(54) 发明名称
设备保护装置

(57) 摘要
本发明提供了一种设备保护装置，包括流量检测控制装置、压力检测控制装置、第一控制阀和第二控制阀，流量检测控制装置、压力检测控制装置分别与辅助流体管路连通。第二控制阀的进口与动力流体管路连通，第二控制阀的出口与第一控制阀的进口接通，第二控制阀的出口与设备接通，流量检测控制装置与第一控制阀的控制端相连接，压力检测控制装置与第二控制阀的控制端相连接。本发明提供的设备保护装置，可以在辅助流体流量不足和/或压力不足的情况下，自动切断设备的动力流体管路，使设备停止工作，在开机的过程中，如果辅助流体的流量和/或压力不足时，不允许设备开机工作，有效保护了设备的安全工作，保护设备，节约生产成本，提高企业经济效益。
1. 一种设备保护装置，其特征在于，包括流量检测控制装置 (1)、压力检测控制装置 (3)、第一控制阀 (2) 和第二控制阀 (4)，所述流量检测控制装置 (1)、压力检测控制装置 (3) 分别与辅助流体管路 (f) 连通，所述第二控制阀 (4) 的进口与动力流体管路 (d) 接通，所述第二控制阀 (4) 的出口与所述第一控制阀 (2) 的进口接通，所述第一控制阀 (2) 的出口与设备 (s) 接通，所述流量检测控制装置 (1) 与所述第一控制阀 (2) 的控制端相连接，所述压力检测控制装置 (3) 与所述第二控制阀 (4) 的控制端相连接；其中，

所述流量检测控制装置 (1) 包括节流孔板 (11) 和第一活塞缸 (12)，所述节流孔板 (11) 上设置有节流孔 (111)，所述节流孔板 (11) 安装在所述辅助流体管路 (f) 内，所述节流孔 (111) 的两端分别与所述第一活塞缸 (12) 活塞两侧的内腔相连通，所述第一活塞缸 (12) 的所述活塞两侧对称设置有伸出所述第一活塞缸缸体的一第一活塞杆 (121) 和另一第一活塞杆 (122)，所述节流孔 (111) 出口侧的一所述第一活塞杆 (121) 的一端与所述第一控制阀 (2) 的阀芯相连接；

所述压力检测控制装置包括第二活塞缸 (31)，所述第二活塞缸 (31) 活塞的一侧内腔 (312) 与所述节流孔出口侧的所述辅助流体管路 (f) 相连通，所述第二活塞缸 (31) 的所述活塞的另一侧设置有伸出所述第二活塞缸 (31) 缸体的第二活塞杆 (311)，所述第二活塞杆 (311) 的一端与所述第二控制阀 (4) 的阀芯相连接。

2. 根据权利要求 1 所述的设备保护装置，其特征在于，所述第一控制阀 (2) 和所述第二控制阀 (4) 均设置有复位弹簧，所述第一控制阀 (2) 和所述第二控制阀 (4) 均为常闭阀。

3. 根据权利要求 2 所述的设备保护装置，其特征在于，所述第一控制阀 (2) 和所述第二控制阀 (4) 均为二位三通阀，所述节流孔 (111) 为细长圆柱孔。

4. 根据权利要求 3 所述的设备保护装置，其特征在于，所述设备保护装置还包括壳体 (20)，所述流量检测控制装置 (1)、压力检测控制装置 (3)、第一控制阀 (2) 和第二控制阀 (4) 安装在所述壳体 (20) 内部。

5. 根据权利要求 4 所述的设备保护装置，其特征在于，所述壳体 (20) 内设置有第一腔 (201)、第二腔 (202) 和通孔 (203)，所述第一活塞缸 (12) 和所述第一控制阀 (2) 安装在所述第一腔 (201) 内，所述第二活塞缸 (31) 和所述第二控制阀 (4) 安装在所述第二腔 (202) 内，所述节流孔板 (11) 安装在所述通孔 (203) 内，所述通孔 (203) 安装在所述辅助流体管路 (f) 中。

