Canadian Intellectual Property du Canada Office

Un organisme d'Industrie Canada

An agency of Industry Canada (21) 2 752 012

(12) DEMANDE DE BREVET CANADIEN CANADIAN PATENT APPLICATION

(13) **A1**

- (86) Date de dépôt PCT/PCT Filing Date: 2010/02/09
- (87) Date publication PCT/PCT Publication Date: 2010/08/19
- (85) Entrée phase nationale/National Entry: 2011/08/09
- (86) N° demande PCT/PCT Application No.: US 2010/023667
- (87) N° publication PCT/PCT Publication No.: 2010/093641
- (30) Priorité/Priority: 2009/02/10 (US12/368,976)

- (51) Cl.Int./Int.Cl. *A61B 5/04* (2006.01)
- (71) Demandeur/Applicant: CARDIONET, INC., US
- (72) Inventeurs/Inventors: PU, YACHUAN, US; GROPPER, CHARLES, US; LIN, DONGPING, US
- (74) Agent: SMART & BIGGAR

(54) Titre: LOCALISATION DE POINTS FIDUCIELS DANS UN SIGNAL PHYSIOLOGIQUE

(54) Title: LOCATING FIDUCIAL POINTS IN A PHYSIOLOGICAL SIGNAL

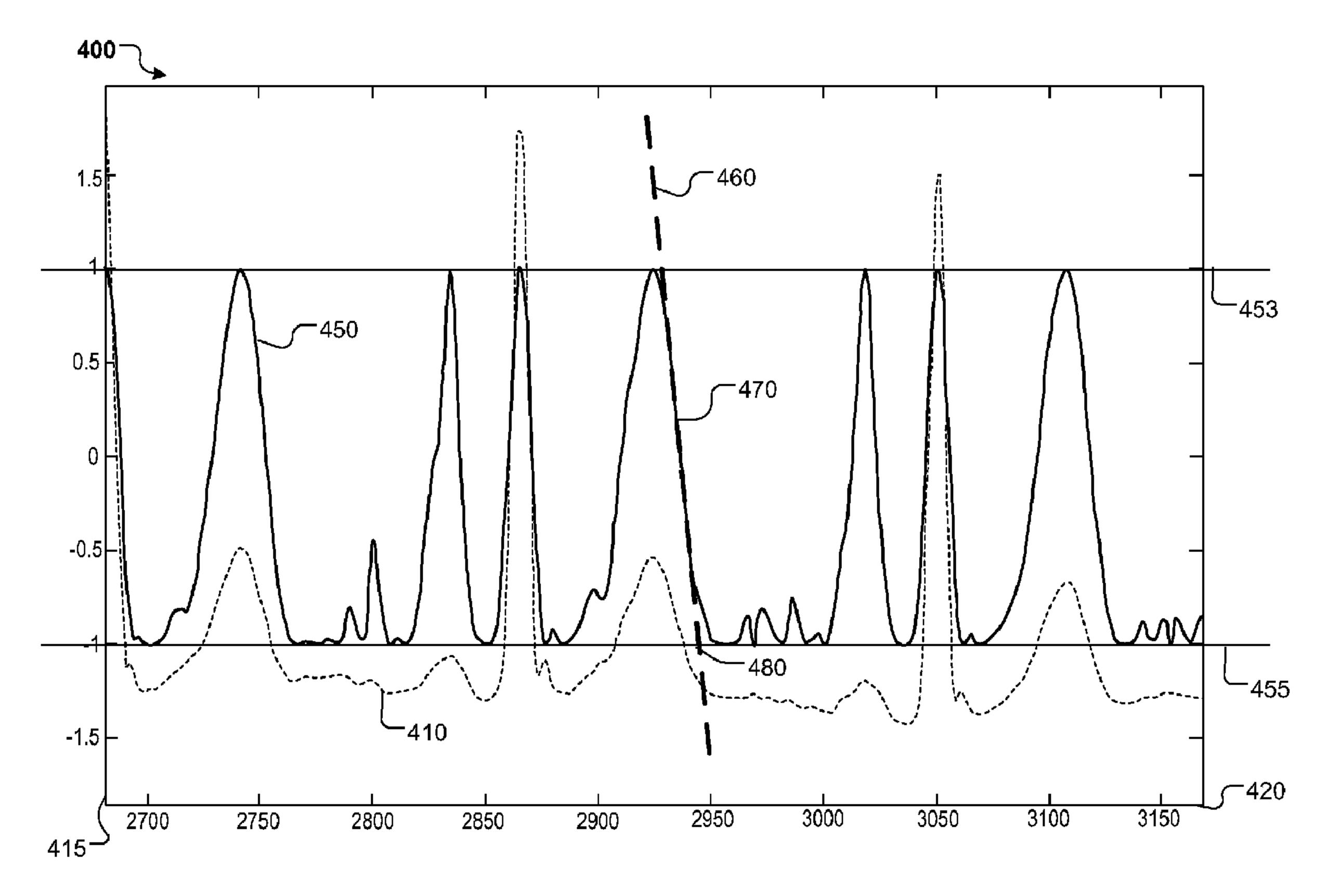


FIG. 4

(57) Abrégé/Abstract:

Systems, devices, methods, and techniques relating to the identification of fiducial points. In one aspect, a machine implemented method includes obtaining a first time varying physiological signal and a second time varying physiological signal that relate to

CA 2752012 A1 2010/08/19

(21) 2 752 012

(13) **A1**

(57) Abrégé(suite)/Abstract(continued):

biological activity of an organism, the first time varying physiological signal and the second time varying physiological signal forming an analytic pair wherein the analytic pair has a time varying phase angle, defining a reference line by a lower boundary of a representation of the time varying phase angle with respect to a time period, and identifying a fiducial point based on the reference line.

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 19 August 2010 (19.08.2010)

(10) International Publication Number WO 2010/093641 A1

(51) International Patent Classification: *A61B 5/04* (2006.01)

(21) International Application Number:

PCT/US2010/023667

(22) International Filing Date:

9 February 2010 (09.02.2010)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 12/368,976 10 February 2009 (10.02.2009) US

- (71) Applicant (for all designated States except US): CAR-DIONET, INC. [US/US]; 227 Washington Street, Suite 300, Conshohocken, PA 19428 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): PU, Yachuan [CN/US]; 94 Bridgeport Street, Dana Point, CA 92629 (US). GROPPER, Charles [US/US]; 28762 Peach Blossom, Mission Viejo, CA 92692 (US). LIN, Dongping [US/US]; 13 Glenn, Irvine, CA 92620 (US).
- (74) Agent: BENSON, Joseph, P.; Fish & Richardson P.C., P.O. Box 1022, Minneappolis, MN 55440-1022 (US).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM,

AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

— as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii))

Published:

— with international search report (Art. 21(3))

(54) Title: LOCATING FIDUCIAL POINTS IN A PHYSIOLOGICAL SIGNAL

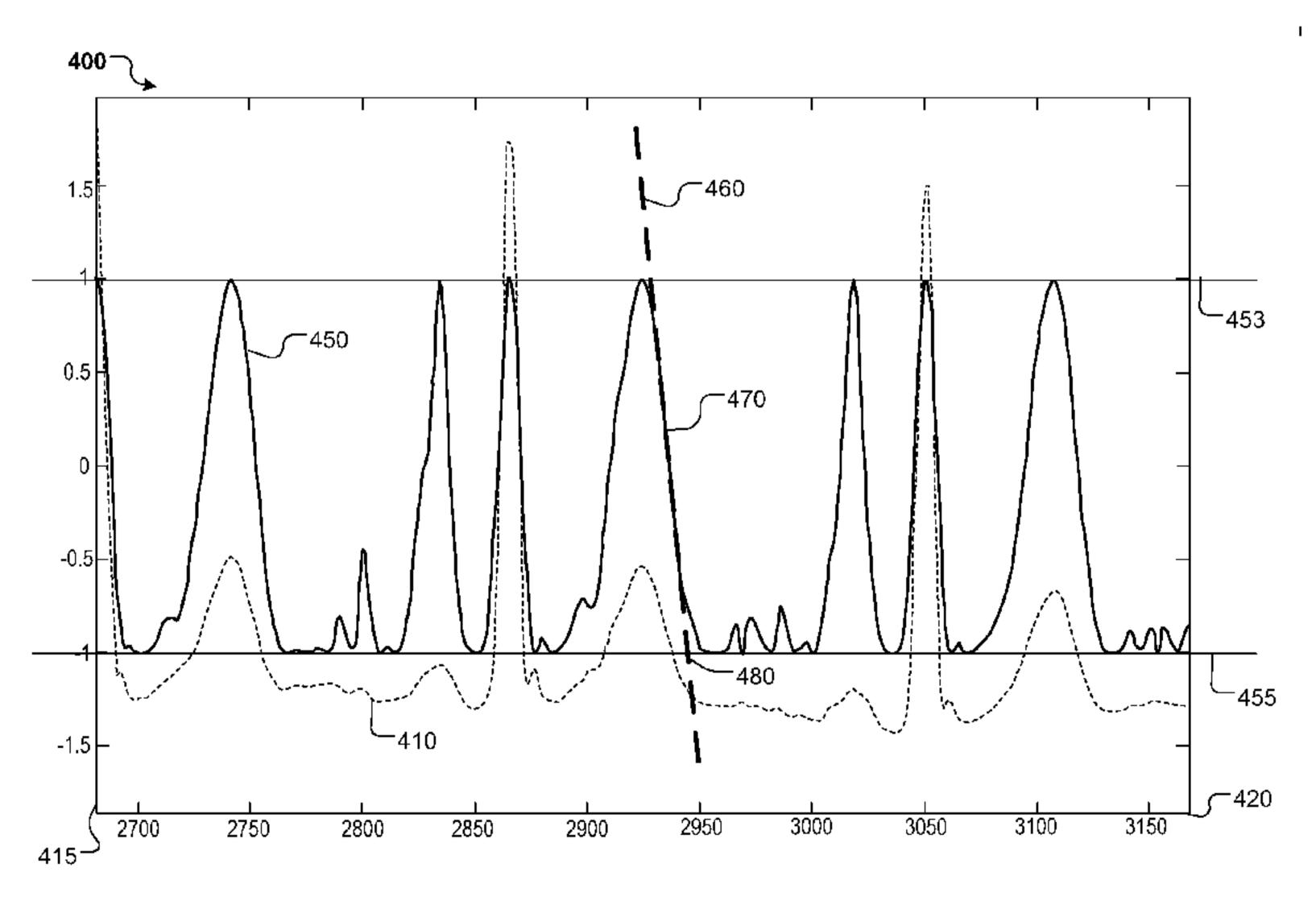


FIG. 4

(57) Abstract: Systems, devices, methods, and techniques relating to the identification of fiducial points. In one aspect, a machine implemented method includes obtaining a first time varying physiological signal and a second time varying physiological signal that relate to biological activity of an organism, the first time varying physiological signal and the second time varying physiological signal forming an analytic pair wherein the analytic pair has a time varying phase angle, defining a reference line by a lower boundary of a representation of the time varying phase angle with respect to a time period, and identifying a fiducial point based on the reference line.

