

US 20140038838A1

(19) **United States**

(12) **Patent Application Publication**
NARAIN et al.

(10) **Pub. No.: US 2014/0038838 A1**
(43) **Pub. Date: Feb. 6, 2014**

(54) **USE OF MARKERS IN THE DIAGNOSIS AND TREATMENT OF PROSTATE CANCER**

(71) Applicants: **Niven Rajin NARAIN**, Cambridge, MA (US); **Rangaprasad SARANGARAJAN**, Boylston, MA (US); **Vivek K. VISHNUDAS**, Newton, MA (US)

(72) Inventors: **Niven Rajin NARAIN**, Cambridge, MA (US); **Rangaprasad SARANGARAJAN**, Boylston, MA (US); **Vivek K. VISHNUDAS**, Newton, MA (US)

(21) Appl. No.: **13/929,723**

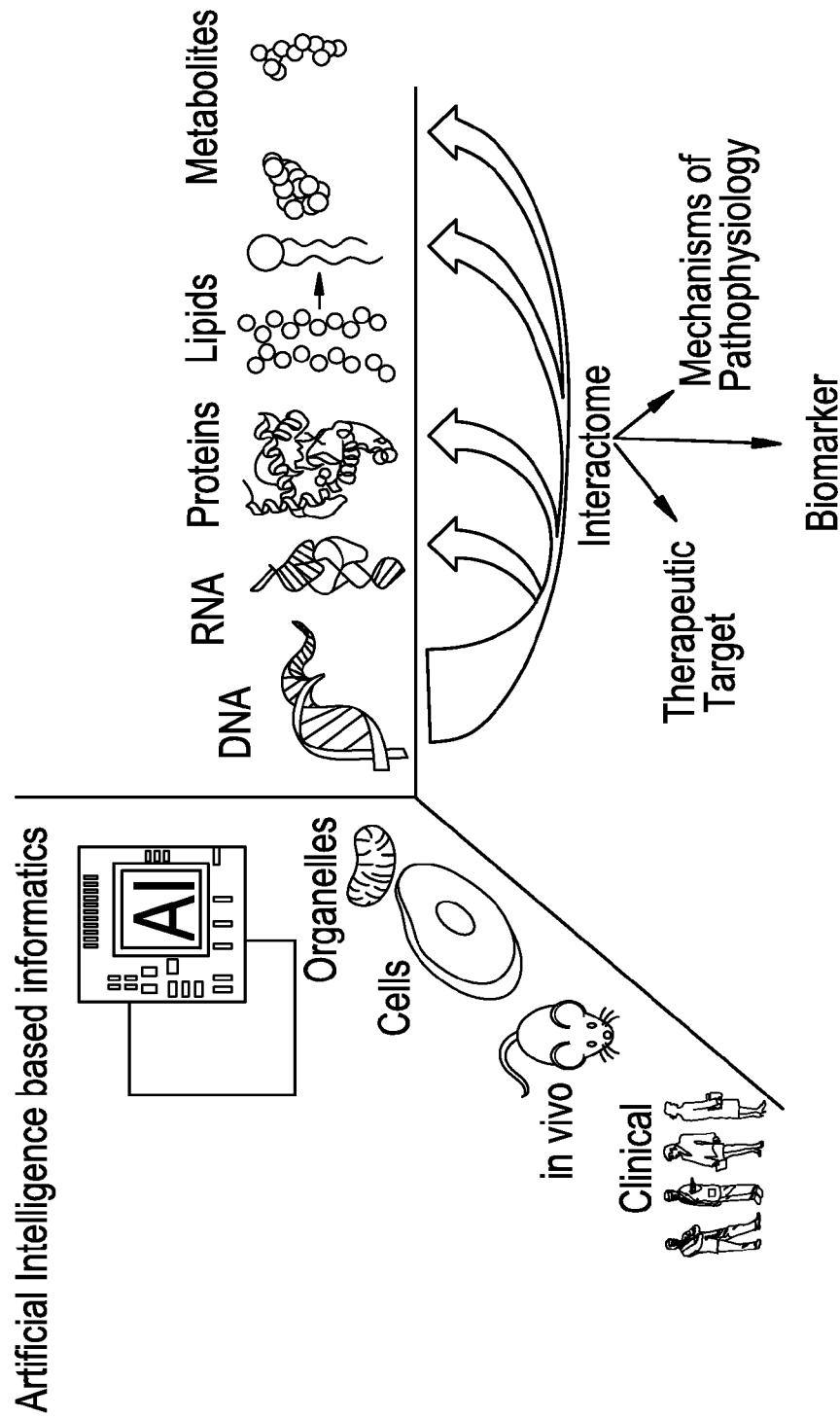
(22) Filed: **Jun. 27, 2013**

Related U.S. Application Data

(60) Provisional application No. 61/665,201, filed on Jun. 27, 2012, provisional application No. 61/718,081,

filed on Oct. 24, 2012, provisional application No. 61/718,064, filed on Oct. 24, 2012, provisional application No. 61/672,090, filed on Jul. 16, 2012, provisional application No. 61/673,094, filed on Jul. 18, 2012, provisional application No. 61/702,523, filed on Sep. 18, 2012, provisional application No. 61/718,080, filed on Oct. 24, 2012.

Publication Classification


(51) **Int. Cl.**
G01N 33/68 (2006.01)

(52) **U.S. Cl.**
CPC **G01N 33/6893** (2013.01)
USPC **506/9**; 435/7.92; 506/18

(57) **ABSTRACT**

The invention provides method for diagnosis, monitoring, and prognosis of prostate cancer using one or more of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, tubulin-beta 3, filamin B, and LY9, and PSA. The invention provides kits for practicing the methods of the invention.

FIG. 1

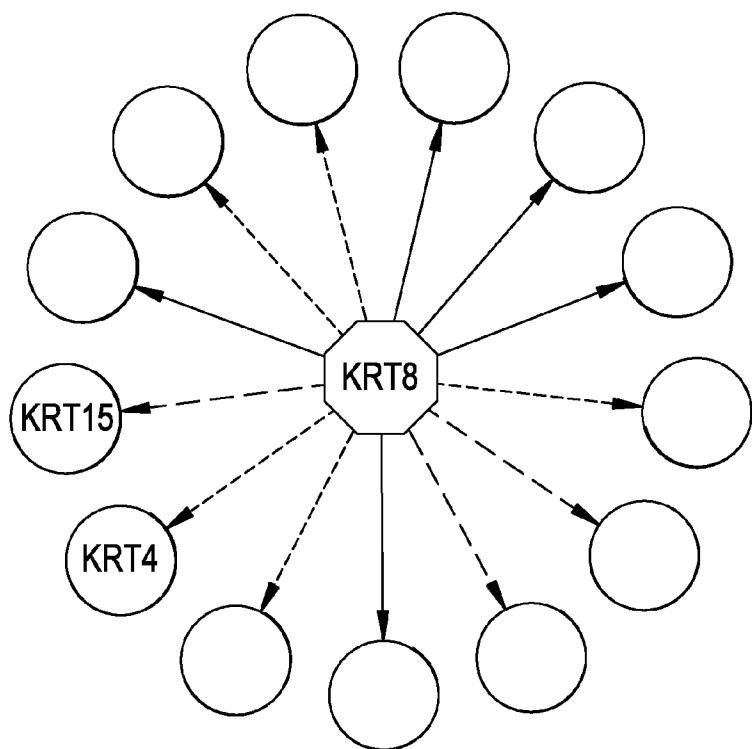
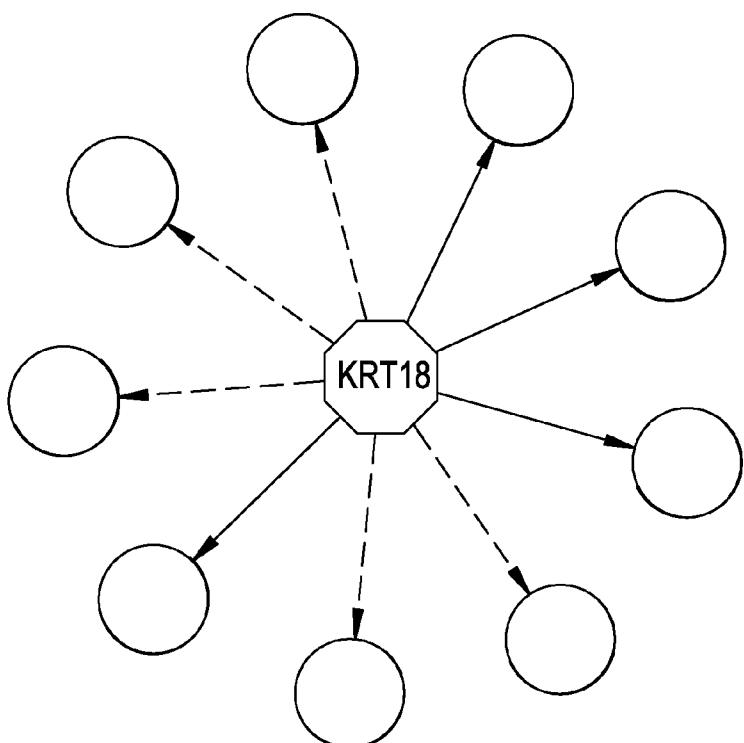


FIG. 2A**FIG. 2B**

FIG. 2C

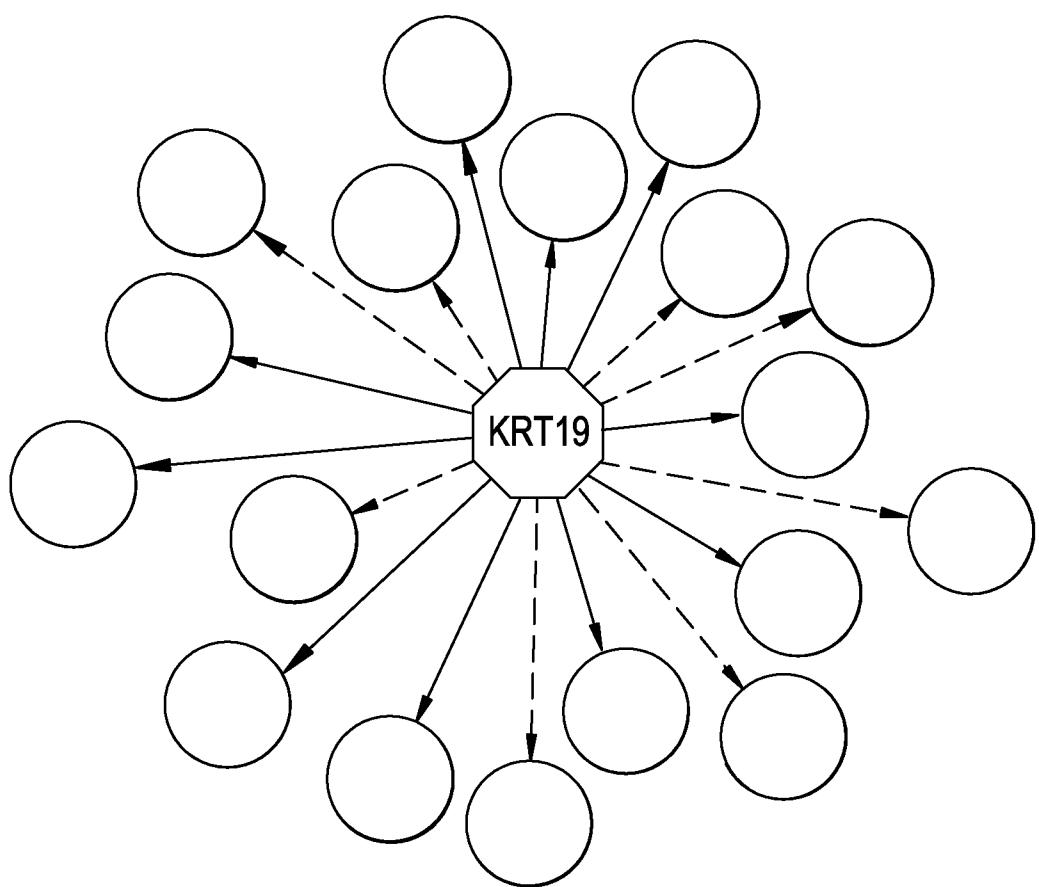


FIG. 3A

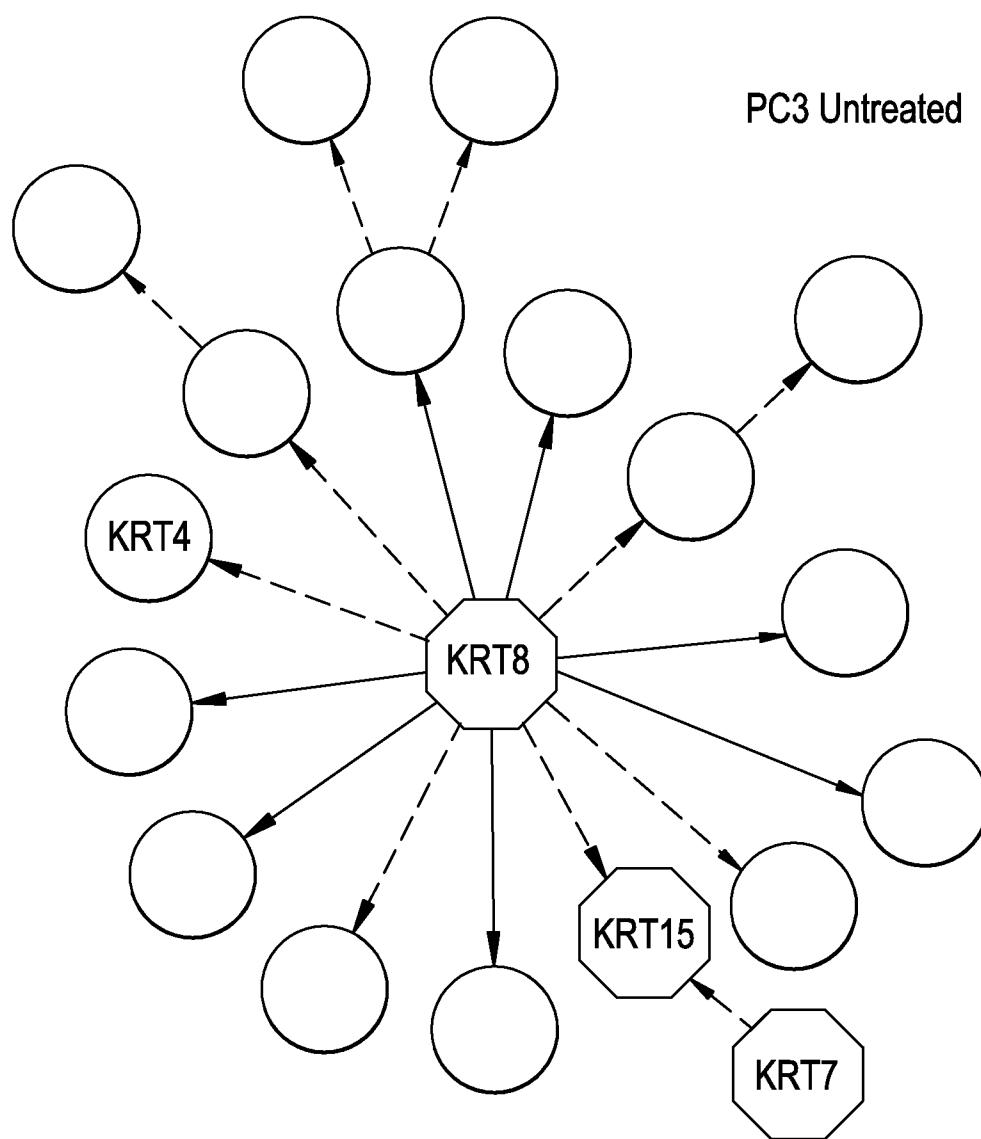


FIG. 3B

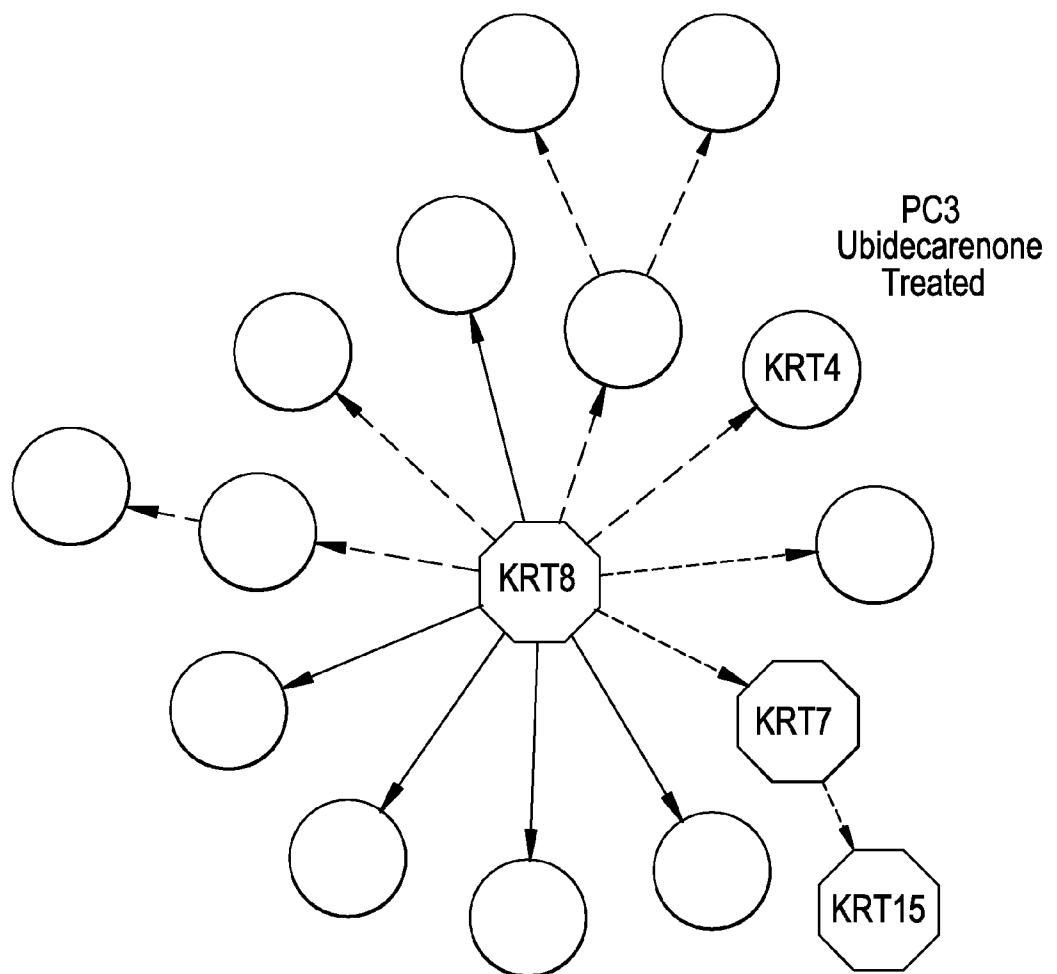
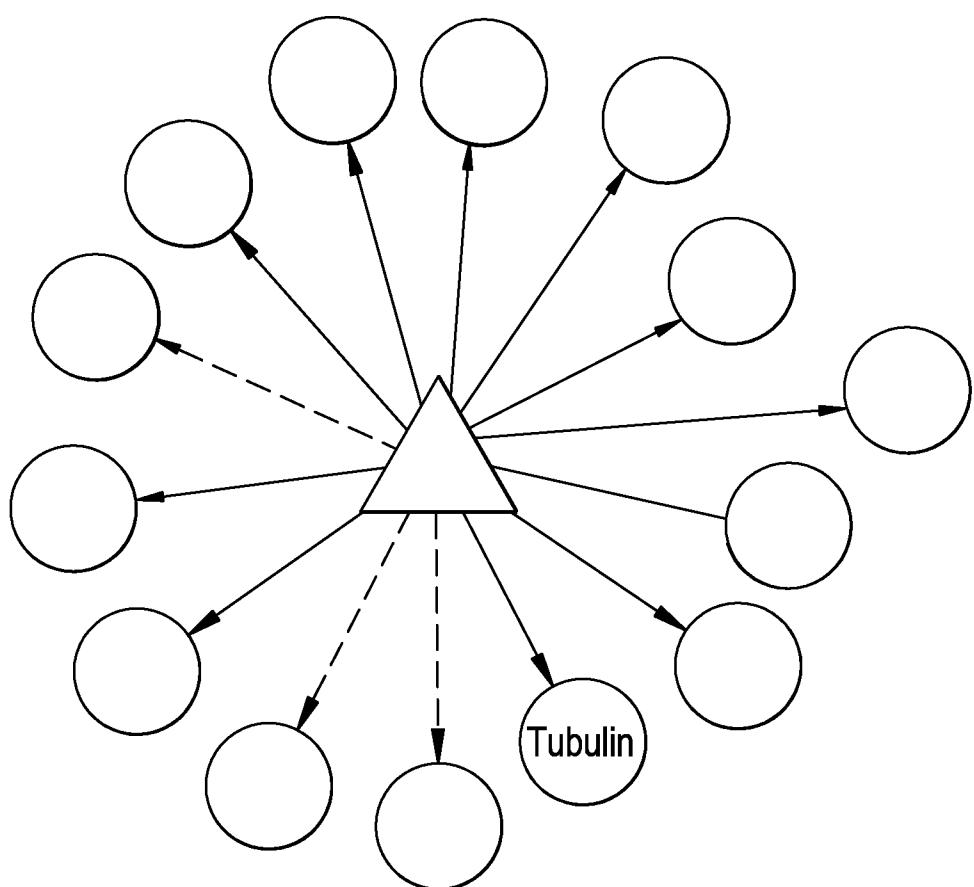
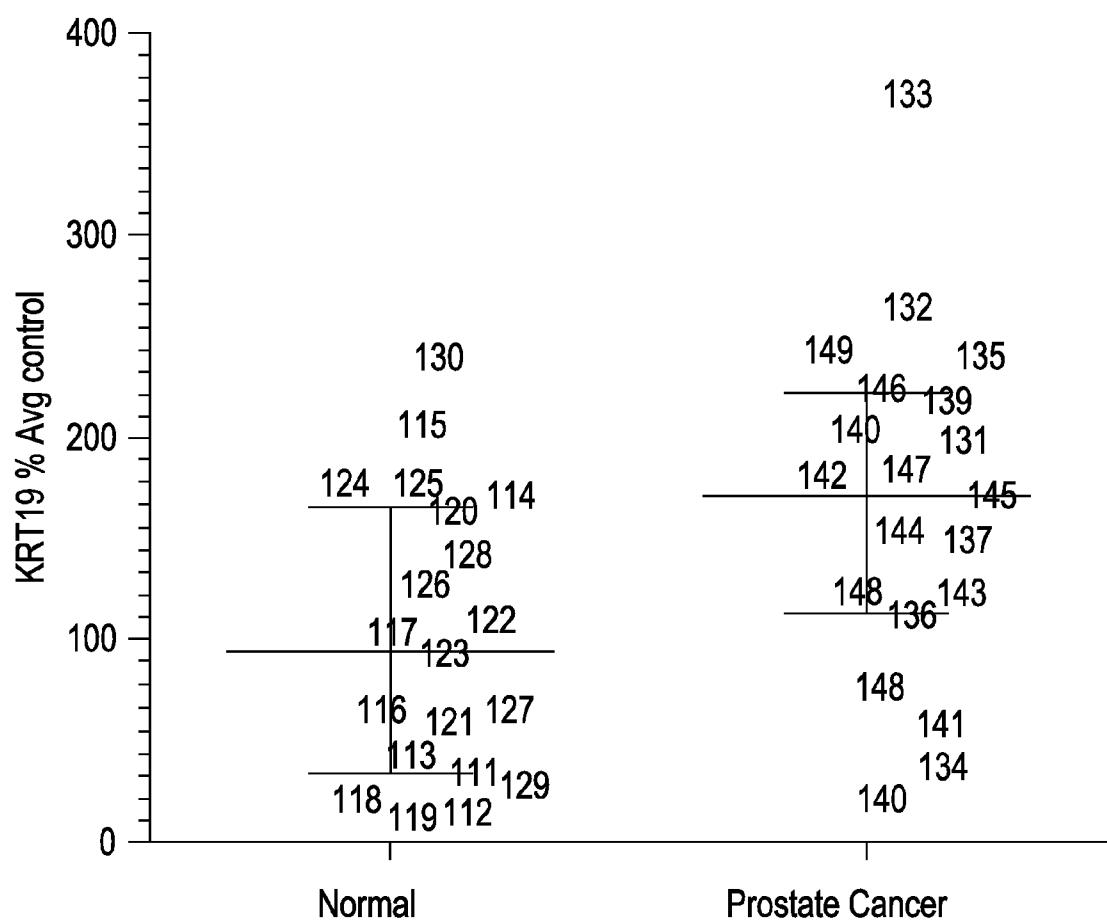




FIG. 3C

FIG. 3D

KRT 19 Levels in Human Prostate Cancer Serum Set 2

Bars represent median with interquartile range

FIG. 4

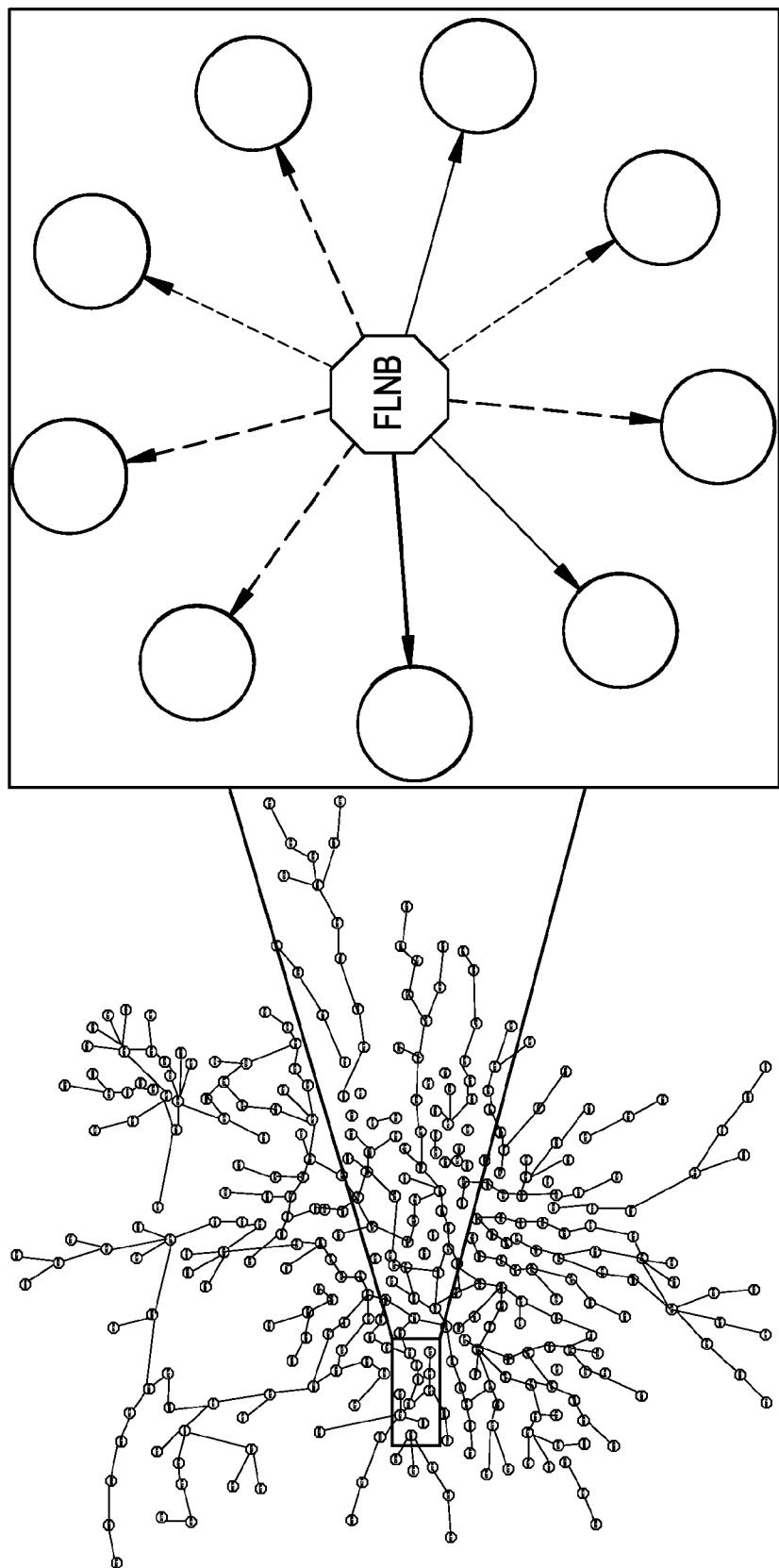
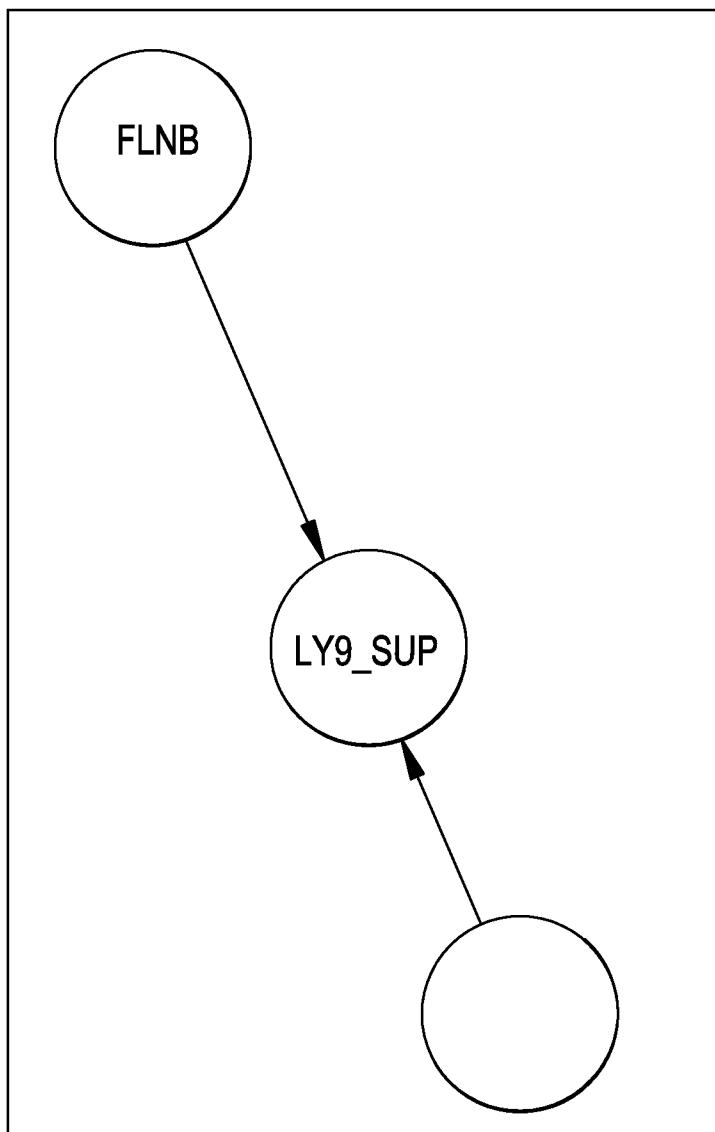
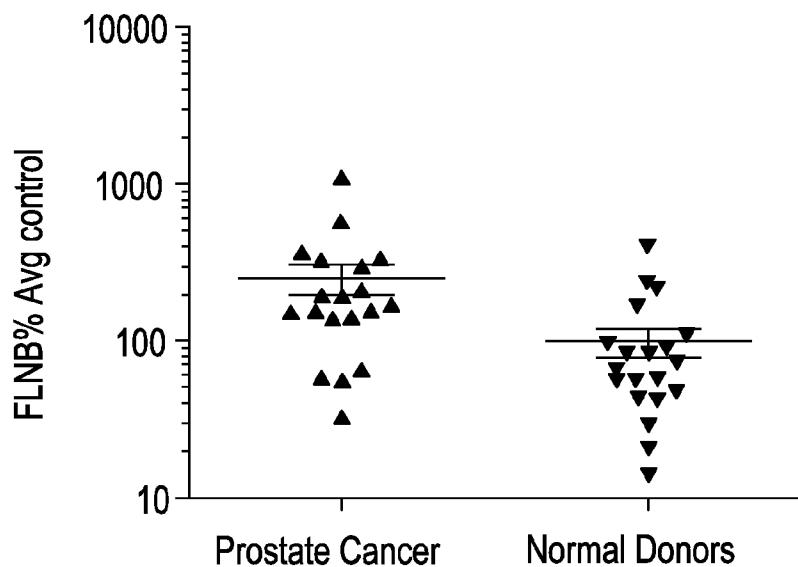




