

US 20080064862A1

(19) **United States**

(12) **Patent Application Publication**

Harvey et al.

(10) **Pub. No.: US 2008/0064862 A1**

(43) **Pub. Date: Mar. 13, 2008**

(54) **TRANSGENE EXPRESSION IN A AVIANS**

(75) Inventors: **Alex J. Harvey**, Athens, GA (US);
Jeffrey C. Rapp, Athens, GA (US)

Correspondence Address:
AVIGENICS, INC.

111 RIVERBEND ROAD
ATHENS, GA 30605 (US)

(73) Assignee: **AviGenics, Inc.**

(21) Appl. No.: **11/978,360**

(22) Filed: **Oct. 29, 2007**

of application No. 11/210,165, filed on Aug. 23, 2005,
now abandoned.

(60) Provisional application No. 60/930,491, filed on May
16, 2007. Provisional application No. 60/994,203,
filed on Sep. 18, 2007. Provisional application No.
60/640,203, filed on Dec. 29, 2004.

Publication Classification

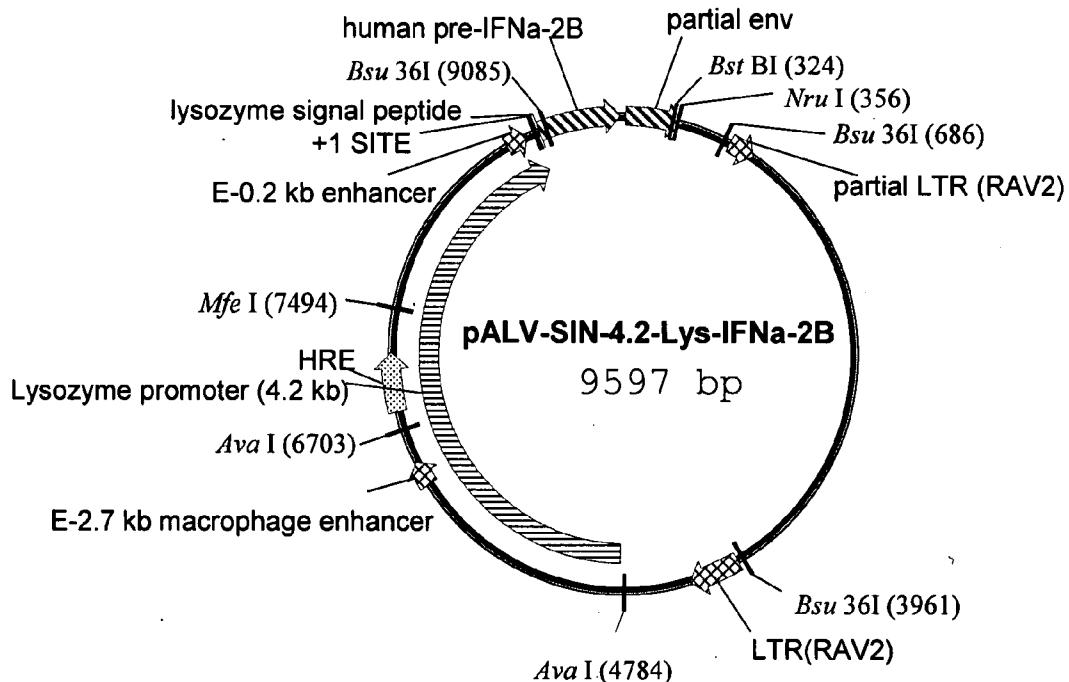
(51) **Int. Cl.**

A01K 67/00 (2006.01)

C07H 21/04 (2006.01)

CI2P 21/00 (2006.01)

(52) **U.S. Cl.** **536/22.1**; 800/19; 800/4


ABSTRACT

A transgenic avian containing in its genome an exogenous nucleotide sequence which includes a promoter component and a vector with reduced promoter interference wherein the exogenous nucleotide sequence is integrated into the genome and the avian.

Related U.S. Application Data

(63) Continuation-in-part of application No. 11/699,257,
filed on Jan. 26, 2007.

Continuation-in-part of application No. 11/799,253,
filed on May 1, 2007, which is a continuation-in-part

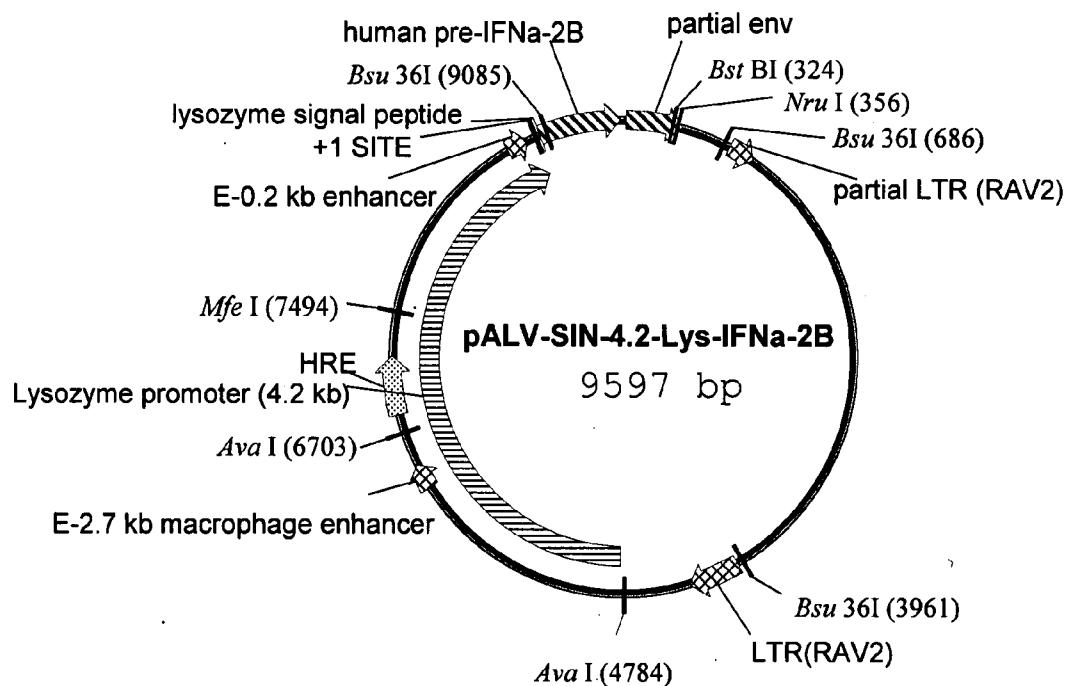


FIG. 1

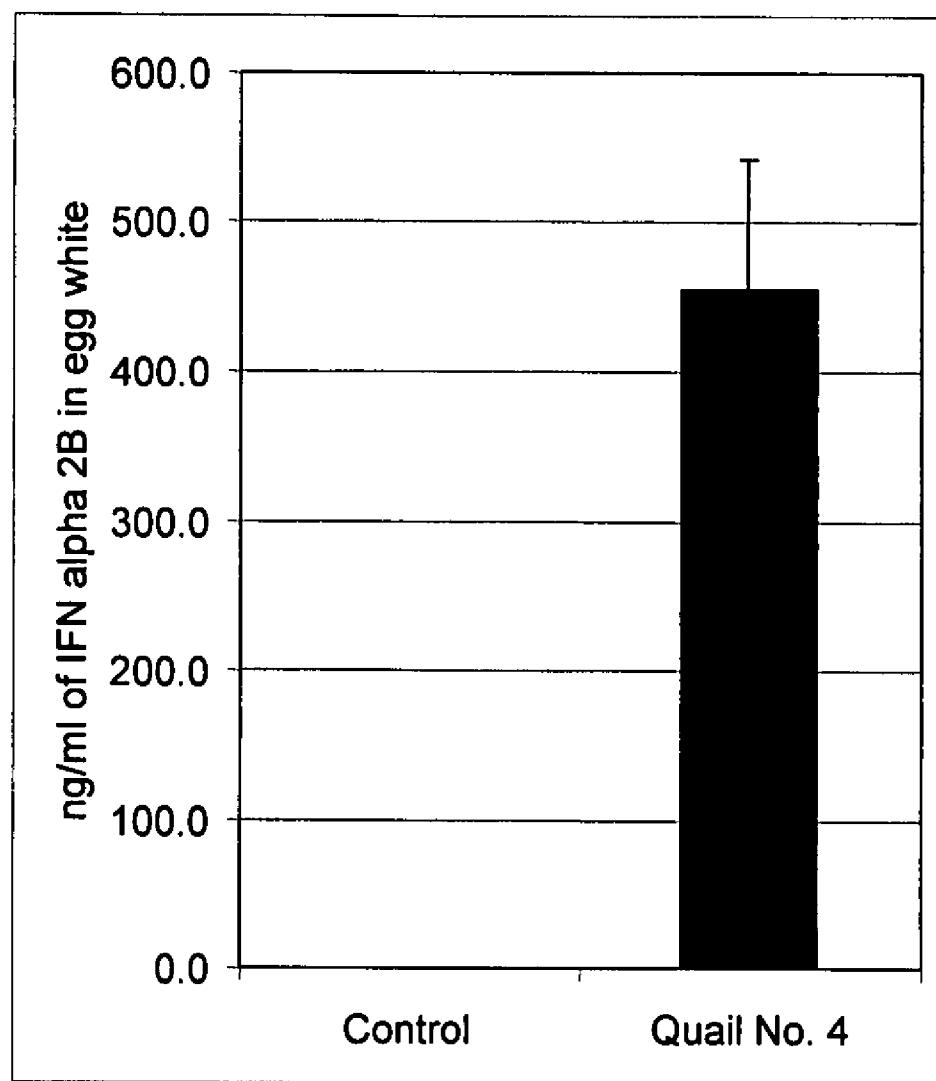


FIG. 2

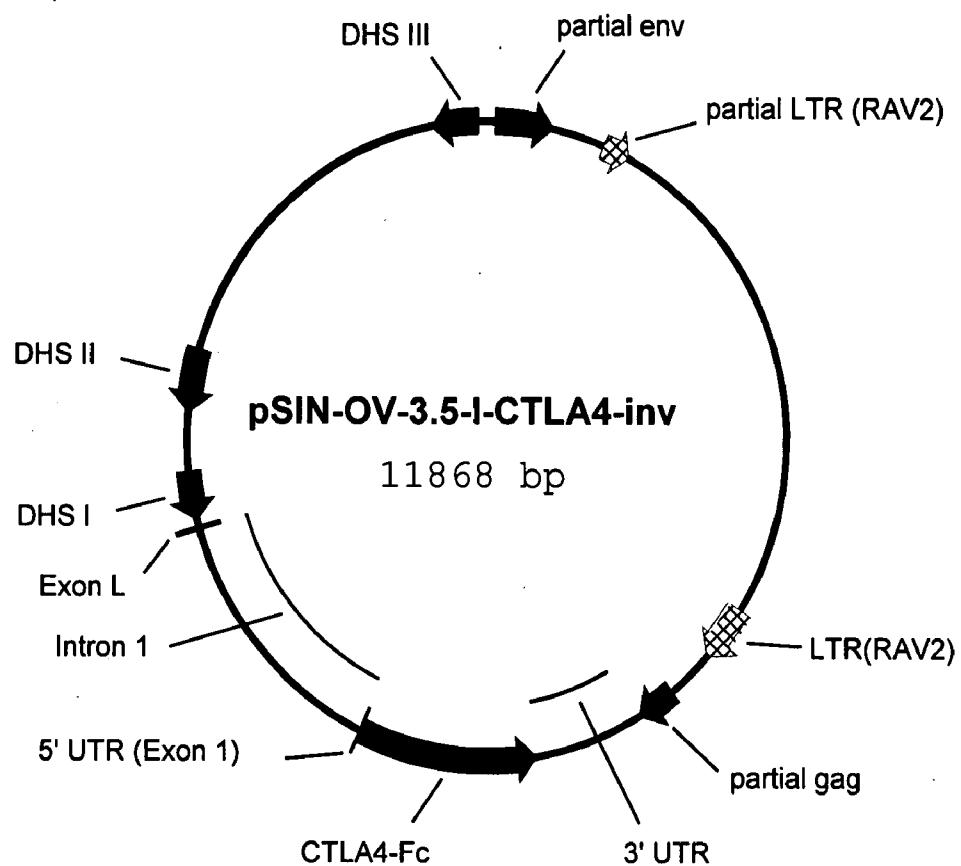


FIG. 3

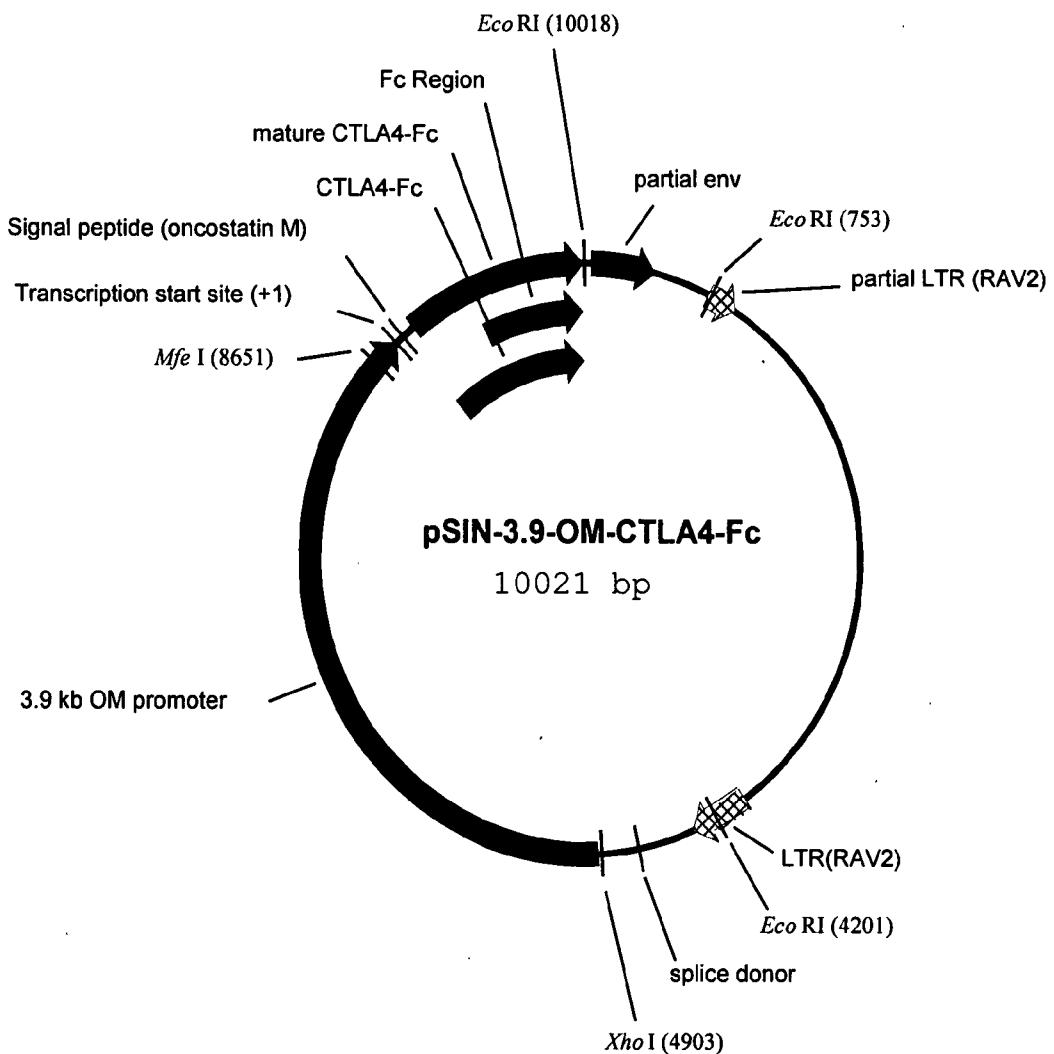


FIG. 4

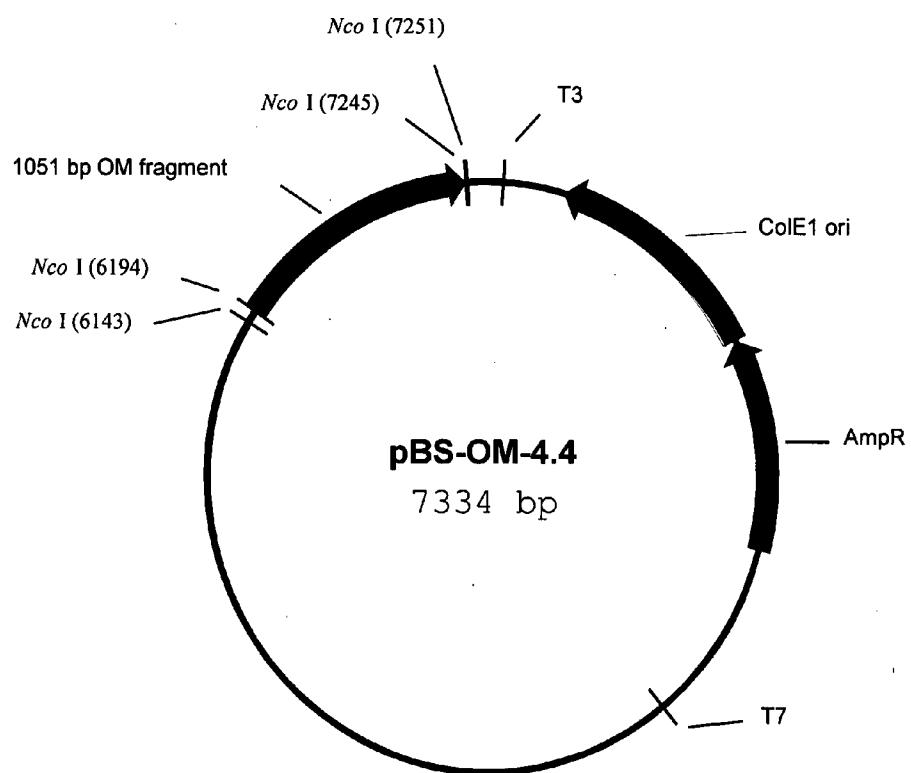


FIG. 5

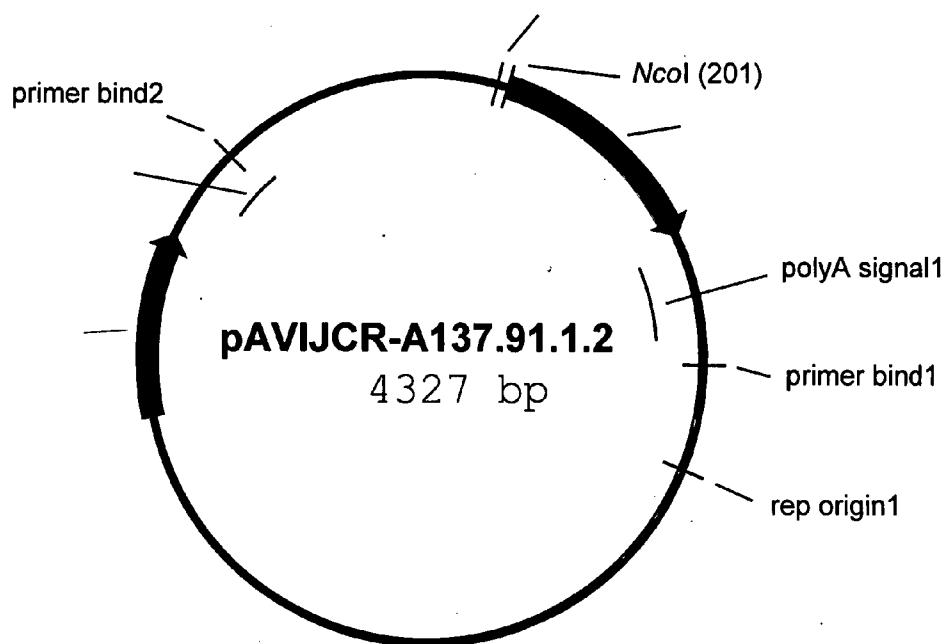


FIG. 6

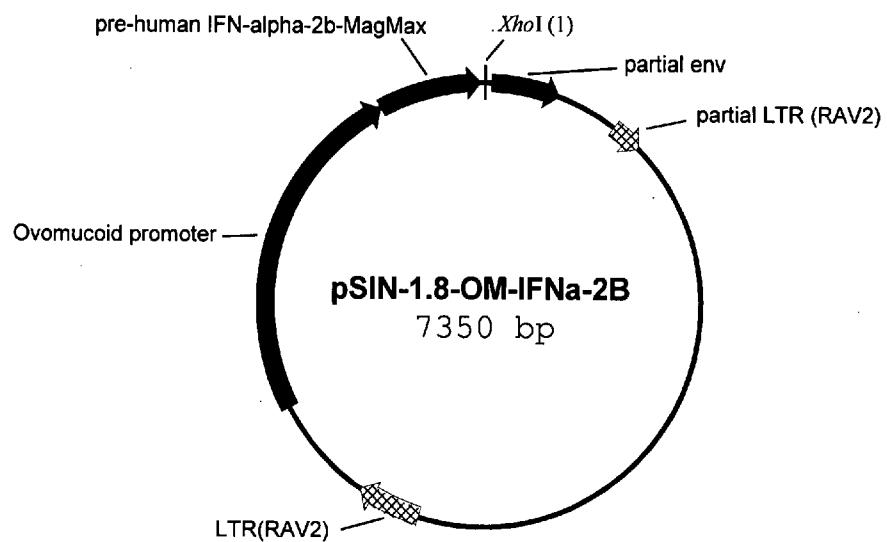


FIG. 7

ctgcagccca	ggcagcacac	tagagcagag	aatctagtt	agcagcaacc	actggcagac	60
agaaaatgatt	atatacgat	catactgacc	ctagcccttt	acactgccta	ctgcatcact	120
gaaaggactg	ggaagaagag	agtgcataaa	cgaagctgaa	gctggaggg	aggcaaggag	180
aactgaagct	gacttagggaa	aaaggggatt	aaaggttaa	gtgtcttattc	catagtttgc	240
tggtttgttt	tttgcattt	cctgaatcag	taatttttat	gttaatttgc	aaaaaattac	300
aaacacttcc	caagtcggaa	ctgttaccc	caacagaa	tcagatcgc	tgagccttag	360
tcttttggtc	cctccctagg	gaatgcgtt	tgtgtcttc	tctccaggcc	tgctcaaaaat	420
tgacctcaga	cccaaactt	tgctgaatct	ccaggtacc	ccttttgc	cctaactaga	480
taacaaagcc	ctgagcgctt	tgcttttgc	aaagcttta	gtgccattac	caactgcacc	540
ttggagccctt	accctaccctt	atggacccag	gttctatatt	taagctctgc	cctgaaccctt	600
cacttttcc	ctgtccctaa	tttagatgtt	tagatgttgc	tgactatgt	ctccaggctca	660
aacacagctg	tgccctatacc	ttggccaa	cttcctatgt	gaccctggct	gtgccttgc	720
gctaaaggacc	tgctgggtga	ttgtgttgc	tgatcttca	cctgaattaa	gaaatgattt	780
cttggatgttgc	ctggatgttgc	cctgtgttgc	gatactgcct	tatgtttgg	actcttggtt	840
gcagctgtgc	aaatccctaa	ggagccca	ctctggccac	ctggaa	cttgcacttca	900
aacttcctga	gggactggtc	ttgtcttgc	ttctgtatctc	ttggacagtc	tcacccttta	960
cttcagccca	gttccca	tttttttttt	ccacccttgc	aggctctcc	ctccatccct	1020
agcaggccat	tttttttttt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	1080
gttcccttcc	tttttttttt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	1140
cactgcattt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	1200
cacttgc	tttttttttt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	1260
gttacccccc	tttttttttt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	1320
taaggccata	tttttttttt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	1380
cctgtgtatc	tttttttttt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	1440
atggaccac	tttttttttt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	1500
ttccacccca	tttttttttt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	1560
atttgggata	tttttttttt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	1620
cctttttttt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	1680
ctgtgttgc	tttttttttt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	1740
agacacccaa	tttttttttt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	1800
agttgtacaa	tttttttttt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	1860
gtcaagcata	tttttttttt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	1920
ggttaatctt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	1980
gtgattgtac	tttttttttt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	2040
tgttttggacag	tttttttttt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	2100
ctagaagaca	tttttttttt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	2160
tgcccttgatt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	2220
attactgata	tttttttttt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	2280
acagaggtttgc	tttttttttt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	2340
tttttttttt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	2400
tgtgttctt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	2460
tgtttttttt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	2520
aggtgaggt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	2580
tttttttttt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	2640
ccataccac	tttttttttt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	2700
tttttttttt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	2760
aaagacac	tttttttttt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	2820
tttttttttt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	2880
tttttttttt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	2940
tttttttttt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	3000
tttttttttt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	3060
tttttttttt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	3120
tttttttttt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	3180
aaagaggaga	tttttttttt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	3240
tttttttttt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	3300
tttttttttt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	3360
tttttttttt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	3420
tttttttttt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	3480
tttttttttt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	3540
tttttttttt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	3600
tttttttttt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	3660
tttttttttt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	3720
tttttttttt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	3780
tttttttttt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	3840

FIG. 8a

ggacactatg tggaaagtcaa atagagaagc tttaaaaaaaaa cctttggat cattctcatc	3900
ttatatttc agcacatatac tatgacatgt ataactgcata taactgcata aatttccttg	3960
atatttttatt tgcctttaaag tacaagacat agagatggac gtaaaagatgg acatatgact	4020
caggctctgg aagggtccgtg gtccatgtat gataaaagag atgaaaggaa ggagaatggaa	4080
gactgtctaa gaagggcttc agggacgttc tgaaggcaga tttgactgaa tcagatgtac	4140
tgtccaagtc tcatatgttag caatggaaag ctgtatggg agaaatataa agaaatggct	4200
gtgaactcaa agtgaccctg aacagaaaaag ggatatggag taaaataat ggcacagaac	4260
tgaggttat atgatatacc atggctgca gagggtcaga gtgcctccacc atggccctct	4320
cttgggtc agggaacttc tggctcacat ctggaaacacc tcctgcctc ctccgcactg	4380
acctcgtgt catcaggctt gtttctctca catttctca ctcacccctc ccaactacca	4440
ttgtacagca gttgtctta catctgcctc ctctgggtt gcatctagca tcgatcactg	4500
gctcagctct ggcaggctgc agctccctt tgaggacacg ggacagctgc tggctctgt	4560
tcacagaggc cactccagca gacccactt accacaactt gtagtgtaaa tccactacaa	4620
cttctgac tacagaaaatg aaatggagac cctctctgct atggatataa aaagaggaaa	4680
cgtggcggtt agtgctctgg ctcaactgta caccaccaacca cagggtgaga agcagccgt	4740
tgttatttc tactcttagg acagatataat gtaattgtt aataaaagca ttcttcata	4800
acatccaaag gaggaaatac actaaattat atttttatttataatc acatgcttaa	4860
ttatataatgg catgttgct ttgaaagaaac ttgtcctta ctgaccagat ctgctgtttg	4920
ctgagacaaa atggctgaca atttggcca tggtgatatac ctccccctt ttctgttagca	4980
ttaggacaga agttattctg gggctgtct gacaactgcag acttgataac tttaagtatt	5040
tggaaagtgtg cttttcatgc tggatgtcat ctcccaaccc tccctgtctg gtaaggcgtt	5100
ccctgcctta gtaagggccg aaacggcttc tttttccctt gttatctcac caggatatta	5160
caatgtgaca gggactatgtt aactacgcca acctggaaat tccaaatata tatataatata	5220
tgtaaagatata ctatacacaat attttatgtt tttgatttgac accagatgac agagaagtgc	5280
atctgagaaa acctattccc aatctccctt ctcttctgc agactgacat gcatatccata	5340
ggttagagata acatitactg ggaaggacat ctatcatcat aaaaaggcagg caagatttc	5400
agactttctt agtggctgaa atagaagcaa aagacgtgtat taaaacaaa atgaaacaaa	5460
aaaaatcaatgt tgataccctgtt ggtttagaca tccagcaaaa aaatatttt tgcaactacca	5520
tcttgtctta agtcctcaga ctggcaagg agaaatgttata tttctacatg atatatgttt	5580
tcacaaaagg aaggagggaa aaaaagaaaa atggcactga ctaaaatctca gctgtggta	5640
taggaaagta attctgcctt acagagattt cagtgatctc tatgtatgtc ctgaagaatt	5700
atgttgtact tttttccccctt attttaat caaacagtgc tttacagagg tcagaatgtt	5760
ttctttactg ttgtcaattt ctattatttc aatacagaac aataacttctt ataaactgaaa	5820
tatatttgcattt attgtatattt atgattgtcc ctgcacccat gaacactccat ccagctgaat	5880
ttcacaattt ctctgtcatc tgccaggcca ttaagtattt catggaaatg ctttgaggaa	5940
cactgcaagt tcatatcata aacacattttt aaatttgatgatgatgatgatgatgatgatgat	6000
ctatgttttgc tggatctcata aaaaaaaatggatgatgatgatgatgatgatgatgatgatgat	6060
gatagattta aatattccatg ctataggaaa gaaaatgcgt ctgccttca ctctgtctc	6120
agttggctcc ttcacatgca tgcttcttta tttctcttat tttgtcaaga aaaaatattgg	6180
tcacgtcttg ttctacttata tgctctgcct agcatggctc agatgcacgt tggatataca	6240
agaaggatca aatgaaacag acttctggtc tggtactaca accatagttaa taagcacact	6300
aactaataat tgcttaattt gttttccatc tetaaggttcc cccatttttt ctgttttctt	6360
aaagatccca atatctggtt gtaactgaatgatgatgatgatgatgatgatgatgatgatgat	6420
cttctctccc atccacatgtt cctgtatggat tagcggaaaca ggcagaaaaac acattgttac	6480
ccagaattaa aactaataat ttgtcttca ttcaatccaa aatggaccta ttgaaactaa	6540
aacttaaccc aatccattt aatgatttttctt atggctcaaa aggtcaaaact tctgaaggaa	6600
acctgtgggt gggtcacaaat tcaggctata tttcccaag ggctcagccaa gtgtctgtac	6660
atacagcttag aagacgtgtat tgcctttagc agtcaagctc gaaaggatgg caactctctg	6720
gaatttacccctt ctctctatata tagtcttacatgatgatgatgatgatgatgatgatgatgat	6780
atttgtctat gtgttgtatc tttaagggtt aagtacccatc gttatccatc ttatataatgtt	6840
tttcacatgtt tggatgtcatt ctgcactatt ttattatgtt taaaagctttt gttttgttt	6900
tcaggaggtt tattttttgtt gctttttat ttcaacatctt ctatccctgt	6960
cgttcaatctt ctgtatgtctt ttgcaggatc ttgtatgttac ttctagccct acagagtgc	7020
cagagagcaaa aatcatgtgtt ttcaactgttacttacatgatgatgatgatgatgatgatgat	7080
ctagaagttt aatccatgtca aagtgcacgt gttatccatc acacaagata aaaaatgtggg	7140
gggtgcataa acgtatatttca ttaataatata agatataatgtt gaaatcttatacata	7200
aaatgagaaa aatgtgtgtt tgatatactca cacacgtggt cagtaaaaaac ttttgaggaa	7260
tttaatacag aaaaatccatc cctgaggccc cagcactcag tacgcataataa aagggctggg	7320
ctctgaagggat cttctgtactt tcacagatata tataatctc agggaaacaa ctgatccat	7380
gctggctcca aagctgtgc ttatataatgtt acactggat atacaatgtt tgacatgttc	7440
agcttcttata atagaaaaca gacagaacaa gtataatct tctattggat tttgtatgtatgt	7500
acaagaatccatc attcgtggc tctgtttttt atgtaacatgtt gcttattttat catgtctgca	7560
tttctttctt gttatgtatgtt caccactaaa attaactcc acagaaagtt tataactacat	7620
tacacatgtca tatctttgag caaagcaaac catacctgaa agtgcataatg agcagaatata	7680