6. 根据权利要求 5 所述的设备保护装置，其特征在于，所述设备保护装置还包括压板 (6)、第一螺柱 (71)、第二螺柱 (72)、第一螺栓 (81)、第二螺栓 (82)、第一螺母 (91)、第二螺母 (92)、第一弹簧座 (101) 和第二弹簧座 (102)，所述第一腔 (201) 和所述第一控制阀 (2) 安装在所述第一腔 (201) 内，所述第一活塞缸 (31)、第二控制阀 (4) 和所述第二控制阀 (4) 的所述复位弹簧分别设置在相应的所述第一弹簧座 (101) 和所述第二弹簧座 (102) 上，所述压板 (6) 安装在所述壳体 (20) 的一端，所述第一活塞缸 (12)、第一控制阀 (2) 和所述第一控制阀 (2) 的所述复位弹簧，通过所述第一弹簧座 (101) 和所述第一螺柱 (71) 安装在所述第一腔 (201) 内，所述第二活塞缸 (31)、第二控制阀 (4) 和所述第二控制阀 (4) 的所述复位弹簧，通过所述第二弹簧座 (102) 和所述第二螺柱 (72) 安装在所述第二腔 (202) 内，所述第一螺柱 (71) 上有与所述第一螺栓 (81) 相配合的所述第一螺母 (91)，所述第一螺栓 (81) 和所述第二螺柱 (72) 上有与所述第二螺栓 (82) 相配合的所述第二螺母 (92)，所述第二螺栓 (82)
的一端依次通过所述第二螺母（92）、第二螺堵（72）抵靠在所述第二弹簧座（102）上。

7. 根据权利要求1至6任一所述的设备保护装置，其特征在于，所述设备保护装置还包括第三控制阀（5），所述第三控制阀（5）的控制口与所述第一控制阀（2）的出口相连通，所述第三控制阀（5）的进口与所述动力流体管路（d）直接相连，出口与所述设备（s）相连通。

8. 根据权利要求7所述的设备保护装置，其特征在于，所述第三控制阀（5）为设有复位弹簧的自控阀，且所述第三控制阀（5）为二位三通的常闭阀。
设备保护装置

技术领域
[0001] 本发明涉及设备的保护领域，更具体而言，涉及一种流体设备断流的自动保护装置。

背景技术
[0002] 目前矿井下使用的气动设备中，气动切割锯、锚索钻机等设备工作时，要求必须有足够的冷却水，否则因为锯片或钻头的高速旋转、摩擦，产生的热量不能得到释放，会使锯片的温度升高，产生粉尘、火花等不安全因素。这就要求在这些设备工作时，一旦冷却水流量不足或者发生停水，能迅速切断主供气管路，使设备停止工作；并且要求在无冷却水或冷却水流量不足的情况下，不能开机工作。
[0003] 现有的气动设备如气动钻机可能具备通水功能，但无保护功能，而在流量不足、水压不足的情况下，气动钻机继续工作，无法预防事故。
[0004] 现有的气动切割锯机配备一个自加压水箱，通过冷却水的压力控制来达到控制水流量的目的。高压达到规定要求时，即认为流量达到规定的范围，由于在矿井下冷却水中含有杂质，可能会堵塞水路的喷嘴。在这种情况下，水压并不能反映水流量的实际流量，造成安全隐患。
[0005] 在实现本发明过程中，发明人发现现有技术中至少存在如下问题：在水流量不足的情况下，气动设备会继续工作，无法保护设备；通过冷却水的压力来控制水流量，水压不能反映水流量的实际流量。

