a2 United States Patent

Raman et al.

US011700277B2

US 11,700,277 B2
Jul. 11, 2023

(10) Patent No.:
45) Date of Patent:

(54)

(71)
(72)

(73)

")

@
(22)

(65)

(63)

(1)

(52)

(58)

PROVIDING ACCESS TO DATA IN A
SECURE COMMUNICATION

Applicant: SONICWALL INC., Milpitas, CA (US)

Inventors: Raj Raman, San Jose, CA (US);
Aleksandr Dubrovsky, Los Altos, CA

(US)
Assignee: SONICWALL INC., Milpitas, CA (US)
Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 17/166,773
Filed: Feb. 3, 2021

Prior Publication Data

US 2021/0234896 Al Jul. 29, 2021

Related U.S. Application Data

Continuation of application No. 15/851,108, filed on
Dec. 21, 2017, now Pat. No. 10,924,508.

Int. CL.

HO4L 29/06 (2006.01)

HO4L 9/40 (2022.01)

HO4W 12/04 (2021.01)

U.S. CL

CPC ... HO4L 63/166 (2013.01); HO4L 63/0435

(2013.01); HO4L 63/0442 (2013.01);
(Continued)

Field of Classification Search

CPC ..o HO4L 63/166; HO4L 63/0435; HO4L
63/0442; HO4L 63/061; HO4L 63/062;

HO4L 63/20
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

8,196,147 B1* 6/2012 Srinivasan HO4L 67/2842
719/310
8,949,569 B2* 2/2015 Benner GOGF 12/0891
711/118

(Continued)

OTHER PUBLICATIONS

Wu et al., “SCMFS: a file system for storage class memory”, SC
’11: Proceedings of 2011 International Conference for High Per-
formance Computing, Networking, Storage and Analysis, Nov.
2011.*

(Continued)

Primary Examiner — Morshed Mehedi
(74) Attorney, Agent, or Firm — Polsinelli LLP

(57) ABSTRACT

The present disclosure is directed to preventing computer
data from being usurped and exploited by individuals or
organizations with nefarious intent. Methods and systems
consistent with the present disclosure may store keys and
keying data for each of a plurality of connections in separate
memory locations. These memory locations may store data
that maps a virtual address to a physical memory address
associated with storing information relating to a secure
connection. These separate memory locations may have a
unique instance for each individual communication connec-
tion session, for example each transport layer security (TLS)
connection may be assigned memory via logical addresses
that are mapped to one or more physical memory addresses
on a per-core basis. Such architectures decouple actual
physical addresses that are used in conventional architec-
tures that assign a single large continuous physical memory
partition that may be accessed via commands that access
physical memory addresses directly.

20 Claims, 6 Drawing Sheets

‘ Identify that a new Secure Connection is belng Established ‘
105

‘ Request a new Handle to asseciated with the Secure Connection ‘

Receive information relating to the Handle request

Receive a secure packet associated with the Secure Connection

Provide the Handle to a st of code associated with Enabling the access
of physical memory that is associated with virtual address

Access info. associsted with the Handie and a Virtual Address for
accessing Information stored in a physical memory

Performing a DI on data included in the received packet

P
-

RS
-7 Isthe

N9 Secura Connsction ™~
L’ >

. being Terminated?
DN e
e
T Yes

i End Connection i
I 285 i

" Has T

-~ DPlidentifieda

Threat associated with T

T _the received packet?, P

T~ l40

S
Yes

{Parform a Corractive Action |

US 11,700,277 B2

Page 2
(52) US. CL 2012/0284702 Al 112012 Ganapathy
CPC ... HO4L 63/061 (2013.01); HO4L 63/062 2013/0219130 Al* 82013 Zefierman GOGF 15/167
2013.01); HO4L 63/20 (2013.01); HO4W 7117147
(); (12/04)2’013 01 2014/0331297 Al 112014 Innes et al.
(01) 2015/0046661 Al* 2/2015 Gathala GOG6F 12/023
711/147
(56) References Cited 2015/0113264 Al 4/2015 Wang et al.
2015/0341383 Al 11/2015 Reddy et al.
U.S. PATENT DOCUMENTS 2016/0028728 Al 1/2016 Hampel et al.
2017/0206035 Al* 7/2017 Kumar GOG6F 3/0656
9,055,064 B2 6/2015 Kumar et al. 2017/0300425 Al* 10/2017 Meredith GOGF 12/1027
9,348,751 B2* 5/2016 Van Dyke GOGF 12/0292 2017/0337133 Al 11/2017 Bolbenes et al.
10,210,092 BL1* 2/2019 Miaoccoeenne GO6F 12/0855 2019/0042120 Al* 2/2019 Kajigaya GOG6F 3/0625
10,924,508 B2 2/2021 Raman
2005/0033969 Al 2/2005 Kiiveri et al.
2005/0114688 Al 5/2005 Leis et al. OTHER PUBLICATIONS
2006/0041733 Al* 2/2006 Hyser GO6F 12/10
711/203 Kemper et al., “HyPer: A hybrid OLTP&OLAP main memory
2009/0177843 Al* 7/2009 Wallach GOG6F 12/0877 database system based on virtual memory snapshots”, IEEE 27th
. 711/131 International Conference on Data Engineering, Data of Conference:
2010/0235586 Al* 9/2010 Gonion GOGF 12/0831
711/146 Apr. 11-16.
2011/0161619 Al* 6/2011 Kaminski GOG6F 12/1027 USs. Appl No. 15/851,108 Final Office Action dated Sep 10, 2020.
711/E12.016 U.S. Appl. No. 15/851,108 Office Action dated Mar. 5, 2020.
2012/0089808 Al™* 4/2012 Jangcc.... GOG6F 12/1072
711/206 * cited by examiner

U.S. Patent Jul. 11, 2023 Sheet 1 of 6 US 11,700,277 B2

k4

Identify that a new Secure Connection is being Established
105

Request a new Handle to associated with the Secure Connection
110

v

Receive information relating to the Handle request
115

v

e

L

Receive a secure packet associated with the Secure Connection
120

kil

Provide the Handle to a set of code associated with Enabling the access
of physical memory that is associated with a virtual address
125

\id

Access info. associated with the Handle and a Virtual Address for
accessing information stored in a physical memory
130

k4

Performing a DPI on data included in the received packet

135
Y FlG.1
7 S~ " Has T
Is the e . . T
0.~ Y No_— DPI identified a .

g Secure Connection . P . . .
“_ being Terminated? .~ Threat associated with >
. & 150 7 "~ the received packet?

N e 140
i Yes 1 Yes
End Connection - Perform a Corrective Action

165 145

U.S. Patent Jul. 11, 2023 Sheet 2 of 6 US 11,700,277 B2

Allocating a processing core to receive packets associatied with a
Secure Connection
210

¥
Requesting a new Handle to associated with the Secure Connection via
an OpenSSL API
220

¥
Receiving information relating to the Handle request
230

¥
Providing the Handle in a request to a second API, where the entries in a
Secure Memory Vault are programmed based on the request to the
second API
240

k2
Receiving packets associated with the Secure Connection
250

g&
PN
~.

