发明名称
风力涡轮机叶片

摘要
本发明涉及风力涡轮机叶片，其包含许多预先预制的沿外部圆周顺序布置的条带。条带由纤维合成材料最好是碳纤维构成，也可以由木质材料最好是胶合板或固化树脂中的木质纤维构成。优点是，它使制造与传统制造技术相比具有优良硬度和高强度但又易于制造且又非常便宜的用于风力涡轮机的叶片成为可能。本发明也涉及制造预先预制的条带的方法和制造风力涡轮机叶片的方法。
1. 一种用于风力涡轮机的叶片，其中叶片在从尖部到中心部位所测量的总长度的至少 1/3 部分上包含一个沿叶片横截面的外周的薄层 (1, 2)，其特征在于，该薄层 (1, 2) 至少部分由分别沿外周顺序布置的许多纤维合成材料的预制拉挤成型条带 (2) 和许多不同材料条带 (1) 构成。

2. 如权利要求 1 所述的叶片，其特征在于，所述薄层 (1, 2) 的条带通过树脂灌输的方式粘接在一起。

3. 如权利要求 1 所述的叶片，其特征在于，所述薄层 (1, 2) 的条带通过真空灌输树脂的方式粘接在一起。

4. 如权利要求 1 所述的叶片，其特征在于，至少一些预制拉挤成型条带 (2) 由纤维合成材料形成的中空管构成。

5. 如权利要求 4 所述的叶片，其特征在于，所述拉挤成型条带 (2) 具有与叶片的纵向方向一致的拉挤成型方向。

6. 如权利要求 1 所述的叶片，其特征在于，所述纤维合成材料包含 50％～90％的纤维体积含量。

7. 如权利要求 6 所述的叶片，其特征在于，所述纤维合成材料包含 60％～80％的纤维体积含量。

8. 如权利要求 1 所述的叶片，其特征在于，所述纤维合成材料包含 50％～90％的碳纤维体积含量。

9. 如权利要求 8 所述的叶片，其特征在于，所述纤维合成材料包含 60％～80％的碳纤维体积含量。

10. 如权利要求 2～9 中任一项所述的叶片，其特征在于，所述许多第二不同材料条带 (1) 可以由木质材料制成。

11. 如权利要求 10 所述的叶片，其特征在于，所述木质材料是胶合板。

12. 如权利要求 10 所述的叶片，其特征在于，所述木质材料由已固化的树脂中的木质纤维组成。

13. 如权利要求 10 所述的叶片，其特征在于，薄层 (1, 2) 至少部分地由木质材料的条带和纤维合成材料的条带沿外周顺序地构成。

14. 如权利要求 13 所述的叶片，其特征在于，所述顺序是木质材料的条带和纤维合成材料的条带相互交替的顺序。

15. 如权利要求 1 所述的叶片，其特征在于，所述薄层被封闭于由纤维合成材料制成的外部壳体和内部壳体内。

16. 如权利要求 15 所述的叶片，其特征在于，截荷测量纤维被封闭于外部壳体和内部壳体中的任意一个或两个内。

17. 如权利要求 16 所述的叶片，其特征在于，所述截荷测量纤维是光纤或强化纤维。

18. 如权利要求 16 所述的叶片，其特征在于，所述截荷测量纤维是碳纤维。

19. 如权利要求 15 所述的叶片，其特征在于，含有防雷引子的防雷保护装置安装在外部壳体和内部壳体中的任意一个或两个内。

20. 如权利要求 19 所述的叶片，其特征在于，所述防雷引子连接于在壳体的纤维强化区域上伸展的金属网眼 (11) 的宽度上。
21. 如权利要求 15 所述的叶片，其特征在于，无线频率吸收介质安装在外部壳体和内部壳体中的任意一个或两个内。

