WO 01/65371 A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
7 September 2001 (07.09.2001)

PCT

(10) International Publication Number

WO 01/65371 A2

(51) International Patent Classification’: GO6F 11/14

(21) International Application Number: PCT/US01/06820

(22) International Filing Date: 1 March 2001 (01.03.2001)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

60/186,137 1 March 2000 (01.03.2000) US

(71) Applicant: STERLING SOFTWARE, INC. [US/US];
One Computer Associates Plaza, Islandia, NY 11749 (US).

(72) Inventors: FORSTER, Karl, J.; One Computer Asso-
ciates Plaza, Islandia, NY 11749 (US). SEGARS, Alexan-
der, D.; One Computer Associates Plaza, Islandia, NY
11749 (US).

(74) Agent: STALFORD, Terry, J.; Baker Bots L.L.P., 2001
Ross Ave., Suite 600, Dallas, TX 75201-2980 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AT
(utility model), AU, AZ, BA, BB, BG, BR, BY, BZ, CA,
CH, CN, CO, CR, CU, CZ, CZ (utility model), DE, DE
(utility model), DK, DK (utility model), DM, DZ, EE, EE
(utility model), ES, FI, FI (utility model), GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK,
SK (utility model), SL, TJ, TM, TR, TT, TZ, UA, UG, UZ,
VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,

KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian

patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European

patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,

[Continued on next page]

(54) Title: METHOD AND SYSTEM FOR UPDATING AN ARCHIVE OF A COMPUTER FILE

400

(57) Abstract: A method
and system for updating an
archive of a computer file to

COMPARISON SUBSYSTEM

reflect changes made to the

FIRST COMPARATOR

file includes selecting one
of a plurality of comparison

S SELECTOR)—-’-416 methods as a preferred
: USER 444 : COPIES DECOMPRESSOR comparison method. The
1 | INTERFACE 4431 OF FILES comparison metl'lods include
: SUBSYSTEM : COMPRESSOR - a first comparison method
| ; 414 4171 M wherein the file is compared
! I & to an archive of the file and
i | conpimion _T | &) . o
1| ANALYSIS I L E a second comparison metho
DATA WORD |~ 418 = herein a first set of tok
1 YSTEM 442 | s wherein a first set of tokens
i [SUBS | COMPARATOR st i
L statistically representative of the
L | 1 5 s
< file is computed and compared
% ~ % to a second set of tokens
- 419 ° 4/20 = statistically representative of the
o .
402 archive of the file. The method
SECOND COMPARATOR further includes carrying out the
— 422 494 preferred comparison method to
FILE / generate indicia of differences
SET between the file and the archive
L TOKEN COMPARATOR of the file for updating the
SETS 1 archive of the file.
TOKEN
SECMENTER |71 GeneRaTOR
N \
426 428

WO 01/65371

PCT/US01/06820
wO 01/65371 A2 I HID 00 OO0 0 A

IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
CG, CL, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.
Published:
— without international search report and to be republished
upon receipt of that report

10

15

20

25

WO 01/65371 PCT/US01/06820

METHOD AND SYSTEM FOR UPDATING AN
ARCHIVE OF A COMPUTER FILE

TECHNICAL FIELD OF THE INVENTION

This invention relates generally to the field of file
archiving, and more particularly to a method and system for

updating an archive of a computer file.

BACKGROUND OF THE INVENTION

File archiving systems backup computer files to protect
against data loss. Ags files are modified over time, a
comparator differentiates between new and archived file
versions for the purpose of updating the archived versions.
Known comparators include revision control engines and
exclusive-or (XOR) processes.

Conventional comparators and differentiating systems
used in file archiving systems suffer disadvantages in that
they are process or memory intensive and inflexible. As a
result, they are unsuitable for some systems, applications

and/or conditions.

SUMMARY OF THE INVENTION

The present invention provides an improved method and
system for updating an archive of a computer file to
substantially reduce or eliminate problems and disadvantages
associated with previous systems and methods. In
particular, one of a plurality of comparators is selected
based on user and/or system input, conditions or criteria to
optimize data store, data transfer or other archive

resources.

10

15

20

25

30

WO 01/65371 PCT/US01/06820

2

A method and system for updating an archive of a
computer file to reflect changes made to the file includes
selecting one of a plurality of comparison methods as a
preferred comparison method. The comparison methods include
a first comparison method wherein the file is compared to an
archive of the file and a second comparison method wherein a
first set of tokens statistically representative of the file
is computed and compared to a second set of tokens
statistically representative of the archive of the file.
The method further includes carrying out the preferred
comparison method to generate indicia of differences between
the file and the archive of the file for updating the
archive of the file.

A further aspect of the present invention involves a
method and system for file archiving including selecting a
selected comparison method for comparison between a first
file and an associated second file based on at least one
condition. The selected comparison is selected from a first
comparison method and a second comparison method. The first
comparison method comprises comparing at least one
respective byte associated with the first file to at least
one byte associated with the second file. The second
comparison method comprises comparing a first set of
statistics associated with the first file to a second set of
statistics associated with the second file. The method also
includes generating at least one indicia of difference based
on the first file, the second file and the selected
comparison method and updating the first file based on the
indicia. The method also includes providing the indicia for

updating the first file based on the indicia of difference.

10

15

20

25

30

WO 01/65371 PCT/US01/06820

3

Technical advantages of the present invention will be
readily apparent to one sgkilled in the art from the

following figures, description and claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is Dbest understood from the
detailed description which follows, taken in conjunction
with the accompanying drawings, in which:

FIGURE 1 is a diagram illustrating a distributed file
archiving system according to one embodiment of the present
invention;

FIGURE 2 is a screen diagram illustrating a user
interface for controlling a backup process according to one
embodiment of the present invention;

FIGURE 3 is a block diagram illustrating details of the
client computer and the server computer of FIGURE 1
according to one embodiment of the present invention;

FIGURE 4 is a block diagram illustrating an archiving
system for the client computer of FIGURE 3 according to one
embodiment of the present invention;

FIGURE 5 is a flow diagram illustrating an exemplary
method for updating an archive of a file according to one
embodiment of the present invention;

FIGURES 6-9 are a flowchart illustrating a method for
updating an archive' of a computer £file according to one
embodiment of the present invention; and

FIGURE 10 is a flowchart illustrating a method for
determining a differencing method to be used according to

one embodiment of the present invention.