FIG. 8b

FIG. 8c

tccctggagct tccatttgcc agtgggacaa tgagcatgtt ggtgtctgtt cctgtatgg 11580
tctcaggcct tgaggcaggtt tggccctaga agttggctt agaatattaa aaacacatgg 11640
aaatttagct gttgttaaaacg tcttttcaac acagtatcc taaaacattt aaccacgaca 11700
aatttcatac tgattcaat tggatgttt gcatagaatg gtatgtttt cccatgggt 11760
cctgcaatag cccatgtgt gcatggctt ctgaaaagac tgctttagag ggtagaaatg 11820
ttgacacagc agacaatgtt atttcacact aagcagctgt tactgttagt gcttgaactc 11880
taaaaggctt gtatctccat tcctgtgcac tgaggacgtt ctggaaagt tcataaaagg 11940
tttactagt ctaactata tcttcattttt tgccactcaa tggctttt tcacgttcc 12000
ataaattaaat ctatcaaaa atttggatgtt gttaaagcaa ttccaaaat aacatgtaca 12060
taatgtacaa ttatgtatataa gaacagaaaa caggcatagc atatgttaat taggaggact 12120
gtatgttattt tgaataggaa acacaatgtt ataaatgaga attcattgaa atgttagtat 12180
gctaactcaa tctaaattt aaagataaaagg aggcatataa tcacatgtt atttccatca 12240
cttgcacac agacgcataat gatgtttt gtacagctctt aggaaaaaaa gtatgttaga 12300
aaactatgtc attttgatataa gaaatgtgtt gaaatgggtt cccatgttcaaa agagaatacg 12360
tgggttttagg aaaaaaaaaaag tttggataga ggtgtttaga gagaatataat tgaatgtt 12420
tttccatcaa ctggccatggc cagatttttggtaaagagacat tcagtagtta ggcaggaaa 12480
gaaatattac taggtacaaa gcaacatccg taataccaaa agaaaccaat tattccatca 12540
gccaatctcg taatagggtt gaaatgggtt cccatgttcaaa agagaatacg 12600
taactttgtc aatttacatt ttctttttttaatggcaga tataatgtt aactgtgtt 12660
tcatgtactg gtactgtgtt atagatgtt gacataacttga cgactaaact tctgtatttt 12720
aaaaactacaa atttcttgcg aagatgtt cccatgtt tagttaatgtt agagacatgtt 12780
atcagtaattt ggcttaccattt aacaacttgc tccctggagg tcttaatgtt agagacatgtt 12840
ttaaactcaa aagcacagatg tttttttttttaatgtt cccatgttcaaa agaaataaaaca 12900
ggggaggagct ttaagggtt agccatctca ttattttttt tattttaaaga aatggcagca 12960
agccatccaa agaaaaataaa gacagagcagc agaagaaaga gtcatgtt gcttttctat 13020
cttagcaaaa ttaatcttca catgttccatgg aaaaaaccat gacaagacgca atcgttca 13080
aagggtttagt caaaaaaaaaccataatgtt acttagatctt cattttccagg aaggaaatgtt 13140
tgcgccttccatggatctt cattttccatgg tcccttcgc tttttttttttaatgtt aatcaactt 13200
gaaaaactgatcgttcaatggcagttttttttttaatgtt cccatgttcaaa agaaatgtt 13260
ttatcttcgcg tgaatgttggc gggaaaataaa aacccatcatc tttttttttttaatgtt ggcatgtt 13320
attactgtacg tttttttttttaatgtt cccatgttcaatggcagttttttttttaatgtt ggcatgtt 13380
aagatattccatgggttccatggcagttttttttttaatgtt cccatgttcaatggcagttttttttttaatgtt 13440
gttagggctca gagggttccatggcagttttttttttaatgtt cccatgttcaatggcagttttttttttaatgtt 13500
catccattccatgggttccatggcagttttttttttaatgtt cccatgttcaatggcagttttttttttaatgtt 13560
tgggtttttttttaatgtt cccatgttcaatggcagttttttttttaatgtt cccatgttcaatggcagttttttttttaatgtt 13620
gactgttagt atcaggggtaa ataatggaaatgtt tttttttttttaatgtt cccatgttcaatggcagttttttttttaatgtt 13680
aaactgttggac ttaatcttca gggaaaataaa aacactgtt ggtttttttttaatgtt cccatgttcaatggcagttttttttttaatgtt 13740
attcaactttt ctttttacaca gggaaaataaa aacactgtt ggtttttttttaatgtt cccatgttcaatggcagttttttttttaatgtt 13800
gaaatattggc tccatgttcaatggcagttttttttttaatgtt cccatgttcaatggcagttttttttttaatgtt 13860
aaagggtttagt gggggaaaataaa gcaatccatccatggcagttttttttttaatgtt cccatgttcaatggcagttttttttttaatgtt 13920
gtccatgttcaatggcagttttttttttaatgtt cccatgttcaatggcagttttttttttaatgtt cccatgttcaatggcagttttttttttaatgtt 13980
ctatgttcaatggcagttttttttttaatgtt cccatgttcaatggcagttttttttttaatgtt cccatgttcaatggcagttttttttttaatgtt 14040
cttccatggatgttcaatggcagttttttttttaatgtt cccatgttcaatggcagttttttttttaatgtt 14100
atcatgttcaatggcagttttttttttaatgtt cccatgttcaatggcagttttttttttaatgtt 14160
ttgtatgttcaatggcagttttttttttaatgtt cccatgttcaatggcagttttttttttaatgtt 14220
gtcaatgttcaatggcagttttttttttaatgtt cccatgttcaatggcagttttttttttaatgtt 14280
gcaatccatccatggcagttttttttttaatgtt cccatgttcaatggcagttttttttttaatgtt 14340
ttcactgttcaatggcagttttttttttaatgtt cccatgttcaatggcagttttttttttaatgtt 14400
gacatgttcaatggcagttttttttttaatgtt cccatgttcaatggcagttttttttttaatgtt 14460
tgggttggatgttcaatggcagttttttttttaatgtt cccatgttcaatggcagttttttttttaatgtt 14520
ggacaatccatggcagttttttttttaatgtt cccatgttcaatggcagttttttttttaatgtt 14580
tgggttggatgttcaatggcagttttttttttaatgtt cccatgttcaatggcagttttttttttaatgtt 14640
tttacccatggcagttttttttttaatgtt cccatgttcaatggcagttttttttttaatgtt 14700
cagcgttcaatggcagttttttttttaatgtt cccatgttcaatggcagttttttttttaatgtt 14760
tgggttggatgttcaatggcagttttttttttaatgtt cccatgttcaatggcagttttttttttaatgtt 14820
tgtaatgttcaatggcagttttttttttaatgtt cccatgttcaatggcagttttttttttaatgtt 14880
caggagcttgcg tttttttttttaatgtt cccatgttcaatggcagttttttttttaatgtt 14940
aggagacatgttcaatggcagttttttttttaatgtt cccatgttcaatggcagttttttttttaatgtt 15000
atttccatggtgcgttcaatggcagttttttttttaatgtt cccatgttcaatggcagttttttttttaatgtt 15060
gataaggatgttcaatggcagttttttttttaatgtt cccatgttcaatggcagttttttttttaatgtt 15120
gacaactgttcaatggcagttttttttttaatgtt cccatgttcaatggcagttttttttttaatgtt 15180
aggaagacatgttcaatggcagttttttttttaatgtt cccatgttcaatggcagttttttttttaatgtt 15240
gtgtgtgttcaatggcagttttttttttaatgtt cccatgttcaatggcagttttttttttaatgtt 15300
tggtggatgttcaatggcagttttttttttaatgtt cccatgttcaatggcagttttttttttaatgtt 15360

FIG. 8d

agcaaacaga cctgtatga actgtcacac agactgcaga gtgacagagg agggcacgag	15420
gcagtgcgcc cactgcaggg agtggcgctc cttectcaca gcagcgctaa cacttggca	15480
ccaatattca gtagtctgtg gtgatacttt ttccagttc accacacagc attcgcttg	15540
ttctacttgt tttagctttc cccctccaca agataacaca tactttgcca gtcaagtccct	15600
aagacccctaa cttaacagtt agcaaacagg atcttgcaaa agaaggaaaga taacatgaca	15660
ccacccctcac tggtgtataa atagttcaaa tactttccct cacttcccg taaaatttagtt	15720
gattgcaggt caggagataa caggggaact tacttcaaga gagaaaatga tggtaataat	15780
tgtcttggac ttcttggcg tctgggcatttggaaaatgggt actcaaaatc ctgggacgt	15840
ttatccatca cctgatttat tcccaaactg cactatcttcttgcattttgg agttcttac	15900
aattaaatata tactttggct ctctgctatc tcactccctt tcatcttcag catcacttcc	15960
agcacaatttta caggagaaga ctttagactca gagctttagg actcatcata agaggcttc	16020
attgctctgt caccacaccc catatagtc t	16051

FIG. 8e

AATTGAGGAGCTTGTTCCTTGGGTTCTTGGGAGCAGCAGGAAGCACTATGGCGCAGC
GTCAATGACGCTGACGGTACAGGCCAGACAATTATTGCTGGTATAGTCAGCAGCAGA
ACAATTGCTGAGGGCTATTGAGGCACAGCATCTGTTGCAACTCACAGTCTGGGC
ATCAAGCAGCTCCAGGCAAGAATCCTGGCTGGAAAGATACTAAAGGATCAACAGCT
CCTGGTAC

FIG. 9a

AATGTGGGAGGGCAAGGCTTGCATCGGTTGTAACGGGCAAGGCTTGACTGAGGGG
ACAATAGCATTTAGGCAGGCGAAAGCGGGCTTCGGTTGTACCGGTTAGGAGTCCCCTC
AGGATATAGTAGTTCGCTTGCATAGGGAGGGGGAAAT

FIG. 9b

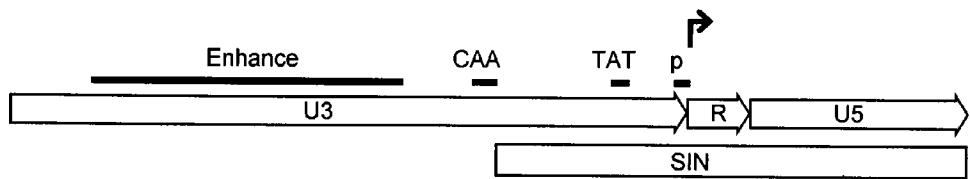


FIG. 10 a

AATGTAGTCTTATGCAATACTCTTGTAGTCTTGCACATGCTTATGTAACGATGAGTTAG	60
CAACATGCCCTTATAAGGAGAGAAAAAGCACCGTGCATGCCGATTGGTGGGAGTAAGGTGG	120
TATGATCGTGGTATGATCGTGCCTGTTAGGAAGGCAACAGACGGGCTAACACGGATTG	180
GACGAACCACTGAATTCCGCATTGCAGAGATATTGTATTAAAGTGCCTAGCTCGATAACAA	240
TAAACGCCATTTGACCATTCAACCATTGGTGTGCACCTGGGTTGATGGCCGGACCGTTG	300
ATTCCCTGRCGACTACCGAGCACATGCATGAAGCAGAAGGCTTCATT	346

FIG. 10 b

TRANSGENE EXPRESSION IN A AVIANS**RELATED APPLICATION INFORMATION**

[0001] This application claims the benefit of U.S. provisional application Nos. 60/930,491, filed May 16, 2007 and 60/994,203, filed Sep. 18, 2007 and is a continuation-in-part of U.S. patent application Ser. No. 11/699,257, filed Jan. 26, 2007 and is also a continuation-in-part of U.S. patent application Ser. No. 11/799,253, filed May 1, 2007 which is a continuation-in-part of U.S. patent application Ser. No. 11/210,165, filed Aug. 23, 2005 which claims the benefit of U.S. provisional application No. 60/640,203, filed Dec. 29, 2004. The disclosures of each of these three U.S. patent applications and two provisional applications are incorporated in their entirety herein by reference.

FIELD OF THE INVENTION

[0002] The present invention relates generally to the use of promoters which function in cells of a transgenic avian (e.g., oviduct cells) such as a transgenic chicken and vectors which contain such promoters. More specifically, the invention relates to recombinant nucleic acids and expression vectors, transfected cells and transgenic animals, for example, transgenic avians such as transgenic chickens, that contain vectors with gene expression controlling regions operably linked to coding sequences.

BACKGROUND

[0003] The field of transgenics was initially developed to understand the action of a single gene in the context of the whole animal and the phenomena of gene activation, expression and interaction. Transgenics technology has also been used to produce models for various diseases in humans and other animals and is among the most powerful tools available for the study of genetics, and the understanding of genetic mechanisms and function. From an economic perspective, the use of transgenic technology to convert animals into "protein factories" for the production of specific proteins or other substances of pharmaceutical interest (Gordon et al., 1987, *Biotechnology* 5: 1183-1187; Wilmut et al., 1990, *Theriogenology* 33: 113-123) offers significant advantages over more conventional methods of protein production by gene expression.

[0004] One system useful for expressing foreign proteins is the avian reproductive system. The production of an avian egg begins with formation of a large yolk in the ovary of the hen. The unfertilized oocyte or ovum is positioned on top of the yolk sac. After ovulation, the ovum passes into the infundibulum of the oviduct where it is fertilized, if sperm are present, and then moves into the magnum of the oviduct, which is lined with tubular gland cells. These cells secrete the egg-white proteins, including ovalbumin, lysozyme, ovomucoid, conalbumin and ovomucin, into the lumen of the magnum where they are deposited onto the avian embryo and yolk. In the past exogenous protein production has been performed in the avian reproductive system specifically targeting the avian oviduct.

[0005] Advantages of targeting the avian oviduct for exogenous protein expression can include proper folding and post-translation modification of the target protein, the ease of product recovery, and a shorter developmental period of birds such as chickens compared to other animal species.

[0006] Directing expression of a heterologous gene product in the oviduct of a transgenic avian can be significantly advantageous over ubiquitous expression in the bird. That is, the consequences of ubiquitous expression of a bioactive gene product in a host animal may be undesirable. For example, in certain instances the ubiquitous presence of the recombinant protein may be harmful to the development of the avian which can kill the bird. Additionally, the bird's health may be negatively effected leading to reduced levels of protein production.

[0007] By weight, approximately 60% of an avian egg is composed of albumen which is composed of four major protein components; ovalbumin, ovomucoid, lysozyme and ovotransferrin with ovalbumin and ovomucoid being present in the greatest quantities.

[0008] The ovalbumin promoter, ovomucoid promoter and lysozyme promoter have been successfully employed for the production of heterologous (exogenous) protein in the oviduct of transgenic avians in the past. See, for example, U.S. Pat. Nos. 6,875,588, issued Apr. 5, 2005; U.S. Pat. No. 7,176,300, issued Feb. 13, 2007; U.S. Pat. No. 7,199,279, issued Apr. 3, 2007; and US patent publication No. 2006/0130170, published Jun. 15, 2006 (the disclosures of each of these three issued patents and one published patent application are incorporated in their entirety herein by reference) which discloses the production of exogenous protein in the avian oviduct facilitated by various avian promoters which are primarily or exclusively expressed in the oviduct. Though expression levels in avians using the promoters and fragments of the promoters disclosed in these issued patents and published application have been at useful levels, the yeilds have typically been well below 0.1 mg/ml of egg white.

[0009] What is needed is a system that will provide for high level expression of an exogenous coding sequence in the cells of a transgenic avian, in particular, in the oviduct cells (e.g., tubular gland cells) of a transgenic avian.

SUMMARY OF THE INVENTION

[0010] The present invention meets this need and more. After years of exogenous protein production in transgenic avian oviduct tissue with modest yield the inventors of the present invention have discovered that such production levels can be boosted by about 10 fold to about 100 fold and more by employing new compositions and methods as disclosed herein.

[0011] In one aspect, the invention is directed to transgenic avians (e.g., chicken, turkey, quail) containing in their genome an exogenous nucleotide sequence which includes a promoter component and a SIN vector. Typically, the promoter component is linked to a coding sequence exogenous to the avian, i.e., the coding sequence is not normally or naturally present in the avian. Typically, the exogenous nucleotide sequence is integrated into the genome of the avian. In one particularly useful embodiment, the promoter component functions or expresses primarily in the oviduct (e.g., tubular gland cells) of an avian. For example, the promoter component may be an oviduct specific promoter. For example, the promoter component may be one of an avian ovomucoid promoter component, an avian ovalbumin promoter component, an avian lysozyme promoter compo-

ment and an avian ovoinhibitor promoter component (i.e., conalbumin promoter component).

[0012] SIN vectors have been shown by the inventors to be particularly useful for increasing the quantity of exogenous protein produced in the avian oviduct. This effect can be further enhanced when the SIN vector is also an SC negative vector (i.e., a vector not containing a selectable marker cassette with a functional promoter).

[0013] The invention also includes methods of making the transgenic avians of the invention and methods of producing an exogenous protein using transgenic avians of the invention. In one embodiment, the transgenic avian has a nucleotide sequence in its genome comprising a vector which is at least one of a SIN vector and an SC negative vector. Typically, the nucleotide sequence includes a promoter component linked to an exogenous coding sequence.

[0014] In one useful embodiment, the exogenous coding sequence is expressed in avian oviduct cells and is secreted from the oviduct cells. For example, the exogenous coding sequence may be expressed in tubular gland cells. In one embodiment, the exogenous protein is deposited in a hard shell egg laid by the transgenic avian. In one embodiment, the exogenous protein is a human protein. In one embodiment, the exogenous protein is a therapeutic protein, e.g., a cytokine.

[0015] In one embodiment, the transgenic avian contains an exogenous nucleotide sequence in its genome which has a SC negative vector and a promoter component linked to an exogenous coding sequence encoding an exogenous protein. In one embodiment, the SC negative vector is also a SIN vector.

[0016] In one aspect, avian leukosis virus vector (ALV), a murine leukemia virus (MLV) retroviral vector, moloney murine leukemia Virus (MMLV) and a lentiviral vector can be used in accordance with the invention.

[0017] The invention includes chimeric transgenic avians and fully transgenic germline avians which can be obtained from germline chimeras as is understood by a practitioner of skill in the art of poultry breeding.

[0018] The invention also includes gene expression controlling regions or promoters having a nucleotide sequence (i.e., DNA sequence) similar or identical to the following sequences numbered 1 to 8. In a particularly useful embodiment of the invention, the fragments are listed top to bottom in the 5' to 3' linear order in which they are present on a single DNA molecule. For example, the 3' end of the 3.5 kb OV fragment of sequence 1 would be covalently linked to the 5' end of the 5' UTR-5' portion and the 3' end of the 5' UTR-5' portion would be covalently linked to the 5' end of 5' UTR-3' portion. However, the invention is not limited to any particular order of the fragments and intervening nucleotide sequences may be present between the fragments.

[0019] 1. 3.5 kb OV fragment (includes DHS I, II & III)

[0020] 5' UTR-5' portion (from Exon L)

[0021] 5' UTR-3' portion (from Exon 1);

[0022] 2. 3.5 kb OV fragment (includes DHS I, II & III)

[0023] 5' UTR-5' portion (from Exon L)

[0024] Intron A

[0025] 5' UTR-3' portion (from Exon 1)

[0026] 3' UTR;

[0027] 3. 3.5 kb OV fragment (includes DHS I, II & III)

[0028] 5' UTR-5' portion (from Exon L)

[0029] Intron A

[0030] 5' UTR-3' portion (from Exon 1);

[0031] 4. 3.5 kb OV fragment (includes DHS I, II & III)

[0032] 5' UTR-5' portion (from Exon L)

[0033] 5' UTR-3' portion (from Exon 1)

[0034] 3' UTR;

[0035] 5. 3.5 kb OV fragment (includes DHS I, II & III)

[0036] 5' UTR-5' portion (from Exon L)

[0037] Intron A

[0038] 5' UTR-3' portion (from Exon 1)

[0039] 3' UTR/DHS A (bp 13576 to 15163 of SEQ ID NO: 22)

[0040] 6. 3.5 kb OV fragment (includes DHS I, II & III)

[0041] 5' UTR-5' portion (from Exon L)

[0042] 5' UTR-3' portion (from Exon 1)

[0043] 3' UTR/DHS A (bp 13576 to 15163 of SEQ ID NO: 22)

[0044] 7. 3.5 kb OV fragment (includes DHS I, II & III)

[0045] 5' UTR-5' portion (from Exon L)

[0046] Intron A

[0047] 5' UTR-3' portion (from Exon 1)

[0048] partial 3' UTR

[0049] RRE (Rev response element) FIG. 9a

[0050] 8. ALV CTE (FIG. 9b) inserted 5' of 3.5 kb OV fragment

[0051] 3.5 kb OV fragment (includes DHS I, II & III)

[0052] 5' UTR-5' portion (from Exon L)

[0053] Intron A

[0054] 5' UTR-3' portion (from Exon 1)

[0055] partial 3' UTR;

[0056] Coordinates of some of the elements for specific ovalbumin constructs disclosed herein (e.g., constructs 1 to 8 described above) are shown in the 16051 bp ovalbumin DNA segment of SEQ ID NO: 22 as follows:

[0057] 3.5 kb OV fragment (includes DHS I, II & III); Start: 3199 End: 6659 of FIG. 8 (SEQ ID NO: 22);

[0058] 1.4 kb OV fragment (includes DHS I & II); Start: 5209 End: 6659 of FIG. 8 (SEQ ID NO: 22);

[0059] 3.8 kb OV fragment: Start: 2863 End: 6659 of FIG. 8 (SEQ ID NO: 22);

[0060] 5.2 kb OV fragment: Start: 1463 End: 6659 of FIG. 8 (SEQ ID NO: 22);

[0061] 5' UTR-5' portion (from Exon L): Start: 6659 End: 6705 of FIG. 8 (SEQ ID NO: 22);

[0062] 5' UTR-3' portion (from Exon 1): Start: 8295 End: 8311 of FIG. 8 (SEQ ID NO: 22);

[0063] 3' UTR: Start: 13576 End: 14209 of FIG. 8 (SEQ ID NO: 22);

[0064] partial 3' UTR: Start 13576 End: 13996 of FIG. 8 (SEQ ID NO: 22);

[0065] Intron A: Start: 6706 End: 8294 of FIG. 8 (SEQ ID NO: 22);

[0066] Intron E: Start: 10010 End: 10968 of FIG. 8 (SEQ ID NO: 22);

[0067] Exon L: Start: 6659 End: 6705 of FIG. 8 (SEQ ID NO: 22);

[0068] Exon 1: Start: 8295 End: 8478 of FIG. 8 (SEQ ID NO: 22);

[0069] Exon 2: Start: 8731 End: 8781 of FIG. 8 (SEQ ID NO: 22);

[0070] Exon 3: Start: 9363 End: 9491 of FIG. 8 (SEQ ID NO: 22);

[0071] Exon 4: Start: 9892 End: 10009 of FIG. 8 (SEQ ID NO: 22);

[0072] Exon 5: Start: 10968 End: 11110 of FIG. 8 (SEQ ID NO: 22);

[0073] Exon 6: Start: 11442 End: 11597 of FIG. 8 (SEQ ID NO: 22);

[0074] Exon 7: Start: 13180 End: 13575 of FIG. 8 (SEQ ID NO: 22);

[0075] +1 SITE: Start: 6659 End: 6659 of FIG. 8 (SEQ ID NO: 22);

[0076] ATG: Start: 8312 End: 8312 of FIG. 8 (SEQ ID NO: 22);

[0077] PolyA: Start: 14204 End: 14209 of FIG. 8 (SEQ ID NO: 22);

[0078] TATA: Start: 6627 End: 6632 of FIG. 8 (SEQ ID NO: 22);

[0079] DHS A: Start: 13858 End: 15163 of FIG. 8 (SEQ ID NO: 22);

[0080] DHS IV: Start: 459 End: 859 of FIG. 8 (SEQ ID NO: 22);

[0081] DHS III: Start: 3253 End: 3559 of FIG. 8 (SEQ ID NO: 22);

[0082] DHS II: Start: 5629 End: 6009 of FIG. 8 (SEQ ID NO: 22); and

[0083] DHS I: Start: 6359 End: 6659 of FIG. 8 (SEQ ID NO: 22).

[0084] Promoter constructs are also contemplated that have a nucleotide sequence 80% identical and 85% identical

and 90% identical and 91% identical and 92% identical and 93% identical and 94% identical and 95% identical and 96% identical and 97% identical and 98% identical and 99% identical to each of the promoter constructs disclosed herein, such as those described above (i.e., 1 to 8 above).

[0085] The invention also contemplates promoter constructs which correspond to promoter constructs 1 through 8 above in which the 3.5 kb OV fragment is replaced with the 3.8 kb OV fragment. The invention also contemplates promoter constructs which correspond to promoter constructs 1 through 8 in which the 3.5 kb OV fragment is replaced with the 5.2 kb OV fragment.

[0086] Promoter constructs are also contemplated for each of the above specified recombinant promoters (i.e., 1 to 8) in which DHS III is omitted from the construct.

[0087] Promoter constructs are contemplated corresponding to each of constructs 2, 3, 5, 7 and 8 above in which Intron A is replaced with Intron E which may lead to increased levels of exogenous protein production. Intron A and E have DNA sequences that induce alignment of histones in surrounding DNA regions. Such alignment can provide for transcriptional regulation of the OV gene. Without wishing to be bound to any particular theory or mechanism of operation, substitution of Intron E with Intron A may provide a preferential spacing of histones that result from use of Intron E (i.e., the periodicity for Intron A is 202 bp±5 bp, for Intron E is 196 bp±5 bp). For example, it is believed that the packaging of DNA by histones leads to topological alteration of DNA the manipulation of which can lead to preferential alignment of binding sites for proteins responsible for the transcription regulation (e.g., transcription factors) leading to an enhanced level of transcription.

[0088] Also included in the invention are vector constructs, and other constructs and nucleotide sequences disclosed herein, having a nucleotide sequence 80% identical and 85% identical and 90% identical and 91% identical and 92% identical and 93% identical and 94% identical and 95% identical and 96% identical and 97% identical and 98% identical and 99% identical to each vector construct and other constructs and nucleotide sequences disclosed herein.

[0089] Any useful combination of features described herein is included within the scope of the present invention provided that the features included in any such combination are not mutually inconsistent as will be apparent from the context, this specification, and the knowledge of one of ordinary skill in the art. Additional objects and aspects of the present invention will become more apparent upon review of the detailed description set forth below when taken in conjunction with the accompanying figures, which are briefly described as follows.

BRIEF DESCRIPTION OF THE FIGURES

[0090] FIG. 1 shows a circular map of the pALV-SIN-4.2-Lys-IFNa-2B vector. The sequence of pALV-SIN-4.2-Lys-IFNa-2B is shown in SEQ ID NO: 1.

[0091] FIG. 2 is a bar graph illustrating expression levels of IFNa in the egg white of a transgenic quail. G0 quail was produced by injection of pALV-SIN-4.0-Lys-IFNa-2B retroviral vector transduction particles into Japanese quail embryos.

[0092] FIG. 3 shows a circular map of the pSIN-OV-3.5-I-CTLA4-inv vector. The nucleotide sequence of pSIN-OV-3.5-I-CTLA4-inv is shown in SEQ ID NO: 19.

[0093] FIG. 4 shows a circular map of the pSIN-3.9-OM-CTLA4-Fc vector. The nucleotide sequence of pSIN-3.9-OM-CTLA4-Fc is shown in SEQ ID NO: 20.

[0094] FIG. 5 shows a circular map of the pBS-OM-4.4 vector. The nucleotide sequence of pBS-OM-4.4 is shown in SEQ ID NO: 23.

[0095] FIG. 6 shows a circular map of the pAVIJCRA137.91.1.2 vector. The nucleotide sequence of pAVIJCRA137.91.1.2 is shown in SEQ ID NO: 24.

[0096] FIG. 7 shows a circular map of the pSIN-1.8-OM-IFNa-2B plasmid vector. The nucleotide sequence of pSIN-1.8-OM-IFNa-2B is shown in SEQ ID NO: 21.

[0097] FIG. 8a-e (SEQ ID NO: 22) shows a segment of a chicken ovalbumin gene.

[0098] FIG. 9a (SEQ ID NO: 25) shows the RRE (rev responsive element) sequence of a lenti virus. FIG. 9b (SEQ ID NO: 26) shows the ALV CTE (constitutive transport element) sequence.

[0099] FIG. 10a shows a diagram of the segment deleted from an exemplary retroviral LTR (ALV) to make a SIN vector. FIG. 10b (SEQ ID NO: 29) shows the sequence of the LTR shown in 10a. The underlined sequence is the deleted sequence.

DETAILED DESCRIPTION

Definitions

[0100] The term “animal” is used herein to include all vertebrate animals, including avians and may include humans. It also includes an individual animal in all stages of development, including embryonic and fetal stages.

[0101] The term “antibody” as used herein refers to polyclonal and monoclonal antibodies and functional fragments thereof. An antibody includes modified or derivatised antibody variants that retain the ability to specifically bind an epitope. Antibodies are capable of selectively binding to a target antigen or epitope. Antibodies may include, but are not limited to polyclonal antibodies, monoclonal antibodies (mAbs), humanized and other chimeric antibodies, single chain antibodies (scFvs), Fab fragments, F(ab')₂ fragments and disulfide-linked Fvs (sdFv) fragments.

[0102] The term “avian” as used herein refers to any species, subspecies or strain of organism of the taxonomic class avia, such as, but not limited to, such organisms as chicken, turkey, duck, goose, quail, pheasants, parrots, finches, hawks, crows and ratites including ostrich, emu and cassowary. The term includes the various known strains of *Gallus gallus*, or chickens, (for example, White Leghorn, Brown Leghorn, Barred-Rock, Sussex, New Hampshire, Rhode Island, Australorp, Minorca, Amrox, California Gray, Italian Partridge-colored), as well as strains of turkeys, pheasants, quails, duck, ostriches and other poultry commonly bred in commercial quantities.

[0103] The phrase “based on” or “derived from” as in a retroviral vector being based on or derived from a particular retrovirus or based on a nucleotide sequence of a particular

retrovirus mean that the genome of the retroviral vector contains a substantial portion of the nucleotide sequence of the genome of the particular retrovirus. The substantial portion may be a particular gene or nucleotide sequence such as the nucleotide sequence encoding the gag, pol and/or env proteins or other structural or functional nucleotide sequence of the virus genome such as sequences encoding the LTRs or may be substantially the complete retrovirus genome, for example, most (e.g., more than 60% or more than 70% or more than 80% or more than 90%) or all of the retrovirus genome, as will be apparent from the context in the specification as the knowledge of one skilled in the art. Examples of retroviral vectors that are based on or derived from a retrovirus are the NL retroviral vectors (e.g., NLB) which are based on the ALV retrovirus as disclosed in Cosset et al, *Journal of Virology* (1991) vol 65, p 3388-3394.

[0104] The term “coding sequence” and “coding region” as used herein refer to nucleotide sequences and nucleic acid sequences, including both RNA and DNA, that encode genetic information for the synthesis of an RNA, a protein, or any portion of an RNA or protein. Nucleotide sequences that are not naturally part of a particular organism's genome are referred to as “foreign nucleotide sequences,” “heterologous nucleotide sequences” or “exogenous nucleotide sequences”. “Heterologous proteins” are proteins encoded by foreign, heterologous or exogenous nucleotide sequences and therefore are often not naturally expressed in the cell. A nucleotide sequence that has been isolated and then reintroduced into the same type (e.g., same species) of organism is not considered to be a naturally occurring part of a particular organism's genome and is therefore considered exogenous or heterologous.

[0105] The term “construct” as used herein refers to a linear or circular nucleotide sequence such as DNA that has been assembled from more than one segments of nucleotide sequence which have been isolated from a natural source or have been chemically synthesized, or combinations thereof.

[0106] The term “complementary” as used herein refers to two nucleic acid molecules that can form specific interactions with one another. In the specific interactions, an adenine base within one strand of a nucleic acid can form two hydrogen bonds with thymine within a second nucleic acid strand when the two nucleic acid strands are in opposing polarities. Also in the specific interactions, a guanine base within one strand of a nucleic acid can form three hydrogen bonds with cytosine within a second nucleic acid strand when the two nucleic acid strands are in opposing polarities. Complementary nucleic acids as referred to herein, may further comprise modified bases wherein a modified adenine may form hydrogen bonds with a thymine or modified thymine, and a modified cytosine may form hydrogen bonds with a guanine or a modified guanine.

[0107] The term “cytokine” as used herein refers to any secreted amino acid sequence that affects the functions of cells and is a molecule that modulates interactions between cells in the immune, inflammatory or hematopoietic responses. A cytokine includes, but is not limited to, monokines and lymphokines regardless of which cells produce them. For instance, a monokine is generally referred to as being produced and secreted by a mononuclear cell, such as a macrophage and/or monocyte. Many other cells however also produce monokines, such as natural killer cells, fibro-

blasts, basophils, neutrophils, endothelial cells, brain astrocytes, bone marrow stromal cells, epidermal keratinocytes and B-lymphocytes. Lymphokines are generally referred to as being produced by lymphocyte cells. Examples of cytokines include, but are not limited to, Interleukin-1 (IL-1), Interleukin-6 (IL-6), Interleukin-8 (IL-8), Tumor Necrosis Factor-alpha (TNF-alpha) and Tumor Necrosis Factor beta (TNF-beta).

[0108] The term "expressed" or "expression" as used herein refers to the transcription from a gene to give an RNA nucleic acid molecule at least complementary in part to a region of one of the two nucleic acid strands of the gene. The term "expressed" or "expression" as used herein can also refer to the translation of RNA to produce a protein or peptide.

[0109] The term "expression vector" as used herein refers to a nucleic acid vector that comprises a gene expression controlling region, such as a promoter or promoter component, operably linked to a nucleotide sequence coding at least one polypeptide.

[0110] The term "fragment" as used herein can refer to, for example, an at least about 10, 20, 50, 75, 100, 150, 200, 250, 300, 500, 1000, 2000, 5000, 6,000, 8,000, 10,000, 20,000, 30,000, 40,000, 50,000 or 60,000 nucleotide long portion of a nucleic acid that has been constructed artificially (e.g., by chemical synthesis) or by cleaving a natural product into multiple pieces, using restriction endonucleases or mechanical shearing, or enzymatically, for example, by PCR or any other polymerizing technique known in the art, or expressed in a host cell by recombinant nucleic acid technology known to one of skill in the art. The term "fragment" as used herein may also refer to, for example, an at least about 5, 10, 20, 30, 40, 50, 75, 100, 150, 200, 250, 300, 400, 500, 1000, 2000, 5000, 6,000, 8,000 or 10,000 amino acid portion of an amino acid sequence, which portion is cleaved from a naturally occurring amino acid sequence by proteolytic cleavage by at least one protease, or is a portion of the naturally occurring amino acid sequence synthesized by chemical methods or using recombinant DNA technology (e.g., expressed from a portion of the nucleotide sequence encoding the naturally occurring amino acid sequence) known to one of skill in the art. "Fragment" may also refer to a portion, for example, of about 5%, about 10%, about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80% about 90% about 95% or about 99% of a particular nucleotide sequence or amino acid sequence.

[0111] "Functional portion" or "functional fragment" are used interchangeably and as used herein means a portion or fragment of a whole capable of performing, in whole or in part, a function of the whole. For example, a biologically functional portion of a molecule means a portion of the molecule that performs a biological function of the whole or intact molecule. For example, a functional portion of a gene expression controlling region is a fragment or portion of the specified gene expression controlling region that, in whole or in part, regulates or controls gene expression (e.g., facilitates either in whole or in part) in a biological system (e.g., a promoter). Functional portions may be of any useful size. For example, a functional fragment may range in size from about 20 bases in length to a length equal to the entire length of the specified sequence minus one nucleotide. In another example, a functional fragment may range in size

from about 50 bases in length to a length equal to the entire length of the specified sequence minus one nucleotide. In another example, a functional fragment may range in size from about 50 bases in length to about 20 kb in length. In another example, a functional fragment may range in size from about 500 bases in length to about 20 kb in length. In another example, a functional fragment may range in size from about 1 kb in length to about 20 kb in length. In another example, a functional fragment may range in size from about 0.1 kb in length to about 10 kb in length. In another example, a functional fragment may range in size from about 20 bases kb in length to about 10 kb in length.