发明内容
[0006] 为了解决上述现有技术中在水流量不足、水压不足的情况下，气动设备会继续工作，无法保护钻柱等气动设备；水压不能反映水流量的实际流量存在安全隐患等技术问题或者至少之一，本发明提供了一种设备保护装置，有效地克服了现有技术的上述缺陷。
[0007] 本发明提供了一种设备保护装置，包括流量检测控制装置、压力检测控制装置、第一控制阀 2 和第二控制阀 4，所述流量检测控制装置 1、压力检测控制装置 3 分别与辅助流体管路 f 连通，所述第二控制阀 4 的进口与动力流体管路 d 接通，所述第二控制阀 4 的出口与所述第一控制阀 2 的进口接通，所述第一控制阀 2 的出口与设备 s 接通，所述流量检测控制装置 1 与所述第一控制阀 2 的控制端相连接，所述压力检测控制装置 3 与所述第二控制阀 4 的控制端相连接。
[0008] 在上述技术方案中，优选地，所述流量检测控制装置包括节流孔板 11 和第一活塞室 12，所述节流孔板 11 与所述第一活塞室 12 上设置有节流孔 111，所述节流孔板 11 安装在所述节流孔板 11 内，所述节流孔 111 的两端分别与所述第一活塞室 12 活塞两侧的内腔相连通，所述第一活塞室 12 的所述活塞两侧对称设置有伸出所述第一活塞室 12 活塞体的一第一活塞杆 121 和另一第一活塞杆 122，所述节流孔出口侧的一所述第一活塞杆 121 的一端与所述第一控制阀 2 的阀芯相连接。
[0009] 在上述技术方案中，优选地，所述压力检测控制装置包括第二活塞缸 31，所述第二
活塞缸 31 活塞的一侧内腔 312 与所述节流孔出口侧的所述辅助流体管路 F 相连通，所述第
二活塞缸 31 的所述活塞的另一侧设置有伸出所述第二活塞缸 31 缸体的第二活塞杆 311，所
述第二活塞杆 311 的一端与所述第二控制阀 4 的阀芯相连接。
[0010] 在上述技术方案中，优选地，所述第一控制阀 2 和所述第二控制阀 4 中均设置有复
位弹簧，所述第一控制阀 2 和所述第二控制阀 4 均为常闭阀。
[0011] 在上述技术方案中，优选地，所述第一控制阀 2 和所述第二控制阀 4 均为二位三通
阀，所述节流孔 111 为细长圆柱孔。
[0012] 在上述技术方案中，优选地，所述设备保护装置还包括壳体 20，所述流量检测控制
装置 1、压力检测控制装置 3、第一控制阀 2 和第二控制阀 4 安装在所述壳体 20 内部。
[0013] 在上述技术方案中，优选地，所述壳体 20 内设置有第一腔 201、第二腔 202 和通孔
203，所述第一活塞缸 12 和所述第一控制阀 2 安装在所述第一腔 201 内，所述第二活塞缸 31
和所述第二控制阀 4 安装在所述第二腔 202 内，所述节流孔板 11 安装在所述通孔 203 内，
所述通孔 203 安装在所述辅助流体管路 F 内。
[0014] 在上述技术方案中，优选地，所述设备保护装置还包括压板 6、第一螺栓 71、第二
螺栓 72、第一螺栓 81、第二螺栓 82、第一螺母 91、第二螺母 92、第一弹簧座 101 和第二弹簧
座 102，所述第一控制阀 2 和所述第二控制阀 4 的所述复位弹簧分别设置在相应的所述第
一弹簧座 101 和所述第二弹簧座 102 上，所述压板 6 安装在所述壳体 20 的一端，所述第一活塞
缸 12、第一控制阀 2 和所述第一控制阀 2 的所述复位弹簧，通过所述第一弹簧座 101 和所述
第一螺栓 71 安装在所述第一腔 201 内，所述第二活塞缸 31，第二控制阀 4 和所述第二控制
阀 4 的所述复位弹簧，通过所述第二弹簧座 102 和所述第二螺栓 72 安装在所述第二腔 202
内，所述第一螺栓 71 与所述第一螺栓 81 相配合的所述第一螺母 91，所述第二螺栓 82 的一端
依次通过所述第一螺栓 81、第二螺栓 71 抵靠在所述第一弹簧座 101 上；所述第二螺栓
72 上有与所述第二螺栓 82 相配合的所述第二螺母 92，所述第二螺栓 82 的一端依次通过
所述第二螺栓 92、第二螺栓 72 抵靠在所述第二弹簧座 102 上。
[0015] 在上述技术方案中，优选地，所述设备保护装置还包括第三控制阀 5，所述第三控
制阀 5 的控制口与所述第一控制阀 2 的出口相连通，所述第三控制阀 5 的进口与所述动力
流体管路 D 直接连通，出口与所述设备 S 相连通。
[0016] 在上述技术方案中，优选地，所述第三控制阀 5 为设有复位弹簧的自控阀，且所述
第三控制阀 5 为二位三通的常闭阀。
[0017] 通过本发明提供的设备保护装置，可以在辅助流体流量不足和 / 或压力不足的情
况下，自动切断所述设备的动力流体管路，使设备停止工作，在开机的过程中，如果没有辅
助流体或者辅助流体的流量和 / 或压力不足时，不允许设备开机工作，有效保护了设备的安
全工作，保护设备，节约生产成本，提高企业经济效益。