" Hasthe .
NO,,/“'/Secure Connection been ™.
e Terminated? 7

-
e s

-
. e
~u -
e -
. e
e — -

~ e

lj “Yes

Delete content related to the Secufe Connection stored in the Secure
Memory Vault
270

I

FIG. 2

U.S. Patent Jul. 11, 2023 Sheet 3 of 6 US 11,700,277 B2

k-4

Maintaining a set of information that Cross-References Handles to
Virtual Memory Addresses for a plurality of Secure Connections
310

~.
,,,,
e ~

Delete the contents of a Translation Memory associated with the
Secure Connection
330

¥

Allow a processing core previously associated with the Secure
Connection to be freed for other tasks
340

FIG. 3

U.S. Patent Jul. 11, 2023 Sheet 4 of 6 US 11,700,277 B2

Identifying a type of processing core
410

¥
Associating the type of processing core with
a TLB architecture
420

hid
Identifying a data structure to associate with
the TLB architecture based on the identified
type of processing core
430

\id
Prepare program code consistent with the
data structure and with the TLB architecture
for execution by the type of processing core
450

FIG. 4

U.S. Patent Jul. 11, 2023 Sheet 5 of 6 US 11,700,277 B2

Client Computer Client Computer
510 520
£ E A
Al i
Firewall
530

Processing Core 1
With

TLB Register set 1
540

Processing Core 2
With

TLB Register set 2
550

FIG.5

N

¥

Computer
560

U.S. Patent Jul. 11, 2023 Sheet 6 of 6 US 11,700,277 B2

600 ..
Network —~_ 695
Interface
610 ~— Processor Output devices [- 650
Input
620 —— Memory Devices 880
\\\\\\ Mass Display Syst .
630 Storage PR -
. Portable i
o - b SR Peripherals - 680
- 690

FIG. 6

US 11,700,277 B2

1
PROVIDING ACCESS TO DATA IN A
SECURE COMMUNICATION

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a continuation and claims the priority
benefit of U.S. patent application Ser. No. 15/851,108 filed
Dec. 21, 2017, now U.S. Pat. No. 10,924,508, the disclosure
of which is incorporated herein by reference.

BACKGROUND OF THE INVENTION
Field of Invention

The present disclosure generally relates to reducing the
ability of a hacker to exploit vulnerabilities of a computer
system. More specifically, the present disclosure relates to
preventing computer data from being usurped and exploited
by individuals or organizations with nefarious intent.

Description of the Related Art

One of the greatest threats to computer data security
relates to the fact that memory in a computer is often
partitioned as a single contagious block. One reason
memory is frequently partitioned as a single contiguous
block is exemplified by computing system, such as a proxy
or firewall needs to scale to control hundreds of thousands
of transport layer security (TLS) connections. Typically, the
memory where these session keys are stored is in a single
logical memory partition, such implementations are some-
times implemented in a system memory that may be a global
memory accessible by different processing cores or process-
ing sockets that may contain multiple processing cores. As
a packet in-flight traverses a firewall/proxy, the packet
pointer is typically handed off to different software modules,
like a transfer control protocol (TCP) module, deep packet
inspection-secure socket layer (DPI-SSL) module, deep
packet inspection (DPI) module, a content filtering module,
etc. Having a single system memory that is shared across
such modules and connection sessions simplifies the archi-
tecture of software programs that access such modules. Such
architectures also allow the processors of a computer system
to operate more efficiently as those processors may accesses
information relating to different connections directly with-
out having to invoke separate processes for each connection.

When such a partitioned computer memory includes
information (such as security keys, information that relates
to those security keys, and data that may related to secure
hypertext protocol (https) connection sessions) to access
data stored in that memory may be exploited if data relating
to one connection session is accessible to another connection
session. An infamous example of such an architectural
vulnerability is the “Heartbleed” virus that enabled an
attacker to eavesdrop on secure keys, keying material, and
sensitive data of multiple different https sessions. This
exploit caused memory to be leaked in a way that allowed
the attacker to obtain Keys and Keying material of multiple
different https connections/sessions.

A first method that may help prevent a hacker from
accessing memory associated with another connection ses-
sion could include assigning a different process for each
connection, thus, preventing information from a first con-
nection associated with a first process from accessing infor-
mation relating to a second process associated with a second
connection. This solution, however, introduces significant

10

15

20

25

30

35

40

45

50

55

60

65

2

latency and increases demands on processors that manage
these communication connection sessions. As such, by sim-
ply assigning different processes for each connection, a
computer would be quickly overwhelmed with administra-
tive tasks when managing hundreds of thousands of pro-
cesses associated with hundreds of thousands of different
connection sessions. This is especially true for a man-in-
the-middle proxy application in a firewall.

A second method that may help prevent a hacker from
accessing memory associated with another connection ses-
sion could include having a separate hardware security
module (HSM) that stores the session keys in a separate
hardware module or appliance. In such an instance, the HSM
could provide an interface for security applications to invoke
crypto operations that run on the HSM, thereby, isolating
information from one connection session from another con-
nection session. By isolating connections sessions in this
way prevents any particular connection from being accessed
by another connections session. While this may be a good
solution for multi-domain/multi-tenant cloud infrastructure
and Data Centers hosting multiple customer environments,
this solution introduces extra costs (the cost of a separate
appliance) and complexity that makes the deployment
impractical for most firewall and/or proxy deployments.
This solution is also not compatible with conventional
“run-to-completion” packet processing software architec-
tures that are a commonly found in many proxy/firewall
implementations today.

What are needed are new architectures that prevent a
hacker from accessing memory associated with different
processes or different connections at a computer system via
a design flaw or architectural vulnerability without compro-
mising performance or processor efficiency and without
increasing the total cost of operating a data center.

SUMMARY OF THE CLAIMED INVENTION

The presently claimed invention relates to a method, a
non-transitory computer readable storage medium, or a
system executing functions consistent with the present dis-
closure. A method consistent with the present disclosure
may receive an indication that a client device is initiating a
secure connection with a computing device. After the ini-
tiation of the secured connection has begun, a first packet
sent between the client device and the computing device via
the secure communication connection may be received, a
request to receive handle information associated with the
secure communication connection may be sent, and the
requested handle information may be received. Next a first
packet sent between the client device and the computing
device may be received via the secure communication
connection, session keys and secure keying material related
to the secure communication connection may be created, the
created session keys and the secure keying material may be
stored in a physical memory, where the created session keys
and keying material stored in the physical memory are
available to decrypt data included in subsequent data packets
associated with the secure communication connection. After
the session keys and keying material are stored in the
physical memory, a new packet to send to the destination
may be created from the data included in the first packet,
where the newly created packet secures the data included in
the first packet based at least in part on the created session
keys, and the newly created packet may be allowed to be
sent to a destination.

When the presently claimed invention is implemented as
a non-transitory computer readable storage medium by

US 11,700,277 B2

3

processors executing instructions out of memory may imple-
ment methods consistent with the present disclosure. Here
again the method consistent with the present disclosure may
receive an indication that a client device is initiating a secure
connection with a computing device. After the initiation of
the secured connection has begun, a first packet sent
between the client device and the computing device via the
secure communication connection may be received, a
request to receive handle information associated with the
secure communication connection may be sent, and the
requested handle information may be received. Next a first
packet sent between the client device and the computing
device may be received via the secure communication
connection, session keys and secure keying material related
to the secure communication connection may be created, the
created session keys and the secure keying material may be
stored in a physical memory, where the created session keys
and keying material stored in the physical memory are
available to decrypt data included in subsequent data packets
associated with the secure communication connection. After
the session keys and keying material are stored in the
physical memory, a new packet to send to the destination
may be created from the data included in the first packet,
where the newly created packet secures the data included in
the first packet based at least in part on the created session
keys, and the newly created packet may be allowed to be
sent to a destination.