[0112] The term "gene expression controlling region" as used herein refers to nucleotide sequences that are associated with a coding sequence and which regulate, in whole or in part, expression of the coding sequence, for example, regulate, in whole or in part, the transcription of the coding sequence. Gene expression controlling regions may be isolated from a naturally occurring source or may be chemically synthesized and can be incorporated into a nucleic acid vector to enable regulated transcription in appropriate cells. The "gene expression controlling regions" may precede, but is not limited to preceding, the region of a nucleic acid sequence that is in the region 5' of the end of a coding sequence that may be transcribed into mRNA.

[0113] The terms "heterologous", "exogenous" and "foreign" are used interchangeably herein and in general refer to a biomolecule such as a nucleic acid or a protein that is not normally found in a certain organism or in a certain cell, tissue or other component contained in or produced by an organism. For example, a protein that is heterologous or exogenous to an egg is a protein that is not normally found in the egg. As used herein, the terms "heterologous", "exogenous" and "foreign" with reference to nucleic acids, such as DNA and RNA, are used interchangeably and refer to nucleic acid that does not occur naturally as part of a chromosome, a genome or cell in which it is present or which is found in a location(s) and/or in amounts that differ from the location(s) and/or amounts in which it occurs in nature. It can be nucleic acid that is not endogenous to the genome, chromosome or cell and has been exogenously introduced into the genome, chromosome or cell. Examples of heterologous DNA include, but are not limited to, a DNA comprising a gene expression control region and DNA that encodes a product or products, for example, RNA or protein product. Examples of heterologous DNA include, but are not limited to, gene expression controlling regions or promoters disclosed herein once isolated from the avian and as used thereafter, e.g., after re-introduction into an avian genome.

[0114] The term "isolated nucleic acid" as used herein covers, for example, (a) a DNA which has the sequence of part of a naturally occurring genomic molecule but is not flanked by at least one of the sequences that flank that part of the molecule in the genome of the species in which it naturally occurs; (b) a nucleic acid which has been incorporated into a vector or into the genomic DNA of a prokaryote or eukaryote in a manner such that the resulting vector or genomic DNA is not identical to naturally occurring DNA from which the nucleic acid was obtained; (c) a separate molecule such as a cDNA, a genomic fragment, a fragment produced by polymerase chain reaction (PCR), ligase chain reaction (LCR) or chemical synthesis, or a restriction fragment; (d) a recombinant nucleotide sequence that is part of

a hybrid gene, i.e., a gene encoding a fusion protein, and (e) a recombinant nucleotide sequence that is part of a hybrid sequence that is not naturally occurring. Isolated nucleic acid molecules of the present invention can include, for example, natural allelic variants as well as nucleic acid molecules modified by nucleotide deletions, insertions, inversions, or substitutions.

[0115] The term “nucleic acid” as used herein refers to any linear or sequential array of nucleotides and nucleosides, for example cDNA, genomic DNA, mRNA, tRNA, oligonucleotides, oligonucleosides and derivatives thereof. For ease of discussion, non-naturally occurring nucleic acids may be referred to herein as constructs. Nucleic acids can include bacterial plasmid vectors including expression, cloning, cosmid and transformation vectors such as, animal viral vectors such as, but not limited to, modified adenovirus, influenza virus, polio virus, pox virus, retroviruses such as avian leukosis virus (ALV) retroviral vector, a murine leukemia virus (MLV) retroviral vector, and a lentivirus vector, and the like and fragments thereof. In addition, the nucleic acid can be an LTR of an avian leukosis virus (ALV) retroviral vector, a murine leukemia virus (MLV) retroviral vector, or a lentivirus vector and fragments thereof. Nucleic acids can also include NL vectors such as NLB, NLD and NLA and fragments thereof and synthetic oligonucleotides such as chemically synthesized DNA or RNA. Nucleic acids can include modified or derivatised nucleotides and nucleosides such as, but not limited to, halogenated nucleotides such as, but not only, 5-bromouracil, and derivatised nucleotides such as biotin-labeled nucleotides.

[0116] The term “vector” and “nucleic acid vector” as used herein refers to a natural or synthetic single or double stranded plasmid or viral nucleic acid molecule that can be transfected or transformed into cells and replicate independently of, or within, the host cell genome. A circular double stranded vector can be linearized by treatment with an appropriate restriction enzyme based on the nucleotide sequence of the vector. A nucleic acid can be inserted into a vector by cutting the vector with restriction enzymes and ligating the desired pieces together.

[0117] The term “operably linked” refers to an arrangement of elements wherein the components so described are configured so as to perform their usual function. Gene expression controlling regions or promoters (e.g., promoter components) operably linked to a coding sequence are capable of effecting the expression of the coding sequence. The controlling sequences need not be contiguous with the coding sequence, so long as they function to direct the expression thereof. Thus, for example, intervening untranslated yet transcribed sequences can be present between a promoter sequence and the coding sequence and the promoter sequence can still be considered “operably linked” to the coding sequence.

[0118] The term “oviduct specific promoter” as used herein refers to promoters and promoter components which are functional, i.e., provide for transcription of a coding sequence, to a large extent, for example, primarily (i.e., more than 50% of the transcription product produced in the animal by a particular promoter type being produced in oviduct cells) or exclusively in oviduct cells of a bird. Examples of oviduct specific promoters include, ovalbumin promoter, ovomucoid promoter, ovoinhibitor promoter, lysozyme pro-

moter and ovotransferrin promoter and functional portions of these promoters, e.g., promoter components.

[0119] The terms “percent sequence identity” “percent identity” as used in, for example, “% identical” and “percent sequence homology” “percent homology”, as used in, for example, “% homology” and “percent sequence similarity” each refer to the degree of sequence matching between two nucleic acid sequences or two amino acid sequences as determined using the algorithm of Karlin & Atschul (1990) Proc. Natl. Acad. Sci. 87: 2264-2268, modified as in Karlin & Atschul (1993) Proc. Natl. Acad. Sci. 90: 5873-5877. Such an algorithm is incorporated into the NBLAST and XBLAST programs of Atschul et al. (1990) T. Mol. Biol. Q15: 403-410. BLAST nucleotide searches are performed with the NBLAST program, score=100, wordlength =12, to obtain nucleotide sequences homologous to a nucleic acid molecule of the invention. BLAST protein searches are performed with the XBLAST program, score=50, wordlength=3, to obtain amino acid sequences homologous to a reference amino acid sequence. To obtain gapped alignments for comparison purposes, Gapped BLAST is utilized as described in Atschul et al. (1997) Nucl. Acids Res. 25: 3389-3402. When utilizing BLAST and Gapped BLAST programs, the default parameters of the respective programs (e.g. XBLAST and NBLAST) are used. Other algorithms, programs and default settings may also be suitable such as, but not only, the GCG-Sequence Analysis Package of the U.K. Human Genome Mapping Project Resource Centre that includes programs for nucleotide or amino acid sequence comparisons.

[0120] The terms “polynucleotide,” “oligonucleotide”, “nucleotide sequence” and “nucleic acid sequence” can be used interchangeably herein and include, but are not limited to, coding sequences, i.e., polynucleotide(s) or nucleic acid sequence(s) which are transcribed and translated into polypeptide in vitro or in vivo when placed under the control of appropriate regulatory or control sequences; controlling sequences, e.g., translational start and stop codons, promoter sequences, ribosome binding sites, polyadenylation signals, transcription factor binding sites, transcription termination sequences, upstream and downstream regulatory domains, enhancers, silencers, DNA sequences to which a transcription factor(s) binds and alters the activity of a gene’s promoter either positively (induction) or negatively (repression) and the like. No limitation as to length or to synthetic origin are suggested by the terms described herein.

[0121] As used herein the terms “polypeptide” and “protein” refer to a polymer of amino acids of three or more amino acids in a serial array, linked through peptide bonds. The term “polypeptide” includes proteins, protein fragments, protein analogues, oligopeptides and the like. The term “polypeptides” includes polypeptides as defined above that are encoded by nucleic acids, produced through recombinant technology (e.g., isolated from a transgenic bird), or synthesized. The term “polypeptides” further contemplates polypeptides as defined above that include chemically modified amino acids or amino acids covalently or noncovalently linked to labeling ligands.

[0122] The term “promoter” as used herein refers to a DNA sequence useful to initiate transcription initiation by an RNA polymerase in an avian cell. A “promoter component” is a DNA sequence that can, by itself or, in combination with

other DNA sequences effect or facilitate transcription. Specific promoter components such as ovalbumin promoter components, ovomucoid promoter components and lysozyme promoter components and other promoters and promoter components disclosed and claimed herein do not describe a specific promoter sequence. Rather, they encompass any sequence or sequence fragment of the respective promoter that is useful to effect or facilitate transcription of a coding sequence. For example, an ovomucoid promoter component includes, without limitation, the about 1.8 kb, the about 3.9 kb and the about 10 kb ovomucoid promoters disclosed in U.S. Publication No. 11/649,543, published May 17 2007, which is incorporated in its entirety herein by reference. "Promoter components" can also encompass rearranged gene expression controlling regions which function to initiate RNA transcription and hybrid DNA molecules composed of naturally occurring DNA sequences and/or synthetic DNA sequences which function to initiate RNA transcription.

[0123] The terms "recombinant nucleic acid" and "recombinant DNA" as used herein refer to combinations of at least two nucleic acid sequences that are not naturally found in a eukaryotic or prokaryotic cell. The nucleic acid sequences may include, but are not limited to, nucleic acid vectors, gene expression regulatory elements, origins of replication, suitable gene sequences that when expressed confer antibiotic resistance, protein-encoding sequences and the like. The term "recombinant polypeptide" is meant to include a polypeptide produced by recombinant DNA techniques such that it is distinct from a naturally occurring polypeptide either in its location, purity or structure. Generally, such a recombinant polypeptide will be present in a cell in an amount different from that normally observed in nature.

[0124] As used herein, the term "regulatory sequences" includes promoters, enhancers, and other elements that may control gene expression.

[0125] An "SC negative vector" is a vector that does not contain a selectable or screenable cassette marker having a functional promoter. The promoter may be deleted in whole or in part or may be inactivated by a nucleotide sequence insertion. Screenable cassettes include, without limitation, DNA sequences for antibiotic resistance markers such as neomycin resistance and DNA sequences for other selectable markers such as GFP or lacZ.

[0126] A "SIN vector" is a self-inactivating vector. In particular, a SIN vector is a retroviral vector having an altered genome such that upon integration into genomic DNA of the target cell (e.g., avian embryo cells) the 5' LTR of the integrated retroviral vector will not function as a promoter. For example, a portion or all of the nucleotide sequence of the retroviral vector that results in the U3 region of the 5' LTR of the retroviral vector once integrated may be deleted or altered in order to reduce or eliminate promoter activity of the 5' LTR. In certain examples, deletion of the CAAT box and/or the TAATA box from U3 of the 5' LTR can result in a SIN vector, as is understood in the art.

[0127] A "SIN/SC negative vector" is a vector, i.e., a retroviral vector, that is both a SIN vector and a SC negative vector.

[0128] The term "sense strand" as used herein refers to a single stranded DNA, molecule from a genomic DNA that

may be transcribed into RNA and translated into the natural polypeptide product of the gene. The term "antisense strand" as used herein refers to the single strand DNA molecule of a genomic DNA that is complementary with the sense strand of the gene.

[0129] A "therapeutic protein" or "pharmaceutical protein" is a substance that, in whole or in part, makes up a drug. In particular, "therapeutic proteins" and "pharmaceutical proteins" include an amino acid sequence which in whole or in part makes up a drug.

[0130] The terms "transcription regulatory sequences" and "gene expression control regions" and "promoter components" as used herein refer to nucleotide sequences that are associated with a nucleic acid sequence and which regulate the transcriptional expression of a coding sequence. Exemplary transcription regulatory sequences include enhancer elements, hormone response elements, steroid response elements, negative regulatory elements, and the like. The "transcription regulatory sequences" may be isolated and incorporated into a vector nucleic acid to enable regulated transcription in appropriate cells of portions of the vector DNA. The "transcription regulatory sequence" may precede, but is not limited to, the region of a nucleic acid sequence that is in the region 5' of the end of a protein coding sequence that may be transcribed into mRNA. Transcriptional regulatory sequences may also be located within a protein coding region, in regions of a gene that are identified as "intron" regions, or may be in regions of nucleic acid sequence that are in the region of nucleic acid.

[0131] The terms "transformation" and "transfection" as used herein refer to the process of inserting a nucleic acid into a host. Many techniques are well known to those skilled in the art to facilitate transformation or transfection of a nucleic acid into a prokaryotic or eukaryotic organism. These methods involve a variety of techniques, such as treating the cells with high concentrations of salt such as, but not only a calcium or magnesium salt, an electric field, detergent, or liposome mediated transfection, to render the host cell competent for the uptake of the nucleic acid molecules.

[0132] As used herein, a "transgenic animal" is any non-human animal, such as an avian species, including the chicken, in which one or more of the cells of the avian may contain heterologous nucleic acid introduced by way of human intervention, such as by transgenic techniques known in the art (see, for example, US patent publication No. 2007/0243165, published Oct. 18, 2007, the disclosure of which is incorporated in its entirety herein by reference) including those disclosed herein. The nucleic acid is introduced into an animal, directly or indirectly by introduction into a precursor of the cell, by way of deliberate genetic manipulation, such as by microinjection or by infection with a recombinant virus. The term genetic manipulation does not include classical cross-breeding, or in vitro fertilization, but rather is directed to the introduction of a recombinant DNA molecule. This molecule may be integrated within a chromosome, or it may be extrachromosomally replicating DNA. In the typical transgenic animal, the transgene can cause cells to express a recombinant form of the target protein or polypeptide. The terms "chimeric animal" or "mosaic animal" are used herein to refer to animals in which a transgene is found, or in which the recombinant nucleotide sequence

is expressed in some but not all cells of the animal. A germ-line chimeric animal contains a transgene in its germ cells and can give rise to a transgenic animal in which most or all cells of the offspring animal will contain the transgene.

[0133] As used herein, the term "transgene" means a nucleic acid sequence (encoding, for example, a human protein) that is partly or entirely heterologous, i.e., foreign, to the transgenic animal or cell into which it is introduced, or, is homologous to an endogenous gene of the transgenic animal or cell into which it is introduced, but which is designed to be inserted, or is inserted, into the animal's genome in such a way as to alter the genome of the cell into which it is inserted (e.g., it is inserted at a location which differs from that of the natural gene or its insertion results in a knockout). A transgene according to the present invention can include a vector of the invention (e.g., SIN vector) which contains sequences useful for exogenous protein production in an avian (e.g., in an avian oviduct).

[0134] Techniques useful for isolating and characterizing the nucleic acids and proteins of the present invention are well known to those of skill in the art and standard molecular biology and biochemical manuals may be consulted to select suitable protocols for use without undue experimentation. See, for example, Sambrook et al, 1989, "Molecular Cloning: A Laboratory Manual", 2nd ed., Cold Spring Harbor, the content of which is herein incorporated by reference in its entirety.

Abbreviations:

[0135] Abbreviations used herein may include the following: aa, amino acid(s); bp, base pair(s); cDNA, DNA complementary to an RNA; nt, nucleotide(s); kb, 1000 base pairs; μ g, microgram; ml, milliliter; ng, nanogram.

Description:

[0136] SIN vectors designed and used in accordance with the invention can reduce or eliminate promoter interference of promoters of interest which are employed in transgenic avians. In a particularly useful embodiment, the promoters (i.e., promoter components) of interest preferentially express their gene product in oviduct cells or oviduct tissue, e.g., oviduct specific promoters. Examples of such promoters (e.g., promoter components) include but are not limited to, functional portions of the ovalbumin, lysozyme, conalbumin (i.e., ovotransferrin), ovomucoid, ovomucin, and/or ovoinhibitor gene expression controlling regions or promoter regions. In one embodiment, the promoter of interest is a combination or a fusion of one or more promoters or a fusion of a fragment of one or more promoters such as ovalbumin, lysozyme, conalbumin (i.e., ovotransferrin), ovomucoid, ovomucin, and/or ovoinhibitor promoters with another promoter or promoter fragment such as a viral promoter (e.g., an LTR promoter).

[0137] SIN vectors have been shown to be particularly useful with oviduct specific promoters. Without wishing to limit the invention to any particular theory or mechanism of operation it is believed that oviduct specific promoters can be particularly susceptible to influences of a retroviral LTR promoter. As a result, SIN vectors are particularly useful when employed in combination with avian oviduct specific promoters.

[0138] In one particularly useful embodiment, a SIN vector is produced in which an interfering promoter (e.g., an

LTR promoter) that can at least partially inhibit transcription of a coding sequence operably linked to an oviduct specific promoter of the invention is inactivated, for example, by a deletion, insertion or transposition of all or part of the interfering promoter sequence. For example, the vector pALV-SIN-4.2-Lys-IFNa-2B, shown in FIG. 1, the 3' RAV2 LTR has a deletion in the enhancer such that when the retroviral region integrates, the 5' LTR is inactivated, as is understood in the art. For a detailed diagrammatic of an LTR deletion, see FIG. 10.

[0139] In one useful embodiment of the invention, a SIN vector is employed that is also an SC negative vector to produce a SIN/SC negative vector. The combination of SC negative vector and SIN vector can result in a vector with a substantially reduced amount of promoter interference compared to a vector that is only a SIN vector or only a SC negative vector. For example, pALV-SIN-4.2-Lys-IFNa-2B as well as other SIN vectors disclosed in the Examples also lacks an antibiotic resistance marker making it both a SC negative vector and a SIN vector.

[0140] SIN vectors, SC negative vectors and SIN/SC negative vectors are contemplated for use in accordance with the invention in any useful avian such as chicken, quail and turkey to produce chimeras including germ-line chimeras and progeny birds produced using breeding techniques such as those known to practitioners of ordinary skill in the art. In addition, it is contemplated that an SC negative retroviral vector (which is a non-SIN vector) will also enhance or increase the quantity of exogenous protein produced in a transgenic avian relative to a transgenic avian produced with essentially the same retroviral vector that is not a SC negative vector.

[0141] Without wishing to limit the invention to any particular theory or mechanism of operation it is believed that the lack of a selectable marker cassette decreases the presence of promoter elements such as enhancers which would otherwise be in cis and in close proximity to the promoter employed for exogenous protein production in avian oviduct cells (e.g., oviduct specific promoters). This close proximity may allow for interference by the transcription regulating elements of the marker gene with the promoter of interest, i.e., the promoter employed for exogenous protein production. However, the invention contemplates that marker gene coding sequences, for example, and without limitation, neomycin resistance coding sequence and beta lactamase coding sequence, may be operably linked to a promoter (i.e., second promoter) which does not interfere with the promoter employed for exogenous protein production in avian oviduct cells (i.e., first promoter). For example, it is contemplated that if the marker promoter and the promoter of interest are the same or similar promoters, interference by the selectable cassette will be minimized or eliminated. For example, a second ovalbumin promoter operably linked to a marker gene coding sequence may not interfere with a first ovalbumin promoter employed for exogenous protein production in avian oviduct cells.

[0142] The invention contemplates the employment of any useful oviduct specific promoter, and oviduct specific promoter fragments, in vectors of the invention for exogenous protein expression in avians. For example, promoters and useful (e.g., functional) fragments of promoters (e.g., promoter components) disclosed in US patent publication No.

2005/0176047, filed Jan. 31, 2005, the disclosure of which is incorporated in its entirety herein by reference, and US patent publication No. 2007/0124829, filed Jan. 26, 2007, the disclosure of which is incorporated in its entirety herein by reference, and US patent publication No. 2006/0130170, filed Dec. 11, 2003, the disclosure of which is incorporated in its entirety herein by reference, are contemplated for use in conjunction with SIN vectors and SC negative vectors and SIN/SC negative vectors in accordance with the invention.

[0143] The invention also contemplates other promoters and transcriptionally functional portions thereof (e.g., promoter components) for use as promoters of interest in accordance with the invention such as a cytomegalovirus (CMV) promoter, a rous-sarcoma virus (RSV) promoter, a β -actin promoter (e.g., a chicken β -actin promoter) a murine leukemia virus (MLV) promoter, a mouse mammary tumor virus (MMTV) promoter.

[0144] The invention also includes various ovalbumin promoter components which are contemplated for use in producing exogenous proteins in transgenic avians. Each of the promoters disclosed herein are contemplated for use in vectors in accordance with the invention.

[0145] Examples of vectors of the invention which contain recombinant ovalbumin DNA are shown below. The fragments are listed top to bottom in the 5' to 3' linear order in which they are present on a single DNA molecule. For example, the 3' end of the 3.5 kb OV fragment of sequence 1 would be covalently linked to the 5' end of the 5' UTR-5' portion and the 3' end of the 5' UTR-5' portion would be covalently linked to the 5' end of 5' UTR-3' portion.

[0146] 1. pSIN-OV-3.5-CSI

[0147] 3.5 kb OV fragment (includes DHS I, II & III)

[0148] 5' UTR-5' portion (from Exon L)

[0149] 5' UTR-3' portion (from Exon 1)

[0150] 2. pSIN-OV-3.5-Int-CSI-inv

[0151] 3.5 kb OV fragment (includes DHS I, II & III)

[0152] 5' UTR-5' portion (from Exon L)

[0153] Intron A

[0154] 5' UTR-3' portion (from Exon 1)

[0155] 3' UTR

[0156] 3. pSIN-OV-3.5-Int-CSI

[0157] 3.5 kb OV fragment (includes DHS I, II & III)

[0158] 5' UTR-5' portion (from Exon L)

[0159] Intron A

[0160] 5' UTR-3' portion (from Exon 1)

[0161] 4. pSIN-OV-3.5-CSI-UTR-inv

[0162] 3.5 kb OV fragment (includes DHS I, II & III)

[0163] 5' UTR-5' portion (from Exon L)

[0164] 5' UTR-3' portion (from Exon 1)

[0165] 3' UTR

[0166] 5. pSIN-OV-3.5-Int-CSI-LUTR-inv

[0167] 3.5 kb OV fragment (includes DHS I, II & III)

[0168] 5' UTR-5' portion (from Exon L)

[0169] Intron A

[0170] 5' UTR-3' portion (from Exon 1)

[0171] 3' UTR/DHS A (bp 13576 to 15163 of FIG. 8);

[0172] 6. pSIN-OV-3.5-CSI-LUTR-inv

[0173] 3.5 kb OV fragment (includes DHS I, II & III)

[0174] 5' UTR-5' portion (from Exon L)

[0175] 5' UTR-3' portion (from Exon 1)

[0176] 3' UTR/DHS A (bp 13576 to 15163 of FIG. 8);

[0177] 7. pSIN-OV-3.5-Int-CSI-RRE

[0178] 3.5 kb OV fragment (includes DHS I, II & III)

[0179] 5' UTR-5' portion (from Exon L)

[0180] Intron A

[0181] 5' UTR-3' portion (from Exon 1)

[0182] partial 3' UTR

[0183] RRE (Rev response element) FIG. 9a

[0184] Construct 7 includes RRE to allow transport of the unspliced RNA genome to the cytoplasm and thus may enhance packaging of intact retroviral RNA. RRE is only active in presence of the Rev protein. Rev activity is provided in the form of DNA encoding the Rev, RNA encoding the Rev, and/or the Rev protein, which is well known in the art and commercially available (e.g., Invitrogen, Inc.), during the transient transfection of retroviral components. Thus the intron will be present in the transgene contained in the genome of the transgenic bird produced by the virus particles (the rev protein is not present in the cells of the transgenic bird). As a result the RNA should be spliced in the oviduct cells of a laying hen resulting in an enhanced level of protein expression compared to a same transgenic bird having the same transgene without the intron.

[0185] 8. pSIN-CTE-OV-3.5-Int-CSI

[0186] ALV CTE (FIG. 9b_k) inserted 5' of 3.5 kb OV fragment

[0187] 3.5 kb OV fragment (includes DHS I, II & III)

[0188] 5' UTR-5' portion (from Exon L)

[0189] Intron A

[0190] 5' UTR-3' portion (from Exon 1)

[0191] partial 3' UTR

[0192] Coordinates for some of the elements for the above eight vectors are described elsewhere in the application. For example, coordinates of sequences from the ovalbumin nucleotide sequence are described in the Summary section above. CSI means a coding sequence of interest, i.e., nucleotide sequence encoding the protein desired to be expressed in a transgenic avian oviduct.

[0193] SIN vectors, SIN/SC negative vectors and SC negative vectors for use in accordance with the invention include vectors such as Avian Leukemia/Leukosis Viruses

(ALV), for example, and without limitation, RAV-0, RAV-1, RAV-2; Avian Sarcoma Viruses (ASV); Avian Sarcoma/Acute Leukemia Viruses (ASLV) including, without limitation, Rous Sarcoma Virus (RSV); Fujinami Sarcoma Viruses (FSV); Avian Myeloblastosis Viruses (AMV); Avian Erythroblastosis Viruses (AEV); Avian Myelocytomatosis Viruses (MCV), for example, and without limitation, MC29; Reticuloendotheliosis Viruses (REV), for example, and without limitation, Spleen Necrosis Virus (SNV). The invention also contemplates other useful retroviral vector, including, without limitation, retroviral vectors based upon Murine Leukemia Viruses (MLV); Molony Murine Sarcoma Viruses (MMSV); Moloney Murine Leukemia Viruses (MMLV); and lentiviruses (e.g., human immunodeficiency virus (HIV), feline immunodeficiency virus (FIV), bovine immunodeficiency virus (BIV) and simian immunodeficiency virus (SIV) which are altered to be SIN vectors, SIN/SC negative vectors or SC negative vectors as is understood by a practitioner of ordinary skill in the art.

[0194] In one very specific embodiment, a portion of the 5' LTR of a modified ALV vector disclosed in Cosset et al, J of Virology (1991) vol 65, no. 6, p 3388-3394, the disclosure of which is incorporated in its entirety herein by reference, is deleted to produce a SIN vector. In particular, nucleotides 1 to 173 were deleted from the ALV based vector LTR sequence shown in SEQ ID NO: 29. Specific deletions from 5' LTR sequences useful to produce SIN vectors from other vectors which can be used in avian transgenesis can be determined by a practitioner of ordinary skill in the art.

[0195] In one particularly useful embodiment, the invention is drawn to the production of therapeutic proteins which may be produced in the oviduct of a transgenic avian, such as a chicken, in accordance with the invention. Exemplary proteins for production in accordance with the invention include, without limitation, erythropoietin, GM-CSF, interferon β , fusion protein, CTLA4-Fc fusion protein, growth hormones, cytokines, structural proteins, interferon, lysozyme, β -casein, albumin, α -1 antitrypsin, antithrombin III, collagen, factors VIII, IX, X (and the like), fibrinogen, lactoferrin, protein C, tissue-type plasminogen activator (tPA), somatotropin, and chymotrypsin, immunoglobulins, antibodies, immunotoxins, factor VIII, b-domain deleted factor VIII, factor VIIa, factor IX, anticoagulants; hirudin, alteplase, tpa, reteplase, tpa, tpa—3 of 5 domains deleted, insulin, insulin lispro, insulin aspart, insulin glargin, long-acting insulin analogs, glucagons, tsh, follitropin-beta, fsh, pdgh, inf-beta, inf-alpha 1, ifn-alpha 2, inf-beta, inf-beta 1b, ifn-beta 1a, ifn-gamma, ifn-gamma 1b, il-2, il-1 1, hbsag, ospa, dornase-alpha dnase, beta glucocerebrosidase, tnf-alpha, il-2-diphtheria toxin fusion protein, tnfr-lgg fragment fusion protein laronidase, dnaases, alefacept, tosimumab, murine mab, alemtuzumab, rasburicase, agalsidase beta, teriparatide, parathyroid hormone derivatives, adalimumab (IgG1), anakinra, nesiritide, human b-type natriuretic peptide (hBnP), colony stimulating factors, pegvisomant, human growth hormone receptor antagonist, recombinant activated protein c, omalizumab, immunoglobulin e (IgE) blocker, liratumomab, tiuxetan, ACTH, glucagon, somatostatin, somatotropin, thymosin, parathyroid hormone, pigmentary hormones, somatomedin, luteinizing hormone, chorionic gonadotropin, hypothalamic releasing factors, etanercept, antidiuretic hormones, prolactin and thyroid stimulating hormone, an immunoglobulin polypeptide, immunoglobulin polypeptide D region, immunoglobulin polypeptide J

region, immunoglobulin polypeptide C region, immunoglobulin light chain, immunoglobulin heavy chain, an immunoglobulin heavy chain variable region, an immunoglobulin light chain variable region and a linker peptide. Production of each of these, and other, proteins is contemplated using methods, vectors and promoters of the invention.

[0196] The present invention is further illustrated by the following examples, which are provided by way of illustration and should not be construed as limiting. The contents of all references, published patents and patents cited throughout the present application are hereby incorporated by reference in their entireties.

EXAMPLE 1

Production of pALV-SIN-4.2-Lys-IFNa-2B

[0197] The vector pALV-SIN-4.2-Lys-IFNa-2B (shown in FIG. 1) was constructed and is shown in FIG. 1. The sequence of pALV-SIN-4.2-Lys-IFNa-2B is shown in SEQ ID NO: 1. The 4.2 Kb lysozyme promoter spans from nucleotides 4810 to 9008 of SEQ ID NO: 1. The lysozyme signal peptide coding sequence spans from nucleotides 9037 to 9090 of SEQ ID NO: 1. The interferon alpha 2b coding sequence spans from nucleotides 9091 to 9585 of SEQ ID NO: 1. Other components of the sequence include LTRs spanning from nucleotides 4000 to 4345 and from nucleotides 725 to 897 of SEQ ID NO: 1.

[0198] pALV-SIN-4.2-Lys-IFNa-2B can be constructed by a variety of methods which are apparent to a practitioner of skill in the art. However, the method believed to be the most useful for making the vector is as follows: A 3427 bp region of pNLB-CMV-IFN-alpha2B (disclosed in U.S. patent application Ser. No. 11/167,052, filed Jun. 24, 2005, the disclosure of which is incorporated in its entirety herein by reference) is PCR amplified using primers ATGCGCGCAT-TGGTAATTGATCGGCTGG (Primer ALV-SIN-1, SEQ ID NO: 2) and ATATCGGGCGCGGTACCGC-CCGGGCATCGATATCAAGCTTACGGTTCACT AAC-GAGCTCTGCTTATATAGACCTCCCA (Primer ALV-SIN-2, SEQ ID NO: 3). The product is digested with BssHII and Not I resulting in a 3428 bp fragment which can be isolated by gel purification. A 1436 bp region of pNLB-CMV-IFN-alpha2B is PCR amplified with primers ATATCGGGC-CGCGTCGACGGCCGGCCAGATCTGCT-GAGCCGGTCGCTACCA TTACCAAGT (Primer ALV-SIN-3, SEQ ID NO: 4) and ATACCGTATTCCCTAACGATCACGTCG (Primer ALV-SIN-4, SEQ ID NO: 5). The resulting product is digested with Not I and Mlu I yielding a 1438 bp fragment which is isolated by gel purification. A Bluescript II SK vector containing a BssHII stuffer fragment is digested with BssHII resulting in a linearized Bluescript vector of 2788 bp which is gel purified and then ligated to the 3428 bp and 1438 bp PCR products to yield JCR.A108.49.5.24.

[0199] JCR.A108.49.5.24 is digested with Hind III and the resulting 6823 bp fragment is circularized by ligation to yield JCR.A108.76.1.1.

[0200] A 1175 bp region of JCR.A108.76.1.1 is PCR amplified with primers CTGAAGTGAAGGAATGTAAG (Primer ALV-SIN-5, SEQ ID NO: 6) and GCGCGTCT-CATCCCCCTCCCTATGCAAAAG (Primer ALV-SIN-6, SEQ ID NO: 7) and the resulting fragment is digested with

Blp I and Esp3I producing a 1030 bp fragment which is isolated by gel purification. A 660 bp region of JCR.A108.76.1.1 is PCR amplified with primers GGGCGTCTCAGGGACGGATTGGACGAAC-CACTGAATT (Primer ALV-SIN-7, SEQ ID NO: 8) and TTAGTGCTTACGGCACCTC (Primer ALV-SIN-8, SEQ ID NO: 9) and digested with Esp3I and DraIII resulting in a 596 bp fragment which is isolated by gel purification. JCR.A108.76.1.1 is digested with DraIII and Blp I and the 5024 bp linear vector is ligated to the 1030 and 596 bp PCR fragments to produce pALV-SIN.

[0201] pALV-SIN is digested with BamHI and the 4795 bp linear vector is isolated by gel purification. A 4815 bp region of JCR.115.93.1.2 (disclosed in US patent application No. 2007/0124829, filed Jan. 26, 2007,) is PCR amplified with primers GACGGATCCGATACCGTGC-CCTATTGTTGTTGCTTC (Primer ALV-SIN-9, SEQ ID NO: 10) and TAACGGATCCTAGACTTTACTCCT-TAGA (Primer ALV-SIN-10, SEQ ID NO: 11) and is digested with BamHI. The resulting 4802 fragment is ligated to the 4795 bp linear pALV-SIN to produce pALV-SIN-4.0-Lys-IFNa-2B.

EXAMPLE 2

Production of Transgenic Ouail Using pALV-SIN-4.2-Lys-IFNa-2B

[0202] Transduction particles of the vector pALV-SIN-4.2-Lys-IFNa-2B were produced in fibroblast cells as disclosed in US patent publication No. 2007/0077650, published Apr. 5, 2007, entitled: Rapid Production of High Titer Virus, the disclosure of which is incorporated in its entirety herein by reference.

[0203] Fertilized Japanese quail eggs were windowed essentially according to the Speknsijder procedure disclosed in U.S. Pat. No. 5,897,998, the disclosure of which is incorporated in its entirety herein by reference. Eighty eggs were injected in the subgerminal cavity with about 7 microliters (approximately 7×10^4 viral particles total) of pALV-SIN-4.2-Lys-IFNa-2B transducing particles per egg. Since no selectable marker is used in pALV-SIN-4.2-Lys-IFNa-2B, the concentration of viral particles is estimated based upon past results for viral particle production where a selectable cassette or marker was used in the vector which allowed for particle quantification. Sixteen chicks hatched about 18 days after injection and human IFN levels were measured by IFN ELISA from serum samples collected from chicks 12 weeks after hatch. None were positive for the IFN protein in the serum.