10

15

20

25

30

WO 01/65371 PCT/US01/06820

4

DESCRIPTION OF PREFERRED EXEMPLARY EMBODIMENTS

FIGURE 1 illustrates a client computer 100 connected to
a server computer 300 via an Internet or other network
connection 200 to update file archives on server computer
300. Client and server computers 100 and 300 can be any
suitable types of conventional computers such as a laptop, a
personal computer (PC), a desktop PC, a handheld PC, and the
like, or computers specially configured for a specific
purpose. In one embodiment for example, client computer 100
may be a laptop connected to a server computer 300 through
phone lines from a hotel room. In another embodiment,
client computer 100 may be specially configured,
incorporated into medical diagnostic equipment, and
connected to a central server computer 200 via the Internet
for archiving wvaluable information. As records are updated
on a particular client computer 100 throughout a diagnostic

process or a series of processes, archives of the records

-can be updated on the central server computer using the

present invention. It will be understood that the system
and method for archiving files according to various aspects
of the present invention can be implemented by any other
suitable combinations of hardware and software.

As described in more detail below, the system and
method for archiving files according to various aspects of
the present invention includes updating of file archives on
a server computer 300 to reflect changes to files made on a
client computer 100. In such a system, one or more updated
files are compared to archived versions of the files using a
comparison method that is selected from two or more
available comparison methods. A comparator using a first one
of the methods compares an updated file to a copy of the

file that is resident on the client computer 100, providing

10

15

20

25

30

WO 01/65371 PCT/US01/06820

5

indicia of one or more data words, or bytes, that are
different Dbetween the file and the file's archive. A
comparator using a second one of the comparison methods
partitions, or segments, the updated £file into blocks, or
segments, computes a token per block to generate a set of
tokens that are statistically representative of the updated
file and compares those tokens to another set of tokens
which are statistically representative of the archive of the
file. When using the second method, a comparator provides
indicia of one or more blocks containing data words that are
different between the file and its archive. Other suitable
comparison methods may also be employed. By providing a
plurality of available comparison methods, the system
permits a suitable comparison method for a given set of
conditions to be chosen.

FIGURE 2 illustrates a user interface on client
computer 100 for prompting a user to specify one of the
available comparison methods by selecting a condition for
optimization in the archiving of one or more files. The
comparison method can be selected by any suitable technique,
either manually or automatically.

Referring to FIGURE 2, for example, computer 100
displays a dialog box 110 entitled “Backup Set Editor” to
prompt for wuser input. Dialog box 110 includes two main
sections, a “Backup Method” section 120 and a “Server
Revisions” section 140. "Backup Method" section 120 includes
two item selectors, such as radio buttons. A first selector
112 is labeled *“Minimize local storage” and a second
selector 114 is labeled “Minimize transfer time.” The first
and second selectors 112 and 114 permits the user to select

one of two conditions for optimization during archiving of

10

15

20

25

30

WO 01/65371 PCT/US01/06820

6

one or more files whose active location 1s on client
éomputer 100.

A first condition is efficient use of data storage on
the client computer 100. A second condition is efficient
conveying of indicia from the client computer 100 to the
server computer 300. The user can select the first condition
for optimization by clicking on selector 112 and the second
condition by clicking on selector 114.

User selection requires the user to decide at a gross
level what comparison type or which differencing engine,
will be used for a particular archival operation. Automatic
selection dynamically determines the Dbest differencing
engine for a file on a file-by-file basgis. Such a system
can, at the time of backup, determine the best differencing
engine for the file based on a set of conditions or criteria
to be optimized. Such optimization improves the overall
performance of the product because each file being backed up
is processed by the optimal differencing engine for that
file.

Examples of criteria to be evaluated, either
individually or in various combinations using any suitable
mathematical model include: bandwidth of the network
available to the client at the time of the backup, the
reliability of the network connection, which may be measured
by requests for repeated packet transmission, the sgize of
the file being backed up, the type of file being backed up,
the amount of available hard disk storage space on the
client computer, the efficiency at which the client
computer's hard disk is operating, such as how fragmented
the disk is and/or how new and fast the CPU-disk interface
is, and costs of network conmnection, such as if the user is

connected via an expensive satellite network.

10

15

20

25

30

WO 01/65371 PCT/US01/06820

7

To obtain criteria, the operating system of the client
computer 100 may, for example, be queried to determine the
bandwidth of the available network 200. If a particular
operating system does not support such queries, a layered
device driver —could be implemented to capture the
information from the modem or network interface card. If the
bandwidth is determined to be below a threshold, the
automatic selection system can pick a differencing engine
that minimized indicia to be sent over the network. If the
size of the file to be backed up is large, relative to the
available disk storage on the c¢lient machine 100, the
automatic selection system can pick a differencing engine
that requires the least amount of local disk storage on the
client machine 100. The automatic selection systém can pick
an appropriate differencing engine based on file type. One
such example would be .pst files generated by MICROSOFT
OUTLOOK. These files are large and change often and
therefore are not handled efficiently by byte or block
differencing engines. In variations where a differencing
engine is available that more efficiently handles this type
of file, the system can assign said engine to handle the
.pst file.

"Backup Method" section 120 also permits the user to
specify the number of revisions of backed up files to be
kept on the client computer 100 via control 116. There are
advantages and disadvantages associated with increasing the
number of revisions kept on the client computer 100. If
more revisions are kept on the client computer 100, there isg
a greater likelihood that a client restore request can be
satisfied from the client computer's archives, eliminating

the need for communication with the server 300. More

10

15

20

25

30

WO 01/65371 PCT/US01/06820

8

revisions also require more disk space and more processing
time when backups are performed.

"Server Revisions" section 140 permits the wuser to
specify the number of revisions of backed up files to be
kept on the server computer 300. Section 140 includes two
item selectors, such as radio buttons. A first selector 142
is labeled "Use server revision setting"” and a second
selector 144 is labeled "Limited to:". The first and second
selectors 142 and 144 permits the user to select one of two
methods for limiting the number of revisions of backed up
files to be kept on the server computer 300.

A first method is to allow the number of revisions to
be kept on the server computer 300 to be determined by the
value configured on the server computer 300 by the server
computer's administrator. A second method is to allow the
ugser on the client computer 100 to specify the number of
revisions to be kept. The user can select the first method
for specifying server revisions by clicking on selector 142
and the second method by clicking on selector 144. If the
user selects the second method, the user can specify the
number of revisions by entering the desired number of
revisions in control 146. There are advantages and
disadvantages associated with increasing the number of'
revisions kept on the server computer 300. More revisions
mean that more versions of the backed up £file can be
restored. More revisions also require more disk space and
more processing time when backups are performed.

FIGURE 3 is a block diagram illustrating details of the
client computer 100 and the server computer 300. Referring
to FIGURE 3, laptop computer 100 includes conventional
hardware, notably a user interface 310, a CPU 320, such as

an Intel PENTIUM II or III, memory 330, such as RAM, 32-128

10

15

20

25

30

WO 01/65371 PCT/US01/06820

9

KB of RAM and BIOS ROM, a hard disk 340, such as a 2-10 GB
capacity hard disk, and a network intexrface 350, all
conventionally interconnected via a bus 355. Bus 355 can
include a conventional high-speed bus, such as a 100 MHz,
32-bit bus coupling CPU 320 and memory 330 and one or more
buses that may be of other speeds, such as UDMA-33, UDMA-66,
PCI and AGP, coupling CPU to hard disk 340, mnetwork
interface 350, and other hardware in client computer 100 as
desired. User interface 310 includes any suitable hardware
and/or software for prompting a user to provide input. For
example, a flat-panel display 102 of any suitable type, such
as an LCD énd a TFT display user interface 310 may also
include a conventional keyboard 104, and a conventional
touch-sensitive pointing device 106.