附图说明
[0018] 图 1 示出了本发明一实施例的主视剖面示意图；
[0019] 图 2 示出了图 1 所示实施例的俯视剖面示意图；
[0020] 图 3 示出了图 1 所示实施例的工作原理图。
具体实施方式

为了能够更清楚地理解本发明的上述目的、特征和优点，下面结合附图和具体实施方式对本发明进行进一步的详细描述。

在下面的描述中阐述了很多具体细节以便于充分理解本发明，但是，本发明还可以采用其他不同于在此描述的其他方式来实施，因此，本发明并不限于下面公开的具体实施例的限制。

下面以气动切割锯的冷却水系统为例，说明本发明的具体实施方式。切割锯由气路 d 中的压缩气体驱动工作，并通过水路 f 为所述切割锯机头提供冷却水，下述的冷却水代表上述的辅助流体，压缩气体代表上述的动力流体，切割锯为上述的设备。

图 1 示出了本发明一实施例的主视剖面示意图，图 2 示出了图 1 所示设备保护装置的俯视剖面示意图，图 3 示出了图 1 所示设备保护装置的工作原理图。

图 1 至图 3 所示的设备保护装置，包括流量检测控制装置 1、压力检测控制装置 3、第一控制阀 2 和第二控制阀 4，流量检测控制装置 1 压力检测控制装置 3 分别与水路 f 连通，第二控制阀 4 的进口 P4 与气路 d 接通，第一控制阀 2 的进口 P2 与气路 d 连接，第一控制阀 2 的出口 A2 与切割锯 s 接通，流量检测控制装置 1 与第一控制阀 2 的控制端相连接，压力检测控制装置 3 与第二控制阀 4 的控制端相连接。

设备保护装置通过检测水压和水流量来控制气路的通断与否，而切割锯只有在气路连通情况下才能工作，这样就实现了设备保护装置对切割锯的控制，只有水压和水流量都满足条件的情况下，切割锯才能工作，实现了对设备的实时保护，增加了设备的工作寿命。

在上述技术方案中，优选地，流量检测控制装置包括节流孔板 11 和第一活塞缸 12，节流孔板 11 上设置有节流孔 111，节流孔板 11 安装在水路 f 内，节流孔 111 的两端分别与第一活塞缸 12 活塞两侧的内腔相连通，第一活塞缸 12 的活塞两侧对称设置有伸出第一活塞缸缸体的一第一活塞杆 121 和另一第一活塞杆 122，节流孔出口侧的一第一活塞杆 121 的一端与第一控制阀 2 的阀芯相连接。

使用节流孔板可以产生水路中的水压差，节流孔 111 两端连通第一活塞缸 12 活塞两侧的内腔，由此发生压力差，而压力差就会产生一定的压力差，当压力差足以推动第一活塞杆时，就会使得第一控制阀 2 的进口 P2 与出口 A2 接通，当冷却水不流动时，节流孔 111 两端无压差或者压差很小，此时不足以推动活塞移动，因此第一控制阀 2 的控控制端；而当水压变化时，切断进口与出口，从而切断压缩气体，设备停止工作。这样的结构简单，而且能实时检测水流量，水流量满足条件，第一控制阀 2 就会接通，否则就关闭，保护设备。

在上述技术方案中，优选地，压力检测控制装置包括第二活塞缸 31，第三活塞缸 31 活塞的一侧内腔 312 与节流孔出口侧的水路 f 相连通，第二活塞缸 31 的活塞的另一侧设置有伸出第二活塞缸缸体的活塞杆 311，第二活塞缸 31 的一端与第二控制阀 4 的阀芯相连接。

设置第二活塞缸 31 是用来检测水压，当水压满足一定条件，就会推动活塞运动，
使得第二控制阀 4 的进口 P4 与出口 A4 接通，否则就关闭，同样可以通过检测冷却水管路中的水压来保护设备。

【0033】由于第一控制阀 2 和第二控制阀 4 是串联的，所以只有这两个控制阀都接通的情况下，切割锯 s 才能和气路 d 接通，才能工作，这两个阀其中任意一个关闭都会使得切割锯 s 停止工作，这样一来无论是冷却水管破裂，或者堵塞等，任意一种故障，都能够被自动检测、切断设备的压缩气体，保护设备，并排除了安全隐患。