LOCATING FIDUCIAL POINTS IN A PHYSIOLOGICAL SIGNAL

BACKGROUND

[0001]

The electrical activity of various organs, such as the heart or brain, can be

monitored, and this electrical activity can be analyzed to look for patterns that may assist in diagnosing various conditions. For example, the electrical activity of the heart can be monitored to track various aspects of the functioning of the heart. Given the volume conductivity of the body, electrodes on the body surface or beneath the skin can display potential differences related to this activity. Anomalous electrical activity can be indicative of disease states or other physiological conditions ranging from benign to fatal.

[0002] Cardiac monitoring devices can sense the cardiac electrical activity of a living being and identify heart beats. Frequently, identification of heart beats is performed by identifying various portions of the cardiac cycle as can be seen in an electrocardiogram (ECG). Various identifiers, such as P, Q, R, S and T, are typically assigned to various deflections in the ECG signal. Many techniques have been developed for analyzing ECG

SUMMARY

signals, but further improvements are desirable.

[0003] The present application describes systems and techniques relating to automated analysis of a physiological signal or signals of an organism, such as a cardiac signal. Automated analysis of a cardiac signal or signals can include, for example, identifying a reference line such as an isoelectric; locating fiducial points such as a P-wave onset, a P-wave offset, a T-wave onset, a T-wave offset, a Q-point, an R-point, and an S-point; and/or detecting a physiological condition.

[0004] In a first aspect, a machine implemented method includes obtaining a first time varying physiological signal and a second time varying physiological signal that relate to biological activity of an organism, the first time varying physiological signal and the second time varying physiological signal forming an analytic pair wherein the analytic pair has a time varying phase angle. The method further includes defining a reference line by a boundary of a representation of the time varying phase angle with respect to a time period. The method further includes identifying a fiducial point based on the reference line.

[0005] Implementations can include any, all, or none of the following features. The machine implemented method can include approximating the time varying phase angle, wherein the approximation of the varying phase angle $\varphi_{\Delta A(t_{i+K})}$ can be defined by the function:

$$\varphi_{\Delta \vec{A}(t_{i+K})} \approx \frac{imag\left[\Delta \vec{A}(t_{i+K})\right]}{\left|\Delta \vec{A}(t_{i+K})\right|} = \frac{\hat{x}(t_{i+K}) - \hat{x}(t_i)}{\sqrt{(x(t_{i+K}) - x(t_i))^2 + (\hat{x}(t_{i+K}) - \hat{x}(t_i))^2}} \text{ where } x(t) \text{ includes}$$

the first time varying physiological signal and $\hat{x}(t)$ includes the second time varying physiological signal, x(t) and $\hat{x}(t)$ forming the analytic pair $\vec{A}(t)$; where i is a current sample; where K is K samples away; and where $\Delta \vec{A}(t_{i+k})$ is the change of the two vectors $((x(t_i), \hat{x}(t_i)))$ and $(x(t_{i+K}), \hat{x}(t_{i+K}))$. The reference line can include an isoelectric line defined by a lower boundary of the representation of the time varying phase angle. The machine implemented method can include calculating a corresponding function to a downslope or an upslope of the representation of the time varying phase angle within the time period; and wherein identifying a fiducial point based on the reference line can include identifying a fiducial point based on an intersection of the corresponding function and the reference line. Calculating a corresponding function to a downslope of the representation of the time varying phase angle can include calculating a tangent line where the downslope can have a minimum slope.

[0006] Calculating a corresponding function to an upslope of the representation of the time varying phase angle can include calculating a tangent line where the upslope has a maximum slope. Also, identifying a fiducial point based on an intersection of the corresponding function and the reference line can include offsetting the intersection by a constant. Furthermore, calculating a corresponding function to a downslope or an upslope of the representation of the time varying phase angle can include calculating the regression line of the downslope or the upslope of the representation of the time varying phase angle within the time period. The machine implemented can include applying a trigonometric function to the time varying phase angle to create the representation. Obtaining a first time varying physiological signal can include obtaining a sensed signal x(t); and wherein obtaining a second time varying physiological signal $\hat{x}(t)$ can include obtaining a transformation of x(t) to form the analytic pair $\hat{A}(t)$. Obtaining a transformation of x(t) can include obtaining a Hilbert Transformation $\hat{A}(t)$ can include obtaining a derivative of $\hat{A}(t)$. Obtaining a first time varying a derivative of $\hat{A}(t)$. Obtaining a first time

varying physiological signal can include obtaining a first sensed signal based on a first lead configuration; wherein obtaining a second time varying physiological signal can include obtaining a second sensed signal based on a second lead configuration wherein the second sensed signal can be orthogonal to the first; and wherein obtaining the first and second time varying physiological signals can include obtaining the signals from a data storage device. Also, identifying a fiducial point can include identifying one of a T-wave offset, T-wave onset, P-wave offset, P-wave onset, Q-point, R-point, and S-point.

[0007] In other aspects, a system can include one or more computers, and a computer-readable storage device having a computer program product encoded therein, the computer program product operable to cause the one or more computers to perform operations which can include: obtaining a first time varying physiological signal and a second time varying physiological signal that relate to biological activity of an organism, the first time varying physiological signal and the second time varying physiological signal forming an analytic pair wherein the analytic pair has a time varying phase angle; defining a reference line by a boundary of a representation of the time varying phase angle with respect to a time period; and identifying a fiducial point based on the reference line.

[0008] Implementations can include any, all, or none of the following features. The computer-readable storage device can be further operable to cause the one or more computers to perform operations including: calculating a corresponding function to a downslope or an upslope of the representation of the time varying phase angle within the time period; and wherein identifying a fiducial point based on the reference line can include identifying a fiducial point based on an intersection of the corresponding function and the reference line. Calculating a corresponding function to a downslope or an upslope of the representation of the time varying phase angle can include calculating one of a tangent line, a regression line, and a least square approximation to the downslope or the upslope. Identifying a fiducial point based on an intersection of the corresponding function and the reference line can include offsetting the intersection by a constant. The computer-readable storage device can be further operable to cause the one or more computers to perform operations including applying a trigonometric function to the time varying phase angle to create the representation. The computer-readable storage device can be further operable to cause the one or more computers to perform operations can include approximating the time varying phase angle,

wherein the approximation of the varying phase angle $arphi_{\Delta\!\!\!\!A(t_{i+K})}$ can be defined by the

function:
$$\varphi_{\Delta \vec{A}(t_{i+K})} \approx \frac{imag\left[\Delta \vec{A}(t_{i+K})\right]}{\left|\Delta \vec{A}(t_{i+K})\right|} = \frac{\hat{x}(t_{i+K}) - \hat{x}(t_i)}{\sqrt{(x(t_{i+K}) - x(t_i))^2 + (\hat{x}(t_{i+K}) - \hat{x}(t_i))^2}} \text{ where } x(t)$$

includes the first time varying physiological signal and $\hat{x}(t)$ includes the second time varying physiological signal, x(t) and $\hat{x}(t)$ forming the analytic pair A(t); where i can be a current sample; where K can be K samples away; and where $\Delta \bar{A}(t_{i+k})$ is the change of the two vectors $((x(t_i), \hat{x}(t_i)))$ and $(x(t_{i+K}), \hat{x}(t_{i+K}))$. Obtaining a first time varying physiological signal can include obtaining a sensed signal x(t); and wherein obtaining a second time varying physiological signal $\hat{x}(t)$ can include obtaining a transformation of x(t) to form the analytic pair $\vec{A}(t)$. Obtaining a transformation of x(t) can include obtaining a Hilbert Transformation H(x(t)) of the first time varying physiological signal. Obtaining a transformation of x(t) can include obtaining a derivative of x(t). Obtaining a first time varying physiological signal can include obtaining a first sensed signal based on a first lead configuration; wherein obtaining a second time varying physiological signal can include obtaining a second sensed signal based on a second lead configuration wherein the second sensed signal can be orthogonal to the first; and wherein obtaining the first and second time varying physiological signals can include obtaining the signals from a data storage device. Identifying a fiducial point can include identifying one of a T-wave offset, T-wave onset, Pwave offset, P-wave onset, Q-point, R-point, and S-point.

[0009] In other aspects, an apparatus can include circuitry operable to obtain a first time varying physiological signal and a second time varying physiological signal that relate to biological activity of an organism, the first time varying physiological signal and the second time varying physiological signal forming an analytic pair wherein the analytic pair has a time varying phase angle; circuitry operable to define a reference line by a boundary of a representation of the time varying phase angle with respect to a time period; and circuitry operable to identify a fiducial point based on the reference line.

[0010] Implementations can include any, all, or none of the following features. The apparatus can include circuitry operable to transmit the identified fiducial points.