22. 根据权利要求 1-21 中任一项权利要求所述叶片的壳体制造方法，所述壳体包含沿壳体横截面外围布置的薄层材料，所述薄层包含预制的条带，所述方法包含以下步骤：
 将表面材料应用到制造叶片的模具 (8) 上；
 应用任何传送介质 (9)；
 选择至少两种不同材料 (1, 2) 来构成预制条带；
 在纤维合成材料的预制拉挤成型条带 (2) 中选择所述至少两种不同材料 (1, 2) 中的一种；
 在其它应用的材料 (10) 上定位所述至少两种不同材料 (1, 2)；
 将如此应用的不同材料和其它材料插入容器 (12) 中；
 将容器 (12) 抽成真空，灌输固化树脂，并使树脂固化；
 从模具中分离模塑物，从而预制出壳体。

23. 如权利要求 22 所述的方法，其特征在于，所述传送介质 (9) 是金属网眼 (11) 和/或玻璃纤维网眼。
风力涡轮机叶片

[0001] 本申请是申请日为2002年7月19日，申请号为0281454.7，发明名称为“风力涡轮机叶片”的发明专利国际申请的分案申请。

技术领域
[0002] 本发明涉及一种风力涡轮机的叶片。

背景技术
[0003] 当今制造的风力涡轮机叶片包含一根中心内支撑梁（a bearing central inner beam），该中心内支撑梁一般具有空的方形横截面，并由玻璃纤维和树脂合成物制造，周围环绕两个壳体（shell），该两个壳体形成叶片的上部外表面和下部外表面并决定其空气动力学特性。
[0004] 壳体可以是单层，或至少沿圆周的一部分是一种层状结构（a sandwich construction），包含两个平行的玻璃纤维和树脂层，其间充满例如聚亚安酯泡沫材料。使用木质材料以增强单层壳体的内部或者填充层状结构的空间（space）是众所周知的。
[0005] 已经实现了力和扭矩随着叶片长度的增加而急剧增加，内支撑梁的强度和硬度（stiffness）也必定急剧增加，因为壳体对叶片总承载特性的贡献很小。
[0006] 为了使壳体能够承受内支撑梁受力的相当大部分，上述讨论的由于木质材料而增强的结构需要宽大的叶片尺寸和大的木质层的厚度，这样大大增加了叶片的重量并造成叶片的应力增加。
[0007] 本发明的目的是提供一种风力涡轮机叶片，该风力涡轮机叶片具有层压产品的特性，与其它材料相比具有高的强度，与固体产品相比具有低的生产成本，但是与生产叶片的成本相比，强度比现有技术的叶片大大提高。

发明内容
[0008] 该发明目的可以通过一种叶片获得，在大部分纵向部分上，该叶片包含沿叶片横截面的外部圆周的一个薄层（a layer），该薄层由多个预先预制的沿叶片外部圆周顺序布置的条带（strip）构成。
[0009] “大部分纵向部分”应理解为在从尖部到中心部位至少叶片总长度的1/3上延伸的那部分，最好为至少叶片总长度的1/2以上。根据优选的实施例，总长度的60～85％，比如70％左右，包含这样的薄层（layer）。
[0010] 因此，最佳的材料特性可以通过结合不同种类的条带（strip）而获得，比如，通过含有诸如碳纤维、玻璃纤维和/或天然纤维、木质条带作为形成中空管材的合成条带等不同纤维的拉挤成型的纤维合成物（pultruded fibrous composite）条带而获得。每一种类条带（strip）的制造比形成整个叶片要简单，并因此要便宜，并且，条带（strip）可以通过恰当的方式粘接在一起，比如，通过注入树脂的方式或真空灌输树脂的方式。
说明书

[0011] 根据本发明，可以获得一种风力涡轮机叶片，其可以降低作用在内支撑梁（inner beam）的受力和扭矩。并且，在壳体外圆周附近的薄层上的抵抗拉力和压力的抗力给叶片提供了一个关于边缘弯曲模式（an edge-wise bendingmode）的改良的结构效率（an improved structural efficiency）。