A system consistent with the present disclosure may
include one or more memories, a plurality of processing
cores that execute instructions out of the one or more
memories, where each of the processing cores each are
associated with a particular data store of plurality of data
stores that store translation information. Each of these
discrete processing cores in the multi-core system may be
associated with one and only one data store that stores
translation information relating to a single secure connec-
tion. A first processing core of the plurality of processors
may receive an indication that a client device is initiating a
secure connection with a computing device. After the ini-
tiation of the secured connection has begun, a first packet
sent between the client device and the computing device via
the secure communication connection may be received, a
request to receive handle information associated with the
secure communication connection may be sent, and the
requested handle information may be received. Next a first
packet sent between the client device and the computing
device may be received via the secure communication
connection, session keys and secure keying material related
to the secure communication connection may be created, the
created session keys and the secure keying material may be
stored in a physical memory, where the created session keys
and keying material stored in the physical memory are
available to decrypt data included in subsequent data packets
associated with the secure communication connection. After
the session keys and keying material are stored in the
physical memory, a new packet to send to the destination
may be created from the data included in the first packet,
where the newly created packet secures the data included in
the first packet based at least in part on the created session
keys, and then the newly created packet may be allowed to
be sent to a destination.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an exemplary set of instructions that
may be performed at a firewall.

30

40

45

55

65

4

FIG. 2 illustrates a flow chart of program steps consistent
with the present disclosure.

FIG. 3 illustrates steps that may be performed by a
multi-processor system that receives packets from a plurality
of secure connections.

FIG. 4 illustrates a set of steps that may be performed
when program code is tuned to execute on a particular type
of processing core.

FIG. 5 illustrates a firewall communicating with client
device and with a computer.

FIG. 6 illustrates a computing system that may be used to
implement an embodiment of the present invention.

DETAILED DESCRIPTION

The present disclosure is directed to preventing computer
data from being usurped and exploited by individuals or
organizations with nefarious intent. Methods and systems
consistent with the present disclosure may store keys and
keying data for each of a plurality of connections in separate
memory locations. These memory locations are addressed
via virtual addresses in software that are transparently
mapped to physical addresses via a translation mapping that
is configured dynamically in a data store associated with a
current processing core. This data store is associated with
storing information relating to a secure connection. These
separate memory locations may have a unique instance for
each individual communication connection session, for
example, each transport layer security (TLS) connection
may be assigned memory via logical addresses that are
mapped to one or more physical memory addresses on a
per-core basis. Such architectures create separate physical
memory partitions that can only be accessed using logical
addresses in the current core that is running in the context of
a connection to which this physical memory belongs to,
unlike a conventional architecture where the process using
logical addresses on any core can access all or most of the
physical memory available including memory associated
with other connections..

Methods and systems consistent with the present disclo-
sure may use a handle to access physical memory via a
virtual address. Methods and apparatus consistent with the
present disclosure may receive a new handle from low level
firmware or other program code during a secure transport
layer security/secure socket layer (TLS/SSL) handshake
phase when TLS connection between computing devices is
being initiated. This new handle may represent a set of
continuous physical memory of some size. A handle may be
an abstract descriptor or identifier similar to a file descriptor
that is associated with a file. Each handle may be associated
with a physical address X and a size Y (where Y may be
measured in a number of bytes), as such, each handle may
be associated with a small amount of contagious memory
starting at address X and spanning Y bytes. In certain
instances, a handle may be associated with 96 Kilo-Bytes
(KB) of memory or with 128 KB of memory, for example.
Each handle may also be associated with a virtual address V
and a size Y, where virtual address V maps to physical
address X and size Y. Obtaining the new handle for this new
connection and programming the TLB may each be per-
formed by a processor executing low level firmware. The
obtaining of the new handle and the programming of the
TLB may be performed via two different low-level APIs that
are called by a program at different times. For example,
obtaining a new handle usually happens once for a new
connection. All subsequent packets use the same handle
which is saved by the program and used for this connection.

US 11,700,277 B2

5

However, for each packet of this connection, the program
will call the low level API to map this handle with a logical
address that the program may then use and after a encrypt/
decrypt process is completed.

When a new handle is received, meta-data associated with
the new connection may be stored. Logical or virtual address
information may also be stored with or be associated with
this handle. In certain instances, functions associated with a
software module that may be referred to as a DPI-SSL
program/module that may be used to perform deep packet
inspection (DPI) scanning of data associated with different
SSL connections. Virtual/logical address information and
associated handles may be stored as meta-data where each
particular handle and each corresponding set of virtual/
logical address information are associated with a single TLS
connection. In certain instances, functions relating to access-
ing secure information and decrypting secure data included
in a received packet may be performed by a first processing
core at a multi-core processing system, and functions relat-
ing to scanning the decrypted packet data may be performed
by a second processing core of the multi-core processing
system. In such instances, the second processing core may
not have access to any secure information stored in physical
memory.

When a real-time packet is received by a firewall, for
example, the firewall may parse that packet and identify an
association with an existing connection. The firewall may
also identify a pointer to meta-data associated with that
connection when a processor processes that packet. As
additional packets are received via this connection, DPI-SSL.
may obtain the handle from the meta-data associated with
this connection for use when accessing physical memory
using a virtual/logical address. For example, this handle may
be used by an application program interface (API) call to
grant or enable access to physical memory locations that are
associated with this connection. After a handle is used to
grant/enable access to physical memory associated with a
connection, DPI-SSL program code may be used to provide
a virtual address when accessing data associated with a
particular connection that are stored in physical memory.

In certain instances, DPI-SSL. may need to access physical
memory whenever a DPI-SSL. program needs to accesses
OpenSSL data related to a secure connection. Since
OpenSSL is a software library used in secure communica-
tion connections that may implement cryptographic func-
tions and other functions associated with a secure connec-
tion, other software programs, such as DPI-SSL may be
required to access information associated with OpenSSL.
For example, DPI-SSL. may access OpenSSL to obtain
information regarding encryption or decryption keys asso-
ciated with a particular connection.

DPI-SSL may not need to access OpenSSL data for all
packets. For example, when an acknowledgement (ACK)
packet is used to acknowledge the receipt of a TCP packet
is received, DPI-SSL will not have to access OpenSSL data
because ACK packets do not include encrypted data. As
such, DPI-SSL will not make a request for OpenSSL data
based on the receipt of a TCP ACK. Additionally, DPI-SSL
may not need to access OpenSSL. whenever a packet is
received that does not include secure data. In contrast, when
packets are received that include secure data are received via
a TLS connection, DPI-SSL will have to access OpenSSL
data. In order to access OpenSSL data associated with this
connection DPI-SSL, may make a call via a low level API
using a handle, where that call may then enable (or grant)
DPI-SSL to perform functions associated with that connec-
tion. As such, DPI-SSL may access physical memory using

10

15

20

25

30

35

40

45

50

55

60

65

6

virtual memory addresses in order to obtain security keys
required to decrypt encrypted data included in a received
data packet. Here again, after a handle has been used to
enable (or grant) memory access, DPI-SSL may be allowed
to provide a virtual address that is mapped to a physical
memory address that stores data related to that connection.
As such, DPI-SSL program code may maintain a handle H
that is associated with a virtual address V spanning Y bytes.
In certain instances, registers at a processor, such as transi-
tion look aside (TLB) registers may be used to store data
relating to a handle and state information that may be used
to enable access to physical memory via a virtual address.