FIG. 5

FIG. 6A

Mean FLNB Levels in Human Serum n=2

FIG. 6B

PSA Levels in Human Serum

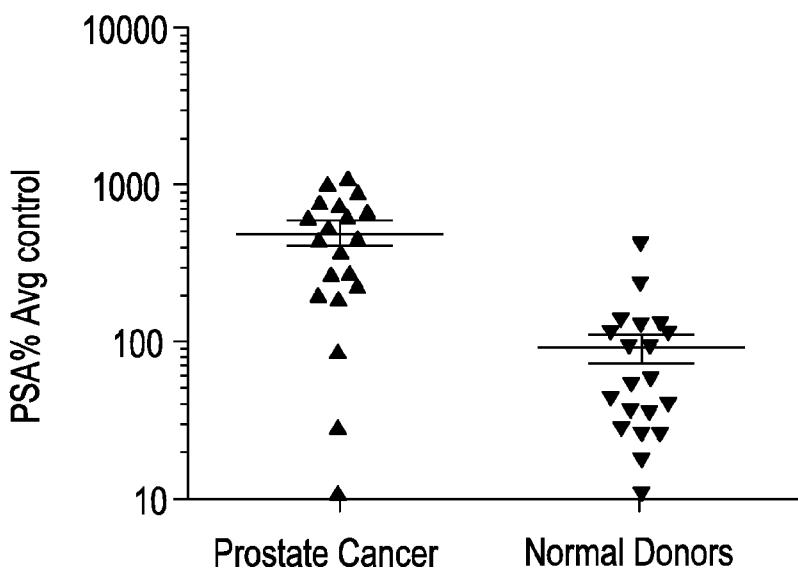
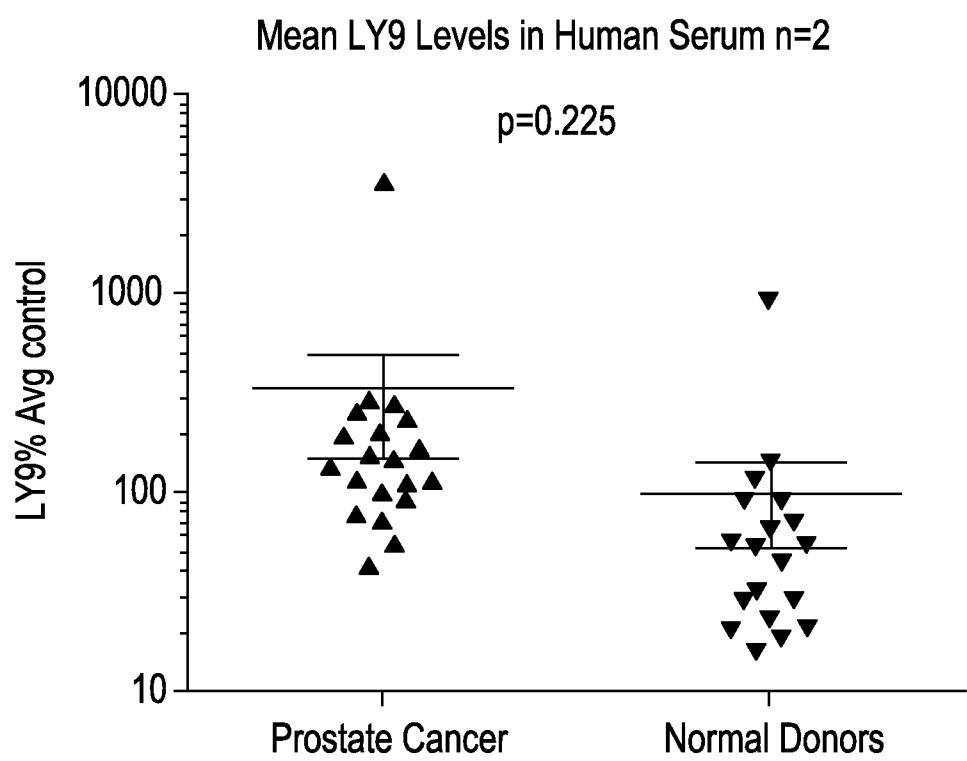
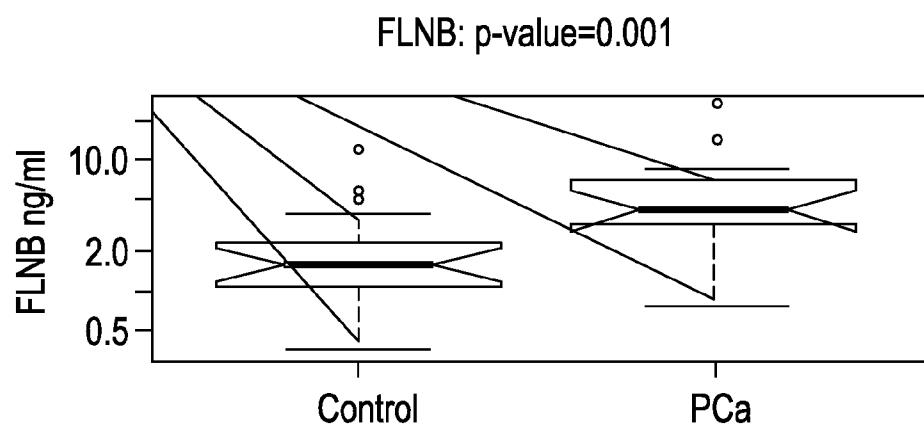
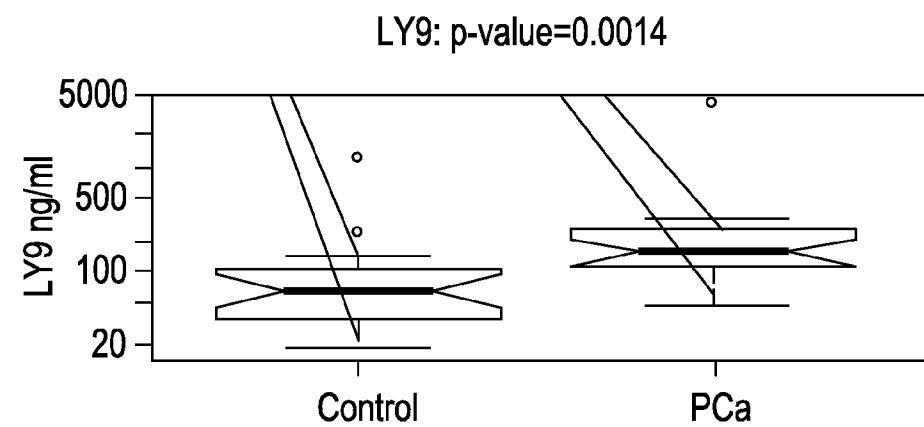
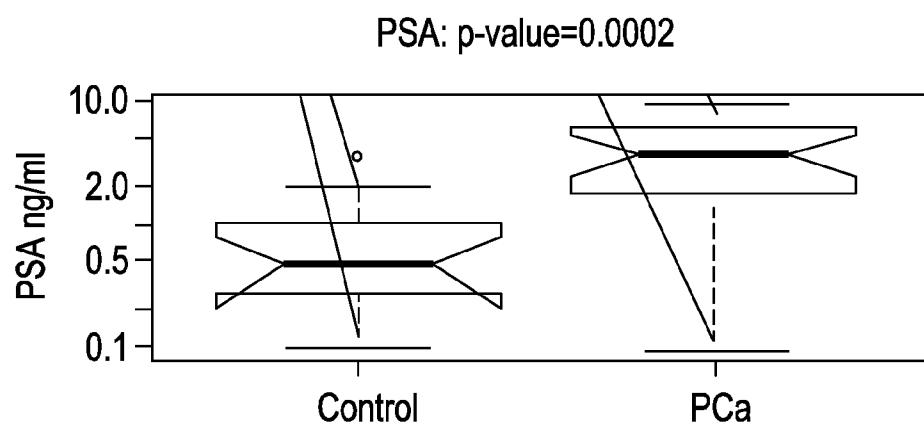
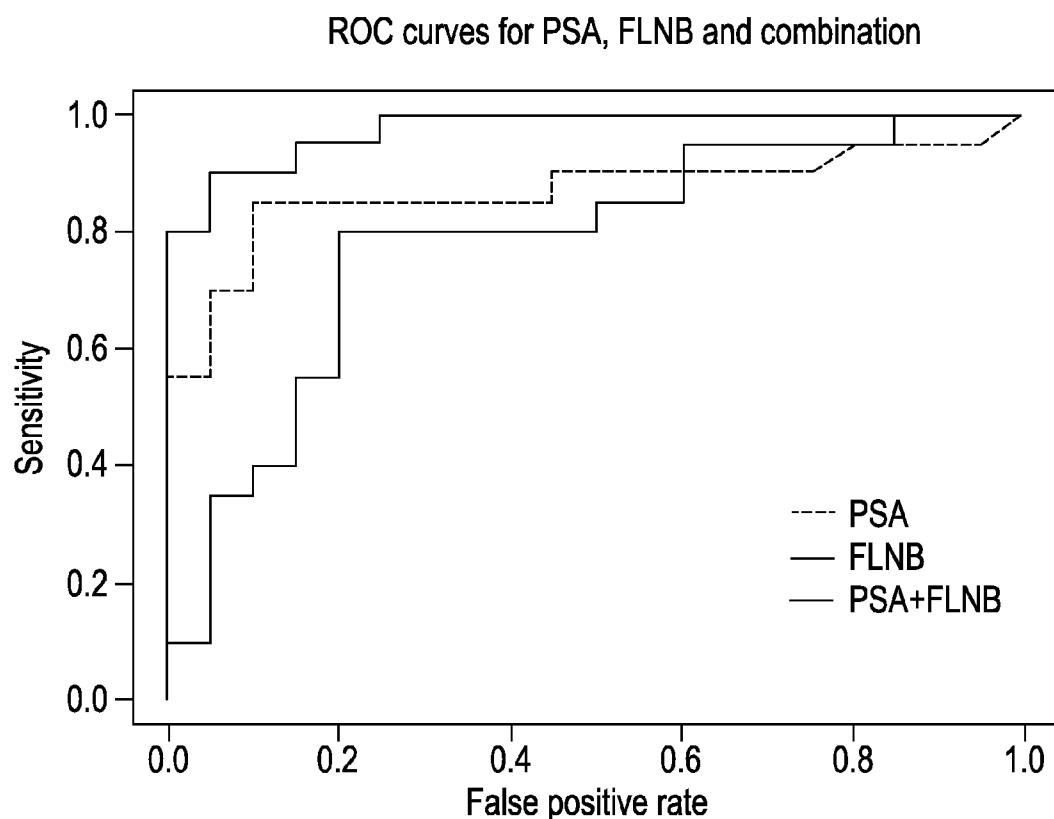







FIG. 7

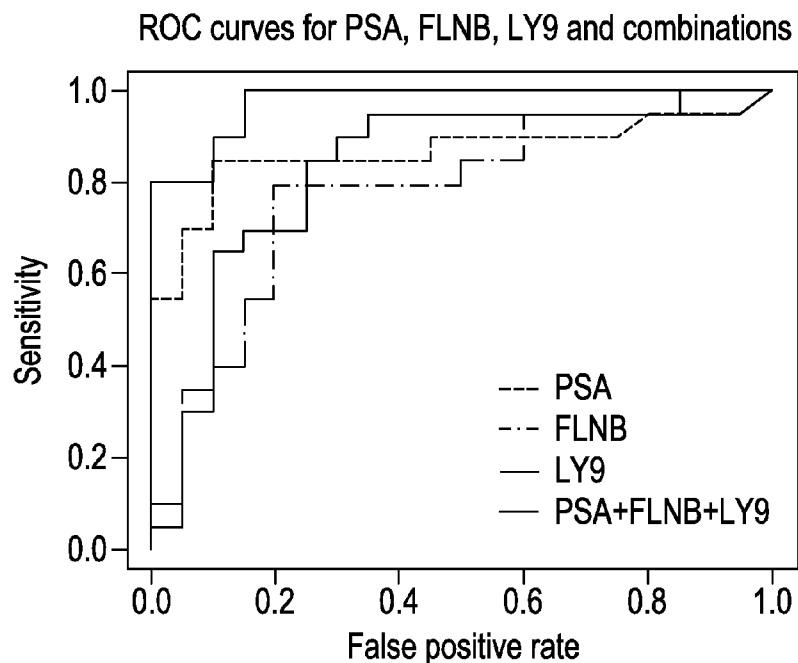


FIG. 8A**FIG. 8B****FIG. 8C**

FIG. 9A**FIG. 9B**

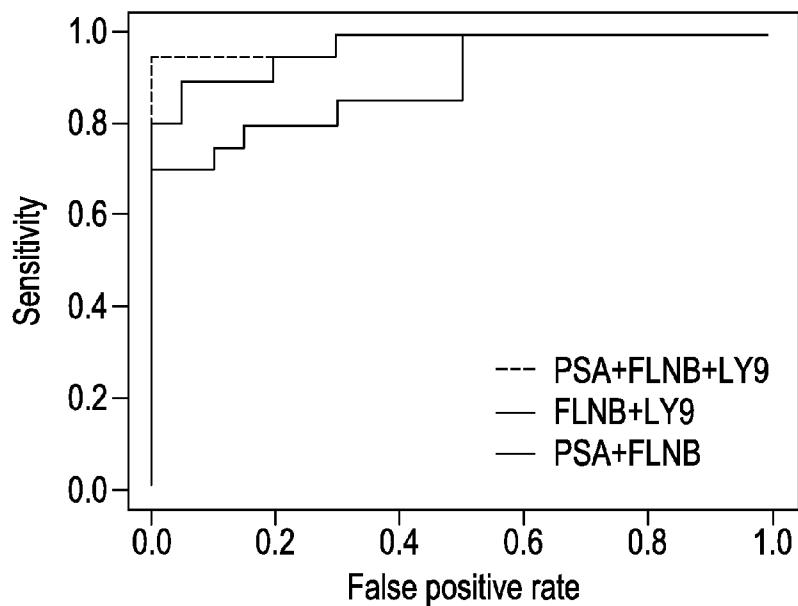

Marker	AUC
PSA	0.87
FLNB	0.78
PSA + FLNB	0.975

FIG. 10A
Linear scoring function

FIG. 10B
Non-Linear scoring function

ROC curves for PSA, FLNB, LY9 and combinations:
Non-linear model:

USE OF MARKERS IN THE DIAGNOSIS AND TREATMENT OF PROSTATE CANCER

CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This application claims priority to U.S. Provisional Application Ser. No. 61/665,201, filed Jun. 27, 2012; U.S. Provisional Application Ser. No. 61/672,090, filed Jul. 16, 2012; U.S. Provisional Application Ser. No. 61/673,094, filed Jul. 18, 2012; U.S. Provisional Application Ser. No. 61/702,523, filed Sep. 18, 2012, and U.S. Provisional Application Ser. Nos. 61/718,064, 61/718,080, and 61/718,081 all filed on Oct. 24, 2012. Each of the applications is incorporated herein by reference in its entirety.

SEQUENCE LISTING

[0002] The instant application contains a Sequence Listing which has been submitted in ASCII format via EFS-Web and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Jun. 25, 2013, is named 119992-06604_SL.txt and is 461,537 bytes in size.

FIELD OF THE INVENTION

[0003] The invention relates to treatment, prevention, reduction, diagnosis, monitoring, and prognosis of abnormal prostate states, including benign prostate hyperplasia and oncological disorders, especially prostate cancer, in humans using filamin B, lymphocyte antigen 9 (LY9), keratins and tubulin, specifically using keratins 4, 7, 8, 15, 18, and 19, and tubulin-beta 3, particularly keratins 7, 15, or 19. The filamin B, lymphocyte antigen 9 (LY9), keratins and tubulin can further be used in conjunction with prostate specific antigen (PSA) for the treatment, prevention, reduction, diagnosis, monitoring, and prognosis of abnormal prostate states, including benign prostate hyperplasia and oncological disorders, especially prostate cancer. The invention also relates to panels and kits for use in practicing the methods of the invention.

BACKGROUND OF THE INVENTION

[0004] Oncological disorders, such as cancer, are presently one of the leading causes of death in developed nations and is a serious threat to modern society. Cancer can develop in any tissue of any organ at any age. Worldwide, more than 10 million people are diagnosed with cancer every year and it is estimated that this number will grow to 15 million new cases every year by 2020. It is believed that cancer causes six million deaths every year or 12% of the deaths worldwide.

[0005] Prostate cancer is a form of cancer that develops in the prostate, a gland in the male reproductive system. Most prostate cancers are slow growing. However, there are cases of aggressive prostate cancers. The cancer cells may metastasize from the prostate to other parts of the body, particularly to the bones and lymph nodes. Prostate cancer may cause pain, difficulty in urinating, problems during sexual intercourse, or erectile dysfunction. Other symptoms can potentially develop during later stages of the disease.

[0006] Rates of detection of prostate cancers vary widely across the world, with detection rates in south and east Asia being lower than those in Europe, and especially in the United States. Prostate cancer tends to develop in men over the age of fifty and, although it is one of the most prevalent types of cancer in men, many never have symptoms or undergo

therapy for prostate cancer, and eventually die of other causes. Further, treatment of prostate cancer may do more harm to the subject than the prostate cancer itself. Prostate specific antigen (PSA) screening has lead to a significant rise in the number of men diagnosed with prostate cancer with an associated increase in potentially unnecessary biopsies performed. Despite its limitations, including a positive predictive value of only 25-40%, PSA remains the only generally accepted biomarker for prostate cancer.

[0007] Prostate cancer is, in most cases, slow-growing and symptom-free. Moreover, since men with the condition are typically older, they often die of causes unrelated to the prostate cancer, such as heart/circulatory disease, pneumonia, other unrelated cancers, or old age. On the other hand, the more aggressive prostate cancers account for more cancer-related deaths among men in the United States than any other cancer except lung cancer.

[0008] About two-thirds of prostate cancer cases are slow growing, whereas the other third are more aggressive and fast developing. It is important to be able to distinguish between aggressive and non-aggressive forms of the disease, and further, to distinguish prostate cancer from benign prostate hyperplasia (BPH). Commonly used screening tests, e.g., for prostate specific antigen (PSA) cannot distinguish between prostate cancer and BPH.

SUMMARY OF THE INVENTION

[0009] The present invention is based, at least in part, on Applicants' discovery that keratins 4, 7, 8, 15, 18, and 19, tubulin-beta 3, filamin B (FLNB), and lymphocyte antigen 9 (LY9) are differentially regulated in prostate cancer cells.

[0010] Accordingly, the invention provides methods for diagnosing, monitoring (e.g., of disease progression or treatment), prognosing, treating, alleviating symptoms of, inhibiting progression of, or preventing, an oncological disease state, e.g., prostate cancer, in a mammal. The invention further provides panels and kits for practicing the methods of the invention.

[0011] In one aspect, the invention provides methods for diagnosing an abnormal prostate state in a subject comprising:

[0012] (1) determining a level of one or more prostate cancer related markers selected from the group consisting of filamin B, LY9, keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, and tubulin-beta 3 in a biological sample from the subject; and

[0013] (2) comparing the level of the one or more prostate cancer related markers in the biological sample with the level of the one or more prostate cancer related markers in a normal control sample, wherein an altered level of the one or more prostate cancer related markers in the biological sample relative to the normal control sample is indicative of an abnormal prostate state in the subject.

[0014] In certain embodiments, the one or more prostate cancer related markers is selected from the group consisting of filamin B, LY9, and keratin 19. In certain embodiments, an increased level of one or more prostate cancer related markers selected from the group consisting of filamin B, LY9, and keratin 19 in the biological sample relative to a normal control sample is indicative of an abnormal prostate state in the subject.

[0015] In certain embodiments, no increase in the detected level of expression of each of the one or more prostate-cancer related markers selected from the group consisting of filamin

B, LY9, and keratin 19 in the biological sample relative to a normal control sample is indicative of a normal prostate state in the subject. In such embodiments, levels of one, two, or all three of filamin B, LY9, and keratin 19 can be detected. For the marker levels detected, none of the markers have increased levels.

[0016] In certain embodiments, the method further comprises detecting the level of prostate specific antigen (PSA) in the biological sample and preferably further comprising comparing the level of PSA in the biological sample to the level of PSA in a normal control sample. In certain embodiments, an increase in the level of one or more prostate cancer related markers selected from the group consisting of filamin B, LY9, and keratin 19 in the biological sample relative to the normal control sample, in combination with an increase in the level of PSA in the biological sample as compared to the level of PSA in the normal control sample has greater predictive value of the subject having an abnormal prostate state than the predictive value of a single marker alone. In certain embodiments, no increase in the detected level of expression of each of the one or more prostate-cancer related markers selected from the group consisting of filamin B, LY9, and keratin 19 in the biological sample relative to the normal control sample, in combination with a decreased or normal level of PSA in the biological sample as compared to the level of PSA in the normal control sample has a greater predictive value of the subject having a normal prostate state than any single marker alone.

[0017] Throughout the methods, kits, and panels of the invention, one or more of filamin B, LY9 and keratin 19 is understood as any of filamin B; LY9; keratin 19; filamin B and LY9; filamin B and keratin 19; LY9 and keratin 19; or filamin B, LY9, and keratin 19.

[0018] In certain embodiments of the invention, the abnormal prostate state is prostate cancer.

[0019] In certain embodiments of the invention, the prostate cancer is androgen-dependent prostate cancer. In certain embodiments of the invention, the prostate cancer is androgen-independent prostate cancer. In certain embodiments of the invention, the prostate cancer is aggressive prostate cancer. In certain embodiments of the invention, the prostate cancer is non-aggressive prostate cancer.

[0020] In certain embodiments of the invention, the abnormal prostate state is benign prostate hyperplasia.

[0021] In another aspect, the invention provides a method for identifying a subject as being at increased risk for developing prostate cancer, the method comprising:

[0022] (1) determining a level of one or more prostate cancer related markers selected from the group consisting of filamin B, LY9, keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, and tubulin-beta 3 in a biological sample from the subject; and

[0023] (2) comparing the level of the one or more prostate cancer related markers in the biological sample with the level of the one or more prostate cancer related markers in a normal control sample, wherein an altered level of the one or more prostate cancer related markers in the biological sample relative to the control sample is indicative of an increased risk for developing prostate cancer in the subject.

[0024] In certain embodiments, the one or more prostate cancer related markers is selected from the group consisting of filamin B, LY9, and keratin 19. In certain embodiments, an increased level of one or more prostate cancer related markers selected from the group consisting of filamin B, LY9, and

keratin 19 in the biological sample relative to the normal control sample is indicative of an increased risk for developing prostate cancer in the subject. In certain embodiments, no increase in the detected level of expression of each of the one or more prostate-cancer related markers selected from the group consisting of filamin B, LY9, and keratin 19 in the biological sample relative to the normal control sample is indicative of no increased risk for developing prostate cancer in the subject.

[0025] In certain embodiments, the method further comprises detecting the level of prostate specific antigen (PSA) in the biological sample and preferably further comprises comparing the level of PSA in the biological sample to the level of PSA in a normal control sample. In certain embodiments, an increase in the level of one or more prostate cancer related markers selected from the group consisting of filamin B, LY9, and keratin 19 in the biological sample relative to the normal control sample, in combination with an increase in the level of PSA in the biological sample as compared to the level of PSA in the normal control sample has greater predictive value of an increased risk for developing prostate cancer in the subject than an increase in any of the individual markers alone. In certain embodiments, no increase in the detected level of expression of each of the one or more prostate-cancer related markers selected from the group consisting of filamin B, LY9, and keratin 19 in the biological sample relative to the normal control sample, in combination with a decreased or normal level of PSA in the biological sample as compared to the level of PSA in the normal control sample, has greater predictive value of no increased risk for developing prostate cancer in the subject than any single marker alone.

[0026] In the embodiments of the invention, one or more prostate cancer markers selected from the group consisting of filamin B, LY9 and keratin 19 is: filamin B; LY9; keratin 19; filamin B and LY9; filamin B and keratin 19; LY9 and keratin 19; or filamin B, LY9, and keratin 19.

[0027] In certain embodiments of the diagnostic or prognostic methods of the invention, one or more prostate cancer related markers is selected from the group consisting of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, and tubulin beta-3. In certain embodiments, one or more prostate cancer related markers is selected from the group consisting of keratin 7, keratin 8, and keratin 15. In certain embodiments, one or more prostate cancer related markers is selected from the group consisting of keratin 7 and keratin 15. In certain embodiments, one or more prostate cancer markers is selected from the group consisting of keratin 7, 15, and 19. In certain embodiments, the diagnostic and prognostic methods of the invention further comprise detecting the level of prostate specific antigen (PSA) in the biological sample, and preferably further comprise comparing the level of PSA in the biological sample to a level of PSA in a control sample.

[0028] In certain embodiments, the control sample for PSA is the same control sample as for the other prostate cancer related markers of the invention. In certain embodiments, the control sample for PSA is different from the control sample for the other prostate cancer related markers of the invention

[0029] In certain embodiments of the diagnostic methods of the invention, wherein one or more prostate cancer related markers is selected from the group consisting of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, and tubulin beta-3, an increased level of one or more of the prostate cancer related markers in the biological sample relative to a normal control sample is indicative of an abnormal prostate state in the sub-

related markers in the biological sample relative to the normal control sample, in combination with an increase in the level of PSA in the biological sample as compared to the level of PSA in the normal control sample is indicative of an increased risk for the subject of developing prostate cancer wherein the method has greater diagnostic or predictive value than the value of any of the individual markers alone. In certain embodiments of the prognostic methods of the invention, wherein one or more prostate cancer related markers is selected from the group consisting of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, and tubulin beta-3, a decreased or normal level of one or more of the prostate cancer related markers in the biological sample relative to the normal control sample, in combination with a decreased or normal level of PSA in the biological sample as compared to the level of PSA in the normal control sample, is indicative of an decreased risk or normal risk of developing prostate cancer in the subject wherein the method has greater diagnostic or predictive value than the value of any of the individual markers alone. In certain embodiments of the prognostic methods of the invention, wherein one or more prostate cancer related markers is selected from the group consisting of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, and tubulin beta-3, an increased or normal level of one or more of the prostate cancer related markers in the biological sample relative to the normal control sample, in combination with a decreased or normal level of PSA in the biological sample as compared to the level of PSA in the normal control sample, is indicative of a decreased risk or normal risk of developing prostate cancer in the subject wherein the method has greater diagnostic or predictive value than the value of any of the individual markers alone.

[0033] In various embodiments of any of the diagnostic or prognostic methods of the invention, the method may further comprise comparing the level of the one or more prostate cancer related markers in the biological sample with the level of the one or more prostate cancer related markers in a control sample selected from the group consisting of: a sample obtained from the same subject at an earlier time point than the biological sample, a sample from a subject with benign prostatic hyperplasia (BPH), a sample from a subject with non-metastatic prostate cancer, a sample from a subject with metastatic prostate cancer, a sample from a subject with androgen sensitive prostate cancer, a sample from a subject with androgen insensitive prostate cancer, a sample from a subject with aggressive prostate cancer, and a sample from a subject with non-aggressive prostate cancer. In such embodiments, comparison with one or more additional control sample can facilitate differentiating between two prostate cancer states selected from the group consisting of: normal prostate and prostate cancer, benign prostate hyperplasia and prostate cancer, benign prostate hyperplasia and normal prostate, androgen dependent and androgen independent prostate cancer, aggressive prostate cancer and non-aggressive prostate cancer, and metastatic prostate cancer and non-metastatic prostate cancer; or differentiating between any two or more of normal prostate, prostate cancer, benign prostate hyperplasia, androgen dependent prostate cancer, androgen independent prostate cancer, aggressive prostate cancer, non-aggressive prostate cancer, metastatic prostate cancer, and non-metastatic prostate cancer.

[0034] In certain embodiments of the invention, when a tumor is present, the method further comprises detecting the size of the prostate tumor in the subject.

[0035] In certain embodiments of the diagnostic and prognostic methods the invention, the method further comprises obtaining a sample from a subject.

[0036] In certain embodiments of the diagnostic and prognostic methods the invention, the method further comprises selecting a subject who has or is suspected of having prostate cancer.

[0037] In certain embodiments of the invention, the method further comprises selecting a treatment regimen for the subject based on the level of the one or more prostate cancer markers. In certain embodiments of the invention, the method further comprises treating the subject with a treatment regimen based on the level of the one or more prostate cancer markers. In certain embodiments, a treatment regimen comprises one or more treatments selected from the group consisting of surgery, radiation, hormone therapy, antibody therapy, growth factor therapy, cytokine therapy, and chemotherapy.

[0038] In yet another aspect, the invention provides methods for monitoring prostate cancer in a subject, the method comprising

[0039] (1) determining a level of one or more prostate cancer related markers selected from the group consisting of filamin B, LY9, keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, and tubulin-beta 3 in a first biological sample obtained at a first time from a subject having prostate cancer;

[0040] (2) determining a level of expression of the one or more prostate cancer related markers in a second biological sample obtained from the subject at a second time, wherein the second time is after or later than, the first time; and

[0041] (3) comparing the level of the one or more prostate cancer related markers in the second sample with the level of the one or more prostate cancer related markers in the first sample, wherein a change in the level of the one or more prostate cancer related markers in the second sample as compared to the first sample is indicative of a change in prostate cancer status in the subject.

[0042] In certain embodiments, the subject is actively treated for prostate cancer prior to obtaining the second sample. That is, the subject is undergoing active treatment for prostate cancer.

[0043] In certain embodiments, the subject is not actively treated for prostate cancer prior to obtaining the second sample. That is, the subject is being monitored using watchful waiting.

[0044] In certain embodiments, one or more prostate cancer related markers is selected from the group consisting of filamin B, LY9, and keratin 19. In certain embodiments, an increased level of one or more prostate cancer related markers selected from the group consisting of filamin B, LY9, and keratin 19 in the second biological sample as compared to the first biological sample is indicative of progression of the prostate cancer in the subject. In certain embodiments, no increase in the detected level of expression of each of the one or more prostate-cancer related markers selected from the group consisting of filamin B, LY9, and keratin 19 in the second biological sample as compared to the first biological sample is indicative of non-progression of the prostate cancer in the subject.

[0045] In certain embodiments, the methods further comprise determining the level of prostate specific antigen (PSA) in the first biological sample and the second biological sample and preferably, further comprising comparing the

level of PSA in the second biological sample to the level of PSA in the first biological sample. In certain embodiments, an increased level of the one or more prostate cancer related markers selected from the group consisting of filamin B, LY9, and keratin 19 in the second biological sample relative to the level of the one or more prostate cancer related markers in the first biological sample, in combination with an increase in the level of PSA in the second biological sample relative to the level of PSA in the first biological sample has greater predictive value of progression of the prostate cancer in the subject than any single marker alone. In certain embodiments, no increase in the detected level of expression of each of the one or more prostate-cancer related markers selected from the group consisting of filamin B, LY9, and keratin 19 in the second biological sample relative to the level of the one or more prostate cancer related markers in the first biological sample, in combination with a decreased or same level of PSA in the second biological sample relative to the level of PSA in the first biological sample has greater predictive value of non-progression of the prostate cancer in the subject than any single marker alone.

[0046] In embodiments of the invention, the one or more prostate cancer related markers selected from the group consisting of filamin B, LY9, and keratin 19 is: filamin B; LY9; keratin 19; filamin B and LY9; filamin B and keratin 19; LY9 and keratin 19; or filamin B, LY9, and keratin 19.

[0047] In certain embodiments of the monitoring methods of the invention, the one or more prostate cancer markers is selected from the group consisting of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, and tubulin beta-3. In certain embodiments of the monitoring methods of the invention, the one or more prostate cancer related markers is selected from the group consisting of keratin 7, keratin 8, and keratin 15. In certain embodiments of the monitoring methods of the invention, the one or more prostate cancer related markers is selected from the group consisting of keratin 7, keratin 15, and keratin 19. In certain embodiments of the monitoring methods of the invention, the one or more prostate cancer related markers is selected from the group consisting of keratin 7 and keratin 15.

[0048] In certain embodiments of the monitoring methods of the invention, wherein the one or more prostate cancer markers is selected from the group consisting of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, and tubulin beta-3, the methods further comprise determining the level of prostate specific antigen (PSA) in the first biological sample and the second biological sample, and preferably further comprise comparing the level of PSA in the second biological sample to the level of PSA in the first biological sample.

[0049] In certain embodiments of the monitoring methods of the invention, wherein one or more prostate cancer related markers is selected from the group consisting of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, and tubulin beta-3, an increased level of one or more of the prostate cancer related markers in the second sample relative to a first sample is indicative of prostate tumor progression in the subject. In certain embodiments of the monitoring methods of the invention, wherein one or more prostate cancer related markers is selected from the group consisting of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, and tubulin beta-3, a decreased or normal level of one or more of the prostate cancer related markers in the second sample relative to a first sample is indicative of prostate tumor progression in the subject. In certain embodiments of the monitoring methods of the invention,

the invention, wherein one or more prostate cancer related markers is selected from the group consisting of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, and tubulin beta-3, an increased level of one or more of the prostate cancer related markers in the second sample relative to a first sample is indicative of no prostate tumor progression in the subject. In certain embodiments of the monitoring methods of the invention, wherein one or more prostate cancer related markers is selected from the group consisting of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, and tubulin beta-3, a decreased or normal level of one or more of the prostate cancer related markers in the second sample relative to a first sample is indicative of no prostate tumor progression in the subject.

[0050] In certain embodiments of the monitoring methods of the invention, wherein one or more prostate cancer related markers is selected from the group consisting of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, and tubulin beta-3, the method further comprises detecting the level of prostate specific antigen (PSA) in the second sample, and preferably further comprises comparing the level of PSA in the second sample to the level of PSA in a first sample. In certain embodiments of the monitoring methods of the invention, wherein one or more prostate cancer related markers is selected from the group consisting of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, and tubulin beta-3, an increase in the level of one or more of the prostate cancer related markers in the second sample relative to the first sample, in combination with an increase in the level of PSA in the second sample as compared to the level of PSA in the first sample is indicative of prostate tumor progression in the subject wherein the method has greater diagnostic or predictive value than the value of any of the individual markers alone. In certain embodiments of the monitoring methods of the invention, wherein one or more prostate cancer related markers is selected from the group consisting of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, and tubulin beta-3, an decrease in the level of one or more of the prostate cancer related markers in the second sample relative to the first sample, in combination with an increase in the level of PSA in the second sample as compared to the level of PSA in the first sample is indicative of prostate tumor progression in the subject wherein the method has greater diagnostic or predictive value than the value of any of the individual markers alone wherein the method has greater diagnostic or predictive value than the value of any of the individual markers alone. In certain embodiments of the monitoring methods of the invention, wherein one or more prostate cancer related markers is selected from the group consisting of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, and tubulin beta-3, a decreased or normal level of one or more of the prostate cancer related markers in the second sample relative to the first sample, in combination with a decreased or normal level of PSA in the second sample as compared to the level of PSA in the first sample, is indicative of no prostate tumor progression in the subject. In certain embodiments of the monitoring methods of the invention, wherein one or more prostate cancer related markers is selected from the group consisting of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, and tubulin beta-3, an increased or normal level of one or more of the prostate cancer related markers in the second sample relative to the first sample, in combination with a decreased or normal level of PSA in the second sample as compared to the level of PSA in the first sample, is indicative of no prostate

tumor progression in the subject wherein the method has greater diagnostic or predictive value than the value of any of the individual markers alone.