【0034】在上述技术方案中，优选地，第一控制阀 2 和第二控制阀 4 中均设置有复位弹簧，第一控制阀 2 和第二控制阀 4 均为常闭阀。

【0035】设置复位弹簧可以使第一控制阀 2 和第二控制阀 4 在不满足条件情况下回到常态，即常闭状态。

【0036】在上述技术方案中，优选地，第一控制阀 2 和第二控制阀 4 均为二位三通阀，节流孔 111 为细长圆柱孔。

【0037】将第一控制阀 2 和第二控制阀 4 设置成二位三通阀，可以使用阀口 02 或 04 来排气，设置节流孔 111 为细长圆柱孔是为了解决较大的压差。

【0038】在上述技术方案中，优选地，设备保护装置还包括壳体 20，流量检测控制装置 1、压力检测控制装置 3，第一控制阀 2 和第二控制阀 4 安装在壳体 20 内部。

【0039】设置壳体 20，可以将设备保护装置结构紧凑，便于使用。

【0040】在上述技术方案中，优选地，壳体 20 内设置有第一腔 201、第二腔 202 和通孔 203，第一活塞缸 31 和第一控制阀 2 安装在第一腔 201 内，第二活塞缸 31 和第二控制阀 4 安装在第二腔 202 内，节流孔板 11 安装在通孔 203 内，通孔 203 安装在水路中。

【0041】设置第一腔 201 和第二腔 202，可以使得内部部件安装更紧凑，占用空间更小，通孔 203 两端设置有接口与水路接通。

【0042】在上述技术方案中，优选地，所述设备保护装置还包括板 6，第一螺栓 71、第二螺栓 72、第一螺栓 81、第二螺栓 82、第一螺母 91、第二螺母 92、第一弹簧座 101 和第二弹簧座 102，所述第一控制阀 2 和所述第二控制阀 4 的所述复位弹簧分别设置在相应的所述第一弹簧座 101 和第二弹簧座 102 上，所述压板 6 安装在所述壳体 20 的一端，所述第一活塞缸 31、第一控制阀 2 和所述第一控制阀 2 的所述复位弹簧，通过所述第一弹簧座 101 和所述第一螺栓 81 安装在所述第一腔 201 内，所述第二活塞缸 31、第二控制阀 4 和所述第二控制阀 4 的所述复位弹簧，通过所述第二弹簧座 102 和所述第二螺栓 72 安装在所述第二腔 202 内，所述第一螺栓 71、第一螺栓 81、第二螺栓 82 与所述第一螺栓 81、第二螺栓 82 相配合的所述第一螺母 91、所述第二螺母 92 和所述第二螺栓 82 的一端依次通过所述第一螺栓 81、第一螺栓 71 抵靠在所述第一弹簧座 101 上；所述第二螺栓 72 有与所述第二螺栓 82 相配合的所述第二螺母 92、所述第二活塞缸 31 的一端依次通过所述第二螺栓 82、第二螺栓 72 抵靠在所述第二弹簧座 102 上。

【0043】这样的结构使得该设备保护装置结构紧凑，而且还可以调节弹簧的伸长量，这样就能对控制阀的接通条件进行调节。

【0044】综上，根据本发明实施例提供的设备保护装置，可以在水流量不足和/或水压不足的情况下，自动切断所述切割锯的气路，使设备停止工作，在开机的过程中，如果没有冷却水或者冷却水的流量和/或压力不足时，不允许设备开机工作，有效保护了设备的安全工作，保护设备，节约生产成本，提高企业经济效益。
图 4 示出了本发明另一实施例的俯视剖面示意图。

图 4 所示的设备保护装置与图 1 至图 3 所示的设备保护装置的区别在于，图 4 所示的设备保护装置中将第一控制阀 2 和流量检测控制装置 1 结合在一起，将第二控制阀 4 和压力检测控制装置 3 结合在一起，节流孔板 11 两端通过管路直接接通第一控制阀 2 的阀芯两端，水路 f 直接接通第二控制阀 4 的阀芯的一端，让水路压力直接作用在控制阀的阀芯上。

