decompressing and decrypting the collected
data.

3. A data network system for communicating data
between a plurality of data generating systems externally
connected to the data network system and a plurality
application systems externally connected to the data
network system, wherein the data network system includes
source objects corresponding to the data generating
systems and destination objects corresponding to the

application systems, the destination objects defining

WO 96/25754 PCT/US96/01942

52

processes performed on data provided to corresponding
application systems, and wherein the data generating
systems generate data to be collected, the data network
system comprising:

5 means fcr creating container objects to contain the
collected data;

means, using the container objects, for identifying a
destination object to receive the container objects;

means for processing the container objects in

10 accordance with the processes defined by the identified
destination object; and

means for transmitting data corresponding to the
processed ccntainer objects to the one of the application
systems corresponding to the identified destination

15 object.

4. A method implemented in a data network system
for communicating data between a plurality of data
generating systems externally connected to the data
network system and a plurality application systems

20 externally connected to the data network system, wherein
the data network system includes source objects
corresponding to the data generating systems and
destination objects corresponding to the application
systems, the destination objects defining processes

25 performed on data provided to corresponding application
systems, and wherein the data generating systems generate
data to be collected, the method comprising the steps of:

creating container objects to contain the collected
data;

30 identifying, from the container objects, a selected
one of the destination objects to receive the container
objects;

determining processing conditions from the selected
destination object and for processing the container

35 objects in accordance with the determined conditions; and

WO 96/25754 PCT/US96/01942

10

18

20

25

30

35

53

transmitting data corresponding to the processed
container objects to the one of the application systems
corresponding to the selected destination object.

5. The method of claim 4 wherein the creating step
includes the substep of:

decompressing and decrypting the collected data.

6. A method implemented in a data network system
for communicating data between a plurality of data
generating systems externally connected to the data
network system and a plurality application systems
externally connected to the data network system, wherein
the data network system includes source objects
corresponding to the data generating systems and
destination objects corresponding to the application
systems, the destination objects defining processes
performed on data provided to corresponding application
systems, and wherein the data generating systems generate
data to be collected, the method comprising the steps of:

creating container objects to contain the collected
data;

identifying, using the container objects, a
destination object to receive the container objects;

processing the container objects in accordance with
the processes defined by the identified destination
object; and

transmitting data corresponding to the processed
container objects to the one of the application systems
corresponding to the identified destination object.

7. A data network system for communicating data
petween a plurality of data generating systems externally
connected to the data network system and a plurality
application systems externally connected to the data
network system, wherein the data generating systems
generate data to be collected, the data network system
comprising:

means for creating data objects and for putting
collected data in the data objects;

WO 96/25754 PCT/US96/01942

10

15

20

25

30

35

54

means for identifying, using the data objects, a
destination application of the plurality of applications

intended to receive the collected data;

means for processing the data objects based on
conditions of the destination application; and

means for extracting data from the data objects and
for transmitting that extracted data to the destination
application.

8. A data collection system for collecting data
from a plurality of source data generating systems, the
data collectiocn system comprising:

means for creating a plurality of protocol objects;

means for receiving in a first protocol object a
message including data collected from a one of the source
data generating systems;

means for creating a first message object and for
assigning the received message to the first message
object;

means for creating a container object and for
assigning the first message object to the container
object;

means for creating a second message object; and

means for invoking a prepare-to-send operation to
assign the container object to the second message object.

9. The data collection system of claim 8 further
comprising:

means for receiving a second message object;

means for invoking a container-list creation
operation to create a list-container object and to assign
the second message object to the list-container object;
and

means for processing the collected data in the
list-container object in accordance with conditions of an
application that will be receiving collected data.

PCT/US96/01942

WO 96/25754

1/21

WILSAS
NOILVAI lddV [~VIVa
SINIS :
TRIUELIUR : ﬂ,mm
WILSAS
NOLLVDIldd¥ [~VIVa
(%
0
.\.
m.\\\\ 0

oy FovHoLS

m«/ﬂ

3I1A30

Ndd

NOT 121 1ddv
81— YHOML3N V1vO

WIISAS
91— oNIL¥H3dO

F "91d

| WI1SAS
INILVHINII V1VO

AN
A

V W31SAS
INILVYINII V1V

%

0¢

.