The apparatus can include circuitry operable to calculate a corresponding function to a downslope or an upslope of the representation of the time varying phase angle within the time period; and wherein the circuitry operable to identify a fiducial point is further operable to identify a fiducial point based on an intersection of the corresponding function and the reference line. The circuitry operable to calculate a corresponding function to a downslope

or an upslope of the representation of the time varying phase angle can be further operable to calculate one of a tangent line, a regression line, and a least square approximation to the downslope or the upslope. The circuitry operable to identify a fiducial point based on an intersection of the corresponding function and the reference line can be further operable to offset the intersection by a constant. The apparatus can include circuitry operable to approximate the time varying phase angle, wherein the approximation of the varying phase

angle $\varphi_{\Delta A(t_{i+K})}$ can be defined by the function:

$$\varphi_{\Delta \vec{A}(t_{i+K})} \approx \frac{imag\left[\Delta \vec{A}(t_{i+K})\right]}{\left|\Delta \vec{A}(t_{i+K})\right|} = \frac{\hat{x}(t_{i+K}) - \hat{x}(t_i)}{\sqrt{(x(t_{i+K}) - x(t_i))^2 + (\hat{x}(t_{i+K}) - \hat{x}(t_i))^2}} \text{ where } x(t) \text{ includes}$$

the first time varying physiological signal and $\hat{x}(t)$ includes the second time varying physiological signal, x(t) and $\hat{x}(t)$ forming the analytic pair $\vec{A}(t)$; where i is a current sample; where K is K samples away; and where $\Delta \vec{A}(t_{i+k})$ is the change of the two vectors $((x(t_i), \hat{x}(t_i)))$ and $(x(t_{i+K}), \hat{x}(t_{i+K}))$. The apparatus can include circuitry operable to apply a trigonometric function to the time varying phase angle to create the representation. The circuitry operable to obtain a first time varying physiological signal can be further operable to obtain a sensed signal x(t); and wherein the circuitry, operable to obtain a second time varying physiological signal, $\hat{x}(t)$ can be further operable to obtain a transformation of x(t) to form the analytic pair $\hat{A}(t)$. The circuitry operable to obtain a transformation of x(t) can be further operable to obtain a Hilbert Transformation H(x(t)) of the first time varying physiological signal. The circuitry operable to obtain a transformation of x(t) can include obtaining a derivative of x(t).

[0011] The circuitry operable to obtain a first time varying physiological signal can be further operable to obtain a first sensed signal based on a first lead configuration; wherein the circuitry operable to obtain a second time varying physiological signal can be further operable to obtain a second sensed signal based on a second lead configuration wherein the second sensed signal can be orthogonal to the first; and wherein the circuitry operable to obtain the first and second time varying physiological signals can be further operable to obtain the signals from a data storage device. The circuitry operable to identify a fiducial point can be further operable to identify one of a T-wave offset, T-wave onset, P-wave offset, P-wave onset, Q-point, R-point, and S-point.

WO 2010/093641 PCT/US2010/023667

[0012] The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.

DESCRIPTION OF DRAWINGS

[0013] FIG. 1 shows a cardiac monitoring system in which a cardiac signal is monitored for medical purposes.

[0014] FIGS. 2A-2E show various graphical representations of ECG signals.

[0015] FIG. 3 shows an example procedure for identifying fiducial points.

[0016] FIG. 4 shows a graphical representation of identification of a T-wave offset.

[0017] FIG. 5 shows an example procedure for identifying a T-wave offset.

[0018] Like reference symbols in the various drawings indicate like elements.

DETAILED DESCRIPTION

[0019] The present application describes systems and techniques relating to automated analysis of a physiological signal of an organism, including identification of a reference line such as an isoelectric line and identification of fiducial points for such a physiological signal. The physiological signal can be a cardiac signal, such as an ECG signal, a brain signal, such as an electroencephalogram (EEG) signal, a respiratory signal, a blood pressure signal, or other signals from an organism. The signal(s) can be obtained directly, for example by monitoring heart activity of a human patient as described further below, or the signal(s) can be obtained indirectly from another device or system. For example, the signal processing and analysis described herein can be performed in real-time as the signals are acquired and/or on stored signals retrieved from a database or other electronic storage devices.

[0020] The systems and techniques described here enable partial reconstruction of heart dynamics from one-lead and multiple-lead systems, and can allow a cardiac monitoring system to accurately locate fiducial points such as P-wave onset, P-wave offset, T-wave onset, T-wave offset, Q-point, R-point, and S-point. Moreover, the system can assist in detecting a physiological condition, such as ventricular fibrillation, premature ventricular contraction (PVC), heart block conditions, long QT syndrome or QT prolongation, etc. Clinically, it can be very important to accurately identify the location of fiducial points. For example, accurate identification of fiducial points can be important in the calculation of the PR or QT intervals. Small variations of even 5ms of the QT interval can be significant. Reconstructing the dynamics of the heart from the ECG signals can result in more accurate

analysis of the heart's activity. The systems and techniques below can result in improved analysis without requiring significant additional computational resources.

[0021] FIG. 1 shows a cardiac monitoring system 100 in which a cardiac signal is monitored for medical purposes. A patient 110 (e.g., a human patient, including potentially a healthy patient for whom cardiac monitoring is nonetheless deemed appropriate) has a cardiac monitoring apparatus 120 configured to obtain cardiac signals from the patient's heart. The cardiac monitoring apparatus 120 can be composed of one or more devices, such as a processing device and a sensing device. The sensing device can include one or more leads 125, which can receive electrical signals through body surface electrodes. These leads (as shown, for example, two leads e.g., silver/silver chloride electrodes) can be positioned at defined locations to aid in monitoring the electrical activity of the heart. As used herein, the term "lead" should be understood as including both a device that is subject to a potential difference that yields a voltage signal, such as an electrode that produces an ECG signal, and a conductor that forms a signal path to the apparatus 120 (e.g. to a signal amplifier in the apparatus 120).

[0022] The cardiac monitoring apparatus 120 can communicate with a monitoring station 140 (e.g., a computer in a monitoring center) via a communications channel 130. The cardiac monitoring apparatus 120 can include one or more sensing, calibration, signal processing, control, data storage, and transmission devices suitable for generating and processing the cardiac signal, as well as for relaying all or a portion of the cardiac signal over the communications channel 130. The communications channel 130 can be part of a communications network and can include any suitable medium for data transmission, including wired and wireless media suitable for carrying optical and/or electrical signals. Wireless communications by the apparatus 120 can employ a suitable antenna 135 as illustrated.

[0023] The cardiac monitoring apparatus 120 can communicate sensed cardiac signals, cardiac event information (e.g., real-time heart rate data), and additional physiological and/or other information to the monitoring station 140. The cardiac monitoring apparatus 120 can include an implantable medical device, such as an implantable cardiac defibrillator and an associated transceiver or pacemaker and an associated transceiver, or an external monitoring device that the patient wears or that is installed near the patient. Moreover, the cardiac monitoring apparatus 120 can be implemented using, for example, the CardioNet Mobile Cardiac Outpatient Telemetry (MCOT) device, which is commercially available and provided by CardioNet, Inc. of San Diego, CA.

[0024] The monitoring station 140 can include a receiver element for receiving transmitted signals, as well as various data processing and storage elements for extracting and storing information carried by transmissions regarding the state of the patient 110. The monitoring station 140 can be located in the same general location (e.g., in the same room, building or health care facility) as the monitoring apparatus 120, or at a remote location. The monitoring station 140 can include a display and a processing system. A system operator 150 (e.g., a health care provider such as a doctor or a cardiovascular technician) can use the monitoring station 140 to evaluate physiological data received from the cardiac monitoring apparatus 120. The system operator 150 can use the monitoring station 140 to change operational settings of the cardiac monitoring apparatus 120 remotely during active cardiac monitoring of the patient 110.

[0025] Moreover, the cardiac monitoring apparatus 120 and/or the monitoring station 140 can use the systems and techniques described herein to identify physiological information concerning the patient 110. This can include signal processing and analysis on both an actively received signal (which can be cached in memory at the station 140) and prior signals stored in a storage medium or device such as in a database 145. For example, historical signal information for a person can be used in conjunction with the systems and techniques described herein to improve analysis of currently acquired signals, and can facilitate heart beat classification and characterization of physiological conditions, which can assist a clinician or physician in making an appropriate diagnosis and prescribing an appropriate treatment.

[0026] FIGS. 2A-2E show various graphical representations of ECG signals. FIG. 2A shows a graphical representation of a normal ECG signal. As shown, portions of an ECG signal have been identified using the conventional lettering: P, Q, R, S, and T(e.g. P identifies the P-wave, and T identifies the T-wave etc.). Isoelectric line 250 represents the baseline voltage of the ECG signal. Various fiducial points can be identified on the ECG signal. For example, the P-wave has a P-wave onset 210 and a P-wave offset 220. In like manner, the T-wave has a T-wave onset 230 and a T-wave offset 240. Other fiducial points can include, for example, a Q-point 246 which is the beginning of ventricular depolarization, an R-point 247 which is the peak of the QRS complex, and an S-point 248 which is the end of ventricular depolarization. In FIG. 2, these onsets and offsets occur along the isoelectric line 250. In practice, however, traditional approaches to identification of the fiducial points and the isoelectric line can be affected by various physiological factors such as by baseline

wandering (FIG. 2B), T-U wave collision 260 (FIG. 2C), T-P wave collision 270 (FIG. 2D), abnormal T-wave such as an inverted signal 280 (FIG. 2E), etc.

[0027] FIG. 3 shows an example procedure 300 for identifying fiducial points. At 310, first and second time varying signals related to biological activity of an organism are obtained. The time varying signals can be any two vectors related to biological activity that have a time varying phase angle. The first time varying signal can be denoted by x(t). The second time varying signal is also related to the same biological activity of the organism as the first time varying signal and can be denoted by $\hat{x}(t)$. The first and second time varying signals form an analytic pair, which can be denoted by $\vec{A}(t)$. The analytic pair has a time varying phase angle, which can be denoted by $\vec{\varphi}(t)$. The first and second time varying signals can be obtained in real-time (subject to communication and caching delays) or obtained from a storage device. Based on a phase property of a time varying phase angle of such an analytic pair, a representation of time vary phase angle with respect to time will have a mathematically defined boundary.

[0028] In some examples, the first and second time varying signals can be sensed ECG signals representative of a cardiac activity of a patient. For example, a multiple lead configuration can be used such that a second time varying signal can be a sensed ECG signal for the same cardiac activity as the first time varying ECG signal but obtained from a different lead field. The multiple lead configuration can be configured such that the sensed second time varying ECG signal is generally orthogonal to the sensed first time varying ECG signal. One such multiple lead configuration is the Frank electrocardiographic lead system which can achieve, to a good approximation, lead vectors that are mutually orthogonal. The first time varying signal can be obtained from one of these mutually orthogonal vectors and the second time varying signal can be obtained from another of these mutually orthogonal vectors.