Hard disk 340 includes magnetically recorded indicia of
files, encoded and retrieved under control of CPU 320. Files
on a hard disk, or other mass storage medium, of a client
computer according to the invention include one or more
files to be archived and one or more associated archive
management files. For example, hard disk 340 includes
indicia of a first file 342 to be archived named “file 1~
and an archive management file 343 named “copy of file 1~
for managing the archiving of file 342. In the example, file
342 is to be archived using the first comparison method in
which file 343 1is a copy of file 342 as it was last
archived.

Hard disk 340 also includes indicia of a second file
344 to be archived named “file 2” and an archive management
file 345 named “tokens file 2" for managing the archiving of
file 344. In the example, file 344 is to be archived using
the second comparison method in which file 345 includes a

set of tokens that are statistically representative of the

10

15

20

25

30

WO 01/65371 PCT/US01/06820

10

file as it was last archived. The second method is selected
for archiving of 344 because file 344 occupies a more
significant portion of the storage capacity of hard disk
340, and this method does not require that a copy of the
file as 1last archived be kept on the client computer.
Relative sizes of files on hard disk 340 are only
illustrative and may not be indicative of storage capacity
usage in an actual system.

To archive files 342 and 344, CPU 320 executes software
from memory 330 that implements functions of exemplary
system 400. CPU 320 conventionally loads the software £from
hard disk 340 into memory 330 by carrying out functions of a
disk operating system such as WINDOWS 98. File 342 is part
of a first backup set (not shown), the files of which are
archived using settings that are sglected. by user input
and/or automatically. The settings can include selection of
one of the available comparison methods, archiving
frequency, such as daily or weekly, and the number of
archive copies to be retained, assuming that the selected
comparison method permits multiple archive 1levels. For
example, byte differencing, as discussed below, may permit
multiple archived versionsg of a file while block
differencing, also discussed below, may not. File 344 is
part of a second backup set (not shown), the files of which
can be archived using settings that are the same or
different from those of the first backup set.

CPU 320 carries out the selected one of the available
comparison methods to generate indicia of differences
between a file to be archived and its archive copy. For
example, the archive copy may be resident on server computer

300. CPU 320 can then control network interface 350 to

10

15

20

25

30

WO 01/65371 PCT/US01/06820

11

convey the indicia to server computer 300 via network

.connection 200.

Server computer 300 includes conventional hardware,
notably a user interface 390, a CPU 316, such as an Intel
PENTIUM III, memory 370, such as 128-256 KB of SDRAM and
BIOS ROM, a hard disk 380 suitably configured for the usage
and reliability demands of an archival server, such as a
SCSI RAID having 20-40 GB capacity, and a network interface
375, all conventionally interconnected via a bus 395. Server
computer 300 preferably also includes a tape backup 392
coupled to bus 395 using a conventional interface, such as
SCSI. Bus 395 can include a conventional high-speed bus such
as 100 MHz, 32-bit bus, coupling CPU 320 and memory 330 and
one or more buses that may be of a different speed, such as
SCSI, PCI and AGP coupling CPU 360 to hard disk 380, network
interface 375, and, as desired, other hardware in server
computer 300.

Hard disk 380 includes magnetically recorded indicia of
files, encoded and retrieved under control of CPU 360. Hard
disk 380 includes indicia of a first archive file 382 named
“file 1 arc” which includes a copy of file 342 as it was
last archived. Hard disk 380 also includes indicia of a
second archive file 384 named “file 2 arc,” which includes a
copy of file 344 as it was last archived. If information is
lost from file 342 or 344 on client computer 100, the last
archived version of the file can be restored onto the same
computer or a different computer from archive file 382 or
384, respectively.

When using byte differencing in an exemplary method of
the invention, the £file being backed wup, "file 1", is
compared with its archived version, "file 1 arc". The byte

differencing engine is called to generate both forward

10

15

20

25

30

WO 01/65371 PCT/US01/06820

12

deltas and backward deltas. A forward delta is from “file 1
arc” to “file 1” and a backward delta from “file 1” to “file
1 arc”. Both the forward and backward deltas are transmitted
to the server for archiving. The server has copy of “file 1
arc” as well as N backward deltas that would enable it to
reproduce the N previous versions of "file 1". When the
backup package containing the forward and backward deltas
for "file 1", the server applies the forward delta to its
copy of “file 1 arc” to generate an up-to-date copy of "file
1". The server renames this copy of “file 1” to “file 1 arc”
and replaces the previous copy of “file 1 arc”. The server
also stores the backward delta that the server receives. At
some subsequent point in time, the client requests from the
server a restore of “file 1” that is M revisions old, where
M is less than or equal to N. The server sends the client
the M most recent back deltas for "file 1". Upon receipt of
the back deltas, the client applies these back deltas in
succession, newest to oldest, to its local copy of “file 1
arc”, thereby recreating a copy of “file 1” that is M
revisions old. 4

When CPU 320 of client computer 100 conveys indicia to
gserver 300, network interface 350 transmits information to
network interface 375 wvia network 200 using a conventional
network protocol, such as TCP/IP. Suitable networks for
conveying indicia of from a client computer to a server
computer according to +various aspects of the present
invention include direct cable connection (DCC), Universal
Serial Bus (UsB) , "sneakernet", which 1s the manual
transmission of data on storage media, Ethernet, Appletalk,
the Internet, and combinations of these.

To facilitate archiving of files 342 and 344, CPU 360

executes software from memory 370 that implements functions

10

15

20

25

30

WO 01/65371 PCT/US01/06820

13

of a file archiving system (not shown). Any file archiving
system can be employed that suitably modifies files
responsive to information about the modifications to be
made. Preferably, a file archiving system includes
specialized software for server-side file archiving such as
LIFEGUARD marketed by Computer Associates, Inc. having a
division headquarters at Islandia, NY. CPU 320
conventionally loads the software from hard disk 340 into
memory 330 by carrying out functions of a disk operating
system such as WINDOWS NT or Linux. CPU 360 controls network
interface 375 to convey the indicia from client computer 100
to hard disk 380.

FIGURE 4 illustrates an archive system 400 on the
client computer 100 in one embodiment of the invention.
Referring to FIGURE 4, archives files of a file set 402,
conveying indicia of differences between the files and
includes various functional blocks that can be implemented
by software running on client computer 100 or any other
suitable client computer. Functional blocks suitable for
software implementation include a comparison subsystem 410,
an operating system 430, and, in variations, a condition
analysis subsystem 442 within a selection subsystem 440.