Physical memory may be used to store encryption keys,
keying data, and other data relating to a particular connec-
tion. Such handles may be a reference to a resource, may be
a pointer, may be an index that identifies an element in an
array or table, or may be an identifier used when a trans-
formation is performed. Handles consistent with the present
disclosure may be used to enable memory accesses that
transform a virtual address to a physical address. Handles of
the present disclosure may be associated with entries in a
secure memory vault (SMV), a particular handle and a
logical address associated with that handle may be used to
access information stored in physical memory when an
address is transformed. Furthermore, based on a convention
(or rule) a particular memory location associate with the
handle may be a memory location where a key for a first
connection is stored, where a next incremental memory
location is understood (based on the rule) to contain data
relating to that key and first connection. In such an instance,
a third incremental memory location may be understood
(based on the rule) to store other data relating to the first
connection.

A secure memory vault (SMV) consistent with the present
disclosure may be logically and/or be physically separate
from system memory or from a global memory associated
with a computing system. SMV represents a contiguous
chunk of bytes, for example 68K bytes or 128K bytes, of
physical memory that can only be accessed after the local
data store on this core (TLB) is programmed with the logical
address to physical address mapping and enabling access to
this physical memory. For example, the local data store may
be stored in a set of computer registers (such as TLB
registers) or be stored in another memory. When an SMV
consistent with the present disclosure is implemented in
memories locally accessible a processor, data stored in those
memories will be accessed faster than memories associated
with a system or global memory of a processing system. In
such instances, registers such as TLB registers (imple-
mented in hardware) may be accessed at hardware speeds
directly by a processing core to perform the translation or
mapping of logical to physical addresses.

As mentioned above, such a process may be performed by
DPI-SSL program code that performs a DPI-SSL scan of
information included in one or more packets associated with
a particular connection. In such an instance functions asso-
ciated with the DPI-SSL scan may include sending a request
to access information in the SMV that includes a handle may
be provided to the function associated with the DPI-SSL
functions. This request for information may be associated
with a maximum size. After this handle has been provided,
the DPI-SSL functions may steer all sensitive data associ-
ated with this connection, whether that data be related to a
static or ephemeral (time based) connection data to the SMV
for translation. This maximum size associated with such an
information request may typically be anywhere from 64K
bytes-128K bytes. Additionally, this maximum size may be

US 11,700,277 B2

7

a function of whether a cache entry exists for this connection
where keying material associated with this information that
can be reused. For connections that can leverage caching,
the size will tend to be smaller (64K bytes) and subsequent
secure connection negotiations may use an abbreviated
handshake when establishing the subsequent secure connec-
tion. In other instances, a connection that negotiates using a
full handshake, the maximum size may be relatively higher,
128K bytes for example.

A method consistent with the present disclosure may
receive an indication that a client device is initiating a secure
connection with a computing device. After the initiation of
the secured connection has begun, a first packet sent
between the client device and the computing device via the
secure communication connection may be received, a
request to receive handle information associated with the
secure communication connection may be sent, and the
requested handle information may be received. Next a first
packet sent between the client device and the computing
device may be received via the secure communication
connection, session keys and secure keying material related
to the secure communication connection may be created, the
created session keys and the secure keying material may be
stored in a physical memory, where the created session keys
and keying material stored in the physical memory are
available to decrypt data included in subsequent data packets
associated with the secure communication connection. After
the session keys and keying material are stored in the
physical memory, a new packet to send to the destination
may be created from the data included in the first packet,
where the newly created packet secures the data included in
the first packet based at least in part on the created session
keys, and the newly created packet may be allowed to be
sent to a destination.

FIG. 1 illustrates an exemplary set of instructions that
may be performed at a firewall. Step 105 of FIG. 1 identifies
that a new secure connection is being formed. This new
secure connection may be initiated with a TLS hello mes-
sage sent from a client device when that client device
attempts to establish a secure connection with a computing
device. Next in step 110, a process executing at the firewall
may request to receive a handle associated with the secure
connection. This request may be generated by a set of code,
such as a set of DPI-SSL code, at a firewall and this request
may be sent to a piece of low level firmware or program
code. Next in step 115, information relating to the handle
request may be received. Step 115 may receive a handle
from the low level program code, where this handle may be
a descriptor similar to a file descriptor that associates the
handle to a physical address and a size of memory. In certain
instances the handle may be associated with a memory or
register size measurable in bytes. The handle may be pro-
vided to a processing core that has been allocated to receive
data packets related to the secure connection. The low level
program code or other code may then program memory or
registers (such as TLB registers) to include a set of infor-
mation that cross-references the handle, a virtual memory,
and a span of memory to a physical memory address and a
span of physical memory. As such, program code at the
firewall may receive information that may include the
handle and other information in step 115 of FIG. 1.

Next in step 120, a packet associated with the secure
connection may be received by a processing core and the
handle associated with that connection may be provided that
enables that processing core to access physical memory
associated with that handle using a virtual or logical address.
After step 120, the processor may access information stored

10

15

20

25

30

35

40

45

50

55

60

65

8

in physical memory using the virtual address associated with
the handle in step 125 of FIG. 1. A request to access physical
memory may include the handle, the virtual address, and a
length.

After step 125, the process may receive or have access to
the information stored in the physical memory that is
associated with the handle and with the virtual address in
step 130. Next at step 135 data included in the received
packet may be scanned to make sure that data included in
that packet is not associated with a threat. The scanning of
the data in the packet may be performed by a deep packet
inspection (DPI) scanning software that executes at a dif-
ferent processing core than the processing core that received
the handle. Information accessed in step 130 may include
keys required to decrypt data included in the received data
packet, where those keys may be used to decrypt encrypted
packet data so that decrypted data can be scanned at the
firewall.

After step 135, determination step 140 may identify
whether data in the received packet is associated with a
threat, when yes, program flow may move to step 145 that
performs a corrective action. When step 135 does not
identify a threat the secure packetized data, program flow
may move to step 150 that identifies whether the secure
connection is being terminated, when yes, program flow
may move to step 165 where the secure connection is ended.
When step 150 identifies that the secure connection is not
being terminated, program flow may move from step 150 to
step 120 where another secure packet associated with the
secure connection may be received.

FIG. 2 illustrates a flow chart of program steps consistent
with the present disclosure. Step 210 of FIG. 2 may allocate
a processing core to received packets associated with a
secure connection. After the processor has been allocated to
receive packets associated with the secure connection, that
processor may request a new handle from another set of
program code. Here again, the processor may request this
handle using a low level program code or firmware. This
request may be performed via an OpenSSL application
program interface (API). Next in step 230 the processor may
receive information relating to the handle request. For
example, a handle comprising a descriptor (or identifier)
may be received by the processor. After step 230, the
processor may provide a second request to receive informa-
tion associated with the handle. For example, the processor
may provide the second request to a second API that
includes the descriptor/identifier and information in a secure
memory vault may be programmed based on the second
request. Here again information in the secure memory vault
will be associated with or include the handle, a virtual
memory address, a length, and a physical memory address.

After step 240, the processor in step 250 may receive and
process packets associated with the secure connection.
Determination step 260 may then identify whether the
secure connection has been terminated, when yes, program
flow may move to step 270 where content stored in the
secure memory vault that is associated with the recently
terminated secure connection may be deleted.

When step 260 identifies that the secure connection has
not been terminated, program flow may move back to step
250 where additional packets associated with the secure
connection may be received.

Each of the discrete processing cores in the multi-core
system may be associated with one and only one data store
that stores translation information relating to a single secure
connection. This translation information is used by the
hardware to translate a virtual address to a physical address.

US 11,700,277 B2

9

The same virtual address in different data stores residing in
different core may translate to a different physical address/
memory. This is how different connections running on
different cores may simultaneously use the same virtual
address but act on different physical memory that is unique
to each connection, even though these connections may
share the same virtual address.