5334N0S
VIVD 31dILINW

SUBSTITUTE SHEET (RULE 26)

PCT/US96/01942

WO 96/25754

2/

—

SNOILVIT 1ddV

8/

(==}
-t

N

-

WVH30Ud

eyg

NOISSIWSNVHL
NOTLVNI1S30

,ﬁ

L e e

| y3sn 30600 |
| D |
ONISSI00Hd 30HNOS
/
........ - 2
 Wwookd
| zoﬁhﬁmwwmwc | ¢
L
)
WS
INISSI0Hd —
NOLLWNIISH0 g ONTHOISAVS
0o —| N NOTLI31100
V140 30HN0S
Mq. SHILSAS
L ONI LVHANI9
i V1v0
c ‘914

oy

SUBSTITUTE SHEET (RULE 26)

PCT/US96/01942

WO 96/25754

3/24

A T
_ (abessawoox) yaeu (abessanoox) yoeu _
| 20pj— (3bessanoox) yoe (abessapoox) yae |
" (36eSS3N00X) aAT3IBJ (abessanoox) antazad [~ LT,
| (abessayoox) puas (abessanoox) puas _
m 00v} —— S ~— g:m
1|1 e }Jodsued 00X 1020304400X L~ BOET |
| 7 / |
| oy’ 0} _
_ 2051—~_J] (3ueNa[1) ‘3dA)(SS3WOOX ‘3dA 1 §SSaW00X) abRSSIWOOX _
m () abessanoox _
| Q0FHF —~— "
_ 0} —1 abessayoox _
| 7 |
_r--lml:lzl:mm i
00% .
914

ML SNOILYH3d0
Q8L — SILNAIHLLY
B}] JHVN S5Y1)
P
i
E ‘914

SUBSTITUTE SHEET (RULE 26)

PCT/US96/01942

WO 96/25754

4/

(3p0)013uaUOdu03)S3p ‘331515
(dJaute3u)) waf33stjuadgisagoox

IEEC —~ () JauteIU03

JEec —

BEEC — wa[3351 7uadp)sagoox

| - EE2

~put43stiuado

aﬁﬂm%_g:wwssmm_s%
(3poJQ1dwo)}sapdJauteluod) war3)stjuadgmau
%mawmummufnaﬂsxw=m=awu

(W3T33ST U 01s3g00x) ~ Jtuyananbua

() 31X UOT JRUT}S3(00X

aiee w gmmm /»

Ja}Jp3tux
1511J3utejucyelequado
pitux

() $S330J4U0T1RUT}S3Q00X

() $53204d432JN0S00X

() 3931 103324n0S00X

U UOTJRUT }S3GOOX

$5370J4U0TJRUT}S3(00X

§5320J492JN0500X

193] [0932JN0S00X

BCEe

1N

T T)7 1

€2]

194 B gop

3062 — |

elEe

qoee — |

e0Ee—" |

U0TJeUT}S3[O0X

32JN0500X

71

0€¢

NOTLYNI1S30/304N0S

UTRH}SAQIJSOOX

—..-,I:II--I:II-‘I:I:Il.-ll-nlillx-..l‘-l:l--|:||1--li--L

PCT/US96/01942

WO 96/25754

5/24

.. -
GrE —~— () J03er Junoox () uotyea07R}RJO0X \.uowm_
45PE ~— |_— QOVE |

a1E —~_] (abessanoox) Jaurejuogejegewyoox BSVE~— Jmerjunoox uotjedI0elegoox | BOVE _
Gy — L .