[0029] In other examples, the second time varying signal can be obtained by obtaining a transformation of the first time varying signal. The transformation of x(t) can be a derivative (e.g. first derivative (d/dx), second derivative (d²/dx²), etc.) of the function x(t). The transformation of x(t) can be a Hilbert transform, H(x(t)). Other transforms can be obtained as well, such as a trigonometric function of x(t), Laplace transform of x(t), a Fourier transform of x(t), etc.

[0030] The time varying phase angle of the analytic pair can be approximated by computing the changes of $\vec{A}(t)$, where $\hat{x}(t)$ is the second time varying signal (which can be a

transformation of x(t)), where i is the current sample, where K is K samples away, and where $\Delta \vec{A}(t_{i+k})$ is the change of the two vectors $((x(t_i), \hat{x}(t_i)))$ and $(x(t_{i+K}), \hat{x}(t_{i+K}))$. An

approximation of the time varying phase angle, $arphi_{\Delta \! ec{A}(t_{i+K})}$, can be defined by the function:

$$\frac{imag\left[\Delta \vec{A}(t_{i+K})\right]}{\left|\Delta \vec{A}(t_{i+K})\right|} = \frac{\hat{x}(t_{i+K}) - \hat{x}(t_{i})}{\sqrt{(x(t_{i+K}) - x(t_{i}))^{2} + (\hat{x}(t_{i+K}) - \hat{x}(t_{i}))^{2}}} \approx \varphi_{\Delta \vec{A}(t_{i+K})}$$

[0031] At 330, a reference line is defined by a boundary of a representation of the time varying phase angle with respect to a time period. The time period can be the time period for a portion of the ECG signal that is being examined. Mathematically, a time varying phase or angular change does not involve an amplitude component therefore the lower boundary of a representation of the time varying phase angle with respect to time is not affected by baseline wandering. The representation of the time varying phase angle can include, for example, a plot of the time varying phase angle with respect to the time period. The representation of the time varying phase angle can also include an approximation of the time varying phase angle with respect to the time varying phase angle

 $[2k\pi - \frac{\pi}{2}, 2k\pi + \frac{\pi}{2}]$, the plot of the time varying phase angle or an approximation of the time

varying phase angle with respect to the time period is bound by $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ (or in degrees [-90°,

 90°]). In this case, a reference line, such as an isoelectric line can be defined by the lower boundary, $y = -\pi/2$. A reference line can also be defined by the upper bounder $y = -\pi/2$. The representation can also be created by applying a trigonometric function to the time varying phase angle or an approximation of the time varying phase angle for the time period. In which case, the time varying phase angle is bounded by [-1, 1] and the reference line can be defined by the lower boundary y = -1, or the upper boundary y = 1.

[0032] At 340, a fiducial point can be identified based on the reference line. In some examples, the time varying phase angle can be represented by a series of data points rather than a continuous line. A fiducial point can be identified at the time that corresponds to the point that comes closest to or intersects with the reference line. For example, when determining a fiducial point along the isoelectric line such as offset or onset, the fiducial point can be identified as the time associated with the point on the representation of the time varying phase angle that comes closest to or intersects with the reference line along the lower boundary. Or for example, a peak of an ECG signal, such as an R-point, P-peak, or a T-peak

can be identified at the time associated with the point on the representation of the of the time varying phase angle that comes closest to or intersects with the reference line along the upper boundary.

[0033] In other examples, the fiducial point can be identified based on an intersection of a reference line with a corresponding function to a downslope or an upslope of the representation of the time varying phase angle. For example, a corresponding function can be a line or curve calculated for a downslope or an upslope of the representation. A corresponding function can be calculated for the downslope of a T-wave. A T-wave offset can be identified based on the intersection of the corresponding function with the reference line along the lower boundary of the representation of the time varying phase angle. A T-wave peak can be identified based on the intersection of the corresponding function with the reference line along the upper boundary of the representation of the time varying phase angle. In like manner, for a T-wave onset, a corresponding function can be calculated for the upslope of a T-wave. And, for a P-wave offset, a corresponding function can be calculated for a downslope of a P-wave. For a P-wave onset, a corresponding function can be calculated for an upslope of a P-wave.

[0034] Various methods can be used to calculate a corresponding function to a downslope or an upslope of the representation of the time varying phase angle. For example, when identifying an offset, calculating the corresponding function can include calculating the line tangent to the point where the downslope has a minimum slope. When identifying an onset, calculating the corresponding function can include calculating the line tangent to the point where the upslope has a maximum slope. In some examples, the corresponding function can be the regression line of a downslope or an upslope, $y - y_0 = SLOPE_{regression} \cdot (x - x_0)$. Also, a least square fitting can be applied around the region where a downslope has a maximum slope or around the region where an upslope has a maximum.

[0035] An intersection of the corresponding function and the reference line is identified in order to determine a fiducial point. Identifying a fiducial point based on an intersection of the corresponding function can include offsetting the intersection of the corresponding function with the reference line by a constant. The constant can be determined using an average variation of detected values of like intersections from the true fiducial point. For example, over time, it can be determined by the monitoring apparatus, or some other automated apparatus, or by a medical profession that there is a variance between the actual fiducial point and the intersection of the corresponding function with the reference line. The

measured intersection can be set-off by the average variance to identify the fiducial point. In some instances, mathematical transformations can impose a low pass filter effect moving the intersect of the corresponding function away from the true fiducial point. In such cases, the variation can be constant which can be calculated mathematically or by detection. Over time, the monitoring system can automatically or by feedback from a medical technician update the constant used to determine the fiducial points based on data received from monitoring a patient or patients. In some examples, offsetting the intersection may not be necessary when determining a fiducial point. For example, identifying an isoelectric line at the lower boundary of the representation of the time varying phase angle can provide consistency between measurements. So, offsetting the intersection may not be necessary when determining fiducial points for use in calculating dynamic changes of intervals such as ΔQT . FIG. 4 shows a graphical representation of identification of a T-wave offset. [0036] Graph 400 shows a graphical representation of an ECG signal 410 and a graphical representation of a time-varying phase angle 450 for a given time period. Time is represented by the x-axis 420. The y-axis 415 represents both volts for the amplitude of the ECG signal 410 and a trigonometric value for the representation of the time varying phase angle 450. As can be seen, the ECG signal 410 is affected by base-line wandering. In this example, the ECG signal 410 is the first time varying signal of an analytic pair. The second time varying signal is a Hilbert transformation of the ECG signal. The analytic pair has a time varying phase angle, which is graphically represented by 450. The graphical representation of the time varying phase angle 450 is the trigonometric function of the time varying phase angle and has well defined positive and negative boundaries at $y = \pm /-1$. The graph 400 shows a graphical representation of the upper boundary 453 and the lower bounder 455. The

[0037] Graph 400 also shows a graphical representation of a corresponding function 460 to a downslope of the representation of the time varying phase angle that corresponds with a downslope of the T-wave. Corresponding function 460 is the tangent line to the point where the downslope has a minimum slope 470. The T-wave offset can be identified based on an intersection of the corresponding function 460 with the isoelectric line 455. A graphical representation of the intersection is shown at 480. Although FIG. 4 shows a graphical representation of how a fiducial point is determined, it by no means should be inferred that a graphical representation is necessary to identify a reference line or a fiducial point according to the methods and procedures described in this application. Such a determination can be

reference line, y = -1, can be identified as the isoelectric line. The upper boundary, y=1 can

also be identified as a reference line.

done by a monitoring apparatus or the like without providing such a graphical representation. For example, a representation of the time varying phase angle with respect to a time period can be a set of data points representative of the time varying phase angle for a time period stored in a storage device. Although not graphically shown in FIG. 4, a representation similar the graphical representation of corresponding function 460 can also be used for identification of other fiducial points such as T-wave onset, P-wave offset, P-wave onset, Q-point, R-point, S-point, etc.

[0038] FIG. 5 shows an example procedure 500 for identifying a T-wave offset. A procedure similar to the procedure in FIG. 5 can be performed for identification of other fiducial points. In FIG. 5 at 510, a time varying ECG signal is obtained. The ECG signal can be obtained real-time from a patient or from a data storage device. At 520, first and second adjacent R peaks are identified. At 530, a second time varying signal is obtained for a time period between the first and second R peaks (between t = R[i] and t = R[i+1]), the first and second time varying phase angles forming an analytic pair. In some examples, the second time varying signal can be obtained by applying a transformation to portion of the ECG signal between the first and second R peak. In other examples, the second time varying signal can be obtained for the time period between the first and second R peaks from an ECG signal obtained from a different leads configuration than was used to obtain for the first time varying ECG signal.

[0039] At 540, an isoelectric line is defined by the lower boundary of a representation of the time varying phase angle with respect to the time period between the first and second R peaks. At 550, a T-wave phase peak is located between the first and second peaks using a preset algorithm. The preset algorithm can include for example locating a maximum phase peak between the time period: t = R[i] + 80 ms and t = R[i] + 70%R[i]R[i+1]. At 560, a corresponding function to a downslope from the T-wave phase peak is calculated. At 570, the intersection of the corresponding function with the isoelectric line is identified. Based on the intersection, the T-wave offset is identified. The intersection itself can be identified as the T-wave offset. In other examples, the intersection can be altered by a pre-set amount to determine the T-wave offset.

[0040] The disclosed systems, techniques, and all of the functional operations described and illustrated in this specification can be implemented in digital electronic circuitry, or in computer hardware, firmware, software, or in combinations of the forgoing. For example, one or more computers and/or circuitry can be operable to or configured and arranged to perform the functions and techniques disclosed herein. Apparatuses and/or systems can be

implemented using a software product (e.g., a computer program product) tangibly embodied in a machine-readable storage device for execution by a programmable processor, and processing operations can be performed by a programmable processor executing a program of instructions to perform functions by operating on input data and generating output. Further, the system can be implemented advantageously in one or more software programs that are executable on a programmable system. This programmable system can include the following: 1) at least one programmable processor coupled to receive data and instructions from, and to transmit data and instructions to, a data storage system; 2) at least one input device; and 3) at least one output device. Moreover, each software program can be implemented in a high-level procedural or object-oriented programming language, or in assembly or machine language if desired; and in any case, the language can be a compiled or an interpreted language.