The method may receive an indication that a client device
is initiating a secure connection with a computing device.
After the initiation of the secured connection has begun, the
local process may look to match some attributes of the client
and server to create a connection fingerprint and then do a
lookup in the local cache (maintained in DPI-SSL process)
to see if there is a hit. If there is a cache hit, then the local
process will typically use two handles—first handle is
associated with a cache entry and represents data in physical
memory that contains the keys (from a prior connection) that
can be reused, the second handle is associated with new
physical memory that is to be used for this new connection.
By using the cache and the first handle that represents a
cache entry in physical memory, the local process does not
have to create new keying material for this connection. This
improves latency and speeds up the secure connection
handshake by abbreviating the negotiation between the
client and a server.

FIG. 3 illustrates steps that may be performed by a
multi-processor system that receives packets from a plurality
of secure connections. In step 310 of FIG. 3 each of a
plurality of processors in the multi-processor system may
maintain information that relates to individual respective
secure connections. Since each particular processing core in
that multi-core system may each maintain information relat-
ing to a different single secure connection, a plurality of
processing cores in that multi-core system can cumulatively
store information that uniquely cross-references each of
those handles to a particular respective virtual memory
address, to a particular respective physical memory address,
and to a particular respective secure connection. Further-
more, since each process maintains their own independent
set of cross-reference information, no processor can access
physical memory locations that store information relating to
operations performed by another processor without gener-
ating a page fault.

As such, step 310 maintains a set of information that
cross-reference handles to virtual memory address and to
physical memory address that correspond to a set of inde-
pendent secure connections because each of the plurality of
processors of a multi-processor system maintains this infor-
mation.

Next determination step 320 of FIG. 3 may identify that
a particular secure connection has been terminated. When a
particular secure connection has not been terminated, flow
chart of FIG. 3 may move back to step 310 where the
information that cross-references handles, virtual memory
addresses, an physical memory address for the plurality of
secure connections may be maintained by different proces-
sors independently.

Since each processor of a multi-core processor will typi-
cally only be allocated to a single secure connection, step
320 will typically be performed by the processor allocated to
receive data packets associated with that particular single
secure connection. After step 320, the processor that was
allocated to receive data packets from that particular secure
connection may delete the content of a translation memory
(i.e. the content of a secure memory vault or TLB entries)
that are associated with that particular secure connection in
step 330 of FIG. 3.

10

15

20

25

30

35

40

45

50

55

60

65

10

Then after step 340, the process associated with the
terminated secure connection may be freed to perform other
tasks and the flow chart of FIG. 3 may move back to step
310, where the information that cross-references handles,
virtual memory addresses, a physical memory address for
the plurality of secure connections may be maintained by
different processors independently.

Today many different processor architectures include
hardware TLB registers. In fact common processor available
today (x86, MIPS, and ARM) have TLB registers, where
each type of processor may have a different number of TL.B
registers and where a single TLB entry may span numerous
TLB registers. For example, the latest X86 include enough
register space to store more than 2000 TLB entries (or
somewhere between 2000 and 4000) and the Cavium MIPS
processor includes enough TLB registers to store 128 to 256
TLB entries. A single TLB entry may be associated with a
stating virtual address, a size, a corresponding physical
address, access permissions, control permissions, and may
include other information. In certain instances a virtual
address may include 64 bits. As such, each single TLB entry
may be used to covert particular virtual addresses into
particular physical addresses when a particular process has
permission to access a particular TLB entry.

Handles and associated translation information may be
tuned according to hardware limitations or features associ-
ated with a particular type of hardware processing core. As
such the program code that performs the task of assigning
handles or related information may be bundled into a single
firmware image that contains all of the software associated
that executes at a firewall. Alternatively, program code
assigned the task of assigning those handles or related
information may be implemented in a driver module that
loads when the firewall boots. In either case the program
code associated with assigning those handles or related
information may be tuned based on a type of processing core
that a particular firewall uses, where that program code may
be updated periodically as needed or desired.

FIG. 4 illustrates a set of steps that may be performed
when program code is tuned to execute on a particular type
of processing core. Step 410 of FIG. 4 is a step where a type
of processing core is identified, next in step 420 that type of
processing core may be associated with a TLB architecture.
Step 430 of FIG. 4 may then identify a data structure to
associate with the TLB architecture based on the type of
programming core identified in step 420. After step 430, step
440 of FIG. 4 may prepare program code consistent with the
data structure and the TLB architecture for execution by the
identified type of processing core.

An SMV consistent with the present disclosure may
include information relating to a particular connection, TLS
connection 1, for example. As such the SMV may include
information that is unique for each respective TLS connec-
tion. In certain instances, a number of TLB entries stored in
TLB registers associated with a plurality of connections may
only map processes executing at a single processing core to
a single TLB entry. In such an instance when a system
manages many connections, for example 200,000 connec-
tions, that system may not be able to store TLB entries for
all 200,000 connections at a single time. As such, systems
managing a large number of connections may not store TLB
entries in TLB registers located at that system for all of the
connections at a single point in time. In such instances, a
processing core located in that system may need to swap
information into a set of TLB registers that when handling
information relating to a particular connection.

US 11,700,277 B2

11

Keys associated with the present disclosure may be static
keys that do not change or may be ephemeral (temporal)
keys that only last for a period of time. When a new secure
connection is initiated between a client device accessing a
server, a TLS handshake may be exchanged between the
client device and a firewall and a corresponding TLS hand-
shake may be exchanged between the firewall and the server.
In certain instances, a deep packet inspection (DPI) software
resident at the firewall may be used to scan secure informa-
tion within a secure socket layer (SSL) such that DPI
inspection on the SSL. communications may be performed.

During an initial TLS/SSL handshake phase of a connec-
tion, a particular DPI-SSL process may request a new handle
from the low level firmware. Here again this handle may
include a virtual address and size that may be translated into
memory addresses associated with a contiguous physical
memory of some size (for example 96 KB, 128 KB, etc.).
This handle maybe saved in meta-data associated with this
connection along with the Logical/Virtual address that DPI-
SSL will use to access this memory. In real-time, when a
packet comes into a Firewall, existing implementations may
parses the packet and make an association with an existing
connection. This associated may include pointer meta-data
that may be used as a connection reference when processing
this packet. Subsequently, for any packets associated with
this connection, the DPI-SSL process may obtain the asso-
ciated handle from the connection meta-data. This handle
may then be used when calling low level API so that access
is granted to these physical memory locations that are
associated with this connection. At this point in time, this
DPI-SSL process can use its Virtual address to read/write
into the physical memory locations associated with this
particular DPI-SSL. process. Once DPI-SSL determines
access to this memory is needed, is may need to obtain any
OpenSSL data associated with this connection. All packets
containing encrypted data will need to be sent to an
OpenSSL process for TLS operations such that the DPI-SSL
application can call the low level API using the handle as
long as read/write access has been granted to the corre-
sponding physical memory. This low level routine may uses
this handle to program the TLB registers of a particular
processor core with an address X and a size Y that results in
that processing core being allowed to access to this memory
location. In such an instance a DPI-SSL process executing
on that processing core may be allowed to access physical
memory that is associated via the handle. That particular
processing core may the access physical memory via the
handle and a Virtual Address V and size Y. In such an
instance, the low level routine that programs the TLB
registers could be bundled into a single firmware image that
contains all of the software running on a Firewall (including
DPI-SSL, etc.) or be loaded during Firewall boot-up/initial-
ization process as a separate driver module.