Qr1E —~— [vau OpE |
BpIE —] Jautejuojeje(euyoox (Jautejuo)eleqoox) =4 }SI7Jautejuojeieqoox _
~ — (23044 40 }204d) Aydde !

vIE (30781 Junoox 'abessanoox) 3ST1JauTeIU0)R]e(00X |
1€ (Jautejuo)ele(oox) 35171Jautejue)eIeqo0X |

RIE—~—) q02€ — |

e2}E ——{ Jautejuojele(supewyoox 302E 002E —1 1517]Jautejuo)eleqoox - _

A1 ﬁ "

abessapoox) ejegpuasoy adedaud _

(3be103500X) 3403534€S "

(2204d J0 FI04d) Ajdde _

(pJ023H00X) pJoIaypuadde !

(abessanoox) 32a(qopuago)aJeda.d pJoday3xaNlab !

(awengeatboy) Jautejuojeleqoox _

01E—""| () JautejuojeieQgoox ‘

Q01E —— awen[eatbor m

m%m\v Jau1eju07e}egoox _
.. _

SUBSTITUTE SHEET (RULE 26)

PCT/US96/01942

WO 96/25754

6/21

T wew e |
(PT314p033H00x 'y36ual “13s440) [eAp[atyind |—— 5t

013314 j0butpJodad i

adkjaatyjoburpdodad _

QI Josuas !

3¢GE ~ adk] Josuas _
apoj[ed "

ajeqseq ap09aJn}andis |

ee—| @Podadied OI%3H [~— QiGE

QIpad PJOMJ0}dT4353(PJ0I3Y m

— \ESum_._ESx Esmm_ﬁmgx N elcE _

o5E 1 J :

IGe _

() antepp[at43ab | _— J0GE "

() PT3T 4pJ023HOOX " _
anea PJ033HoOX |

adkpraty)L”mt e(GE !
P[31{pJ033Y00X 0SE _
09€ _
.. _

SUBSTITUTE SHEET (RULE 26)

PCT/US96/01942

WO 96/25754

1724

(35171JauUTe3UOJR)RJ00X IST|JAUTRIU0JR}R]00X) 3UT)

|

m 40¢cS
" 202G ——] weJboddJasnoox
|

|

018

| WvH308d 016 —1

o
=

SUBSTITUTE SHEET (RULE 26)

PCT/US96/01942

WO 96/25754

B/21

(aweydway ‘aweNA023J) Indul1xaN}3b

__ |ouweNa3rly
'L TN 3SVHdS000%) Teudnol

(35174auTejU0)eIRQ00X
_ 'Jautejuo)e;e(oox
| IWX34d3S¥Hd S000X) [euJnof

Aum_Jmeﬂmucoumumcoax
1517]JauTeIU0)e]R]0OX
*J0Hd1S0 ISYHd S000X) [eudnol

(35T [6Jy00x '}ST7JaUTRJUO)R]RQOOX
')S17Jaute3uo)e}eqoox
*J0Hd1Sd ISYHd Sa00x) [eudnol

(awendwa)
_ 'Jautejuo)ejeqoox
'1937100 3S¥Hd S000x) feudnol

() 15t 16uy00x

1S17bJy00X

3]e15e3e(00X

or "9I4

’
02t

SUBSTITUTE SHEET (RULE 26)

PCT/US96/01942

WO 96/25754

9/21

e n
w 11WYUOT JRUT }S3OOX 55370J4U0T}RUT}S3(00X $53204d33JN0S00X 1231 [0732Jn0S00X _
_ () JTwXUOTIRUT}S3(00X () 553204401 JeUT}53(]00X () $5330Jd83JN0G 00X () 3981 [0932JN0S00X m
w (1] 2€ch (F) vE2s (1) 222 (1) 122l _
_ 1TWYUOT JRUT}S3Q 55320J4u0T3eU1}53(55330J4334n0S 123107324005 _
| |
| 0l 606 806 906 b0B |
_ _
; HIN0IH)
| N—
_ HIIYNVH]
A NIVH HILSAS e |
; ¢06 ;
L o T _
PP 914

SUBSTITUTE SHEET (RULE 26)