这样的结构同样可以满足断水停气的保护目的，而且体积更小，结构更紧凑。

图 5 示出了本发明又一实施例的工作原理图。

图 5 所示的设备保护装置与图 1 至图 3 所示设备保护装置的区别在于：

设备保护装置还包括第三控制阀 5，第三控制阀 5 的控制口 k 与第一控制阀 2 的出口 a2 相相连通，第三控制阀 5 的进口 p5 与气路 d 直接连通，出口 a5 与切割锯 s 相连通。

在上述技术方案中，优选地，第三控制阀 5 为设有复位弹簧的自控阀，且第三控制阀 5 为二位三通的常闭阀。

设置第三控制阀，便于对设备的控制，因为第一控制阀的出口与第三控制阀的控制口相连接，则只需要较小的容量就可以控制第三控制阀的通或者断，从而减小了第一控制阀和第二控制阀的容量，也就减小了第一控制阀和第二控制阀的体积，而且第三控制阀的容量可扩度，从而满足设备对动力的需要，提高设备的功率。

下面结合图形对该实施例的设备保护装置工作原理进行详细的描述：

正常工作状态

在正常工作状态下，水流量符合要求，第一控制阀 2（常闭阀）被打开，第二控制阀 2 的进气口 p2 与出气口 a2 连通，水压力符合要求，第二控制阀 4（常闭阀）被打开，第二控制阀 4 的进气口 p4 与出气口 a4 连通，气路 d 通过第二控制阀 4，然后经过第一控制阀 2，到达第三控制阀 5 的控制口 k，第三控制阀 5（常闭阀）被打开，气路 d 与切割锯 s 连通，此时扳动切割锯 s 的手柄，锯片转动，开始工作。

切割锯上供水管路球阀关闭的状态

球阀关闭状态下，因为水路 f 中水没有流动，在节流孔 111 两端没有压差，第一活塞缸 12 无控制力，则第一控制阀 2 的阀芯在弹簧的作用下复位，第一控制阀 2 的出气口 a2 与排气口 02 连通，第三控制阀 5 的控制口 k 处作大气，没有压力，此时第三控制阀 5 处于关闭状态，气路 d 关闭，扳动切割锯 s 的手柄，切割锯 s 也不工作。

切割锯 s 上水路喷嘴被杂质异物堵塞状态

这种情况与情况 2 相同，由于此时无水流或水流较小，第一控制阀 2 两端的压差很小，不足以克服弹簧力，第一控制阀 2，第二控制阀 5 处于关闭状态，气路 d 关闭，切割锯 s 不能工作。

管路水流量不足状态

这种状态与状态 2 相同，此时无水流或水流较小，第一控制阀 2 两端的压差很小，不足以克服弹簧力，第一控制阀 2，第二控制阀 5 处于关闭状态，气路 d 关闭，切割锯 s 不能工作。

管路水压不足状态

此时第二活塞缸 31 的活塞上受的水压力不足以克服弹簧力，第二控制阀 4 的阀芯
在复位弹簧的作用下复位，第二控制阀关闭。此时，无论第一控制阀 2 是开启或是关闭状态，第三控制阀 5 的控制口 K 处没有压力，第二控制阀 4 泄压。第一控制阀 2 开启状态由第二控制阀 4 泄压，第一控制阀 2 关闭状态，第一控制阀 2 可以直接给第三控制阀 5 的控制口 K 处泄压，第三控制阀 5 关闭，气路 d 关闭，切割锯 s 不能工作。

【0064】6. 水路 f 的节流孔被杂质异物堵塞状态

【0065】同状态 5，此时第二活塞缸 31 上的水压力不足以克服复位弹簧的弹力了，第二控制阀 4 的阀芯在弹簧力的作用下复位，第二控制阀 4 关闭，气路 d 关闭，切割锯 s 不能工作。

【0066】综上所述，根据本发明实施例提供的设备保护装置，可以在水流量不足和 / 或水压不足的情况下，自动切断所述切割锯的气路，使设备停止工作，在开机的过程中，如果没有冷却水或冷却水的流量和 / 或压力不足时，不允许设备开机工作，有效保护了设备的安全工作，保护设备，节约生产成本，提高企业经济效益。

【0067】以上所述仅为本发明的优选实施例而已，并不用于限制本发明，对于本领域的技术人员来说，本发明可以有各种更改和变化。凡在本发明的精神和原则之内，所作的任何修改、等同替换、改进等，均应包含在本发明的保护范围之内。
图 5