DPI-SSL will typically maintain a handle (i.e. handle H)
and a virtual address (i.e. virtual address V), a size (i.e. Y
bytes), where low-level firmware may maintain an associa-
tion of Handle H with Physical Address X, size Y after
relevant TLB registers have been programmed. After those
relevant TLB registers have been programmed, an enabled
processing core will be able to access (read/write to)
memory starting at a memory address associated with virtual
address V up to a memory address associated with virtual
address V+Y. As such, this DPI-SSL process will be enabled
to read or write to physical memory addresses X to X+Y.
When DPI-SSL or another application/software tries to
access [V to V+Y], the secure memory containing keys
without TLB being programmed to allow such access, a

10

15

20

25

30

35

40

45

50

55

60

65

12

page fault exception will result in hardware. Note that in
such instances, virtual address V is mapped to physical
address X, where both virtual address V and physical
address X are both associated with a number of memory
locations as indicated by size Y. This is true even when an
unauthorized process has knowledge of keys related to a
secure memory access.

Programming of TLB hardware registers may be per-
formed via an update to a dynamic TLB entry associated
with a particular processor core that is unique per processing
core. Because of this, the programming of the TLB registers
for that particular processing core will enable access to
memory locations in an SMV that are only accessible by that
particular processing core. Once an OpenSSL API returns to
the caller (DPI-SSL, for example), DPI-SSL. may then call
a different API with the same handle that may result in
hardware (dynamic TLB entry for that specific processing
core) being programmed to lock access to memory locations
in the SMV associated with this handle. Thus, even different
software modules (TCP, IP, DPI, Content Filtering, etc.)
associated with this connection will not have access to any
TLS sensitive data, including session keys and keying
material associated with that secure connection. By limiting
access to secure information associated with a connection to
a single processing core dedicated to handling operations
relating to that particular connection, other processing cores
performing tasks that do not require access to the secure
information for that connection may be performed by those
other processing cores without those other processing cores
being able to access the secure information relating to that
connection. For example, when a first processor has access
to sensitive TLS data for a first connection, other processors
performing tasks associated with that first connection will
have not have access to the sensitive TLS data for the first
connection. Because of this these other processors may
perform processes relating to a transfer control protocol
(TCP), internet protocol (IP) transfers, deep packet inspec-
tion (DPI) scanning, content filtering, or other processes that
do not require the sensitive TLS data to perform their
function.

Each of the aforementioned exemplary 200,000 connec-
tions will have an associated handle, but at any time, the
number of TLBs programmed for access to this secure
memory will typically be a function of number of processing
cores. As mentioned above, each processing core has a
dedicated/independent set of TLB entries that typically
include, depending on a particular CPU design, somewhere
between 128-2000 entries.

As mentioned above TLB entries may be statically pro-
grammed or be dynamically programmed. Static TLB pro-
gramming is where TLB entries are programmed once and
are not changed, hence, they are “static.” This allows all
memory to be accessible with certain limitations, which may
allow programs or program code to only have read access,
where stored data may typically be read and overwritten
(written t0).

In contrast, dynamic TLB programming relates to pro-
gramming some TLB entries are programmed at run-time
with different addresses, as such, dynamic TLB entries can
be changed while program code executes after they have
those entries have been programmed a first time.

In contrast to the methods and apparatus discussed in this
disclosure, methods or systems that program TLB registers
associated with a processing core may only be statically
programmed. Methods and systems consentient with the
present disclosure may identify a number of TLB entries that
may be dynamically programmed at run-time. For example,

US 11,700,277 B2

13

when some number of TLB entries are allowed to be
dynamically programmed, when DPI-SSL calls the low level
API with a specific handle, the low level API will program
this TLB entry with a Virtual/Logical address “V” and a size
“Y,” an associated physical address “X.,” the size “Y,” and
relevant permissions that enable a particular core to access
these memory locations. At this point, DPI-SSL, may be the
only application running on this core and it will have access
to these memory locations. Once DPI-SSL is done with the
TLS operations, DPI-SSL will release the handle via the low
level API, which will result in the TLB entry being repro-
grammed. Subsequently, DPI-SSL after it is done with
processing of a packet can relinquish the CPU core for use
by other processes.

Since a given TLB entry may only be accessible by one
processing core of a number of processing cores, the number
of TLB accesses performed at a given moment in time may
be limited to a number of CPU cores in a system. In an
instance where a system has 32 processor cores, DPI-SSL.
could potentially run on some or all of these 32 cores at any
time. So, at any point in time, packets associated with 32
DPI-SSL connections can run concurrently on a Firewall,
even though there may be 200,000 active DPI-SSL connec-
tions. DPI-SSL running on a particular core may call the
low-level API to dynamically reprogram the number of
allowed TLB entries associated with a processing core. Note
that each core has an independent set of TLB entries. So,
only 1 DPI-SSL connection per CPU core at any point in
time has access to its secure memory (via a handle) pro-
grammed in TLB, as such, 32 cores implies that up to 32
TLB entries may be dynamically programmed at a single
time. Note that this architecture guarantees that a particular
processing core can only access secure memory associated
with a particular DPI-SSL connection, without allowing that
particular processing core to have access to another connec-
tion’s secure memory.

The more memory or TLB registers that are available for
use by a processor implementing functions consistent with
the present disclosure, the more granular the size of a
memory associated with a particular connection can be
made. An amount of memory associated with a handle may
vary based on limitations associated with a particular type of
processing core and the size of a TLB associated with that
processing core, for example. Depending on programming
options/requirements associated with certain specific central
processing units (CPU) processing cores, an amount of TLB
register space may be allocated to storing secure connection
based information consistent with the present disclosure.
While it is anticipated that an amount of memory used for
storing information relating to a particular connection may
vary, methods and apparatus consistent with the present
disclosure may use different amounts of TLB memory for
storing information for that particular connection. While it is
anticipated that a given TLB entry may span 64 KB, 96 KB,
or 128 KB, a given TLB entry may be of any size including,
yet not limited to (16 KB, 32 KB, 64 KB, 96 KB, 128 KB,
or more).

When TLB registers associated with a particular process-
ing core are used to store memory translation information,
that particular processing core may access its TLB registers
directly via hardware associated with that particular pro-
cessing core. Because of the, the accessing of those TLB
registers by that particular processing core can occur with
little latency. This enables this processing core to access
physical memory very efficiently as the translation of virtual
to physical addresses occurs at hardware speed.

15

20

35

40

45

55

14

Unique aspects of the present disclosure enable a pro-
cessing system to 1. Limit access to secure connection
information based on identifying that a memory request to
secure memory belongs to a specific connection that is
associated with a single specific processing core at any
moment in time; 2. Allows translation memory (like TLB
registers) to be programmed in a manner that locks access to
physical memory locations that store secure connection
information only when secure operations need to be per-
formed; and 3. Allows an algorithm in a program (such as
DPI-SSL) to manage all secure memory requests (such as
OpenSSL memory requests), where this management allows
access to physical memory in a secure way. As such a
program, such as DPI-SSL. may allow a particular process-
ing core to allocate memory, free memory, or access memory
without while preventing other processes performed by
other processes from accessing secure physical memory that
is associated with a particular connection.