PCT/US96/01942

WO 96/25754

10/24

{F) 0TI afieJo3g00x

(V) OvET

(3WENADJ3J ‘D07]e}ep) 30353)RS N

U0T}23070}2(00X

() UoT}BI0RYR(OOX = J0Te]ep

(V) 01EF~—{ Jautejuogesegoox

(3WeNA0I3) 340)S3jeS
(13bessaw) Jauteluo)ele(oox
=Jautejuojelep
(F) 0ETF—— Euouo&noox ..&m
(v) 122}
123 [09324n0G00X S0
yae
(V) OV LY (13bessau) 3A1323J
2 abessan0ox
3ajeiselegoox _ Aﬁwoﬁ««\ﬁ‘ () 3bessapoox = jabessaw
Auemz>oUmL.meﬁmucoumymu_hquAou.um<Im.mgoox_ﬁmcgso_

cr "9I4

9

|
|
05

WILSAS
ONILVHINID
vivad

SUBSTITUTE SHEET (RULE 26)

PCT/US96/01942

WO 96/25754

11/21

(13bessau) yoe b1
Amsm2>oumg.me_mucoumamc.huquou.mm<zm.m=ooX_Mmcgscﬂ 0
(aUeNA023 “0R3RP) 340153 SES
N (3WeNA023J) 3J0}G34eS n
() uotjed07e}RQO0X = J07e}ep 9
mmmmmmmme_meﬁmucoum“maoox = Jautejuojejep g
jabessauw) yoeu vl
‘ . %)
(rabessauw) aatadad
| _ ¢l
() abessawoox = jabessau n
_ _
abedo}goox Jautejuojeieqoox abessapoox 139110 [030304400X
N < f/ -32JN0500X /;/
ajeiselegoox WSt uot3eJ0738(00X () 0iEl (1 0V //, (1) 0EF
m fd (V) 122}
() 0FL} (1) OVET
EV 914

W11

SUBSTITUTE SHEET (RULE 26)

PCT/US96/01942

WO 96/25754

12/21

2 1V <
(2) 0FET —~—] Jautejuogeiegoox
(€) 0F1%
€ omm«amza___: Jautejuo)eje(ewyoox (Jautejuojeieqoox) = Jautejuojeiep
abessapoox e 715177Jautejuo)e}eqoox .
() abessanoox ¥ (cabessau) ﬁmsousmstgmf_a.um:aa (1204d) A1dde | (2} O2E
= gabessau () 3517JauTe3u0)eIeqoox = 35179 x
JabeueyweJboudqoox 151743uTejU0)eIe(qo0X
:m:a.EEcE— L (V) 01GH (1204d) Ardde
L (Jautejuogeiep) 3st1Jaureluojelegoox = 3t |
[03030J400X e §5320J432JN0S00X .
(€abessau) puas (3WBNA0IAJ '3[T 4SSIHOOX
\ - \\ '[eUJa}XJ5S53W00X) 3DRSSBN0OX = Dsydw)
() 0GFY 1) el
(aueydua] ‘aueNa0dad) JndurIxanyab m%m&ﬁox
__1 a1e15070Q00X O
(1) 0VLd 1e3SeRB000X fo 2) 011

(35177U0T32UT3S3P 'JST1Q "ISTIT "D0HIIHS ISVHA S0 00X) [eudnol

vE "9Id

}

SUBSTITUTE SHEET (RULE 26)