[0051] In certain embodiments of the monitoring methods of the invention, the methods further comprise comparing the level of the one or more prostate cancer related markers in the first biological sample or the second biological sample with the level of the one or more prostate cancer related markers in a control sample selected from the group consisting of: a normal control sample, a sample from a subject with benign prostatic hyperplasia (BPH), a sample from a subject with non-metastatic prostate cancer, a sample from a subject with metastatic prostate cancer, a sample from a subject with androgen sensitive prostate cancer, a sample from a subject with androgen insensitive prostate cancer, a sample from a subject with aggressive prostate cancer, and a sample from a subject with non-aggressive prostate cancer.

[0052] In certain embodiments of the monitoring methods of the invention, the methods further comprise detecting the size of the prostate tumor in the subject.

[0053] In certain embodiments of the monitoring methods of the invention, the methods further comprise obtaining a first sample and a second sample from the subject.

[0054] In certain embodiments of the monitoring methods of the invention, the methods further comprise selecting and/or administering a different treatment regimen for the subject based on progression of the prostate cancer in the subject.

[0055] In certain embodiments of the monitoring methods of the invention, the methods further comprise comprises maintaining a treatment regimen for the subject based on non-progression of the prostate cancer in the subject.

[0056] In certain embodiments, the treatment regimens comprise one or more treatments selected from the group consisting of: surgery, radiation, hormone therapy, antibody therapy, growth factor therapy, cytokine therapy, and chemotherapy.

[0057] In certain embodiments of the monitoring methods of the invention, the methods further comprise withholding an active treatment of the prostate cancer in the subject based on non-progression of the prostate cancer in the subject. In certain embodiments, the active treatment is one or more treatments selected from the group consisting of: surgery, radiation, hormone therapy, antibody therapy, growth factor therapy, cytokine therapy, and chemotherapy.

[0058] In still another aspect, the invention provides methods for detecting a set of prostate cancer related markers, the method comprising:

[0059] (1) analyzing a biological sample from a subject for a level of two or more prostate cancer related markers of a set of prostate cancer related markers, wherein the set of prostate cancer related markers comprises filamin B, LY9, keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, and tubulin-beta 3;

[0060] (2) detecting each of the two or more prostate specific makers in the biological sample, thereby detecting the set of prostate cancer related biomarkers.

[0061] In certain embodiments, the set of prostate cancer related markers comprises filamin B, LY9, and keratin 19. In certain embodiments, the two or more prostate cancer related markers are: filamin B and LY9; filamin B and keratin 19; LY9 and keratin 19; or filamin B, LY9, and keratin 19. In certain embodiments, the set of prostate cancer related markers comprises keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, and tubulin beta-3. In certain embodiments, the set of

prostate cancer related markers comprises keratin 7, keratin 8, and keratin 15. In certain embodiments, the set of prostate cancer related markers comprises keratin 7, keratin 15, and keratin 19. In certain embodiments, the set of prostate cancer related markers comprises keratin 7 and keratin 15.

[0062] In various embodiments of any of the methods of the invention, the step of detecting or determining a level of one or more prostate cancer related markers in a biological sample comprises isolating a component of the biological sample.

[0063] In various embodiments of any of the methods of the invention, the step of detecting or determining a level of one or more prostate cancer related markers in a biological sample comprises labeling a component of the biological sample.

[0064] In various embodiments of any of the methods of the invention, the step of detecting or determining a level of one or more prostate cancer related markers in a biological sample comprises processing the biological sample.

[0065] In various embodiments of any of the methods of the invention, the step of detecting or determining a level of one or more prostate cancer related markers in a biological sample comprises contacting a prostate cancer related marker to be detected with a prostate cancer related marker binding agent.

[0066] In various embodiments of any of the methods of the invention, the step of detecting or determining a level of one or more prostate cancer related markers in a biological sample comprises forming a complex between a prostate cancer related marker to be detected and a prostate cancer related marker binding agent.

[0067] In various embodiments of any of the methods of the invention, the step of detecting or determining a level of one or more prostate cancer related markers in a biological sample comprises contacting each of the one or more prostate cancer related markers with a prostate cancer related marker binding agent.

[0068] In various embodiments of any of the methods of the invention, the step of detecting or determining a level of one or more prostate cancer related markers in a biological sample comprises forming a complex between each of the one or more prostate cancer related markers and a prostate cancer related marker binding agent.

[0069] In various embodiments of any of the methods of the invention, the step of detecting or determining a level of one or more prostate cancer related markers in a biological sample comprises attaching a prostate cancer related marker to be detected to a solid surface.

[0070] In yet another aspect, the invention provides a panel of reagents for use in a detection method, the panel comprising at least two detection reagents, wherein each detection reagent is specific for the detection of at least one prostate cancer related marker of a set of prostate cancer related markers, wherein the set of prostate cancer specific markers comprises two or more prostate cancer related markers selected from the group consisting of filamin B, LY9, keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, tubulin-beta 3 and PSA.

[0071] In certain embodiments, the set of prostate cancer specific markers comprises two or more prostate cancer related markers selected from the group consisting of filamin B, LY9, and keratin 19. In certain embodiments, the two or more prostate cancer related markers is: filamin B and LY9; filamin B and keratin 19; LY9 and keratin 19; or filamin B, LY9, and keratin 19.

[0072] In certain embodiments, the set of prostate cancer specific markers comprises two or more prostate cancer

related markers selected from the group consisting of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, and tubulin beta-3. In certain embodiments, the set of prostate cancer specific markers comprises two or more prostate cancer related markers selected from the group consisting of keratin 7, keratin 8, and keratin 15. In certain embodiments, the set of prostate cancer specific markers comprises keratin 7 and keratin 15.

[0073] In certain embodiments, the set of prostate cancer specific markers further comprises PSA. In certain embodiments, the panel of reagents comprises a detection reagent specific for the detection of PSA.

[0074] In yet another aspect, the invention provides for the use of any of the foregoing panels of the invention in any of the methods provided by the invention.

[0075] In still another aspect, the invention provides a kit for the diagnosis, monitoring, or characterization of an abnormal prostate state, comprising: at least one reagent specific for the detection of a level of at least one prostate cancer related marker selected from the group consisting of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, and tubulin-beta 3, filamin B, and LY9.

[0076] In certain embodiments, the kit further comprises instructions for the diagnosis, monitoring, or characterization of an abnormal prostate state based on the level of the at least one prostate cancer related marker selected from the group consisting of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, and tubulin-beta 3, filamin B, and LY9 detected.

[0077] In certain embodiments, the kit further comprises instructions to detect the level of PSA in a sample in which the at least one prostate cancer related marker selected from the group consisting of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, and tubulin-beta 3, filamin B, and LY9 is detected.

[0078] In certain embodiments, the kit further comprises at least one reagent specific for the detection of a level of PSA.

[0079] In one embodiment, the invention provides a kit comprising at least one reagent specific for the detection of a level of at least one prostate cancer related marker selected from the group consisting of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, tubulin-beta 3, filamin B, and LY9 and at least one reagent specific for the detection of a level of PSA.

[0080] Further, the invention provides methods for diagnosing prostate cancer comprising determining a level of expression of one or more (e.g., 1, 2, 3, 4, 5, 6, 7, 8, or 9) markers selected from the group consisting of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, tubulin-beta 3, filamin B (FLNB), and lymphocyte antigen 9 (LY9) in a biological sample obtained from a subject; and comparing the level of expression of the one or more markers in the biological sample obtained from the subject with the level of expression of the corresponding one or more markers in a control sample, wherein a modulation in the level of expression of the one or more markers in the biological sample is an indication that the subject is afflicted with prostate cancer. In certain embodiments, an increase in the level of expression of filamin B (FLNB), lymphocyte antigen 9 (LY9), or keratin 19 in the biological sample as compared to a normal control sample is an indication that the subject is afflicted with prostate cancer.

[0081] The invention further provides methods prognosing whether a subject is predisposed to developing prostate cancer, the method comprising determining the level of expres-

sion of one or more (e.g., 1, 2, 3, 4, 5, 6, 7, 8, or 9) markers selected from the group consisting of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, tubulin-beta 3, filamin B (FLNB), and lymphocyte antigen 9 (LY9) present in a biological sample obtained from the subject; and comparing the level of expression of the one or more markers present in the biological sample obtained from the subject with the level of expression of the corresponding markers in a control sample, wherein a modulation in the level of expression of the one or more markers in the biological sample obtained from the subject with the level of expression of the corresponding marker in a control sample is an indication that the subject is predisposed to developing prostate cancer. In certain embodiments, an increase in the level of expression of filamin B (FLNB), lymphocyte antigen 9 (LY9), or keratin 19 in the biological sample as compared to a normal control sample is an indication that the subject is predisposed to prostate cancer.

[0082] The invention further provides methods for monitoring the treatment of prostate cancer in a subject, the methods comprising determining a level of expression of one or more (e.g., 1, 2, 3, 4, 5, 6, 7, 8, or 9) markers selected from the group consisting of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, tubulin-beta 3, filamin B (FLNB), and lymphocyte antigen 9 (LY9) present in a first sample obtained from the subject prior to administering at least a portion of a treatment regimen to the subject; determining a level of expression of a corresponding one or more markers in a second sample obtained from the subject following administration of at least a portion of the treatment regimen to the subject; and comparing the level of expression of the one or more markers in the first sample with the expression level of the corresponding one or more markers in the second sample, wherein a modulation in the level of expression of the one or more markers in the second sample as compared to the one or more markers in the first sample is an indication of a modulation in prostate cancer status in the subject. In certain embodiments, a decrease in the level of expression of filamin B (FLNB), lymphocyte antigen 9 (LY9), or keratin 19 in the biological sample as compared to the control sample is an indication that the subject is responding to treatment for prostate cancer.

[0083] In certain embodiments, methods of diagnosing, prognosing, and monitoring the treatment of prostate cancer by detecting the level of one or more (e.g., 1, 2, 3, 4, 5, 6, 7, 8, or 9) markers selected from the group consisting of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, tubulin-beta 3, filamin B (FLNB), and lymphocyte antigen 9 (LY9) further include detection of prostate specific antigen (PSA) for the diagnosing, prognosing, and monitoring the treatment of prostate cancer.

[0084] The invention also provides methods for diagnosing prostate cancer comprising determining a level of expression of keratin 7 or keratin 15 in a biological sample obtained from a subject; and comparing the level of expression of keratin 7 or keratin 15 in the biological sample obtained from the subject with the level of expression of keratin 7 or keratin 15 in a control sample, wherein a modulation in the level of expression of keratin 7 or keratin 15 in the biological sample as compared to the control sample is an indication that the subject is afflicted with prostate cancer.

[0085] The invention provides methods of prognosing whether a subject is predisposed to developing prostate cancer, the method comprising determining the level of expression of keratin 7 or keratin 15 present in a biological sample

obtained from the subject; and comparing the level of expression of keratin 7 or keratin 15 present in the biological sample obtained from the subject with the level of expression of keratin 7 or keratin 15 in a control sample, wherein a modulation in the level of expression of keratin 7 or keratin 15 in the biological sample obtained from the subject with the level of expression of keratin 7 or keratin 15 in a control sample is an indication that the subject is predisposed to developing prostate cancer.

[0086] The invention provides methods for monitoring the treatment of prostate cancer in a subject, the methods comprising determining a level of expression of keratin 7 or keratin 15 present in a first sample obtained from the subject prior to administering at least a portion of a treatment regimen to the subject; determining a level of expression of keratin 7 or keratin 15 in a second sample obtained from the subject following administration of at least a portion of the treatment regimen to the subject; and comparing the level of expression of keratin 7 or keratin 15 in the first sample with the expression level of keratin 7 or keratin 15 in the second sample, wherein a modulation in the level of expression of keratin 7 or keratin 15 in the second sample as compared to keratin 7 or keratin 15 in the first sample is an indication that the therapy is modulating prostate cancer in the subject.

[0087] The invention also provides methods for diagnosing prostate cancer comprising determining a level of expression of keratin 19 in a biological sample obtained from a subject; and comparing the level of expression of keratin 19 in the biological sample obtained from the subject with the level of expression of keratin 19 in a control sample, wherein an increase in the level of expression of keratin 19 in the biological sample as compared to a normal control sample is an indication that the subject is afflicted with prostate cancer.

[0088] The invention provides methods prognosing whether a subject is predisposed to developing prostate cancer, the method comprising determining the level of expression of keratin 19 present in a biological sample obtained from the subject; and comparing the level of expression of keratin 19 present in the biological sample obtained from the subject with the level of expression of keratin 19 in a control sample, wherein a modulation in the level of expression of keratin 19 in the biological sample obtained from the subject with the level of expression of keratin 19 in a normal control sample is an indication that the subject is predisposed to developing prostate cancer.

[0089] The invention provides methods for monitoring the treatment of prostate cancer in a subject, the methods comprising determining a level of expression of keratin 19 present in a first sample obtained from the subject prior to administering at least a portion of a treatment regimen to the subject; determining a level of expression of keratin 19 in a second sample obtained from the subject following administration of at least a portion of the treatment regimen to the subject; and comparing the level of expression of keratin 19 in the first sample with the expression level of keratin 19 in the second sample, wherein a decrease in the level of expression of keratin 19 in the second sample as compared to keratin 19 in the first sample is an indication that the subject is responding to treatment for prostate cancer.

[0090] In certain embodiments, methods of diagnosing, prognosing, and monitoring the treatment of prostate cancer by detecting the level of keratin 7, 15, or 19 further include detection of filamin B for the diagnosing, prognosing, and monitoring the treatment of prostate cancer. In certain

embodiments, methods of diagnosing, prognosing, and monitoring the treatment of prostate cancer by detecting the level of keratin 7, 15, or 19 further include detection of LY9 for the diagnosing, prognosing, and monitoring the treatment of prostate cancer. In certain embodiments, methods of diagnosing, prognosing, and monitoring the treatment of prostate cancer by detecting the level of keratin 7, 15, or 19 further include detection of PSA for the diagnosing, prognosing, and monitoring the treatment of prostate cancer. In certain embodiments, methods of diagnosing, prognosing, and monitoring the treatment of prostate cancer by detecting the level of keratin 7, 15, or 19 further include detection of filamin B for the diagnosing, prognosing, and monitoring the treatment of prostate cancer. In certain embodiments, methods of diagnosing, prognosing, and monitoring the treatment of prostate cancer by detecting the level of keratin 7, 15, or 19 further include detection of keratin 4 for the diagnosing, prognosing, and monitoring the treatment of prostate cancer. In certain embodiments, methods of diagnosing, prognosing, and monitoring the treatment of prostate cancer by detecting the level of keratin 7, 15, or 19 further include detection of keratin 8 for the diagnosing, prognosing, and monitoring the treatment of prostate cancer. In certain embodiments, methods of diagnosing, prognosing, and monitoring the treatment of prostate cancer by detecting the level of keratin 7, 15, or 19 further include detection of keratin 18 for the diagnosing, prognosing, and monitoring the treatment of prostate cancer. In certain embodiments, methods of diagnosing, prognosing, and monitoring the treatment of prostate cancer by detecting the level of keratin 7, 15, or 19 further include detection of tubulin-beta 3 for the diagnosing, prognosing, and monitoring the treatment of prostate cancer.

[0091] In certain embodiments, keratin 7, 15, or 19 is keratin 7. In certain embodiments, keratin 7, 15, or 19 is keratin 15. In certain embodiments, keratin 7, 15, or 19 is keratin 19. In certain embodiments, keratin 7, 15, or 19 is keratin 7 and 15. In certain embodiments, keratin 7, 15, or 19 is keratin 7 and 19. In certain embodiments, keratin 7, 15, or 19 is keratin 15 and 19. In certain embodiments, keratin 7, 15, or 19 is keratin 7, 15, and 19.

[0092] In certain embodiments, filamin B, LY9, or keratin 19 is filamin B. In certain embodiments, filamin B, LY9, or keratin 19 is LY9. In certain embodiments, filamin B, LY9, or keratin 19 is keratin 19. In certain embodiments, filamin B, LY9, or keratin 19 is filamin B and LY9. In certain embodiments, filamin B, LY9, or keratin 19 is filamin B and keratin 19. In certain embodiments, filamin B, LY9, or keratin 19 is LY9, and keratin 19. In certain embodiments, filamin B, LY9, or keratin 19 is filamin B, LY9, and keratin 19.

[0093] In certain embodiments, the control sample is a sample from a normal subject or normal tissue. In certain embodiments, the control sample is a sample from the same subject from an earlier time point than the biological sample. In certain embodiments, the control sample is a sample from a subject with benign prostatic hyperplasia (BPH).

[0094] In certain embodiments, diagnosing includes differentiating between normal prostate and prostate cancer. In certain embodiments, diagnosing includes differentiating between benign prostate hyperplasia and prostate cancer.

[0095] The invention provides methods of characterizing prostate cancer status in a subject, the method comprising determining the level of expression of one or more (e.g., 1, 2, 3, 4, 5, 6, 7, 8, or 9) markers selected from the group consisting of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18,

keratin 19, tubulin-beta 3, filamin B (FLNB), and lymphocyte antigen 9 (LY9) present in a biological sample obtained from the subject; and comparing the level of expression of the one or more markers present in the biological sample obtained from the subject with the level of expression of the one or more markers in a control sample, wherein the level of expression of the one or more markers in the biological sample obtained from the subject compared to the level of expression of the corresponding marker in a control sample is an indication of the prostate cancer status in the subject.

[0096] The invention provides methods of characterizing prostate cancer status in a subject, the method comprising determining the level of expression of keratin 7, 15, or 19 present in a biological sample obtained from the subject; and comparing the level of expression of keratin 7, 15, or 19 present in the biological sample obtained from the subject with the level of expression of keratin 7, 15, or 19 in a control sample, wherein the level of expression of keratin 7, 15, or 19 in the biological sample obtained from the subject compared to the level of expression of keratin 7, 15, or 19 in a control sample is an indication of the prostate cancer status in the subject.

[0097] In certain embodiments, the methods further comprises detection of the level of expression of prostate specific antigen (PSA) in the biological sample in which the expression level of filamin B or LY9 is detected in the methods of characterization of prostate cancer. In certain embodiments, the method further includes comparing the level of expression of PSA in the biological sample with the level of PSA in a control sample. In certain embodiments, the results from the detection of the expression level of PSA is used in conjunction with the results from detection of the level of one or more (e.g., 1, 2, 3, 4, 5, 6, or 7) markers selected from the group consisting of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, and tubulin-beta 3 in the methods of characterization of prostate cancer.

[0098] In certain embodiments, the control sample is a sample from a normal subject or normal tissue. In certain embodiments, the control sample is a sample from the same subject from an earlier time point than the biological sample. In certain embodiments, the control sample is a sample from a subject with benign prostatic hyperplasia (BPH). In certain embodiments, the control sample is a sample from a subject with androgen dependent prostate cancer. In certain embodiments, the control sample is a sample from a subject with androgen independent prostate cancer. In certain embodiments, the control sample is a sample from a subject with an aggressive prostate cancer. In certain embodiments, the control sample is a sample from a subject with a non-aggressive prostate cancer.

[0099] In certain embodiments of the invention, characterizing includes differentiating between normal prostate and prostate cancer. In certain embodiments, characterizing includes differentiating between benign prostate hyperplasia and prostate cancer. In certain embodiments, characterizing includes differentiating between androgen sensitive and androgen insensitive prostate cancer. In certain embodiments, characterizing includes differentiating between aggressive prostate cancer and non-aggressive prostate cancer. In certain embodiments, characterizing includes differentiating between any two or more of normal prostate, prostate cancer, benign prostate hyperplasia, androgen sensitive prostate cancer, androgen insensitive prostate cancer, aggressive prostate cancer, non-aggressive prostate cancer, meta-

static prostate cancer and non-metastatic prostate cancer. In certain embodiments, characterizing includes detecting a change in status from androgen independent prostate cancer to androgen dependent prostate cancer. In certain embodiments, characterizing includes detecting a change in status from androgen independent prostate cancer to androgen dependent prostate cancer in response prior to a change in response to treatment. In certain embodiments, characterizing includes detecting a change in the size or relative aggressiveness of the prostate cancer. In certain embodiments, characterizing includes detecting a change from non-metastatic to metastatic prostate cancer.

[0100] In certain embodiments of the invention, an increase in the expression level of keratin 19 is an indication of increased pathology of prostate cancer or increased likelihood of developing prostate cancer. In certain embodiments of the invention, a decrease in the expression level of keratin 19 is an indication of decreased pathology of prostate cancer or decreased likelihood of developing prostate cancer. In certain embodiments of the invention, no significant change in the expression level of keratin 19 is an indication of no significant change in prostate cancer status.

[0101] In certain embodiments of the invention, an increase in the expression level of filamin B or LY9 is an indication of increased pathology of prostate cancer or increased likelihood of developing prostate cancer. In certain embodiments of the invention, an decrease in the expression level of filamin B or LY9 is an indication of decreased pathology of prostate cancer or decreased likelihood of developing prostate cancer. In certain embodiments of the invention, no significant change in the expression level of filamin B or LY9 is an indication of no significant change in prostate cancer status.

[0102] In certain embodiments, methods of the invention further comprise obtaining a biological sample from a subject.

[0103] In certain embodiments, methods of the invention further comprise selecting a subject for having or being suspected of having prostate cancer.

[0104] In certain embodiments, methods of the invention further comprise selection of a regimen for treatment of the subject including one or more treatments selected from the group consisting of surgery, radiation, hormone therapy, antibody therapy, therapy with growth factors, cytokines, and chemotherapy.

[0105] In certain embodiments, the method further comprises selection of the one or more specific treatment regimens for the subject based on the results of the methods.

[0106] In certain embodiments, the method further comprises changing the treatment regimen of the subject based on the results of the methods.

[0107] In certain embodiments, the method further comprises a change in hormone based therapy based on monitoring of the subject based on the results of the methods.

[0108] In certain embodiments, the method further comprises not treating the subject with one or more treatments selected from the group consisting of surgery, radiation, hormone therapy, antibody therapy, therapy with growth factors, cytokines, or chemotherapy for an interval prior to performing a subsequent diagnostic, prognostic, or monitoring method provided herein.

[0109] The invention provides methods of treating a subject with prostate cancer by determining a level of expression of one or more (e.g., 1, 2, 3, 4, 5, 6, 7, 8, or 9) markers selected from the group consisting of keratin 4, keratin 7, keratin 8,

keratin 15, keratin 18, keratin 19, tubulin-beta 3, filamin B (FLNB), and lymphocyte antigen 9 (LY9), present in a first sample obtained from the subject having prostate cancer; determining a level of expression of the one or more markers in a second sample obtained from the subject after administration of at least a portion of a treatment for prostate cancer; comparing the level of expression of the one or more markers in the first sample with the expression level of the one or more markers in the second sample, wherein a modulated level of expression of the one or more markers in the second sample as compared to the one or more markers in the first sample is an indication that the subject is an indication of modulation of prostate cancer in the subject; and selecting a treatment for the subject based on the expression level of the one or more (e.g., 1, 2, 3, 4, 5, 6, 7, 8, or 9) markers selected from the group consisting of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, tubulin-beta 3, filamin B (FLNB), and lymphocyte antigen 9 (LY9). For example, a decrease in the level of filamin B, LY9, or keratin 19 is an indication that the subject is responding to treatment. An increase in the level of filamin B, LY9, or keratin 19 is an indication that the subject is not responding to treatment.

[0110] As used herein, modulation is understood as a change in an expression level of a marker, particularly a statistically significant change in an expression level of a marker as compared to an appropriate control. The meaning of an increase or a decrease in an expression level of the marker as compared to a control depends, at least, on the specific identity of the marker and the control used. Such considerations are well understood by those of skill in the art. The meaning of the modulation in the expression level(s) of markers can be determined based on the teachings provided herein.

[0111] In certain embodiments, the treatment method further comprises determining a level of expression of PSA in the first sample and determining a level of expression of PSA in the second sample. In certain embodiments, the treatment of the subject is maintained upon detection of a decrease in the expression level of at least one of filamin B, LY9, keratin 19, or PSA in the second sample, indicating that the subject was responsive to the treatment. In certain embodiments, the treatment of the subject is discontinued upon detection of a decrease in the expression level of at least one of filamin B, LY9, keratin 19, or PSA in the second sample, indicating that disease is no longer present or minimized such that treatment is no longer required. In certain embodiments, a new treatment of the subject is initiated upon detection of a decrease in the expression level of at least one of filamin B, LY9, keratin 19, or PSA in the second sample, e.g., resection after shrinkage of the tumor. In certain embodiments, the treatment of the subject is discontinued upon detection of an increase in the expression level of at least one of filamin B, LY9, keratin 19, or PSA in the second sample, indication of a lack of response or discontinuation of response to the treatment. In certain embodiments, a new treatment of the subject is initiated upon detection of an increase in the expression level of at least one of filamin B, LY9, keratin 19, or PSA in the second sample, e.g., due to lack of response or discontinuation of response to treatment. One of skill in the art can select appropriate methods of treatment of a subject based, at least in part, on his response, or non-response, to treatments being used as determined by the expression level of the markers.

[0112] The invention provides method of selecting a subject with prostate cancer for administration of active treat-

ment, rather than watchful waiting, by determining a level of expression of filamin B, LY9, or keratin 19, present in a first sample obtained from the subject having prostate cancer wherein the subject has not been actively treated for prostate cancer; determining a level of expression of filamin B, LY9, or keratin 19 in a second sample obtained from the subject; comparing the level of expression of filamin B, LY9, or keratin 19 in the first sample obtained at an earlier time point with the expression level of filamin B, LY9, or keratin 19 in the second sample; wherein a decreased level of expression of filamin B, LY9, or keratin 19 in the second sample as compared to filamin B, LY9, or keratin 19 in the first sample is an indication that the subject should not be administered active treatment for prostate cancer; and selecting against active treatment of a subject for prostate cancer.

[0113] The invention also provides methods of selecting a subject with prostate cancer for administration of active treatment by determining a level of expression of one or more (e.g., 1, 2, 3, 4, 5, 6, 7, 8, or 9) markers selected from the group consisting of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, tubulin-beta 3, filamin B (FLNB), and lymphocyte antigen 9 (LY9), present in a first sample obtained from the subject having prostate cancer wherein the subject has not been actively treated for prostate cancer; determining a level of expression of the corresponding one or more markers in a second sample obtained from the subject; comparing the level of expression of the one or more markers in the first sample obtained at an earlier time point with the expression level of the one or more markers in the second sample; wherein an modulated level of expression of the one or more markers in the second sample as compared to the one or more markers in the first sample is considered in determining if a subject should be actively treated for prostate cancer.

[0114] In certain embodiments, actively treating the subject for prostate cancer comprises treating the subject with one or more therapies such as hormone therapy, chemotherapy, radiation therapy, and surgery.

[0115] In certain embodiments, methods of subject selection further comprise determining a level of expression of PSA in the first sample and determining a level of expression of PSA in the second sample. In certain embodiments, a decreased level of expression of PSA in the second sample as compared to the level of expression of PSA in the first sample is an indication that the subject should not be administered active treatment for prostate cancer. In certain embodiments, an increased level of expression of PSA in the second sample as compared to the level of expression of PSA in the first sample is an indication that the subject should be administered active treatment for prostate cancer.

[0116] In certain embodiments of any of the methods provided herein, filamin B or LY9 is understood as filamin B and LY9. In certain embodiments of any of the methods provided herein, filamin B or LY9 is understood as filamin B. In certain embodiments of any of the methods provided herein, filamin B or LY9 is understood as LY9.

[0117] In certain embodiments of any of the methods provided herein, keratin 7, 15, or 19 is understood as keratin 7. In certain embodiments of any of the methods provided herein, keratin 7, 15, or 19 is understood as keratin 15. In certain embodiments of any of the methods provided herein, keratin 7, 15, or 19 is understood as keratin 19. In certain embodiments of any of the methods provided herein, keratin 7, 15, or 19 is understood as keratin 7 and 15. In certain embodiments of any of the methods provided herein, keratin 7, 15, or 19 is

understood as keratin 15 and 19. In certain embodiments of any of the methods provided herein, keratin 7, 15, or 19 is understood as keratin 7 and 19. In certain embodiments of any of the methods provided herein, keratin 7, 15, or 19 is understood as keratin 7, 15, and 19.

[0118] In certain embodiments, one or more markers selected from any group provided herein does not include keratin 4. In certain embodiments, one or more markers selected from any group provided herein does not include keratin 7. In certain embodiments, one or more markers selected from any group provided herein does not include keratin 8. In certain embodiments, one or more markers selected from any group provided herein does not include keratin 15. In certain embodiments, one or more markers selected from any group provided herein does not include keratin 18. In certain embodiments, one or more markers selected from any group provided herein does not include keratin 19. In certain embodiments, one or more markers selected from any group provided herein does not include tubulin-beta 3. In certain embodiments, one or more markers selected from any group provided herein does not include filamin B. In certain embodiments, one or more markers selected from any group provided herein does not include LY9. In certain embodiments, one or more markers selected from any group provided herein does not include PSA.

[0119] In certain embodiments of any of the methods provided herein, the methods further comprising obtaining a biological sample from the subject.

[0120] The invention provides methods of identifying a compound for treating prostate cancer comprising obtaining a test cell; contacting the test cell with a test compound; determining the level of expression of one or more (e.g., 1, 2, 3, 4, 5, 6, 7, 8, or 9) markers selected from the group consisting of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, tubulin-beta 3, filamin B (FLNB), and lymphocyte antigen 9 (LY9) in the test cell; comparing the level of expression of the one or more markers in the test cell with a control cell not contacted by the test compound; and selecting a test compound that modulates the level of expression of the one or more markers in the test cell, thereby identifying a compound for treating a disorder in a subject. In certain embodiments, the methods further include identifying a compound that modulates the level of expression of PSA.

[0121] The invention provides methods of identifying a compound for treating prostate cancer comprising obtaining a test cell; contacting the test cell with a test compound; determining the level of expression of keratin 7, 15, or 19 in the test cell; comparing the level of expression of keratin 7, 15, or 19 in the test cell with a control cell not contacted by the test compound; and selecting a test compound that modulates the level of expression of keratin 7, 15, or 19 in the test cell, thereby identifying a compound for treating a disorder in a subject.

[0122] The invention provides methods of identifying a compound for treating prostate cancer comprising obtaining a test cell; contacting the test cell with a test compound; determining the level of expression of filamin B or LY9 in the test cell; comparing the level of expression of filamin B or LY9 in the test cell with a control cell not contacted by the test compound; and selecting a test compound that modulates the level of expression of filamin B or LY9 in the test cell, thereby identifying a compound for treating a disorder in a subject.

[0123] In certain embodiments, the methods of identifying a compound for treating prostate cancer further include identifying a compound that modulates the level of expression of PSA.

[0124] In certain embodiments, the test cell is contacted with the agent in vitro.

[0125] In certain embodiments, the test cell is contacted with the agent in vivo. In certain embodiments, the test cell is present in a xenogenic model of cancer. In certain embodiments, the test cell is present in an animal model of prostate cancer. In certain embodiments, the level of expression of one or more (e.g., 1, 2, 3, 4, 5, 6, 7, 8, or 9) markers selected from the group consisting of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, tubulin-beta 3, filamin B (FLNB), and lymphocyte antigen 9 (LY9) is detected in the test cell by detection of the expression level of one or more (e.g., 1, 2, 3, 4, 5, 6, 7, 8, or 9) markers selected from the group consisting of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, tubulin-beta 3, filamin B (FLNB), and lymphocyte antigen 9 (LY9) in a biological sample in the organism containing the test cell.

[0126] The invention provides kits for the diagnosis, monitoring, or characterization of prostate cancer comprising at least one reagent specific for the detection of the level of expression of one or more (e.g., 1, 2, 3, 4, 5, 6, 7, 8, or 9) markers selected from the group consisting of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, tubulin-beta 3, filamin B (FLNB), and lymphocyte antigen 9 (LY9) in a sample.

[0127] In certain embodiments, the kit further comprises instructions for the diagnosis, monitoring, or characterization of prostate cancer based on the level of expression of one or more (e.g., 1, 2, 3, 4, 5, 6, 7, 8, or 9) markers selected from the group consisting of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, tubulin-beta 3, filamin B (FLNB), and lymphocyte antigen 9 (LY9). In certain embodiments, the kit includes instructions to detect the level of expression of PSA in the same sample in which the level of expression of one or more (e.g., 1, 2, 3, 4, 5, 6, 7, 8, or 9) markers selected from the group consisting of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, tubulin-beta 3, filamin B (FLNB), and lymphocyte antigen 9 (LY9) is detected. In certain embodiments, the kit includes at least one reagent specific for the detection of the level of expression of PSA. In certain embodiments, the kits include at least one antibody or nucleic acid for binding to one or more (e.g., 1, 2, 3, 4, 5, 6, 7, 8, or 9) markers selected from the group consisting of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, tubulin-beta 3, filamin B (FLNB), and lymphocyte antigen 9 (LY9) for use in the methods provided herein. In certain embodiments, the kit includes at least one antibody or nucleic acid for binding to keratin 7 and one antibody or nucleic acid for binding to keratin 15. In certain embodiments, the kits further include at least one antibody or nucleic acid for binding to PSA for use in the methods provided herein. The kits may further provide instructions for practicing the methods provided herein.

[0128] Where applicable or not specifically disclaimed, any one of the embodiments described herein are contemplated to be able to combine with any other one or more embodiments, even though the embodiments are described under different aspects of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0129] FIG. 1: Schematic representing the underlying principles of the Interrogative Platform Technology provided in WO2012119129.

[0130] FIGS. 2A-C: Causal associations of Keratins, including (A-B) KRT8, KRT18 and (C) KRT19 in human prostate cancer cells as inferred by the Interrogative Platform Technology.