[0012] 因此，在一个优选的实施例中，至少一些预先预制的条带由拉挤成形的纤维合成材料（pultruded fibrous composite material）例如碳树脂（carbon-resin）制作。

[0013] 因此，可以获得一种结构，其具有优良的硬度（stiffness），不易弯曲（buckling）。这样，叶片的内部结构可以由很轻的结构组成，比如，在前边缘（leading edge）和移动边缘（traveling edge）用两个较轻的网状结构（webs）分别替换常用的具有方形横截面的内支撑梁。

[0014] 在一个优选的实施例中，圆周薄层通过注入树脂或真空灌输树脂的方式进行装配。使用树脂灌输的方式会制造过程快速、健康和安全，在树脂内没有或仅有极少的空虚（void）。由于空虚极少，从而减少了后续的修整（finishing）。数量有限的纤维被确实灌输到叶片内。树脂主要是胶水而不是粘合物质（matrix），这使得该结构更能容忍任何可能的空虚。

[0015] 根据一个优选的实施例，在大部分纵向部分上的叶片包含沿横截面的外圆周的一个薄层，其中该薄层至少沿圆周以交替的顺序部分地由木质材料的条带和纤维成形材料的条带构成。这样，纤维成形材料优良的硬度和木质材料抵抗弯曲的高抗力结合在一起，以获得一种具有成本效益的恰当性能的壳体。

[0016] 一个特别可取的实施例包含至少由一种木质材料和天然纤维拉挤成形物（natural fibre pultrusions）制成的一些条带，其中，木质材料可优选选取作为木质材料使用的胶合板，天然纤维拉挤成形物可优选选取为纤维成形材料使用的碳纤维拉挤成形物（carbon fibre pultrusions）。

[0017] 该实施例所获得的优点是，这些材料能够共存并且两者都具有低的热膨胀系数。两种类型的材料都能在相应的低应变的范围内工作，使得相对于叶片的重量存在更硬的叶片的可能性。同样，天然纤维可能易于弯曲，虽然木材体积大（bulky），但木材不易弯曲，因此同样由于该原因，两种类型的材料能互补。

[0018] 一般地，条带可以由木材、层压木材、拉挤成形物（pultrusion）制成，其中，拉挤成形物由人造的或天然的纤维制成，该纤维可用诸如任何树脂、热塑性塑料、泡沫塑料等材料与泡沫塑料、轻质芯材料以任意比例制成，该任何树脂、热塑性塑料、泡沫塑料等材料可以是人造的或来自天然的。至少一些预先预制的条带可以方便地由纤维成形材料形成。纤维材料的纤维可以是任何已知的具有能够增强木质合成物的合适性能的纤维，其中木质合成物可以是碳纤维、玻璃纤维、凯夫拉纤维（Kevlar fibres）、天然纤维等，天然纤维可以是大麻或亚麻、椰子壳纤维或他们的任意结合等。

[0019] 作为例子，碳比木质材料有更高的抗破坏的应变。碳能作为增强剂，但木质首先破坏。在试验实验（coupon testing）中已经利用这一点来分别地证实碳强度和木质强度。添加碳并因此使用薄的壳体（skin）的可能性可以降低壳体弯曲极限（skin buckling margins）。

[0020] 碳纤维比较昂贵，然而，木质很便宜并且能够覆盖叶片区域而使成本降低。然而，木
质本身能在高应力叶片内产生厚的效率低的壳体。碳纤维结合木质可以产生更薄的壳体。该壳体在结构上有效并令人满意。同样，木质有很高的容忍缺陷的能力 (highly defect tolerant)。由纤维合成材料构成的壳体的总横截面的百分比在具有高纤维材料含量的叶片部分上可优选为在 3% - 30% 的范围内，尤其可以优选在 6% - 20% 的范围内。同样，由纤维构成的壳体的总横截面的百分比可优选为在 2% - 20% 的范围内，尤其可以优选在 4% - 15% 的范围内。