[0204] In order to identify G0 quail which contained the interferon alpha 2 coding sequence containing transgene in their genome, DNA was extracted from blood of the birds and the DNA samples were subjected to Taqman® analysis on a 7700 Sequence Detector (Perkin Elmer).

[0205] Eggs from eight G0 quail were tested for the presence of the IFN protein in the egg white by ELISA. Quail No. 4 was found to have significant levels of IFN in egg white from her eggs. FIG. 2 shows a bar graph illustrating expression levels of IFN in the egg white of Quail No. 4. Quail No. 4 expressed IFN-alpha-2 at 0.45 μ g/ml of egg white, which is a high level of expression for a G0 avian. There was no interferon alpha 2 detected in the blood of

Quail No. 4 which is particularly significant. For example, in certain instances the recombinant protein may be harmful to the development or health of the avian when present in the blood which can kill the bird or can lead to reduced levels of protein production.

EXAMPLE 3

Production of Transgenic Ouail Using pALV-SIN-6.5-Lys-IFNa-2B

[0206] The 4.2 kb lysozyme promoter of vector pALV-SIN-4.2-Lys-IFNa-2B is removed and replaced with a 6.5 kb lysozyme promoter corresponding to about nucleotides 5363 to 11863 of SEQ ID NO: 12, using standard methodologies known to practitioners of skill in the art, resulting in pALV-SIN-6.5-Lys-IFNa-2B. Transduction particles of the new vector pALV-SIN-6.5-Lys-IFNa-2B are produced as disclosed in US patent publication No. 2007/0077650, published Apr. 5, 2007.

[0207] Fertilized chicken eggs or Japanese quail eggs are windowed and about 7×10^4 pALV-SIN-6.5-Lys-IFNa-2B transducing particles are injected into the subgerminal cavity of each egg. Eggs hatch 21 or 18 days after injection and chimeric birds are identified that contain the active transgene in their genome, as described in Example 2. Fully transgenic G1 birds which contain the transgene in their genome are produced from chimeras using methods known in the art, i.e., crossing male chimeras with non-transgenic females.

EXAMPLE 4

Production of Vector pSIN-OV-3.5-I-CTLA4-Fc-Inv

[0208] This vector includes the ovalbumin Dnase hypersensitive sites (DHS) I, II and III, the first exon (exon L), the first intron and the CTLA4-Fc fusion protein coding sequence inserted in frame with the ATG of second exon (exon 1) and with the 3' untranslated region (UTR). The expression cassette is inserted in the inverse orientation into an avian leukosis virus (ALV) vector, which was made self-inactivating (SIN) by deletion of nucleotides 1 to 173 of the ALV LTR sequence shown in SEQ ID NO: 29.

[0209] The vector was constructed as follows: pNLB-3.9-OM-CTLA4-Fc, disclosed in Example 20 of US patent publication No. 2007/0113299, published May 17, 2007, the disclosure of which is incorporated in its entirety herein by reference, was cut with Nae I and Not I. The Not I site was filled in by Klenow reaction. The resulting 8125 bp fragment was gel purified, religated, producing pOM-3.9-CTLA4-dSacl. pOM-3.9-CTLA4-dSacl was cut with EcoRI and Kpn I and the 8115 bp fragment gel purified. The 3' UTR of the chicken ovalbumin gene was PCR'd from BAC 26, disclosed in US patent publication No. 2006/0130170, published Jun. 15, 2006, with the primers 5'-GCAGGAATTCAAAGAAGAAAGCTGAAAAAC-3' (SEQ ID NO: 13) and 5'-GCGGGTACCTTCAAATACTACAAGTGAAC-3' (SEQ ID NO: 14). The 3' UTR PCR was cut with Eco RI and Kpn I and the 684 bp fragment gel purified. The 8115 bp fragment of pOM-3.9-CTLA4-dSacl was ligated to the 684 bp fragment of 3' UTR PCR, producing pOM-3.9-CTLA4-OV3' UTR.

[0210] The 3.5 kb OV promoter region, exon L, first intron and the UTR of exon 1 was PCR amplified with BAC26 as

a template and with primers 5'-GGCCTCGAGTCAAGT-TCTGAGTAGGTTTAGTG-3' (SEQ ID NO: 15) and 5'-GCGCGTCTCTGTCTAGAGCAAACAGCA-GAACAGTAAAATG-3' (SEQ ID NO: 16). The PCR product was cut with Xho I and Esp3I and the 5094 bp product was gel purified.

[0211] A 5' portion of the CTLA4-Fc gene was PCR amplified using pOM-3.9-CTLA4 as a template and primers 5'-GCGCGTCTCAAGACAACTCAGAGTTCAC-CATGGGTGACTGCTCACACAG-3' (SEQ ID NO: 17) and 5'-GGCCGGGAGTTTGTCAAGAGATTGGG-3' (SEQ ID NO: 18). The PCR product was cut with Esp3I and SacI and the 384 bp product gel purified.

[0212] pOM-3.9-CTLA4-OV3' UTR was cut with Sac I and Xho I, the 4473 bp product gel purified and ligated to the 5094 bp OV PCR fragment and 384 bp CTLA4-Fc fragment, producing pOV-3.5-I-CTLA4.

[0213] pALV-SIN, disclosed, for example, in Example 10 of parent case US patent publication No. 2007/0124829, published May 31, 2007, was cut with Mfe I and Xho I, filled in with Klenow and the 4911 bp fragment gel purified.

[0214] pOV-3.5-I-CTLA4 was cut with XhoI and BamHI, filled in with Klenow and the 6957 bp fragment gel purified. This fragment was ligated into the 4911 bp fragment of pAVI-SIN such that the CTLA4-Fc gene and flanking expression elements are in the opposite orientation of the ALV long terminal repeats, producing pSIN-OV-3.5-I-CTLA4-inv. See FIG. 3 and SEQ ID NO: 19. Such opposite orientation may be preferred if the coding sequence of interest (i.e., CSI) in the transgene contains one or more introns or splice sites.

EXAMPLE 5

Production Of Transgenic Ouaill Using SIN-OV-3.5-I-CTLA4-inv

[0215] Retroviral particles containing the pSIN-OV-3.5-I-CTLA4-inv vector (FIG. 3) and pseudotyped with the VSV envelope protein were produced as described in US patent publication No. 2007/0077650, published Apr. 5, 2007. Virus particles were harvested at 48 hours post-transfection, concentrated and on the same day, approximately 4 microliters of the virus suspension containing about 1×10^5 particles was injected into the subgerminal cavity of stage X quail eggs. Eggs were resealed and hatched.

[0216] ALV has a CTE element in the 3' end of its genome that allows transport of unspliced retroviral RNA to the cytoplasm. In pSIN-OV-3.5-I-CTLA4-inv, due to the inverse orientation of the OV promoter relative to the LTRs, the CTE is upstream of the OV promoter such that the CTE element is only in RNAs derived from the 5' LTR promoter and not in RNAs transcribed by the OV promoter. Therefore, any RNA transcribed by the OV promoter should be spliced prior to being transported into the cytoplasm.

[0217] Egg whites from chimeric quail were assayed using an ELISA for CTLA4-Fc. One quail was found to have CTLA4-Fc in her egg white at approximately 16 μ g/ml. The transgenesis level in these quail is estimated at about 5% or less. Thus the level in a G1 should be substantially greater. It is expected that similar levels would be seen in a chicken

and other avians, as the quail and chicken ovalbumin genes, as well as ovalbumin genes of other avians, are very similar.

EXAMPLE 6

Construction of pSIN-3.9-OM-CTLA4-Fc

[0218] The 4907 bp Mfe I/Xho I fragment of pALV-SIN (disclosed, for example, in US patent publication No. 2007/0124829, published May 31, 2007) was ligated to the 5115 XhoI/EcoRI fragment of pOM-3.9-CTLA4 (shown in FIG. 15 of US patent publication No. 2007/0113299, published May 17, 2007), producing pSIN-3.9-OM-CTLA4-Fc Shown in FIG. 4 and SEQ ID NO: 20,

EXAMPLE 7

Production Of Transgenic Chickens Using pSIN-3.9-OM-CTLA4-Fc

[0219] Retroviral particles pseudotyped with the VSV envelope protein and containing the pSIN-3.9-OM-CTLA4-Fc (FIG. 4) vector were produced as described in US patent publication No. 2007/0077650, published Apr. 5, 2007. Virus was harvested at 48 hours post-transfection, concentrated and on the same day approximately 7 microliters injected into the subgerminal cavity of stage X eggs. Eggs were resealed and incubated until hatch.

[0220] Egg white from hens was assayed using an ELISA for CTLA4-Fc. One hen was found to have CTLA4-Fc in her egg white at approximately 0.37 μ g/ml. The transgenesis level in these hens is estimated at 5% or less. Thus the levels in a G1 should be substantially greater.

[0221] Any useful coding sequence may be inserted in place of the CTLA4-Fc coding sequence for production of the corresponding product.

EXAMPLE 8

Construction of pSIN-1.8-OM-IFNa-2B

[0222] The 1051 bp Nco I-Nco I fragment from pBS-OM-4.4 (FIG. 5 SEQ ID NO: 23) was inserted into the Nco I site of pAVIJCR-A137.91.1.2 (FIG. 6 SEQ ID NO: 24), thereby inserting the 1 kb ovomucoid promoter in front of an IFN coding sequence and SV40 polyadenylation signal and producing plkb-OM-IFNMM. A 1816 bp Cla I-Sac I fragment of p1kb-OM-IFNMM was inserted into the 6245 bp Cla I-Sac I fragment of pBS-OM-4.4, thereby fusing the 4.4 kb ovomucoid fragment with the IFN coding sequence and producing p4.40M-IFNMM. The 8511 bp BamH I-Sal I fragment of pBS-OMUP-10 was ligated to the 5148 bp BamH I-Sal I fragment of p4.40M-IFN, thereby placing the 10 kb ovomucoid promoter in front of the IFN coding sequence, producing p10-OM-IFN.

[0223] Region 2487-4889 of p10.0-OM-IFN was PCR amplified with primers 5'-GGCGTCGACGGATCCGT-TAACCTAGAAGTAGTGGATCTGCCCCGTGTC-TGAC-3' (SEQ ID NO: 27) and 5'-GGCCTCGAGCCTA-GACTTTTACTCCTTAGA-3' (SEQ ID NO: 28). The PCR product was digested with Sal I and Xho I and the 2435 bp isolated. pALV-SIN (disclosed, for example, in US patent publication No. 2007/0124829, published May 31, 2007) was digested with Xho I and the 4915 bp fragment isolated

and ligated to the 2435 bp fragment, producing pSIN-1.8-OM-IFNa-2B, shown in FIG. 7 and SEQ ID NO: 21.

EXAMPLE 9

Production Of Transgenic Chickens Using
pSIN-1.8-OM-IFNa-2B

[0224] Retroviral particles having the pSIN-1.8-OM-IFNa-2B transgene and pseudotyped with the VSV envelope protein were produced as described in US patent publication No. 2007/0077650, published Apr. 5, 2007. Virus was harvested at 48 hours post-transfection, concentrated and, on the same day, approximately 7 microliters injected into the subgerminal cavity of stage X eggs. Eggs were resealed and incubated until hatch.

[0225] Egg whites from hens were assayed using an ELISA for IFNa-2B. Hens were found to have IFNa-2B in egg white at levels that ranged from 1.5 to 865.0 ng/ml with IFNa-2B levels at least about 600 fold lower in the serum. The transgenesis level in these hens is estimated at 5% or less.

[0226] Five G0 sperm positive roosters were bred to non-transgenic hens. Of 1251 offspring, 30 carried the pSIN-1.8-OM-IFNa-2B transgene. Six of the 30 hens expressed human IFN- α -2B at 34.1 to 165.6 μ g/ml of egg white. Each of the six hens had a single copy of the transgene. Serum levels of human IFN- α -2B were 0.3 to 9.2 ng/ml which, on average, was 30,000 fold lower than egg white levels.

EXAMPLE 10

Production Of Transgenic Chickens Using
Lentivirus Vectors And Moloney Murine Leukemia
Virus

[0227] The invention specifically contemplates the employment of other retroviral vectors that are useful in avian transgenesis to be used in accordance with the present invention. Such vectors can be employed to produce transgenic avians, for example, in the same way as ALV-SIN vectors have been used in Examples' 1 to 9 above. For example, Moloney Murine Leukemia Virus (MMLV) and Lentiviral Vectors can be used in accordance with the invention, each, for example, by deleting one or more of the CAAT box; the TAATA box; and enhancer contained in the U3 region of the upstream LTR of each virus to produce a SIN vector. Alternatively, or in addition (i.e., in conjunction with a SIN vector) no transcriptionally active markers or selectable cassettes are included in each of the retroviral vectors.

[0228] Although preferred embodiments of the invention have been described using specific terms, devices, and methods, such description is for illustrative purposes only. The words used are words of description rather than of limitation. It is to be understood that changes and variations may be made by those of ordinary skill in the art without departing from the spirit or the scope of the present inventions which is set forth in the following claims. In addition, it should be understood that aspects of the various embodiments may be interchanged both in whole or in part.

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 29

<210> SEQ ID NO 1

<211> LENGTH: 9597

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: pALV-SIN-4.2-Lys-IFNa-2B Vector

<400> SEQUENCE: 1

gatccccccgt gctgcagaac cgagcggcta ttgacttctt gctcttagct cacggccatg	60
gctgtgagga cattgcggga atgtgttgg tcaatctgag tgatcacagt gagtctatac	120
agaagaagt ccagctaattt aaggaacatg tcaataagat cggcgtaac aacgacccaa	180
tccgaagttt gctgcgagga ttattcggag gaataggaga atggccgta cacttgctga	240
aaggactgtc ttggggcattt gtatgttatct tttttgtatgt agtatgtttt ctttgccttt	300
tgcattatgtt atcttagatgtt attcgaaaga tgattgataa ttcaactcggtt tatcgcgagg	360
aatataaaaa aattacagga ggcttataag cagccccaaa gaagagcgtt ggcgagttct	420
tgtatccgtt gtatgtatgtt gttggatgg taattgtatgtt gctggcacgc ggaatataagg	480
aggtcgtttaat tttttttttt gttttttttt gttttttttt gttttttttt gttttttttt	540
gtatgtatgtt gttttttttt gttttttttt gttttttttt gttttttttt gttttttttt	600
ttgttaacggg caaggcttga ctgaggggac aatagcatgt ttaggcggaa agcggggctt	660
cggttgtacg cggtttaggag tcccttcagg atatagtagt ttcgtttttt catagggagg	720

-continued

gggacggatt ggacgaacca ctgaattccg cattgcagag atattgtatt taagtgccta	780
gctcgataca ataaacgcca tttgaccatt caccacattg gtgtgcacct ggggtgatgg	840
ccggaccggtt gattccctgr cgactacgag cacatgcatg aagcagaagg cttcatttgg	900
tgacccccacgtt gatcgatcgta gggaaatacgc gctcaactggc cgatcgatcgtaa caacgtcgatcgta	960
actggggaaaa ccctggcggtt acccaactta atcgcccttgc agcacatccc cctttcgcca	1020
gctggcgtaa tagcgaagag gcccgcaccg atcgcccttc ccaacagtttgc cgacgctgaa	1080
atggcgaatg gaaattgttaa gcgtaataat tttgttaaaa ttgcgttaa atttttgtta	1140
aatcagctca ttttttaacc aataggccga aatcgccaaa atcccttata aatcaaaaaga	1200
atagaccgag atagggttga gtgttgcgttcc agtttggaaac aagagtccac tattaaagaa	1260
cgtggactcc aacgtcaaaag ggcgaaaaac cgtctatcag ggcgatggcc cactacgtga	1320
accatcaccc taatcaagtt ttttgggtc gaggtgcgttcc aaagcactaa atcgaaaccc	1380
taaaggggagc ccccgattta gagcttgacg gggaaagccg gcgaaacgtgg cgagaaagga	1440
agggaaagaaa gcgaaaggag cggggcgctag ggcgctggca agtgttagcgg tcaegctgca	1500
cgtaaaccacc acaccccgccg cgatcaatgc ggcgctacag ggcgctgtcg gtggacttt	1560
tcggggaaat gtgcgcggaa cccctatttg tttattttc taaatacatt caaatatgtta	1620
tccgctcatg agacaataac cctgataat gcttcaataa tattgaaaaa ggaagatgtat	1680
gagtttccaa catttccgtg tcgcctttat tccctttttt gggcattttt gccttctgt	1740
ttttgtcac ccagaacacgc tggtgaaagt aaaagatgtt gaagatcgtt tgggtgcacg	1800
agtgggttac atcgaaactgg atctcaacag cggttaagatc cttgagatgtt ttgcggccgaa	1860
agaacgtttt ccaatgttgc gcaactttttaa agttctgttgc tttggcgccg tattatcccg	1920
tattgtaccc gggcaagagc aactcggtcg cgcatacac tattctcaga atgacttgg	1980
tgagttactca ccagtccacag aaaagcatct tacggatggc atgacagttt gagaattatg	2040
cagtgtgtcc ataaccatga gtgataacac tgcggccaac ttacttctga caacgtatcg	2100
aggaccgaaag gagctaaacccg cttttttgc caacatgggg gatcatgttgc ttcgcgttgc	2160
tcgttggaa ccggagctga atgaaggccat accaaacgcg gagcgtgaca ccacgtatgc	2220
tgttagcaatg gcaacaacgt tgcgcaactt attaactggc gaactacttta ctctagcttc	2280
ccggcaacaa ttaatagact ggatggaggc ggataaagggtt gcaggaccac ttctgctgtc	2340
ggcccttcgg gctggctgg tttatgttgc taaatcttgc gccgggtggc gtgggtctcg	2400
cggtatcattt gcaacgttgcgg ggccagatgg taagccctcc cgtatgttagt ttatctacac	2460
gacggggaggt caggcaacta tggatgttgcg aaatagacag atcgctgaga taggtgcctc	2520
actgattaag cattggtaac tgcgttgcgatca agtttactca tatatactttt agattgtttt	2580
aaaacttcat ttttaattta aaaggatctt ggtgttgcgatc ctttttgcata atctcatgtac	2640
caaaatccctt taacgttgcgatc tttcgttgcgatc gacccgttagt aaaagatcaa	2700
aggatcttctt tgatgttgcgatc ttttctgttgcgatc gatgttgcgatc ttttgcgttgcgatc	2760
accgcttacca gcggtgggtt gtttgcggatca tcaagagctt ccaactctttt ttccgttgcgatc	2820
aactggcttc agcagagcgcg agataccaaa tactgttgcctt ctgtgttgcgatc cgtatgttgcgatc	2880
ccaccacttc aagaactctg tagcaccgc tacataccctc gatgttgcgatc ttttgcgttgcgatc	2940
agtggctgttgcgatc gcaatgttgcgatc ttttgcgttgcgatc gatgttgcgatc ttttgcgttgcgatc	3000

-continued

accggataag	gcgcagcggt	cgggctgaac	gggggggttcg	tgcacacacgc	ccagcttggaa	3060
gcgaacgacc	tacaccgaac	tgagataacct	acagcgtgag	ctatgagaaa	gcccacgct	3120
tcccgaaggg	agaaaggcgg	acaggtatcc	ggtaagcggc	agggtcgaa	caggagagcg	3180
cacgagggag	cttccagggg	gaaacgcctg	gtatcttat	agtccctgtcg	ggtttcgcca	3240
cctctgactt	gagcgtcgat	ttttgtgatg	ctcgtcaggg	gggcggagcc	tatggaaaaaa	3300
cgccagcaac	cgccctttt	tacggttcct	ggcctttgc	tggccttttg	ctcacatgtt	3360
ctttcctgcg	ttatcccctg	attctgtgga	taaccgtatt	accgcctttg	agtgagctga	3420
taccgctcgc	cgcagccaa	cgaccgagcg	cagcgtatca	gtgagcggagg	aagcggaaaga	3480
gcccata	cgcaaaccgc	ctctcccccgc	cggttggccg	attcattaat	gcagctggca	3540
cgacaggttt	cccgactgga	aagcggggca	tgagcgcacac	gcaattaatg	tgagttagct	3600
cactcattag	gcaccccagg	ctttacactt	tatgcttcg	gctcgatgt	tgtgtggaat	3660
tgtgagcgg	taacaatttc	acacaggaaa	cagctatgac	catgattacg	ccaagcgcgc	3720
attggtaatt	gatcggtgg	cacgcggaaat	ataggaggtc	gctgaatagt	aaactttag	3780
acttggctac	agcatagagt	atcttctgt	gctctgtatgc	ctgcttagaa	ataatgtac	3840
ggataatgtg	gggagggcaa	gggttgcgaa	tccgggttgc	acgggcaagg	cttgactgag	3900
gggacaatag	catgtttagg	cggaaagcgg	ggcttgcgtt	gtacgcgggtt	aggagtcccc	3960
tcaggatata	gtagttcgc	ttttgcata	ggagggggaa	atgtagtc	atgcaatact	4020
ctttagtct	tgcacatgc	ttatgtaa	atgagttac	aacatgcctt	ataaggagag	4080
aaaaagcacc	gtgcacatgc	attgggtggg	gtaagggtgg	atgatcg	tatgatcg	4140
ccttggtagg	aaggcaacag	acgggtctaa	cacggattgg	acgaaccact	gaattccgca	4200
ttgcagagat	attgtattta	agtgcctagc	tgcataaaat	aaacgcatt	tgaccattca	4260
ccacattgg	gtgcacctgg	gttgcacggc	ggaccgttga	ttccctgrcg	actacgagca	4320
catgcacatgaa	gcagaaggct	tcatattgg	accccgacgt	gatcgtagg	aatagtggt	4380
cggccacagg	cggcgtggcg	atccgtctc	catccgtctc	gcttattcg	ggageggacg	4440
atgaccctag	tagagggggc	tgcggcttag	gagggcagaa	gctgagttgc	gtcggaggg	4500
gccttactgc	agggggccaa	cataccctac	cgagaactca	gagagtgc	ggaagacggg	4560
aaggaagccc	gacgactgag	cggtccaccc	caggcgtat	tccgggtgc	ctgcgtgatt	4620
cggcgtcccc	ggtgatcaa	gatggaa	cgatggaa	ctgatccgt	ccgcgtgtaa	4680
gacctattgc	ggggaaacct	ctccctctaa	gaaggaaata	ggggctatgt	tgtccctgtt	4740
acaaaaggaa	gggttgccta	cgtccccctc	agacttata	tcccccgggt	cctgggatcc	4800
gataccgtcc	ctattttgc	gtttgcctca	gcagccattt	aattcttc	tgcatcttgc	4860
ttctgttgc	gccactggaa	caggatttc	agcagtctg	caaagaacat	ctagctgaaa	4920
acttctgc	attcaatatt	cttaccagt	cttctgttt	gaggtgagcc	ataaattact	4980
agaacttcgt	cactgacaag	tttatgcatt	tttattactc	tattatgtac	ttactttgac	5040
ataaacacaga	cacgcacata	tttgctggg	atttccacag	tgtctctgt	tccttcacat	5100
gttttactg	tcataacttcc	gttataacct	tggcaatctg	cccagctgcc	catcacaaga	5160
aaagagattc	ctttttatt	acttcttcc	agccaataaa	caaaatgtga	gaagccaa	5220
caagaacttg	tggggcaggc	tgccatcaag	ggagagacag	ctgaagggtt	gtgtagctca	5280

-continued

atagaattaa gaaataataa agctgtgtca gacagtttg cctgattat acaggcacgc	5340
cccaagccag agaggctgtc tgccaaggcc accttgcagt ccttggtttgc taagataagt	5400
cataggtaac tttctggtg aattgcgtgg agaatcatga tggcagttct tgctgtttac	5460
tatggtaaga tgctaaaata ggagacagca aagtaacact tgctgctgta ggtgctctgc	5520
tatccagaca gcgatggcac tcgcacacca agatgagggta tgctccacgc tgacggatgc	5580
tggggcagta acagtgggtc ccatgctgcc tgctcattag catcacctca gccctcacca	5640
gcccatcaga aggtatcatcc caagctgagg aaagttgctc atcttcttca catcatcaaa	5700
ccttggcct gactgatgcc tcccgatgc tttaatgtgg tcactgacat ctttattttt	5760
ctatgatttc aagtcagaac ctccggatca ggagggaaaca catagtggga atgtaccctc	5820
agctccaagg ccagatcttc cttcaatgat catgcatgct acttaggaag gtgtgtgtgt	5880
gtgaatgttag aattgcctt gttatTTTT cttcctgctg tcaggaacat tttgaataacc	5940
agagaaaaag aaaagtgtc ttcttggcat gggaggagtt gtcacacttg caaaataaag	6000
gatgcagtc caaatgttca taatctcagg gtctgaagga ggatcagaaa ctgtgtatac	6060
aatttcaggc ttctctgaat gcagcttttgc aaagctgtc ctggccgagg cagtaactgt	6120
cagaaccctc gggaaacagga acaaatgtct tcaaggtgca gcaggaggaa acaccttgc	6180
catcatgaaa gtataaccactgcgt aaggaatcca gctcctgttt gagcagggtgc	6240
tgcacactcc cacactgaaa caacagttca tttttatagg acttccagga aggatcttct	6300
tcttaagctt ctaattatgt gtacatctcc agttggcaga tgactatgac tactgacagg	6360
agaatgagga actagctggg aatatttctg tttgaccacc atggagtca cccatttttt	6420
actggatTTT ggaataataa attctgaatt gcaaaagcagg agttagcgaat gatcttcatt	6480
tcttcatgt tggtgacagc acagttctgg ctatgaaagt ctgcttacaa ggaaggaggat	6540
aaaaatcata gggataataa atctaagttt gaagacaatg aggttttagc tgcatttgac	6600
atgaagaaat tgagacctct actggatagc tatggatTTT acgtgtctt ttgcttagtt	6660
acttattgac cccagctgag gtcaagtatg aactcagggtc tctcgggctt ctggcatgg	6720
ttgattacat acaactgtaa ttttagcgt gatTTTgggt ttatgagttac ttttgcgtta	6780
aatcataggg tttagtaatgt taatctcagg gaaaaaaaaaaa aaaagccaaac cctgacagac	6840
atcccagctc aggtggaaat caaggatcac agctcagtgc ggtcccagag aacacaggaa	6900
cttttctctt aggaccttta tgtacaggcc ctcaagataa ctgatgttag tcagaagact	6960
ttccattctg gccacagttc agctgaggca atcctggaaat tttctctccg ctgcacagtt	7020
ccagtcatcc cagtttgcgtc agttctggca cttttgggtt caggccgtga tccaaaggagc	7080
agaagttcca gctatggtca gggagtgcct gaccgtccca actcactgca ctcaaaacaaa	7140
ggcggaaacca caagagtggc ttttggtaa attgcagtgtt ggcccagagg ggctgcacca	7200
gtactggatt gaccacgagg caacattaat cctcagcaag tgcaatttgc agccattaa	7260
ttgaactaac tgataactaca atgcaatcag tatcaacaag tggttggct tggaagatgg	7320
agtctagggg ctctacagga gtagctactc tctaatggag ttgcatttttgc aagcaggaca	7380
ctgtgaaaag ctggcccttccaa aagaggctg ctaaacatca gggtaattt tccagtgac	7440
tttctgaagt gtctgcgtt ccccatgcaaa agctgcccac acatagact tccaaattgaa	7500
tacaattata tgcaggcgta ctgcttcttgc ccagcactgt cttctcaaa tgaactcaac	7560

-continued

aaacaattc	aaagtctagt	agaaaagtaac	aagctttgaa	tgtcattaaa	aagtatatct	7620
gcttcagta	gttcagctt	tttatgccc	ctagaaaacat	cttgtacaag	ctgaacactg	7680
gggctccaga	tttagtggtaa	aacctacttt	atacaatcat	agaatcatag	aatggcctgg	7740
gttggaaagg	accccaagga	tcatgaagat	ccaaacaccc	cggccacaggc	agggccacca	7800
acctccagat	ctggtaactag	accaggcagc	ccagggctcc	atccaaacctg	gccatgaaca	7860
cctccaggga	tggagcatcc	acaacacctc	tgggcagcct	gtgccagcac	ctcaccaccc	7920
tctctgtgaa	gaactttcc	ctgacatcca	atctaaggct	tccctccctt	aggttagatc	7980
cactccccct	tgtgtatca	ctgtctactc	ttgtaaaaag	ttgatttcc	tcctttttgg	8040
aagggtgcaa	tgaggcttcc	ttgcagcctt	tttctttctt	gcaggatgaa	caagccacgc	8100
tcctcagcc	tgtctttata	ggagagggtc	tccagccctc	tgtatcatctt	tgtggccctc	8160
ctctggaccc	gctccaagag	ctccacatct	ttcctgtact	ggggggccca	ggcctgaatg	8220
cagtaactcca	gatggggcct	caaaagagca	gagtaaagag	ggacaatcac	cttcctcacc	8280
ctgtgtggca	gcctctttct	gatggagccc	tggatadaac	tggctttctg	agctgaaact	8340
tctccttata	agttccacta	ttaaaacagg	aacaatacaa	caggtgctga	tggccagtg	8400
agagtttttc	acacttcttc	atttcggtag	atcttagatg	aggaacgttg	aagttgtct	8460
tctcgtgtg	cttcttcctc	ctcaaataact	cctgcctgat	acctcacccc	acctgcac	8520
gaatggctcc	atggcccccct	gcagccaggg	ccctgatgaa	cccgccactg	cttcagatgc	8580
tgtttaatag	cacagtatga	ccaagttgca	cctatgaaata	cacaaacaat	gtgttgcattc	8640
cttcagcact	tgagaagaag	agccaaattt	gcattgtcag	gaaatggttt	agtaattctg	8700
ccaattaaaa	cttgcatttac	taccatggct	gtttttatgg	ctgttagtag	tggtaactct	8760
atgtatgaaca	atggctatgc	agtaaaatca	agactgtaga	tattgcaaca	gactataaaa	8820
tccctctgtg	gcttagccaa	tgtggtaactt	cccacattgt	ataagaaatt	tggcaagttt	8880
agagcaatgt	ttgaagtgtt	ggaaaatttc	tgtataactca	agagggcggtt	tttgacaact	8940
gtagaacaga	ggaatcaaaa	gggggtgggg	ggaagttaaa	agaagaggca	ggtcaagag	9000
agcttgcagt	cccgctgtgt	gtacgacact	ggcaacatga	ggtctttct	aatcttgggt	9060
ctttgcctcc	tgccttggc	tgccttaggg	tgcgtatctc	ctcagacacca	cagcctggc	9120
agcaggagga	ccctgatgct	gctggctcag	atgaggagaa	tcagcctgtt	tagctgcct	9180
aaggatagc	acgattttgg	cttcctcaaa	gaggagtttgc	gcaaccagg	tcagaaggct	9240
gagaccatcc	ctgtgtgtca	cgagatgatc	cagcagatct	ttaaccgtt	tagcaccaag	9300
gatagcageg	ctgtgtggaa	tgagaccctg	ctggataagt	tttacaccga	gctgtaccag	9360
cagctgaacg	atctggaggc	ttgcgtatc	caggcgtgg	gcgtgaccga	gacccctct	9420
atgaaggagg	atagcatact	ggctgtgagg	aagtactttc	agaggatcac	cctgtacact	9480
aaggagaaga	agtacagccc	ctgcgttgg	gaagtcgtga	gggctgagat	catgaggagc	9540
tttagcctga	gcaccaacct	gcaagagagc	ttgaggctta	aggagtaaaa	agtctag	9597

<210> SEQ ID NO 2
<211> LENGTH: 28
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer ALV-SIN-1

-continued

<400> SEQUENCE: 2
atgcgcgcatttggtaattgtatcggtcg 28

<210> SEQ ID NO 3
<211> LENGTH: 80
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer ALV-SIN-2

<400> SEQUENCE: 3
atatgcggcc gcggttaccgc cggggcatcg atatcaagct tacggttcac taaacgagct 60
ctgcttatat agacctccca 80

<210> SEQ ID NO 4
<211> LENGTH: 59
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer ALV-SIN-3

<400> SEQUENCE: 4
atatgcggcc gcggttaccgc cggggcatcg atatcaagct tacggttcac taaacgagct 59

<210> SEQ ID NO 5
<211> LENGTH: 28
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer ALV-SIN-4

<400> SEQUENCE: 5
atacgcgtat tcccttaacgtatcg 28

<210> SEQ ID NO 6
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer ALV-SIN-5

<400> SEQUENCE: 6
ctgaagtgtat aggaatgtaa g 21

<210> SEQ ID NO 7
<211> LENGTH: 30
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer ALV-SIN-6

<400> SEQUENCE: 7
gcgcgtctca tccccctccc tatgcaaaag 30

<210> SEQ ID NO 8
<211> LENGTH: 37
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer ALV-SIN-7

<400> SEQUENCE: 8

-continued

gggcgtctca gggacggatt ggacgaacca ctgaatt 37

<210> SEQ ID NO 9
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer ALV-SIN-8

<400> SEQUENCE: 9

ttagtgcttt acggcaccc 20

<210> SEQ ID NO 10
<211> LENGTH: 38
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer ALV-SIN-9

<400> SEQUENCE: 10

gacggatccg ataccgtccc tattttgtg tttgcttc 38

<210> SEQ ID NO 11
<211> LENGTH: 30
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer ALV-SIN-10

<400> SEQUENCE: 11

taacggatcc tagactttt actccttaga 30

<210> SEQ ID NO 12
<211> LENGTH: 11945
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Proximal promoter and lysozyme signal peptide