[0131] FIGS. 3A-D: Mechanistic insight into regulation of keratins by mitochondrial function inferred by the Interrogative Platform Technology. (A-B) KRT8-KRT15 association is abolished upon ubidecaronone treatment. Note change of direction of arrow between and positions of KRT7 and KRT15 before treatment (A) and after treatment (B). (C) Tubulin-beta 3 interacts with a number of proteins. (D) Expression levels of keratin 19 in biological samples from subjects with prostate cancer or control samples.

[0132] FIG. 4: Inference of filamin B (FLNB) as a hub of activity in prostate cancer and as a biomarker using the Interrogative Platform Technology provided in WO2012119129.

[0133] FIG. 5: Portion of an inference map showing filamin B is connected directly to LY9, which is, in turn, connected to at least one other marker.

[0134] FIGS. 6A-B: Validation of filamin B levels in human serum samples. Levels of (A) filamin B and (B) PSA were elevated in prostate cancer samples when compared to normal serum. Data represents percent average change, with normal donors set to 100% on a log scale.

[0135] FIG. 7: Validation of LY9 levels in human serum samples. Levels of LY9 were elevated in prostate cancer samples when compared to normal serum. Data represents percent average change, with normal donors set to 100% on a log scale.

[0136] FIGS. 8A-C: Validation of (A) filamin B, (B) LY9, and (C) PSA levels in human serum samples. Data are shown as ng/ml of the marker in serum.

[0137] FIGS. 9A-B: ROC curve analysis of sensitivity and false positive rate (FPR) of PSA, FLNB and the combination of PSA and FLNB (A) and area under the curve values (AUC) calculated (B) based on the analysis. The combination of PSA and FLNB was more sensitive than either marker alone.

[0138] FIGS. 10A-B: ROC curve analysis of PSA, FLNB, LY9 and combinations of PSA, FLNB, and LY9 using linear (A) and non-linear (B) scoring functions. The combination of PSA, LY9, and FLNB was more sensitive than any marker alone.

DETAILED DESCRIPTION OF THE INVENTION

Definitions

[0139] As used herein, each of the following terms has the meaning associated with it in this section.

[0140] A "patient" or "subject" to be treated by the method of the invention can mean either a human or non-human animal, preferably a mammal. By "subject" is meant any animal, including horses, dogs, cats, pigs, goats, rabbits, hamsters, monkeys, guinea pigs, rats, mice, lizards, snakes, sheep, cattle, fish, and birds. A human subject may be referred to as a patient. It should be noted that clinical observations described herein were made with human subjects and, in at least some embodiments, the subjects are human.

[0141] "Therapeutically effective amount" means the amount of a compound that, when administered to a patient

for treating a disease, is sufficient to effect such treatment for the disease, e.g., the amount of such a substance that produces some desired local or systemic effect at a reasonable benefit/risk ratio applicable to any treatment, e.g., is sufficient to ameliorate at least one sign or symptom of the disease, e.g., to prevent progression of the disease or condition, e.g., prevent tumor growth, decrease tumor size, induce tumor cell apoptosis, reduce tumor angiogenesis, prevent metastasis. When administered for preventing a disease, the amount is sufficient to avoid or delay onset of the disease. The "therapeutically effective amount" will vary depending on the compound, its therapeutic index, solubility, the disease and its severity and the age, weight, etc., of the patient to be treated, and the like. For example, certain compounds discovered by the methods of the present invention may be administered in a sufficient amount to produce a reasonable benefit/risk ratio applicable to such treatment. Administration of a therapeutically effective amount of a compound may require the administration of more than one dose of the compound.

[0142] "Preventing" or "prevention" refers to a reduction in risk of acquiring a disease or disorder (i.e., causing at least one of the clinical symptoms of the disease not to develop in a patient that may be exposed to or predisposed to the disease but does not yet experience or display symptoms of the disease). Prevention does not require that the disease or condition never occurs in the subject. Prevention includes delaying the onset or severity of the disease or condition.

[0143] The term "prophylactic" or "therapeutic" treatment refers to administration to the subject of one or more agents or interventions to provide the desired clinical effect. If it is administered prior to clinical manifestation of the unwanted condition (e.g., disease or other unwanted state of the host animal) then the treatment is prophylactic, i.e., it protects the host against developing at least one sign or symptom of the unwanted condition, whereas if administered after manifestation of the unwanted condition, the treatment is therapeutic (i.e., it is intended to diminish, ameliorate, or maintain at least one sign or symptom of the existing unwanted condition or side effects therefrom).

[0144] As used herein, "treatment", particularly "active treatment" refers to performing an intervention to treat prostate cancer in a subject, e.g., reduce at least one of the growth rate, reduction of tumor burden, reduce or maintain the tumor size, or the malignancy (e.g., likelihood of metastasis) of the tumor; or to increase apoptosis in the tumor by one or more of administration of a therapeutic agent, e.g., chemotherapy or hormone therapy; administration of radiation therapy (e.g., pellet implantation, brachytherapy), or surgical resection of the tumor, or any combination thereof appropriate for treatment of the subject based on grade and stage of the tumor and other routine considerations. Active treatment is distinguished from "watchful waiting" (i.e., not active treatment) in which the subject and tumor are monitored, but no interventions are performed to affect the tumor. Watchful waiting can include administration of agents that alter effects caused by the tumor (e.g., incontinence, erectile dysfunction) that are not administered to alter the growth or pathology of the tumor itself.

[0145] The term "therapeutic effect" refers to a local or systemic effect in animals, particularly mammals, and more particularly humans caused by a pharmacologically active substance. The term thus means any substance intended for use in the diagnosis, cure, mitigation, treatment, or prevention of disease, or in the enhancement of desirable physical or

mental development and conditions in an animal or human. A therapeutic effect can be understood as a decrease in tumor growth, decrease in tumor growth rate, stabilization or decrease in tumor burden, stabilization or reduction in tumor size, stabilization or decrease in tumor malignancy, increase in tumor apoptosis, and/or a decrease in tumor angiogenesis.

[0146] The terms “disorders”, “diseases”, and “abnormal state” are used inclusively and refer to any deviation from the normal structure or function of any part, organ, or system of the body (or any combination thereof). A specific disease is manifested by characteristic symptoms and signs, including biological, chemical, and physical changes, and is often associated with a variety of other factors including, but not limited to, demographic, environmental, employment, genetic, and medically historical factors. Certain characteristic signs, symptoms, and related factors can be quantitated through a variety of methods to yield important diagnostic information. As used herein the disorder, disease, or abnormal state is an abnormal prostate state, including benign prostate hyperplasia and cancer, particularly prostate cancer. The abnormal prostate state of prostate cancer can be further subdivided into stages and grades of prostate cancer as provided, for example in Prostate. In: Edge S B, Byrd D R, Compton C C, et al., eds.: AJCC Cancer Staging Manual. 7th ed. New York, N.Y.: Springer, 2010, pp 457-68 (incorporated herein by reference). Further, abnormal prostate states can be classified as one or more of benign prostate hyperplasia (BPH), androgen sensitive prostate cancer, androgen insensitive or resistant prostate cancer, aggressive prostate cancer, non-aggressive prostate cancer, metastatic prostate cancer, and non-metastatic prostate cancer.

[0147] A subject at “increased risk for developing prostate cancer” may or may not develop prostate cancer. Identification of a subject at increased risk for developing prostate cancer should be monitored for additional signs or symptoms of prostate cancer. The methods provided herein for identifying a subject with increased risk for developing prostate cancer can be used in combination with assessment of other known risk factors or signs of prostate cancer including, but not limited to decreased urinary stream, urgency, hesitancy, nocturia, incomplete bladder emptying, and age.

[0148] The term “expression” is used herein to mean the process by which a polypeptide is produced from DNA. The process involves the transcription of the gene into mRNA and the translation of this mRNA into a polypeptide. Depending on the context in which used, “expression” may refer to the production of RNA, or protein, or both.

[0149] The terms “level of expression of a gene”, “gene expression level”, “level of a marker”, and the like refer to the level of mRNA, as well as pre-mRNA nascent transcript(s), transcript processing intermediates, mature mRNA(s) and degradation products, or the level of protein, encoded by the gene in the cell.

[0150] The term “specific identification” is understood as detection of a marker of interest with sufficiently low background of the assay and cross-reactivity of the reagents used such that the detection method is diagnostically useful. In certain embodiments, reagents for specific identification of a marker bind to only one isoform of the marker. In certain embodiments, reagents for specific identification of a marker bind to more than one isoform of the marker. In certain embodiments, reagents for specific identification of a marker bind to all known isoforms of the marker.

[0151] The term “modulation” refers to upregulation (i.e., activation or stimulation), down-regulation (i.e., inhibition or suppression) of a response, or the two in combination or apart. A “modulator” is a compound or molecule that modulates, and may be, e.g., an agonist, antagonist, activator, stimulator, suppressor, or inhibitor.

[0152] The term “control sample,” as used herein, refers to any clinically relevant comparative sample, including, for example, a sample from a healthy subject not afflicted with an oncological disorder, e.g., prostate cancer, or a sample from a subject from an earlier time point, e.g., prior to treatment, an earlier tumor assessment time point, at an earlier stage of treatment. A control sample can be a purified sample, protein, and/or nucleic acid provided with a kit. Such control samples can be diluted, for example, in a dilution series to allow for quantitative measurement of levels of analytes, e.g., markers, in test samples. A control sample may include a sample derived from one or more subjects. A control sample may also be a sample made at an earlier time point from the subject to be assessed. For example, the control sample could be a sample taken from the subject to be assessed before the onset of an oncological disorder, e.g., prostate cancer, at an earlier stage of disease, or before the administration of treatment or of a portion of treatment. The control sample may also be a sample from an animal model, or from a tissue or cell lines derived from the animal model of oncological disorder, e.g., prostate cancer. The level of activity or expression of one or more (e.g., 1, 2, 3, 4, 5, 6, 7, 8, or 9) markers selected from the group consisting of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, tubulin-beta 3, filamin B (FLNB), lymphocyte antigen 9 (LY9), and PSA in a control sample consists of a group of measurements may be determined, e.g., based on any appropriate statistical measure, such as, for example, measures of central tendency including average, median, or modal values. Different from a control is preferably statistically significantly different from a control.

[0153] The term “control level” refers to an accepted or pre-determined level of a marker in a subject sample. A control level can be a range of values. Marker levels can be compared to a single control value, to a range of control values, to the upper level of normal, or to the lower level of normal as appropriate for the assay.

[0154] In one embodiment, the control is a standardized control, such as, for example, a control which is predetermined using an average of the levels of expression of one or more markers from a population of subjects having no cancer, especially subjects having no prostate cancer. In still other embodiments of the invention, a control level of a marker in a non-cancerous sample(s) derived from the subject having cancer. For example, when a biopsy or other medical procedure reveals the presence of cancer in one portion of the tissue, the control level of a marker may be determined using the non-affected portion of the tissue, and this control level may be compared with the level of the marker in an affected portion of the tissue.

[0155] In certain embodiments, the control can be from a subject, or a population of subject, having an abnormal prostate state. For example, the control can be from a subject suffering from benign prostate hyperplasia (BPH), androgen sensitive prostate cancer, androgen insensitive or resistant prostate cancer, aggressive prostate cancer, non-aggressive prostate cancer, metastatic prostate cancer, or non-metastatic prostate cancer. It is understood that not all markers will have different levels for each of the abnormal prostate states listed.

It is understood that a combination of marker levels may be most useful to distinguish between abnormal prostate states, possibly in combination with other diagnostic methods. Further, marker levels in biological samples can be compared to more than one control sample (e.g., normal, abnormal, from the same subject, from a population control). Marker levels can be used in combination with other signs or symptoms of an abnormal prostate state to provide a diagnosis for the subject.

[0156] A control can also be a sample from a subject at an earlier time point, e.g., a baseline level prior to suspected presence of disease, before the diagnosis of a disease, at an earlier assessment time point during watchful waiting, before the treatment with a specific agent (e.g., chemotherapy, hormone therapy) or intervention (e.g., radiation, surgery). In certain embodiments, a change in the level of the marker in a subject can be more significant than the absolute level of a marker, e.g., as compared to control.

[0157] As used herein, a sample obtained at an “earlier time point” is a sample that was obtained at a sufficient time in the past such that clinically relevant information could be obtained in the sample from the earlier time point as compared to the later time point. In certain embodiments, an earlier time point is at least four weeks earlier. In certain embodiments, an earlier time point is at least six weeks earlier. In certain embodiments, an earlier time point is at least two months earlier. In certain embodiments, an earlier time point is at least three months earlier. In certain embodiments, an earlier time point is at least six months earlier. In certain embodiments, an earlier time point is at least nine months earlier. In certain embodiments, an earlier time point is at least one year earlier. Multiple subject samples (e.g., 3, 4, 5, 6, 7, or more) can be obtained at regular or irregular intervals over time and analyzed for trends in changes in marker levels. Appropriate intervals for testing for a particular subject can be determined by one of skill in the art based on ordinary considerations.

[0158] As used herein, “changed as compared to a control” sample or subject is understood as having a level of the analyte or diagnostic or therapeutic indicator (e.g., marker) to be detected at a level that is statistically different than a sample from a normal, untreated, or abnormal state control sample. Changed as compared to control can also include a difference in the rate of change of the level of one or more markers obtained in a series of at least two subject samples obtained over time. Determination of statistical significance is within the ability of those skilled in the art, e.g., the number of standard deviations from the mean that constitute a positive or negative result.

[0159] As used herein, the term “obtaining” is understood herein as manufacturing, purchasing, or otherwise coming into possession of.

[0160] As used herein, “detecting”, “detection”, “determining”, and the like are understood that an assay performed for identification of a specific marker in a sample, e.g., one or more (e.g., 1, 2, 3, 4, 5, 6, 7, 8, or 9) markers selected from the group consisting of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, tubulin-beta 3, filamin B (FLNB), lymphocyte antigen 9 (LY9), and PSA. The amount of marker expression or activity detected in the sample can be none or below the level of detection of the assay or method.

[0161] As used herein, “greater predictive value” is understood as an assay that has significantly greater sensitivity and/or specificity, preferably greater sensitivity and specific-

ity, than the test to which it is compared. The predictive value of a test can be determined using an ROC analysis. In an ROC analysis a test that provides perfect discrimination or accuracy between normal and disease states would have an area under the curve (AUC)=1, whereas a very poor test that provides no better discrimination than random chance would have AUC=0.5. As used herein, a test with a greater predictive value will have a statistically improved AUC as compared to another assay. The assays are preformed in an appropriate subject population.

[0162] The articles “a” and “an” are used herein to refer to one or to more than one (i.e. to at least one) of the grammatical object of the article. By way of example, “an element” means one element or more than one element.

[0163] The term “including” is used herein to mean, and is used interchangeably with, the phrase “including but not limited to.”

[0164] The term “or” is used inclusively herein to mean, and is used interchangeably with, the term “and/or,” unless context clearly indicates otherwise. For example, as used herein, filamin B or LY9 is understood to include filamin B alone, LY9 alone, and the combination of filamin B and LY9.

[0165] The term “such as” is used herein to mean, and is used interchangeably, with the phrase “such as but not limited to.”

[0166] Unless specifically stated or obvious from context, as used herein, the term “about” is understood as within a range of normal tolerance in the art, for example within 2 standard deviations of the mean. About can be understood as within 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.1%, 0.05%, or 0.01% of the stated value. Unless otherwise clear from context, all numerical values provided herein can be modified by the term about.

[0167] The recitation of a listing of chemical group(s) in any definition of a variable herein includes definitions of that variable as any single group or combination of listed groups. The recitation of an embodiment for a variable or aspect herein includes that embodiment as any single embodiment or in combination with any other embodiments or portions thereof.

[0168] Any compositions or methods provided herein can be combined with one or more of any of the other compositions and methods provided herein.

[0169] Ranges provided herein are understood to be shorthand for all of the values within the range. For example, a range of 1 to 50 is understood to include any number, combination of numbers, or sub-range from the group consisting 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50.

[0170] As used herein, “one or more” is understood as each value 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and any value greater than 10.

[0171] Reference will now be made in detail to exemplary embodiments of the invention. While the invention will be described in conjunction with the exemplary embodiments, it will be understood that it is not intended to limit the invention to those embodiments. To the contrary, it is intended to cover alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims.

Keratins

[0172] Keratin 4

[0173] Keratin 4, also known as K4; CK4; CK-4; CYK4, is a member of the keratin gene family. The type II cytokeratins consist of basic or neutral proteins which are arranged in pairs of heterotypic keratin chains coexpressed during differentiation of simple and stratified epithelial tissues. This type II cytokeratin is specifically expressed in differentiated layers of the mucosal and esophageal epithelia with family member KRT13. Mutations in these genes have been associated with White Sponge Nevus, characterized by oral, esophageal, and anal leukoplakia. The type II cytokeratins are clustered in a region of chromosome 12q12-q13.

[0174] As used herein, keratin 4 refers to both the gene and the protein unless clearly indicated otherwise by context. The NCBI Gene ID for human keratin 4 is 3851 and detailed information can be found at www.ncbi.nlm.nih.gov/gene/3851 (incorporated herein by reference in the version available on the filing date of the application to which this application claims priority). *Homo sapiens* keratin 4, GenBank Accession No. NM_002272 amino acid and nucleotide sequences, respectively, are provided in SEQ ID NOS: 1 and 2. (The GenBank number is incorporated herein by reference in the version available on the filing date of the application to which this application claims priority.)

[0175] It is understood that the invention includes the use of any fragments of keratin 4 sequences as long as the fragment can allow for the specific identification of keratin 4. Moreover, it is understood that there are naturally occurring variants of keratin 4 which may or may not be associated with a specific disease state, the use of which are also included in this application.

Keratin 7

[0176] Keratin 7, also known as CK7, K2C7, K7, SCL, CK-7; cytokeratin 7; cytokeratin-7; keratin, 55K type II cytoskeletal; keratin, simple epithelial type I, K7; keratin, type II cytoskeletal 7; keratin-7; sarcolectin; type II mesothelial keratin K7; and type-II keratin Kb7, is a member of the keratin gene family. The type II cytokeratins consist of basic or neutral proteins which are arranged in pairs of heterotypic keratin chains coexpressed during differentiation of simple and stratified epithelial tissues. This type II cytokeratin is specifically expressed in the simple epithelia lining the cavities of the internal organs and in the gland ducts and blood vessels. The genes encoding the type II cytokeratins are clustered in a region of chromosome 12q12-q13. Alternative splicing may result in several transcript variants; however, not all variants have been fully described.

[0177] As used herein, keratin 7 refers to both the gene and the protein unless clearly indicated otherwise by context. The NCBI Gene ID for human keratin 7 is 3855 and detailed information can be found at www.ncbi.nlm.nih.gov/gene/3855 (incorporated herein by reference in the version available on the filing date of the application to which this application claims priority). *Homo sapiens* keratin 7, GenBank Accession No. NM_005556 amino acid and nucleotide sequences, respectively, are provided in SEQ ID NOS: 3 and 4. (The GenBank number is incorporated herein by reference in the version available on the filing date of the application to which this application claims priority.)

[0178] It is understood that the invention includes the use of any fragments of keratin 7 sequences as long as the fragment

can allow for the specific identification of keratin 7. Moreover, it is understood that there are naturally occurring variants of keratin 7 which may or may not be associated with a specific disease state, the use of which are also included in this application.

Keratin 8

[0179] Keratin 8, also known as K8; K8; CK8; CK-8; CYK8; K2C8; CARD2 is a member of the type II keratin family clustered on the long arm of chromosome 12. Type I and type II keratins heteropolymerize to form intermediate-sized filaments in the cytoplasm of epithelial cells. The product of this gene typically dimerizes with keratin 18 to form an intermediate filament in simple single-layered epithelial cells. This protein plays a role in maintaining cellular structural integrity and also functions in signal transduction and cellular differentiation. Mutations in this gene cause cryptogenic cirrhosis. Alternatively spliced transcript variants have been found for this gene.

[0180] As used herein, keratin 8 refers to both the gene and the protein unless clearly indicated otherwise by context. The NCBI Gene ID for human keratin 8 is 3856 and detailed information can be found at www.ncbi.nlm.nih.gov/gene/3856 (incorporated herein by reference in the version available on the filing date of the application to which this application claims priority). *Homo sapiens* keratin 8, variant 1, GenBank Accession No. NM_001256282 amino acid and nucleotide sequences, respectively, are provided in SEQ ID NOS: 5 and 6; and *homo sapiens* keratin 8, variant 3, GenBank Accession No. NM_001256293 amino acid and nucleotide sequences, respectively, are provided in SEQ ID NOS: 7 and 8. (The GenBank numbers are incorporated herein by reference in the version available on the filing date of the application to which this application claims priority.)

[0181] It is understood that the invention includes the use of either one or both of the variants of keratin 8 provided in the sequence listing and any fragments of keratin 8 sequences as long as the fragment can allow for the specific identification of keratin 8. Moreover, it is understood that there are naturally occurring variants of keratin 8 which may or may not be associated with a specific disease state, the use of which are also included in this application.

Keratin 15

[0182] Keratin 15, also known as K15; CK15; K1CO, is a member of the keratin gene family. The keratins are intermediate filament proteins responsible for the structural integrity of epithelial cells and are subdivided into cytokeratins and hair keratins. Most of the type I cytokeratins consist of acidic proteins which are arranged in pairs of heterotypic keratin chains and are clustered in a region on chromosome 17q21.2.

[0183] As used herein, keratin 15 refers to both the gene and the protein unless clearly indicated otherwise by context. The NCBI Gene ID for human keratin 15 is 3866 and detailed information can be found at www.ncbi.nlm.nih.gov/gene/3866 (incorporated herein by reference in the version available on the filing date of the application to which this application claims priority). *Homo sapiens* keratin 15, GenBank Accession No. NM_002275 amino acid and nucleotide sequences, respectively, are provided in SEQ ID NOS: 9 and 10. (The GenBank number is incorporated herein by refer-

ence in the version available on the filing date of the application to which this application claims priority.)

[0184] It is understood that the invention includes the use of any fragments of keratin 15 sequences as long as the fragment can allow for the specific identification of keratin 15. Moreover, it is understood that there are naturally occurring variants of keratin 15 which may or may not be associated with a specific disease state, the use of which are also included in this application.

Keratin 18

[0185] Keratin 18, also known as K18; CYK18, encodes the type I intermediate filament chain keratin 18. Keratin 18, together with its filament partner keratin 8, are perhaps the most commonly found members of the intermediate filament gene family. They are expressed in single layer epithelial tissues of the body. Mutations in this gene have been linked to cryptogenic cirrhosis. Two transcript variants encoding the same protein have been found for this gene.

[0186] As used herein, keratin 15 refers to both the gene and the protein unless clearly indicated otherwise by context. The NCBI Gene ID for human keratin 18 is 3875 and detailed information can be found at www.ncbi.nlm.nih.gov/gene/3875 (incorporated herein by reference in the version available on the filing date of the application to which this application claims priority). *Homo sapiens* keratin 18, variant 1, GenBank Accession No. NM_000224 amino acid and nucleotide sequences, respectively, are provided in SEQ ID NOS: 11 and 12, and *homo sapiens* keratin 18, variant 2, GenBank Accession No. 199187 amino acid and nucleotide sequences, respectively, are provided in SEQ ID NOS: 13 and 14. (The GenBank numbers are incorporated herein by reference in the version available on the filing date of the application to which this application claims priority.)

[0187] It is understood that the invention includes the use of either one or both of the variants of keratin 18 provided in the sequence listing and any fragments of keratin 18 sequences as long as the fragment can allow for the specific identification of keratin 18. Moreover, it is understood that there are naturally occurring variants of keratin 18 which may or may not be associated with a specific disease state, the use of which are also included in this application.

Keratin 19

[0188] Keratin 19, also known as K19; CK19; K1CS, is a member of the keratin gene family. The keratins are intermediate filament proteins responsible for the structural integrity of epithelial cells and are subdivided into cytokeratins and hair keratins. The type I cytokeratins consist of acidic proteins which are arranged in pairs of heterotypic keratin chains. Unlike its related family members, this smallest known acidic cytokeratin is not paired with a basic cytokeratin in epithelial cells. It is specifically expressed in the periderm, the transiently superficial layer that envelopes the developing epidermis. The type I cytokeratins are clustered in a region of chromosome 17q12-q21.

[0189] As used herein, keratin 19 refers to both the gene and the protein unless clearly indicated otherwise by context. The NCBI Gene ID for human keratin 19 is 3880 and detailed information can be found at www.ncbi.nlm.nih.gov/gene/3880 (incorporated herein by reference in the version available on the filing date of the application to which this application claims priority). *Homo sapiens* keratin 19, GenBank

Accession No. NM_002276 amino acid and nucleotide sequences, respectively, are provided in SEQ ID NOS: 15 and 16. (The GenBank number is incorporated herein by reference in the version available on the filing date of the application to which this application claims priority.)

[0190] It is understood that the invention includes the use of any fragments of keratin 19 sequences as long as the fragment can allow for the specific identification of keratin 19. Moreover, it is understood that there are naturally occurring variants of keratin 19 which may or may not be associated with a specific disease state, the use of which are also included in this application.

Tubulin-Beta 3

[0191] Tubulin-beta 3, also known as CDCBM; TUBB4; beta-4; CFEOM3A, is a class III member of the beta tubulin protein family. Beta tubulins are one of two core protein families (alpha and beta tubulins) that heterodimerize and assemble to form microtubules. This protein is primarily expressed in neurons and may be involved in neurogenesis and axon guidance and maintenance. Mutations in this gene are the cause of congenital fibrosis of the extraocular muscles type 3. Alternate splicing results in multiple transcript variants. A pseudogene of this gene is found on chromosome 6.

[0192] As used herein, Tubulin-beta 3 refers to both the gene and the protein unless clearly indicated otherwise by context. The NCBI Gene ID for human Tubulin-beta 3 is 10381 and detailed information can be found at www.ncbi.nlm.nih.gov/gene/10381 (incorporated herein by reference in the version available on the filing date of the application to which this application claims priority). *Homo sapiens* Tubulin-beta 3, variant 2, GenBank Accession No. NM_001197181 amino acid and nucleotide sequences, respectively, are provided in SEQ ID NOS: 17 and 18. *Homo sapiens* Tubulin-beta 3, variant 1, GenBank Accession No. NM_006086 amino acid and nucleotide sequences, respectively, are provided in SEQ ID NOS: 19 and 20. (The GenBank numbers are incorporated herein by reference in the version available on the filing date of the application to which this application claims priority.)

[0193] It is understood that the invention includes the use of any fragments of Tubulin-beta 3 sequences as long as the fragment can allow for the specific identification of Tubulin-beta 3. Moreover, it is understood that there are naturally occurring variants of Tubulin-beta 3 which may or may not be associated with a specific disease state, the use of which are also included in this application.

Filamin B

[0194] Filamin B is also known as filamin-3, beta-filamin, ABP-280 homolog, filamin homolog 1, thyroid autoantigen, actin binding protein 278, actin-binding-like protein, Larsen syndrome 1 (autosomal dominant), AOI; FH1; SCT; TAP; LRS1; TABP; FLN-B; FLN1L; ABP-278; and ABP-280. The gene encodes a member of the filamin family. The encoded protein interacts with glycoprotein Ib alpha as part of the process to repair vascular injuries. The platelet glycoprotein Ib complex includes glycoprotein Ib alpha, and it binds the actin cytoskeleton. Mutations in this gene have been found in several conditions: atelosteogenesis type 1 and type 3; boomerang dysplasia; autosomal dominant Larsen syndrome; and spondylocarpotarsal synostosis syndrome. Multiple

alternatively spliced transcript variants that encode different protein isoforms have been described for this gene.

[0195] As used herein, filamin B refers to both the gene and the protein unless clearly indicated otherwise by context. The NCBI gene ID for filamin B is 2317 and detailed information can be found at www.ncbi.nlm.nih.gov/gene/2317 (incorporated herein by reference in the version available on the filing date of the application to which this application claims priority).

[0196] *Homo sapiens* filamin B, beta (FLNB), RefSeqGene on chromosome 3, locus NG_012801 is shown in SEQ ID NO: 21. *Homo sapiens* filamin B, beta (FLNB), transcript variant 1, GenBank Accession No. NM_001164317.1 amino acid and nucleotide sequences, respectively, are provided in SEQ ID NOS: 22 and 23. *Homo sapiens* filamin B, beta (FLNB), transcript variant 3, GenBank Accession No. NM_001164318.1 amino acid and nucleotide sequences, respectively, are provided in SEQ ID NOS: 24 and 25. *Homo sapiens* filamin B, beta (FLNB), transcript variant 4, GenBank Accession No. NM_001164319.1 amino acid and nucleotide sequences, respectively, are provided in SEQ ID NOS: 26 and 27. *Homo sapiens* filamin B, beta (FLNB), transcript variant 2, GenBank Accession No. NM_001457.3 amino acid and nucleotide sequences, respectively, are provided in SEQ ID NOS: 28 and 29. (Each GenBank number is incorporated herein by reference in the version available on the filing date of the application to which this application claims priority.)

[0197] It is understood that the invention includes the use of any combination of one or more of the filamin B sequences provided in the sequence listing or any fragments thereof as long as the fragment can allow for the specific identification of filamin B. Methods of the invention and reagents can be used to detect single isoforms of filamin B, combinations of filamin β isoforms, or all of the filamin B isoforms simultaneously. Unless specified, filamin B can be considered to refer to one or more isoforms of filamin B, including total filamin B. Moreover, it is understood that there are naturally occurring variants of filamin B, which may or may not be associated with a specific disease state, the use of which are also included in the instant application.

Lymphocyte Antigen 9

[0198] Lymphocyte antigen 9 (LY9) is also known as RP11-312J18.1, CD229, SLAMF3, hly9, mLY9, T-lymphocyte surface antigen Ly-9; and cell surface molecule Ly-9. LY9 belongs to the SLAM family of immunomodulatory receptors (see SLAMF1; MIM 603492) and interacts with the adaptor molecule SAP (SH2D1A; MIM 300490) (Graham et al., 2006).

[0199] As used herein, LY9 refers to both the gene and the protein unless clearly indicated otherwise by context. The NCBI gene ID for LY9 is 4063 and detailed information can be found at www.ncbi.nlm.nih.gov/gene/4063 (incorporated herein by reference in the version available on the filing date of the application to which this application claims priority).

[0200] *Homo sapiens* lymphocyte antigen 9 (LY9), transcript variant 2, GenBank Accession No. NM_001033667 amino acid and nucleotide sequences, respectively, are provided in SEQ ID NOS: 30 and 31. *Homo sapiens* lymphocyte antigen 9 (LY9), transcript variant 3, GenBank Accession No. NM_001261456 amino acid and nucleotide sequences, respectively, are provided in SEQ ID NOS: 32 and 33. *Homo sapiens* lymphocyte antigen 9 (LY9), transcript variant 4,

GenBank Accession No. NM_001261457 amino acid and nucleotide sequences, respectively, are provided in SEQ ID NOS: 34 and 35. *Homo sapiens* lymphocyte antigen 9 (LY9), transcript variant 1, GenBank Accession No. NM_002348 is shown amino acid and nucleotide sequences, respectively, are provided in SEQ ID NOS: 36 and 37. (Each GenBank number is incorporated herein by reference in the version available on the filing date of the application to which this application claims priority.)

[0201] It is understood that the invention includes the use of any combination of one or more of the LY9 sequences provided in the sequence listing or any fragments thereof as long as the fragment can allow for the specific identification of LY9. Methods of the invention and reagents can be used to detect single isoforms of LY9, combinations of LY9 isoforms, or all of the LY9 isoforms simultaneously. Unless specified, LY9 can be considered to refer to one or more isoforms of LY9, including total LY9. Moreover, it is understood that there are naturally occurring variants of LY9, which may or may not be associated with a specific disease state, the use of which are also included in the instant application.

Prostate Specific Antigen

[0202] Prostate-specific antigen (PSA) is also known as kallikrein-3, seminin, P-30 antigen, semenogelase, gamma-seminoprotein, APS, hK3, and KLK2A1. Kallikreins are a subgroup of serine proteases having diverse physiological functions. Growing evidence suggests that many kallikreins are implicated in carcinogenesis and some have potential as novel cancer and other disease biomarkers. This gene is one of the fifteen kallikrein subfamily members located in a cluster on chromosome 19. Its protein product is a protease present in seminal plasma. It is thought to function normally in the liquefaction of seminal coagulum, presumably by hydrolysis of the high molecular mass seminal vesicle protein. Serum level of this protein, called PSA in the clinical setting, is useful in the diagnosis and monitoring of prostatic carcinoma. Alternate splicing of this gene generates several transcript variants encoding different isoforms.

[0203] As used herein, PSA refers to both the gene and the protein, in both processed and unprocessed forms, unless clearly indicated otherwise by context. The NCBI gene ID for PSA is 354 and detailed information can be found at www.ncbi.nlm.nih.gov/gene/354 (incorporated herein by reference in the version available on the filing date of the application to which this application claims priority).

[0204] *Homo sapiens* PSA is located on chromosome 19 at 19q13.41Sequence: NC_000019.9 (51358171.51364020). Four splice variants of human PSA are known: Prostate-specific antigen isoform 3 preproprotein, NM_001030047.1; Prostate-specific antigen isoform 4 preproprotein, NM_001030048.1; Prostate-specific antigen isoform 6 preproprotein, NM_001030050.1; and Prostate-specific antigen isoform 1 preproprotein, NM_001648.2. (Each GenBank number is incorporated herein by reference in the version available on the filing date of the application to which this application claims priority).

[0205] It is understood that the invention includes the use of any combination of one or more of the PSA sequences provided in the sequence listing or any fragments thereof as long as the fragment can allow for the specific identification of PSA. Methods of the invention and reagents can be used to detect single isoforms of PSA, combinations of PSA isoforms, or all of the PSA isoforms simultaneously. Unless

specified, PSA can be considered to refer to one or more isoforms of PSA, including total PSA. Moreover, it is understood that there are naturally occurring variants of PSA, which may or may not be associated with a specific disease state, the use of which are also included in the instant application.

Treatment of Disease States

[0206] The present invention provides methods for use of one or more (e.g., 1, 2, 3, 4, 5, 6, 7, 8, or 9) markers selected from the group consisting of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, tubulin-beta 3, filamin B (FLNB), and lymphocyte antigen 9 (LY9) to treat disease states in a subject, e.g., a mammal, e.g., a human.