[0041] Also, suitable processors include, by way of example, both general and special purpose microprocessors. Generally, a processor will receive instructions and data from a read-only memory, a random access memory, and/or a machine-readable signal (e.g., a digital signal received through a network connection). The essential elements of a computer are a processor for performing instructions and one or more memory devices for storing instructions and data. Generally, a computer will include one or more mass storage devices for storing data files. Such devices can include magnetic disks, such as internal hard disks and removable disks, magneto-optical disks, and optical disks. Storage devices suitable for tangibly embodying software program instructions and data include all forms of non-volatile memory, including, by way of example, the following: 1) semiconductor memory devices, such as EPROM (electrically programmable read-only memory); EEPROM (electrically erasable programmable read-only memory) and flash memory devices; 2) magnetic disks such as internal hard disks and removable disks; 3) magneto-optical disks; and 4) CD-ROM disks. Any of the foregoing can be supplemented by, or incorporated in, ASICs (application-specific integrated circuits).

[0042] The disclosed systems and techniques, described and illustrated in this specification can be implemented using a communications network such as a wired or wireless network. Examples of communication networks include, e.g., a local area network ("LAN"), a wide area network ("WAN"), the Internet or any combinations of such.

[0043] To provide for interaction with a user (such as the health care provider), the system can be implemented on a computer system having a display device such as a monitor or LCD (liquid crystal display) screen for displaying information to the user and a keyboard and a

pointing device such as a mouse or a trackball by which the user can provide input to the computer system. The computer system can be programmed to provide a graphical user interface through which computer programs interact with users.

[0044] A number of embodiments of the invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. For example, the disclosed operations can be performed in a different order and still achieve desirable results. Accordingly, other embodiments are within the scope of the following claims.

WHAT IS CLAIMED IS:

1. A machine implemented method comprising:

obtaining a first time varying physiological signal and a second time varying physiological signal that relate to biological activity of an organism, the first time varying physiological signal and the second time varying physiological signal forming an analytic pair wherein the analytic pair has a time varying phase angle;

defining a reference line by a boundary of a representation of the time varying phase angle with respect to a time period; and

identifying a fiducial point based on the reference line.

2. The machine implemented method of claim 1, further comprising approximating the time varying phase angle, wherein the approximation of the varying phase angle $\varphi_{\Delta \vec{A}(t_{i+K})}$ is defined by the function:

$$\varphi_{\Delta \vec{A}(t_{i+K})} \approx \frac{i mag \left[\Delta \vec{A}(t_{i+K}) \right]}{\left| \Delta \vec{A}(t_{i+K}) \right|} = \frac{\hat{x}(t_{i+K}) - \hat{x}(t_i)}{\sqrt{(x(t_{i+K}) - x(t_i))^2 + (\hat{x}(t_{i+K}) - \hat{x}(t_i))^2}}$$

where x(t) comprises the first time varying physiological signal and $\hat{x}(t)$ comprises the second time varying physiological signal, x(t) and $\hat{x}(t)$ forming the analytic pair $\vec{A}(t)$; where i is a current sample; where K is K samples away; and where $\Delta \vec{A}(t_{i+k})$ is the change of the two vectors $((x(t_i), \hat{x}(t_i)))$ and $(x(t_{i+k}), \hat{x}(t_{i+k}))$.

- 3. The machine implemented method of claim 1, wherein the reference line comprises an isoelectric line defined by a lower boundary of the representation of the time varying phase angle.
- 4. The machine implemented method of claim 1, further comprising: calculating a corresponding function to a downslope or an upslope of the representation of the time varying phase angle within the time period; and

wherein identifying a fiducial point based on the reference line comprises identifying a fiducial point based on an intersection of the corresponding function and the reference line.

- 5. The machine implemented method of claim 4, wherein calculating a corresponding function to a downslope of the representation of the time varying phase angle comprises calculating a tangent line where the downslope has a minimum slope.
- 6. The machine implemented method of claim 4, wherein calculating a corresponding function to an upslope of the representation of the time varying phase angle comprises calculating a tangent line where the upslope has a maximum slope.
- 7. The machine implemented method of claim 4, wherein identifying a fiducial point based on an intersection of the corresponding function and the reference line comprises offsetting the intersection by a constant.
- 8. The machine implemented method of claim 4, wherein calculating a corresponding function to a downslope or an upslope of the representation of the time varying phase angle comprises calculating the regression line of the downslope or the upslope of the representation of the time varying phase angle within the time period.
- 9. The machine implemented method of claim 1, comprising applying a trigonometric function to the time varying phase angle to create the representation.
- 10. The machine implemented method of claim 1,

wherein obtaining a first time varying physiological signal comprises obtaining a sensed signal x(t); and

wherein obtaining a second time varying physiological signal $\hat{x}(t)$ comprises obtaining a transformation of x(t) to form the analytic pair $\vec{A}(t)$.

- 11. The machine implemented method of claim 10, wherein obtaining a transformation of x(t) comprises obtaining a Hilbert Transformation H(x(t)) of the first time varying physiological signal.
- 12. The machine implemented method of claim 10, wherein obtaining a transformation of x(t) comprises obtaining a derivative of x(t).

13. The machine implemented method of claim 1,

wherein obtaining a first time varying physiological signal comprises obtaining a first sensed signal based on a first lead configuration;

wherein obtaining a second time varying physiological signal comprises obtaining a second sensed signal based on a second lead configuration wherein the second sensed signal is orthogonal to the first; and

wherein obtaining the first and second time varying physiological signals comprises obtaining the signals from a data storage device.

- 14. The machine implemented method of claim 1, wherein identifying a fiducial point comprises identifying one of a T-wave offset, T-wave onset, P-wave offset, P-wave onset, Q-point, R-point, and S-point.
- 15. A system comprising:

one or more computers; and

a computer-readable storage device having a computer program product encoded therein, the computer program product operable to cause the one or more computers to perform operations comprising:

obtaining a first time varying physiological signal and a second time varying physiological signal that relate to biological activity of an organism, the first time varying physiological signal and the second time varying physiological signal forming an analytic pair wherein the analytic pair has a time varying phase angle;

defining a reference line by a boundary of a representation of the time varying phase angle with respect to a time period; and

identifying a fiducial point based on the reference line.

16. The system of claim 15, wherein the computer-readable storage device is further operable to cause the one or more computers to perform operations comprising: calculating a corresponding function to a downslope or an upslope of the representation of the time varying phase angle within the time period; and

wherein identifying a fiducial point based on the reference line comprises identifying a fiducial point based on an intersection of the corresponding function and the reference line.

- 17. The system of claim 16, wherein calculating a corresponding function to a downslope or an upslope of the representation of the time varying phase angle comprises calculating one of a tangent line, a regression line, and a least square approximation to the downslope or the upslope.
- 18. The system of 16, wherein identifying a fiducial point based on an intersection of the corresponding function and the reference line comprises offsetting the intersection by a constant.
- 19. The system of claim 15, wherein the computer-readable storage device is further operable to cause the one or more computers to perform operations comprising: applying a trigonometric function to the time varying phase angle to create the representation.
- 20. The system of claim 15, wherein the computer-readable storage device is further operable to cause the one or more computers to perform operations comprising:

approximating the time varying phase angle, wherein the approximation of the varying phase angle $\varphi_{\Delta \vec{A}(t_{i+K})}$ is defined by the function:

$$\varphi_{\Delta \vec{A}(t_{i+K})} \approx \frac{imag\left[\Delta \vec{A}(t_{i+K})\right]}{\left|\Delta \vec{A}(t_{i+K})\right|} = \frac{\hat{x}(t_{i+K}) - \hat{x}(t_i)}{\sqrt{(x(t_{i+K}) - x(t_i))^2 + (\hat{x}(t_{i+K}) - \hat{x}(t_i))^2}}$$

where x(t) comprises the first time varying physiological signal and $\hat{x}(t)$ comprises the second time varying physiological signal, x(t) and $\hat{x}(t)$ forming the analytic pair $\vec{A}(t)$; where i is a current sample; where K is K samples away; and where $\Delta \vec{A}(t_{i+k})$ is the change of the two vectors $((x(t_i), \hat{x}(t_i)))$ and $(x(t_{i+k}), \hat{x}(t_{i+k}))$.

21. The system of claim 15,

wherein obtaining a first time varying physiological signal comprises obtaining a sensed signal x(t); and

wherein obtaining a second time varying physiological signal $\hat{x}(t)$ comprises obtaining a transformation of x(t) to form the analytic pair $\vec{A}(t)$.

22. The system of claim 21, wherein obtaining a transformation of x(t) comprises obtaining a Hilbert Transformation H(x(t)) of the first time varying physiological signal.

WO 2010/093641 PCT/US2010/023667

20

- 23. The system of claim 21, wherein obtaining a transformation of x(t) comprises obtaining a derivative of x(t).
- 24. The system of claim 15, wherein obtaining a first time varying physiological signal comprises obtaining a first sensed signal based on a first lead configuration;

wherein obtaining a second time varying physiological signal comprises obtaining a second sensed signal based on a second lead configuration wherein the second sensed signal is orthogonal to the first; and

wherein obtaining the first and second time varying physiological signals comprises obtaining the signals from a data storage device.

- 25. The system of claim 15, wherein identifying a fiducial point comprises identifying one of a T-wave offset, T-wave onset, P-wave offset, P-wave onset, Q-point, R-point, and S-point.
- 26. An apparatus comprising:

circuitry operable to obtain a first time varying physiological signal and a second time varying physiological signal that relate to biological activity of an organism, the first time varying physiological signal and the second time varying physiological signal forming an analytic pair wherein the analytic pair has a time varying phase angle;

circuitry operable to define a reference line by a boundary of a representation of the time varying phase angle with respect to a time period; and

circuitry operable to identify a fiducial point based on the reference line

- The apparatus of claim 26, further comprising circuitry operable to transmit the identified fiducial points.
- 28. The apparatus of claim 26, further comprising

circuitry operable to calculate a corresponding function to a downslope or an upslope of the representation of the time varying phase angle within the time period; and

wherein the circuitry operable to identify a fiducial point is further operable to identify a fiducial point based on an intersection of the corresponding function and the reference line.