[0021] 在本发明特别优选的实施例中，至少一些条带由中空管构成，该中空管由一种纤维合成材料形成。因此，材料和重量可以大大节省，而优良的结构性能却被保留下来。

[0022] 至少一些纤维合成材料的条带最好是拉挤成型物，即由纤维和粘合物质 (matrix) 的拉挤成型混合物 (pulltruding mixture) 制成的条带，该拉挤成型混合物在拉挤成型物后固化，该拉挤成型物可以是乙烯酯之类的可加工的树脂。因此，可以获得具有高纤维和低空虚含量的条带。同样，可以获得低树脂含量，从而导致低收缩和快速固化。

[0023] 因此，优点是拉挤成型物具有拉挤成型方向，该方向基本上与叶片的纵向方向一致。在该方向上，纤维的性能有要求。然而，拉挤成型物的终端接头是应力集中源，因此，要特别注意对这些结构因素的测试。

[0024] 纤维合成材料包含 50% - 90% 的纤维体积含量 (fibre volume fraction)，优选为 60% - 80%。尤其是，纤维合成材料可以包含 50% - 90% 的粘合剂体积含量，优选为 60% - 80%。

[0025] 根据一个优选的实施例，至少一些预先制造的条带由木质材料制成，这是因为木质材料成本低、重量轻，并且木质材料的材料性能很完美，能够通过结合比如纤维合成材料等其它材料类型的条带的方式形成所需要的叶片材料性能。木质材料可以是木质条带，如果需要的话，该木质条带可以在叶片的纵向方向上粘合在一起。

[0026] 一个优选的实施例采用了胶合板，尤其是由于均匀的材料性能而作为木质材料的无方向性胶合板。可以采用的其它类型的木质材料由存在于已固化的树脂中的木质纤维组成。木质存在有向的应力，因此，不但通过使用已建立的设计允许值 (established design allowables) 而使用新的接头形式和胶水成为可能，而且仍然对木质材料的结构充满信心。

[0027] 根据本发明的一个实施例，薄层沿外圆周顺序地至少部分地由一种木质材料的条带和一种纤维合成材料的条带构成。这种顺序可以是一种木质材料的条带和一种纤维合成材料的条带相互交替的顺序。这种相互交替的顺序最好仅仅涉及叶片完整圆周的一部分。

[0028] 可取的是，所讨论的薄层是层状结构 (a sandwich construction) 的一部分，如前面讨论的，即，薄层封闭在由例如由固化的合成树脂中的玻璃纤维网等纤维合成材料制成的外部壳体和内部壳体内。

[0029] 样本类型

[0030] 小型支撑梁：l- 支撑梁，150×150mm，2.5 m 长，(25mm 厚轮缘 (flanges))，具有半标度外壳 (half scale skins)，包括拉挤成型物终端，缺陷，木质接头。

[0031] 6m×1.2m 风板 (aerofoil)：A 型，设计成破坏于直接过应力，测试外壳，前后边缘接头。B 型样本具有相对薄的外壳以进行弯曲分析。

[0032] 31m 叶片：A 叶片，在 A131 模具中制造，具有与 AL40 (72×M30 固定 (fixings)) 一样
的叶片连接（foot fixings），具有同相类似的木质和碳的分布一起建立的外壳（同 AL40），具有双重网、相类似的前边缘接头。