<400> SEQUENCE: 12

tgcgccttc tttgatattc actctgtgtt atttcatctc ttcttgccga tgaaaggata 60
taacagtotg tataacagtc tggaggaaa tacttggtat ttcttctgtat cagtgtttt 120
ataagtaatg ttgaatattg gataaggctg tggtcctt gtcttggag acaaagccca 180
cagcaggctgg tgggggggt ggtggcagct cagtgacagg agagggtttt ttgcctgttt 240
tttttttttt tttttttttt aagtaaggtg ttctttttc ttagtaaatt ttctactggaa 300
ctgtatgttt tgacaggctca gaaacatttc ttcaaaagaa gaacctttt gaaactgtac 360
agcccttttc ttccattccc ttttgcttt ctgtgcataat gccttgggtt ctgattgcat 420
tatggaaac gttgatcgga acttgaggtt ttattttata gtgtggctt aaagcttggaa 480
tagctgttgt tacacgagat accttattaa gtttaggcca gcttgcataat ttatttttc 540
cccttgaagt agtgagcggtt ctctgggttt ttcccttga aactggtgag gcttagattt 600
ttctaatggg attttttacc tgatgatcta gttgcataacc caaaatgtt gaaatgtttt 660
ccttagttaaac atgttgataa cttcggtttt acatgtgttata tataactgttca atctgtgtttt 720
ctagtaaaaa tatatggcat ttatagaaat acgttaattcc tgatttcattt tttttttatc 780
tctatqctct qttgttacaaq qttcaaacaaq cttcactctt attttttattt ataaatgtttt 840

-continued

atatgcagtc	tgtcggttgt	tcttgtgttg	taaggataca	gccttaaatt	tcctagagcg	900
atgctcagta	aggcggttgt	tcacatgggt	tcaaatgtaa	aacgggcacg	tttggctgct	960
gccttcccga	gatccaggac	actaaactgc	ttctgcactg	aggtataat	cgcttcagat	1020
cccagggaaag	tgcagatcca	cgtgcattt	cttaaagaag	aatgaatact	ttctaaaata	1080
tttggcata	ggaagcaagc	tgcattggatt	tgtttggac	ttaaatttatt	ttggtaacgg	1140
agtgcataagg	ttttaaacac	agttgcagca	tgctaaccgag	tcacagcggt	tatgcagaag	1200
tgtgcctgg	atgcctgttg	cagctgtta	cggcactgcc	ttgcagtgag	cattgcagat	1260
aggggtgggg	tgcattttgt	cgtgttccca	cacgctgcca	cacagccacc	tcccggaaaca	1320
catctcacct	gctgggtact	tttcaaaacca	tcttagca	agtagatgag	ttactatgaa	1380
acagagaagt	tcctcagttg	gatatttca	tgggatgtct	tttttccat	gttgggcaaa	1440
gtatgataaa	gcatctctat	ttgtaaattta	tgcacttgg	agttcctgaa	tcctttctat	1500
agcaccactt	attgcagcag	gtgtaggctc	tggtgtggcc	tgtgtctgt	cttcaatctt	1560
ttaaagcttc	tttggaaata	cactgacttg	attgaagtct	cttgaagata	gtaaaacagta	1620
cttaccttttgc	atcccaatga	aatcgagcat	tgcagttgt	aaagaattcc	gcctattcat	1680
accatgtata	gtaattttac	accccagtg	ctgacactt	ggaatatatt	caagtaatag	1740
actttggcct	caccccttttgc	tgtactgtat	tttgcata	aaaatatttt	aaactgtgca	1800
tatgattatt	acattatgaa	agagacattc	tgcgtatctt	caaatgtaa	aaaatgagga	1860
gtgcgtgtgc	ttttataaaat	acaagtgtt	gcaaaatttgc	gcagggtgtcc	ttaaaaaaaa	1920
aaaaaaaaaaag	taatataaaa	aggaccaggt	gttttacaag	tgaatata	tccttattgg	1980
ttaaagctta	cattttatgc	aaaggatccca	gcgcgtgtca	ctttctaaac	ataaggctgt	2040
attgtcttcc	tgttaccatttgc	catttcctca	tttccaaattt	gcacaaggat	gtctgggtaa	2100
actattcaag	aaatggcttgc	gaaatacagc	atgggagctt	gtctgagtttgc	aatgcagag	2160
ttgcactgca	aaatgtcagg	aaatggatgt	ctctcagaat	gcccaactcc	aaaggatttt	2220
atatgtgtat	atagtaagca	gtttcctgtat	tccagcaggc	caaagagtct	gctgtatgtt	2280
gtgttgcgg	agacctgtat	ttctcaacaa	ggttaagatgg	tatcctagca	actgeggatt	2340
ttaatacatt	ttcagcagaa	gtacttagtt	aatctctacc	tttagggatc	gtttcatcat	2400
ttttagatgt	tatacttgc	atactgcata	acttttagt	ttcatgggtt	ccttttttc	2460
agcctttagg	agactgttaa	gcaatttgc	gtccaaactt	tgtgtgtgtc	ttaaaactgca	2520
atagtagttt	accttgtatt	gaagaaataa	agaccatttt	tatattaaaa	aatacttttgc	2580
tctgtcttca	ttttgacttg	tctgatattcc	ttgcagtgcc	cattatgtca	gttctgtcag	2640
atattcagac	atccaaactt	aacgtgagct	cagtggagtt	acagctgcgg	ttttgtatgt	2700
gttattattt	ctgaaacttag	aaatgtatgt	gtcttcatct	gctcatcaaa	cacttcatgc	2760
agagtgtaa	gctagtgtat	aatgcataca	tttattgtata	ctttttaaa	gtcaacttttgc	2820
tatcagattt	ttttttcatt	tggaaatata	ttgttttctat	gactgcata	tttctgtatc	2880
tgaaatgcag	tctgattggc	atgaagaagc	acagcactct	tcatcttact	taaacttcat	2940
tttggaaatga	aggaagttaa	gcaagggcac	aggtccatga	aatagagaca	gtgcgtcag	3000
gagaaagtga	acctggattt	ctttggctag	tgttctaaat	ctgtgtgtgag	gaaagtaaca	3060
cccgatttcc	tgaaaagggt	ccagctttaa	tgcttccaaa	ttgaagggttgc	caggcaactt	3120

-continued

ggccactgg tatttactgc attatgtctc agtttcgcag ctaacccggc ttctccacta 3180
ttgagcatgg actatacgct ggcttcagag gccaggtaa ggttggatg ggtggaaagg 3240
gtgtggggc gtggctgggg ggactgtggg gactccaagc tgagcttggg gtggcagca 3300
caggaaaag tggggtaac tatttttaag tactgtttg caaacgtctc atctgcaa 3360
acgttagggt tgtaactctcg aagattaaca gtgtgggtt cagaatataat ggtatattc 3420
acagtgaaag cattcaaggg tagatcatct aacgacacca gatcatcaag ctatgattgg 3480
aagcggtatc agaagagcga ggaaggtaa cagtcttcat atgttttccc tccacgtaaa 3540
gcagtcgtggg aaagtagcac cccttgagca gagacaagga aataattcag gagcatgtgc 3600
taggagaact ttcttgcgtga attctacttg caagagctt gatgcgttgc ttctgggtcc 3660
ttctgcagca cctgcaagc ccagagcctg tggtagctg gaggaaaaga ttctgctcaa 3720
gtccaaagctt cagcaggtaa ttgtcttgc ttcttcccc agcactgtgc agcagagtgg 3780
aactgatgtc gaagcctcct gtccactacc tgtagctgca ggcagactgc tctcagaaaa 3840
agagagctaa ctctatgcca tagtctgaag gtaaaatggg ttttaaaaaa gaaaacacaa 3900
aggccaaacc ggctgccccca tgagaagaaa gcagtgtaa acatggtaa aaagggtcag 3960
aagcccccaag gcagtggtac aggccttcc tgccacccat aggcggaaac aagcttccct 4020
gcctagggtc ctgccccgca agtgcgtgtt tctttgggtt gttttgttgc gcttgggtt 4080
tttaggattt aacacaaggg aagcctgaaa ggaggtgttgc ggcactatatt tggttgtaa 4140
agcctgtact tcaaataatattt attttgcgtt gggatgttgc gaattggcca attttaaaata 4200
aagttcaag agattgaagg ctgagtagtt gagaggtaa cacgttaat gagatcttct 4260
gaaaactactg cttctaaaca cttgtttgc tggttagacc ttggataggt ggtgtcttt 4320
gttacatgtc tgatgcactt gcttgcctt ttccatccac atccatgcac tccacatcca 4380
cgcatgttgc acttataccca tatctgtcat atctgacata cctgtcttgc cgtacttgg 4440
tcagaagaaa cagatgtgat aatccccagc cgccccaaatg ttgagaagat ggcagttgt 4500
tctttccctt ttctctgtca agtaaggatt ttctcttgc ttgacaccc cacgaaatag 4560
tcttcctgca ttacattctg ggcatttattt caaatatctt tggagtgccg tgctctcaag 4620
tttgcgttctt cctactcttta gaggtaatgc tcttagatgtt aaagagaagg aagagaagat 4680
gttggccgca gttctctgtat gaacacaccc ctgaaataatg gccaaggatg ggtgggttcc 4740
tctgaggaaac gggcagcgat tgcctctgaa agcaaggagc tctgcccggat tgcagtttt 4800
ttgcaactga tggtgaaact ggtgtttaaa gcagatccc taggttccct gctacttctt 4860
ttocttcttgc gcaatgttgc tttttctgtat agacaaaacag ccaccccccac tgcaggctt 4920
gaaagtatgt ggctctgcctt gggatgttgc cagctctgca ctggtaaag gggataaaaa 4980
cgggccacat tcatacccaaa caggatcctc attcatggat caagctgtaa ggaacttggg 5040
ctccaaacccca aacattaa ttggagtagc aatgtatattt aaactgcatt ctgcattcc 5100
taagtcatattt agtctggact ctgcagcatg taggtcggca gtccttgcctt tctcaagac 5160
cactgtggaa gggatgttgc aatggagac cgattcaaa caaccaacgg agtgttgccg 5220
aagaaactgaa tggaaataat gcatgttgc tggatgttgc attttttttta aatacataaa 5280
ctacttcaaa tgaggctggaa gggatgttgc tggatgttgc cagccataaa accaggtgag 5340
cgagtagccat ttttctctac aagaaaaacg attctgatgttgcgttgc tcaatgttctc 5400

-continued

catagcggt	gaagctcccc	cctggctgcc	tgccatctca	gctggagtgc	agtgcattt	5460
ccttgggtt	tctctcacag	cagtaatggg	acaatactc	acaaaaattc	tttctttcc	5520
tgtcatgtgg	gatccctact	gtgccctcct	ggtttacgt	tacccctgta	ctgttccatt	5580
cagcggtttg	gaaagagaaa	aagaatttg	aaataaaaca	tgtctacgtt	atcacctcct	5640
ccagcattt	ggttttaat	tatgtcaata	actggcttag	atttggaaat	gagaggggt	5700
tgggtgtatt	accgaggaac	aaaggaaggc	ttatataaac	tcaagtcttt	tatttagaga	5760
actggcaagc	tgtcaaaaac	aaaaaggcct	taccacaaa	ttaagtgaat	agccgcata	5820
gccagcaggg	ccagcacgag	ggatgggtca	ctgctggcac	tatgccacgg	cctgcttgc	5880
actctgagag	caactgcttt	ggaaatgaca	gcacttggtg	caatttcctt	tgttccagaa	5940
tgcgttagagc	gtgtgcttg	cgacagtttt	tctagttagg	ccacttcttt	tttccttc	6000
tcctcattct	cctaagcatg	tctccatgt	ggtaatccca	gtcaagtgaa	cgttcaaaaca	6060
atgaatccat	cactgttagga	ttctcgtgtt	gatcaaatct	tttgtgtgagg	tctataaaat	6120
atggaagctt	atttattttt	cgtttttcca	tatcagtctt	ctctatgaca	attcacatcc	6180
accacagcaa	attaaagatg	aggaggctg	gtgggatgaa	gagggtcttc	tagcttacg	6240
ttttccttg	caaggccaca	ggaaaatgct	gagagctgta	gaatacagcc	tgggttaaga	6300
agttcagtct	cctgctggga	cagctaaccg	catcttataa	ccccctctga	gactcatctt	6360
aggaccaaata	agggtctatc	tggggttttt	gttcctgctg	ttcctctgg	aaggctatct	6420
cactatttca	ctgctccac	ggttacaaac	caaagataca	gcctgaattt	tttcttaggcc	6480
acattacata	aatttgcac	ggtaccaata	ttgttctcta	tatagttatt	tccttccca	6540
ctgtgtttaa	ccccttaagg	cattcagaac	aactagaatc	atagaatgg	ttggattgga	6600
aggggcctta	aacatcatcc	atttccaaacc	ctctgccatg	ggctgtctgc	cacccactgg	6660
ctcaggctgc	ccaggggcccc	atccagectg	gccttggagca	cctccaggga	tggggcaccc	6720
acagcttctc	tgggcagect	gtgccaacac	ctcaccactc	tctggtaaa	gaattcttt	6780
ttaacatcta	atctaaatct	cttctctttt	agtttaaagc	cattccttctt	tttcccttg	6840
ctatctgtcc	aagaaatgtg	tattggtctc	cctcctgctt	ataagcagga	agtactggaa	6900
ggctgcagtg	aggtctcccc	acagcctct	cttctccagg	ctgaacaagc	ccagctcctt	6960
cagectgtct	tcgttaggaga	tcatcttagt	ggccctcttc	tggaccatt	ccaacagttc	7020
cacggcttcc	ttgtggagcc	ccaggtctgg	atgcagttact	tcagatgggg	ccttacaaag	7080
gcagagcaga	tggggacaat	cgcttacccc	tccctgtgg	ctgccccctgt	tttgcgtcag	7140
cccagggtac	tgtggcctt	tcaggctccc	agaccccttg	ctgattttgt	tcaagctttt	7200
catccaccag	aacccacgct	tctggtaaa	tacttctgcc	ctcacttctg	taagttgtt	7260
tcaggagact	tccattcttt	aggacagact	gtgttacacc	tacctgcctt	attcttgcatt	7320
atatacattt	cagttcatgt	ttctctgtac	aggacagaat	atgtattcct	ctaacaaaaa	7380
tacatgcaga	attctctatgt	ccatctcagt	agggtttca	tggcagttatt	agcacatagt	7440
caatttgcgt	caagtacctt	ccaagctgcg	gcctccata	aatcctgtat	ttgggatcag	7500
ttaccttttgc	gggtaagctt	ttgtatctgc	agagaccctg	ggggttctga	tgtgcttc	7560
ctctgctctg	ttctgactgc	accattttct	agatcaccca	gttgcctctg	tacaacttcc	7620
ttgtcctcca	tccttccca	gcttgcata	ttgacaaata	caggcctatt	tttgcgtttt	7680

-continued

cttcagcagc catttaattc ttcaagtgtca tcttggtctg ttgatgccac tggaacagga	7740
ttttcagcag tcttgcaaag aacatctagc tgaaaacttt ctgccattca atattttac	7800
cagttcttct tgtttgaggt gagccataaa ttactagaac ttctgtcactg acaagtttat	7860
gcattttatt acttcttata tgtacttact ttgacataac acagacacgc acatattttg	7920
ctgggatttc cacagtgtct ctgtgtcctt cacatggtt tactgtcata cttccgttat	7980
aaccttggca atctgcccag ctgcccattca caagaaaaga gattcctttt ttattacttc	8040
tcttcagcca ataaacaaaa tgtgagaagc ccaaacaaga acttgtgggg caggctgcca	8100
tcaagggaga gacagctgaa gggttgtgtca gctcaataga attaagaaat aataaagctg	8160
tgtcagacag ttttgcctga tttatcagg cacgccccaa gccagagagg ctgtctgcca	8220
aggccacattt gcagtcctt gtttgcataa taagtcatag gtaacttttc tggtaatttgc	8280
cgtggagaat catgatggca gttcttgcgtg tttactatgg taagatgcta aaataggaga	8340
cagcaaagta acacttgcgtg ctgttaggtgc tctgctatcc agacagccat ggcactcgca	8400
caccaagatg agggatgtctt ccagctgacg gatgctgggg cagtaacagt gggtcccatg	8460
ctgcctgcctc attagcatca cctcagccctt caccagccca tcagaaggat catccaaagc	8520
tgaggaaagt tgcgtcatctt cttcacatca tcaaaccctt ggcctgactg atgcctcccg	8580
gatgcttaaa tgggtgtcaact gacatcttta tttttctatg atttcaatgc agaacctccg	8640
gatcaggaggaa gaacacatag tggaaatgtca ccctcagctc caaggccaga tcttcottca	8700
atgtcatgc atgcacttta ggaagggtgtc tgggtgtgaa tggtaatttgc cttttgttat	8760
tttttcttcc tgcgtgtcagg aacatcttgc ataccagaga aaaagaaaaag tgctttctt	8820
ggcatgggag gagttgtcactt acttgcaaaa taaaggatgc agtcccaat gttcataatc	8880
tcagggtctg aaggaggatc agaaaactgtg tatacaattt caggcttctc tgaatgcagc	8940
ttttgaaagc tggccctggc cgaggcagta cttagtcgaa ccctcgaaaa caggaacaaa	9000
tgcgtcaag gtgcagcagg agggaaacacc ttgccccatca tggaaatgtaa taaccactgc	9060
cgctgaagga atccagctcc tgggtgtcaact ggtgctgcac actccacac tggaaacaca	9120
gttcattttt ataggacttc caggaaggat cttcttcttta agcttcttta ttatggtaca	9180
tctccagtttgc gcatgtacttgc atgactactg acaggagaat gaggaacttag ctggaaat	9240
ttctgttttgc ccaccatggc gtcacccatt tctttactgg tattttggaaa taataattct	9300
gaatttgcacaa gcaggaggta gcaagatct tcatttcttc catgttggtg acagcacagt	9360
tctggctatg aaagtctgtc tacaaggaaag aggataaaaaa tcataggat aataaatctt	9420
agtttgcacaa caatgggtt ttagtgcactt ttgacatgaa gaaatttgc gctctactgg	9480
atagctatgg tattttacgtt tctttttgtt tagttacttta ttgacccatca ctggggat	9540
gtatgtacttgc aggtctctcg ggctactggc atggatttgc tacatacaac tggaaat	9600
gcagtgttatttgc agtacttttgc cagtaatca tagggttatgc aatgttataatc	9660
tcaggggaaaa aaaaaaaaaaag ccaaccctgca cagacatccc agtcaggtg gaaatcaagg	9720
atcacagctc agtgcgggtcc cagagaacac agggactctt ctcttaggac ctttatgtac	9780
aggccctcaaa gataactgtat gtttagtgcaga agactttcca ttctggccac agttcagctg	9840
aggcaatctt ggaattttctt ctccgcgtca cagttccatg catccatgtt tgcgtatgtt	9900
tggcactttt tgggtcaggc cgtgatccaa ggagcagaag ttccagctat ggtcaggag	9960

-continued

```

tgcctgaccg tcccaactca ctgcactcaa acaaaggcga aaccacaaga gtggctttg 10020
ttgaaattgc agtgtggccc agaggggctg caccagtact ggattgacca cgaggcaaca 10080
ttaatcctca gcaagtgcaa tttgcagcca ttaaattgaa ctaactgata ctacaatgca 10140
atcagtatca acaagtggtt tggcttgaa gatggagtct aggggctcta caggagtagc 10200
tactctctaa tggagttgca ttttgaagca ggacactgtg aaaagctggc ctcctaaaga 10260
ggctgctaaa cattagggtc aattttccag tgcacttct gaagtgtctg cagttcccc 10320
tgcaaagctg cccaaacata gcacttccaa ttgaatacaa ttatatgcag gcgtactgct 10380
tcttgccage actgtccttc tcaaataacac tcaacaaaca atttcaaaatg ctagtagaaa 10440
gtaacaagct ttgaatgtca ttaaaaagta tatctgctt cagtagtca gcttatttat 10500
gcccactaga aacatcttgc acaagctgaa cactgggct ccagattagt ggtaaaacct 10560
actttataca atcatagaat catagaatgg cctgggttgg aagggacccc aaggatcatg 10620
aagatccaaac acccccgcac caggcagggc caccaaccc cagatctggg actagaccag 10680
gcagccccagg gtcctatcca acctggccat gaacacccctc agggatggag catccacaac 10740
ctctctgggc agectgtgcc agcacctcac caccctctct gtgaagaact ttccctgac 10800
atccaatcta agecttccct ctttgcgggtt agatccactc ccccttgc tatcactgtc 10860
tactcttgcataaaaatgtat ttccttcctt tttggaaaggt tgcaatgagg ttccttgca 10920
gccttcttctt ctttgcagg atgaacaagc ccagctccct cagcctgtct ttataggaga 10980
ggtgctccag ccctctgtat atctttgtgg ccctctctg gacccgcgtcc aagagtcac 11040
catcttcctt gtactggggg cccaggcgtt gaatgcagta ctccagatgg ggcctaaaa 11100
gagcagagta aagagggaca atcacccctc tcaaccctgtt ggcacgcctt ctctgtatgg 11160
agccctggat acaactgggt ttctgagotg caacttccctt ttatcgttc cactattaaa 11220
acaggaacaa tacaacaggt gctgtggcc agtgcagagt tttcacact tcttcatttc 11280
ggtagatctt agatgaggaa cgttgcgggtt gtgccttgc gtgtgtttt tccttcctaa 11340
atactccctgc ctgataccctc accccacccctc ccactgaatg gtcctatggc cccctgcagg 11400
cagggccctg atgaacccgg cactgctca gatgctgtt aatagcacag tatgaccaag 11460
ttgcacccat gaatacacaat acaatgtgtt gcatcctca gcacttgaga agaagagcca 11520
aatttgcatt gtcaggaaat ggttttagtaa ttctgcctttaaaaacttgtt ttatctacca 11580
tggctgtttt tatggctgtt agtagtggta cactgtatgtt gaacaatggc tatgcgttt 11640
aatcaagact gttagatattt caacagacta taaaattccct ctgtggctta gccaatgtgg 11700
tacttccacat attgtataag aaatttggca agtttagagc aatgtttgaa gtgtgggaa 11760
atttctgtat actcaagagg gctttttgtt caactgtaga acagagggaaat caaaaggggg 11820
tgggagggaaat ttaaaagaag aggcagggtgc aagagagctt gcaatccgc tgggttacg 11880
acactggccaa catgagggtct ttgctaatct tggcttttgc cttccctgccc ctggctgcct 11940
taggg 11945

```

```

<210> SEQ ID NO 13
<211> LENGTH: 29
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: BAC 26 Primer-1

```

-continued

<400> SEQUENCE: 13

gcggaattca aagaagaaaag ctgaaaaac

29

<210> SEQ ID NO 14

<211> LENGTH: 29

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: BAC 26 Primer-2

<400> SEQUENCE: 14

gcgggtacct tcaaatacta caagtgaaa

29

<210> SEQ ID NO 15

<211> LENGTH: 33

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: BAC 26-OV Primer 1

<400> SEQUENCE: 15

ggcctcgagt caagttctga gttaggttta gtg

33

<210> SEQ ID NO 16

<211> LENGTH: 41

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: BAC 26-OV Primer 2

<400> SEQUENCE: 16

gcgcgtctct gtcttagagca aacagcgagaa cagtgaaaat g

41

<210> SEQ ID NO 17

<211> LENGTH: 50

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: CTLA-4-Fc Primer 1

<400> SEQUENCE: 17

gcgcgtctca agacaactca gagttcacca tgggtgtact gctcacacag

50

<210> SEQ ID NO 18

<211> LENGTH: 29

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: CTLA-4-Fc Primer 2

<400> SEQUENCE: 18

ggccggggag ttttgcaga agatttggg

29

<210> SEQ ID NO 19

<211> LENGTH: 11868

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: pSIN-OV-3.5-I-CTLA4-inv Vector

<400> SEQUENCE: 19

aattgctaga ctaggatccc ccgtgctgca gaaccgagcg gctattgact tcttgcct

60

-continued

agctcacggc	catggctgtg	aggacattgc	ggaaatgtgt	tgttcaatc	tgagtgtatca	120
cagtgagtct	atacagaaga	agttccagct	aatgaaggaa	catgtcaata	agatcggcgt	180
gaacaacgac	ccaatcgaa	gttggctgcg	aggattattc	ggaggaatag	gagaatggc	240
cgtacacttg	ctgaaaggac	tgcttttggg	gcttgttagtt	atcttggcgc	tagtagtatg	300
cttgccctgc	cttttgcata	gtgtatctag	tagtattcga	aagatgattt	ataattcact	360
cggctatcgc	gaggaatata	aaaaaaattac	aggaggctt	taagcagccc	gaaagaagag	420
cgtaggcgg	ttcttggatt	ccgtgtgata	gctgggttgg	ttggtaattt	atcggtggc	480
acgcggaaa	taggaggctg	ctgaatagta	aacttgcaga	cttggctaca	gcatagagta	540
tcttcgttag	ctctgtatgc	tgcttagaaa	taatgtacg	gataatgtgg	ggagggcaag	600
gcttgcgaat	cgggttggaa	cgggcaaggc	ttgactgagg	ggacaatagc	atgttttagc	660
gaaaagcggg	gcttcgggtt	tacgcggta	ggagtcctt	caggatata	tagttcgct	720
tttgcatttt	gagggggacg	gattggacg	accactgaat	tccgcattgc	agagatattt	780
tatthaagt	cctagctcga	tacaataaac	gccatttgc	cattcaccac	attgggtgc	840
acctgggtt	atggccggac	cgttgattcc	ctgrcgacta	cgagcacatg	catgaaggcag	900
aaggcttcat	ttggtgaccc	cgacgtgatc	gttagggaaat	acgcgctcac	tggccgtcg	960
tttacaacgt	cgtgactggg	aaaaccctgg	cgttacccaa	cttaatcgcc	ttgcagcaca	1020
tcccccttc	gccagctggc	gtaatagcga	agaggcccgc	accgatcgcc	cttccaaaca	1080
gttgcgcgc	ctgaatggcg	aatggaaatt	gtaagcgta	atattttgtt	aaaattcgcg	1140
ttaaattttt	gttaaatcag	ctcattttt	aaccaatagg	ccgaaatcg	caaaatccct	1200
tataaatcaa	aagaatagac	cgagatagg	ttgagtgtt	ttccagttt	gaacaagagt	1260
ccactattaa	agaacgtgga	ctccaaacgtc	aaagggcgaa	aaaccgtcta	tcagggcgat	1320
ggcccactac	gtgaaccatc	accctaatac	agtttttgg	ggtcgaggt	ccgtaaagca	1380
ctaaatcgga	accctaaagg	gagccccgga	tttagagctt	gacggggaaa	gccggcgaac	1440
gtggcgagaa	aggaaggggaa	gaaagcggaa	ggagcggcg	ctagggcgct	ggcaagtgt	1500
gcggtcacgc	tgegcgtaac	caccacaccc	gccgcgtta	atgcgcgc	acagggcg	1560
tcaggtggca	ctttcgggg	aatgtgcgc	ggaaccctta	tttgcattt	tttctaaata	1620
cattcaaata	tgtatccgt	catgagacaa	taaccctgtat	aatgttca	ataatattga	1680
aaaaggaaga	gtatgagtat	tcaacatttc	cgtgtcgccc	ttatccctt	ttttggcga	1740
ttttgcctc	ctgttttgc	tcacccagaa	acgctggtga	aagtaaaaga	tgctgaagat	1800
cagttgggt	cacgagtggg	ttacatcgaa	ctggatctca	acagcggtaa	gatccttgc	1860
agttttcgcc	ccgaagaacg	ttttccatgt	atgagcactt	ttaaagtct	gctatgtgg	1920
gcggtattat	cccgatttga	cgccggccaa	gagcaactcg	gtcgccgc	acactattct	1980
cagaatgact	tgggtgagta	ctcaccagtc	acagaaaagc	atcttacgg	tggcatgaca	2040
gtaagagaat	tatgcagtgc	tgccataacc	atgagtgata	acactgcggc	caacttactt	2100
ctgacaacga	tcggaggacc	gaaggagctt	accgtttt	tgcacaacat	gggggatcat	2160
gtaactcgcc	ttgatcggtt	ggaaccggag	ctgaatgaag	ccataccaa	cgacgagcgt	2220
gacaccacga	tgcctgtac	aatggcaaca	acgttgcgc	aactattaac	tggcgaacta	2280
cttactctag	cttccggca	acaattaata	gactggatgg	aggcggataa	agttgcagga	2340

-continued

ccacttctgc	gctcgccct	tccggctggc	tggtttattg	ctgataaaatc	tggagccggt	2400
gagcgtgggt	ctcgccgtat	cattgcagca	ctggggccag	atggtaagcc	ctcccgatc	2460
gtagttatct	acacgacggg	gagtcaggca	actatggatg	aacgaaatag	acagatcgct	2520
gagataggtg	cctcaactgat	taagcattgg	taactgtcag	accaaggtaa	ctcatatata	2580
cttagattt	attnaaaact	tcatttttaa	tttaaaagga	tcttagtgaa	gatcctttt	2640
gataatctca	tgacaaaaat	cccttaacgt	gagttttcgt	tccactgagc	gtcagacccc	2700
gtagaaaaga	tcaaaggatc	ttcttgagat	ccttttttc	tgcgctaat	ctgctgttt	2760
caaacaaaaa	aaccaccgt	accagcggtg	gtttgtttgc	cggtcaaga	gttaccaact	2820
cttttccga	aggtaactgg	cttcagcaga	gcccagatac	caaatactgt	ccttctagtg	2880
tagccgtatg	taggccacca	cttcaagaac	tctgttagcac	cgcctacata	cctcgctctg	2940
ctaattctgt	taccagtggc	tgctgccagt	ggcgataagt	cgtgttttac	cgggttggac	3000
tcaagacgt	agttaccgga	taaggcgcag	cggtcggtt	gaacgggggg	ttcggtcaca	3060
cagccagct	tggagcgaac	gacctacacc	gaactgagat	acctacagcg	tgagctatga	3120
gaaagcgcga	cgttcccgaa	agggagaaag	cgccgacaggt	atccggtaag	cgccagggtc	3180
ggaacaggag	agcgcacgag	ggagcttcca	gggggaaacg	cctggatct	ttatagtcct	3240
gtcggttcc	gccacactcg	acttgagcgt	cgatttttgt	gatgtcgtc	agggggcgg	3300
agcctatgg	aaaacgcag	caacgcggcc	tttttacggt	tcctggcctt	ttgtgtggct	3360
tttgctcaca	tggttttcc	tgcggttacc	cctgattctg	tggataaccc	tattacccgc	3420
tttgagttag	ctgataaccgc	tcgcccgcgc	cgaacgaccc	agcgcagcga	gtcagttagc	3480
gaggaagcgg	aagagcgcgc	aatacgcaca	ccgcctctcc	ccgcgcgttg	ccgcattcat	3540
taatgcagct	ggcacgacag	gtttcccgac	tggaaagcgg	gcagtgagcg	caacgoaatt	3600
aatgtgagtt	agetcactca	ttaggcaccc	caggctttac	actttatgt	tccggctcg	3660
atgttgttg	gaatttgtag	cggataacaa	tttcacacag	gaaacagcta	tgaccatgt	3720
tacgccaagc	gcgcatttgtt	aattgtatcg	ctggcgcgc	aatatagga	ggtcgtgaa	3780
tagtaactt	gtagacttgg	ctacagcata	gagtatctt	tgtagcttg	atgactgcta	3840
gaaataatg	ctacggataa	tgtggggagg	gcaaggctt	cgaatcggtt	tgtaaacggc	3900
aaggcttgac	tgaggggaca	atagcatgtt	taggcgaaaa	gcggggcttc	ggttgtacgc	3960
gtttaggagt	cccttcagga	tatagtaggt	tcgttttgc	atagggaggg	ggaaatgttag	4020
tcttatgcaa	tactcttgta	gtcttgcaac	atgttatgt	aacgtatgt	tagcaacatg	4080
ccttataagg	agagaaaaag	caccgtgtat	gcccattttgtt	gggagtaagg	ttgttatgtc	4140
gtggatgtat	cgtgccttgt	taggaaggca	acagacgggt	ctaacacgga	ttggacgaac	4200
cactgaattc	cgcattgcag	agatattgtt	tttaagtggcc	tagctcgata	caataaacgc	4260
catttgcacca	ttcaccacat	ttgtgtgcac	ctgggttgat	ggccggaccc	ttgttccct	4320
grcgactacg	agcacatgc	tgaagcagaa	ggcttcattt	ggtgaccggc	acgtgtatcg	4380
tagggatag	ttgtcgccca	caggcggcgt	ggcgatccgt	tcctcatccg	tctcgottat	4440
tcggggagcg	gacgatgacc	ctagtagagg	gggctgcggc	ttaggagggc	agaagctgag	4500
tggcgctcga	gggagcccta	ctgcagggggg	ccaacatacc	ctaccgagaa	ctcagagagt	4560
cgttggaaaga	cgggaaaggaa	gccccgacgac	tgagcggtcc	accccaggcg	tgattccggt	4620