- 29. The apparatus of claim 28, wherein the circuitry operable to calculate a corresponding function to a downslope or an upslope of the representation of the time varying phase angle is further operable to calculate one of a tangent line, a regression line, and a least square approximation to the downslope or the upslope.
- 30. The apparatus of claim 28, wherein the circuitry operable to identify a fiducial point based on an intersection of the corresponding function and the reference line is further operable to offset the intersection by a constant.
- The apparatus of claim 26, further comprising circuitry operable to approximate the time varying phase angle,

wherein the approximation of the varying phase angle $\varphi_{\Delta A(t_{i+K})}$ is defined by the function:

$$\varphi_{\Delta \vec{A}(t_{i+K})} \approx \frac{imag[\Delta \vec{A}(t_{i+K})]}{\left|\Delta \vec{A}(t_{i+K})\right|} = \frac{\hat{x}(t_{i+K}) - \hat{x}(t_{i})}{\sqrt{(x(t_{i+K}) - x(t_{i}))^{2} + (\hat{x}(t_{i+K}) - \hat{x}(t_{i}))^{2}}}$$

where x(t) comprises the first time varying physiological signal and $\hat{x}(t)$ comprises the second time varying physiological signal, x(t) and $\hat{x}(t)$ forming the analytic pair $\vec{A}(t)$; where i is a current sample; where K is K samples away; and where $\Delta \vec{A}(t_{i+k})$ is the change of the two vectors $((x(t_i), \hat{x}(t_i)))$ and $(x(t_{i+k}), \hat{x}(t_{i+k}))$.

- 32. The apparatus of claim 26, further comprising circuitry operable to apply a trigonometric function to the time varying phase angle to create the representation.
- The apparatus of claim 26,

wherein the circuitry operable to obtain a first time varying physiological signal is further operable to obtain a sensed signal x(t); and

wherein the circuitry operable to obtain a second time varying physiological signal $\hat{x}(t)$ is further operable to obtain a transformation of x(t) to form the analytic pair $\vec{A}(t)$.

34. The apparatus of claim 33, wherein the circuitry operable to obtain a transformation of x(t) is further operable to obtain a Hilbert Transformation H(x(t)) of the first time varying physiological signal.

- 35. The apparatus of claim 33, wherein the circuitry operable to obtain a transformation of x(t) comprises obtaining a derivative of x(t).
- 36. The apparatus of claim 26,

wherein the circuitry operable to obtain a first time varying physiological signal is further operable to obtain a first sensed signal based on a first lead configuration;

wherein the circuitry operable to obtain a second time varying physiological signal is further operable to obtain a second sensed signal based on a second lead configuration wherein the second sensed signal is orthogonal to the first; and

wherein the circuitry operable to obtain the first and second time varying physiological signals is further operable to obtain the signals from a data storage device.

37. The apparatus of claim 26, wherein the circuitry operable to identify a fiducial point is further operable to identify one of a T-wave offset, T-wave onset, P-wave offset, P-wave onset, Q-point, R-point, and S-point.