Thus, even different software modules (TCP, 1P, DPI,
Content Filtering, etc) associated with this connection do not
have access to any TLS sensitive data, including session
keys and keying material. When DPI-SSL software needs to
perform TLS operations by invoking OpenSSL APIs, DPI-
SSL application may invoke a firmware API with the cor-
responding handle because OpenSSL needs to use the Keys
for encrypt/decrypt operations. The firmware API may be
implemented in a lower layer module that is different from
DPI-SSL, this is to ensure a separate implementation bound-
ary responsible for granting/terminating access to SMV. In
such instances this lower layer module will program the
hardware to grant temporary access to SMV for the caller of
the API. Programming the hardware may e done via update
to a dynamic TLB entry in CPU that is unique per core, this
may enable access to memory locations in SMV. Once the
OpenSSL API returns to the caller (DPI-SSL), DPI-SSL may
then call a different API with the same handle that results in
hardware (dynamic TLB entry in CPU) being programmed
to lock access to memory locations in the SMV associated
with this handle. Thus, even different software modules
(TCP, IP, DPI, Content Filtering, etc) associated with this
connection do not have access to any TLS sensitive data,
including session keys and keying material.

FIG. 5 illustrates a firewall communicating with client
device and with a computer. Note that client computer 510
and client computer 520 may each initiate different secure
connections with computer 550 via firewall 520 using meth-
ods consistent with the present disclosure. Note that firewall
530 includes processing core 1 and TLB register set 1 540.
Firewall 530 also includes processing core 2 and TLB
register set 2 550. Note that secure operations associated
with client computer 510 may be performed by processing
core 1 and that secure communications associated with
client computer 520 may be performed by processing core 2.
When secure operations associated with client computer 510
are performed by processing core 1 accessing TLB register
set 1, processing core 2 may not be able to access informa-
tion stored in TLB register set 1 because TLB register set 1
is physically coupled to processing core 1 and not to
processing core 2. This topology provides greater security
when each processing core stores information relating to a
single connection. For example, when processing core 1
stores information relating to a first secure connection in its
local TLB registers, processing core 2 will not be able to
access data relating to the first secure connection stored TL.B
register set 1 because processing core 2 is not physically
coupled to TLB register set 1. Similarly, processing core 1
will not be able to access information stored in TLB register

US 11,700,277 B2

15

set 2 that is coupled to processing core 2. As such, only one
processing core may be able to access secure information
relating to a particular connection.

Methods consistent with the present disclosure may also
partition physical memory storing connection information in
a non-contiguous manner. Architectures consistent with the
present disclosure may prevent a first processing core from
accessing physical memory associated with a second pro-
cessing core by generating a page fault if the first processing
core attempts to access a physical memory location associ-
ated with another processing core. Even if malicious code
were somehow able to inhibit such a page fault from being
generated, that malicious code would not be aware of what
memory locations in physical memory actually store secure
information. Because of this, the partitioning of physical
memory in a non-contiguous manner may help increase
security.

FIG. 6 illustrates a computing system that may be used to
implement an embodiment of the present invention. The
computing system 600 of FIG. 6 includes one or more
processors 610 and main memory 620. Main memory 620
stores, in part, instructions and data for execution by pro-
cessor 610. Main memory 620 can store the executable code
when in operation. The system 600 of FIG. 6 further
includes a mass storage device 630, portable storage
medium drive(s) 640, output devices 650, user input devices
660, a graphics display 670, peripheral devices 680, and
network interface 695.

The components shown in FIG. 6 are depicted as being
connected via a single bus 690. However, the components
may be connected through one or more data transport means.
For example, processor unit 610 and main memory 620 may
be connected via a local microprocessor bus, and the mass
storage device 630, peripheral device(s) 680, portable stor-
age device 640, and display system 670 may be connected
via one or more input/output (I/O) buses.

Mass storage device 630, which may be implemented
with a magnetic disk drive or an optical disk drive, is a
non-volatile storage device for storing data and instructions
for use by processor unit 610. Mass storage device 630 can
store the system software for implementing embodiments of
the present invention for purposes of loading that software
into main memory 620.

Portable storage device 640 operates in conjunction with
a portable non-volatile storage medium, such as a FLASH
memory, compact disk or Digital video disc, to input and
output data and code to and from the computer system 600
of FIG. 6. The system software for implementing embodi-
ments of the present invention may be stored on such a
portable medium and input to the computer system 600 via
the portable storage device 640.

Input devices 660 provide a portion of a user interface.
Input devices 660 may include an alpha-numeric keypad,
such as a keyboard, for inputting alpha-numeric and other
information, or a pointing device, such as a mouse, a
trackball, stylus, or cursor direction keys. Additionally, the
system 600 as shown in FIG. 6 includes output devices 650.
Examples of suitable output devices include speakers, print-
ers, network interfaces, and monitors.

Display system 670 may include a liquid crystal display
(LCD), a plasma display, an organic light-emitting diode
(OLED) display, an electronic ink display, a projector-based
display, a holographic display, or another suitable display
device. Display system 670 receives textual and graphical
information, and processes the information for output to the
display device. The display system 670 may include mul-
tiple-touch touchscreen input capabilities, such as capacitive

20

30

40

45

50

55

16

touch detection, resistive touch detection, surface acoustic
wave touch detection, or infrared touch detection. Such
touchscreen input capabilities may or may not allow for
variable pressure or force detection.

Peripherals 680 may include any type of computer sup-
port device to add additional functionality to the computer
system. For example, peripheral device(s) 680 may include
a modem or a router.

Network interface 695 may include any form of computer
interface of a computer, whether that be a wired network or
a wireless interface. As such, network interface 695 may be
an Ethernet network interface, a BlueTooth™ wireless inter-
face, an 802.11 interface, or a cellular phone interface.

The components contained in the computer system 600 of
FIG. 6 are those typically found in computer systems that
may be suitable for use with embodiments of the present
invention and are intended to represent a broad category of
such computer components that are well known in the art.
Thus, the computer system 600 of FIG. 6 can be a personal
computer, a hand held computing device, a telephone
(“smart” or otherwise), a mobile computing device, a work-
station, a server (on a server rack or otherwise), a minicom-
puter, a mainframe computer, a tablet computing device, a
wearable device (such as a watch, a ring, a pair of glasses,
or another type of jewelry/clothing/accessory), a video game
console (portable or otherwise), an e-book reader, a media
player device (portable or otherwise), a vehicle-based com-
puter, some combination thereof, or any other computing
device. The computer can also include different bus con-
figurations, networked platforms, multi-processor platforms,
etc. The computer system 600 may in some cases be a virtual
computer system executed by another computer system.
Various operating systems can be used including Unix,
Linux, Windows, Macintosh OS, Palm OS, Android, iOS,
and other suitable operating systems.

The present invention may be implemented in an appli-
cation that may be operable using a variety of devices.
Non-transitory computer-readable storage media refer to any
medium or media that participate in providing instructions to
a central processing unit (CPU) for execution. Such media
can take many forms, including, but not limited to, non-
volatile and volatile media such as optical or magnetic disks
and dynamic memory, respectively. Common forms of non-
transitory computer-readable media include, for example,
FLASH memory, a flexible disk, a hard disk, magnetic tape,
any other magnetic medium, a CD-ROM disk, digital video
disk (DVD), any other optical medium, RAM, PROM,
EPROM, a FLASH EPROM, and any other memory chip or
cartridge.

The present invention may be implemented in an appli-
cation that may be operable using a variety of devices.
Non-transitory computer-readable storage media refer to any
medium or media that participate in providing instructions to
a central processing unit (CPU) for execution. Such media
can take many forms, including, but not limited to, non-
volatile and volatile media such as optical or magnetic disks
and dynamic memory, respectively. Common forms of non-
transitory computer-readable media include, for example, a
floppy disk, a flexible disk, a hard disk, magnetic tape, any
other magnetic medium, a CD-ROM disk, digital video disk
(DVD), any other optical medium, RAM, PROM, EPROM,
a FLASH EPROM, and any other memory chip or cartridge.