PCT/US96/01942

WO 96/25754

13/24

W1l

(€abessau) puas cH
_ (cabessauw) 33a{qopuasoaJedadd 3stiq m“w
AvmmmmmszOX = gabessau b}
(3STU0TIRUT)S3P "1STG "ISTTT “J0HIHS S0 00x) [eudnol .
AHMHAD_Hw_%ﬁuczg ;
- () 3TJ3uTRIUO)RIRQ00X = }STT] I
(1304d) Adde : (1204q) kidde Gl
(Jauteju0e)ep) 1ST14aUTRIUO)RIRQO0X = }STTT "l
‘@mzaEH_meﬁmucoumumo%m«oox.;mcﬁmucoumumguox- = Jautejuogelep t
TM@E@Z%EMH.mﬁﬂmmmmzcwX_ﬁmcgmuxmmwmzoox,memmmZoox = bsydu} et
.wEmZaEmu.memz>cumgyu=achuxqumm _ | _ H
102030J400X Jabeueybodgoox E 1517JauTeu07e1R[00X
3]1035e1R(00X Am_mmﬁﬁ Aﬁ,qﬂmﬂ abessapoox Jautejuo)eyeqoox ANWQNm« $5320.¢32Jn0500X
4 1S17Jauteju0)RIR(oOX (e)0rs N N
(F)0FL} (€) 0261 —"" (€) 0¥ 11 () OTET (1) eeet
GF 914

SUBSTITUTE SHEET (RULE 26)

PCT/US96/01942

WO 96/25754

14/24

(v) OFEF—~ Jautejuopeieqoox

(3343no) pJodaypuadde Jg3no
(aueNTeatbo() Jautejuo)eleqooxgino

(1) 2GE} —— pJo2ayJu3oox

Aﬁ_«mmw, an[eAp(at 4336 dayut

pJ023y}egoox

gu_mﬁmULoummocx ;um=o~

1354 40) [eAPT3T43Ind " 2343N0
() pJ033Y)eGOOX=13H3N0

§

ENTEETRE (€) 01€} () Jauteju0)eIRJO0X = JOUT
=J3HuT x
Jaute)uo)eyeqoox 1517J3uTe}U0)RR]00X

P
() J033y3¥aNab JOuT=IaHut (v) OCE

() 1xau" 351 UL=00ut

wedbodgJasnoox

(1) 0251 i
(3sthno ystur)adty [(3sTTaN0 381Ut auty 70100 = 5130}

(2) 0161 Jabeuenue60.44oox

JabeuenueJBoIdoox (1 o1

(35172 3170) Und (1517 uwﬂ4~wcsg— 15T 13018 1U072 18000
M\-«-omm« \\\
(1) 0c21 — uoryeutysagoox | [a3unogoox (S) €
gy "9Id

SUBSTITUTE SHEET (RULE 26)

PCT/US96/01942

WO 96/25754

15/21

203N0 =+ 3TN0

(3343n0) pJodaypuadde " gg3no

(aueN[e21b0[) JauTe3U0)RIRQ00X=]03N0

Auﬁm_uugcumxoox.;uacmy“ummb_cgmeuﬁmﬁuuag.ummuzo

() PJ0J3YJRHOOX = JaYINQ

pNeAPTT 4336 J3uT

() PJOJ3YJUIO0X = I3

() pJ023y3XaN}ab" JQuT=dayut

() JauTe3uUOJRIRQO0X = QU

() JauTeUOJRIRQO0X = JQUT

ﬂwgoummgsuccx_

| Jautejuojejeqoo |

\mgoumm%mmoox

;mcﬂmucoumumccox N

¢

(F) 1GET

(meser [/
(v) 01€H

(E) OFEY

() 1XaU 3STUT = JQu
(15171300 351701 341

¢hl
12!
01}
b1
81
13
9] NI
G}
2]
£l

(35172 15170) UNJ 40 (35179 "3STTE) uny
|

| weJboJguasnoox |

15T
-Jautejuo)eegoox

_Hmﬂqgmcﬁmaccumamgoox | /J

(G) 02ET

LV "914

i
1

SUBSTITUTE SHEET (RULE 26)

[uorieurssagoox | _ 1) oeoy

x [Jabeuenwesboddoox | | 3240500 |

() 0251

(v) OCE}

f, (+) 02et
(2) 0VSH HO (1) 016}

PCT/US96/01942

WO 96/25754

16/21

() OFGH (vabessau) 323(qopuagoadedadd 35112 |
,// () 3sTJauTRIUO)RIRQ00X = ISTTD

(£} 02EV~—T"y517ure3u0)03RG00X

Jabeueywedbodgoox

(35172 35170) und

(9) 02€¥

N

1517J3UTe3U0)R]L(00X

(3031 4unoox ‘gabessau) 151743uteIu0JeIRg00X = }STT]