[0207] The present invention also provides methods for treatment of a subject with prostate cancer with a therapeutic, e.g., a nucleic acid based therapeutic, that modulates the expression or activity of one or more (e.g., 1, 2, 3, 4, 5, 6, 7, 8, or 9) markers selected from the group consisting of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, tubulin-beta 3, filamin B (FLNB), and lymphocyte antigen 9 (LY9).

[0208] The invention also provides methods for selection and/or administration of known treatment agents, especially hormone based therapies vs. non-hormone based therapies, and aggressive or active treatment vs. "watchful waiting", depending on the detection of a change in the level of one or more (e.g., 1, 2, 3, 4, 5, 6, 7, 8, or 9) markers selected from the group consisting of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, tubulin-beta 3, filamin B (FLNB), and lymphocyte antigen 9 (LY9), as compared to a control. The selection of treatment regimens can further include the detection of PSA to assist in selection of the therapeutic methods. Selection of treatment methods can also include other diagnostic considerations and patient characteristics including results from imaging studies, tumor size or growth rates, risk of poor outcomes, disruption of daily activities, and age.

[0209] As used herein, the term "aggressive oncological disorder", such as aggressive prostate cancer, refers to an oncological disorder involving a fast-growing tumor. An aggressive oncological disorder typically does not respond, responds poorly, or loses response to therapeutic treatment. For example, an prostate cancer may be considered to become an aggressive prostate cancer upon loss of response to hormone therapy, necessitating treatment with chemotherapy, surgery, and/or radiation. As used herein, an aggressive prostate cancer, for example, is one that will likely or has metastasized. As used herein, an aggressive prostate cancer is one that will result in significant changes in quality of life as the tumor grows. Active treatment is therapeutically indicated for an aggressive oncological disorder, e.g., aggressive prostate cancer.

[0210] As used herein, the term "non-aggressive oncological disorder" such as a non-aggressive prostate cancer, refers to an oncological disorder involving a slow-growing tumor. A non-aggressive oncological disorder typically responds favorably or moderately to therapeutic treatment or grows so slowly that immediate treatment is not warranted. A non-aggressive prostate tumor is one that a person skilled in the art, e.g., an oncologist, may decide to not actively treat with routine interventions for the treatment of cancer, e.g., chemotherapy, radiation, surgery, as the active treatment may do more harm than the disease, particularly in an older subject. A non-aggressive prostate tumor is one that a person skilled in

the art may decide to monitor with "watchful waiting" rather than subjecting the person to any active therapeutic interventions to alter the presence or growth of the tumor (e.g., radiation, surgery, chemotherapy, hormone therapy).

Diagnostic/Prognostic Uses of the Invention

[0211] The invention provides methods for diagnosing an abnormal prostate state, e.g., BPH or an oncological disease state, e.g., prostate cancer, in a subject. The invention further provides methods for prognosing or monitoring progression or monitoring response of an abnormal prostate state, e.g., BPH or prostate cancer, to a therapeutic treatment during active treatment or watchful waiting.

[0212] The invention provides, in one embodiment, methods for diagnosing an oncological disorder, e.g., prostate cancer. The methods of the present invention can be practiced in conjunction with any other method used by the skilled practitioner to prognose the occurrence or recurrence of an oncologic disorder and/or the survival of a subject being treated for an oncologic disorder. The diagnostic and prognostic methods provided herein can be used to determine if additional and/or more invasive tests or monitoring should be performed on a subject. It is understood that a disease as complex as an oncological disorder is rarely diagnosed using a single test. Therefore, it is understood that the diagnostic, prognostic, and monitoring methods provided herein are typically used in conjunction with other methods known in the art. For example, the methods of the invention may be performed in conjunction with a morphological or cytological analysis of the sample obtained from the subject, imaging analysis, and/or physical exam. Cytological methods would include immunohistochemical or immunofluorescence detection (and quantitation if appropriate) of any other molecular marker either by itself, in conjunction with other markers. Other methods would include detection of other markers by *in situ* PCR, or by extracting tissue and quantitating other markers by real time PCR. PCR is defined as polymerase chain reaction.

[0213] Methods for assessing tumor progression during watchful waiting or the efficacy of a treatment regimen, e.g., chemotherapy, radiation therapy, surgery, hormone therapy, or any other therapeutic approach useful for treating an oncologic disorder in a subject are also provided. In these methods the amount of marker in a pair of samples (a first sample obtained from the subject at an earlier time point or prior to the treatment regimen and a second sample obtained from the subject at a later time point, e.g., at a later time point when the subject has undergone at least a portion of the treatment regimen) is assessed. It is understood that the methods of the invention include obtaining and analyzing more than two samples (e.g., 3, 4, 5, 6, 7, 8, 9, or more samples) at regular or irregular intervals for assessment of marker levels. Pairwise comparisons can be made between consecutive or non-consecutive subject samples. Trends of marker levels and rates of change of marker levels can be analyzed for any two or more consecutive or non-consecutive subject samples.

[0214] The invention also provides a method for determining whether an oncologic disorder, e.g., prostate cancer, is aggressive. The method comprises determining the amount of a marker present in a sample and comparing the amount to a control amount of the marker present in one or more control samples, as defined in Definitions, thereby determining whether an oncologic disorder is aggressive. Marker levels can be compared to marker levels in samples obtained at

different times from the same subject or marker levels from normal or abnormal prostate state subjects. A rapid increase in the level of marker may be indicative of a more aggressive cancer than a slow increase or no increase or change in the marker level.

[0215] The methods of the invention may also be used to select a compound that is capable of modulating, i.e., decreasing, the aggressiveness of an oncologic disorder, e.g., prostate cancer. In this method, a cancer cell is contacted with a test compound, and the ability of the test compound to modulate the expression and/or activity of a marker in the invention in the cancer cell is determined, thereby selecting a compound that is capable of modulating aggressiveness of an oncologic disorder.

[0216] Using the methods described herein, a variety of molecules, may be screened in order to identify molecules which modulate, e.g., increase or decrease the expression and/or activity of a marker of the invention, i.e., keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, tubulin-beta 3, filamin B (FLNB), and lymphocyte antigen 9 (LY9), optionally in combination with PSA. Compounds so identified can be provided to a subject in order to inhibit the aggressiveness of an oncologic disorder in the subject, to prevent the recurrence of an oncologic disorder in the subject, or to treat an oncologic disorder in the subject.

Markers of the Invention

[0217] The invention relates to markers (hereinafter “biomarkers”, “markers” or “markers of the invention”). The preferred markers of the invention are one or more (e.g., 1, 2, 3, 4, 5, 6, 7, 8, or 9) markers selected from the group consisting of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, tubulin-beta 3, filamin B (FLNB), and lymphocyte antigen 9 (LY9). Methods of the invention also include use of the marker PSA in conjunction with one or more (e.g., 1, 2, 3, 4, 5, 6, 7, 8, or 9) markers selected from the group consisting of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, tubulin-beta 3, filamin B (FLNB), and lymphocyte antigen 9 (LY9).

[0218] The invention provides nucleic acids and proteins (e.g., isolated nucleic acids and isolated proteins or fragments thereof) that are encoded by, or correspond to, the markers (hereinafter “marker nucleic acids” and “marker proteins,” respectively). These markers are particularly useful in screening for the presence of an altered prostate state, e.g., BPH or prostate cancer, in assessing aggressiveness and metastatic potential of an oncologic disorder, assessing the androgen dependent status of an oncological disorder, assessing whether a subject is afflicted with an oncological disorder, identifying a composition for treating an oncological disorder, assessing the efficacy of a compound for treating an oncological disorder, monitoring the progression of an oncological disorder, prognosing the aggressiveness of an oncological disorder, prognosing the survival of a subject with an oncological disorder, prognosing the recurrence of an oncological disorder, and prognosing whether a subject is predisposed to developing an oncological disorder.

[0219] In some embodiments of the present invention, other biomarkers can be used in connection with the methods of the present invention. As used herein, the term "one or more biomarkers" is intended to mean that one or more (e.g., 1, 2, 3, 4, 5, 6, 7, 8, or 9) markers selected from the group consisting of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, tubulin-beta 3, filamin B (FLNB), and lym-

phocyte antigen 9 (LY9), are assayed, optionally in combination with PSA, and, in various embodiments, more than one other biomarker may be assayed, such as two, three, four, five, six, seven, eight, nine, or more biomarkers in the list may be assayed. One or more of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, and keratin 19 can be assayed in combination with one or more of filamin B, LY9, and PSA. Filamin B can be used in conjunction with one or more other biomarkers, e.g., LY9 or PSA, known to be associated with prostate cancer. LY9 can be used in conjunction with one or more other biomarkers, e.g., filamin B or PSA, known to be associated with prostate cancer. That is, any combination of the filamin B and LY9 biomarkers, optionally with PSA can be used, e.g., filamin B; LY9; filamin B and PSA; filamin B and LY9; LY9 and PSA; filamin B, LY9, and PSA; all of which can optionally be combined with other markers, e.g., one or more of keratins 4, 7, 8, 15, 18, 19, or tubulin-beta 3.

[0220] Methods, kits, and panels provided herein include any combination of 1, 2, 3, 4, 5, 6, 7, 8, or 9 markers of the set filamin B, LY9, keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, and tubulin-beta 3. Such combinations include any of the following marker sets:

[0221] Marker sets with one member: filamin B; LY9; keratin 4; keratin 7; keratin 8; keratin 15; keratin 18; keratin 19; and tubulin-beta 3. Any single marker can be used in combination with PSA.

[0222] Marker sets with two members: filamin B, LY9; filamin B, keratin 4; filamin B, keratin 7; filamin B, keratin 8; filamin B, keratin 15; filamin B, keratin 18; filamin B, keratin 19; filamin B, tubulin-beta 3; LY9, keratin 4; LY9, keratin 7; LY9, keratin 8; LY9, keratin 15; LY9, keratin 18; LY9, keratin 19; LY9, tubulin-beta 3; keratin 4, keratin 7; keratin 4, keratin 8; keratin 4, keratin 15; keratin 4, keratin 18; keratin 4, keratin 19; keratin 4, tubulin-beta 3; keratin 7, keratin 8; keratin 7, keratin 15; keratin 7, keratin 18; keratin 7, keratin 19; keratin 7, tubulin-beta 3; keratin 8, keratin 15; keratin 8, keratin 18; keratin 8, keratin 19; keratin 8, tubulin-beta 3; keratin 15, keratin 18; keratin 15, keratin 19; keratin 15, tubulin-beta 3; keratin 18, tubulin-beta 3; keratin 18, keratin 19; and keratin 19, tubulin-beta 3. Any marker set can be used in combination with PSA.

[0223] Marker sets with three members: filamin B, LY9, keratin 4; filamin B, LY9, keratin 7; filamin B, LY9, keratin 8; filamin B, LY9, keratin 15; filamin B, LY9, keratin 18; filamin B, LY9, keratin 19; filamin B, LY9, tubulin-beta 3; filamin B, keratin 4, keratin 7; filamin B, keratin 4, keratin 8; filamin B, keratin 4, keratin 15; filamin B, keratin 4, keratin 18; filamin B, keratin 4, keratin 19; filamin B, keratin 4, tubulin-beta 3; filamin B, keratin 7, keratin 8; filamin B, keratin 7, keratin 15; filamin B, keratin 7, keratin 18; filamin B, keratin 7, keratin 19; filamin B, keratin 7, tubulin-beta 3; filamin B, keratin 8, keratin 15; filamin B, keratin 8, keratin 18; filamin B, keratin 8, keratin 19; filamin B, keratin 8, tubulin-beta 3; filamin B, keratin 15, keratin 18; filamin B, keratin 15, keratin 19; filamin B, keratin 15, tubulin-beta 3; filamin B, keratin 18, keratin 19; filamin B, keratin 18, tubulin-beta 3; filamin B, keratin 19, tubulin-beta 3; LY9, keratin 4, keratin 7; LY9, keratin 4, keratin 8; LY9, keratin 4, keratin 15; LY9, keratin 4, keratin 18; LY9, keratin 4, keratin 19; LY9, keratin 4, tubulin-beta 3; LY9, keratin 7, keratin 8; LY9, keratin 7, keratin 15; LY9, keratin 7, keratin 18; LY9, keratin 7, keratin 19; LY9, keratin 7, tubulin-beta 3; LY9, keratin 8, keratin 15; LY9, keratin 8, keratin 18; LY9, keratin 8, keratin 19; LY9, keratin 8, tubulin-beta 3; LY9, keratin 15, keratin 18; LY9, keratin 15,

keratin 19; LY9, keratin 15, tubulin-beta 3; LY9, keratin 18, keratin 19; LY9, keratin 18, tubulin-beta 3; LY9, keratin 19, tubulin-beta 3; keratin 4, keratin 7, keratin 8; keratin 4, keratin 7, keratin 15; keratin 4, keratin 7, keratin 18; keratin 4, keratin 7, keratin 19; keratin 4, keratin 7, tubulin-beta 3; keratin 4, keratin 8, keratin 15; keratin 4, keratin 8, keratin 18; keratin 4, keratin 8, keratin 19; keratin 4, keratin 8, tubulin-beta 3; keratin 4, keratin 15, keratin 18; keratin 4, keratin 15, keratin 19; keratin 4, keratin 15, tubulin-beta 3; keratin 4, keratin 18, keratin 19; keratin 4, keratin 19, tubulin-beta 3; keratin 7, keratin 8, keratin 15; keratin 7, keratin 8, keratin 18; keratin 7, keratin 8, keratin 19; keratin 7, keratin 8, tubulin-beta 3; keratin 7, keratin 8, tubulin-beta 3; keratin 7, keratin 15, keratin 18; keratin 7, keratin 15, keratin 19; keratin 7, keratin 15, tubulin-beta 3; keratin 7, keratin 18, keratin 19; keratin 7, keratin 18, tubulin-beta 3; keratin 15, keratin 18, keratin 19; keratin 15, keratin 18, tubulin-beta 3; and keratin 18, keratin 19, tubulin-beta 3. Any marker set can be used in combination with PSA.

[0225] Marker sets with five members: keratin 8, keratin 15, keratin 18, keratin 19 tubulin-beta 3; keratin 7, keratin 15, keratin 18, keratin 19 tubulin-beta 3; keratin 7, keratin 8, keratin 18, keratin 19 tubulin-beta 3; keratin 7, keratin 8, keratin 15, keratin 19 tubulin-beta 3; keratin 7, keratin 8, keratin 15, keratin 18 tubulin-beta 3; keratin 7, keratin 8, keratin 15, keratin 18, keratin 19; keratin 4, keratin 15, keratin 18, keratin 19 tubulin-beta 3; keratin 4, keratin 8, keratin 18, keratin 19 tubulin-beta 3; keratin 4, keratin 8, keratin 15,

keratin 7, keratin 8, keratin 18, keratin 19; LY9, keratin 4, keratin 7, keratin 8, keratin 15, tubulin-beta 3; LY9, keratin 4, keratin 7, keratin 8, keratin 15, keratin 19; and LY9, keratin 4, keratin 7, keratin 8, keratin 15, keratin 18. Any marker set can be used in combination with PSA.

and filamin B, LY9, keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19. Any marker set can be used in combination with PSA.

[0229] Marker sets with nine members: filamin B, LY9, keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, and tubulin-beta 3.

[0230] Any marker set can be used in combination with PSA.

[0231] The invention provides for the use of various combinations and sub-combinations of markers. It is understood that any single marker or combination of the markers provided herein can be used in the invention unless clearly indicated otherwise. Further, any single marker or combination of the markers of the invention can be used in conjunction with PSA.

[0232] Throughout the application, one or more of filamin B, LY9 and keratin 19 is understood as any of: filamin B; LY9; keratin 19; filamin B and LY9; filamin B and keratin 19; LY9 and keratin 19; or filamin B, LY9, and keratin 19. Further, any single marker or combination of the markers of the invention can be used in conjunction with PSA.

[0233] Throughout the application, combination of the filamin B and LY9 with PSA is understood as any of filamin B; LY9; filamin B and PSA; filamin B and LY9; LY9 and PSA; filamin B, LY9, and PSA.

[0234] Throughout the application, one or more prostate cancer markers selected from the group consisting of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, and tubulin beta-3 is understood as any of keratin 4; keratin 7; keratin 8; keratin 15; keratin 18; tubulin beta-3; keratin 4 and keratin 7; keratin 4 and keratin 8; keratin 4 and keratin 15; keratin 4 and keratin 18; keratin 4 and tubulin beta-3; keratin 7 and keratin 8; keratin 7 and keratin 15; keratin 7 and keratin 18; keratin and tubulin beta-3; keratin 8 and keratin 15; keratin 8 and keratin 18; keratin 8 and tubulin beta-3; keratin 15 and keratin 18; keratin 15 and tubulin beta-3; keratin 18 and tubulin beta-3; keratin 4, keratin 7 and keratin 8; keratin 4, keratin 7 and keratin 15; keratin 4, keratin 7 and keratin 18; keratin 4, keratin 7 and tubulin beta-3; keratin 4, keratin 8 and keratin 15; keratin 4, keratin 8 and keratin 18; keratin 4, keratin 8 and tubulin beta-3; keratin 4, keratin 15 and keratin 18; keratin 4, keratin 18 and tubulin beta-3; keratin 4, keratin 7, keratin 8 and keratin 15; keratin 4, keratin 7, keratin 8 and keratin 18; keratin 4, keratin 7, keratin 8 and tubulin beta-3; keratin 4, keratin 8 and tubulin beta-3; keratin 4, keratin 15 and keratin 18; keratin 4, keratin 18 and tubulin beta-3; keratin 4, keratin 7, keratin 8 and keratin 15; keratin 4, keratin 7, keratin 8 and keratin 18; keratin 4, keratin 7, keratin 8 and tubulin beta-3; keratin 4, keratin 8 and tubulin beta-3; keratin 4, keratin 15, keratin 18 and tubulin beta-3; keratin 4, keratin 7, keratin 8, keratin 15 and keratin 18; keratin 4, keratin 7, keratin 8, keratin 15, and tubulin beta-3; keratin 4, keratin 7, keratin 8, keratin 18, and tubulin beta-3; keratin 4, keratin 8, keratin 15, keratin 18, and tubulin beta-3; keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, and tubulin beta-3; or keratin 7, keratin 8, keratin 15, keratin 18, and tubulin beta-3. Further, any single marker or combination of the markers of the invention can be used in conjunction with PSA.

[0235] Throughout the application, one or more prostate cancer markers selected from the group consisting of keratin 7, 15, and 19 is understood as any of keratin 7; keratin 15; keratin 19; keratin 7 and 15; keratin 7 and 19; keratin 15 and 19; and keratin 7, 15, and 19. Further, any single marker or combination of the markers of the invention can be used in conjunction with PSA.

[0236] Throughout the application, one or more prostate cancer markers selected from the group consisting of keratin

7, 8, and 15 is understood as any of keratin 7; keratin 8; keratin 15; keratin 7 and 8; keratin 7 and 15; keratin 8 and 15; and keratin 7, 8, and 15. Further, any single marker or combination of the markers of the invention can be used in conjunction with PSA.

[0237] Throughout the application, one or more prostate cancer markers selected from the group consisting of keratin 7 and 15 is understood as any of keratin 7; keratin 15; or keratin 7 and 15. Further, any single marker or combination of the markers of the invention can be used in conjunction with PSA.

[0238] Throughout the application, one or more prostate cancer markers selected from the group consisting of filamin B, LY9, or keratin 19 is understood as any of filamin B; LY9; keratin 19; filamin B and LY9; filamin B and keratin 19; LY9, and keratin 19; and filamin B, LY9, and keratin 19. Further, any single marker or combination of the markers of the invention can be used in conjunction with PSA.

[0239] In certain embodiments, methods of diagnosing, prognosing, and monitoring the treatment of prostate cancer by detecting the level sets of markers including of keratin 7, 15, or 19 and filamin B; keratin 7, 15, 19 or LY9; keratin 7, 15, 19, or PSA; keratin 4, 7, 15, or 19; keratin 7, 8, 15, or 19; keratin 7, 15, 18, or 19; and keratin 7, 15, 19, or tubulin-beta 3.

[0240] A “marker” is a gene whose altered level of expression in a tissue or cell from its expression level in normal or healthy tissue or cell is associated with a disease state, such as an abnormal prostate state. In a preferred embodiment, the marker is detected in a blood sample, e.g., serum or plasma. In one embodiment, the marker is detected in serum. In one embodiment, the marker is detected in plasma. In certain embodiments, the serum or plasma can be further processed to remove abundant blood proteins (e.g., albumin) or proteins that are not marker proteins prior to analysis. A “marker nucleic acid” is a nucleic acid (e.g., mRNA, cDNA) encoded by or corresponding to a marker of the invention. Such marker nucleic acids include DNA (e.g., cDNA) comprising the entire or a partial sequence of any of the nucleic acid sequences provided herein or the complement of such a sequence. The marker nucleic acids also include RNA comprising the entire or a partial sequence of any of the nucleic acid sequences provided herein or the complement of such a sequence, wherein all thymidine residues are replaced with uridine residues. A “marker protein” is a protein encoded by or corresponding to a marker of the invention. A marker protein comprises the entire or a partial sequence of any of the amino acid sequences provided herein. The terms “protein” and “polypeptide” are used interchangeably.

[0241] A “biological sample” or a “subject sample” is a body fluid or tissue in which a prostate cancer related marker may be present. In certain embodiments the sample is blood or a blood product (e.g., serum or plasma). In certain embodiments, the sample is a tissue sample, e.g., a tissue sample from at or near the site of the prostate hyperplasia or tumor, or the suspected prostate hyperplasia or tumor. A tissue sample can be obtained, for example, during biopsy or surgical resection of the prostate. A tissue sample can include one or more of normal tissue, hyperplasia, and cancerous tissue. Methods of distinguishing between such tissue types are known, e.g., histological analysis, immunohistochemical analysis. In certain embodiments, the control sample can be a normal portion of sample tissue removed from a subject.

[0242] An “oncological disorder-associated” body fluid is a fluid which, when in the body of a subject, contacts, or passes through oncological cells or into which cells or proteins shed from oncological cells are capable of passing. Exemplary oncological disorder-associated body fluids include blood fluids (e.g. whole blood, blood serum, blood having platelets removed therefrom), and are described in more detail below. Many oncological disorder-associated body fluids can have oncological cells therein, particularly when the cells are metastasizing. Cell-containing fluids which can contain oncological cells include, but are not limited to, whole blood, blood having platelets removed therefrom, lymph, prostatic fluid, urine, and semen.

[0243] The “normal” level of expression of a marker is the level of expression of the marker in cells of a human subject or patient or a population of subjects not afflicted with an oncological disorder or an abnormal prostate state, e.g., BPH or prostate cancer.

[0244] An “over-expression”, “higher level of expression”, “higher level”, and the like of a marker refers to an expression level in a test sample that is greater than the standard error of the assay employed to assess expression, and is preferably at least 25% more, at least 50% more, at least 75% more, at least two, at least three, at least four, at least five, at least six, at least seven, at least eight, at least nine, or at least ten times the expression level of the marker in a control sample (e.g., sample from a healthy subject not having the marker associated disease, i.e., an abnormal prostate state) and preferably, the average expression level of the marker or markers in several control samples.

[0245] A “lower level of expression” or “lower level” of a marker refers to an expression level in a test sample that is less than 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, or 10% of the expression level of the marker in a control sample (e.g., sample from a healthy subjects not having the marker associated disease, i.e., an abnormal prostate state) and preferably, the average expression level of the marker in several control samples.

[0246] A “transcribed polynucleotide” or “nucleotide transcript” is a polynucleotide (e.g. an mRNA, hnRNA, a cDNA, or an analog of such RNA or cDNA) which is complementary to or having a high percentage of identity (e.g., at least 80% identity) with all or a portion of a mature mRNA made by transcription of a marker of the invention and normal post-transcriptional processing (e.g. splicing), if any, of the RNA transcript, and reverse transcription of the RNA transcript.

[0247] “Complementary” refers to the broad concept of sequence complementarity between regions of two nucleic acid strands or between two regions of the same nucleic acid strand. It is known that an adenine residue of a first nucleic acid region is capable of forming specific hydrogen bonds (“base pairing”) with a residue of a second nucleic acid region which is antiparallel to the first region if the residue is thymine or uracil. Similarly, it is known that a cytosine residue of a first nucleic acid strand is capable of base pairing with a residue of a second nucleic acid strand which is antiparallel to the first strand if the residue is guanine. A first region of a nucleic acid is complementary to a second region of the same or a different nucleic acid if, when the two regions are arranged in an antiparallel fashion, at least one nucleotide residue of the first region is capable of base pairing with a residue of the second region. Preferably, the first region comprises a first portion and the second region comprises a second portion, whereby, when the first and second portions are

arranged in an antiparallel fashion, at least about 50%, and preferably at least about 75%, at least about 90%, or at least about 95% of the nucleotide residues of the first portion are capable of base pairing with nucleotide residues in the second portion. More preferably, all nucleotide residues of the first portion are capable of base pairing with nucleotide residues in the second portion.

[0248] “Identical” or “identity” as used herein, refers to nucleotide sequence similarity between two regions of the same nucleic acid strand or between regions of two different nucleic acid strands. When a nucleotide residue position in both regions is occupied by the same nucleotide residue, then the regions are identical at that position. A first region is identical to a second region if at least one nucleotide residue position of each region is occupied by the same residue. Identity between two regions is expressed in terms of the proportion of nucleotide residue positions of the two regions that are occupied by the same nucleotide residue. By way of example, a region having the nucleotide sequence 5'-AT-TGCC-3' and a region having the nucleotide sequence 5'-TATGGC-3' share 50% identity. Preferably, the first region comprises a first portion and the second region comprises a second portion, whereby, at least about 50%, and preferably at least about 75%, at least about 90%, or at least about 95% of the nucleotide residue positions of each of the portions are occupied by the same nucleotide residue. More preferably, all nucleotide residue positions of each of the portions are occupied by the same nucleotide residue.

[0249] “Proteins of the invention” encompass marker proteins and their fragments; variant marker proteins and their fragments; peptides and polypeptides comprising an at least a 15 amino acid segment of a marker or variant marker protein; and fusion proteins comprising a marker or variant marker protein, or an at least a 15 amino acid segment of a marker or variant marker protein. In certain embodiments, a protein of the invention is a peptide sequence or epitope large enough to permit the specific binding of an antibody to the marker.

[0250] The invention further provides antibodies, antibody derivatives and antibody fragments which specifically bind with the marker proteins and fragments of the marker proteins of the present invention. Unless otherwise specified herein, the terms “antibody” and “antibodies” broadly encompass naturally-occurring forms of antibodies (e.g., IgG, IgA, IgM, IgE) and recombinant antibodies such as single-chain antibodies, chimeric and humanized antibodies and multi-specific antibodies, as well as fragments and derivatives of all of the foregoing, which fragments and derivatives have at least an antigenic binding site. Antibody derivatives may comprise a protein or chemical moiety conjugated to an antibody.

[0251] In certain embodiments, the positive or negative fold change refers to that of any gene described herein.

[0252] As used herein, “positive fold change” refers to “up-regulation” or “increase (of expression)” of a gene that is listed herein.

[0253] As used herein, “negative fold change” refers to “down-regulation” or “decrease (of expression)” of a gene that is listed herein.

[0254] Various aspects of the invention are described in further detail in the following subsections.

Isolated Nucleic Acid Molecules

[0255] One aspect of the invention pertains to isolated nucleic acid molecules, including nucleic acids which encode

a marker protein or a portion thereof. Isolated nucleic acids of the invention also include nucleic acid molecules sufficient for use as hybridization probes to identify marker nucleic acid molecules, and fragments of marker nucleic acid molecules, e.g., those suitable for use as PCR primers for the amplification of a specific product or mutation of marker nucleic acid molecules. As used herein, the term "nucleic acid molecule" is intended to include DNA molecules (e.g., cDNA or genomic DNA) and RNA molecules (e.g., mRNA) and analogs of the DNA or RNA generated using nucleotide analogs. The nucleic acid molecule can be single-stranded or double-stranded, but preferably is double-stranded DNA.

[0256] An "isolated" nucleic acid molecule is one which is separated from other nucleic acid molecules which are present in the natural source of the nucleic acid molecule. In one embodiment, an "isolated" nucleic acid molecule (preferably a protein-encoding sequences) is free of sequences which naturally flank the nucleic acid (i.e., sequences located at the 5' and 3' ends of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived. For example, in various embodiments, the isolated nucleic acid molecule can contain less than about 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb or 0.1 kb of nucleotide sequences which naturally flank the nucleic acid molecule in genomic DNA of the cell from which the nucleic acid is derived. In another embodiment, an "isolated" nucleic acid molecule, such as a cDNA molecule, can be substantially free of other cellular material, or culture medium when produced by recombinant techniques, or substantially free of chemical precursors or other chemicals when chemically synthesized. A nucleic acid molecule that is substantially free of cellular material includes preparations having less than about 30%, 20%, 10%, or 5% of heterologous nucleic acid (also referred to herein as a "contaminating nucleic acid").

[0257] A nucleic acid molecule of the present invention can be isolated using standard molecular biology techniques and the sequence information in the database records described herein. Using all or a portion of such nucleic acid sequences, nucleic acid molecules of the invention can be isolated using standard hybridization and cloning techniques (e.g., as described in Sambrook et al., ed., *Molecular Cloning: A Laboratory Manual*, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989).

[0258] A nucleic acid molecule of the invention can be amplified using cDNA, mRNA, or genomic DNA as a template and appropriate oligonucleotide primers according to standard PCR amplification techniques. The nucleic acid so amplified can be cloned into an appropriate vector and characterized by DNA sequence analysis. Furthermore, nucleotides corresponding to all or a portion of a nucleic acid molecule of the invention can be prepared by standard synthetic techniques, e.g., using an automated DNA synthesizer.

[0259] In another preferred embodiment, an isolated nucleic acid molecule of the invention comprises a nucleic acid molecule which has a nucleotide sequence complementary to the nucleotide sequence of a marker nucleic acid or to the nucleotide sequence of a nucleic acid encoding a marker protein. A nucleic acid molecule which is complementary to a given nucleotide sequence is one which is sufficiently complementary to the given nucleotide sequence that it can hybridize to the given nucleotide sequence thereby forming a stable duplex.

[0260] Moreover, a nucleic acid molecule of the invention can comprise only a portion of a nucleic acid sequence,

wherein the full length nucleic acid sequence comprises a marker nucleic acid or which encodes a marker protein. Such nucleic acids can be used, for example, as a probe or primer. The probe/primer typically is used as one or more substantially purified oligonucleotides. The oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 15, more preferably at least about 25, 50, 75, 100, 125, 150, 175, 200, 250, 300, 350, or 400 or more consecutive nucleotides of a nucleic acid of the invention.

[0261] Probes based on the sequence of a nucleic acid molecule of the invention can be used to detect transcripts or genomic sequences corresponding to one or more markers of the invention. In certain embodiments, the probes hybridize to nucleic acid sequences that traverse splice junctions. The probe comprises a label group attached thereto, e.g., a radioisotope, a fluorescent compound, an enzyme, or an enzyme co-factor. Such probes can be used as part of a diagnostic test kit or panel for identifying cells or tissues which express or mis-express the protein, such as by measuring levels of a nucleic acid molecule encoding the protein in a sample of cells from a subject, e.g., detecting mRNA levels or determining whether a gene encoding the protein or its translational control sequences have been mutated or deleted.

[0262] The invention further encompasses nucleic acid molecules that differ, due to degeneracy of the genetic code, from the nucleotide sequence of nucleic acids encoding a marker protein (e.g., protein having the sequence provided in the sequence listing), and thus encode the same protein.

[0263] It will be appreciated by those skilled in the art that DNA sequence polymorphisms that lead to changes in the amino acid sequence can exist within a population (e.g., the human population). Such genetic polymorphisms can exist among individuals within a population due to natural allelic variation and changes known to occur in cancer. An allele is one of a group of genes which occur alternatively at a given genetic locus. In addition, it will be appreciated that DNA polymorphisms that affect RNA expression levels can also exist that may affect the overall expression level of that gene (e.g., by affecting regulation or degradation).

[0264] As used herein, the phrase "allelic variant" refers to a nucleotide sequence which occurs at a given locus or to a polypeptide encoded by the nucleotide sequence.

[0265] As used herein, the terms "gene" and "recombinant gene" refer to nucleic acid molecules comprising an open reading frame encoding a polypeptide corresponding to a marker of the invention. Such natural allelic variations can typically result in 1-5% variance in the nucleotide sequence of a given gene. Alternative alleles can be identified by sequencing the gene of interest in a number of different individuals. This can be readily carried out by using hybridization probes to identify the same genetic locus in a variety of individuals. Any and all such nucleotide variations and resulting amino acid polymorphisms or variations that are the result of natural allelic variation and that do not alter the functional activity are intended to be within the scope of the invention.

[0266] In another embodiment, an isolated nucleic acid molecule of the invention is at least 15, 20, 25, 30, 40, 60, 80, 100, 150, 200, 250, 300, 350, 400, 450, 550, 650, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000, 2200, 2400, 2600, 2800, 3000, 3500, 4000, 4500, or more nucleotides in length and hybridizes under stringent conditions to a marker nucleic acid or to a nucleic acid encoding a marker protein. As used herein, the term "hybridizes under stringent conditions" is

intended to describe conditions for hybridization and washing under which nucleotide sequences at least 60% (65%, 70%, preferably 75%) identical to each other typically remain hybridized to each other. Such stringent conditions are known to those skilled in the art and can be found in sections 6.3.1-6.3.6 of *Current Protocols in Molecular Biology*, John Wiley & Sons, N.Y. (1989). A preferred, non-limiting example of stringent hybridization conditions are hybridization in 6x sodium chloride/sodium citrate (SSC) at about 45° C., followed by one or more washes in 0.2×SSC, 0.1% SDS at 50-65° C.