-continued

-continued

agttttaag taattctgtc gtaatgtgtc tggtgcata tccacccttc atgtgcattgt 6960
tcaaaaccat attcataaat ctatattatgt atttgcattc agttgtctt tgggttagaa 7020
actgtcccaag aaggccagtt cctctacata tttttgttca gtgaaagcta gaattcattt 7080
atactttca gtacctctga taaaacaca atctgatagg ctgcggaaac tggaaattca 7140
aagagcaaat ttcaatggaaac ttttaggtttt gacagatata tgagaaagca gaggcttgct 7200
gactattta ttcttattt ttatcccta aaaataatg tagagaaaaata tctgtttgtt 7260
gcacactact tgctatgagt agatcttca aagtattttt acctttgtt tgggtatggc 7320
agaatagata aggaatgtaa ttatatggg gtcatgtagt cttaggagaaa gacacgcatt 7380
taattcatat tctgctctat tgcaatttca ggtatggttt gctttgtca aagatatgca 7440
tgtgtactgt agtataaact ttctgtggag ttaaattttt gtgggtacat tcagacagaa 7500
gagaaatgca gacatgataa aatagcaatg ttactataa aacagagcca ctgaatgaat 7560
tcttgcatttcat gacatagacc aatagaagat ttatacttgt tctgtgtt tctattataa 7620
agagctgaac tgtacaacta ttgtatagcc agtgtgtcttataaagcac agctttgg 7680
gccagcatga atcttagttgc ttctgtgaga ttatataat ctgtggaaatg cagaagtcct 7740
tcagagccca gcccatttata tgctgtactga gtgtctgggc ctcaggattt gatttctgt 7800
attaaacccc tcaaaaatgtt ttactgtacca cgtgtgttag tatacacacaca cacattttc 7860
tcattttctt ttctgtatata aagttcacat gttatcttata ttgtaaagaaat atacgtttat 7920
gcaccccccataattttata ttgtgttagt atcagcagct gcactttgca ggaattaaac 7980
ttcttagagaa ttttccatttataaaaactc cccagaatttca actgaacacc atgattttgc 8040
tctctgtgca ctctgttaggg cttagaaatgtt atcaagaaaa ctgcaagagca tattcagatag 8100
tgaacgcacag gataagatgt tctgaaatataaacatatt ttaagcacaa agaataagcc 8160
tcctgtggaaac aaacacaaaag cttttacaca taataaaaata gtgcagaatg catacacagg 8220
tgagaagttt ttataggggg tatcacgcag gtacttcacc cttaaagata caacacatag 8280
cacaataattt gtttttttataaagttttag gtgcaagttttagt gagctaatat agagagaagg 8340
taattccaga gagttgttta cctttcgagc ttgactgtca aaggcaatac agctttctgt 8400
ctgtatgtac agacactggc tgacccctgg ggaatataat gtctgttcaatgg tgaccacccc 8460
acaggttccc ttcaaggtt tgaccccttgc caccatagaa atcattttat gggattgggt 8520
tagattttag ttcaatagg tccatccatgg attgaatggg gggaaatataat tagtttttaa 8580
ttctgggttaa caatgtgtt tctgtgttcaatcc atcaggactg ttggatggg 8640
gagaagactg gggaaatatttgc tccatgttcc attggacttca agtttacaacc agataatggg 8700
atctttaaagaa aacacaaaaa atgtggaaac ctggagatg gaaaacataa tttagcaattt 8760
tttagtttagt tgcttattac tatgggttca gtaacagacc agaagtctgt ttcatttgc 8820
ccttcttgc tgcataatgtt gcatotgagc cacgctagac aggacataaa tgagaacaag 8880
acttgaccta ttatccatgg gacaaatag gagaataaa gaagcgtgca tgcgttgc 8940
ccaaactgaga ctagactgaa gagcagacac actttcttc ctatagttgg aatattttaa 9000
tctatctttt tatgggttgc aatgttttataaactt tattctgagg atacagcaaa 9060
acatagctcc atacaatgtca aacaaatactt caatttcaaa tgcgtttatg atatgaactt 9120
gcagtttgc tcaaaatgtt tccatgttca acttaatggc ctggcagatg acagggaaat 9180

-continued

tgtgaaattc	agctggagga	gtgttcatgg	ttcgagggac	aatcataata	tacaatagca	9240
aatatatttc	agttatagaa	gctattgttc	tgtattgaaa	taatagaatt	gacaaacagt	9300
aaagaaacca	ttctgaccc	tgtaaagcac	tgtttgattt	aaaaatgggg	aaaaaaagta	9360
caacataatt	cttcaggaca	tacatagaga	tcactgcaat	ctctgttaag	cagaattact	9420
ttcctatacc	actagctgaa	gtttagtcag	tgccattttc	ttttgttct	ctccttcctt	9480
ttgtgaaaac	atataactg	tggaaatcta	cattctccct	gccaagtctg	aggacttaag	9540
acaagatggt	agtgc当地	atattttttt	gctggatgtc	tacaccacag	gtatcaactg	9600
atttttttt	tttc当地ttt	tttttaatca	cgtctttgc	ttctatttca	gccactaaga	9660
aagtctgaaa	atcttc当地	cttttgc当地	tgatagatgt	gcttccc当地	aatgtt当地	9720
tctacctatg	aatgc当地	cagtctgc当地	aaagagaaaag	gagattgggg	atagttttc	9780
tcagatgcac	ttctctgtca	tctgggtgtca	atcaaacaact	aataatttgc当地	gtatagat当地	9840
cttataatata	tatataatatt	tggaaatttgc当地	agggtggcat	agttc当地	gtc当地gtc当地	9900
attgtatata	cctggtgaga	taacaaggaa	aagagagacc	gttccggctc	ttactaaggc	9960
agggaaactgc当地	ttaccagaca	gggagggttct	ggagatgaca	tccagcatga	aaagcacact	10020
tccaaataact	taaagggtatc	aagtctact	tgtc当地	gctccagaat	aacttctgtc当地	10080
ctaatgc当地	agaaaagggg	gaaggatgtcc	accatggcc	aaatttgc当地	ccattttgtc当地	10140
tcagcaaaca	gcagatctgg	tca	caagatttctt	ccaaagcaac	catgc当地	10200
ataattaagc	atgtgtat	attaataaa	aatataatt	tagtgc当地	c当地cttgc当地	10260
atgttatgaa	gaaatgc当地	tattaacaat	tcaccataat	ctgtc当地	taag	10320
aacaacaggc	tgttctca	cctgtgggttgc当地	gggtgtaccag	tgagccagag	ctaaacgc当地	10380
cgttccctt	tttgtatccc当地	atagc当地	gggtctccat	ttc当地	tgc当地	10440
agttgtatgc当地	gat	tttacact	acaagttgtg	gtatgtggagg	tctgc当地	10500
gaacagagcc	cagcagctgt	cccgtgtc当地	caaaagggg	ctgccactgg	ccagagctga	10560
gccagtgate	gtatgtat	gtacctcagg	aggagcaata	tgtaaagaca	actgtgtac	10620
aatggtagtt	gggagaggtg	agtgc当地	tgtgagagaa	acagccctga	tgacactgag	10680
gtc当地	aggaggc当地	agggtgttcc	agggtgtagaa	cagaagtcc	ctgc当地	10740
agagaggccc	atggtgagc	actctgaccc	tctgc当地	atgttatata	atataaacct	10800
cagttctgt	acattat	aactccat	cccttttctg	ttc当地	cttgc当地	10860
acagccattt	c当地	ctccaatata	agcctccat	tgc当地	gagacttgg	10920
cagtagatct	gattc当地	aatctgc当地	cagaacgtcc	ctgaagccct	tcttagacag	10980
tctcaattct	c当地	atctcttta	tc当地	accacggacc	tgtccagacc	11040
tgatgtat	gtccatctt	acgtccatct	ctatgtctg	tactttaaga	caaataaaat	11100
atcaaggaaa	ttgatgc当地	tatgtc当地	atcactgtca	tagtgc当地	ctgcaatata	11160
aagatgagaa	tgatccaaa	ggctttttaa	agctgtct	tttgc当地	acatgtgtc当地	11220
ctgattccag	acctacagaa	cagtttgc当地	tgc当地	ttgc当地	ttgtttgtc当地	11280
agtcttataa	aagccat	tttctccaa	gaagtagccg	gtggttaaa	acaatgtaga	11340
ttaagtgtgg	agcatgagaa	tttctgc当地	tctgc当地	gagaaggata	tactacactc当地	11400
tttcccaatg	gaagaccagc	tgcaagcaac	aaaaatttgc当地	catgaacaaa	tgagatctt当地	11460

-continued

atcagaacag	gctgtcatca	tagtgggtc	agcataccctg	catagttgg	ttgacttgg	11520
ggtctagaga	gagtaagcaa	caatcttctt	gcagttggaa	ggttacctgg	gataggtggc	11580
aatggattgc	cctgcccagc	acagctgtgc	aaagcagtac	aaatagttt	gtcacacatt	11640
gtttgacaat	gcttgccca	agaaaaggtc	agctaaggct	ctgctgccct	ttcctatgcc	11700
aggcatttca	tttgtgggtct	gtccctaaac	caacagtctc	atgaataaaag	actcgagac	11760
ctgaaagttt	taaaaggact	ttttatccaa	aaggatatga	agtccaggtg	agctcacagg	11820
tcaaaggctc	ttatccaatc	actaaaacct	actcagaact	tgactcga		11868

<210> SEQ ID NO 20

<211> LENGTH: 10021

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: pSIN-3.9-OM-CTLA4-Fc Vector

<400> SEQUENCE: 20

ctagactagg	atccccctg	ctgcagaacc	gagcggctat	tgacttcttgc	ctcttagctc	60
acggccatgg	ctgtgaggac	attgcgggaa	tgtgttggtt	caatctgagt	gtcacacagt	120
agtctataca	gaagaagttc	cagctaattt	aggaacatgt	caataagatc	ggcgtgaaca	180
acgacccaaat	cggaaagttgg	ctgcgaggat	tattcggagg	aataggagaa	tgggcgtac	240
acttgctgaa	aggactgttt	ttggggcttg	tagttatctt	gttgctagta	gtatgtttgc	300
cttgccctttt	gcaatgttta	tcttagtagta	ttcgaaagat	gattgataat	tcactcggct	360
atcgcgagga	atataaaaaaa	attacaggag	gtttataaggc	agccccgaaag	aagagcgttag	420
gcgcgttctt	gtattccgt	tgtatgttgg	ttggatttgg	aattgtatgg	ctggcacgcg	480
gaatataat	ggtcgttggaa	tagttaactt	gttagacttgg	ctacagcata	gagtatcttgc	540
tgtatgtctg	atgactgtta	ggaaataatg	ctacggataa	tgtggggagg	gcaaggcttgc	600
cgaatcgggt	tgtaacgggc	aaggcttgc	tgaggggaca	atagcatgtt	tagggaaaaa	660
gcggggcttc	gggttgcgtc	ggtttaggat	ccctctagga	tatagtagtt	tgcgttttgc	720
atagggaggg	ggacggatttgc	gacgaaccac	tgaattccgc	attgcagaga	tattgtattt	780
aagtgcctag	ctcgatataaa	taaacggccat	ttgaccatc	accacatgg	tgtgcacctg	840
ggttgtatggc	cgaccgcgttgc	attccctgrc	gactacgagc	acatgtatgc	agcagaaggc	900
tcattttttgtt	gaccccgacg	tgtatgttag	ggaatacgcg	ctcaactggcc	gtcggtttac	960
aacgtcgtga	ctggggaaac	cctggcggtt	cccaactttaa	tcgccttgca	gcacatcccc	1020
ctttcgccag	ctggcgtaat	agcgaagagg	cccgccaccga	tcgccttcc	caacagtgtc	1080
gcagcctgaa	tggcgtatgg	aaattgttaag	cgttaatattt	ttgtttaaaat	tgcgttaaa	1140
ttttgtttaa	atcagctat	tttttaaccat	ataggccgaa	atcggccaaa	tcccttataa	1200
atcaaaagaa	tagaccgaga	taggttggag	tgttgttcca	gtttggaaaca	agagtccact	1260
ataaaagaac	gtggactcca	acgtcaaaagg	gcgaaaaacc	gtctatcagg	gcgatggccc	1320
actacgtgaa	ccatcaccct	aatcaagttt	tttggggctcg	aggtgcgttgc	aagcactaaa	1380
tcggaaaccct	aaaggggagcc	cccgatttag	agcttgcacgg	ggaaagccgg	cgaacgtggc	1440
gagaaaggaa	gggaagaaag	cgaaaggagc	gggcgttgg	gctgtggcaa	gtgttagcggt	1500
cacgctgcgc	gtaaccacca	cacccggccgc	gtttaatgcgc	ccgctacagg	gcgcgtcagg	1560

-continued

tggcactttt	cggggaaatg	tgcgcgaaac	ccctatttgt	ttattttct	aaatacattc	1620
aaatatgtat	ccgctcatga	gacaataacc	ctgataaatg	cttcaataat	attgaaaaag	1680
gaagagttatg	agtattcaac	atttccgtgt	cgccttatt	cccttttg	cgccattttg	1740
ccttcctgtt	tttgctcacc	cagaaacgct	ggtggaaagta	aaagatgctg	aagatcagtt	1800
gggtgcacga	gtgggttaca	tcgaactgga	tctcaacagc	ggttaagatcc	ttgagagttt	1860
tcgccccgaa	gaacgtttcc	caatgatgag	cacttttaaa	gttctgtat	gtggcgccgt	1920
attatccgt	attgacgccc	ggcaagagca	actcggtcgc	cgcatacact	attctcagaa	1980
tgacttggtt	gagtaactcac	cagtcacaga	aaagcatctt	acggatggca	tgacagtaag	2040
agaattatgc	agtgcgtgcca	taaccatgag	tgataacact	gcggccaact	tacttctgac	2100
aacgatcgga	ggaccgaagg	agctaaccgc	tttttgcac	aacatggggg	atcatgtAAC	2160
tcgccttgc	cgttggaaac	cggagctgaa	tgaagccata	ccaaacgacg	agcgtgacac	2220
cacgatgcct	ctagcaatgg	caacaacgtt	gcgcaacta	ttaactggcg	aactacttac	2280
tctagcttcc	cgccaaacaat	taatagactg	gatggaggcg	gataaagttt	caggaccact	2340
tctgcgtctg	gcccttccgg	ctggctgggtt	tattgtgtat	aaatctggag	ccgggtgagcg	2400
tgggtctcgc	ggtatcattt	cagcaactggg	gccagatggt	aagccctccc	gtatcgtagt	2460
tatctacacg	acggggagtc	aggcaactat	ggatgaacga	aatagacaga	tcgcgtgagat	2520
aggtgccctca	ctgattaaggc	attggtaact	gtcagaccaa	gtttactcat	atataacttta	2580
gattgattta	aaacttcatt	ttaattttaa	aaggatctag	gtgaagatcc	tttttgataaa	2640
tctcatgacc	aaaatccctt	aacgtgagtt	ttcggtccac	tgagcgtcag	accccgtaga	2700
aaagatcaaa	ggatcttctt	gagatccttt	ttttctgcgc	gtaatctgt	gcttgoaaac	2760
aaaaaaaaacca	ccgctaccag	cggtggtttt	tttgcggat	caagagctac	caactcttt	2820
tccgaaggta	actggcttca	gcagagegca	gataccaaat	actgtccctc	tagttagcc	2880
gtagtttaggc	caccacttca	agaactctgt	agcaccgcct	acataacccg	ctctgtaat	2940
cctgttacca	gtggctgtct	ccagtgccga	taagtcgtgt	cttacccgg	tggactcaag	3000
acgatagttt	ccggataagg	cgcagcggtc	gggctgaacg	gggggttcgt	gcacacagcc	3060
cagcttggag	cgaacgaccc	acaccgaact	gagataccta	cagcgtgagc	tatgagaaag	3120
cgccacgcctt	cccgaaaggga	gaaaggcgga	caggtatccg	gtaageggca	gggtcgaaac	3180
aggagagcgc	acgagggagc	ttccaggggg	aaacgcctgg	tatcttata	gtcctgtcg	3240
gtttcgccac	cctctgacttg	agcgtcgatt	tttgcgtatgc	tcgtcagggg	ggcgaggcct	3300
atggaaaaac	gccagcaacg	ccgcctttt	acggttccctg	gccttttgc	ggcctttgc	3360
tcacatgttc	tttctctgegt	tatccccgt	ttctgtggat	aaccgtatta	ccgccttga	3420
gtgagctgat	acccgctcgcc	gcagccgaac	gaccgagcgc	agcgagtccg	tgagegagga	3480
agcggaaagag	cgcaccaatac	gcaaacccgc	tctcccgcg	cggtggccga	ttcattaatg	3540
cagctggcacc	gacaggtttc	ccgactggaa	agcgggcagt	gagcgcacac	caattaatgt	3600
gagttagctc	actcattagg	caccccaggc	tttacacttt	atgctccgg	ctcgatgtt	3660
gtgtgaaatt	gtgagcggt	aacaatttca	cacaggaaac	agctatgacc	atgattacgc	3720
caagcgcgc	ttggtaattt	atcggtctggc	acgcggaaata	taggaggctg	ctgaatagta	3780
aactttaga	cttggctaca	gcatagagta	tcttctgttag	ctctgatgac	tgcttagaaaa	3840

-continued

taatgtacg gataatgtgg ggaggggcaag gcttgcgaat cgggttgtaa cgggcaaggc 3900
ttgactgagg ggacaatacg atgttttaggc gaaaaggcccc gcttcgggtt tacggcggtta 3960
ggagttccccct caggatatacg tagtttcgtt tttgcataagg gagggggaaa tgtatgttta 4020
tgcaataactc ttgttagtctt gcaacatgtt tatgtaacga tgagtttagca acatgcctta 4080
taaggagaga aaaagcaccg tgcatgccga ttgggtggg taagggttga tgatgttgtt 4140
atgatcgtgc cttgttagga aggcaacaga cgggtctaac acggatttga cgaaccactg 4200
aattccgcatt tgcaagagata ttgttattaa gtgcctagct cgatataata aacgcattt 4260
gaccattcac cacattgggt tgcaccttggg ttgatggccg gaccgttgc tccctgrcga 4320
ctacgagcac atgcatacgaa cagaaggctt catttggta cccgcacgtg atcgttaggg 4380
aatagtggtc ggccacagggc ggcgtggcga tcctgtcttc atccgtctcg cttattcggg 4440
gagccggacac tgaccctagt agagggggctt gggctttagg agggcagaag ctgagttggc 4500
tcggagggag ccctactgca gggggccaaac ataccctacc gagaactcag agagtcgttgc 4560
gaagacggga aggaagcccg acgactgago ggtccaccccc aggcgtgatt ccgggttgc 4620
tgcggtgattt cgggtccccg gtggatcaag catggaaagcc gtcataaaagg tgatttgc 4680
cgcgtgttaag acctatttgcg gggaaaccc tccttcttaa aaggaaatag gggctatgtt 4740
gtccctgtta caaaaaggaag gggttgcattac gtcccccattca gacttataatt ccccggttgc 4800
ctgggatccc attaccgcgg cgctctctca gcgggctatg gtacttggaa aatcgaaag 4860
gttaaaaacc tggggattttt ttttggggcatttgaaggcc gtcgtgggtc gacggatcg 4920
ataagcttgc agtccaaaggc ttgttctgtt tacccagtga aatcccttctt ctgttacata 4980
aagccccatggcaggactcaga aatgttagtca ttccagcccc cctcttcttc agatctggag 5040
cagcacttgtt ttcgcagccag tcctcccaa aatgcacaga ctcgcggag tggaggaga 5100
tgtaaacacgc gaagggttaat taccttccttgc tcaaaaacac ttgttgcctt atagatgttt 5160
ctgtcaatct tacaaaacacgc aaccgagagg cagcgtggc tgaagagcgt gttccatgc 5220
tgagttatgtt agacttggca gtcgtgttgc cagagatgtt ccctgtgtt catggggggc 5280
tgtaacctgtt ctccccatcg cttcacaccgc gcaatgtgtt cctggacacc tcacccctca 5340
taagctgttagt gatgcggctg cccagggttcc aagagactttt tccttaaggctt cttaggactc 5400
atctttgcgc ctcagtagcg tgcaatgttacttccactataactga atgggttttttgc 5460
ggccatctgtt cttgtttgttca aataagcattt tcttcatttttgc tctcttcaggc 5520
agcaccggcgc tgggtgaccc gatgtggccac ctggaaacccg aggggcacag ccaccaccc 5580
cctgttgcgtt ctgcgtccagg gactcatgtt ctgttgcgtt gggggaaagca tgaagttctt 5640
cacccagaca cctgggttgc aatggctgca gctgtgttctt ctgggtatgc agattgtttc 5700
cagccattac ttgttagaaat gtgtgttgc aagcccttgcgtt atcttttttgc tggcccttc 5760
agoaaaaagct gtggggaaagc tctgaggctg ctttcttggg tctgtggagga attgtatgtt 5820
ccttctttaa caaaaattat ccttaggaga gagcaactgtt caagcattgtt gcacataaaa 5880
caattcagggtt tggaaagggtt ctctggagggttccatgttgc actactgttgc gaagcaaggc 5940
cagggttcaaaat gatggctcag gatgtgtgttgc tcttcatttttgc tctcttcaggc 6000
ggagattcac agccactctg ctteccgttgc cactcatgttgc gaggaatattt cccttatatt 6060
cagatagaat gttatcttgc tgcgttgc tccctataac cccatgttgc agtgcgttgc 6120

-continued

ccccatactc	tccccc	ttctc	tggggtgaag	gccgtgtccc	ccagcccccc	ttcccccaccc	6180		
gtgc	ccctaag	cagccccgtg	gcctctgtcg	gatgtgtgcc	tatatgtcaa	tgcctgtcct	6240		
tgc	agtccag	cctgggacat	ttaattcatc	accaggtaa	tgtggaaactg	tgtcatcttc	6300		
ccct	gcagg	tacaaagttc	tgcacgggg	ccttcgggt	caggaaaacc	ttcactgggt	6360		
ctac	ctgtaaat	caagcttat	ttaataagt	cataaggcaca	tggatgtgtt	ttcctagaga	6420		
tacg	tttaa	tggtatcagt	gattttatt	tgc	tttgcgtt	cttacttcaa	acagtgcctt	6480	
tggc	caggag	gtgaggggacg	ggtctgcgt	tggctctgca	gtgatttctc	caggcgtgt	6540		
gctc	agggtca	gatagtggc	actctgtggc	cagaagaagg	acaaagatgg	aaattgcaga	6600		
ttgagtcac	g	ttaagcaggc	atcttggagt	gat	ttgaggc	agtttcatga	aagagctacg	6660	
accacttatt	gtt	tttcc	ccttttacaa	cagaagtttt	catcaaaata	acgtggcaaa	6720		
gccca	ggaaat	gtttggaaa	agtgttagtta	aatgtttgt	aattcatttgc	tcggagtgt	6780		
accagctaag	aaaaaa	agtcc	tacctttgtt	atggtagtcc	tgcagagaat	acaacatcaa	6840		
tattagttt	gaaaaaa	aca	ccaccaccac	cagaaactgt	aatggaaaat	gtaaaccaag	6900		
aaattcc	tttgc	gttaagagag	aaaggatgtc	gtataactggc	caagtcgtgc	ccagtcgtca	6960		
gc	tcgtac	cctctgcagt	tcaggaccat	gaaacgtggc	actgtaaagac	gtgtccctg	7020		
ccttgc	tttgc	cccacagatc	tctgccttgc	tgctgactcc	tgcacacaag	agcattccc	7080		
tgt	agccaaa	cagcgattag	ccataagctg	cac	ctgactt	tgaggattaa	gagtttgcaa	7140	
tta	agtggat	tgcagcagga	gatcagtggc	agggttgca	atgaaatct	tttcttagggg	7200		
tag	ctaagg	ctgagcaacc	tgtcctacag	cacaagccaa	accagccaa	ggtttctg	7260		
tg	ctgtt	tcac	agaggcagg	ccagctggag	ctggaggagg	ttgtgtctgg	acccttctcc	7320	
ct	gtgt	ctgag	aatggagtga	tttctgggt	ctgttctgt	ggcttgcact	gagcagctca	7380	
agg	gagatcg	gtgctcctca	tgcagtgc	aaactcgtgt	ttgatgcaga	aagatggatg	7440		
tgc	ac	ctctgtaat	gcagccgtga	gcttatgaag	gcaatgagcc	ctcagtgcag	7500		
cagg	agctgt	agtgcactcc	tgttaggtgc	agggaaaatc	tctggttccc	agggatgc	7560		
tc	ataagg	gc	aatatatctt	gaggctgcgc	caa	atctt	tgaaatattc	atgcgtgtt	7620
cct	taattt	tagaaacaaa	cacagcagaa	taattattcc	aatgcctccc	ctcgaaggaa	7680		
acc	atattt	ccatgtgaa	atgtaaccta	tatacacaca	gccatgc	atccttcaga	7740		
ac	gtgc	cagt	gtctcatctcc	catggcaaaa	tactacaggt	attctacta	tgttggac	7800	
gt	gaaagg	aaatggtaag	aaactcgtgt	taaaggatgt	gctgc	aaaac	tactcatacc	7860	
aa	aaacagc	ag	ctctcttag	gaaagagcc	cttggagagg	gatgggtgt	7920		
agg	ctggagg	tgagagacag	agc	ctgttcc	tctctat	tttctgaaacgtt	7980		
tgc	aggag	aaggacaact	gtactttcg	gcatag	ctgg	tgc	taaataagt	8040	
cc	ccaaactt	ctgtgtcatt	tgttcttaag	atgc	tttggc	agaacac	tttctgat	8100	
ct	tttaactgt	gtaaataagt	gtcc	ccctgt	gataagg	ttc	aagtgcac	8160	
tt	tagtggta	tttgacagca	tttac	cttgc	tttcaag	tctacca	gc	tttctata	8220
tta	aggc	aaaccgccaa	gaaacc	c	ttttatcaa	gct	atgtgc	aaataccat	8280
act	tcatagg	ttagatacgg	tg	ctgc	c	ttc	actgtgt	8340	
ggt	gacaaag	c	ctcc	ctggc	ctgtgc	ttt	acctagaggt	gaatatccaa	8400

-continued

ctgcatggaa	agcagagctg	caggcacat	ggtgctgagc	cttagctgct	tcctgctggg	8460
agatgtggat	gcagagacga	atgaaggacc	tgtcccttac	tcccctcagc	attctgtgct	8520
atttagggtt	ctaccagagt	ccttaagagg	ttttttttt	ttttggtcca	aaagtctgtt	8580
tgttggttt	tgaccactga	gagcatgtga	cacttgc	aagctattaa	ccaagtgtcc	8640
agccaaaatc	aattgcctgg	gagacgcaga	ccattacctg	gaggtcagga	cctcaataaa	8700
tattaccagc	ctcattgtgc	cgctgacaga	ttcagctggc	tgctccgtgt	tccagtc当地	8760
cagttcggac	gccacgtttgc	tatataatttgc	caggcagcct	cggggggacc	atctcaggag	8820
cagagcaccg	gcagccgcct	gcagagccgg	gcagtcaccc	aacatgggtg	tactgtc当地	8880
acagaggacg	ctgctcagtc	tggccttgc	actcctgttt	ccaagcatgg	cgagcatggc	8940
aatgcacgtg	gcccagcctg	ctgtggact	ggccagcaga	cgaggcatcg	cyagcttgc	9000
gtgtgagtat	gcatctccag	gcaaagccac	tgaggtccgg	gtgacagtgc	ttcggcaggc	9060
tgacagccag	gtgactgaag	tctgtgcggc	aacctacatg	atggggaaat	agttgacatt	9120
cctagatgtat	tccatctgca	cgggcacctc	cagtggaaat	caagtgaacc	tcaactatcca	9180
aggactgagg	gccatggaca	cgggactcta	catctgcaag	gtggagctca	tgtaccacc	9240
gccatactac	ctggccatag	gcaacggaaac	ccagatttat	gtaattgatc	cagaaccgtg	9300
cccagattct	gatcaggagc	ccaaatcttc	tgacaaaact	cacacatccc	caccgtcccc	9360
agcacctgaa	ctccctgggg	gatcgtcagt	cttcctcttc	cccccaaaac	ccaaggacac	9420
cctcatgtat	tcccgaccc	ctgaggtcact	atgcgtggtg	gtggacgtga	gccacgaaga	9480
ccctgaggc	aagttcaact	ggtacgtgga	cggcgtggag	gtgcataatg	ccaagacaaa	9540
gccgcgggag	gagcagtaca	acagcacgt	cggggtggc	agcgtcttca	ccgtctgtca	9600
ccaggactgg	ctgaatggca	aggagtacaa	gtgcaaggc	tccaaacaaag	ccctccca	9660
ccccatcgag	aaaaccatct	ccaaagccaa	agggcagccc	cgagaaccac	agggttacac	9720
cctgccccca	tcccggtat	agctgaccaa	gaaccaggc	agcctgaccc	gcctggtcaa	9780
aggcttctat	cccagcgaca	tegcccgtgaa	gtggggagac	aatgggcagc	cggagaacaa	9840
ctacaagacc	acgcctcccg	tgctggactc	cgacggctcc	ttcttcctct	acageaagct	9900
caccgtggac	aagagcagg	ggcagcagg	gaacgtcttc	tcatgtccg	tgtatgtca	9960
ggctctgcac	aaccactaca	cgcagaagag	cctctccctg	tctccggta	aatgaggaat	10020
t						10021

<210> SEQ ID NO 21
 <211> LENGTH: 7350
 <212> TYPE: DNA
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: pSIN-1.8-OM-IFNa-2B Vector

<400> SEQUENCE: 21

tcgagatcaa	ttgctagact	aggatcccc	gtgctgcaga	accgagccgc	tattgacttc	60
ttgctcctag	ctcacggcca	tggctgtgag	gacattgcgg	aatgtgttg	tttcaatctg	120
agtgtatcaca	gtgagttat	acagaagaag	ttccagctaa	tgaaggaaca	tgtcaataag	180
atcggcgtga	acaacgaccc	aatcggaaat	tggctgcgg	gattattcgg	aggaatagga	240
gaatggggcg	tacacttgct	gaaaggactg	cttttggggc	ttgttagttat	cttggctca	300

-continued

gtatgtatgct	tgccctgcct	tttgcataatgt	gtatcttagta	gtattcgaaa	gatgattgtat	360
aattcactcg	gctatcgcgaa	ggaatataaaa	aaaattacag	gaggcttata	agcagccgaa	420
aagaagagcg	taggcgagtt	cttgcattcc	gtgtgatagc	tggttggatt	ggtaattgtat	480
cggctggcac	gcggaaatata	ggaggtcgct	gaatagtaaa	cttgcataact	tggctacagc	540
atagagttatc	ttctgttagct	ctgtatgact	ctaggaaata	atgcatacgaa	taatgtgggg	600
agggcaaggc	ttgcataatcg	gggttgcataac	ggcaaggcctt	gactgaggggg	acaatagcat	660
gtttaggcga	aaagcggggc	ttcggttgcata	cgcggtttagg	agtccccctca	ggatatacgta	720
gtttcgctt	tgcataggga	gggggacggaa	ttggacgaac	cactgaaatc	cgcatggcag	780
agatattgtat	ttaagtgcct	tagctcgata	caataaacgc	catttgcacca	ttcaccacat	840
tgggtgtcac	ctgggttgcata	ggccggaccgc	ttgattccct	grcgactacg	agcacaatgc	900
tgaaggcagaa	gggttcattt	ggtgaccccg	acgtgtatcg	tagggaaatac	gcgcctactg	960
gccgtcgctt	tacaacgtcg	tgactggggaa	aaccctggcg	ttacccaact	taatgcctt	1020
gcagcacatc	cccccttcgc	cagctggcg	aatagcgaag	aggcccgcac	cgatcgccct	1080
tcccaacagt	tgegcagect	gaatggcgaa	tggaaattgt	aagcgtaat	attttgcattaa	1140
aattcgcgtt	aaatttttgt	taaatcagct	cattttttaa	ccaataggcc	gaaatcgca	1200
aaatccctta	taaatcaaaa	gaatagaccg	agatagggtt	gagtgttgc	ccagtttgc	1260
acaagagtc	actattaaag	aacgtggact	ccaaacgtcaa	agggcgaaaa	accgttatac	1320
agggcgatgg	cccaactacgt	gaaccatcac	cctaatacg	ttttttttttgc	tcgagggtgc	1380
gtaaaggcact	aaatcggaac	cctaaaggga	ccccccgatt	tagagcttgc	cgggggaaagc	1440
cggcgaacgt	ggcggagaaag	gaagggaga	aagcgaaagg	agcggggcgct	aggggcgctgg	1500
caagtgtagc	ggtaacgtcg	cgcgtaacca	ccacacccgc	cgcgcttaat	gcgcgcgtac	1560
agggcgcgtc	agggtggact	tttcggggaa	atgtgcgcgg	aaccctatt	tgttttttttgc	1620
tctaaataca	ttcaaataatgc	tatccgtca	tgagacaata	accctgataa	atgcctcaat	1680
aatattgaaa	aaggaagagt	atgagtattc	aacattccg	tgtcgccctt	attcccttttgc	1740
ttgcggcatt	ttgccttcct	gtttttgcct	acccagaaac	gctgggtaaa	gtaaaagatgc	1800
ctgaagatca	gttgggtgc	cgagtggggt	acatcgact	ggatctcaac	agcggtaaaga	1860
tccttgagag	tttcggcccc	gaagaacgtt	ttccaatgtat	gagcaactttt	aaagttctgc	1920
tatgtggcgc	ggtattatcc	cgtattgcac	ccgggcaga	gcaactcggt	cgccgcatac	1980
actattctca	gaatgacttg	gttgagttact	caccagtcac	agaaaaagcat	cttacggatgt	2040
gcatgacagt	aagagaatata	tgcagtgctc	ccataaccat	gagtgcataac	actggeggcca	2100
acttacttct	gacaacgtac	ggaggaccga	aggagctaac	cgctttttgc	cacaacatgg	2160
gggatcatgt	aactcgccctt	gatcggttgg	aaccggagct	gaatgaagcc	ataccaaacgc	2220
acgagcgtga	caccacgtg	cctgtatcaa	tggcaacaac	gttgcgcataa	ctattaactgc	2280
gcgaactact	tactcttagct	tcccgcaac	aattaataga	ctggatggag	gcggataaag	2340
ttgcaggacc	acttctgcgc	tcggcccttc	cggctggctg	gtttattgt	gataaatctgc	2400
gagccgggtga	gcgtgggtct	cgcggtatca	ttgcagact	ggggccagat	ggtaagccct	2460
cccgatctgt	agttatctac	acgacggggaa	gtcaggcaac	tatggatgaa	cgaaatagac	2520
agatcgctga	gataggtgcc	tcactgatta	agcattggta	actgtcagac	caagtttact	2580