Comparison subsystem 410 includes a first comparator
412 and a second comparator 420. Comparator 412 uses the
first comparison method to provide indicia of data words
that are different between each file in a data store, file
gset 402, and archives of those files, which can reside on
server 300. Comparator 420 uses a second comparison method
to provide indicia of blocks of data words that are
different between each file in set 402 and their archives.
Selection of comparator 412 or comparator 414 can be made by

user control and user interface subsystem 444 and/or, as

10

15

20

25

30

WO 01/65371 PCT/US01/06820

14

indicated schematically by switch 443, by condition analysis
subsystem 442.

Comparison subsystem 410 can include comparators in
addition to comparators 412 and 420. For example, a
comparator can be specifically configured for archiving of
files generated by a conventional e-mail/contact manager
gsoftware. An example of such software is MICROSOFT OUTLOOK
97, which generates a single large file for storage of
personal contact information, e-mails sent' and received,
etc. Records within such a file have field headings that are
proprietary to the software generating the file. These field
headings can be used to partition the file into blocks.

One comparator variation that may be suitable for e-
mail/contact manager software files extracts field headings
of the file to be archived and compares the field headings
to a set of field headings from the file as it was last
archived. The comparator generates indicia of any portions
of the file that corresponds to new field headings, such as
blocks of data words beginning with field headings not
present in the file as it was last archived.

Comparator 412 is a byte differencing engine because it
generates indicia of differences between individual bytes,
16-bit words and other variations. Comparator 412 includes a
data store 414 of copies of files as they were last
archived, a selector/decompressor 416, a compressor 417, and
a data word comparator 418. Data store 414 on a suitable
storage medium, such as hard disk 340 of client computer 100
and stores the copies in compressed format, such as by using
the Lempel-Ziv algorithm.

When updating the archive of a particular file from set
402, selector/decompressor 416 selects the corresponding

copy of the file from data store 414, and converts the copy

10

15

20

25

30

WO 01/65371 PCT/US01/06820

15

to uncompressed format. In variations where the benefits of
compression are not required, selector/decompressor 416 can
perform just a selection function. Data word comparator 418
compares the file from set 402 with the uncompressed copy of
the file provided by selector/decompressor 416 to generate
indicia of differences between the file and its archive,
which resides on server 300. The copy of the file in data
store 414 matches what is in the archive on server 300 to
allow this comparison to be performed without requiring the
entire contents of the archive file to be conveyed across
network 200.

Functions of comparator 412 may be implemented by
conventional revision control software such as RCE API
version 2.0 marketed by XCC Software Technology Transfer
GmbH. Software implementing system 400 can load a dynamic
link library (DLL) that provides an interface to the RCE API
software. Comparator 412 is then executed by making function
calls using the loaded DLL.

A server computer may be protected from unexpected
failure of a differencing engine by starting up a separate
process on the server computer to perform the actual
function call to the DLL for the desired differencing
engine. An advantage of this approach is that the master
server process 1s protected from unexpected failure in the
differencing engine. If the differencing engine fails, the
separate process that made the call to the differencing
engine may also fail, but the master server process is
unaffected. This allows the server to continue servicing
requests made by other clients.

Comparator 420 is a block differencing engine because
it generates indicia of differences between blocks of data

words, such as 512-byte segments. Comparator 420 includes a

10

15

20

25

30

WO 01/65371 PCT/US01/06820

16

data store 422 of token sets, a segmenter 426, a token
generator 428, and a comparator 424. Tokens in data store
422 are statistically representative of files of data store
402 as they were last archived. When updating the archive of
a particular file from set 402, segmenter 426 partitions the
file into a plurality of blocks that, if combined, would
reconstruct the file. For example, segmenter 26 may
logically segment the file during the course of processing.

Token generator 428 generates tokens that are
statistically representative of each block. Comparator 424
compares token sets from data store 422 to tokens from token
generator from 428 and generates indicia of any differences
between the file and its last archived based on differences
between the tokens. Because each token is representative of
a block of data words, comparator 424 generates indicia of
one Dblock having different data words for each token
mismatch.

Comparators 412 and 420 have respective advantages. By
providing a selection between comparators 412 1in 420, a
system according to various aspects of the present invention
permits optimization of wvarious conditions during archiving
of files. For example, comparator 412 and the first
comparison method it employs has an advantage of, inter
alia, relatively compact indicia of differences between the
file and its 1last archived. Only the byte differences
between the file and archive need to be conveyed. Comparator
420 and the second comparison method it employs has an
advantage of, inter alia, relatively compact storage on a
client computer of information about the last file as last
archived. For archiving of any given files in 402, token
sets in data store 422 require considerably 1less storage

capacity than copies of the files in data store 414.

10

15

20

25

30

WO 01/65371 PCT/US01/06820

17

Comparators and their respective comparison methods can be
selected in view of the above considerations.

A token set includes a plurality of tokens, each token
being representative of a particular block of a file. A
token according to various aspects of the print invention
includes any data value that i1s statistically representative
of a block of data. For example, tokens in token sets of
data store 422 are cyclic redundancy code (CRC) values, such
as 32-bit CRC values, that provide statistical information
about respective blocks of a file from files at file set
402, as last archived. CRCs are uniquely determined, such as
by using 32-bit wvalues, based on both the magnitude of data
values as well as their relative positions.

Simple tokens such as checksums can also be wused,
although such simpler tokens incur the risk of ignoring
differences between a file and its archive. An exclusive-or
(XOR) operation can also be employed during comparison. For
example, a system may compare an updated file to an earlier
file by comparing the XOR and CRC products of segments in
the updated file to the XOR and CRC products in a token
table. Other conventional differencing systems and methods
may be employed advanéageously in various configurations
accoxrding to aspects of the present invention.

FIGURE 5 18 a flow diagram illustrating an exemplary
method for updating an archive of a file. Referring to
FIGURE 5, the method can be implemented using user selection
of a comparison method or automatic comparison method
selection. Input data/process elements of the method
relevant to user selection are designated with a dashed box
labeled ™“A”. Input data/process elements of the method
relevant to automatic selection are designated with a dashed

box labeled “B”. Process 504 sends information to prompt a

10

15

20

25

30

WO 01/65371 PCT/US01/06820

18

user and receives selection input from the user. A suitable
dialog box that may be displayed by process 504 is
illustrated in FIGURE 2. When automatic selection 1is
employed, process 502 receives information about one or more
conditions indicative of a preferable one of the comparison
methods to employ.