N

:_«mmﬁygf

[020304400X fee—

(rabe

abeSSaN00X

() OFVT—"]

3]e35e18(00X

|
|
|
|
|
_ (v) OEVS .
|
|
|
|
|

Am,o«Nﬁ\\\

L e

§530J4UOTIRUT}S300X

SSall) Puas

() abessanoox = pabessaw

(35179 ‘15170 “30Ud1ST ISVHd 00X) [eudnof

8y "9Id

1020304400X

(cabessau) aA1adad

(€) OET}

SUBSTITUTE SHEET (RULE 26)

PCT/US96/01942

WO 96/25754

17/24

83
(rabessau) puas ;

.vmamwmws_Humﬁpcucmmopmgmam;g.uwHJU
() abessanoox = pabessau H
gy Gl
(35179 ‘35110 "J0td1S0™3SvHd S0~ 00¥) [qudnof N

(35172 "3517G) Und
() 3517JautejuojeIRqoox = ISt 3
(70781 4un ‘gabessau) 3sT1aute3uoge3eqoox = 15170 ol
(€abessauw) aA1323J N
_
1030304400X 1517J3uTeju0)e}egoox JabeuenuweJboJdoox $5330J4U0T}eUT}SAQ00X
ajejsejegoox 517]43utejuo)eeqoox abessapoox /J 102030Jd400X //J
(2) 0¥G} (1) 162
X (r) €V q TN N
(€} OFLI () 02T (V) OFFY (€) OETY
6F "9Id

N1l

SUBSTITUTE SHEET (RULE 26)

PCT/US96/01942

WO 96/25754

18/21

(V) €€c} —— way33517Uadp3Sagoox

(3pogp1dwo)}sap 'a3153sap
'dJauteju0d) wat3jstuadpysagoox = waya

M (3pogp1dwo)}sap ‘dJautelund)” war3istiuadguau ul

(9) 02E1 ——

1517]JauTeU0)RIR00X

() Xau ‘35173 = dJaurejuod

() CECt——

~1s17Jautejuo)e}equado

pirux

I

1TUXUOT RUT}SA(OOX

--~----— (J07e1 4unoox ‘yabiessaw) 3s1]Jautejuojeleqoox = 35173

(wa[3)~31wyananbua

(vabessauw) aAtadad

— (351X ‘dJaute3u0d ‘| THXdIHd™ ISvHd SO 00x) [euJnof

(v) 01 LF—] @31eiseieqoox

0c 914

1030304400X

X

(v) OEFY

SUBSTITUTE SHEET (RULE 26)

PCT/US96/01942

WO 96/25754

19/21

(¥STX 'dJautejuod ‘| THXd3Hd ISYHd 3G 00x) Teudnol

(ua13)~ 3twyananbua

(3pogp1dwo))Sap ‘33153Sap ‘dJauTeIuod) war33stuadgysagoox = wafa

(3poJp1dwo))sap ‘dJauteluod)
w3338 uadgmay

(aweN{eatbo[- Jautejuod)
~put43stiuado

() IX8U"3ST73 = dJautejuod

(D031 4un00X ‘pabessau) 3S17JauTRIUO)RIRQO0X = ISTT

3je35e32000X

,J

(V) OFLY

(7] 06 war33stjuadpisagoox (F) €EH
e ‘914

(rabessau) aATa2ad

83

L3
91

Gl

b3
t3
¢}
H

JTUYUOTJRUT}S3(O0X

\

(V) CECt

JHIL

SUBSTITUTE SHEET (RULE 26)

PCT/US96/01942

20/24

WO 96/25754

————— e e

[T T e
_ (G) 011§ —1 abessapoox
m 1 () abessawoox = gaessau war33s1uadplsagoox
* () EECH
| (G0 JauTe)u0)e)eg00X () JOUTRIUOI WA[A = gJauTequo]
m (Gabessau)
! e3egpuago) adedadd- gJautejuo) pme e I
! P JAY[pIIY = Wa[d !
| (Goen g%J | [33151sap) 3tuxananbap 3
| \