Nucleic Acid Therapeutics

[0267] Nucleic acid therapeutics are well known in the art. Nucleic acid therapeutics include both single stranded and double stranded (i.e., nucleic acid therapeutics having a complementary region of at least 15 nucleotides in length that may be one or two nucleic acid strands) nucleic acids that are complementary to a target sequence in a cell. Nucleic acid therapeutics can be delivered to a cell in culture, e.g., by adding the nucleic acid to culture media either alone or with an agent to promote uptake of the nucleic acid into the cell. Nucleic acid therapeutics can be delivered to a cell in a subject, i.e., *in vivo*, by any route of administration. The specific formulation will depend on the route of administration.

[0268] As used herein, and unless otherwise indicated, the term “complementary,” when used to describe a first nucleotide sequence in relation to a second nucleotide sequence, refers to the ability of an oligonucleotide or polynucleotide comprising the first nucleotide sequence to hybridize and form a duplex structure under certain conditions with an oligonucleotide or polynucleotide comprising the second nucleotide sequence, as will be understood by the skilled person. Such conditions can, for example, be stringent conditions, where stringent conditions may include: 400 mM NaCl, 40 mM PIPES pH 6.4, 1 mM EDTA, 50° C. or 70° C. for 12-16 hours followed by washing. Other conditions, such as physiologically relevant conditions as may be encountered inside an organism, can apply. The skilled person will be able to determine the set of conditions most appropriate for a test of complementarity of two sequences in accordance with the ultimate application of the hybridized nucleotides.

[0269] Sequences can be “fully complementary” with respect to each when there is base-pairing of the nucleotides of the first nucleotide sequence with the nucleotides of the second nucleotide sequence over the entire length of the first and second nucleotide sequences. However, where a first sequence is referred to as “substantially complementary” with respect to a second sequence herein, the two sequences can be fully complementary, or they may form one or more, but generally not more than 4, 3 or 2 mismatched base pairs upon hybridization, while retaining the ability to hybridize under the conditions most relevant to their ultimate application. However, where two oligonucleotides are designed to form, upon hybridization, one or more single stranded overhangs as is common in double stranded nucleic acid therapeutics, such overhangs shall not be regarded as mismatches with regard to the determination of complementarity. For example, a dsRNA comprising one oligonucleotide 21 nucleotides in length and another oligonucleotide 23 nucleotides in length, wherein the longer oligonucleotide comprises a sequence of 21 nucleotides that is fully complementary to the

shorter oligonucleotide, may yet be referred to as “fully complementary” for the purposes described herein.

[0270] “Complementary” sequences, as used herein, may also include, or be formed entirely from, non-Watson-Crick base pairs and/or base pairs formed from non-natural and modified nucleotides, in as far as the above requirements with respect to their ability to hybridize are fulfilled. Such non-Watson-Crick base pairs includes, but not limited to, G:U Wobble or Hoogstein base pairing.

[0271] The terms “complementary,” “fully complementary,” and “substantially complementary” herein may be used with respect to the base matching between the sense strand and the antisense strand of a dsRNA, or between an antisense nucleic acid or the antisense strand of dsRNA and a target sequence, as will be understood from the context of their use.

[0272] As used herein, a polynucleotide that is “substantially complementary to at least part of” a messenger RNA (mRNA) refers to a polynucleotide that is substantially complementary to a contiguous portion of the mRNA of interest (e.g., an mRNA encoding filamin B, LY9, a keratin, tubulin-beta 3, or PSA) including a 5' UTR, an open reading frame (ORF), or a 3' UTR. For example, a polynucleotide is complementary to at least a part of filamin B, LY9, a keratin, tubulin-beta 3, or PSA mRNA if the sequence is substantially complementary to a non-interrupted portion of an mRNA encoding filamin B, LY9, a keratin, tubulin-beta 3, or PSA.

[0273] Nucleic acid therapeutics typically include chemical modifications to improve their stability and to modulate their pharmacokinetic and pharmacodynamic properties. For example, the modifications on the nucleotides can include, but are not limited to, LNA, HNA, CeNA, 2'-methoxyethyl, 2'-O-alkyl, 2'-O-allyl, 2'-C—allyl, 2'-fluoro, 2'-deoxy, 2'-hydroxyl, and combinations thereof.

[0274] Nucleic acid therapeutics may further comprise at least one phosphorothioate or methylphosphonate internucleotide linkage. The phosphorothioate or methylphosphonate internucleotide linkage modification may occur on any nucleotide of the sense strand or antisense strand or both (in nucleic acid therapeutics including a sense strand) in any position of the strand. For instance, the internucleotide linkage modification may occur on every nucleotide on the sense strand or antisense strand; each internucleotide linkage modification may occur in an alternating pattern on the sense strand or antisense strand; or the sense strand or antisense strand may contain both internucleotide linkage modifications in an alternating pattern. The alternating pattern of the internucleotide linkage modification on the sense strand may be the same or different from the antisense strand, and the alternating pattern of the internucleotide linkage modification on the sense strand may have a shift relative to the alternating pattern of the internucleotide linkage modification on the antisense strand.

Single Stranded Nucleic Acid Therapeutics

[0275] Antisense nucleic acid therapeutic agent single stranded nucleic acid therapeutics, typically about 16 to 30 nucleotides in length and are complementary to a target nucleic acid sequence in the target cell, either in culture or in an organism. Patents directed to antisense nucleic acids, chemical modifications, and therapeutic uses are provided, for example, in U.S. Pat. No. 5,898,031 related to chemically modified RNA-containing therapeutic compounds, and U.S. Pat. No. 6,107,094 related methods of using these compounds as therapeutic agent. U.S. Pat. No. 7,432,250 related to methods of treating patients by administering single-stranded

chemically modified RNA-like compounds; and U.S. Pat. No. 7,432,249 related to pharmaceutical compositions containing single-stranded chemically modified RNA-like compounds. U.S. Pat. No. 7,629,321 is related to methods of cleaving target mRNA using a single-stranded oligonucleotide having a plurality RNA nucleosides and at least one chemical modification. Each of the patents listed in the paragraph are incorporated herein by reference.

Double Stranded Nucleic Acid Therapeutics

[0276] In many embodiments, the duplex region is 15-30 nucleotide pairs in length. In some embodiments, the duplex region is 17-23 nucleotide pairs in length, 17-25 nucleotide pairs in length, 23-27 nucleotide pairs in length, 19-21 nucleotide pairs in length, or 21-23 nucleotide pairs in length.

[0277] In certain embodiments, each strand has 15-30 nucleotides.

[0278] The RNAi agents that are used in the methods of the invention include agents with chemical modifications as disclosed, for example, in Publications WO 2009/073809 and WO/2012/037254, the entire contents of each of which are incorporated herein by reference.

[0279] An “RNAi agent,” “double stranded RNAi agent,” double-stranded RNA (dsRNA) molecule, also referred to as “dsRNA agent,” “dsRNA”, “siRNA”, “iRNA agent,” as used interchangeably herein, refers to a complex of ribonucleic acid molecules, having a duplex structure comprising two anti-parallel and substantially complementary, as defined below, nucleic acid strands. As used herein, an RNAi agent can also include dsiRNA (see, e.g., US Patent publication 20070104688, incorporated herein by reference). In general, the majority of nucleotides of each strand are ribonucleotides, but as described herein, each or both strands can also include one or more non-ribonucleotides, e.g., a deoxyribonucleotide and/or a modified nucleotide. In addition, as used in this specification, an “RNAi agent” may include ribonucleotides with chemical modifications; an RNAi agent may include substantial modifications at multiple nucleotides. Such modifications may include all types of modifications disclosed herein or known in the art. Any such modifications, as used in a siRNA type molecule, are encompassed by “RNAi agent” for the purposes of this specification and claims.

[0280] The two strands forming the duplex structure may be different portions of one larger RNA molecule, or they may be separate RNA molecules. Where the two strands are part of one larger molecule, and therefore are connected by an uninterrupted chain of nucleotides between the 3'-end of one strand and the 5'-end of the respective other strand forming the duplex structure, the connecting RNA chain is referred to as a “hairpin loop.” Where the two strands are connected covalently by means other than an uninterrupted chain of nucleotides between the 3'-end of one strand and the 5'-end of the respective other strand forming the duplex structure, the connecting structure is referred to as a “linker.” The RNA strands may have the same or a different number of nucleotides. The maximum number of base pairs is the number of nucleotides in the shortest strand of the dsRNA minus any overhangs that are present in the duplex. In addition to the duplex structure, an RNAi agent may comprise one or more nucleotide overhangs. The term “siRNA” is also used herein to refer to an RNAi agent as described above.

[0281] In another aspect, the agent is a single-stranded antisense RNA molecule. An antisense RNA molecule is complementary to a sequence within the target mRNA. Antisense

RNA can inhibit translation in a stoichiometric manner by base pairing to the mRNA and physically obstructing the translation machinery, see Dias, N. et al., (2002) *Mol Cancer Ther* 1:347-355. The antisense RNA molecule may have about 15-30 nucleotides that are complementary to the target mRNA. For example, the antisense RNA molecule may have a sequence of at least 15, 16, 17, 18, 19, 20 or more contiguous nucleotides complementary to the filamin B or LY9 sequences provided herein.

[0282] The term “antisense strand” refers to the strand of a double stranded RNAi agent which includes a region that is substantially complementary to a target sequence (e.g., a human TTR mRNA). As used herein, the term “region complementary to part of an mRNA encoding transthyretin” refers to a region on the antisense strand that is substantially complementary to part of a TTR mRNA sequence. Where the region of complementarity is not fully complementary to the target sequence, the mismatches are most tolerated in the terminal regions and, if present, are generally in a terminal region or regions, e.g., within 6, 5, 4, 3, or 2 nucleotides of the 5' and/or 3' terminus.

[0283] The term “sense strand,” as used herein, refers to the strand of a dsRNA that includes a region that is substantially complementary to a region of the antisense strand.

[0284] The invention also includes molecular beacon nucleic acids having at least one region which is complementary to a nucleic acid of the invention, such that the molecular beacon is useful for quantitating the presence of the nucleic acid of the invention in a sample. A “molecular beacon” nucleic acid is a nucleic acid comprising a pair of complementary regions and having a fluorophore and a fluorescent quencher associated therewith. The fluorophore and quencher are associated with different portions of the nucleic acid in such an orientation that when the complementary regions are annealed with one another, fluorescence of the fluorophore is quenched by the quencher. When the complementary regions of the nucleic acid are not annealed with one another, fluorescence of the fluorophore is quenched to a lesser degree. Molecular beacon nucleic acids are described, for example, in U.S. Pat. No. 5,876,930.

Isolated Proteins and Antibodies

[0285] One aspect of the invention pertains to isolated marker proteins and biologically active portions thereof, as well as polypeptide fragments suitable for use as immunogens to raise antibodies directed against a marker protein or a fragment thereof. In one embodiment, the native marker protein can be isolated from cells or tissue sources by an appropriate purification scheme using standard protein purification techniques. In another embodiment, a protein or peptide comprising the whole or a segment of the marker protein is produced by recombinant DNA techniques. Alternative to recombinant expression, such protein or peptide can be synthesized chemically using standard peptide synthesis techniques.

[0286] An “isolated” or “purified” protein or biologically active portion thereof is substantially free of cellular material or other contaminating proteins from the cell or tissue source from which the protein is derived, or substantially free of chemical precursors or other chemicals when chemically synthesized. The language “substantially free of cellular material” includes preparations of protein in which the protein is separated from cellular components of the cells from which it is isolated or recombinantly produced. Thus, protein that is

substantially free of cellular material includes preparations of protein having less than about 30%, 20%, 10%, or 5% (by dry weight) of heterologous protein (also referred to herein as a "contaminating protein"). When the protein or biologically active portion thereof is recombinantly produced, it is also preferably substantially free of culture medium, i.e., culture medium represents less than about 20%, 10%, or 5% of the volume of the protein preparation. When the protein is produced by chemical synthesis, it is preferably substantially free of chemical precursors or other chemicals, i.e., it is separated from chemical precursors or other chemicals which are involved in the synthesis of the protein. Accordingly such preparations of the protein have less than about 30%, 20%, 10%, 5% (by dry weight) of chemical precursors or compounds other than the polypeptide of interest.

[0287] Biologically active portions of a marker protein include polypeptides comprising amino acid sequences sufficiently identical to or derived from the amino acid sequence of the marker protein, which include fewer amino acids than the full length protein, and exhibit at least one activity of the corresponding full-length protein. Typically, biologically active portions comprise a domain or motif with at least one activity of the corresponding full-length protein. A biologically active portion of a marker protein of the invention can be a polypeptide which is, for example, 10, 25, 50, 100 or more amino acids in length. Moreover, other biologically active portions, in which other regions of the marker protein are deleted, can be prepared by recombinant techniques and evaluated for one or more of the functional activities of the native form of the marker protein.

[0288] Preferred marker proteins are encoded by nucleotide sequences provided in the sequence listing. Other useful proteins are substantially identical (e.g., at least about 40%, preferably 50%, 60%, 70%, 80%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99%) to one of these sequences and retain the functional activity of the corresponding naturally-occurring marker protein yet differ in amino acid sequence due to natural allelic variation or mutagenesis.

[0289] To determine the percent identity of two amino acid sequences or of two nucleic acids, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in the sequence of a first amino acid or nucleic acid sequence for optimal alignment with a second amino or nucleic acid sequence). The amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in the first sequence is occupied by the same amino acid residue or nucleotide as the corresponding position in the second sequence, then the molecules are identical at that position. Preferably, the percent identity between the two sequences is calculated using a global alignment. Alternatively, the percent identity between the two sequences is calculated using a local alignment. The percent identity between the two sequences is a function of the number of identical positions shared by the sequences (i.e., % identity = # of identical positions/total # of positions (e.g., overlapping positions) × 100). In one embodiment the two sequences are the same length. In another embodiment, the two sequences are not the same length.

[0290] The determination of percent identity between two sequences can be accomplished using a mathematical algorithm. A preferred, non-limiting example of a mathematical algorithm utilized for the comparison of two sequences is the algorithm of Karlin and Altschul (1990) *Proc. Natl. Acad. Sci. USA* 87:2264-2268, modified as in Karlin and Altschul

(1993) *Proc. Natl. Acad. Sci. USA* 90:5873-5877. Such an algorithm is incorporated into the BLASTN and BLASTX programs of Altschul, et al. (1990) *J. Mol. Biol.* 215:403-410. BLAST nucleotide searches can be performed with the BLASTN program, score=100, wordlength=12 to obtain nucleotide sequences homologous to a nucleic acid molecules of the invention. BLAST protein searches can be performed with the BLASTP program, score=50, wordlength=3 to obtain amino acid sequences homologous to a protein molecules of the invention. To obtain gapped alignments for comparison purposes, a newer version of the BLAST algorithm called Gapped BLAST can be utilized as described in Altschul et al. (1997) *Nucleic Acids Res.* 25:3389-3402, which is able to perform gapped local alignments for the programs BLASTN, BLASTP and BLASTX. Alternatively, PSI-Blast can be used to perform an iterated search which detects distant relationships between molecules. When utilizing BLAST, Gapped BLAST, and PSI-Blast programs, the default parameters of the respective programs (e.g., BLASTX and BLASTN) can be used. See <http://www.ncbi.nlm.nih.gov>. Another preferred, non-limiting example of a mathematical algorithm utilized for the comparison of sequences is the algorithm of Myers and Miller, (1988) *CABIOS* 4:11-17. Such an algorithm is incorporated into the ALIGN program (version 2.0) which is part of the GCG sequence alignment software package. When utilizing the ALIGN program for comparing amino acid sequences, a PAM120 weight residue table, a gap length penalty of 12, and a gap penalty of 4 can be used. Yet another useful algorithm for identifying regions of local sequence similarity and alignment is the FASTA algorithm as described in Pearson and Lipman (1988) *Proc. Natl. Acad. Sci. USA* 85:2444-2448. When using the FASTA algorithm for comparing nucleotide or amino acid sequences, a PAM120 weight residue table can, for example, be used with a k-tuple value of 2.

[0291] The percent identity between two sequences can be determined using techniques similar to those described above, with or without allowing gaps. In calculating percent identity, only exact matches are counted.

[0292] Another aspect of the invention pertains to antibodies directed against a protein of the invention. In preferred embodiments, the antibodies specifically bind a marker protein or a fragment thereof. The terms "antibody" and "antibodies" as used interchangeably herein refer to immunoglobulin molecules as well as fragments and derivatives thereof that comprise an immunologically active portion of an immunoglobulin molecule, (i.e., such a portion contains an antigen binding site which specifically binds an antigen, such as a marker protein, e.g., an epitope of a marker protein). An antibody which specifically binds to a protein of the invention is an antibody which binds the protein, but does not substantially bind other molecules in a sample, e.g., a biological sample, which naturally contains the protein. Examples of an immunologically active portion of an immunoglobulin molecule include, but are not limited to, single-chain antibodies (scAb), F(ab) and F(ab')₂ fragments.

[0293] An isolated protein of the invention or a fragment thereof can be used as an immunogen to generate antibodies. The full-length protein can be used or, alternatively, the invention provides antigenic peptide fragments for use as immunogens. The antigenic peptide of a protein of the invention comprises at least 8 (preferably 10, 15, 20, or 30 or more) amino acid residues of the amino acid sequence of one of the proteins of the invention, and encompasses at least one

epitope of the protein such that an antibody raised against the peptide forms a specific immune complex with the protein. Preferred epitopes encompassed by the antigenic peptide are regions that are located on the surface of the protein, e.g., hydrophilic regions. Hydrophobicity sequence analysis, hydrophilicity sequence analysis, or similar analyses can be used to identify hydrophilic regions. In preferred embodiments, an isolated marker protein or fragment thereof is used as an immunogen.

[0294] The invention provides polyclonal and monoclonal antibodies. The term "monoclonal antibody" or "monoclonal antibody composition", as used herein, refers to a population of antibody molecules that contain only one species of an antigen binding site capable of immunoreacting with a particular epitope. Preferred polyclonal and monoclonal antibody compositions are ones that have been selected for antibodies directed against a protein of the invention. Particularly preferred polyclonal and monoclonal antibody preparations are ones that contain only antibodies directed against a marker protein or fragment thereof. Methods of making polyclonal, monoclonal, and recombinant antibody and antibody fragments are well known in the art.

Predictive Medicine

[0295] The present invention pertains to the field of predictive medicine in which diagnostic assays, prognostic assays, pharmacogenomics, and monitoring clinical trials are used for prognostic (predictive) purposes to thereby treat an individual prophylactically. Accordingly, one aspect of the present invention relates to diagnostic assays for determining the level of expression of one or more marker proteins or nucleic acids, in order to determine whether an individual is at risk of developing a disease or disorder, such as, without limitation, an oncological disorder, e.g., prostate cancer. Such assays can be used for prognostic or predictive purposes to thereby prophylactically treat an individual prior to the onset of the disorder.

[0296] Yet another aspect of the invention pertains to monitoring the influence of agents (e.g., drugs or other compounds administered either to inhibit an oncological disorder, e.g., prostate cancer, or to treat or prevent any other disorder (i.e. in order to understand any carcinogenic effects that such treatment may have)) on the expression or activity of a marker of the invention in clinical trials. These and other agents are described in further detail in the following sections.

[0297] A. Diagnostic Assays

[0298] An exemplary method for detecting the presence or absence or change of expression level of a marker protein or nucleic acid in a biological sample involves obtaining a biological sample (e.g. an oncological disorder-associated body fluid) from a test subject and contacting the biological sample with a compound or an agent capable of detecting the polypeptide or nucleic acid (e.g., mRNA, genomic DNA, or cDNA). The detection methods of the invention can thus be used to detect mRNA, protein, cDNA, or genomic DNA, for example, in a biological sample *in vitro* as well as *in vivo*.

[0299] Methods provided herein for detecting the presence, absence, change of expression level of a marker protein or nucleic acid in a biological sample include obtaining a biological sample from a subject that may or may not contain the marker protein or nucleic acid to be detected, contacting the sample with a marker-specific binding agent (i.e., one or more marker-specific binding agents) that is capable of forming a complex with the marker protein or nucleic acid to be

detected, and contacting the sample with a detection reagent for detection of the marker—marker-specific binding agent complex, if formed. It is understood that the methods provided herein for detecting an expression level of a marker in a biological sample includes the steps to perform the assay. In certain embodiments of the detection methods, the level of the marker protein or nucleic acid in the sample is none or below the threshold for detection.

[0300] The methods include formation of either a transient or stable complex between the marker and the marker-specific binding agent. The methods require that the complex, if formed, be formed for sufficient time to allow a detection reagent to bind the complex and produce a detectable signal (e.g., fluorescent signal, a signal from a product of an enzymatic reaction, e.g., a peroxidase reaction, a phosphatase reaction, a beta-galactosidase reaction, or a polymerase reaction).

[0301] In certain embodiments, all markers are detected using the same method. In certain embodiments, all markers are detected using the same biological sample (e.g., same body fluid or tissue). In certain embodiments, different markers are detected using various methods. In certain embodiments, markers are detected in different biological samples.

[0302] 1. Protein Detection

[0303] In certain embodiments of the invention, the marker to be detected is a protein. Proteins are detected using a number of assays in which a complex between the marker protein to be detected and the marker specific binding agent would not occur naturally, for example, because one of the components is not a naturally occurring compound or the marker for detection and the marker specific binding agent are not from the same organism (e.g., human marker proteins detected using marker-specific binding antibodies from mouse, rat, or goat). In a preferred embodiment of the invention, the marker protein for detection is a human marker protein. In certain detection assays, the human markers for detection are bound by marker-specific, non-human antibodies, thus, the complex would not be formed in nature. The complex of the marker protein can be detected directly, e.g., by use of a labeled marker-specific antibody that binds directly to the marker, or by binding a further component to the marker-marker-specific antibody complex. In certain embodiments, the further component is a second marker-specific antibody capable of binding the marker at the same time as the first marker-specific antibody. In certain embodiments, the further component is a secondary antibody that binds to a marker-specific antibody, wherein the secondary antibody preferably linked to a detectable label (e.g., fluorescent label, enzymatic label, biotin). When the secondary antibody is linked to an enzymatic detectable label (e.g., a peroxidase, a phosphatase, a beta-galactosidase), the secondary antibody is detected by contacting the enzymatic detectable label with an appropriate substrate to produce a colorimetric, fluorescent, or other detectable, preferably quantitatively detectable, product. Antibodies for use in the methods of the invention can be polyclonal, however, in a preferred embodiment monoclonal antibodies are used. An intact antibody, or a fragment or derivative thereof (e.g., Fab or F(ab')₂) can be used in the methods of the invention. Such strategies of marker protein detection are used, for example, in ELISA, RIA, western blot, and immunofluorescence assay methods.

[0304] In certain detection assays, the marker present in the biological sample for detection is an enzyme and the detection reagent is an enzyme substrate. For example, the enzyme

can be a protease and the substrate can be any protein that includes an appropriate protease cleavage site. Alternatively, the enzyme can be a kinase and the substrate can be any substrate for the kinase. In preferred embodiments, the substrate which forms a complex with the marker enzyme to be detected is not the substrate for the enzyme in a human subject.

[0305] In certain embodiments, the marker-marker-specific binding agent complex is attached to a solid support for detection of the marker. The complex can be formed on the substrate or formed prior to capture on the substrate. For example, in an ELISA, RIA, immunoprecipitation assay, western blot, immunofluorescence assay, in gel enzymatic assay the marker for detection is attached to a solid support, either directly or indirectly. In an ELISA, RIA, or immunofluorescence assay, the marker is typically attached indirectly to a solid support through an antibody or binding protein. In a western blot or immunofluorescence assay, the marker is typically attached directly to the solid support. For in-gel enzyme assays, the marker is resolved in a gel, typically an acrylamide gel, in which a substrate for the enzyme is integrated.

[0306] 2. Nucleic Acid Detection

[0307] In certain embodiments of the invention, the marker is a nucleic acid. Nucleic acids are detected using a number of assays in which a complex between the marker nucleic acid to be detected and a marker-specific probe would not occur naturally, for example, because one of the components is not a naturally occurring compound. In certain embodiments, the analyte comprises a nucleic acid and the probe comprises one or more synthetic single stranded nucleic acid molecules, e.g., a DNA molecule, a DNA-RNA hybrid, a PNA, or a modified nucleic acid molecule containing one or more artificial bases, sugars, or backbone moieties. In certain embodiments, the synthetic nucleic acid is a single stranded is a DNA molecule that includes a fluorescent label. In certain embodiments, the synthetic nucleic acid is a single stranded oligonucleotide molecule of about 12 to about 50 nucleotides in length. In certain embodiments, the nucleic acid to be detected is an mRNA and the complex formed is an mRNA hybridized to a single stranded DNA molecule that is complementary to the mRNA. In certain embodiments, an RNA is detected by generation of a DNA molecule (i.e., a cDNA molecule) first from the RNA template using the single stranded DNA that hybridizes to the RNA as a primer, e.g., a general poly-T primer to transcribe poly-A RNA. The cDNA can then be used as a template for an amplification reaction, e.g., PCR, primer extension assay, using a marker-specific probe. In certain embodiments, a labeled single stranded DNA can be hybridized to the RNA present in the sample for detection of the RNA by fluorescence in situ hybridization (FISH) or for detection of the RNA by northern blot.

[0308] For example, in vitro techniques for detection of mRNA include northern hybridizations, in situ hybridizations, and rtPCR. In vitro techniques for detection of genomic DNA include Southern hybridizations. Techniques for detection of mRNA include PCR, northern hybridizations and in situ hybridizations. Methods include both qualitative and quantitative methods.

[0309] A general principle of such diagnostic, prognostic, and monitoring assays involves preparing a sample or reaction mixture that may contain a marker, and a probe, under appropriate conditions and for a time sufficient to allow the marker and probe to interact and bind, thus forming a com-

plex that can be removed and/or detected in the reaction mixture. These assays can be conducted in a variety of ways known in the art, e.g., ELISA assay, PCR, FISH.

[0310] 3. Detection of Expression Levels

[0311] Marker levels can be detected based on the absolute expression level or a normalized or relative expression level. Detection of absolute marker levels may be preferable when monitoring the treatment of a subject or in determining if there is a change in the prostate cancer status of a subject. For example, the expression level of one or more markers can be monitored in a subject undergoing treatment for prostate cancer, e.g., at regular intervals, such as monthly intervals. A modulation in the level of one or more markers can be monitored over time to observe trends in changes in marker levels. Expression levels of one or more of filamin B, LY9, or keratin 19 in the subject may be higher than the expression level of those markers in a normal sample, but may be lower than the prior expression level, thus indicating a benefit of the treatment regimen for the subject. Similarly, rates of change of marker levels can be important in a subject who is not subject to active treatment for prostate cancer (e.g., watchful waiting). Changes, or not, in marker levels may be more relevant to treatment decisions for the subject than marker levels present in the population. Rapid changes in marker levels in a subject who otherwise appears to have a normal prostate may be indicative of an abnormal prostate state, even if the markers are within normal ranges for the population.

[0312] As an alternative to making determinations based on the absolute expression level of the marker, determinations may be based on the normalized expression level of the marker. Expression levels are normalized by correcting the absolute expression level of a marker by comparing its expression to the expression of a gene that is not a marker, e.g., a housekeeping gene that is constitutively expressed. Suitable genes for normalization include housekeeping genes such as the actin gene, or epithelial cell-specific genes. This normalization allows the comparison of the expression level in one sample, e.g., a patient sample, to another sample, e.g., a non-cancer sample, or between samples from different sources.

[0313] Alternatively, the expression level can be provided as a relative expression level as compared to an appropriate control, e.g., population control, adjacent normal tissue control, earlier time point control, etc. Preferably, the samples used in the baseline determination will be from non-cancer cells. The choice of the cell source is dependent on the use of the relative expression level. Using expression found in normal tissues as a mean expression score aids in validating whether the marker assayed is cancer specific (versus normal cells). In addition, as more data is accumulated, the mean expression value can be revised, providing improved relative expression values based on accumulated data. Expression data from cancer cells provides a means for grading the severity of the cancer state.

Diagnostic, Prognostic, and Treatment Methods

[0314] The invention provides methods for detecting an abnormal prostate state in a subject by

[0315] (1) contacting a biological sample from a subject with a panel of one or more detection reagents wherein each detection reagent is specific for one prostate-cancer related protein; wherein the prostate-cancer related proteins are selected from the prostate-cancer related protein set as fol-

lows: filamin B, LY9, keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, and tubulin-beta 3;

[0316] (2) measuring the amount of each prostate-cancer related marker detected in the biological sample by each detection reagent; and

[0317] (3) comparing the level of expression of the one or more prostate-cancer related protein in the biological sample obtained from the subject with a level of expression of the one or more prostate-cancer related protein in a normal control sample, thereby detecting an abnormal prostate state.

[0318] In certain embodiments, detecting an abnormal prostate state comprises diagnosing prostate cancer status in a subject. In certain embodiments, an abnormal prostate state comprises identifying a predisposed to developing prostate cancer.

[0319] The invention provides methods for monitoring the treatment of prostate cancer in a subject by

[0320] (1) contacting a first biological sample obtained from the subject prior to administering at least a portion of a treatment regimen to the subject with a panel of one or more detection reagents wherein each detection reagent is specific for one prostate-cancer related protein; wherein the prostate-cancer related proteins are selected from the prostate protein set as follows: filamin B, LY9, keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, and tubulin-beta 3;

[0321] (2) contacting a second biological sample obtained from the subject after administering at least a portion of a treatment regimen to the subject with a panel of one or more detection reagents wherein each detection reagent is specific for one prostate-cancer related protein; wherein the prostate-cancer related proteins are selected from the prostate protein set as follows: filamin B, LY9, keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, and tubulin-beta 3;

[0322] (3) measuring the amount of prostate-cancer related marker detected in each the first biological sample and the second biological sample by each detection reagent; and

[0323] (4) comparing the level of expression of the one or more prostate-cancer related markers in the first sample with the expression level of the one or more prostate-cancer related markers in the second sample, thereby monitoring the treatment of prostate cancer in the subject.

[0324] The invention provides method of selecting for administration of active treatment or against administration of active treatment of prostate cancer in a subject by

[0325] (1) contacting a first biological sample obtained from the subject prior to administering a treatment regimen to the subject with a panel of one or more detection reagents wherein each detection reagent is specific for one prostate-cancer related protein; wherein the prostate-cancer related proteins are selected from the prostate protein set as follows: filamin B, LY9, keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, and tubulin-beta 3;

[0326] (2) contacting a second biological sample obtained from the subject prior to administering a treatment regimen to the subject with a panel of one or more detection reagents wherein each detection reagent is specific for one prostate-cancer related protein; wherein the prostate-cancer related proteins are selected from the prostate protein set as follows: filamin B, LY9, keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, and tubulin-beta 3;

[0327] (3) measuring the amount of prostate-cancer related marker detected in each the first biological sample and the second biological sample by each detection reagent; and

[0328] (4) comparing the level of expression of the one or more prostate-cancer related markers in the first sample with the expression level of the one or more prostate-cancer related markers in the second sample, wherein selecting for administration of active treatment or against administration of active treatment of prostate cancer is based on the presence or absence of changes in the level of expression of one or more markers between the first sample and the second sample.

[0329] In certain embodiments of the diagnostic and monitoring methods provided herein, one or more prostate-cancer related markers is two or more markers. In certain embodiments of the diagnostic and monitoring methods provided herein, one or more prostate-cancer related markers is three or more markers. In certain embodiments of the diagnostic and monitoring methods provided herein, one or more prostate-cancer related markers is four or more markers. In certain embodiments of the diagnostic and monitoring methods provided herein, one or more prostate-cancer related markers is five or more markers. In certain embodiments of the diagnostic and monitoring methods provided herein, one or more prostate-cancer related markers is six or more markers. In certain embodiments of the diagnostic and monitoring methods provided herein, one or more prostate-cancer related markers is seven or more markers. In certain embodiments of the diagnostic and monitoring methods provided herein, one or more prostate-cancer related markers is eight or more markers. In certain embodiments of the diagnostic and monitoring methods provided herein, one or more prostate-cancer related markers is nine or more markers.

[0330] In certain embodiments of the diagnostic methods provided herein, an increase in the level of expression of one or more prostate-cancer related markers selected from the group consisting of filamin B, LY9, and keratin 19 in the biological sample as compared to the level of expression of the one or more prostate-cancer related markers in a normal control sample is an indication that the subject is afflicted with prostate cancer. In certain embodiments of the diagnostic methods provided herein, no increase in the detected expression level of one or more of filamin B, LY9, and keratin 19 in the biological sample as compared to the expression level in a normal control sample is an indication that the subject is not afflicted with prostate cancer or not predisposed to developing prostate cancer.

[0331] In certain embodiments of the diagnostic methods provided herein, an increase in the level of expression of one or more prostate-cancer related markers selected from the group consisting of filamin B, LY9, and keratin 19 in the biological sample as compared to the level of expression of the one or more prostate-cancer related markers in a normal control sample is an indication that the subject is predisposed to developing prostate cancer.

[0332] In certain embodiments of the monitoring methods provided herein, no increase in the detected level of expression of any of the one or more prostate-cancer related markers selected from the group consisting of filamin B, LY9, and keratin 19 in the second sample as compared to the level of expression of the one or more prostate-cancer related markers in the first sample is an indication that the therapy is efficacious for treating prostate cancer in the subject. In certain embodiments the monitoring methods provided herein, further comprise comparing the level of expression of one or more prostate-cancer related markers selected from the group consisting of filamin B, LY9, and keratin 19 in the first sample or the level of expression of one or more prostate-cancer

related markers selected from the group consisting of filamin B, LY9, and keratin 19 in the second sample with the expression of the one or more prostate-cancer related markers in a control sample.

