My present invention relates to barrels, drums and like containers, generally made of sheet iron, and particularly to that type in which the cover or head projects into an annular inwardly open chamber, and is held therein by suitable locking means such as an expanding ring. Said annular chamber is formed in a ring having flanges at its ends to form an inwardly open groove. The object of my present invention is to improve the construction of containers of the type above mentioned, particularly for the purpose of obtaining a secure support for the inner portion of the annular member which holds the cover or cap. For this purpose the body of the container is provided with a transversely extending portion or flange which engages and preferably embraces the lower or inner portion of said ring.

Two satisfactory and preferred embodiments of my invention are illustrated by the accompanying drawings, in which Fig. 1 is a partial longitudinal section of a barrel or like container embodying my invention; Fig. 2 is an end view thereof and Figs. 3 and 4 are partial longitudinal sections showing other forms of my invention. According to Figs. 1 and 2 the body or shell a is of cylindrical shape and is provided at its end (or at both ends) with an inwardly extending flange b and with a return bend c between which is received the lower or inner flange of a ring seat g, said ring seat is also provided with an upper or outer flange and between these two flanges is thus formed an annular chamber or groove open inwardly and adapted to receive the edge of the cover d as well as the packing e and locking means to hold the seat in place after insertion. Such locking means may consist of an expanding ring f which is of split construction and may be compressed so that it will pass through the opening in the top flange of the ring seat g; when such ring is then released, it will expand into the position shown so as to lock the cover in position. It will be seen that the construction described and illustrated provides a secure support for the inner flange of the ring seat g.

While in Fig. 1 the body or shell has an inward projection to form the support for the ring seat, reverse arrangement may also be adapted, for instance, as shown in Fig. 3, where the annular support b' is formed by bending the material of the body a' outwardly and the ring seat g', in addition to the two inwardly projection flanges of the same character as shown in Fig. 1, has an outwardly projecting flange g'' which is received between the outwardly bent portion b' and an inwardly bent return portion c'. The barrel shown in Fig. 3 is not cylindrical, but tapered towards the ends and is also shown as provided with longitudinal corrugations a, which, however, terminate at the outwardly bent portion b', the terminations of the corrugations forming, as clearly shown, a stronger and more rigid support for the ring seat.

The construction shown in Fig. 4 may be considered as a combination of the structures shown in Figs. 1 and 3, that is to say, in Fig. 4 the ring seat g, which is the same as shown in Fig. 1, is connected to a bilged barrel a" having the longitudinally extending corrugations a" formed therein similar to the barrel shown in Fig. 3. The annular support b" however extends inwardly from the periphery, or along the lower face of the lower flange of the ring seat g, and the return bent portion c" extends around the upper surface of said flange in a manner similar to the construction shown in Fig. 1.

The connection of the inner or lower portion of the ring seat g or g' with the annular support b, b' or b" is preferably accomplished by means of the return bent portion c, c' or c", but I do not wish to restrict myself to this particular construction, and I desire it to be understood that the connection of these two parts might be effected in other ways, for instance by riveting or welding.

It will of course be understood that the diameter of the opening surrounded at the outer flange of the ring seat g or g' is sufficient to allow the cover d to be inserted through said opening.

Various changes in the specific form shown and described may be made without departing from the spirit of my invention.

I claim:
1. A container comprising an open ended cylindrical shell and a cover supporting ring seat at the open end thereof, said ring seat having a side wall, and an upper flange and a lower flange extending inwardly and laterally from said side wall, the lower flange being of greater width than, and extending inwardly beyond said upper flange, and said shell having an integral laterally extending flange to provide a laterally extending sup-
porting surface conterminous with said lower flange and in contacting engagement with the lower surface thereof, and said shell being further provided with a return bent portion extending about the edge and the upper surface of said lower flange for securing said ring directly to and in interlocked engagement with said shell.

2. An open-ended container having the side walls constructed of sheet metal and a ring seat of U-shaped cross section at the open end of the container for receiving the cover and cover fastening means, characterized by the sheet metal of the container being bent to form a pair of flanges integral with the side wall of the container and extending transversely thereof in spaced relationship to each other and defining an opened-groove into which one of the legs of the U-shaped ring seat is received, said flanges being pressed tightly into engagement with said leg to connect said ring seat directly to the body of the container, whereby the side wall material only is employed to connect the ring seat directly to the container and said flanges and said leg of the ring seat co-operate to reinforce the container at the open end and to form a rigid support for the cover and cover closing means.

3. The combination with an open-ended container having sheet metal side walls, a cover and packing therefor, a ring seat of U-shaped cross section, the side wall of said container being bent to form a pair of flanges extending transversely from said side wall in spaced relationship to each other, and defining an opened-groove into which the lower leg of the U-shaped ring seat is received, said flanges being clamped tightly to said lower leg to secure said ring seat directly to the sheet metal of the container, the end of the side wall material which forms the outer one of said flanges terminating within said ring seat on the lower leg thereof, and serving with said lower leg to form a support for the gasket or packing interposed between the cover for the container and said support, whereby said packing serves to prevent leakage between the cover and ring seat and between said flanges and ring seat.

4. A container comprising an open ended sheet metal shell and a one-piece cover supporting ring seat at the open end of said shell, characterized by the sheet metal material of said shell being bent, a short distance from the end thereof, to provide a laterally extending flange which forms a wide supporting surface against which the inner end surface of said ring seat is supported, the side wall of said shell immediately adjacent to said flange being located within the limiting circumference of said ring seat and forming a rigid bracing support for said ring seat and flange, and the terminal end of said shell being bent around a laterally projecting portion of said ring seat to hold said ring seat and shell securely and rigidly in interlocked engagement.

5. A container comprising an open ended sheet metal shell and a one-piece cover supporting ring seat at the open end of said shell, characterized by the sheet metal material of said shell being bent, a short distance from the end thereof, to provide a flange which extends at right angles to the axis of the container and forms a wide supporting surface against which the inner end surface of said ring seat is supported, the side wall of said shell immediately adjacent to said flange being located within the limiting circumference of said ring seat and forming a rigid bracing support for said ring seat and flange, and the terminal end of said shell being bent around a laterally projecting flange of said ring seat to hold said ring seat and shell securely and rigidly in interlocked engagement.

6. A container comprising an open ended sheet metal shell and a one-piece cover supporting ring seat at the open end of said shell, characterized by the sheet metal material of said shell being bent, a short distance from the end thereof, to provide a laterally extending flange which forms a wide supporting surface against which the inner end surface of said ring seat is supported, the side wall of said shell immediately adjacent to said flange being located within the limiting circumference of said ring seat and forming a rigid bracing support for said ring seat and flange, and means for connecting said ring seat to said flange.

In testimony whereof I have hereunto set my hand.

ALFONS MAUSER.