Process 504 activates one. comparison method based on
either user input or control output from process 502. When
byte differencing, employed by comparator 412 of system 400,
is selected, process 520 selects a copy‘511 of file 509 and
decompresses the copy. As discussed above, compression is
optional, as are various other processes within the methods
of the invention. Process 508 then compares data words from
copy 511 with data words from file 509 and provides indicia
513 of differences between them. Indicia 513 is communicated
to process 518, which is typically carried out on server
300. Communication of indicia 513 to process 518, when
performed on a server computer, 1is indicated by network
connection 200. Processes 1llustrated in FIG. 5 other than
process 518 are carried out on a client computer.

Process 510 updates copy 511 of file 509 so that copy
511 is the same as file 509 in the significant information
represented therein. Then further updates to file 509 can be
archived by repeating the processes of FIGURE 5. Multiple
copies of file 509 in various stages of revision can be kept

on the local computer to make it faster and more convenient

- to backup to previous revisions. No network connection is

required for access to such copies.

When block differencing, employed by comparator 414 of
system 400 is selected, process 506 segments or partitions
file 509 into blocks, such as 512-byte portions of file 5009.

Process 512 then computes tokens, such as 32-bit CRCs, for

10

15

20

25

30

WO 01/65371 PCT/US01/06820

19

each of the blocks to provide a first token set 515. Process
514 compares tokens of the first token set 515 to respective
tokens of a second token set 507. The tokens of second token
set 507 are tokens derived by processes 506 and 512 during
previous archiving of previous versions of file 509. Process
514 compares the respective tokens to determine differences
between blocks of file 509 and its last archived version, as
statistically represented by second token set 507. Process
514 provides indicia 513 of differences between file 509 and
that archived version, which are communicated to process 518
as discussed above.

Process 516 updates second token set 507 with first
token set 515. Further updates to file 509 can be archived
by repeating the processes of FIGURE 5 using updated. token
set 507.

Process 518 wupdates an archive 517 of file 509,
preferably on a server computer that may be physically
separated in a different building, city, or even a different
continent from the client computer on which £file 509
resides. Process 518 can maintain a single version of file
509, such as a single-file archive, and be oriented to
maintain a desired number of archived versions. Providing a
plurality of archived versions can be advantageous because a
user can go back to a document revigion or hard disk
configuration that proves to be better than the most current
version. Such functionality can be used in cooperation with
conventional backup software such as that disclosed in U.S.
Patent Number 6,016,553.

FIGURES 6-9 illustrate an exemplary method for updating
an archive of the computer file. Referring to FIGURE 6,
method 1000 begins at process 1010, where differencing DLLs

are loaded if available. Then process 1020 retrieves backup

10

15

20

25

30

WO 01/65371 PCT/US01/06820

20

set definition from local file. Then process 1030 traverses
directories and evaluates files per backup set definition.
The process flow procedure moves to decision step 1035.

Decision step 1035 determines whether the current file
is to be backed up. If yes then process flow proceeds to
process 1040. Process 1040 determines differencing method to
be used. Process 1040 1is explained in more detail in
association with FIGURE 10. The process flow procedure then
moves to decision step 1050. Decision step 1050 decides
whether to use byte differencing engine. If so, then process
flow proceed to continuation method 1500, as indicated by
circle Al. If not, then process flow proceed to continuation
method 2000, as indicated by circle Bl.

In continuation method 1500 illustrated in FIGURE 7,
the process flow continues at process 1510, which opens
database for file and gets the ID of the last revision. Then
process 1520 decompresses last revision. Then process 1530
creates backward delta by calling suitable subroutines. Then
process 1540 creates forward delta by calling suitable
subroutines. Then process 1550 compresses the new file.
Then process flow proceeds to continuation method 2000, as
indicated by circle A2.

In the continuation of method 1500 illustrated in
FIGURE 8, the process flow continues at 1560, which creates
new database for file. Then process 1570 writes header info
to database. Then process 1580 copies compressed new file to
the database. Then process 1590 adds new back delta to the
database. Then process 1600 copies each back delta from the
old database to new database. Then 1610 adds version history
to the new database.

Continuation method 2000 is illustrated in FIGURE O9.
At step 2010, block statistics for this file are retrieved

10

15

20

25

30

WO 01/65371 PCT/US01/06820

21

from the block database file. Then, at decisional step
2030, method 2000 determines whether the statistics for the
file exist. If the statistics do not exist then a baseline
backup is being performed and the no branch of decisional
step 2030 leads to step 2020.

At step 2020, the file is locked and a compressed copy
of the file is created. Proceeding to step 2050, method
2000 computes Dblock statistics for the entire £file.
Returning to decisional step 2030, 1f the statistices do
exists, then the yes branch of decisional step 2030 leads to
step 2040. At step 2040, method 2000 computes a delta
between the current Dblock statistics and the block
statistics retrieved from the block database. Then, at step
2060, the block statistics for this file are added to the
block database file. Next, at step 2070, the source file is
unlocked.

FIGURE 10 is a flowchart illustrating a method for
determining a differencing method to be used. Method 3000
begins at decisional step 3010 where method 3000 determines
whether both the byte difference engine and the block
difference engine are unavailable. If both engines are
unavailable, then the yes branch of decisional step 3010
lead to step 3020. At step 3020 an error is returned. If
either or both engines are available, then the yes branch of
decisional step 3010 leads to decisional step 3030.

At decisional step 3030, method 3000 determines whether
the block difference engine is unavailable. If the block
difference engine is unavailable, then the yes branch of
decisional step 3030 leads to step 3040. At step 3040,
method 3000 uses the byte difference engine. If the block
difference engine is available, then the no branch of

decisional step 3030 leads to decisional step 3050. At

10

15

20

25

WO 01/65371 PCT/US01/06820

22

- decisgional step 3050, method 300 determines whether the byte

difference engine is unavailable. If the byte difference
engine is unavailable, then the yes branch of decisional
step 3050 leads to step 3060. At step 3060, method 3000
uses the block difference engine. If the byte difference
engine is available, then the no branch of decisional step
3050 leads to step 3070.

At step 3070, method 3000 determines the past delta
method. Next, at decisional step 3080, method 3000
determines whether method 3000 is able to determine the past
differencing method. If method 3000 is able to determine
the past difference method, then the vyes Dbranch of
decigional step 3080 leads to step 3090. At step 3090,
method 3000 uses the past differencing method. If method
3000 is unable to determine the past differencing method,
then the no branch of decisional step 3080 leads to step
3095. At step 3095, method 3000 uses the differencing
method specified in the backup set.

While the present invention has been described in terms
of preferred embodiments and generally associated methods,
alterations and permutations of the preferred embodiments
and method will be apparent to those skilled in the art.
Accordingly, the above description of preferred exemplary
embodiments does not define or constrain the present
invention.

Other changes, substitutions, and alterations are also
possible without departing from the spirit and scope of the

present invention, as defined by the following claims.