NOILYJIlddv .lf..e..@.."u.i [030304400X fem————1 JTWYXUOTICUT}S3OOX nl_
/J _ | (33153sap) [[vaso[)3istuado :
00¥2 _ (Gabessau) puas oo :

_ buty3tusued)ydeishytiou
_ (G)oFzy | (BUEN3TTS “LIWX 3SYHd SO 00x) [eudnal
_ \
mm..\\uﬁ ajejseleqoox 206
b _

cc "9I4

SUBSTITUTE SHEET (RULE 26)

PCT/US96/01942

WO 96/25754

ei/24

(3WeNa[Ty 'L INX 3SYHd Sd 0ox) [eudnol

() abessapoox = Gabessau

(Gabessaw) puas

(3315358

(Gabessau) e3eqpuasojadedadd’ duautejuod

JI}IDIIWY = Wa[a

(3315353p) ~ }twyananbap

() JaUTRIUOD W3[3 = dJauTelund

P} 11vas0[J3sTuado

butyytwsued)yueishjtiou

312)587(00X abessapoox Wway 331 uadp)sagoox JNAIHIS
¢ [030304400X x\ Jautejuo)e}eqoox /4 1TWYUOT JBUT}S3Q00X rwom
(S) 07 L1 (S) 0} 13 . [wyuot jeut

(

(G) OETH

¢

(S) OFEF

(e) eeel .m-mmm«.\\\m

Ec 914

83
(3
9
G}
2]

3

3
2}

I

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

Inten ..uonal application No.
PCT/US96/01942

A. CLASSIFICATION OF SUBJECT MATTER
IPC(6) :HO1J 13/00; GO6F 9/00
US CL : 395/600, 200.03

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

US. : 395/600, 200.03

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

APS

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category® Citation of document, with indication, where appropriate, of the rclevant passages Relevant to claim No.
X US, A, 5,280,610 (TRAVIS JR. ET AL.) 18 January 1994, | 1-9
cols 1-3,56-15 & 18-24, figs 2, 6 & 14
X US, A, 5,377,350 (SKINNER) 27 December 1994, cols 1-3| 1,3,4,6-9
& 5-15, fig 1,3 & 12
Y US, A, 5,369,570 (PARAD) 29 November 1994, col 29 2&5
Y US, A, 5,343,527 (MOORE) 30 August 1994, cols 1-3, figs| 2 & 5
2 (A &B)
Y.P US, A, 5,414,812 (FILIP ET AL.) 09 May 1995, cols 7 &8 | 2 &5

D Further documents are listed in the continuation of Box C.

D See patent family annex.

. Special categories of cited documents:

°A° document defining the gencrai state of the art which is not considered
to be part of particular relevance

"E* carlier documecat published oa or after the interational filing date

°L* documeat which may !hmw doubts oo pnonty clnm(u) or which is
cited to blish ion date of or other
special reason (as npect.ﬁed)

0 document referring 1o an oral disclosure, use, exhibition or other
means

P document published prior to the international filing dale but later than

the priority date claimed

T later document published afler the international filing dale or priority
date and not in conflict with the application but cited 1o undertand the
principle or theory underlying the invention

°X* document of particular relevance; the claimed inveation t be
idered novel or t be idered w0 invoive an inventive step

whea the document is Waken alone
"y document of particular rel ; the claimed inveation X be
idered w0 involve an i ivc step when the document s

combined with one or more other such documeats, such combinatioa
being obvious o a person skilled in the art

"&* document member of the same patent family

Date of the actual completion of the international search

24 APRIL 1996

Date of malhnbof the international search report

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. (703) 305-3230

8 MAY 1595
uthorized officer
ROBERT E. STACHLER II _)[9\, /k‘w

lcphone No. (703) 205-9600

Form PCT/ISA/210 (second sheet)(July 1992)»

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