-continued

catataatact ttagatttat taaaacttc attttaatt taaaaggatc taggtgaaga	2640
tccttttga taatctcatg accaaaatcc cttaacgtga gttttcgatc cactgagcgt	2700
cagaccccgt agaaaagatc aaaggatctt cttgagatcc ttttttctg cgctaatct	2760
gctgcttgca aacaaaaaaa ccaccgtac cagcgggtgg ttgtttccg gatcaagagc	2820
taccaactct tttccgaa gtaactggct tcagcagagc gcagataccca aatactgtcc	2880
ttcttagtgta gccgttagta ggcaccactc tcaagaactc tcttagcaccg cctacatacc	2940
tcgctctgct aatcctgtta ccagtggctg ctgcccgtgg cgataagtgc tgccttaccg	3000
gttggactc aagacgatag ttaccggata aaggcgcagcg gtcgggtgtg acgggggggt	3060
cgtgcacaca gcccagcttg gagcgaacgca cctacaccga actgagatac ctacagcgtg	3120
agctatgaga aagcgcacg cttccgaaag ggagaaaggc ggacaggatc ccggtaagcg	3180
gcagggtcg aacaggagag cgacgaggag agcttccagg gggaaacgccc tggtatctt	3240
atagtcctgt cgggtttcgc cacctctgac ttgagcgtcg atttttgtgatc tgctcgatc	3300
ggggggcgag cctatggaa aacgcgcagca acgcggcctt tttacgggtt ctggcccttt	3360
gctggccctt tgcacatcg ttctttctg cgttatecccc tgattctgtg gataaccgt	3420
ttaccgcctt tgagttagt gataccgtc gcccgcggc aacgaccgag cgacgagcgt	3480
cagtgagcga ggaagcggaa gagcgcggaa tacgcaaaacc gcctctcccc gcgcgtggc	3540
cgattcatta atgcagctgg cacgacaggt ttcccgcgt gaaagcgggc agtgagcgc	3600
acgcaattaa tgtgagtttgc ctcactcatt aggcacccca ggctttacac ttatgtttc	3660
cggctcgat gttgtgtgaa attgtgagcg gataacaatt tcacacagga aacagatcg	3720
accatgatta cgcacagegc gcattgttta ttgatcggtt ggcacgcggaa atataggagg	3780
tcgctgaata gtaaaacttgt agacttggct acagcataga gatctttctg tagctgtat	3840
gactgctagg aaataatgtc acggataatg tggggaggc aaggcttgcg aatcgggtt	3900
taacgggcaa ggcttgactg aggggacaat agcatgttta ggcgaaaagc ggggttcgg	3960
ttgtacgcgg ttaggagtcc ctcaggata tagtagtttgc gttttgtcat agggaggggg	4020
aaatgttagtc ttatgcaata ctcttgcgtt cttgcaacat gcttatgtaa cgatgagtt	4080
gcaacatgcc ttataaggag agaaaaaggc cctgtgcgtgc cgattgggtgg gatgttttgc	4140
gtatgtatcg ggtatgtatcg tgccttgcgtt ggaaggcaac agacgggtct aacacggatt	4200
ggacgaacca ctgaattccg cattgcagat atattgtatt taatgtcata gctcgatata	4260
ataaacgcaca ttgaccatt caccacattt gtgtgcacccctt ggggttgcgtt ccggacgcgtt	4320
gattccctgr cgtactacgag cacatgcgtt aaggcgttgc cttcattttgc tgaccccgac	4380
gtgatcgat gggatagtg gtcggccaca ggcggcgtgg cgatcgttgc ctcatccgtc	4440
tcgttatttcc gggggcggaa cgatgacccctt agtagagggg gctgcggctt agggggcag	4500
aagctgatgt ggcgtcgagg gggccctactt gcaggggggcc aacatccctt accgagaact	4560
cagagagtcg ttggaaagacg ggaagggaaaccc cccacgttgc acgggtccac cccaggcgt	4620
atcccggttgc ctctgcgttgc ttccggatc aagcatggaa ggcgtcataaa	4680
agggtatcc gtcggcgtgtt aagacctattt gggggaaaac ctctccctt aagaaggaaa	4740
taggggttat gttgtccctg ttacaaaagg aagggttgc tacgtcccccc tcagacttat	4800
atccccccggg gtcctggat cccattacccg cggcgatctc tcagcgggtt atggacttg	4860

-continued

gaaaatcggg	agagttaaaa	acctggggat	tggttttggg	ggcattgaag	gcggctcgac	4920
ggatccgtta	accctagaac	tagtggatct	ctgcccctgt	gctgactcct	gcacacaaga	4980
gcatttcct	gtagccaaac	agcgatttagc	cataagctgc	acctgacttt	gaggattaag	5040
agtttgcaat	taagtggatt	gcagcaggag	atcagtggca	ggggttgcaga	tgaaatcctt	5100
ttcttaggggt	agctaagggc	tgagcaaccc	gtcctacagc	acaagccaaa	ccagccaagg	5160
gtttccctgt	gctgttcaca	gaggcagggc	cagctggagc	tggaggaggt	tgtgctggga	5220
cccttcctcc	tgtgctgaga	atggagtgtat	ttctgggtgc	tgttcctgtg	gcttgactg	5280
agcagctcaa	gggagatcg	tgctcctcat	gcagtgccaa	aactcgtgtt	tgatgcagaa	5340
agatggatgt	gcacccctct	cctgctaattg	cagccgtgag	cttatgaagg	caatgagccc	5400
tcagtgcagc	aggagctgta	gtgcactcct	gttaggtgcta	gggaaaatct	ctggttcccc	5460
gggatgcatt	cataaggcata	atatatcttg	aggctgcgcc	aaatcttct	gaaatattca	5520
tgcgtgttcc	cttaattttat	agaaacaaac	acagcagaat	aattattcca	atgcctcccc	5580
tgcgaaggaaa	cccatatttc	catgtagaaa	tgtAACCTAT	atcacacag	ccatgtgca	5640
tccttcagaa	cgtgccagtg	ctcatctccc	atggccaaat	actacaggta	ttctcactat	5700
gttggacctg	tgaaaggaac	catggtaaga	aacttcgggt	aaaggatatgg	ctgcacaaact	5760
actcataacca	aaacacgaga	gctccagacc	tcctctttagg	aaagagccac	ttggagaggg	5820
atgggtgtgaa	ggctggaggt	gagagacaga	gcctgtccca	gtttccctgt	ctctatttc	5880
tgaaacgttt	gcaggaggaa	aggacaactg	tactttcagg	catagctggt	gcctcoacgt	5940
aaataagttc	cccgaaacttc	tgtgtcattt	gttcttaaga	tgtttggca	gaacaatttg	6000
agtcaattcg	cttaactgtg	actaggctgt	taaataagtg	ctccctgtct	ataaggttca	6060
agtgcacattt	ttagtggtat	ttgacagcat	ttaccttgc	ttcaagtctt	ctaccaagct	6120
cttctataact	taagcagtga	aaccgccaag	aaacccttcc	ttttatcaag	ctagtgctaa	6180
ataccattaa	cttcataaggt	tagatacggt	gctgccagct	tcacctggca	gtggttggc	6240
agtctctgt	gtgacaaaac	ctccctggcc	tgtgtttta	cctagaggt	aatatccaag	6300
aatgcagaac	tgcacggaaa	gcagagctgc	aggcacgatg	gtgctgagcc	ttagctgctt	6360
cctgctggga	gatgtggatg	cagagacgaa	tgaaggacct	gtcccttact	ccctcagca	6420
ttctgtgcta	tttagggttc	taccagagtc	cttaagaggt	ttttttttt	tttggtccaa	6480
aaagtctgttt	gtttgggttt	gaccactgag	agcatgtgac	acttgtctca	agcttattaac	6540
caagtgtcca	gccaaaatca	attgcctgg	agacgcagac	cattacctgg	aggtcaggac	6600
ctcaataaaat	attaccagcc	tcattgtgca	gctgacagat	tcagctggct	gctccgtgtt	6660
ccagtccaaac	agttcggacg	ccacgtttgt	atataattgc	aggcagcctc	ggggggacca	6720
tctcaggagc	agagcacccgg	cagccgectg	cagagccggg	cagtaacctca	ccatggcttt	6780
gacctttgcc	ttactgggtgg	ctctcctgg	gctgagctgc	aagagcagct	gctctgtggg	6840
ctgcgtatctg	cctcagaccc	acagcctggg	cagcaggagg	accctgtatgc	tgctggctca	6900
gatgaggaga	atcagcctgt	ttagctgcct	gaaggatagg	cacgattttg	gcttcctca	6960
agaggagttt	ggcaaccagt	ttcagaaggc	ttagaccatc	cctgtgtc	acgagatgtat	7020
ccagcagatc	ttaacctgt	ttagcaccaa	ggatagcagc	gctgctgggg	atgagaccct	7080
gctggataag	ttttacacccg	agctgtacca	gcagctgaac	gatctggagg	cttgcgtat	7140

-continued

ccaggggcgtg ggcgtgacccg agaccctct gatgaaggag gatagcatcc tggctgttag	7200
gaagtacttt cagaggatca ccctgtacct gaaggagaag aagtacagcc cctgcgcttg	7260
ggaaagtctgtg agggctgaga tcatgaggag cttagccctg agcaccaacc tgcaagagag	7320
cttqaqqtct aqqqaqtaaa aqqtctaqqc	7350

<210> SEQ ID NO 22
<211> LENGTH: 16051
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: 16 kbp Ovalbumin Sequence

<400> SEQUENCE: 22

ctgcagcccc ggcagcacac tagagcagag aaatcttagt agcagcaacc actggcagac
agaaatgatt atatacgatata catactgacc ctgccttca acactgccta ctgcataact
gaaaggact ggaagaagag agtgcataaa cgaagctgaa gctaggagga aggcaaggag
aactgaagct gacttagggaa aagggggatt aaaggtttaa gtgtcttattc catagttgc
tggtttgcattttt tttgtcaatt cctgaatcg taatttttat gttaatttagc aaaaaattac
aaacactccc caagtcagga ctgttaccta caacagaagc tcagatcagc tgagccttag
tctttggtc cctcccttagg gaatgctgta tgcgtcttc tctccaggcc tgctcaaaat
tgacccctaga cccaaacttt tgctgaatct ccagtagccatc ctctttgtcttcaactaga
taacaaagcc ctgagcgtt tgcttttagc aaagctttaa gtgcattttac caactgcacc
tggagccctt acctaccctt atggaccagg gctctatatt taagctctgc cctgaaccc
cacttcttcc ctgttcaag tttagatgtac tagtatggtg tgtaactatgt ctccagttca
aacacagctg tgccctatacc tggccaaaggc ctcttagtat gacccggct gtgccttgct
gtcaaggacc tgctgggtga ttgctggacc tgatcctaat cctgaattaa gaaatgatt
cttggcttgc ctggatgtgc cctgtggat gatactgcct tatgatttgg actcttgc
gcagctgtgc aaatccctaa ggagcccaact ctctggccac ctggaaatctt gtcactacca
aacttcttgc gggactggtc ttgctctggg ttctgtatc tggacagttac tcacccttta
ctcagcccaact gctcccaactt aagccctttt ccaccctgccc aggctctccg ctccatccct
agcagggggct ctcatgacacag tgcgtacccccc cttactcgat gtcagggccatc ttgtggcc
gtcccttc tgcgtctgtt ccctgccttg gctctaaagc agtgcgtacatc catccacaac
cactgcatact ctctaaagta agcctctctt gagcccaactt ctctgtaaacg aggaaggatg
cacttgcctc agaaggatgc gaggctgttgc ctgagctgtc agggcactgaa cctccatgaa
ggtacaccccaat ataccctggaa ccacaattca gcctgctggaa accatcaact cctgtggag
taaggccata gcaagaccag catccacccctt cctgcagcccc tgccctgccc agatattggg
cctgctgtatc tcaggatgca gacttgcttc tgcgtacatc ctaagcattt ccctgtcttt
atggaccacatccatc ctgggttagca agttcagtgca agaaggaggc tggtggccatc tagctaaattt
tccacccacaat ttactgtctg ctgactcattt ctacgtcttccatc cccatcttgcataataata
atttgggagaatccatc tcatattgaa ggtcttaata aagtcaaggc atgtgtatattt ctctgttt
cctttgtttccatc tagaataagc cacttcatca tagaagatgaa aatgctgtatc cagcagagat
ctgtgttgcataataatccatc ctgggtttccatc ctatcacccatc atattccatc atatgccttgc
1120
1180
1240
300
360
420
480
540
600
660
720
780
840
900
960
1020
1080
1140
1200
1260
1320
1380
1440
1500
1560
1620
1680
1740

-continued

agacacccaa ggaggccttg gatcagagct gtctgttagca gtcctaaactg gtatacaatt	1800
agttgtacaa caggttagtga tccgcataat agttggcgtg agaaaagtggg cctgtgctgt	1860
gtcaagcata gagtttgggt tccagtcctg ttctgcatgg cacatatgcc tgagcagctg	1920
ggttaatctct gcattccaaat tggaggcag gggcctgttag gcagttccca cttggcatgg	1980
gtgattgtac cacctgtgtc ctcatctgtg aagcatcatg ttttcatcataatccttt	2040
tgtttgacag tagaaatgaa cagaattgtt ttttttcct aagcaaattc tgcaagagct	2100
ctgaagaaca aggtgtcagt gaacttctag ctccatagat aggacttgca tcacatgtca	2160
tgccttgatt ggaggcttat ccgatactga acaacttgg gttccctgag ggaatgttaag	2220
attactgata ctactctctc tttatgttag ctacaataaa tggtaggtta agcaatagat	2280
acagagttt agtgccttcc ttacaagcat catagtgaac aaatccactg gtgatctacc	2340
tttcaataa ctacagagaa ttgtaatctc ttggattctc ctccctcccc gttctgaaaa	2400
tgtgttctt tttccaaat cagaaacctt cctcaaccac cctgactatt ctttggacat	2460
tgtttgttc ttgctctaa ataggctta taattttgt aagtggaaagg ctttgcattgc	2520
agggtgaggct acaactcatt cagtaacaat gaggaagact gtcagattt ggggaaaatt	2580
ctccccaccca accttttgc agccagtaag atgtaatcac tgaatgtcat gccacaaaaga	2640
ccataccaaac atcagaccac atatctacag gaagctttaa ggaatcattg actgtacagt	2700
gaagggtaaa tcaaattaaa atgaatgtga ggtctgatac gagatattct catggaaatc	2760
aagagccaaag acaaatagtt tttcacatgc ttgtcatgat ctgtcacaga ccaaggcagc	2820
acacgaggca acaatgttgg tctcttcaga atggcacagc accgctgcag aaaaatgcc	2880
ggtggactat gaactcacat ccaaaggcgc ttgacctgat acctgatttt cttcaaacag	2940
ggggaaacaac acaatcccac aaaatagotc agagagaaac catcaactgat ggctacagca	3000
ccaaggatgt caatggcaat ccattcgaca ttcatctgtg acctgagca aatgatttt	3060
ctctccatga atgggttgc ttccatcataa tgaaaaggca atttccacac tcacaatatg	3120
caacaaagac aaacagagaa caattatgt gtccttcct aatgtcaaaa ttgttagtggc	3180
aaagaggaga acaaatactc aagttctgag taggttttag tgattggata agaggcttg	3240
acctgtgagc tcacctggac ttcatatcct tttggataaa aagtgcattt ataaacttca	3300
ggtctccgag tctttattca tgagactgtt ggttttaggca cagaccacataatgcc	3360
tggcatagga aagggcagca gaggccttagc tgacctttc ttgggacaag cattgtcaaa	3420
caatgtgtga caaaactatt tgcactgtt tgccacagctg tgctggcag ggcaatccat	3480
tgccacctat cccaggttaac ctccaactc caagaagatt gttgcttact ctctctagac	3540
cccccaagtca aaccaactat gcaggtatgc tgacaacgct atgatgacag cctgttctga	3600
tcaagatctc atttgcattt ggacaatttt tgggttgc agctggctt ccattggaa	3660
agagtgttagt atatccttct catctgacag aaaagcagaa attctcatgc tccacactta	3720
atctacattt ttttaaaccatccatctt cttggagagg aaaaatggct ttataaagac	3780
tcacaaaaca aagctctgca agtcaaataatgc atacaaaact gttctgttagg tctggaaatca	3840
ggacactatg tggaaagtcaa atagagaagc tttaaaaaaa cctttggat cattctcatc	3900
ttatatttgc agcacgatac tatgacatgtg ataaactgacataactgcatac aatttccttg	3960
atatttttattt tggcttaag tacaagacat agagatggac gtaaagatgg acatatgact	4020

-continued

caggtctgga	caggtccgtg	gtccatgtat	gataaaagag	atgaaggaa	ggagaatgga	4080
gactgtctaa	gaagggcttc	agggacgttc	tgaaggcaga	tttgcactaa	tcagatgtac	4140
tgtccaagtc	tcatatgtag	caatggaaga	ctgatattgg	agaaatataa	agaaatggct	4200
gtgaactcaa	agtgaccctg	aacagaaaag	ggatatggag	ttaaaataat	ggcacagaac	4260
tgaggtttat	atgatatacc	atgggctgca	gagggtcaga	gtgctccacc	atgggctct	4320
cttgggctgc	agggacttc	tgttctacac	ctggAACacc	tcctgcctc	ctccgactg	4380
acctcagtgt	catcagggt	gttctctca	cattttctca	ctcacctctc	ccaactacca	4440
ttgtacagca	gttggctta	catcttgctc	tcctcgagg	gcatctagca	tcgatcactg	4500
gctcagctct	ggccagtggc	agctccctt	tgaggacacg	ggacagctgc	tgggctctgt	4560
tcacagagc	cactccagca	gacctccact	accacaactt	gtagtgtaaa	tccactacaa	4620
ctttctgagc	tacagaaaatg	aaatggagac	cctctctgct	atgggataca	aaagaggaaa	4680
cgtggcggtt	agtgcctgg	ctcaactggta	cacccaaacca	cagggtgaga	agcagctgt	4740
tgttattcac	tactcttagg	acagattatg	gtgaattgtt	aataaaagca	tttcttcata	4800
acatccaaag	gaggaaatac	actaaattat	atttttttt	tattaattac	acatgcctaa	4860
ttatatatgg	catgggtgct	ttgaaagaac	cttgcctta	ctgaccagat	ctgctgttt	4920
cttgagacaaa	atggctgaca	atttggccca	tggtggatac	cttccccctt	ttctgttagca	4980
ttaggacaga	agttattctg	gagcctgtct	gacaagtca	acttgataac	tttaagtatt	5040
tggaaagtgt	cttttcatgc	tggatgtcat	ctccagaacc	tcctgtctg	gtaagoagtt	5100
ccctgcctta	gtaagagccg	aaacggtotc	tctttccctt	gttatctcac	caggatatta	5160
caatgtgaca	ggactatctg	aactacgcca	acctgcaa	tccaaatata	tatataatata	5220
tgtaaagat	ctatacacaa	attattagtg	tttgattgac	accagatgac	agagaagtgc	5280
atctgagaaa	acattatccc	aatctccctt	ctctttctgc	agactgacat	gcatttcata	5340
ggtagagata	acatttactg	ggaagcacat	ctatcatcat	aaaaagcagg	caagatttc	5400
agactttctt	agtggctgaa	atagaagcaa	aagacgtat	taaaaacaaa	atgaaacaaa	5460
aaaaatcagt	tgataacctg	ggttagaca	tccagcaaaa	aatattatt	tgcactacca	5520
tcttgcctta	agtgcctcaga	cttggcaagg	agaatgtaga	tttctacagt	atataatgttt	5580
tcacaaaagg	aaggagagaa	acaaaagaaa	atggcactga	ctaaactca	gctagtgta	5640
taggaaagta	attctgccta	acagagattg	cagtgtatctc	tatgtatgtc	ctgaagaatt	5700
atgttgcact	ttttcccc	attttaat	caaacagtgc	tttacagagg	tcagaatgg	5760
ttctttactg	tttgtcaatt	ctattatttc	aatacagaac	aatagctct	ataactgaaa	5820
tatatttgc	attgtatatt	atgattgtcc	ctcgaaccat	gaacactcct	ccagctgaat	5880
ttcacacattc	ctctgtcata	tgccaggcc	ttaagtatt	catggaaat	ctttgggaa	5940
cactgcaagt	tcatatcata	aacacattt	aaattgagta	ttgtttgca	ttgtatggag	6000
ctatgttttg	ctgtatcata	agaaaaaaag	tttgttataa	agcattcaca	cccataaaaa	6060
gatagattta	aatattccag	ctataggaaa	gaaagtgcgt	ctgctctca	ctctagtc	6120
agttggctcc	ttcacatgca	tgcttctta	tttctctat	tttgtcaaga	aaataatagg	6180
tcacgtctg	ttctcactta	tgccctgcct	agcatggctc	agatgcacgt	tgttagataca	6240
agaaggatca	aatgaaacag	acttctggtc	tgttactaca	accatagtaa	taagcacact	6300

-continued

aactaataat	tgctaattat	gtttccatc	tctaagggtc	ccacatttt	ctgtttctt	6360
aaagatccca	ttatctgggt	gtaactgaag	ctcaatggaa	catgagcaat	atttcccagt	6420
cttctctccc	atccaacagt	cctgatggat	tagcagaaca	ggcagaaaaac	acattgtac	6480
ccagaattaa	aaactaatat	ttgctctcca	ttcaatccaa	aatggaccta	ttgaaactaa	6540
aatctaacc	aatccattt	aatgatttct	atggcgtcaa	aggtcaaact	tctgaaggga	6600
acctgtgggt	gggtcacaat	tcaggctata	tattcccaag	ggctcagcca	gtgtctgtac	6660
atacagctag	aaagctgtat	tgcctttagc	agtcaagctc	gaaaggtaa	caactcttg	6720
gaattacctt	ctctctatat	tagctcttac	ttgcacctaa	actttaaaaa	attaacaatt	6780
attgtgctat	gtgttgtatc	ttaagggtg	aagtacctgc	gtgatacccc	ctataaaaac	6840
tttcacactg	tgtatgcatt	ctgcaactatt	ttattatgtg	taaaagcttt	gtgtttgtt	6900
tcaggaggct	tattctttgt	gcttaaaata	tgtttttaat	ttcagaacat	cttattcctgt	6960
cgttcaactat	ctgatatgct	ttcagtttgc	cttgattaac	ttctagccct	acagagtgc	7020
cagagagcaa	aatcatggtg	ttcagtgaat	tctggggagt	tatttaatg	tgaaaattct	7080
ctagaagttt	aattcctgc	aagtgcgc	gtgtactact	acacaagata	aaaatgtgg	7140
gggtgcataa	acgtatattc	ttacaataat	agatacatgt	gaacttataat	acagaaaaga	7200
aaatgagaaa	aatgtgtgt	tgtatactca	cacacgtggt	cagtaaaaac	ttttgagggg	7260
ttaatacag	aaaatccaaat	cctgaggccc	cagcactcag	tacgcataata	aagggtctgg	7320
ctctgaagga	cttctgactt	tcacagatta	tataaatctc	aggaaagcaa	ctagattcat	7380
gctggctcca	aaagctgtgc	tttatataag	cacactggct	atacaatagt	tgtacagttc	7440
agctctttat	aatagaaaca	gacagaacaa	gtataaaatct	tctattggtc	tatgtcatga	7500
acaagaattc	atccagtggc	tctgttttat	agtaaacatt	gtatattttat	catgtctgca	7560
tttctcttct	gtctgaatgt	caccactaa	attdaaactcc	acagaaaattt	tataactacag	7620
tacacatgca	tatcttttag	caaagcaa	catacctgaa	agtgcataat	agcagaataat	7680
gaattacatg	cgtgtcttcc	tcttagacta	catgacccca	tataaaattac	attacttatac	7740
tattctgcca	tcacccaaac	aaaggtaaaa	atactttga	agatctactc	atagcaagta	7800
gtgtgcaaca	aacagatatt	tctctacatt	tatttttagg	gaataaaaaat	aagaataaaa	7860
atagtcageca	agectctgct	ttctcatata	tctgtccaa	cctaaagttt	actgaaattt	7920
gctctttgaa	tttccagttt	tgcaaggctc	ttagatttg	ttttaatcag	aggtactgaa	7980
aagtatcaat	gaattctgc	tttcactgaa	caaaaatatg	tagggcaac	tggctctgg	8040
gacagtttgc	tacccaaag	acaactgaat	gcaaaatcat	aaatagattt	atgaatatgg	8100
ttttgaacat	gcacatgaga	ggtgatata	gcaacagaca	cattaccaca	gaattactt	8160
aaaactactt	gttaacacatt	aattgcctaa	aaactgtcg	taatttactg	ttgttagccta	8220
ccatagagta	ccctgcattgg	tactatgtac	agcattccat	ccttacattt	tcactgttct	8280
gctgtttgtct	ctagacaact	cagagttcac	catgggctcc	atcggtgac	caagcatgga	8340
attttgggtt	gatgtattca	aggagctaa	agtccaccat	gccaatgaga	acatcttcta	8400
ctgccccatt	gccatcatgt	cagctctagc	catggtatac	ctgggtgca	aagacagcac	8460
caggacacaa	ataaataagg	tgagcctaca	gttaaagatt	aaaaccttg	ccctgctcaa	8520
tggagccaca	gcacttaatt	gtatgataat	gtcccttgga	aactgcata	ctcagaggct	8580

-continued

gaaaatctga aaccagagtt atctaaaagt gtggccacct ccaactcccc gagtgttacc	8640
caaatgcact agctagaaat cttgaaactg gattgcataa cttcttttg tcataaccat	8700
tatttcagct actattattt tcaattacag gttgttcgct ttgataaaact tccaggattc	8760
ggagacagta ttgaagctca ggtacagaaaa taatttcacc tccttctcta tgcctttc	8820
ctctgaaagc aaaatacagc agatgaagca atctcttagc tggccaagc cctctgtat	8880
gagcagctag tgctctgcat ccagcagttg ggagaacact gttcataaga acagagaaaa	8940
agaaggaagt aacagggat tcagaacaaa cagaagataa aactcaggac aaaaataccg	9000
tgtgaatgag gaaacttgc gatatttgcg cgtttaagca agacagctag atgatttgcg	9060
ataaaatgggt ctgggtggaa aagaaggaaa gcctggctga tctgctggag ctagattatt	9120
gcagcaggta ggcaggagtt ccctagagaa aagtatgagg gaattacaga agaaaaacag	9180
cacaaaattt taaatattgg aaaaggacca catcagtgtt gttactagca gtaagacaga	9240
caggatggaa aatagtttg taaacagaag tatctaacta ctttactctg ttctataact	9300
acgtaaaact tactaagtaaaaactaga ataacaacat ctttcttctt ctgttattt	9360
agtgtggcac atctgtaaac gttcactctt cacttagaga catcctcaac caaatccca	9420
aaccaaataa tgtttattcg ttcaagccttg ccagtagact ttatgctgaa gagagatacc	9480
caatcctgcc agtaagttgc tctaaaatctt gatctgagtg tattccatgc caaagctcta	9540
ccattctgtt atgcaaaaac agtcagagtt ccacatgttt cactaagaaaa atttctttt	9600
ctcttgcattt tacaatgaa agagaggaca aataacattt ctctatcacc gacctgaaac	9660
tctacagtct tcagagaatg aatggcttgc taaaagaatg tcaaatactt ctataacgct	9720
atttcatatt acactactaa atacactata aggcatacgca tggtagtaata cagtgtaaaa	9780
tagctttta cactactata ttatataat ctgttaattt cagtcggca tttcacattt	9840
gcaaaacgtt ttgaaattcg tatctgaaag ctgaataactc ttgccttaca ggaatacttg	9900
cagtgtgtga aggaactgtt tagaggagc ttggAACCTA tcaactttca aacagctgca	9960
gatcaagcca gagagctcat caattcctgg gtagaaagtc agacaaatgg taaggttagaa	10020
catgctttgt acatagttag agttgggtca ccctaataact gagaacttgg atatagctca	10080
gccagcgtgc ttgcgttca agtttaccag agctgtgttgc tgcctgttac gcaggccata	10140
cagtcgttgc gctcttgc aatcttaca gacaaaggc aatggaaaat cggagttaaag	10200
ggatggtagg gataaaatgc atagaaagag gtaccacaat ttgttattttt gcccataatgc	10260
ctctctgcgtt ggttccttca ttttctact tcattcctca tctcctcaga gcattcttt	10320
ccctcatgtt tgaaacacag atgaaagact gtgaattctt actgagatgtt aaacatccac	10380
aaccacacaa cctctgggtt ggagtcacat tctgtgttgc caaaaacttag gccacgttat	10440
ctatgcgtgc aagctacgcg taagctatgt gtgtgttgc acaatgttgc gaaatctacta	10500
tgtgcacaag gactgcagaa taaacaggag caaagttttt gaagaaaaca gagtaaaatc	10560
ctgttttctt ctgttgcattt attcttaca tataatcttca atttccttgc ttgttgcattt	10620
caagtaatat ttatgtttctt tggtagtgc ttgggttgc accattctgg gataagagaa	10680
atcccaatgtt ttcttccctt aatcataaaa tgcgttgcattt agttttttttaacacagaa	10740
atctcttcat cttttatctt ttgttgcattt tcttgcattt gatggataga gagagaacaca	10800
acaatagcag caagaaaatc aatcttggaa gaacaagatt gcaatttgc aacaaacca	10860

-continued

atgtccttgc ccctacatcc tcttcccccataaattctaca ttctctatct accttgc 10920
 tgccaacatg atatacgtaa actctctttt cctattcatt cttaaaggaa ttatcagaaa 10980
 tgccttcag ccaagctccg tggattctca aactgcaatg gttctggta atgcattgt 11040
 cttcaaagga ctgtgggaga aagcattaa ggttgaagac acacaagca tgccttcag 11100
 agtgactgag gtatatgggc atacctttaga gatgtatct agaattttag aagagatg 11160
 acatgttgc ttatgaacac tgcattagcg tatctgctca tttgtctgca tctcttcag 11220
 acactgtgtt aaaaggcagg aatttcctt atgtctctc cgtcacaata ttccctgacat 11280
 tgcaaaagctc ctgagaaata acttcagatt ccactttcc taggaaggct tctggatgag 11340
 aactaatcat cttaaactgta actagacatt tctgcattcca agaataatct ttgttaaaac 11400
 tatattctct ctctctttt tttttttttt tggttctcca gcaagaaagc aaacctgtgc 11460
 agatgatgta ccagattggg ttattnagag tggcatcaat ggcttctgag aaaatgaa 11520
 tcctggagct tccatttgcc agtgggacaa tgagcatgtt ggtgctgtt cctgatgaa 11580
 tctcaggcct tgaggcaggta tggccctaga agttggctc agaataattaa aaacacatgg 11640
 aaattnagct gttgtaaagc tcttttcaac acagttatcc taaaacattt aaccagcaca 11700
 aatttcatca tgattcaata tggattgtt gcatagaagt gtagattgtt cccactgggt 11760
 cctgcaatag cccatgctga gcatggctt ctgaaagaac tgcttttagag ggtgaaaagt 11820
 ttgacacagc agacaagatg atttcaccc tttttttttt aagcagctgt tactgtatgt gcttgaactc 11880
 taaaggctt gtatctccat tcttgcac tgaggagctt cttggaaagt tcatataagg 11940
 tttacttagtt ctaacttata tctcatttgg tggcactcaa tggctttgt tcacgtttc 12000
 ataaatataat ctatctaaaa attggatgtt gttaaagcaa tttcagaaat aacatgtaca 12060
 taatgtacaa ttattgatataa gaacagaaca caggcatagc atattgtat taggaggact 12120
 gtagttattt tgaataggaa acacaatgtt ataaatgaga attcattgaa atgttagtat 12180
 gcttaactcaa tctaaattat aaagataaag aggcatattaa tcacagctatc 12240
 cttgtgacag acaggcatat gaatgattat gtacagctt agaaaaaaa gtatgttagga 12300
 aaacttagtac attttgatta gaaagtctga aatgaggtt ctttgcattaa agagaatacg 12360
 tgggtttgag aaaaaaaaaaag ttggataga ggtggtaaga gagaatataat tgaaatgggt 12420
 tttctacaaa ctgcctatggc cagatttgc taagagacat tcaatgttgc ggcaaggaaa 12480
 gaaatattac taggtacaaa gcaacatcg taataccaaa agaaaccaat tattccagat 12540
 gccaatctcg taatagggtt aagagatttcc caccctctta gtggcacca gtgcacccag 12600
 taactttgtt aatttacatt ttctttttttaatggcaga tatacgtttt aactgtatgt 12660
 tcatgaactg gtactgttgc atagatgttgc acatacttgc cgtactaaact tctgtttttt 12720
 aaaaactcaa attcttgc aagatcgtt cccagctgtt taacatgttgc tagttttagt 12780
 atcagtaatt ggcttaccattt aacaactggc tcttgcagg tctttaatgtt agagacatgt 12840
 ttaaactcaa aagcacagag tgatttttagt aatagatttcc ccaagcaagaaaataaca 12900
 gggaggagct ttaagggagt agccatctca ttattttat tatttaaaga aatggcagca 12960
 agcctacaaa agaaaaataaa gacagagcag agaagaaaga gtcatggat gctttctat 13020
 cttagcaaaa ttaatctca catgcctagg aaaaagccat gacaagagca atcagtc 13080
 aagggtatg caaaaaaaaacca cataatgttgc actgtacttgc cattgccagg aaggaagttt 13140

