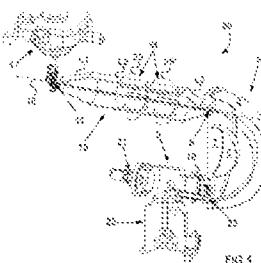


Sweden


(12) Patent specification

(10) SE 538 941 C2

(21) Patent application number:	1451107-5	(51) Int.Cl.:	
(45) Grant of patent:	2017-02-28	H01J 49/44	(2006.01)
(41) Available to the public:	2014-09-19	G01N 23/227	(2006.01)
(22) Filing date:	2012-03-06	H01J 37/05	(2006.01)
(24) Effective date:	2012-03-06	H01J 49/00	(2006.01)
(30) Priority data:	---		
(62) Parent patent application number:	1450816-2		

(73) Patentee: Scienta Omicron AB, Box 15120, 750 15 Uppsala SE
(72) Inventor: Björn Wannberg, Alfta SE
(74) Agent: ZACCO SWEDEN AB, P. O. Box 5581, 114 85, STOCKHOLM SE
(54) Title: Analyser arrangement for particle spectrometer
US 20130126727 A1 · Jozwiak C, et al., "A high-efficiency spin-resolved photoemission spectrometer combining time-of-flight spectroscopy with exchange-scattering polarimetry" In: Review of Scientific Instruments, 2010, May 24, Vol. 81, No. 5, ISSN: 0034-6748. · Jozwiak C, "A new spin on Photoemission Spectroscopy", University of California, Berkeley, 2008
(56) Cited documents:
(57) Abstract:

The present invention relates to a method for determining at least one parameter related to charged particles emitted from a particle emitting sample (11), e.g. a parameter related to the energies, the start directions, the start positions or the spin of the particles. The method comprises the steps of guiding a beam of charged particles into an entrance of a measurement region by means of a lens system (13), and detecting positions of the particles indicative of said at least one parameter within the measurement region. Furthermore, the method comprises the steps of deflecting the particle beam at least twice in the same coordinate direction before entrance of the particle beam into the measurement region. Thereby, both the position and the direction of the particle beam at the entrance (8) of the measurement region (3) can be controlled in a way that to some extent eliminates the need for physical manipulation of the sample (11). This in turn allows the sample to be efficiently cooled such that the energy resolution in energy measurements can be improved.