10

15

20

25

WO 01/65371 PCT/US01/06820

23

WHAT IS CLAIMED IS:

1. A method for updating an archive of a file to
reflect changes made to the file, the method comprising:
selecting one of a plurality of comparison methods as a
preferred comparison method, the plurality of comparison
methods comprising:
a first comparison method wherein a file is
compared to an archive of the file; and
a second comparison method wherein a first set of
tokens statistically representative of the file 1is
computed and compared to a second set of tokens
statistically representative of the archive of the
file; and
carrying out the preferred comparison method to
generate indicia of differences between the £file and the

archive of the file for updating the archive of the file.

2. The method of Claim 1, wherein the file 1is
regident on a client computer, the archive of the file is
resident on a server computer and the file is compared to a
copy of the archive of the file resident on the client
computer in the first comparison method, the method further
comprising conveying the indicia of differences from the
client computer to the server computer for updating the

archive of the file.

10

15

20

25

30

WO 01/65371 PCT/US01/06820

24

3. The method of Claim 1, wherein the indicia of
differences comprises:

any data words that are different between the file and
the archive of the file when the preferred comparison method
comprises the first comparison method; and

any blocks of data words that are different between the
file and the archive of the file when the preferred

comparison method comprises the second comparison method.

4, The method of Claim 2, further comprising:

prompting a user to select one of a first condition and
a second condition as a selected condition for optimization
in updating the archive of the file; and

selecting the preferred comparison method such that the

selected condition is optimized.

5. The method of Claim 4, wherein:

the first condition is efficient use of data storage on
the client computer; and

the second condition is efficient conveying of indicia
of differences from the client computer to the server

computer.

6. The method of Claim 2, wherein selecting the
preferred comparison method comprises:

analyzing one or more conditions indicative of the
preferred comparison method; and

selecting the preferred comparison method responsive to

the conditions.

10

15

20

25

30

WO 01/65371 PCT/US01/06820

25

7. The method of Claim 6, wherein one of the
conditions is a bandwidth of a network connecting the client

computer to the server computer.

8. The method of Claim 6, wherein one of the

conditions is a size of the file.

9. The method of Claim 6, wherein one of the

conditions is a type of the file.

10. The method of Claim 2, wherein:

the copy of the archive of the file is fesident on the
client computer in a compressed form; and

the first comparison method comprises decompressing the
copy of the archive of the file to generate a decompressed
copy of the archive of the file and comparing each byte of
the file to a corresponding byte of the decompressed copy of

the archive of the file.

11. The method of Claim 1, wherein:

the second set of tokens is resident on a client
computer;

the archive of the file 1is resident on a server
computer; and

the second comparison method comprises partitioning the
file into a plurality of blocks, computing the first set of
tokens statistically representative of the file by computing
a cyclic redundancy code (CRC) value for each one of the
plurality of blocks, and comparing each one of the first set

of tokens to a respective one of the second set of tokens.

10

15

20

25

WO 01/65371 PCT/US01/06820

26

12. The method of Claim 2, further comprising
providing a network connection between the client computer

and the server computer.

13. The method of Claim 12, wherein the network

connection comprises the Internet.

14. The method of Claim 13, wherein the client

computer is a portable computer.

15. A sgystem for wupdating an archive of a file to
reflect changes made to the file, the system comprising:
a comparison subsystem including:

a first comparator that, in operation, compares a
file to a copy of an archive of the file, the copy of
the archive of the £file being resident on a client
computer; and

a second comparator that, in operation, computes a
first set of tokens statistically representative of the
file and compares the first set of tokens to a second
set of tokens statistically representative of the
archive of the file on a server computer, the second
set of tokens being resident on the client computer;
and
a selection subsystem for activating a preferred one of

the first comparator and the second comparator to generate
indicia of differences between the file and the archive of

the file.

10°

15

20

25

30

WO 01/65371 PCT/US01/06820

27

16. The system of Claim 15, wherein the £file 1is
resident on the «client computer, the system further
comprising a network interface responsive to the indicia of
differences and configured to be coupled to the server
computer to convey the indicia of differences £from the

client computer to the server computer.

17. The system of Claim 15, wherein:

the copy of the archive of the file is resident on the
client computer in a compressed form; and

the first comparator, in operation, decompresses the
copy of the archive of the file to generate a decompressed
copy and compares each byte of the file to a corresponding

byte of the decompressed copy.

18. The system of Claim 15, wherein the second
comparator, 1in operation, partitions the file into a
plurality of blocks, computes the first set of tokens of the
file by computing a cyclic redundancy code (CRC) value for
each one of the plurality of blocks and compares each one of
the first set of tokens to a respective one of the second

set of tokens.

19. The sgystem of Claim 15, wherein the selection
subsystem comprises a user interface for prompting a user to
select one of a first condition and a second condition as a
selected condition, the selection subsystem selecting the
preferred one of the first comparator and the second

comparator such that the second condition is optimized.

10

i5

WO 01/65371 PCT/US01/06820

28

20. The system of Claim 16, wherein the selection
subsystem includes a condition analysis subsystem responsive
to one or more conditions indicative of the preferred one of
the first and second comparators to select as the preferred

one of the comparators.

21. The system of Claim 20, wherein one of the
conditions is a bandwidth of a network connecting the client

computer to the server computer.

22. The system of Claim 20, wherein one of the

conditions is a size of the file.

23. The system of Claim 20, wherein one of the

conditions is a type of the file.

10

15

20

25

30

WO 01/65371 PCT/US01/06820

29

24. A method for file archiving comprising:

selecting a selected comparison method for comparison
between a first file and an associated second file based on
at least one condition, wherein the selected comparison is
selected from a first comparison method and a second
comparison method;

wherein the first comparison method comprises comparing
at least one byte associated with the first file to at least
one respective byte associated with the second file;

wherein the second comparison method comprises
comparing a first set of statistics associated with the
first file‘to a second set of statistics associated with the
second file;

generating at least one indicia of difference based on
the first file, the second file and the selected comparison
method; and

providing the indicia of differences for updating the

first file based on the indicia of differences.

25. The method of Claim 24, wherein the first file

comprises an archive of the second file.

26. The method of Claim 24, wherein the first set of
statistics comprises at least one first token associated
with the first file and wherein the second set of statistics
comprises at least one second token associated with the

second file.

27. The method of Claim 26, wherein the first token
comprises a cyclic redundancy code (CRC) about a block of

data.

10

15

20

25

WO 01/65371 PCT/US01/06820

30

28. The method of Claim 27, wherein the block of data

compriges a 512-byte segment of data.

29. The method of Claim 24, wherein generating the
indicia of difference comprises:

generating a forward delta from the second file to the
first file when the selected comparison method comprises the
first comparison method; and

generating a backward delta from the first file to the
second file when the selected comparison method comprises

the first comparison method.

30. The method of Claim 29 and further comprising:
applying the forward delta to the first file; and
storing the backward delta.