-continued

tgtcgcatt ccatggatct cattctcatt tccttgcagc ttgagagat aatcaacttt 13200
 gaaaaactga ctgaatggac cagttctaat gttatggaag agaggaagat caaagtgtac 13260
 ttacctcgca tgaagatgga gaaaaatac aacctcacat ctgtcttaat ggctatggc 13320
 attactgacg tggttagctc ttcagccat ctgtctggc tctcctcagc agagagcctg 13380
 aagatatctc aagctgtcca tgcagcacat gcagaaatca atgaaggcagg cagagaggtg 13440
 gtagggtcag cagaggctgg agtggatgct gcaagcgtct ctgaagaatt tagggctgac 13500
 catccattcc tcttctgtat caagcacatc gcaaccaacg ccgttctctt ctttggcaga 13560
 ttgtttccc cttaaaaaga agaaagctga aaaactctgt cccttccaaac aagaccaga 13620
 gcactgttagt atcaggggta aaatgaaaag tatgttatct gctgcatcca gacttcataa 13680
 aagctggagc ttaatctaga aaaaaatca gaaagaaatt acactgtgag aacaggtgca 13740
 attcaacttt ccttacaca gagtaatact ggtaactcat ggatgaaggc ttaagggaat 13800
 gaaattggac tcacagtact gagtcatcac actgaaaaat gcaacctgtat acatcagcag 13860
 aaggtttatg ggggaaaaat gcagccttc aattaagcca gatatctgta tgaccaagct 13920
 gctccagaat tagtcactca aaatctctca gattaaatata tcaactgtca ccaaccattc 13980
 ctatgctgac aaggcaattt cttgttctct gtgttcctga tactacaagg ctcttctgta 14040
 cttcctaaag atgcattata aaaatcttat aattcacat tctccctaaa ctttgactca 14100
 atcatggat gttggcaat atggtatatt actattcaaa ttgtttcct tgcaccata 14160
 tgtaatgggt cttgtgaatg tgcttttttgc ttcccttaat cataataaaa acatgtttaa 14220
 gcaaacactt ttcacttgcgtat gtatttgcagg tacagcaagg ttgtgttagca gggaaagaat 14280
 gacatgcaga ggaataagta tggcacacaca ggcttagcgc gactgttagaa caagtagct 14340
 tgggtgagaa gttgaacaag agtccccctac aagcaactta atctaataag ctatgtgtct 14400
 acatcagcta aaagagcata gtgagggatg aaattgggttc tcccttctaa gcatcacctg 14460
 ggacaactca tctggagcag tgcgtccat ctgcccgtgc cctgatctcg gctgggggtga 14520
 tgggacagac cttggctgcc actgagacat ctgagacact gagatctgtc tcaactcaga 14580
 tttacccaag aacagctcat tgccaaacaga aaaaaatctc aaacttatgg ctatgtatga 14640
 cagcagtcag ttgtccccatc tgcgtccac caaggctggc atgctggat gagcaggctt 14700
 tggtggcatg tagttactgg acagcacac tgacatgggc agggaaaaaa ctgagcatgg 14760
 tgtaatcac tgcctcaag ccacttctct gtgcctgcac catgcttgcg agctttctca 14820
 caggagctgg gtttgcgtat gaaagcttct gtttctccca tctgcttctt gtaccttctc 14880
 agggacagag tttagaagggt acagccatgg ctggaagggg ctgactttca aatgtgccta 14940
 attttccttt ggttgctgtc gcagctgcag aagaagggt tcagaagcca agagtttga 15000
 gataaggatg cctaaacctat gttgaagaca tttgtgtatgc cacctcaggc cccaggatag 15060
 gacaactgct ggattgtggc taacccacta gctacagaac ctaatttata ttaccagatt 15120
 aggaagagca aaagaacatg tatttataac aggaggctt ctgtgtctt ctactaaaag 15180
 gtgtgtgaa ggagcccaca gtgcagcagt gtatgaggcc tgaaagaggc cgcagcacac 15240
 gaagagccct ggttaggagca gcacacagag gggcaggagg gctggggaa ctgcccacca 15300
 tggggacctg tgcgtccat ctgacttctg aggggtggac tgcgtggaa agggaaaagaa 15360
 agcaaacaga cctgtgtatga actgtcacac agactgcaga gtgacagagg agggcacgag 15420

-continued

gcagtgcggcc cactgcaggg agtggcgctc cttcctcaca gcagcgctaa cagctggca	15480
ccaatattca gtagtctgtg gtgatacttt ttccagttt accacacagc atttgcctt	15540
ttctacttgt tttagtttc cccctccaca agataacaca tactttgcca gtcagtcctt	15600
aagaccttaa cttaacagtt agcaaacagg atcttgcaaa agaaggaga taacatgaca	15660
ccacccctcact tggtgtataaa atagttcaaa tactttcctt cactttcccg taaatttagtt	15720
gattgcagggt caggagataa caggggact tactgcaaga gagaaaatga tgtttaatat	15780
tgtcttggac ttctgggtt tctgggcattt aaaaatgggtt actcaaaatc ctggggacgt	15840
ttatttttca cctgattttat tcccaaactg cactattctt aggccattgg agttcttac	15900
aattaaattha tactttggct ctctgctatc tcactccctt tcatttcag catcaatttc	15960
agcacaattha caggagaaga ctttagactca gagctttagg actcatcata agaggcttcc	16020
attqctctqt caccacaccc catataqatc t	16051

```
<210> SEQ ID NO 23
<211> LENGTH: 7334
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: pBS-OM-4.4 Vector
```

<400> SEQUENCE: 23
atcaagctta tcgataccgt cgacctcgag ggggggccccg gtaccagct tttgttccct 60
ttagtgggg ttaattcga gcttggcgta atcatggtca tagctgttcc ctgtgtgaaa 120
ttgttatccg ctcacaattc cacacaacat acgagccgga agcataaaagt gtaaagcctg 180
gggtgcctaa tgagtggact aactcacatt aatttgcggtt cgctcactgc ccgcttcca 240
gtcgggaaac ctgtcggtcc agctgcattt atgaatcgcc caacgcgcgg ggagaggcgg 300
tttgcgtatt gggcgcttt ccgcttcctc gctcaactgac tgcgtcgctt cggtcggttc 360
gctgcggcga gcggtatcag ctcactaaaa ggccgttaata cggttatcca cagaatcagg 420
ggataaacgca ggaaagaaca tggtagccaa aggccagcaa aaggccagga accgtaaaaa 480
ggccgcgttg ctggcggtt tccataggtt ccgcggccct gacgagacatc acaaaaatcg 540
acgctcaagt cagagggtggc gaaacccgcg aggactataa agataccagg cgtttcccc 600
tggaaagctcc ctgcgtcgct ctccgttcc gaccctgcgg cttaccggat acctgtccgc 660
ctttctccct tcgggaagcg tggcgcttc tcatagctca cgctgttaggt atctcaagttc 720
ggtgttaggtc gttcgctcca agctgggtg tggcacgaa ccccccgttc agcccgaccg 780
ctgcgcctta tccggtaact atcgctctga gtccaaacccg gtaagacacg acttatcgcc 840
actggcagca gccactggta acaggattag cagagcgagg tatgttaggcg gtgctacaga 900
gttcttgaag tggggccctaa actacggcta cactagaagg acagtatttgcgtatcgcc 960
tctgctgaag ccagttacct tcggaaaaag agttggtagc tcttgcgtatccg gcaaaacaaac 1020
caccgcgttgtt agcggtgggtt ttttgcgttgtt caagcagcag attacgcgcgaa gaaaaaaagg 1080
atctcaagaa gatcccttga tctttctac ggggtctgac gtcagtgga acgaaaactc 1140
acgtttaaggg attttggtca tgagattatc aaaaaggatc ttcacccataga tcctttaaa 1200
ttaaaaatgtt aatcaatctaaag tatatatatgtt aaaaacttggt ctgacagttt 1260
ccatgtttaatcgtt aatcgatggg cacctatctc aacggatctgtt ctatccgtt catccatgtt 1320

-continued

tgccctgactc	cccgctcggt	agataactac	gatacgggag	ggcttaccat	ctggccccag	1380
tgctgcaatg	ataccgcgag	acccacgctc	accggctcca	gatttatcag	caataaacc	1440
gccagccgga	agggccgagc	gcagaagtgg	tcctgcaact	ttatccgcct	ccatccagtc	1500
tattaattgt	tgccggaaag	ctagagtaag	tagttcgcca	gttaatagtt	tgcgcaacgt	1560
tgttgccatt	gctacaggca	tcgtgggtgc	acgctcgctg	tttggtatgg	cttcattcag	1620
ctccgggtcc	caacgatcaa	ggcgagttac	atgatcccc	atgttggtc	aaaaagcggt	1680
tagctccttc	ggtcctccga	tcgttgtcag	aagtaagttg	gccgcagtg	tatcactcat	1740
gtttagggca	gcaactgcata	attctcttac	tgtcatgca	tccgtaaat	gtttttctgt	1800
gactggtag	tactcaacca	agtcttctg	agaatagtgt	atgcggcgac	cgagttgctc	1860
ttgccccggc	tcaataacggg	ataataccgc	gccacatagc	agaactttaa	aagtgtcat	1920
cattggaaaa	cgttcttcgg	ggcgaaaaact	ctcaaggatc	ttaccgcgt	tgagatccag	1980
ttcgatgtaa	cccaactcg	cacccaaactg	atcttcagca	tcttttactt	tcaccagcgt	2040
ttctgggtga	gcaaaaadag	gaaggcaaaa	tgccgcaaaa	aagggataaa	gggcgacacg	2100
gaaatgttga	atactcatac	tcttcctttt	tcaatattat	tgaagcattt	atcagggtta	2160
ttgtctcatg	agcggataca	tatgtatg	tatgtatgaaa	aataaacaaa	taggggttcc	2220
gcccacattt	ccccggaaaag	tgccacacta	attgtaaagcg	ttaatatttt	gttaaaattc	2280
gcgttaaattt	tttggtaaat	cagtcattt	tttaaccaat	aggccgaaat	cgccaaaatc	2340
ccttataaatt	caaaagaata	gaccgagata	gggttgagtg	ttgttccagt	ttggaaacaag	2400
agtccactat	taaagaacgt	ggactccaac	gtcaaaggc	aaaaaaccgt	ctatcaggc	2460
gatggcccac	tacgtaacc	atcaccctaa	tcaagttttt	tggggtcag	gtccgtaaa	2520
gcactaaatc	ggaaccctaa	agggagcc	cgattttagag	tttgacgggg	aaagcoggcg	2580
aacgtggcga	gaaaggaagg	gaagaaagcg	aaaggagccg	gctgttagggc	gtggcaagt	2640
gtacgggtca	cgtcgcg	aaccaccaca	cccgccgc	ttaatgcgcc	gtcacaggc	2700
gcgtccatt	cgecatcag	gctgcgaac	tgtggaaag	ggcgatcggt	gcgggcctct	2760
tgcgtattac	gccagctggc	gaaaggggg	tgtgtc	ggcgattaag	ttgggttaacg	2820
ccagggtttt	cccagtcacg	acgttgtaa	acgacggca	gtgaattgt	atacgactca	2880
ctatagggeg	aattggagct	ccaccgcgg	ggcgcccg	ctagaactag	tggatcctc	2940
ttaaaaagca	gaccatcatt	cactgc	ccagagttc	atgccttc	ttccacaacc	3000
gaaaacagcc	ggcttcattt	gtcttttta	aatgtgtt	tccagggtaa	ttttggccag	3060
cgtgttggct	gagatccagg	agcacgtgtc	agctttctgc	tctcattgt	cctgttctgc	3120
attgcctt	tctggggttt	ccaagagggg	gggagactt	gctgggggat	gagataatgc	3180
ccctttctt	agggtggctg	ctggcgac	gagtggct	gggtca	ggcaccatg	3240
ggaggcacca	gtgggggtgt	gtttgtc	ggggggaaagc	attcacagaa	tggggctgat	3300
cctgaagctt	gcagtccaa	gtttgtctg	tgtacccgt	gaaatcc	ctctgtaca	3360
taaagcccag	ataggactca	gaaatgtatg	cattccagcc	ccccttc	tca	3420
agcagcactt	gtttgcagcc	agtccccc	aaaatgcaca	gacctcgcc	agtggaggga	3480
gatgtaaaca	gcaagggtta	attacctcct	tgtcaaaac	actttgtgt	ccatagatgt	3540
ttctgtcaat	cttacaaaac	agaaccgaga	ggcagcgagc	actgaagagc	gtgttccat	3600

-continued

gctgagttaa tgagacttgg cagctcgctg tgcagagatg atccctgtgc ttcatggag	3660
gctgtAACCT gtctccccat cgccctcaca ccgcagtgtc gtcctggaca cctcaccctc	3720
cataagctgt aggatgcagc tgcccaggaa tcaagagact tttcctaagg ctcttaggac	3780
tcatcttgc cgctcagtag cgtgcagcaa ttactcatcc caactatact gaatgggttt	3840
ctgccagctc tgcttgggg tcaataagca tttcttcatt ttgcctctaa gtttctctca	3900
gcagcaccgc tctgggtgac ctgagtgccc acctggaaacc cgaggggcac agccaccacc	3960
tccctgtgc tgctgctcca gggactcatg tgctgctgga tggggggaaag catgaagttc	4020
ctcacccaga cacctgggtt gcaatggctg cagcgtgctc ttcttggat gcagattgtt	4080
tccagccatt acttgttagaa atgtgctgtg gaagccctt gatatcttt ctgtggccct	4140
tcagaaaaag ctgtggggaa gctctgaggg tgctttcttg ggtcgtggag gaattgtatg	4200
ttccttctt aacaaaaatt atccttagga gagagcactg tgcaagcatt gtgcacataa	4260
aacaattcag gttgaaaggg ctctctggag gtttccagcc tgactactgc tcgaagcaag	4320
gccaggtca aagatggctc aggatgtgt gtgccttcatt gattatctgt gccaccaatg	4380
gaggagattc acagccactc tgcttccctg gccactcatg gagaggaata ttccctata	4440
ttcagataga atgttatactt ttagctcage cttccctata accccatgag ggagctgcag	4500
atccccatac tctccccc tctgggggtga aggccgtgtc cccccagcccc cttccocacc	4560
ctgtgcctca agcagccccgc tggcctctgc tggatgtgtg cctatatgtc aatgcctgtc	4620
cttgcaagtcc agccctggggac attaattca tcaccaggg aatgtggaaac tggatgtatct	4680
tccctgcag ggtacaaaagt tctgcacggg gtccttcgg ttcaggaaaa ctttcactgg	4740
tgctacctga atcaagctctt atttaataag ttcataagca catggatgtg ttttcttaga	4800
gatacgtttt aatggtatca gtgatttta tttgctttgt tgcttacttc aaacagtgcc	4860
tttggggcagg aggtgaggga cgggtctgc gttggctctg cagtgatttc tccaggcgtg	4920
tggctcaggt cagatagtgg tcaactctgtg gccagaagaa ggacaaagat ggaaattgca	4980
gattgagtca cgtaaagcag gcatcttggaa gtgatttgag gcagtttcat gaaagagcta	5040
cgaccactta ttgttgttt cccctttac aacagaagtt ttcataaaaa taacgtggca	5100
aagccagga atgtttggga aaagtgtatgt taaatgtttt gtaattcatt tgtcggagtg	5160
ctaccagcta agaaaaaaagt cctaccttgc gatatggatg cctgcagaga atacaacatc	5220
aatattatgtt tggaaaaaaa caccaccacc accagaaaact gtaatggaaa atgtaaacca	5280
agaaattctt tgggttaagag agaaaggatg tcgtatactg gccaagtctt gcccagctgt	5340
cagectgctg accctctgc gttcaggacc atgaaacgtg gcactgtaa acgtgtcccc	5400
tgcctttgtc tgeccacaga tctctgeccct tggatgtact cctgcacaca agagcatttc	5460
cctgttagcca aacagcgatt agccataagc tgcacctgac tttgaggatt aagagttgc	5520
aattaagtgg attgcagcag gagatcgtg gcagggttgc agatgaaatc cttttctagg	5580
ggtagctaaag ggctgagca cctgtcttac agcacaagcc aaaccagcca agggtttcc	5640
tgtgctgttc acagaggcag ggccagctgg agctggagga ggttgcgtg ggacccttct	5700
ccctgtgtc agaatggagt gatttctggg tgctgttccct gttgatgcctt ctgagcagct	5760
caagggagat cgggtctctt catgcagtc caaaactctgt gtttgcata gaaagatgga	5820
tgtgcacccctc cctcctgtca atgcagccgt gacatgtatga aggcaatgag ccctcagtc	5880

-continued

agcaggagct	gtagtgcact	cctgttaggtg	ctagggaaaa	tctctgggtc	ccagggatgc	5940
attcataagg	gcaatatata	ttgaggctgc	gccaaatctt	tctgaaatat	tcatgcgtgt	6000
tccctaatt	tatagaaaca	aacacagcag	aataattatt	ccaatgcctc	ccctcgagg	6060
aaacccatat	ttccatgtag	aatatgtacc	tatatacaca	cagccatgt	gcatccctca	6120
gaacgtgcca	gtgctcatct	ccatggcaa	aatactacag	gtattctac	tatgtggac	6180
ctgtgaaagg	aaccatggta	agaaaactcg	gttaaaggta	tggctgcaaa	actactcata	6240
ccaaaacagc	agagctccag	acccctctt	aggaaagagc	cacttggaga	gggatggtgt	6300
gaaggctgga	ggtgagagac	agagcctgtc	ccagtttcc	tgtctctatt	ttctgaaacg	6360
tttgcaggag	gaaaggacaa	ctgtactttc	aggcatagct	ggtgccctca	cgtaaataag	6420
ttccccgaac	ttctgtgtca	tttgcattta	agatgctttg	gcagaacact	ttgagtcatt	6480
tcgcttaact	gtgacttaggt	ctgtaaataa	gtgctccctg	ctgataaggt	tcaagtgcaca	6540
tttttagtgg	tatttgacag	catttacctt	gtttcaagt	cttctaccaa	gctcttctat	6600
acttaagcag	tgaaacccgc	aagaaacccct	tccttttatac	aagctagtgc	taaataccat	6660
taacttcata	ggtagatac	ggtgctgcca	gttcacccgt	gcagtgggtt	gtcagttctg	6720
ctggtgacaa	ageccctccgt	gcctgtgttt	ttaccttagag	gtgaatatcc	aagaatgcag	6780
aactgcatgg	aaagcagagc	tgcaggcacg	atggtgctga	gccttagctg	cttcctgctg	6840
ggagatgtgg	atgcagagac	gaatgaagga	cctgtccctt	actccctca	gcattctgt	6900
ctattttaggg	ttctaccaga	gtccttaaga	ggtttttttt	ttttttggtc	caaaagtctg	6960
tttgcattttgt	tttgaccact	gagagcatgt	gacacttgc	tcaagctatt	aaccaagtgt	7020
ccagccaaaa	tcaattgcct	ggggagacgca	gaccattacc	tggaggtcag	gacctaata	7080
aatattacca	gcctcattgt	gcggctgaca	gattcagctg	gctgctccgt	gttccagtc	7140
aacagttcgg	acgcacacgtt	tgtatataatt	tgcaggcagc	ctcgggggga	ccatctcagg	7200
agcagagcac	cgggcagccgc	ctgcagagcc	gggcagtagcc	tcaccatggc	catggcaggt	7260
gtcttcgtgc	tgttctcttt	cgtgctttgt	ggcttcctcc	caggtgagta	actcccagag	7320
tgctgcagaa	gttt					7334

<210> SEQ ID NO 24

<211> LENGTH: 4327

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: pAVIJCR-A137.91.1.2 Vector

<400> SEQUENCE: 24

gcctaatgtgg	tacttccac	attgtataag	aaatttggca	agtttagagc	aatgtttgaa	60
gtgtggaa	atttctgtat	actcaagagg	gcgttttga	caactgtaga	acagaggaat	120
caaaaaggggg	tgggaggaag	ttaaaagaag	aggcaggtgc	aagagagctt	gcagtcggc	180
tgtgtgtacg	acactggcac	catggcttt	acctttgcct	tactgggtgc	tctcctggtg	240
ctgagctgca	agagcagctg	ctctgtggc	tgcgatctgc	ctcagaccca	cagcctggc	300
agcaggagga	ccctgatgt	gctggctcag	atgaggagaa	tcagcctgtt	tagctgcctg	360
aaggataggc	acgattttgg	cttccctcaa	gaggagtttgc	gcaaccagtt	tcagaaggct	420
gagaccatcc	ctgtgctgca	cgagatgatc	cagcagatct	ttaacctgtt	tagcaccaag	480

-continued

gatagcagcg ctgcttggga tgagaccctg ctggataagt tttacaccga gctgtaccag 540
cagctgaacg atctggaggc ttgegtgatc cagggcgtgg gctgtaccga gaccctctg 600
atgaaggagg atagcatcct ggctgtgagg aagtacttgc agaggatcac cctgtacctg 660
aaggagaaga agtacagccc ctgegcttgg gaagtctgtga gggctgagat catgaggagc 720
tttagcctga gcaccaacct gcaagagagc ttgaggtcta aggagtaaaa agtctagagt 780
cggggcggcc ggccgcctcg agcagacatg ataagataca ttgtatgagtt tggacaaacc 840
acaactagaaa tgcagtgaaa aaaatgcctt atttgcgtaaa tttgtatgc tattgcctta 900
tttgcgtaaa ttataagctg caataaacaa gtaacaaca acaattgcat tcattttatg 960
tttcagggttc agggggaggt gtgggaggt tttaaagca agtaaaacct ctacaaatgt 1020
ggtaaaatcg ataaggatcc gtcgaccat gcccttgcgaa gccttcaacc cagtcagtc 1080
cttccgggtgg ggcggggca tgactatcg cggcgactt atgactgtct tctttatcat 1140
gcaactcgta ggacaggtgc cggcagcgct cttccgccttc ctcgctcaact gactcgctgc 1200
gctcggtcg tccggctgcgg cgagcggtat cagtcacta aaaggcggtta atacggttat 1260
ccacagaatc aggggataac gcaggaaaga acatgtgagc aaaaggccag caaaaggccca 1320
ggAACCGTAA aaaggccgcg ttgcgtggcgt tttccatag gctccgcggcc cctgacgagc 1380
atcacaaaaaa tgcacgctca agtcagaggt ggcgaaaccc gacaggacta taaagatacc 1440
aggcggttcc cccttggaaagc tccctcgatc gctctccgtt tccgaccctg ccgcttaccg 1500
gatacctgtc cgccttcctc cttcgggaa gctggcgct ttctcaatgc tcacgctgt 1560
ggtatctcg ttcgggtgtag gtcgttcgtt ccaagctggg ctgtgtgcac gaaccccccgg 1620
ttcagcccgaa cccgtcgcc ttatccggta actatcgctc tgagtccaac ccggtaagac 1680
acgacttatac gccactggca gcagccactg gtaacaggat tagcagagcg aggtatgtag 1740
gcgggtgtac agagttcttgc aagtgggtgc ctaactacgg ctacactaga aggacagtt 1800
ttggtatctg cgctctgtc aagccagtttgc cttcggaaa aagagttggt agctttgtat 1860
ccggccaaaca aaccaccgctt ggtacgggtt gttttttgtt ttgcaagcagcagattacgc 1920
gcagaaaaaa aggatctcaa gaagatcctt tgatctttc tacgggtct gacgctcagt 1980
ggaacgaaaaa ctcacgtttaa gggattttgg tcatgagatt atcaaaaaagg atcttcaccc 2040
agatcctttt aaattaaaaaa tgaagttta aatcaatcta aagtataatgat gatgaaactt 2100
ggctgtacag ttaccaatgc ttaatcgatc aggcacccat ctcagcgatc tgcgtatcc 2160
gttcatccat agttgcgttgc ctcccgatc tgcgtatccat tacgataaccc gagggtttac 2220
catctggccccc cagtgctgca atgataccgc gagaccaccc gtcaccggct ccagattat 2280
cagcaataaa ccagccagcc ggaaggcccg aegcgagaag tggctctgca actttatccg 2340
cctccatccca gtcttataat tggccgggg aagcttagatc aagttagtgc ccagttataa 2400
gtttgcgttgc ccgttgcgttgc attgtacatc gcatcgatc gtcacgttgc tgcgtttgtt 2460
ttggcttccat cagtcgcgttgc tcccaacatc caaggcgatc tacatgtatcc cccatgttgc 2520
gcaaaaaaaagg ggttagctcc ttccggccctc cgatcgatc tgcgtatccat ccatcgatc 2580
tggttatctact catgggtatc gcaacgtgc ataaatcttgc tgcgtatccat ccatcgatc 2640
gatgcttttgc tgcgtatccat gatgacttgc gatgacttgc ccaagtcattt ctgagaatag tgcgtatcc 2700
gaccgagtttgc ctccgtcccg gctgtacatc gggataatcc cgcgcacat agcagaactt 2760

-continued

```
<210> SEQ ID NO 25
<211> LENGTH: 244
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: The RRE (rev responsive element) sequence
```

<400> SEQUENCE: 25

aattgaggag	ctttgtcct	tggttcttg	ggagcagcag	gaagcactat	gggcgcagcg	60
tcaatgacgc	tgacggtaca	ggccagacaa	ttattgtctg	gtatagtgca	gcagcagaac	120
aatttgcgtga	gggttattga	ggcgcaacag	catctgttc	aactcacagt	ctggggcattc	180
aagcagctcc	aggcaagaat	cctggctgtg	gaaagatacc	taaaggatca	acagctcctg	240
gtac						244

-continued

```
<210> SEQ ID NO 26
<211> LENGTH: 158
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: The ALV CTE (constitutive transport element)
sequence

<400> SEQUENCE: 26

aatgtgggaa gggcaaggct tgcgaatcgg gttgtaacgg gcaaggcttg actgagggga      60
caatagcatg tttaggcgaa aagcggggct tcgggtgtac gcggttagga gtcccccctcag      120
gatatactatg ttccgtttt gcataggag gggaaat                                158

<210> SEQ ID NO 27
<211> LENGTH: 55
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: p10.0-OM-IFN-1 Primer

<400> SEQUENCE: 27

ggcgtcgacg gatccgttaa ccctagaact agtggatctc tgcccttgtc ctgac      55

<210> SEQ ID NO 28
<211> LENGTH: 31
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: p10.0-OM-IFN-2

<400> SEQUENCE: 28

ggcctcgagc ctagactttt tactccttag a                                31

<210> SEQ ID NO 29
<211> LENGTH: 346
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: ALV vector 5' LTR sequence

<400> SEQUENCE: 29

aatgtgtct tatgcaatac tctttagtgc ttgcaacatg cttatgtaac gatgagtttag      60
caacatgcct tataaggaga gaaaaagcac cgtgcattgc gattggggg agtaagggtgg      120
tatgatcggt gtatgategt gccttggtag gaaggcaaca gacgggtcta acacggattg      180
gacgaaccac tgaattccgc attgcagaga tattgtattt aagtgccttag ctcgatcaa      240
taaacgcccatt tgaccatc accacattgg tgtgcacctg gggtgtatggc cggaccgttg      300
attccctgrc gactacgagc acatgcattga agcagaaggc ttcatt                                346
```

What is claimed is:

1. A transgenic avian containing in its genome an exogenous nucleotide sequence comprising a promoter component and a SIN vector wherein the exogenous nucleotide sequence is integrated into the genome and the avian produces an exogenous protein which is deposited in a hard shell egg laid by the avian.
2. The transgenic avian of claim 1 wherein the promoter component is an oviduct specific promoter.
3. The transgenic avian of claim 1 wherein the avian is selected from the group consisting of a chicken, a turkey and a quail.
4. The transgenic avian of claim 1 wherein the promoter component is linked to a coding sequence exogenous to the avian.
5. The transgenic avian of claim 1 wherein the promoter component is an avian ovomucoid promoter component.
6. The transgenic avian of claim 1 wherein the promoter component is an avian ovalbumin promoter component.
7. The transgenic avian of claim 1 wherein the promoter component is an avian lysozyme promoter component.
8. The transgenic avian of claim 1 wherein the exogenous protein is a therapeutic protein.
9. The transgenic avian of claim 1 wherein the exogenous protein is a cytokine.
10. The transgenic avian of claim 1 wherein the exogenous protein is selected from the group consisting of erythropoietin, GM-CSF, interferon, fusion protein, CTLA4-Fc fusion protein, growth hormones, cytokines, structural, interferon, lysozyme, β -casein, albumin, α -1 antitrypsin, antithrombin III, collagen, factors VIII, IX, X (and the like), fibrinogen, lactoferrin, protein C, tissue-type plasminogen activator (TPA), somatotropin, and chymotrypsin, immunoglobulins, antibodies, immunotoxins, factor VIII, b-domain deleted factor VIII, factor VIIa, factor IX, anticoagulants; hirudin, alteplase, tpa, reteplase, tpa, tpa—3 of 5 domains deleted, insulin, insulin lispro, insulin aspart, insulin glargine, long-acting insulin analogs, glucagons, tsh, follitropin-beta, fsh, pdgh, inf-beta, inf-alpha 1, ifn-alpha 2, inf-beta, inf-beta 1b, ifn-beta 1a, ifn-gamma, ifn-gamma 1b, il-2, il-1 1, hbsag, ospa, dornase-alpha dnase, beta glucuronidase, tnf-alpha, il-2-diphtheria toxin fusion protein, tnfr-lgg fragment fusion protein laronidase, dnaases, alefacept, tositumomab, murine mab, alemtuzumab, rasburicase, agalsidase beta, teriparatide, parathyroid hormone derivatives, adalimumab (lgl), anakinra, biological modifier, nesiritide, human b-type natriuretic peptide (hbnp), colony stimulating factors, pegvisomant, human growth hormone receptor antagonist, recombinant activated protein c, omalizumab, immunoglobulin e (Ige) blocker, Ibrutinomab tiuxetan, ACTH, glucagon, somatostatin, somatotropin, thymosin, parathyroid hormone, pigmentary hormones, somatomedin, luteinizing hormone, chorionic gonadotropin, hypothalamic releasing factors, etanercept, anti-diuretic hormones, prolactin and thyroid stimulating hormone, an immunoglobulin polypeptide, immunoglobulin polypeptide D region, immunoglobulin polypeptide J region, immunoglobulin polypeptide C region, immunoglobulin light chain, immunoglobulin heavy chain, an immunoglobulin heavy chain variable region, an immunoglobulin light chain variable region and a linker peptide.
11. The transgenic avian of claim 1 wherein the retrovirus is selected from the group consisting of avian leukosis virus

vector (ALV), a murine leukemia virus (MLV) retroviral vector, moloney murine leukemia Virus (MMLV) and a lentiviral vector.

12. A transgenic avian comprising an oviduct cell which contains an exogenous nucleotide sequence comprising a promoter component linked to an exogenous coding sequence contained in an integrated SIN vector wherein the exogenous coding sequence is expressed in the oviduct cell and is secreted from the oviduct cell.

13. The transgenic avian of claim 12 wherein the avian is a chicken.

14. The transgenic avian of claim 12 wherein the oviduct cell is a tubular gland cell.

15. The transgenic avian of claim 12 wherein the promoter component is an avian ovomucoid promoter component.

16. The transgenic avian of claim 12 wherein the promoter component is an avian ovalbumin promoter component.

17. The transgenic avian of claim 12 wherein the promoter component is an avian lysozyme promoter component.

18. A method of producing an exogenous protein comprising producing a transgenic avian having a nucleotide sequence in its genome comprising a vector which is at least one of a SIN vector and an SC negative vector wherein the nucleotide sequence comprises a promoter component linked to an exogenous coding sequence.

19. The method of claim 18 wherein the exogenous coding sequence encodes a human protein.

20. The method of claim 18 wherein the exogenous coding sequence encodes a therapeutic protein.

21. The method of claim 18 wherein the promoter component comprises a functional promoter sequence of a promoter selected from the group consisting of avian ovalbumin promoter component, avian ovomucoid promoter component, avian lysozyme promoter component and avian conalbumin promoter component.

22. The method of claim 18 wherein the avian is a chicken.

23. A transgenic avian containing in its genome an exogenous nucleotide sequence comprising a promoter component and a SC negative vector wherein the exogenous nucleotide sequence is integrated into the genome and the avian produces an exogenous protein.

24. The transgenic avian of claim 23 wherein the promoter component comprises a functional promoter sequence of a promoter selected from the group consisting of avian ovalbumin promoter component, avian ovomucoid promoter component and avian lysozyme promoter component.

25. A nucleic acid 90% identical to a nucleic acid molecule selected from the group consisting of nucleotide sequences that contain:

1. 3.5 kb OV fragment (includes DHS I, II & III)
 - 5' UTR-5' portion (from Exon L)
 - 5' UTR-3' portion (from Exon 1);
2. 3.5 kb OV fragment (includes DHS I, II & III)
 - 5' UTR-5' portion (from Exon L)
 - Intron A
 - 5' UTR-3' portion (from Exon 1)
 - 3' UTR;

3. 3.5 kb OV fragment (includes DHS I, II & III)
5' UTR-5' portion (from Exon L)
Intron A
5' UTR-3' portion (from Exon 1);

4. 3.5 kb OV fragment (includes DHS I, II & III)
5' UTR-5' portion (from Exon L)
5' UTR-3' portion (from Exon 1)
3' UTR;
5. 3.5 kb OV fragment (includes DHS I, II & III)
5' UTR-5' portion (from Exon L)
Intron A
5' UTR-3' portion (from Exon 1)
3' UTR/DHSA(bp 13576 to 15163 of FIG. 8);

6. 3.5 kb OV fragment (includes DHS I, II & III)
5' UTR-5' portion (from Exon L)
5' UTR-3' portion (from Exon 1)
3' UTR/DHSA(bp 13576 to 15163 of FIG. 8);

7. 3.5 kb OV fragment (includes DHS I, II & III)
5' UTR-5' portion (from Exon L)
Intron A
5' UTR-3' portion (from Exon 1)
partial 3' UTR
RRE;

8. ALV CTE
3.5 kb OV fragment (includes DHS I, II & III)
5' UTR-5' portion (from Exon L)

Intron A
5' UTR-3' portion (from Exon 1)
partial 3' UTR;
wherein,
3.5 kb OV fragment (includes DHS I, II & III): Start: 3199
End: 6659 of FIG. 8 (SEQ ID NO: 22);
5' UTR-5' portion (from Exon L): Start: 6659 End: 6705
of FIG. 8 (SEQ ID NO: 22);
5' UTR-3' portion (from Exon 1): Start: 8295 End: 8311
of FIG. 8 (SEQ ID NO: 22);
3' UTR: Start: 13576 End: 14209 of FIG. 8 (SEQ ID NO:
22);
partial 3' UTR: Start 13576 End: 13996 of FIG. 8 (SEQ
ID NO: 22);
Intron A: Start: 6706 End: 8294 of FIG. 8 (SEQ ID NO:
22);
Exon L: Start: 6659 End: 6705 of FIG. 8 (SEQ ID NO:
22);
Exon 1: Start: 8295 End: 8478 of FIG. 8 (SEQ ID NO:
22);
DHS III: Start: 3253 End: 3559 of FIG. 8 (SEQ ID NO:
22);
DHS II: Start: 5629 End: 6009 of FIG. 8 (SEQ ID NO:
22);
DHS I: Start: 6359 End: 6659 of FIG. 8 (SEQ ID NO: 22);
and
RRE: shown in FIG. 9a (SEQ ID NO: 25)
ALV CTE shown in FIG. 9b (SEQ ID NO: 26)

* * * * *