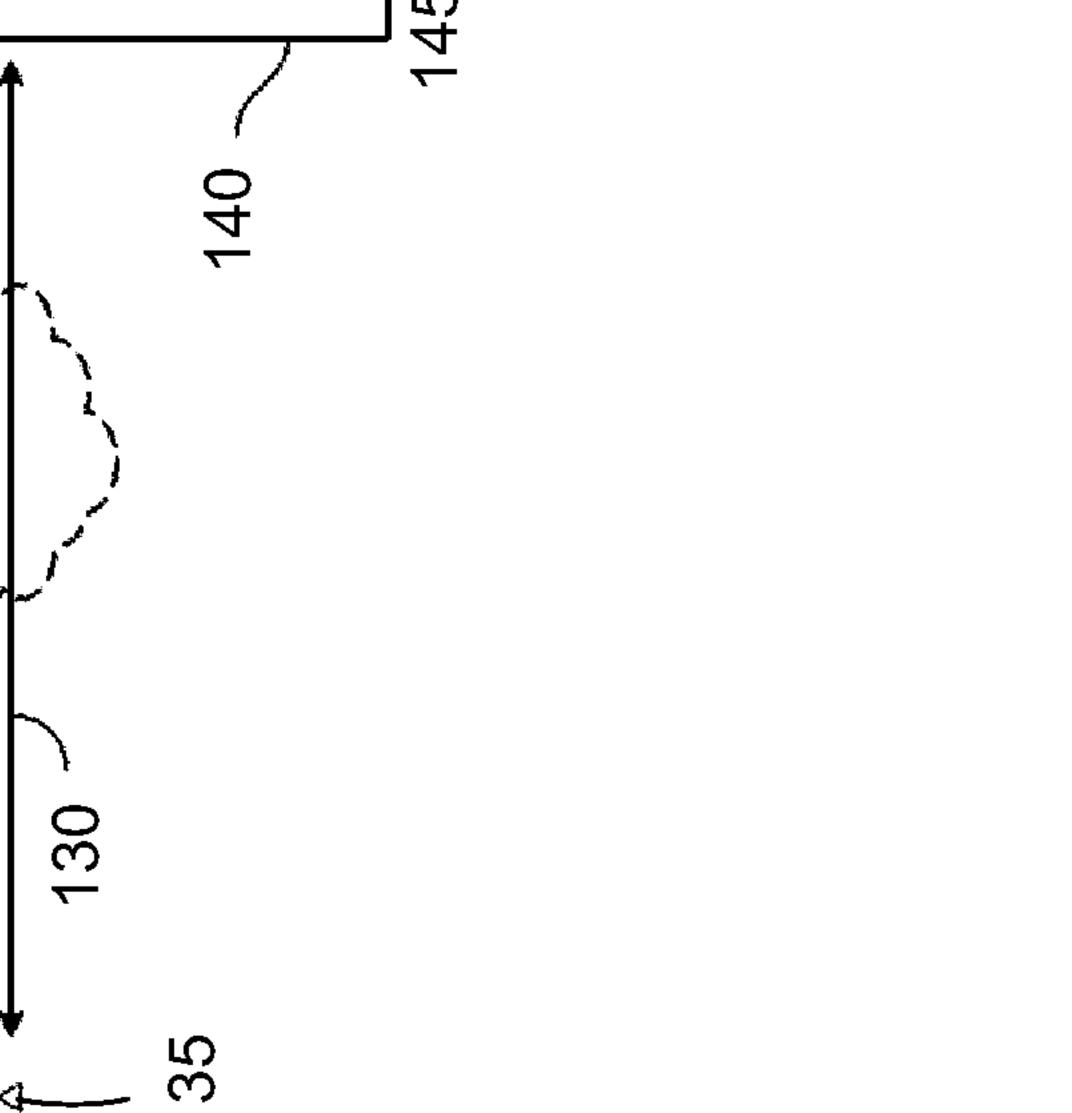
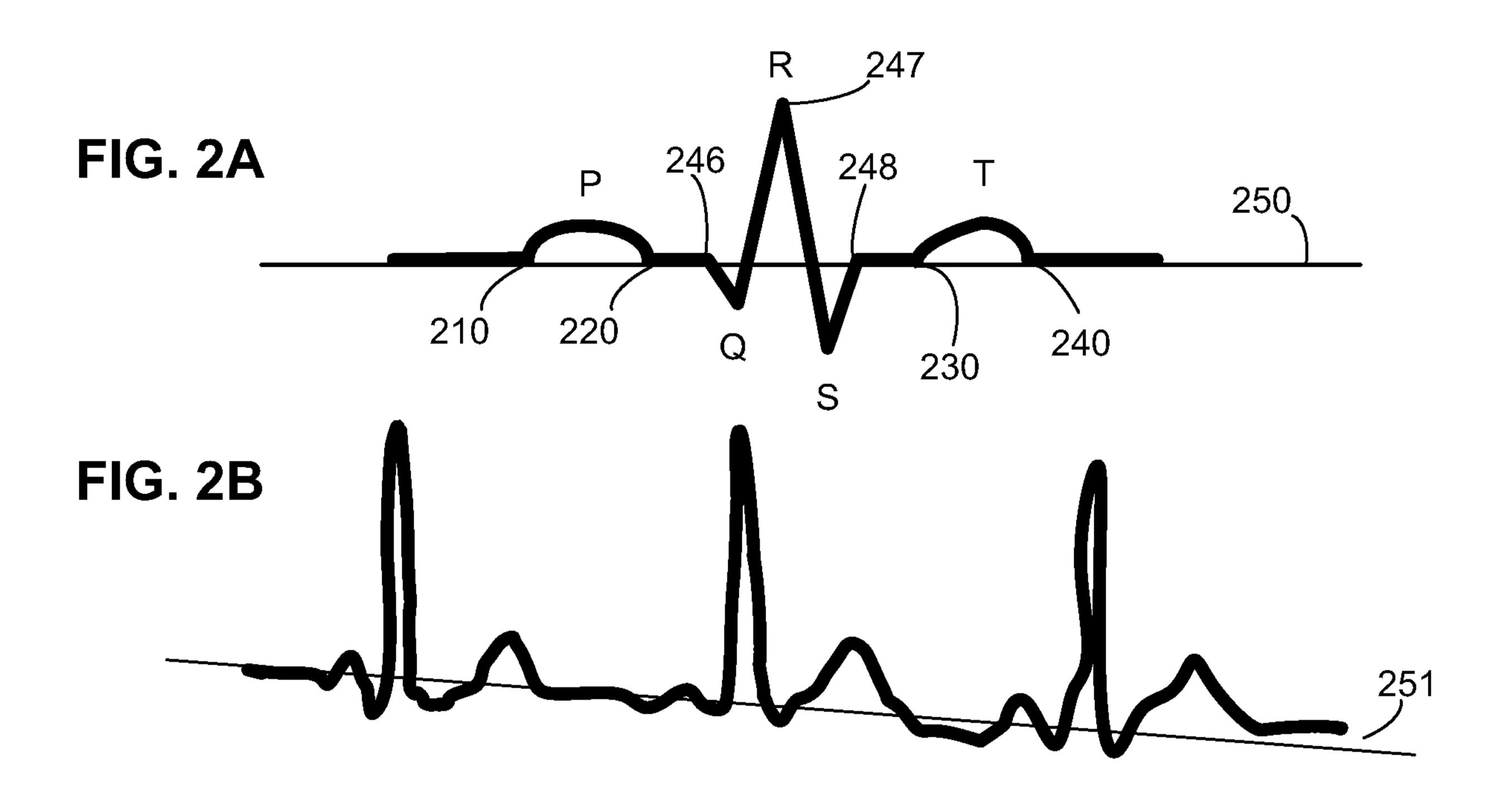
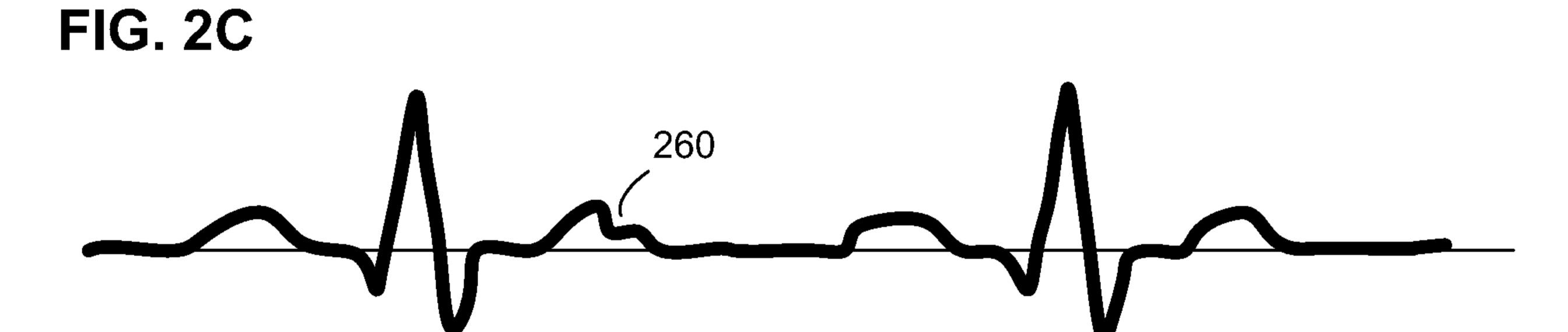
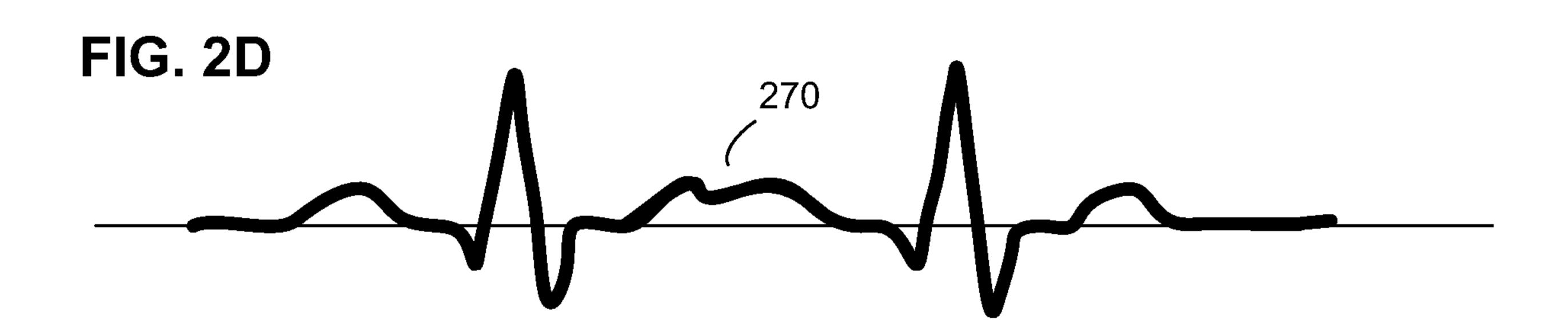
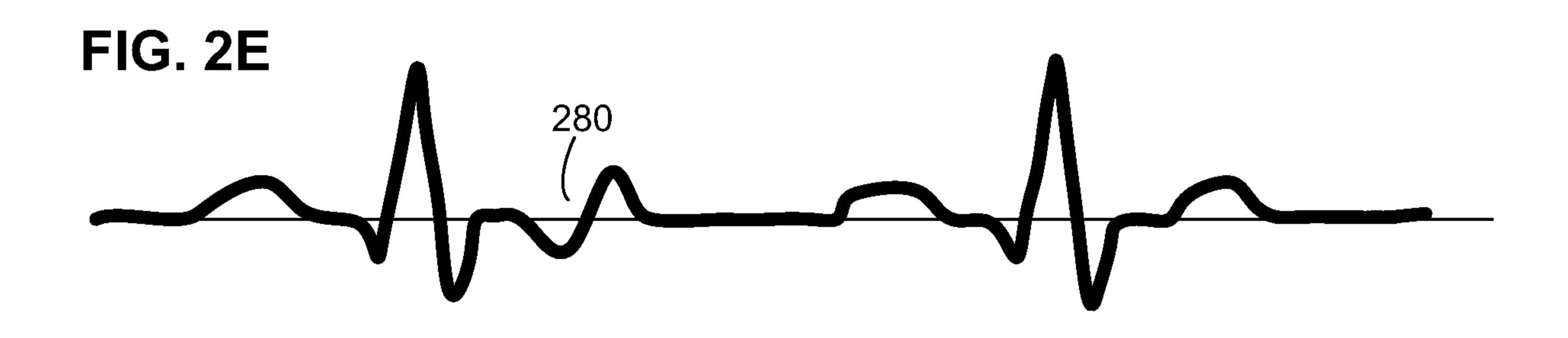
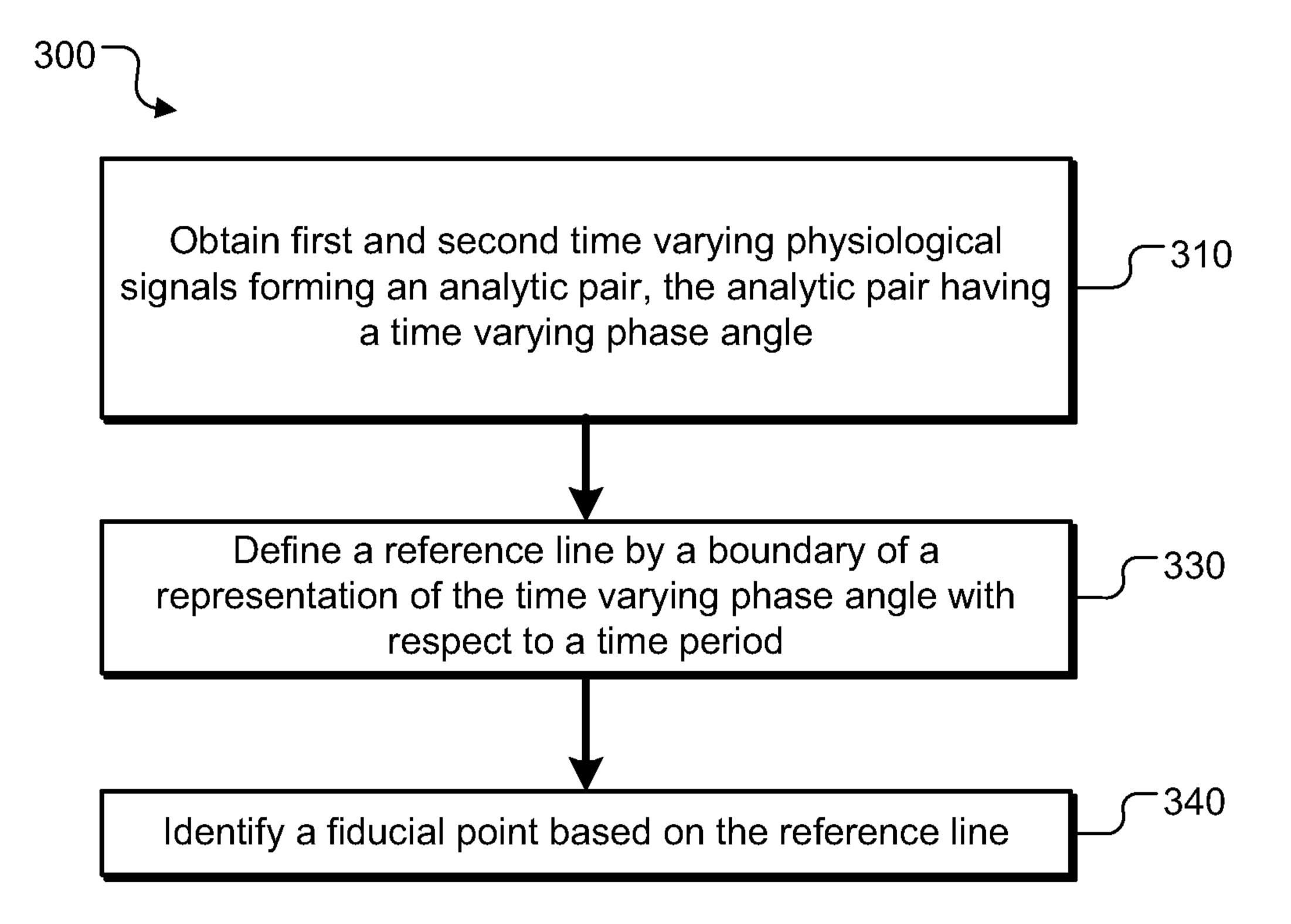
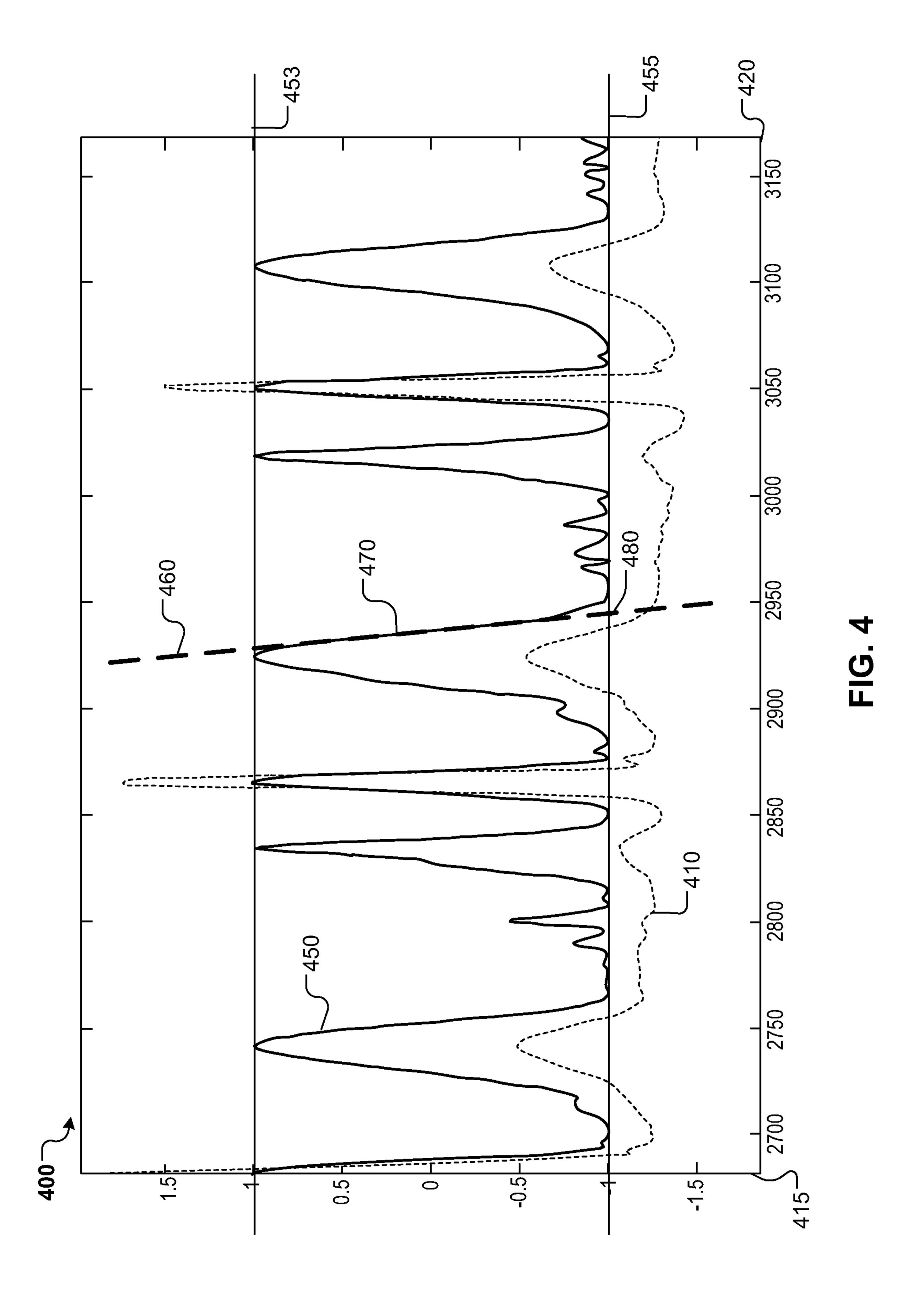