[0333] In certain embodiments of the monitoring methods provided herein, an increase in the level of expression of the one or more prostate-cancer related markers selected from the group consisting of filamin B, LY9, and keratin 19 in the second sample as compared to the level of expression of the one or more prostate-cancer related markers in the first sample is an indication for selection of active treatment of prostate cancer in the subject. In certain embodiments of the monitoring methods provided herein, no increase in the detected level of expression of any of the one or more prostate-cancer related markers selected from the group consisting of filamin B, LY9, and keratin 19 in the second sample as compared to the level of expression of the one or more prostate-cancer related markers in the first sample is an indication against selection of active treatment of prostate cancer in the subject. In certain embodiments of the monitoring methods provided herein, wherein an increased expression level of one or more of filamin B, LY9, and keratin 19 in the second sample as compared to the expression level in the first sample is an indication that the therapy is not efficacious in the treatment of prostate cancer.

[0334] In certain embodiments of the diagnostic and monitoring methods provided herein, the one or more prostate-cancer related markers is selected from the group of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, and tubulin beta-3. In certain embodiments of the diagnostic and monitoring methods provided herein, the one or more prostate-cancer related markers is selected from the group of keratin 7, keratin 8, and keratin 15. In certain embodiments of the diagnostic and monitoring methods provided herein, the one or more prostate-cancer related markers is selected from the group of keratin 7, keratin 15, and keratin 19. In certain embodiments of the diagnostic and monitoring methods provided herein, the one or more prostate-cancer related markers is keratin 7 or keratin 15. In certain embodiments of the diagnostic and monitoring methods provided herein, the one or more prostate-cancer related markers selected from the group consisting of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, and tubulin beta-3 in the biological sample is compared to the level of the one or more prostate-cancer related markers in a normal control sample is indicative of a modulation in prostate cancer status.

[0335] In certain embodiments of the monitoring methods provided herein, modulation of the level of expression of the one or more prostate-cancer related markers selected from the group consisting of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, and tubulin beta-3 in the second sample as compared to the level of expression of the one or more prostate-cancer related markers selected from the group consisting of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, and tubulin beta-3 in the first sample is indicative of a change in prostate cancer status in response to treatment of the prostate cancer in the subject. In certain embodiments of the monitoring methods provided herein, the methods further comprise comparing the level of expression of one or more prostate-cancer related markers selected from the group consisting of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, and tubulin beta-3 in the first sample; or the level of expression of one or more prostate-cancer related markers selected from the group consisting of keratin 4, keratin 7, keratin 8, keratin 15,

keratin 18, and tubulin beta-3 in the second sample to the level of expression of one or more prostate-cancer related markers in a normal control sample.

[0336] In certain embodiments the diagnostic methods provided herein further comprise detecting the level of expression of prostate specific antigen (PSA) in the biological sample and preferably further comprise comparing the level of expression of PSA in the biological sample to a PSA expression level in a normal control sample. In certain embodiments, the combination of PSA level with one or more of the prostate-cancer maker levels increases the predictive value of the method.

[0337] In certain embodiments the monitoring methods provided herein further comprise detecting the level of expression of prostate specific antigen (PSA) in the first sample and the second sample, and preferably further comprising comparing the level of expression of PSA in the first sample with the level of expression of PSA in the second sample. In certain monitoring methods, the change in PSA level in combination with the change in prostate-cancer maker level increases the predictive value of the method.

[0338] In certain embodiments the diagnostic and monitoring methods provided herein further comprise comparing the detected level of the one or more prostate markers in the biological samples with one or more control samples wherein the control sample is one or more of a sample from the same subject at an earlier time point than the biological sample, a sample from a subject with benign prostatic hyperplasia (BPH), a sample from a subject with non-metastatic prostate cancer, a sample from a subject with metastatic prostate cancer, a sample from a subject with androgen sensitive prostate cancer, a sample from a subject with androgen insensitive prostate cancer, a sample from a subject with aggressive prostate cancer, and sample obtained from a subject with non-aggressive prostate cancer. Comparison of the marker levels in the biological samples with control samples from subjects with various normal and abnormal prostate states facilitates the differentiation between various prostate states including normal prostate and prostate cancer, benign prostate hyperplasia and prostate cancer, benign prostate hyperplasia and normal prostate, androgen dependent and androgen independent prostate cancer, aggressive prostate cancer and non-aggressive prostate cancer, aggressive prostate cancer and non-aggressive prostate cancer, or between any two or more prostate states including normal prostate, prostate cancer, benign prostate hyperplasia, androgen dependent prostate cancer, androgen independent prostate cancer, aggressive prostate cancer, non-aggressive prostate cancer, metastatic prostate cancer, and non-metastatic prostate cancer.

[0339] In certain embodiments the diagnostic and monitoring methods provided herein further comprising detecting the size of the prostate tumor in the subject. In certain embodiments the monitoring methods provided herein further comprise detecting a change in the size or relative aggressiveness of the tumor. In certain embodiments, the size of the prostate tumor in the subject is detected prior to administering the at least a portion of a treatment regimen to the subject. In certain embodiments, the size of the prostate tumor in the subject is detected after administering the at least a portion of a treatment regimen to the subject. Certain monitoring methods, further comprise comparing the size of the prostate tumor in the subject prior to administering the at least a portion of a treatment regimen to the subject to the size of the prostate

tumor in the subject after administering the at least a portion of a treatment regimen to the subject.

[0340] In certain embodiments the diagnostic and monitoring methods provided herein further comprising obtaining a subject sample.

[0341] In certain embodiments the diagnostic and monitoring methods provided herein further comprising selecting a treatment regimen for the subject based on the level expression of one or more of the prostate-cancer related markers provided in claims 1.

[0342] In certain embodiments the diagnostic and monitoring methods provided herein further comprising selecting a subject for having or being suspected of having prostate cancer.

[0343] In certain embodiments the diagnostic and monitoring methods provided herein further comprising treating the subject with a regimen including one or more treatments selected from the group consisting of surgery, radiation, hormone therapy, antibody therapy, therapy with growth factors, cytokines, and chemotherapy.

[0344] In certain embodiments the diagnostic and monitoring methods provided herein further comprising selecting the one or more specific treatment regimens for the subject based on the results of the diagnostic and monitoring methods provided herein. In certain embodiments, the treatment method is maintained based on the results from the diagnostic or prognostic methods. In certain embodiments, the treatment method is changed based on the results from the diagnostic or prognostic methods.

[0345] In certain embodiments, a change the treatment regimen comprises changing a hormone based therapy treatment. In certain embodiments, treatments for prostate cancer include one or more of surgery, radiation, hormone therapy, antibody therapy, therapy with growth factors, cytokines, or chemotherapy based on the results of a method of any one of claims 1-64 for an interval prior to performing a subsequent diagnostic, prognostic, or monitoring method provided herein.

[0346] In certain embodiments of the diagnostic and monitoring methods provided herein, the method of detecting a level comprises isolating a component of the biological sample.

[0347] In certain embodiments of the diagnostic and monitoring methods provided herein, the method of detecting a level comprises labeling a component of the biological sample.

[0348] In certain embodiments of the diagnostic and monitoring methods provided herein, the method of detecting a level comprises amplifying a component of a biological sample.

[0349] In certain embodiments of the diagnostic and monitoring methods provided herein, the method of detecting a level comprises forming a complex with a probe and a component of a biological sample. In certain embodiments, forming a complex with a probe comprises forming a complex with at least one non-naturally occurring reagent. In certain embodiments of the diagnostic and monitoring methods provided herein, the method of detecting a level comprises processing the biological sample. In certain embodiments of the diagnostic and monitoring methods provided herein, the method of detecting a level of at least two markers comprises a panel of markers. In certain embodiments of the diagnostic

and monitoring methods provided herein, the method of detecting a level comprises attaching the marker to be detected to a solid surface.

[0350] The invention provides methods of selecting for administration of active treatment or against administration of active treatment of prostate cancer in a subject comprising: [0351] (1) detecting a level of one or more markers selected from the group consisting of filamin B, LY9, keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, and tubulin-beta in a first sample obtained from the subject having prostate cancer wherein the subject has not been actively treated for prostate cancer;

[0352] (2) detecting a level of one or more markers selected from the group consisting of filamin B, LY9, keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, and tubulin-beta 3 in a second sample from the subject;

[0353] (3) comparing the level of one or more markers selected from the group consisting of filamin B, LY9, keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, and tubulin-beta 3 in the first sample with the level of one or more markers selected from the group consisting of filamin B, LY9, keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, and tubulin-beta 3 in the second sample;

[0354] wherein selecting for administration of active treatment or against administration of active treatment of prostate cancer is based on the presence or absence of changes in the level of expression of one or more markers between the first sample and the second sample.

[0355] In certain embodiments, the method further comprising obtaining a third sample obtained from the subject, detecting a level of one or more markers selected from the group consisting of filamin B, LY9, keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, and tubulin-beta 3 in the third sample, and comparing the level of one or more markers selected from the group consisting of filamin B, LY9, keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, and tubulin-beta 3 in the third sample with the level of the one or more markers in the first sample or the one or more markers in the second sample.

[0356] In certain embodiments, an increased level of one or more of filamin B, LY9, and keratin 19 in the second sample as compared to the level of one or more of filamin B, LY9, and keratin 19 in the first sample is an indication that the therapy is not efficacious in the treatment of prostate cancer.

[0357] In certain embodiments, an increased of one or more of filamin B, LY9, and keratin 19 in the second sample as compared to the level of one or more of filamin B, LY9, and keratin 19 in the first sample is an indication for selecting active treatment for prostate cancer.

[0358] In certain embodiments, the method further comprises comparing the level of one or more markers selected from the group consisting of filamin B, LY9, and keratin 19 in the first sample or the level of one or more markers selected from the group consisting of filamin B, LY9, and keratin 19 in the second sample with the level of one or more of filamin B, LY9, and keratin 19 in a control sample. In certain embodiments, the method comprises detecting the level of one or more of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, and tubulin beta-3 in the first sample; detecting the level of one or more of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, and tubulin beta-3 in the second sample; and comparing the level of the one or more of one or more of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, and tubulin beta-3 in the second sample with the one or more of

the level of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, and tubulin beta-3 in the first sample. In certain embodiments, the method comprises detection of a subset of keratins such as keratin 7, keratin 8, and keratin 15; keratin 7, 15, and 19; and keratin 7 or keratin 15. In certain embodiments, the method further comprises comparing the level of one or more of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, and tubulin beta-3 in the first sample; or the level of expression of one or more of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, and tubulin beta-3 in the second sample to the level of one or more of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, and tubulin beta-3 in a control sample.

[0359] In certain embodiments, no change in the level of expression of one or more markers selected from the group consisting of filamin B, LY9, keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, and tubulin-beta 3 between the first sample and the second sample is an indication for selecting against active treatment for prostate cancer.

[0360] In certain embodiments, the methods further comprise detecting the level of prostate specific antigen (PSA) in the first sample and the second sample, and then preferably further comprising comparing the level of PSA in the first sample with the level of PSA in the second sample.

[0361] In certain embodiments, a decrease in the level of one or more of filamin B, LY9, and keratin 19 in the second sample as compared to the level of one or more of filamin B, LY9, and keratin 19 in the first sample in combination with a decrease in the level of PSA in the second sample as compared to the level of PSA in the first sample has greater predictive value that the therapy is efficacious in treating prostate cancer in the subject than analysis of a single marker alone.

[0362] In certain embodiments, a decrease in the level of one or more of filamin B, LY9, and keratin 19 in the second sample as compared to the level of one or more of filamin B, LY9, and keratin 19 in the first sample in combination with a decrease in the level of expression of PSA in the second sample as compared to the level of PSA in the first sample has greater predictive value that for selecting against active treatment for prostate cancer than analysis of a single marker alone.

Monitoring Clinical Trials

[0363] Monitoring the influence of agents (e.g., drug compounds) on the level of expression of a marker of the invention can be applied not only in basic drug screening or monitoring the treatment of a single subject, but also in clinical trials. For example, the effectiveness of an agent to affect marker expression can be monitored in clinical trials of subjects receiving treatment for an oncological disorder. In a preferred embodiment, the present invention provides a method for monitoring the effectiveness of treatment of a subject with an agent (e.g., an agonist, antagonist, peptidomimetic, protein, peptide, nucleic acid, small molecule, or other drug candidate) comprising the steps of (i) obtaining a pre-administration sample from a subject prior to administration of the agent; (ii) detecting the level of expression of one or more selected markers of the invention (e.g., filamin B, LY9, keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, tubulin-beta 3, optionally in combination with PSA) in the pre-administration sample; (iii) obtaining one or more post-administration samples from the subject; (iv) detecting the level of expression of the marker(s) in the post-administration samples; (v) comparing the level of expression of the marker

(s) in the pre-administration sample with the level of expression of the marker(s) in the post-administration sample or samples; and (vi) altering the administration of the agent to the subject accordingly. For example, increased expression of the marker gene(s) during the course of treatment may indicate ineffective dosage and the desirability of increasing the dosage. Conversely, decreased expression of the marker gene (s) may indicate efficacious treatment and no need to change dosage.

Kits

[0364] The invention also provides compositions and kits for diagnosing, prognosing, or monitoring a disease or disorder, recurrence of a disorder, or survival of a subject being treated for a disorder (e.g., an abnormal prostate state, BPH, an oncologic disorder, e.g., prostate cancer). These kits include one or more of the following: a detectable antibody that specifically binds to a marker of the invention, a detectable antibody that specifically binds to a marker of the invention, reagents for obtaining and/or preparing subject tissue samples for staining, and instructions for use.

[0365] The invention also encompasses kits for detecting the presence of a marker protein or nucleic acid in a biological sample. Such kits can be used to determine if a subject is suffering from or is at increased risk of developing an abnormal prostate state. For example, the kit can comprise a labeled compound or agent capable of detecting a marker protein or nucleic acid in a biological sample and means for determining the amount of the protein or mRNA in the sample (e.g., an antibody which binds the protein or a fragment thereof, or an oligonucleotide probe which binds to DNA or mRNA encoding the protein). Kits can also include instructions for use of the kit for practicing any of the methods provided herein or interpreting the results obtained using the kit based on the teachings provided herein. The kits can also include reagents for detection of a control protein in the sample not related to the abnormal prostate state, e.g., actin for tissue samples, albumin in blood or blood derived samples for normalization of the amount of the marker present in the sample. The kit can also include the purified marker for detection for use as a control or for quantitation of the assay performed with the kit.

[0366] Kits include panel of reagents for use in a method to diagnose prostate cancer in a subject (or to identify a subject predisposed to developing prostate cancer, etc.), the panel comprising at least two detection reagents, wherein each detection reagent is specific for one prostate cancer-specific protein, wherein said prostate cancer-specific proteins are selected from the prostate cancer-specific protein sets provided herein.

[0367] For antibody-based kits, the kit can comprise, for example: (1) a first antibody (e.g., attached to a solid support) which binds to a first marker protein; and, optionally, (2) a second, different antibody which binds to either the first marker protein or the first antibody and is conjugated to a detectable label. In certain embodiments, the kit includes (1) a second antibody (e.g., attached to a solid support) which binds to a second marker protein; and, optionally, (2) a second, different antibody which binds to either the second marker protein or the second antibody and is conjugated to a detectable label. The first and second marker proteins are different. In an embodiment, the first and second markers are markers of the invention, e.g., keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, tubulin-beta 3, filamin B, LY9, and PSA. In certain embodiments, neither the first

marker nor the second marker is PSA. In certain embodiments, the kit comprises a third antibody which binds to a third marker protein which is different from the first and second marker proteins, and a second different antibody that binds to either the third marker protein or the antibody that binds the third marker protein wherein the third marker protein is different from the first and second marker proteins.

[0368] For oligonucleotide-based kits, the kit can comprise, for example: (1) an oligonucleotide, e.g., a detectably labeled oligonucleotide, which hybridizes to a nucleic acid sequence encoding a marker protein or (2) a pair of primers useful for amplifying a marker nucleic acid molecule. In certain embodiments, the kit can further include, for example: (1) an oligonucleotide, e.g., a second detectably labeled oligonucleotide, which hybridizes to a nucleic acid sequence encoding a second marker protein or (2) a pair of primers useful for amplifying the second marker nucleic acid molecule. The first and second markers are different. In an embodiment, the first and second markers are markers of the invention, e.g., keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, tubulin-beta 3, filamin B, LY9, and PSA. In certain embodiments, neither the first marker nor the second marker is PSA. In certain embodiments, the kit can further include, for example: (1) an oligonucleotide, e.g., a third detectably labeled oligonucleotide, which hybridizes to a nucleic acid sequence encoding a third marker protein or (2) a pair of primers useful for amplifying the third marker nucleic acid molecule wherein the third marker is different from the first and second markers. In certain embodiments, the kit includes a third primer specific for each nucleic acid marker to allow for detection using quantitative PCR methods.

[0369] For chromatography methods, the kit can include markers, including labeled markers, to permit detection and identification of one or more markers of the invention, e.g., keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, tubulin-beta 3, filamin B, LY9, and optionally PSA, by chromatography. In certain embodiments, kits for chromatography methods include compounds for derivatization of one or more markers of the invention. In certain embodiments, kits for chromatography methods include columns for resolving the markers of the method.

[0370] Reagents specific for detection of a marker of the invention, e.g., keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, tubulin-beta 3, filamin B, LY9, and PSA, allow for detection and quantitation of the marker in a complex mixture, e.g., serum, tissue sample. In certain embodiments, the reagents are species specific. In certain embodiments, the reagents are not species specific. In certain embodiments, the reagents are isoform specific. In certain embodiments, the reagents are not isoform specific. In certain embodiments, the reagents detect total keratin 8, keratin 18, filamin B, PSA, or LY9.

[0371] In certain embodiments, the kits for the diagnosis, monitoring, or characterization of prostate cancer comprise at least one reagent specific for the detection of the level of expression of at least one marker selected from the group consisting of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, and tubulin-beta 3, filamin B, and LY9. In certain embodiments, the kits further comprise instructions for the diagnosis, monitoring, or characterization of prostate cancer based on the level of expression of the at least one marker selected from the group consisting of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, and tubulin-

beta 3, filamin B, and LY9. In certain embodiments, the kits further comprise instructions to detect the level of PSA in a sample in which the at least one marker selected from the group consisting of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, and tubulin-beta 3, filamin B, and LY9 is detected. In certain embodiments, the kits further comprise at least one reagent for the specific detection of PSA.

[0372] The invention provides kits comprising at least one reagent specific for the detection of a level of expression of at least one marker selected from the group consisting of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, and tubulin-beta 3, filamin B, and LY9 and at least one reagent specific for the detection of a level of expression of PSA.

[0373] In certain embodiments, the kits can also comprise, e.g., a buffering agents, a preservative, a protein stabilizing agent, reaction buffers. The kit can further comprise components necessary for detecting the detectable label (e.g., an enzyme or a substrate). The kit can also contain a control sample or a series of control samples which can be assayed and compared to the test sample. The controls can be control serum samples or control samples of purified proteins or nucleic acids, as appropriate, with known levels of target markers. Each component of the kit can be enclosed within an individual container and all of the various containers can be within a single package, along with instructions for interpreting the results of the assays performed using the kit.

[0374] The kits of the invention may optionally comprise additional components useful for performing the methods of the invention.

Panels

[0375] The invention provides panels of reagents for detection of one or more prostate-related marker in a subject sample and at least one control reagent. In certain embodiments, the control reagent is to detect the marker for detection in the biological sample wherein the panel is provided with a control sample containing the marker for use as a positive control and optionally to quantitate the amount of marker present in the biological sample. In certain embodiments, the panel includes a detection reagent for a marker not related to an abnormal prostate state that is known to be present or absent in the biological sample to provide a positive or negative control, respectively. The panel can be provided with reagents for detection of a control protein in the sample not related to the abnormal prostate state, e.g., actin for tissue samples, albumin in blood or blood derived samples for normalization of the amount of the marker present in the sample. The panel can be provided with a purified marker for detection for use as a control or for quantitation of the assay performed with the panel.

[0376] In a preferred embodiment, the panel includes reagents for detection of two or more markers of the invention (e.g., 2, 3, 4, 5, 6, 7, 8, 9), preferably in conjunction with a control reagent. In the panel, each marker is detected by a reagent specific for that marker. In certain embodiments, the panel further includes a reagent for the detection of PSA. In certain embodiments, the panel includes replicate wells, spots, or portions to allow for analysis of various dilutions (e.g., serial dilutions) of biological samples and control samples. In a preferred embodiment, the panel allows for quantitative detection of one or more markers of the invention.

[0377] In certain embodiments, the panel is a protein chip for detection of one or more markers. In certain embodiments,

the panel is an ELISA plate for detection of one or more markers. In certain embodiments, the panel is a plate for quantitative PCR for detection of one or more markers.

[0378] In certain embodiments, the panel of detection reagents is provided on a single device including a detection reagent for one or more markers of the invention and at least one control sample. In certain embodiments, the panel of detection reagents is provided on a single device including a detection reagent for two or more markers of the invention and at least one control sample. In certain embodiments, multiple panels for the detection of different markers of the invention are provided with at least one uniform control sample to facilitate comparison of results between panels.

Screening Assays

[0379] The invention also provides methods (also referred to herein as "screening assays") for identifying modulators, i.e., candidate or test compounds or agents (e.g., proteins, peptides, peptidomimetics, peptoids, small molecules or other drugs), which modulate the state of the diseased cell by modulating the expression and/or activity of a marker of the invention, i.e., keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, tubulin-beta 3, filamin B, or LY9; optionally in combination with PSA. Such assays typically comprise a reaction between a marker of the invention and one or more assay components. The other components may be either the test compound itself, or a combination of test compounds and a natural binding partner of a marker of the invention. Compounds identified via assays such as those described herein may be useful, for example, for modulating, e.g., inhibiting, ameliorating, treating, or preventing the disease. Compounds identified for modulating the expression level of one or more of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, tubulin-beta 3, filamin B, or LY9; optionally in combination with PSA, are preferably further tested for activity useful in the treatment of cancer, preferably prostate cancer, e.g., inhibiting tumor cell growth, inhibiting tumor angiogenesis, inducing tumor cell apoptosis, etc.

[0380] The test compounds used in the screening assays of the present invention may be obtained from any available source, including systematic libraries of natural and/or synthetic compounds. Test compounds may also be obtained by any of the numerous approaches in combinatorial library methods known in the art, including: biological libraries; peptoid libraries (libraries of molecules having the functionalities of peptides, but with a novel, non-peptide backbone which are resistant to enzymatic degradation but which nevertheless remain bioactive; see, e.g., Zuckermann et al., 1994, *J. Med. Chem.* 37:2678-85); spatially addressable parallel solid phase or solution phase libraries; synthetic library methods requiring deconvolution; the 'one-bead one-compound' library method; and synthetic library methods using affinity chromatography selection. The biological library and peptoid library approaches are limited to peptide libraries, while the other four approaches are applicable to peptide, non-peptide oligomer or small molecule libraries of compounds (Lam, 1997, *Anticancer Drug Des.* 12:145).

[0381] Examples of methods for the synthesis of molecular libraries can be found in the art, for example in: DeWitt et al. (1993) *Proc. Natl. Acad. Sci. U.S.A.* 90:6909; Erb et al. (1994) *Proc. Natl. Acad. Sci. USA* 91:11422; Zuckermann et al. (1994). *J. Med. Chem.* 37:2678; Cho et al. (1993) *Science* 261:1303; Carrell et al. (1994) *Angew. Chem. Int. Ed. Engl.*

33:2059; Carell et al. (1994) *Angew. Chem. Int. Ed. Engl.* 33:2061; and in Gallop et al. (1994) *J. Med. Chem.* 37:1233.

[0382] Libraries of compounds may be presented in solution (e.g., Houghten, 1992, *Biotechniques* 13:412-421), or on beads (Lam, 1991, *Nature* 354:82-84), chips (Fodor, 1993, *Nature* 364:555-556), bacteria and/or spores, (Ladner, U.S. Pat. No. 5,223,409), plasmids (Cull et al, 1992, *Proc Natl Acad Sci USA* 89:1865-1869) or on phage (Scott and Smith, 1990, *Science* 249:386-390; Devlin, 1990, *Science* 249:404-406; Cwirla et al, 1990, *Proc. Natl. Acad. Sci.* 87:6378-6382; Felici, 1991, *J. Mol. Biol.* 222:301-310; Ladner, supra.).

[0383] The screening methods of the invention comprise contacting a cell, e.g., a diseased cell, especially a prostate cancer cell, with a test compound and determining the ability of the test compound to modulate the expression and/or activity of filamin B, LY9, or keratin 19, optionally in combination with PSA, in the cell. The expression and/or activity of filamin B, LY9, or keratin 19; optionally in combination with PSA, can be determined using any methods known in the art, such as those described herein.

[0384] In another embodiment, the invention provides assays for screening candidate or test compounds which are substrates of a marker of the invention or biologically active portions thereof. In yet another embodiment, the invention provides assays for screening candidate or test compounds which bind to a marker of the invention or biologically active portions thereof. Determining the ability of the test compound to directly bind to a marker can be accomplished, for example, by any method known in the art.

[0385] This invention further pertains to novel agents identified by the above-described screening assays. Accordingly, it is within the scope of this invention to further use an agent identified as described herein in an appropriate animal model. For example, an agent capable of modulating the expression and/or activity of a marker of the invention identified as described herein can be used in an animal model to determine the efficacy, toxicity, or side effects of treatment with such an agent. Alternatively, an agent identified as described herein can be used in an animal model to determine the mechanism of action of such an agent. Furthermore, this invention pertains to uses of novel agents identified by the above-described screening assays for treatment as described above.

[0386] This invention is further illustrated by the following examples which should not be construed as limiting. The contents of all references and published patents and patent applications cited throughout the application are hereby incorporated by reference.

Exemplification of the Invention

[0387] This invention is further illustrated by the following examples which should not be construed as limiting. The contents of all references, GenBank Accession and Gene numbers, and published patents and patent applications cited throughout the application are hereby incorporated by reference.

Example 1

Identification of Keratins and Tubulin as Prostate Cancer Markers

[0388] Extracellular Keratins are known to influence the cell proliferation and metastasis of epithelial derived prostate cancers. Androgen refractory prostate cancers exhibit differ-

ential expression keratin 8 (K8) when compared to normal tissue. Modulation and degradation of keratins is in turn mediated by mitochondrial generation of Reactive Oxygen Species (ROS). Despite these advances a systematic approach to understanding of keratins and other EC proteins in prostate cancer metastasis and proliferation is lacking. An interrogative systems biology based discovery platform disclosed in WO2012119129 (incorporated herein by reference), and shown schematically in FIG. 1, provides new mechanistic insights into understanding mitochondrial role in behavior of prostate cancer cells. The discovery platform involves discovery across a hierarchy of systems including in vitro human cell based models and human serum samples from prostate cancer patients and downstream data integration and mathematical modeling employing an Artificial Intelligence (AI) based informatic module. For cellular models, androgen sensitive LnCAP cell line and metastatic, androgen refractory PC3 cell line were treated with ubidecarenone (coenzyme Q10) in order to engage the mitochondrial machinery. Proteomic signatures were captured using a 2D LC-MS orbitrap technology. Total protein signatures were input to an AI based informatics module to generate causal protein networks (FIGS. 2A-C). Wet lab assays that specifically measure mitochondrial ROS, ATP and caspase 3 activation confirmed changes in intracellular levels of these markers. Several novel protein causal interactions that govern induction of mitochondrial machinery by ubidecarenone in PC3 cells were observed. Causal protein maps revealed association of keratins 8 and 15 in PC3 models and not LnCAP. The keratin 8/15 association was lost upon treatment with ubidecarenone, and a direct association of keratins 7 and 15 was established (FIGS. 3A-D). These results suggest that a change in the interaction among keratins 7, 8, and 15 is particularly useful in demonstrating a response to treatment or a change in prostate cancer status in a subject. Further, keratins 8 and 15 were differentially associated in the androgen refractory, metastatic PC3 cell line and the androgen sensitive LnCAP cell line. This indicates that keratins 8 and 15 could be useful to differentiate between prostate cancer states, e.g., between androgen sensitive and metastatic, androgen refractory prostate cancer.

[0389] An increase in the expression of keratin 19 in relation to prostate cancer was confirmed using a panel of serum samples from subjects suffering from prostate cancer as compared to an appropriate matched control population.

[0390] Thus novel mechanistic insight into prostate cancer proliferation and mitochondrial role in modulating metastasis was gained with a novel chemical systems biology approach.

[0391] The results provided herein demonstrate that modulation of keratin and potential causal association in androgen refractory prostate cancer was inferred by the Platform technology. This provides a potential mechanisms of keratin regulation in response to modulation of mitochondrial function was deciphered by the Platform technology. Thus, novel drivers of cancer pathophysiology were validated in patient serum samples.

Example 2

Identification of Filamin B as a Prostate Cancer Marker

[0392] An interrogative systems biology based discovery platform was used to obtain mechanistic insights into understanding mitochondrial role in behavior of prostate cancer cells. The Platform technology, which is described in detail in

WO2012119129, involves discovery across a hierarchy of systems including in vitro human cell based models and human serum samples from prostate cancer patients and downstream data integration and mathematical modeling employing an Artificial Intelligence (AI) based informatics module.

[0393] The results provided herein demonstrate the modulation of filamin B and LY9, and potential causal association in androgen refractory prostate cancer that was inferred using the Platform technology. The application provides potential mechanisms of filamin B and LY9 regulation in response to modulation of mitochondrial function was deciphered by the Platform technology and provides validation of the markers in patient serum samples.

[0394] Using the Platform methods, human prostate cancer cells PC3 (androgen insensitive, metastatic) and LnCap (androgen sensitive) were modeled in cancer microenvironments including hypoxia, reduced environments, and hyperglycemia and in presence of coenzyme Q10. Normal cells (human dermal fibroblasts (HDFa) and SV40 transformed human liver cells (THLE2)) were modeled under similar conditions mentioned above. Proteomics of cellular proteins and proteins secreted in the supernatant were carried out by LCMS. Data were input into the Bayesian Network Inference (BNI) algorithms REFSTM.

[0395] Causal associations between proteins were derived by the BNI. Differential network analysis was employed to tease out the hubs of activity in prostate cancer when compared to normal cells in normal microenvironments. Filamin B was identified as differential hub of activity in PC3 and not in LnCap and normal cells. That is, Filamin B was found to differ between androgen sensitive LnCAP cell line and metastatic, androgen refractory PC3 cell line. This indicates that Filamin B could be useful to differentiate between prostate cancer states, e.g., between androgen sensitive and metastatic, androgen refractory prostate cancer. The interaction matrix placing filamin B at the center of an interaction hub is shown in FIG. 4. The interaction of LY9 with filamin B is shown in FIG. 5.

Example 3

Validation of Filamin B as a Prostate Cancer Marker in Human Samples

[0396] Having identified filamin B as a prostate cancer marker using the platform technology, human serum samples from normal subjects and subjects with prostate cancer were used to confirm filamin B as a prostate cancer marker.

[0397] Specifically, human serum samples were procured from a commercial vendor that sources human serum. Twenty samples were from normal donors and 20 samples were from patients diagnosed with prostate cancer. Prostate cancer samples were from patients with different prognosis and aggressiveness of cancers reported. Clinical characteristics of the subjects are provided in the table.

	Prostate Cancer	Control Group
Median Age	61 (47-86)	58 (45-72)
Ethnicity		
Caucasian	75%	85%
African American	15%	10%
Hispanic	10%	5%

-continued

	Prostate Cancer	Control Group
Tumor Stage		
Stage I	20%	
Stage II	35%	
Stage III	5%	
Stage IV	40%	

[0398] Commercially available ELISA tests for filamin B and PSA were procured from commercial source. The assays were performed using the manufacturers' instructions. The results from the assay are shown in FIGS. 6A-B. The results show the differential levels of FlnB and PSA in patients with a diagnosis for prostate cancer as compared to control subjects without prostate cancer.

[0399] As shown, both filamin B and PSA levels were elevated in serum samples from patients diagnosed with prostate cancer. The correlation between PSA and FlnB expression in serum samples is 0.20075, indicating a relatively low correlation between the variables. This demonstrates that filamin B and PSA are useful for the detection of prostate cancer in different subjects. These results demonstrate that filamin B is useful for the diagnosis of prostate cancer, and that filamin B is useful for improving the detection of prostate cancer by PSA. Additional samples can be analyzed to further refine the results.

Example 4

Stratification of Subjects with Prostate Cancer using LY9

[0400] The same human serum samples used in Example 4 were further tested to detect the presence of LY9. A commercially available ELISA test for LY9 was procured from commercial source. The assay was performed using the manufacturers' instructions. The results from the assay are shown in FIG. 7. The results show the differential levels of LY9 in patients with a diagnosis for prostate cancer as compared to control subjects without prostate cancer. As shown, samples from subjects with prostate cancer were found to have higher levels of LY9 as compared to normal subjects. Results from assays of expression levels of both filamin B and LY9 in human serum with results expressed as ng/ml of protein are shown in FIGS. 8A-C. Additional samples can be analyzed to further refine the results.

Example 5

Analysis of Filamin B Levels Improves the Detection of Prostate Cancer as Compared to PSA Alone

[0401] Having demonstrated that level of filamin B is increased in the serum of subjects with prostate cancer, the results were analyzed in conjunction with the study of PSA levels in the same samples to determine the predictive value of filamin B and PSA together was better than either of the markers alone. Receiver operating characteristic (ROC) curve analysis of sensitivity and false positive rate (FPR) of PSA, filamin B, and the combination of PSA and filamin B was generated. The curves and the area under the curve (AUC) values are shown in FIGS. 9A and B. The goal of this analysis is to gauge the predictive power of the test indepen-

dent of a specific cut-off. When using an ROC analysis, a test that provides perfect discrimination or accuracy between normal and disease states would have AUC=1, whereas a very poor test that provides no better discrimination than random chance would have AUC=0.5

[0402] As demonstrated by the analysis, filamin B alone performs very well and most importantly somewhat orthogonal to PSA. PSA is reported to have a very high false positive rate, e.g., about 75% (as reported in, Gilligan, The new data on prostate cancer screening: What should we do now? Cleveland Clin. J. Med. 76: 446-448, 2009, incorporated herein by reference). That is, it has a high sensitivity and low specificity. In the specific study presented, the AUC for FlnB is lower than that for PSA. However, the correlation level of 0.20075 determined in Example 3, indicates a relatively low correlation between the variables. That is, subjects identified as having an elevated filamin B level did not necessarily have a high PSA level, and the reverse was also true, suggesting that the markers in combination can provide a predictive test than either marker alone.