<table>
<thead>
<tr>
<th>结构因素测试</th>
<th>测试</th>
<th>检验</th>
</tr>
</thead>
<tbody>
<tr>
<td>小型支撑架</td>
<td>3 点静弯曲</td>
<td>外壳强度、木质和拉挤成型物终端接头</td>
</tr>
<tr>
<td>6m 风板 A，厚外壳</td>
<td>4 点静弯曲</td>
<td>前边缘接头，网和外壳接头</td>
</tr>
<tr>
<td>6m 风板 B，薄外壳</td>
<td>4 点静弯曲</td>
<td>具有已弯曲外层的弯曲理论</td>
</tr>
<tr>
<td>31m 叶片</td>
<td>边缘静态悬臂弯曲 (Cantilever bending static edgewise)</td>
<td>硬度、频率、衰减（加载到 1.35 倍最大应变 AL40，分布状态同 A131）</td>
</tr>
<tr>
<td></td>
<td>平放静态悬臂弯曲 (Cantilever bending static flatwise)</td>
<td>同前述边缘，但 1.5 倍最大应变 AL40，分布状态同 A131。齿环弯曲（测量应变）</td>
</tr>
<tr>
<td></td>
<td>平放疲劳悬臂弯曲</td>
<td>加速疲劳状态，100 万次循环，模拟 AL40 寿命应变循环</td>
</tr>
<tr>
<td></td>
<td>平放静态破损</td>
<td>破坏模式和极限</td>
</tr>
<tr>
<td></td>
<td>叶片连接静态拉伸和疲劳</td>
<td>叶片连接强度极限的确定</td>
</tr>
</tbody>
</table>

40m 叶片测试	硬度、频率、衰减，检验加载到 1.35 极值
平放静态悬臂弯曲	同前述边缘，检验加载到 1.35 极值，齿环弯曲（测量应变）
平放疲劳悬臂弯曲	疲劳状态，500 万次循环，相当于寿命的 1.35 加载系数
边缘疲劳悬臂弯曲	疲劳状态，500 万次循环，相当于寿命的 1.35 加载系数
平放静态破损	破坏模式和极限

<table>
<thead>
<tr>
<th>材料</th>
<th>测试</th>
<th>检验</th>
</tr>
</thead>
<tbody>
<tr>
<td>碳拉挤成型物</td>
<td>静态拉伸/压缩和疲劳 CRAG 测试</td>
<td>碳极限非常高</td>
</tr>
<tr>
<td>木质</td>
<td>静态拉伸/压缩和疲劳 AL 型试样</td>
<td>木质接头也能运行或好于前一个接头类型</td>
</tr>
<tr>
<td>具有木质的碳</td>
<td>静态压缩 Std 木质测试</td>
<td>碳按预想的运行，木质具有最低强度压缩应力</td>
</tr>
</tbody>
</table>

[0036] 本发明可以安装防雷保护系统，该系统包括两个可替换的防雷引子，该防雷引子最好接近尖部。其中的一个防雷引子安装在迎风侧，另一个防雷引子安装在下风侧。两个防雷引子都连接到铝网眼 (aluminum mesh) 或类似材料的宽度上，铝网眼或类似材料在叶片凝胶涂层的表面薄层下面的纤维增强区域上伸展，并且，两个防雷引子向下延伸到叶片的根部，并在此接地。

[0037] 无线通讯频率比如雷达信号的吸收介质可以有选择性地灌输到结构的其它部分。除了将强化光纤或强化光纤的替代物埋入到叶片外，也可能将光纤埋入到叶片中。可以
用光纤测量风力涡轮机在运行中叶片表面上和叶片表面内部的载荷。

作为替换，碳纤维的阻抗测量可以被用来测量叶片表面上和叶片表面内部的载荷。同样，所使用的用于测量载荷的碳纤维可以是一个或多个强化光纤，或者除了强化光纤外也可以是碳纤维，并用来测量载荷。

附图说明

图 1 是具有薄层的叶片的横截面图，其中薄层由胶合板条带与纤维拉挤成型物条带相互交替而构成；
图 2a 是与图 1 叶片相类似的叶片的横截面图，该横截面显示了沿具有拉挤成型物条带的部分的圆周上的不同分布；
图 2b 是与显示在图 2a 中的横截面的叶片相类似的叶片的平面图，因此有沿具有拉挤成型物条带的部分的圆周上相似的分布；
图 2c 是图 2a 的叶片表面的图片，其中合成材料的外部壳体被除去；
图 3 图解了真空灌注过程。