31. The method according to Claim 29, wherein the
forward delta comprises data usable to generate the second

file from the first file.

32. The method according to Claim 24 and further
comprising:
storing the first file on a server computer; and

storing the second file on a client computer.

10

15

20

25

30

WO 01/65371 PCT/US01/06820

31

33. The method according to Claim 24, wherein
generating the indicia of difference comprises:

generating indicia of at least one data words that are
different between the first file and the second file when
the selected comparison method comprises the first
comparison method; and

generating indicia of at least one block of data words
that are different between the first file and the second
file when the selected comparison method comprises the

second comparison method.

34. The method according to Claim 24, wherein
selecting the selected comparison method comprises receiving
a selection of a condition to optimize and selecting the
selected comparison method based on the condition from a

user.

35. The method according to Claim 24, wherein
gselecting the selected comparison method comprises
determining a previous comparison method associated with the

first file.

36. The method according to Claim 24, wherein
selecting the selected comparison method comprises
determining whether to minimize local storage or to minimize

transfer time.

37. The method according to Claim 24, wherein
selecting the selected comparison method comprises:

analyzing the conditions; and

automatically selecting the selected comparison method

based on the conditions.

10

WO 01/65371

38.

condition

39.

condition

40.

condition

41.

first and

PCT/US01/06820

32

The method according to Claim 37, wherein the

comprises a size of the second file.

The method according to Claim 37, wherein the

comprises a type associated with the second file.

The method according to Claim 37, wherein the

comprises bandwidth of a network connection.

The method according to Claim 24, wherein the

second files are compressed.

10

15

20

25

30

WO 01/65371 PCT/US01/06820

33

42. A gystem for file archiving comprising:
software on a storage medium; and
the software upon execution operable to:

select a selected comparison method for comparison
between a first file and an associated second file
based on at least one condition, wherein the selected
comparison is selected from a first comparison method
and second comparison method;

wherein the first comparison method comprises
comparing at least one byte associated with the first
file to at least one respective byte associated with
the second file;

wherein the second comparison method comprises
comparing a first set of statistics associated with the
first file to a second set of statistics associated
with the second file;

generate at least one indicia of difference based
on the first file, the second file and the selected
comparison method; and

provide the indicia of difference for update of

the first file.

43. The system of Claim 42, wherein the first file

comprises an archive of the second file.

44, The system of Claim 42, wherein the first set of
statistics comprises at least one first token associated
with the first file and wherein the second set of statistics
comprises at least one second token associated with the

second file.

10

15

20

25

30

WO 01/65371 PCT/US01/06820

34

45, The system of Claim 44, wherein the first token
comprises a cyclic redundancy code (CRC) about a block of

data.

46. The system of Claim 45, wherein the block of data

comprises a 512-byte segment of data.

47. The system of Claim 42, wherein the software is
further operable to:

generate a forward delta from the second file to the
first file when the selected comparison method comprises the
first comparison method; and

generate a backward delta from the first file to the
second file when the selected comparison method comprises

the first comparison method.

48. The system of Claim 47, wherein the software is
further operable to:

apply the forward delta to the first file; and

store the backward delta. ‘

49. The system according to Claim 47, wherein the
forward delta comprises data usable to generate the second

file from the first file.

50. The system according to Claim 47, wherein the
software is further operable to:
store the first file on a server computer; and

store the second file on a client computer.

10

15

20

25

30

WO 01/65371 PCT/US01/06820

35

51. The system according to Claim 42, wherein the
software is further operable to:

generate indicia of at least one data words that are
different between the first file and the second file when
the selected <comparison method comprises the first
comparison method; and

generate indicia of at least one block of data words
that are different between the first file and the second
file when the selected comparison method comprises the

second comparison method.

52. The system according to Claim 42, wherein the
software is further operable to select the selected
comparison method based on a selection of a condition to

optimize from a user.

53. The system according to Claim 42, wherein the
software is further operable to select the selected
comparison method based on a previous comparison method

associated with the first file.

54, The system according to Claim 42, wherein the
software is further operable to select the selected
comparison method based on minimizing one of a local storage

and a transfer time for file archiving.

55. The system according to Claim 42, wherein the
software is further operable to:

analyze the conditions; and

select the selected comparison method based on the

conditions.

10

15

20

25

30

WO 01/65371 PCT/US01/06820

36

56. The system according to Claim 55, wherein the

condition comprises a size of the second file.

57. The system according to Claim 55, wherein the

condition comprises a type associated with the second file.

58. The system according to Claim 55, wherein the

condition comprises bandwidth of a network connection.

59. The system according to Claim 42, wherein the

first and second files are compressed.

60. A system for file archiving comprising:

means for selecting a selected comparison method for
comparison between a first file and an associated second
file based on at least one condition, wherein the selected
comparison 1s selected from a first comparison means and
second comparison means;

| the first comparison means for comparing at least one

byte associated with the first file to at least one byte
associated with the second file;

the second comparison means for comparing a first set
of statistics associated with the first file to a second set
of statistics associated with the second file;

means for generating at least one indicia of difference
based on the first file, the second file and the selected
comparison means; and

means for providing the indicia -of difference for

updating the first file.

61. The system of Claim 60, wherein the £first £file

compriges an archive of the second file.

10

15

20

25

30

WO 01/65371 PCT/US01/06820

37

62. The system of Claim 60, wherein the first set of
statistics comprises at least one first token associated
with the first file and wherein the second set of statistics
comprises at least one second token associated with the

second file.

63. The gystem of Claim 24, wherein generating the
indicia of difference comprises:

means for generating a forward delta from the second
file to the first file when the selected comparison method
comprises the first comparison metHod; and

means for generating a backward delta from the first
file to the second file when the selected comparison method

comprises the first comparison method.

64. The system of Claim 63 and further comprising:
means for applying the forward delta to the first file;
and

means for storing the backward delta.

65. The sgsystem according to Claim 63, wherein the
forward delta comprises data usable to generate the second

file from the first file.

66. The system according to. Claim 60, wherein
selecting the selected comparison method comprises:

means for analyzing the conditions; and

means for automatically selecting the selected

comparison method based on the conditions.

10

15

20

25

WO 01/65371 PCT/US01/06820

38

67. The system according to Claim 66, wherein the

condition comprises a size of the second file.

68. The system according to Claim 66, wherein the

condition comprises a type associated with the second file.

69. A system for updating a remote archive of a
locally stored file, comprising:

a byte differencing engine operable to generate a first
indicia of differences between individual bytes of a current
version of a file and a local copy of an archive of the
file;

a block differencing engine operable to generate a
current token set based on the current version of the file
and an archive token set based on the archive of the file
and to generate a second indicia of differences between the
current version and the archive version based on the current
token set and the archive token set; 4

| a user interface operable to prompt a user for a
gselection of one of an efficient data storage condition and
an efficient transmission condition for optimizing an update
of the archive of the file; and

a selector operable to automatically select based on
the selection of the user of a preferred one of the byte
differencing engine and the block differencing engine to
generate the respective one of the first and second indicia

of differences.