FIG. 1





3/5

5/5

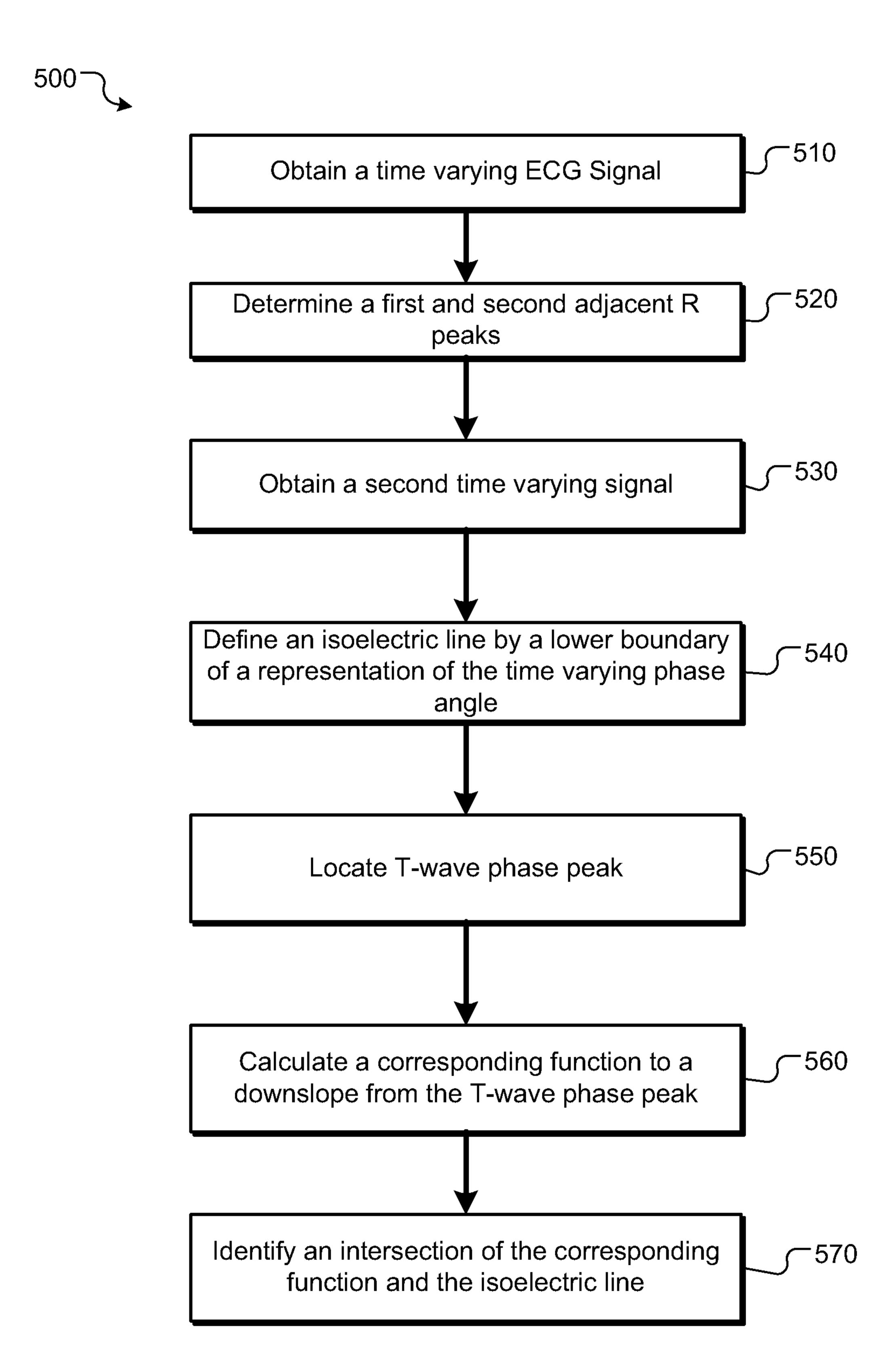


FIG. 5

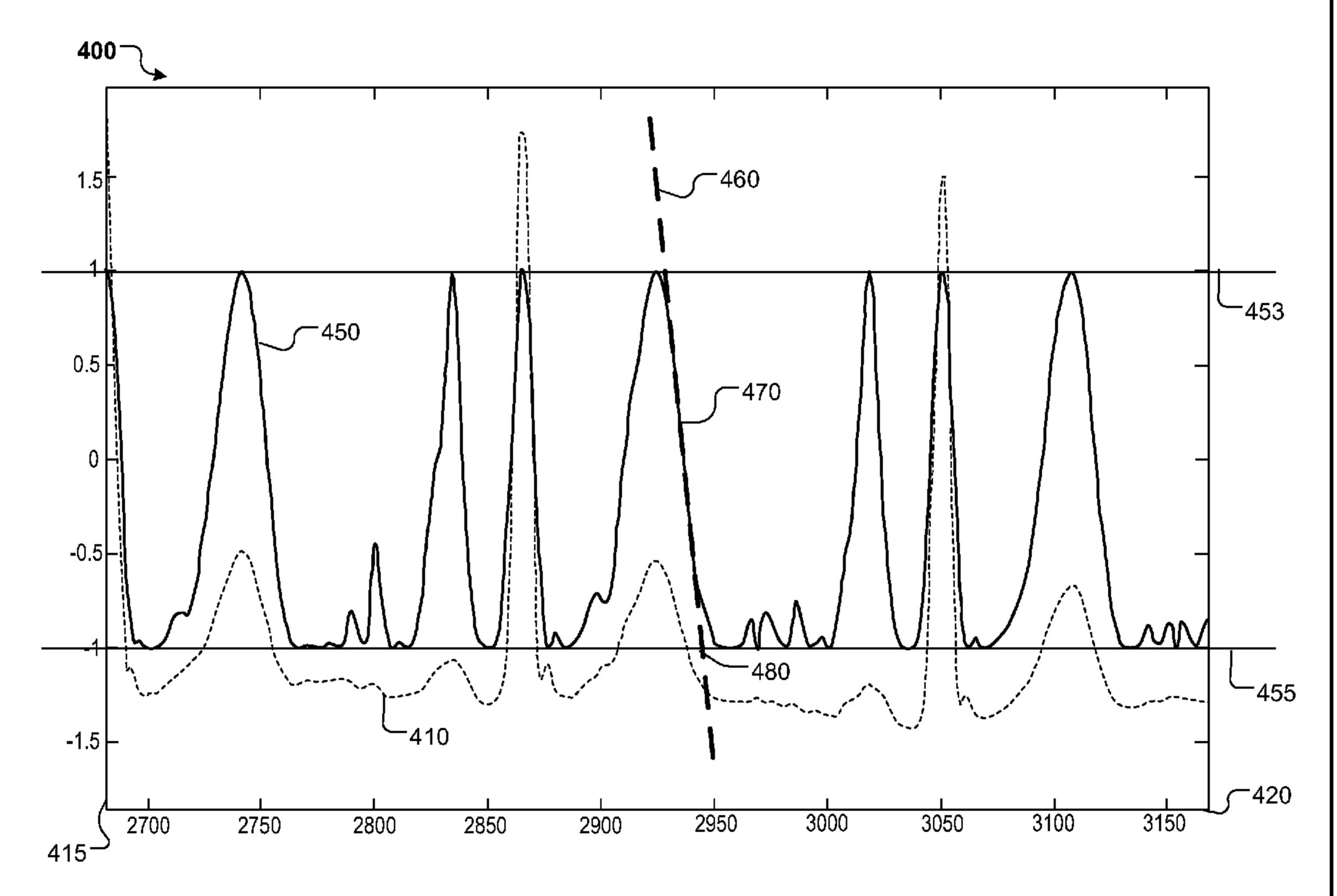


FIG. 4