具体实施方式

图 1 中的横截面所显示的叶片具有一个薄层，该薄层由白桦胶合板 1 的 40×40mm 条带与碳纤维拉挤成型物 2 的 6×40mm 条带相互交替而构成。薄层 1、2 在玻璃纤维网和人造树脂合成物的两个 C- 支撑梁 3、4 之间沿叶片的中心部分伸展，其中玻璃纤维网和人造树脂合成物表示 LE（前缘）网 3 和 TE（移动边缘）网 4 并取代前面讨论过的中心内支撑梁。薄层 1、2 夹在玻璃环氧树脂外壳的内薄层 5 和外薄层 6 之间，该玻璃环氧树脂外壳承载剪切应力并提高叶片的横向硬度。在上部壳体和下部壳体所限定的并因此由白桦胶合板 1 和碳纤维拉挤成型物 2 以及 LE 网 3 和 TE 网 4 所构成的空间充满了轻质木质芯 7。

图 2a、2b、2c 所显示的叶片与图 1 中的叶片相类似，除了碳纤维拉挤成型物 2 的强化位于上部壳体和下部壳体之间以及 LE 网 3 和 TE 网 4 之间的接触区域的附近外，在此应力集中最高。在所示的实施例中，使用双重网取代单层网。这将在压缩过程中给予外壳充足的弯曲极限。同样，前网降低了前边缘接头剪切载荷，允许一个较小的前边缘接头区域。这在制造叶片过程中是一个优点。

因为纤维拉挤成型物添加到木质结构中提高了结构的硬度，因此本技术是非常优越的。并不是沿叶片的长度上都使用碳纤维拉挤成型物，仅仅是承载应力所需要的中部 70％使用碳纤维拉挤成型物。在所示的实施例中，叶片外壳横截面在应力比较高的区域，分散于木质合成物中的碳纤维拉挤成型物的区域可达 10%。典型地，叶片外壳厚度的 60%由纯化的木质材料构成，这在临界边缘弯曲模式（critical edgewise bending mode）中可降低重量并改善结构效率。外部和内部玻璃环氧树脂外壳是用与叶片纵向方向成 ±45°角的玻璃纤维制造。

拉挤成型物具有能够保证在碳纤维合成物中直线纤维和低空虚含量的优点。此外，拉挤成型物还具有加快叶片灌注过程的优点，这是因为精心的碳纤维需要相当长的时间进行灌注。拉挤成型物含有高的纤维体积含量，大约为 70%，其中，纤维含有中等强度但极
易于加工的树脂，比如乙烯酯。最好是，当制造叶片时，树脂随着两个长边上的“剥落板层 (peel ply)”而送进，然后被移开以产生干净的有织纹的表面以保证良好的粘结。

[0049] 叶片壳体的制造过程如图 3 所示，包括步骤：将凝胶涂层（未示出）应用于模具 8，然后将介质 9，比如传递网眼 (transfer mesh)、45°角的玻璃纤维网 10 和环氧树脂（未示出），传送给模具以形成外部玻璃环氧树脂外壳。此后，木质和拉挤成形物条带 1, 2 被定位，然后用于防火保护的诸如铝网眼等金属网眼 11 被应用。然后，壳体被遮盖在一个容器中，即此过程显示的真空包 12 中，真空包 12 由外部装置 13 抽成真空。然后，树脂从树脂贮备池 14 通过形成于邻近条带之间的树脂通道 15 被注入，并通过抽真空扩散到整个结构。通常使用的用于灌输的树脂是来自于 SP 系统 (SP System) 的 Prime 20。在固化树脂以后，内部玻璃环氧树脂外壳 16 在木质和拉挤成形物条带 1, 2 的顶部被制造出来。