WO 01/65371 PCT/US01/06820

39

70. A method for wupdating an archive of a fiie,
comprising:

selecting one of a byte differencing engine and a block
differencing engine; and

generating indicia of differences between a file and an
archive of the file using a selected one of the differencing

engines for updating the archive of the file.

WO 01/65371

PCT/US01/06820

1/7

300
ha

2 TR

A

A

— Z

zZ Z

200 Z Z
Z Z

Z Z

zZ z

\\:\

FIG. 2)

Backup Set Editor

Modify Backup Set — Backup Method and Revisions SetName.doc

—Backup Method

When “Minimize transfer time” is
selected Lifeguard can store
revisions of your files locally for on—
board restore. It may take less time to
send the backup data to the server,
but the comparison process is slower.
112 '

6 Minimize local storage

— Server Revisions

When “Use server revision setting” is
selected, the number of revisions for
files in this backup set is limited by
the Lifeguard Server.

142

éUse server revision setting

No local revisions 116 n
(2 Minimize transfer time / Qlelted to}20 117146
" Local revision limit: |1 @ 144
/ -

120

140 ||< Back]| Next > || Cancel Help

WO 01/65371

PCT/US01/06820

INTERFACE

USER

MEMORY

I

!

HARD DISK
FILE 1

COPY FILE 1

FILE 2

e~—~——

" 345 TOKENS FILE 2

NETWORK
INTERFACE

MEMORY

NETWORK
INTERFACE

/
370

ﬁ 395
/

ﬁ \
355

™-350

!

I

USER
INTERFACE

TAPE
BACK-UP

\
390

\
392

WO 01/65371

3/7

PCT/US01/06820

400
\ 410~ COMPARISON SUBSYSTEM
44§) Of FIRST COMPARATOR
e q SELECTOR |16
| [USER |-444 i A DECOMPRESSOR
|| INTERFACE 443
| SUBSYSTEMiL\': | 414 COMPRESSOR [«
: | 417 -1
| | CONDITION _f |
it |l Ep o
| | —~ COMPARATOR
L 2
PR
= 412 4/20
402
S SECOND COMPARATOR
422 424
FILE ;
SET
TOKEN [COMPARATOR
SETs [F
| [ToKeN
SEGMENTER [ooy oo
\ \
426 428

INDICIA OF DIFFERENCES

WO 01/65371 PCT/US01/06820

4/7
520 FIG. &5 '5/00
SELECT AND
511 DECOMPRESS 508
\ COPY OF FILF
COPY OF
COMPARE
FILE DATA WORDS | '
509 UPDATE INDICIA OF f~913
) COPY DIFFERENCES
210 BETWEEN FILE
FILE AND ARCHIVE
SEGMENT COMPUTE
FILE INTO TOKENS FOR
507 BLOCKS BLOCKS
N 506 | 512
SECOND FIRST |-915
TOKEN TOKEN
SET SET
A
Y
COMPARE
TOKrENi<
Y 514
7 UPDATE
TOKEN SET
|— ——————— /‘/—\\
l ACTIVATE
- USER PROMFT ONE COMPARISON N_54 516
| USER INPUT METHOD
L e — —
e
l AUTOMATIC
B—| CONDITIONS—=(COMPARISON METHOD 502
| SELECTIONS

UPDATE
ARCHIVE OF
FILE

ARCHIVE
OF FILE

)
517

WO 01/65371

0 FIG. 6

(BACKUP BEGINS)

1010~ DIFFERENCING DLLs ARE
LOADED IF AVAILABLE

!

BACKUP SET DEFINITION
IS RETRIEVED
FROM local.file

1020~

Y

DIRECTORIES ARE
TRAVERSED AND FILES
ARE EVALUATED PER

BACKUP SET DEFINITION

1030~

IS
CURRENT FILE
TO BE BACKED

UpP?
1035 YYre

DETERMINE DIFFERENCING
METHOD TO BE USED

1040

USE
BYTE DIFFERENCING
ENGINE?

T0 FIG. 7

g

TO FIG. 9

5/7

PCT/US01/06820

FIG. 7
FROM FIG. 6 2/500
OPEN DATABASE FOR FILE
AND GET THE ID OF THE 1510
LAST REVISION
DECOMPRESS LAST | ~1520°
REVISION
!
CREATE BACKWARD DELTA |~1930
'
CREATE FORWARD DELTA |_154¢
A |
COMPRESS THE NEW FILE 1550

TO FIG. 8

WO 01/65371 PCT/US01/06820

6/7
FIG. 8

FROM FIG. 7 1200

CREATE NEW _~ 1560
DATABASE FOR FILE

!

WRITE HEADER | ~1570
INFORMATION TO DATABASE

!

COPY COMPRESSED NEW | ~1580
FILE TO THE DATABASE

!

ADD NEW BACK
DELTA TO THE DATABASE [-1590

I FIG. 9

COPY EACH BACK DELTA FROM FIc. 6 2000
FROM OLD DATABASE N_1600 @ ,/
TO NEW DATABASE
!

ADD VERSION HISTORY
TO THE NEW DATABASE

2010 GET BLOCK STATS FOR
~-1610 N THIS FILE FROM BLOCK
DATABASE FILE

DO STATS
EXIST? (IF NOT, THIS
IS A BASELINE
BACKUP)

2020 NO
\

LOCK FILE AND CREATE
COMPRESSED COPY

Y
COMPUTE BLOCK STATS COMPUTE DELTA BETWEEN
FOR ENTIRE FILE CURRENT BLOCK STATS
/ AND STATS FROM

Y

ADD BLOCK STATS FOR
THIS FILE TO BLOCK
DATABASE FILE

'

UNLOCK SOURCE FILE

2060

2070~

WO 01/65371

PCT/US01/06820

7/7

FIG.

5010

ARE BOTH

THE BYTE DIFFERENCE

AND BLOCK DIFFERENCE

ENGINES UNAVAILABLE
?

3030

IS THE

BLOCK DIFFERENCE

ENGINE UNAVAILABLE
?

IS THE

BYTE DIFFERENCE

ENGINE UNAVAILABLE
?

10 3000

’/

YES

{

RETURN ERROR

|_~3020

YES

1

USE BYTE DIFFERENCE ENGINE

| ~3040

YES

{

USE BLOCK DIFFERENCE ENGINE

™-3060

DETERMINE PAST DELTA METHOD

3070~

ABLE TO
DETERMINE. PAST
DIFFERENCING
METHOD?

3080

NO

'

USE PAST
DIFFERENCING METHOD

30901

USE DIFFERENCING METHOD
SPECIFIED IN BACKUP SET

3095

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