While various flow diagrams provided and described
above may show a particular order of operations performed
by certain embodiments of the invention, it should be
understood that such order is exemplary (e.g., alternative

US 11,700,277 B2

17

embodiments can perform the operations in a different order,
combine certain operations, overlap certain operations, etc.).

The foregoing detailed description of the technology
herein has been presented for purposes of illustration and
description. It is not intended to be exhaustive or to limit the
technology to the precise form disclosed. Many modifica-
tions and variations are possible in light of the above
teaching. The described embodiments were chosen in order
to best explain the principles of the technology and its
practical application to thereby enable others skilled in the
art to best utilize the technology in various embodiments and
with various modifications as are suited to the particular use
contemplated. It is intended that the scope of the technology
be defined by the claim.

What is claimed is:
1. A method for securely accessing data, the method
comprising:
storing a first set of translation data at a first data storage
device separate from a system memory that is physi-
cally accessible only by a first processor of a multi-
processor system, the first set of translation data asso-
ciated with a first connection, wherein the first set of
translation data maps a first virtual address to a first
physical memory location that is only accessible to the
first processor while servicing the first connection;

storing a second set of translation data in a second data
storage device separate from the system memory that is
physically accessible only by a second processor of the
multi-processor system, the second set of translation
data associated with a second connection, wherein the
second set of translation data maps a second virtual
address to a second physical memory location that is
only accessible to the second processor while servicing
the second connection;
accessing the first physical memory location that stores
data associated with the first connection by the first
processor, the first physical memory location accessed
after the first processor translates the first virtual
address to a first physical memory address using the
first data storage device, wherein data stored at the first
physical memory address is secured based on the first
set of translation data being accessible only by the first
processor;
accessing the second physical memory location that stores
data associated with the second connection by the
second processor, the second physical memory location
accessed after the second processor translates the sec-
ond virtual address to a second physical memory
address using the second data storage device, wherein
data stored at the second physical memory address is
secured based on the second set of translation data
being accessible only by the second processor;

securely communicating with a first destination associ-
ated with the first connection after accessing the first
physical memory address; and

securely communicating with to a second destination

associated with the second connection after accessing
the second physical memory location.

2. The method of claim 1, wherein the first virtual address
and the second virtual address are a same virtual address that
are respectively translated to the first physical memory
address and the second physical memory address.

3. The method of claim 1, wherein the first data storage
device is associated with a first type of processor and a
number of translation entries stored at the first data storage
device correspond to the first type of processor.

5

10

20

25

30

35

40

45

50

55

60

65

18

4. The method of claim 1, wherein program code associ-
ated with the first set of translation data is included in a set
of firmware.

5. The method of claim 1, wherein program code associ-
ated with the first set of translation data is included in a
software driver.

6. The method of claim 1, further comprising:

identifying that the first processor of the multi-processor

system corresponds to a first type of processing core;
and

assigning a number of translation entries to associate with

the first set of translation data based on the identifica-
tion that the first processor corresponds to the first type
of processing core.
7. The method of claim 6, further comprising identifying
a size of the first data storage device, wherein the number of
translation entries corresponds to the identified size of the
first data storage device.
8. The method of claim 6, further comprising identifying
a data structure to associate with the first set of translation
data.
9. The method of claim 1, further comprising assigning a
first entry of the first set of translation data to associate with
the first virtual address with the first physical memory
address, access permissions, and control permissions.
10. The method of claim 9, wherein the first entry is also
associated with a size.
11. The method of claim 1, further comprising assigning
a first entry of the first set of translation data to an access
permission.
12. The method of claim 1, further comprising assigning
a first entry of the first set of translation data to a control
permission.
13. A non-transitory computer-readable storage medium
having embodied thereon a program executable by processor
to perform a method for securely accessing data, the method
comprising:
storing a first set of translation data at a first data storage
device separate from a system memory that is physi-
cally accessible only by a first processor of a multi-
processor system, the first set of translation data asso-
ciated with a first connection, wherein the first set of
translation data maps a first virtual address to a first
physical memory location that is only accessible to the
first processor while servicing the first connection;

storing a second set of translation data in a second data
storage device separate from the system memory that is
physically accessible only by a second processor of the
multi-processor system, the second set of translation
data associated with a second connection, wherein the
second set of translation data maps a second virtual
address to a second physical memory location that is
only accessible to the second processor while servicing
the second connection;

accessing the first physical memory location that stores

data associated with the first connection by the first
processor, the first physical memory location accessed
after the first processor translates the first virtual
address to a first physical memory address using the
first data storage device, wherein data stored at the first
physical memory address is secured based on the first
set of translation data being accessible only by the first
processor;

accessing the second physical memory location that stores

data associated with the second connection by the
second processor, the second physical memory location
accessed after the second processor translates the sec-

US 11,700,277 B2

19

ond virtual address to a second physical memory
address using the second data storage device, wherein
data stored at the second physical memory address is
secured based on the second set of translation data
being accessible only by the second processor;

securely communicating with a first destination associ-
ated with the first connection after accessing the first
physical memory address; and

securely communicating with a second destination asso-

ciated with the second connection after accessing the
second physical memory location.

14. The non-transitory computer-readable storage
medium of claim 13, wherein the first virtual address and the
second virtual address are a same address that are respec-
tively translated to the first physical memory address and the
second physical memory address.

15. The non-transitory computer-readable storage
medium of claim 13, wherein the first data storage device is
associated with a first type of processor and a number of
translation entries stored at the first data storage device
correspond to the first type of processor.

16. The non-transitory computer-readable storage
medium of claim 13, the program further executable to:

identify that the first processor of the multi-processor

system corresponds to a first type of processing core;
and

assign a number of translation entries to associate with the

first set of translation data based on the identification
that the first processor corresponds to the first type of
processing core.

17. The non-transitory computer-readable storage
medium of claim 16, the program further executable to
identify a size of the first data storage device, wherein the
number of translation entries corresponds to the identified
size of the first data storage device.

18. The non-transitory computer-readable storage
medium of claim 16, the program further executable to
identify a data structure to associate with the first set of
translation data.

15

30

20

19. An apparatus for securely accessing data in a multi-

processor system, the apparatus comprising:
a first processor of that executes stored instructions;
a first storage device separate from a system memory that
is physically accessible only by the first processor that
stores a first set of translation data, the first set of
translation data associated with a first connection from
which data is sent and received, wherein:
the first processor securely accesses data at a first
physical memory location that stores data associated
with the first connection, the data securely accessed
based on the first storage device only being acces-
sible by the first processor, and

the first physical memory location is accessed after the
first processor translates a first virtual address to a
first physical memory address only accessible to the
first processor while servicing the first connection;
a second processor that executes stored instructions; and
a second storage device separate from the system memory
that is physically accessible only by the second pro-
cessor that stores a second set of translation data, the
second set of translation data associated with a second
connection from which data is sent and received,
wherein:
the second processor securely accesses data at a second
physical memory location that stores data associated
with the second connection based on the second
storage device being accessible only by the second
processor, and

the second physical memory location accessed after the
second processor translates a second virtual address
to a second physical memory address only accessible
to the second processor while servicing the second
connection.

20. The apparatus of claim 19, further comprising a

system memory that stores the stored instructions executed
by the first processor and by the second processor.

#* #* #* #* #*