[0403] This was confirmed in the ROC analysis. As shown, the combination of PSA and filamin B was found to have a higher AUC indicating better discrimination of the test than PSA alone, and to be more predictive than either of the markers alone. The combination of PSA and filamin B is very good and provides a drastic increase PSA test specificity, which is the main problem with the test.

Example 6

Analysis of Filamin B, LY9, and PSA Levels Together Improves the Detection of Prostate Cancer as Compared to any Marker Alone

[0404] Having demonstrated that each filamin B, LY9, and PSA are all elevated in serum samples from subjects with prostate cancer, the ROC curve analysis was performed comparing each of the three markers individually to the combination of all three markers using a linear scoring function, and comparing the combination of filamin B and LY9, and the combination of filamin B and PSA, against the combination of all three markers using a non-linear scoring function to determine which combinations of the markers were more effective than each single marker for the detection of prostate cancer in a subject. As shown, the combination of all three markers was more predictive than any of the markers alone (FIG. 10A). The combination of filamin B with PSA, either with or without LY9, was more predictive than the combination of filamin B with LY9 (FIG. 10B). Additional samples can be analyzed to further refine the results. The AUC results are summarized in the table.

Marker	AUC
LY9	0.85
FlnB	0.78
PSA	0.87
LY9 + FlnB + PSA	0.98

Example 7

Stratification of Subjects with Prostate Cancer using Keratin 4, Keratin 7, Keratin 8, Keratin 15, Keratin 18, Keratin 19, Tubulin-beta 3

[0405] As demonstrated in Examples 3 and 4 respectively, filamin B levels and LY9 levels can be used to distinguish

subjects who are or are not suffering from prostate cancer. Further, as demonstrated in Examples 6 and 7, the analysis of both filamin B and PSA, optionally further in combination with LY9, is more sensitive than an analysis based on either marker alone.

[0406] A series of subject samples are obtained from an appropriate source, e.g., a commercial source, wherein the samples were obtained from subjects with different stages of prostate cancer, e.g., aggressive prostate cancer, androgen sensitive, androgen insensitive, metastatic; or from subjects not suffering from prostate cancer, e.g., subjects with normal prostate or subjects with BPH. The samples are analyzed for the expression level of at least one of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, tubulin-beta 3, preferably at least one of keratin 7, keratin 15, and keratin 19; and optionally further at least one of filamin B, LY9, and PSA. The level of the expression of the makers, alone and in various combinations, correlate with the presence or absence of disease, and with the severity of prostate cancer. For example, an increase in the expression level of one or more of keratin 19, filamin B, LY9, and PSA, as compared to a normal sample from a subject not suffering from prostate cancer, is indicative of prostate cancer in the subject. Expression levels of keratins 7, 8, and 15 may also be particularly useful in the stratification of subjects with prostate cancer.

Example 8

Monitoring of Prostate Cancer Treatment using Keratin 4, Keratin 7, Keratin 8, Keratin 15, Keratin 18, Keratin 19, Tubulin-beta 3

[0407] At the time of diagnosis with prostate cancer, subjects are invited to participate in a trial. A subject sample, e.g., blood, is obtained. Periodically, throughout the monitoring, watchful waiting, or active treatment of the subject, e.g., chemotherapy, radiation therapy, surgery, hormone therapy, a new subject sample is obtained. At the end of the study, all subject samples are tested for the expression level of at least one of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, tubulin-beta 3, preferably at least one of keratin 7, keratin 15, and keratin 19; and optionally further at least one of filamin B, LY9, and PSA. The subject samples are matched to the medical records of the subjects to correlate marker levels with prostate cancer status at the time of diagnosis, rate of progression of disease, response of subjects to one or more interventions, and transitions between androgen dependent and independent status. An increase in the expression level of one or more of keratin 19, filamin B, LY9, and PSA, as compared to a normal sample from a subject not suffering from prostate cancer, is indicative of prostate cancer in the subject. Expression levels of keratins 7, 8, and 15 may also be particularly useful in the diagnosis and monitoring of subjects with prostate cancer.

Example 9

Detection and Monitoring of Prostate Cancer using keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, tubulin-beta 3

[0408] Despite its limitations, including a positive predictive value of only 25-40%, PSA remains the only generally accepted biomarker for prostate cancer. Moreover, as prostate cancer is most commonly a slow growing tumor in men of advanced age, treatment of the cancer may do more harm to

the subject than the tumor itself would. Therefore, the tests together for the expression level of at least one of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, tubulin-beta 3, preferably at least one of keratin 7, keratin 15, and keratin 19; and optionally further at least one of filamin B, LY9, and PSA are used for the detection and monitoring of prostate cancer. The level of the expression of the makers, alone and in various combinations are used in detection, including in routine, preventative, screening methods in men having an increased risk of prostate cancer (e.g., increased age, family history, race, etc.) or in monitoring of subjects diagnosed with prostate cancer prior to or during treatment may be useful to better identify subjects in need of further, potentially more invasive, diagnostic tests, e.g., prostate exam or biopsy, digital rectal exam; or more aggressive treatment. Detection of levels of expression of the markers, or various combinations thereof, may also be indicative of a good or poor response to a specific treatment regimen prior to changes in other signs or symptoms, e.g., loss of tumor response to hormone therapy.

[0409] In routine screening methods for prostate cancer, a serum sample from a subject is tested for the level of expression of at least one of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, tubulin-beta 3, preferably at least one of keratin 7, keratin 15, and keratin 19; and optionally further at least one of filamin B, LY9, and PSA. The levels are compared to one or more appropriate controls, e.g., other normal subjects, subjects with prostate cancer. Detection of an abnormal level of one or more of at least one of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, tubulin-beta 3, preferably at least one of keratin 7, keratin 8, keratin 15, and keratin 19; indicates that the subject should be considered for further tests for the presence of prostate cancer. Changes in the level of at least one of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, tubulin-beta 3, preferably at least one of keratin 7, keratin 8, keratin 15, and keratin 19, in the subject may be more indicative of a change in prostate cancer status than comparison to a population control.

[0410] In determining a therapeutic regimen for a subject with prostate cancer not yet being actively treated for prostate cancer (i.e., watchful waiting) can be tested at regular intervals to determine if there is a change in the level of expression of at least one of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, tubulin-beta 3, preferably at least one of keratin 7, keratin 15, and keratin 19; and optionally further at least one of filamin B, LY9, and PSA. An modulation in the level of at least one of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, tubulin-beta 3, preferably at least one of keratin 7, keratin 8, keratin 15, and keratin 19; and optionally further at least one of filamin B, LY9, and PSA indicates that the subject should be considered for further tests to monitor the prostate cancer and more active therapeutic interventions should be considered.

[0411] In a subject undergoing treatment for prostate cancer (e.g., hormone therapy, chemotherapy, radiation therapy, surgery) is tested prior to the initiation of the treatment and during and/or after the treatment to determine if the treatment results in a decrease in the level of expression of at least one of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, tubulin-beta 3, preferably at least one of keratin 7, keratin 15, and keratin 19; and optionally further at least one of filamin B, LY9, and PSA. A decrease in the level of keratin 19, filamin B, LY9, or PSA is indicative of response to treatment.

Expression levels of keratins 7, 8, and 15 may also be particularly useful in the diagnosis and monitoring of subjects with prostate cancer.

Example 10

Stratification of Subjects with Prostate Cancer using Filamin B, PSA, or LY9

[0412] As demonstrated in Examples 3 and 4 respectively, filamin B levels and LY9 levels can be used to distinguish subjects who are or are not suffering from prostate cancer. Further, as demonstrated in Examples 6 and 7, the analysis of both filamin B and PSA, optionally further in combination with LY9, is more sensitive than an analysis based on either marker alone.

[0413] A series of subject samples are obtained from an appropriate source, e.g., a commercial source, wherein the samples were obtained from subjects with different stages of prostate cancer, e.g., aggressive prostate cancer, androgen sensitive, androgen insensitive, metastatic; or from subjects not suffering from prostate cancer, e.g., subjects with normal prostate or subjects with BPH. The samples are analyzed for the expression level of filamin B and PSA, and optionally the level of LY9, and further with one or more of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, and tubulin-beta 3, especially keratin 19. The level of filamin B, LY9, and PSA, alone and in various combinations, optionally with other markers, e.g., keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, and tubulin-beta 3, especially keratin 19, correlate with the presence or absence of disease, and with the severity of prostate cancer.

Example 11

Monitoring of Prostate Cancer Treatment using Filamin B, PSA, or LY9

[0414] At the time of diagnosis with prostate cancer, subjects are invited to participate in a trial. A subject sample, e.g., blood, is obtained. Periodically, throughout the monitoring, watchful waiting, or active treatment of the subject, e.g., chemotherapy, radiation therapy, surgery, hormone therapy, a new subject sample is obtained. At the end of the study, all subject samples are tested for the level of filamin B, PSA, and optionally in further combination with one or more of LY9, keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, and tubulin-beta 3. The subject samples are matched to the medical records of the subjects to correlate filamin B, PSA, LY9, keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, or tubulin-beta 3 levels, as appropriate, with prostate cancer status at the time of diagnosis, rate of progression of disease, response of subjects to one or more interventions, and transitions between androgen dependent and independent status.

Example 12

Detection and Monitoring of Prostate Cancer using Filamin B, PSA, or LY9

[0415] Despite its limitations, including a positive predictive value of only 25-40%, PSA remains the only generally accepted biomarker for prostate cancer. Moreover, as prostate cancer is most commonly a slow growing tumor in men of advanced age, treatment of the cancer may do more harm to

the subject than the tumor itself would. As demonstrated herein, there is a low correlation between elevated levels of filamin B and PSA in subjects with prostate cancer. Further, elevated levels of LY9 have been demonstrated to be associated with prostate cancer. Therefore, the tests together, particularly filamin B and PSA, optionally in combination with one or more of LY9, keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, and tubulin-beta 3, especially keratin 19, in detection, including in routine, preventative, screening methods in men having an increased risk of prostate cancer (e.g., increased age, family history, race, etc.) or in monitoring of subjects diagnosed with prostate cancer prior to or during treatment may be useful to better identify subjects in need of further, potentially more invasive, diagnostic tests, e.g., prostate exam or biopsy, digital rectal exam; or more aggressive treatment. Detection of levels of expression of filamin B, PSA, LY9 keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, and tubulin-beta 3, especially keratin 19, may also be indicative of a good or poor response to a specific treatment regimen prior to changes in other signs or symptoms, e.g., loss of tumor response to hormone therapy.

[0416] In routine screening methods for prostate cancer, a serum sample from a subject is tested for the level of expression of both filamin B and PSA, and optionally one or more of LY9, keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, and tubulin-beta 3, especially keratin 19. The levels are compared to one or more appropriate controls, e.g., other normal subjects, subjects with prostate cancer. Detection of an abnormal level of one or more of filamin B, PSA, LY9, keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, and tubulin-beta 3, especially keratin 19 indicates that the subject should be considered for further tests for the presence of prostate cancer. Changes in the level of filamin B, optionally in combination with one or more of PSA, LY9, keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, or tubulin-beta 3, especially keratin 19 with PSA in the subject may be more indicative of a change in prostate cancer status than comparison to a population control.

[0417] In determining a therapeutic regimen for a subject with prostate cancer not yet being actively treated for prostate cancer (i.e., watchful waiting) can be tested at regular intervals to determine if there is a change in the level of expression of filamin B, PSA, LY9 keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, and tubulin-beta 3. An increase in the level of filamin B, PSA, keratin 19, or LY9 indicates that the subject should be considered for further tests to monitor the prostate cancer and more active therapeutic interventions should be considered.

[0418] In a subject undergoing treatment for prostate cancer (e.g., hormone therapy, chemotherapy, radiation therapy, surgery) is tested prior to the initiation of the treatment and during and/or after the treatment to determine if the treatment results in a change in the level of expression of one or more of filamin B, PSA, LY9, keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, and tubulin-beta 3. A decrease in the level of filamin B, PSA, keratin 19, or LY9 is indicative of response to treatment.

EQUIVALENTS

[0419] Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments and methods described herein. Such equivalents are intended to be encompassed by the scope of the following claims.

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 45

<210> SEQ ID NO 1

<211> LENGTH: 520

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 1

Met Ile Ala Arg Gln Gln Cys Val Arg Gly Gly Pro Arg Gly Phe Ser
1 5 10 15

Cys Gly Ser Ala Ile Val Gly Gly Lys Arg Gly Ala Phe Ser Ser
20 25 30

Val Ser Met Ser Gly Gly Ala Gly Arg Cys Ser Ser Gly Gly Phe Gly
35 40 45

Ser Arg Ser Leu Tyr Asn Leu Arg Gly Asn Lys Ser Ile Ser Met Ser
50 55 60

Val Ala Gly Ser Arg Gln Gly Ala Cys Phe Gly Gly Ala Gly Gly Phe
65 70 75 80

Gly Thr Gly Gly Phe Gly Gly Phe Gly Ser Phe Ser Gly Lys
85 90 95

Gly Gly Pro Gly Phe Pro Val Cys Pro Ala Gly Gly Ile Gln Glu Val
100 105 110

Thr Ile Asn Gln Ser Leu Leu Thr Pro Leu His Val Glu Ile Asp Pro
115 120 125

Glu Ile Gln Lys Val Arg Thr Glu Glu Arg Glu Gln Ile Lys Leu Leu
130 135 140

Asn Asn Lys Phe Ala Ser Phe Ile Asp Lys Val Gln Phe Leu Glu Gln
145 150 155 160

Gln Asn Lys Val Leu Glu Thr Lys Trp Asn Leu Leu Gln Gln Gln Thr
165 170 175

Thr Thr Thr Ser Ser Lys Asn Leu Glu Pro Leu Phe Glu Thr Tyr Leu
180 185 190

Ser Val Leu Arg Lys Gln Leu Asp Thr Leu Gly Asn Asp Lys Gly Arg
195 200 205

Leu Gln Ser Glu Leu Lys Thr Met Gln Asp Ser Val Glu Asp Phe Lys
210 215 220

Thr Lys Tyr Glu Glu Ile Asn Lys Arg Thr Ala Ala Glu Asn Asp
225 230 235 240

Phe Val Val Leu Lys Asp Val Asp Ala Ala Tyr Leu Asn Lys Val
245 250 255

Glu Leu Glu Ala Lys Val Asp Ser Leu Asn Asp Glu Ile Asn Phe Leu
260 265 270

Lys Val Leu Tyr Asp Ala Glu Leu Ser Gln Met Gln Thr His Val Ser
275 280 285

Asp Thr Ser Val Val Leu Ser Met Asp Asn Asn Arg Asn Leu Asp Leu
290 295 300

Asp Ser Ile Ile Ala Glu Val Arg Ala Gln Tyr Glu Glu Ile Ala Gln
305 310 315 320

Arg Ser Lys Ala Glu Ala Glu Ala Leu Tyr Gln Thr Lys Val Gln Gln
325 330 335

Leu Gln Ile Ser Val Asp Gln His Gly Asp Asn Leu Lys Asn Thr Lys
340 345 350

-continued

Ser Glu Ile Ala Glu Leu Asn Arg Met Ile Gln Arg Leu Arg Ala Glu
 355 360 365
 Ile Glu Asn Ile Lys Lys Gln Cys Gln Thr Leu Gln Val Ser Val Ala
 370 375 380
 Asp Ala Glu Gln Arg Gly Glu Asn Ala Leu Lys Asp Ala His Ser Lys
 385 390 395 400
 Arg Val Glu Leu Glu Ala Ala Leu Gln Ala Lys Glu Glu Leu Ala
 405 410 415
 Arg Met Leu Arg Glu Tyr Gln Glu Leu Met Ser Val Lys Leu Ala Leu
 420 425 430
 Asp Ile Glu Ile Ala Thr Tyr Arg Lys Leu Leu Glu Gly Glu Glu Tyr
 435 440 445
 Arg Met Ser Gly Glu Cys Gln Ser Ala Val Ser Ile Ser Val Val Ser
 450 455 460
 Gly Ser Thr Ser Thr Gly Gly Ile Ser Gly Gly Leu Gly Ser Gly Ser
 465 470 475 480
 Gly Phe Gly Leu Ser Ser Gly Phe Gly Ser Gly Ser Gly Ser Gly Phe
 485 490 495
 Gly Phe Gly Gly Ser Val Ser Gly Ser Ser Ser Ser Lys Ile Ile Ser
 500 505 510
 Thr Thr Thr Leu Asn Lys Arg Arg
 515 520

<210> SEQ ID NO 2
 <211> LENGTH: 2147
 <212> TYPE: DNA
 <213> ORGANISM: Homo sapiens

<400> SEQUENCE: 2

actcacccgc	ctggggccctg	taacttctct	gataagtc	ccaa	agctcgatct	ctgcagccat	60
gattgccaga	cacgactgtg	tccgaggcgg	gccccggggc	ttcagctgt	gtctggccat	120	
tgttaggcgtt	ggcaagagag	gtgccttcag	ctcagtctcc	atgtctggag	gtgctggccg	180	
atgtctttct	gggggatttg	gcagcagaag	cctctacaac	ctcagggggg	acaaaagcat	240	
ctccatgagt	gtggctgggt	cacgacaagg	tgcctgttt	gggggtgt	gaggcttgg	300	
cactggtgcc	tttgggtggtg	gattgggggg	ctccttcagt	ggtaagggtg	gccctggc	360	
ccccgtctgc	cccgctgggg	gaattcagga	ggtcaccatc	aaccagagct	tgctcacccc	420	
cctccacgtg	gagattgacc	ctgagatcca	gaaagtccgg	acggaagagc	gcgaacagat	480	
caagctcc	aacaacaagt	ttgcctctt	catcgacaag	gtgcagtct	tagagoaaca	540	
gaataagg	tcggagacca	aatggAACCT	gtccagcag	cagacgacca	ccaccc	600	
caaaaac	tttggacacta	cctcagtgtc	ctgaggaagc	agctagatac		660	
cttggcaat	gacaaagg	gcctgcagtc	tgagctgaag	accatgcagg	acagegtgga	720	
ggacttcaag	actaagtatg	aagaggagat	caacaaacgc	acagcagccg	agaatgactt	780	
tgtggctct	aagaaggacg	tggatgtgc	ctacctgaac	aagggtggagt	tggaggccaa	840	
ggtggacagt	cttaatgacg	agatcaactt	cctgaagg	tc	tatgtcg	900	
ccagatgcag	acccatgtca	gcgacacgtc	cgtggcc	tccatggaca	acaaccgcaa	960	
cctggac	ctg	gacagcatta	ttgccc	gagg	ccgt	1020	
gagcaagg	ctg	gacagcatta	ttgccc	gagg	ccgt	1080	

-continued

tgaccaacat	ggtgacaacc	tgaagaacac	caagagtcaa	attgcagac	tcaacaggat	1140
gatccagagg	ctgcggcag	agatcgagaa	catcaagaag	cagtgcaga	ctttcaggt	1200
atccgtggct	gatgcagac	agegagggtg	aatgcctt	aaagatgccc	acageaagcg	1260
cgttagagctg	gaggctgccc	tgcagcggc	caaggaggag	ctggcacgaa	tgctgcgtga	1320
gtaccaggag	ctcatgagtg	tgaagctggc	cttggacatc	gagatcgcca	cctacogcaa	1380
actgctggag	ggcgaggagt	acagaatgtc	tggagaatgc	cagagtgcgc	tgagcatctc	1440
tgtggtcagc	ggtagcacca	gcactggagg	catcagcgga	ggatttagaa	gtggctccgg	1500
gtttggcctg	agtagtggct	ttggctccgg	ctctggaa	ggctttgggt	ttggtggcag	1560
tgtctctggc	agttccagca	gcaagatcat	ctctaccacc	accctgaaca	agagacgata	1620
gaggagacga	ggtocctgca	gtcactgtg	tccagctgg	cccagactg	gtgtctctgt	1680
gcttccttca	cttcacccctcc	atcctctgtc	tctggggctc	atcttactag	tatccctcc	1740
actatccccat	gggctctctc	tgcggccagga	tgcgttctg	tgctggaca	gggactctgc	1800
ctcttggagt	ttggtagcta	cttcttgatt	tgggcctgg	gaccacactg	aatgggaag	1860
gatgtcagct	gacctctc	ctcccatgg	cagagaagaa	aatgaccagg	agtgtcatct	1920
ccagaattat	tgggtcaca	tatgtccctt	cccagtccaa	tgccatctcc	cactagatcc	1980
tgtattatcc	atctacatca	gaaccaaact	acttctccaa	cacccggcag	cacttggccc	2040
tgcaagctta	ggatgagaac	cacttagtgt	cccattctac	tcctctcatt	cccttattc	2100
catctgcagg	tgaatcttca	ataaaatgct	tttgtcatc	attctga		2147

<210> SEQ ID NO 3

<211> LENGTH: 469

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 3

Met	Ser	Ile	His	Phe	Ser	Ser	Pro	Val	Phe	Thr	Ser	Arg	Ser	Ala	Ala
1				5				10				15			

Phe	Ser	Gly	Arg	Gly	Ala	Gln	Val	Arg	Leu	Ser	Ser	Ala	Arg	Pro	Gly
					20			25				30			

Gly	Leu	Gly	Ser	Ser	Ser	Leu	Tyr	Gly	Leu	Gly	Ala	Ser	Arg	Pro	Arg
					35			40			45				

Val	Ala	Val	Arg	Ser	Ala	Tyr	Gly	Gly	Pro	Val	Gly	Ala	Gly	Ile	Arg
	50				55			60							

Glu	Val	Thr	Ile	Asn	Gln	Ser	Leu	Leu	Ala	Pro	Leu	Arg	Leu	Asp	Ala
65				70				75			80				

Asp	Pro	Ser	Leu	Gln	Arg	Val	Arg	Gln	Glu	Glu	Ser	Glu	Gln	Ile	Lys
	85				90			95							

Thr	Leu	Asn	Asn	Lys	Phe	Ala	Ser	Phe	Ile	Asp	Lys	Val	Arg	Phe	Leu
	100				105			110							

Glu	Gln	Asn	Lys	Leu	Leu	Glu	Thr	Lys	Trp	Thr	Leu	Leu	Gln	Glu	
115				120				125							

Gln	Lys	Ser	Ala	Lys	Ser	Ser	Arg	Leu	Pro	Asp	Ile	Phe	Glu	Ala	Gln
130				135				140							

Ile	Ala	Gly	Leu	Arg	Gly	Gln	Leu	Glu	Ala	Leu	Gln	Val	Asp	Gly	
145				150				155			160				

Arg	Leu	Glu	Ala	Glu	Leu	Arg	Ser	Met	Gln	Asp	Val	Val	Glu	Asp	Phe
165					170			175							

-continued

Lys Asn Lys Tyr Glu Asp Glu Ile Asn His Arg Thr Ala Ala Glu Asn
 180 185 190
 Glu Phe Val Val Leu Lys Lys Asp Val Asp Ala Ala Tyr Met Ser Lys
 195 200 205
 Val Glu Leu Glu Ala Lys Val Asp Ala Leu Asn Asp Glu Ile Asn Phe
 210 215 220
 Leu Arg Thr Leu Asn Glu Thr Glu Leu Thr Glu Leu Gln Ser Gln Ile
 225 230 235 240
 Ser Asp Thr Ser Val Val Leu Ser Met Asp Asn Ser Arg Ser Leu Asp
 245 250 255
 Leu Asp Gly Ile Ile Ala Glu Val Lys Ala Gln Tyr Glu Glu Met Ala
 260 265 270
 Lys Cys Ser Arg Ala Glu Ala Glu Ala Trp Tyr Gln Thr Lys Phe Glu
 275 280 285
 Thr Leu Gln Ala Gln Ala Gly Lys His Gly Asp Asp Leu Arg Asn Thr
 290 295 300
 Arg Asn Glu Ile Ser Glu Met Asn Arg Ala Ile Gln Arg Leu Gln Ala
 305 310 315 320
 Glu Ile Asp Asn Ile Lys Asn Gln Arg Ala Lys Leu Glu Ala Ala Ile
 325 330 335
 Ala Glu Ala Glu Glu Arg Gly Glu Leu Ala Leu Lys Asp Ala Arg Ala
 340 345 350
 Lys Gln Glu Glu Leu Glu Ala Ala Leu Gln Arg Gly Lys Gln Asp Met
 355 360 365
 Ala Arg Gln Leu Arg Glu Tyr Gln Glu Leu Met Ser Val Lys Leu Ala
 370 375 380
 Leu Asp Ile Glu Ile Ala Thr Tyr Arg Lys Leu Leu Glu Gly Glu Glu
 385 390 395 400
 Ser Arg Leu Ala Gly Asp Gly Val Gly Ala Val Asn Ile Ser Val Met
 405 410 415
 Asn Ser Thr Gly Gly Ser Ser Ser Gly Gly Ile Gly Leu Thr Leu
 420 425 430
 Gly Gly Thr Met Gly Ser Asn Ala Leu Ser Phe Ser Ser Ser Ala Gly
 435 440 445
 Pro Gly Leu Leu Lys Ala Tyr Ser Ile Arg Thr Ala Ser Ala Ser Arg
 450 455 460
 Arg Ser Ala Arg Asp
 465

<210> SEQ ID NO 4
 <211> LENGTH: 1753
 <212> TYPE: DNA
 <213> ORGANISM: Homo sapiens

<400> SEQUENCE: 4

```

cagccccggcc cctacctgtg gaagcccagc cgccccgtcc cgccggataaa aggcgcggag 60
tgtccccggag gtcagcgagt ggcgcgtccct cctcgccccgc cgcttaggtcc atcccgcccc 120
agccaccatg tccatccact tcaagctcccc ggtattcacc tcgcgcgtcc ccgccttctc 180
ggcccgccggc gcccagggtgc gcctgagctc cgctcgcccc ggccggcccttg gcagcagcag 240
cctctacggc ctcggcgccct cacggcccgcg cgtggccgtg cgctctgcct atggggggccc 300
ggtggggcgcc ggcattcccgcg aggtcaccat taaccagagc ctgctggccc cgctgcggct 360

```

-continued

ggacgcccac	ccctccctcc	agcgggtgcg	ccaggaggag	agcgagcaga	tcaagaccct	420
caacaacaag	tttgcctct	tcatcgacaa	ggtgcggtt	ctggagcagc	agaacaagct	480
gctggagacc	aagtggacgc	tgtgcagga	gcagaagtcg	gccaagagca	gccgcctccc	540
agacatctt	gaggcccaga	ttgctggct	tcggggtcag	cttggggcac	tgcaggtgga	600
tggggccgc	ctggaggcgg	agotgcggag	catgcaggat	gtggtgagg	acttcaagaa	660
taagtacgaa	gatgaaattt	accaccgcac	agctgtcgag	aatgagttt	tggtgctgaa	720
gaaggatgtg	gatgtgcgt	acatgagcaa	ggtggagctg	gaggccaagg	tggatgcct	780
gaatgtgag	atcaacttcc	tcaggaccct	caatgagacg	gagttgacag	agctgcagtc	840
ccagatctcc	gacacatctg	tggtgctgtc	catggacaac	agtcgcctcc	tggacctgga	900
cgccatcatc	gctgaggctca	aggcgcgat	tgaggagatg	gccaaatgca	gcccggctga	960
ggctgaagcc	tggttaccaga	ccaagtttga	gaccctccag	gcccaggctg	ggaagcatgg	1020
ggacgacctc	cggaatacc	ggaatgagat	ttcagagatg	aaccgggcca	tccagaggct	1080
gcaggctgag	atcgacaaca	tcaagaacca	gcgtgccaag	ttggaggccg	ccattgccga	1140
ggctgaggag	cgtggggcgc	tggcgctca	ggatgtcggt	gccaagcagg	aggagctgga	1200
agccgcctcg	cagcggggca	agcaggatat	ggcacggcag	ctgcgtgagt	accaggaact	1260
catgagcgtg	aagctggccc	tggacatcga	gatcgccacc	taccgcaagc	tgctggagg	1320
cgaggagagc	cgggtggctg	gagatggagt	gggagccctg	aatatctctg	tgtatgaattc	1380
cactgggtgc	agtagcgtg	gccccgttgc	tgggctgacc	ctcggggaa	ccatggcag	1440
caatgcctcg	agtttctca	gcagtgcggg	tcctggctc	ctgaaggctt	attccatccg	1500
gaccgcatcc	gccagtcgca	ggagtgcggc	cgactgagcc	gcctcccacc	actccactcc	1560
tccagccacc	acccacaatc	acaagaagat	tcccaccct	gcctccatg	cctggtccca	1620
agacagttag	acagtctgga	aagtgtatgtc	agaatagtt	ccaataaagc	agcctcattc	1680
tgaggcctga	gtgatccacg	tgaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	1740
aaaaaaaaaa	aaa					1753

<210> SEQ ID NO 5

<211> LENGTH: 511

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 5

Met Asn Gly Val Ser Trp Ser Gln Asp Leu Gln Glu Gly Ile Ser Ala
1 5 10 15

Trp Phe Gly Pro Pro Ala Ser Thr Pro Ala Ser Thr Met Ser Ile Arg
20 25 30

Val Thr Gln Lys Ser Tyr Lys Val Ser Thr Ser Gly Pro Arg Ala Phe
35 40 45

Ser Ser Arg Ser Tyr Thr Ser Gly Pro Gly Ser Arg Ile Ser Ser Ser
50 55 60

Ser Phe Ser Arg Val Gly Ser Ser Asn Phe Arg Gly Gly Leu Gly Gly
65 70 75 80

Gly Tyr Gly Gly Ala Ser Gly Met Gly Gly Ile Thr Ala Val Thr Val
85 90 95

Asn Gln Ser Leu Leu Ser Pro Leu Val Leu Glu Val Asp Pro Asn Ile
100 105 110

-continued

Gln Ala Val Arg Thr Gln Glu Lys Glu Gln Ile Lys Thr Leu Asn Asn
 115 120 125
 Lys Phe Ala Ser Phe Ile Asp Lys Val Arg Phe Leu Glu Gln Gln Asn
 130 135 140
 Lys Met Leu Glu Thr Lys Trp Ser Leu Leu Gln Gln Gln Lys Thr Ala
 145 150 155 160
 Arg Ser Asn Met Asp Asn Met Phe Glu Ser Tyr Ile Asn Asn Leu Arg
 165 170 175
 Arg Gln Leu Glu Thr Leu Gly Gln Glu Lys Leu Lys Leu Glu Ala Glu
 180 185 190
 Leu Gly Asn Met Gln Gly Leu Val Glu Asp Phe Lys Asn Lys Tyr Glu
 195 200 205
 Asp Glu Ile Asn Lys Arg Thr Glu Met Glu Asn Glu Phe Val Leu Ile
 210 215 220
 Lys Lys Asp Val Asp Glu Ala Tyr Met Asn Lys Val Glu Leu Glu Ser
 225 230 235 240
 Arg Leu Glu Gly Leu Thr Asp Glu Ile Asn Phe Leu Arg Gln Leu Tyr
 245 250 255
 Glu Glu Glu Ile Arg Glu Leu Gln Ser Gln Ile Ser Asp Thr Ser Val
 260 265 270
 Val Leu Ser Met Asp Asn Ser Arg Ser Leu Asp Met Asp Ser Ile Ile
 275 280 285
 Ala Glu Val Lys Ala Gln Tyr Glu Asp Ile Ala Asn Arg Ser Arg Ala
 290 295 300
 Glu Ala Glu Ser Met Tyr Gln Ile Lys Tyr Glu Glu Leu Gln Ser Leu
 305 310 315 320
 Ala Gly Lys His Gly Asp Asp Leu Arg Arg Thr Lys Thr Glu Ile Ser
 325 330 335
 Glu Met Asn Arg Asn Ile Ser Arg Leu Gln Ala Glu Ile Glu Gly Leu
 340 345 350
 Lys Gly Gln Arg Ala Ser Leu Glu Ala Ala Ile Ala Asp Ala Glu Gln
 355 360 365
 Arg Gly Glu Leu Ala Ile Lys Asp Ala Asn Ala Lys Leu Ser Glu Leu
 370 375 380
 Glu Ala Ala Leu Gln Arg Ala Lys Gln Asp Met Ala Arg Gln Leu Arg
 385 390 395 400
 Glu Tyr Gln Glu Leu Met Asn Val Lys Leu Ala Leu Asp Ile Glu Ile
 405 410 415
 Ala Thr Tyr Arg Lys Leu Leu Glu Gly Glu Ser Arg Leu Glu Ser
 420 425 430
 Gly Met Gln Asn Met Ser Ile His Thr Lys Thr Ser Gly Tyr Ala
 435 440 445
 Gly Gly Leu Ser Ser Ala Tyr Gly Gly Leu Thr Ser Pro Gly Leu Ser
 450 455 460
 Tyr Ser Leu Gly Ser Ser Phe Gly Ser Gly Ala Gly Ser Ser Ser Phe
 465 470 475 480
 Ser Arg Thr Ser Ser Ser Arg Ala Val Val Val Lys Lys Ile Glu Thr
 485 490 495
 Arg Asp Gly Lys Leu Val Ser Glu Ser Ser Asp Val Leu Pro Lys
 500 505 510

-continued

<210> SEQ ID NO 6

<211> LENGTH: 1807

<212> TYPE: DNA

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 6

attcagcaaa	tgtttgcgga	atgaatgggg	tgagctggag	ccaggacctg	caggaaggga	60
tctccgcctg	gttoggcccg	cctgcctcca	ctcctgcctc	taccatgtcc	atcagggtga	120
cccagaagtc	ctacaagggt	tccacacctg	gccccccgggc	cttcagcagc	cgctctacaca	180
cgagtgggcc	cgggtcccg	atcagctct	cgagcttctc	ccgagtgggc	agcagcaact	240
ttcgcgggtgg	cctggggcgc	ggatatgggt	ggggcagcgg	catggggaggc	atcaccgcag	300
ttacggtaaa	ccagagcctg	ctgagcccc	ttgtcctgga	ggtggacccc	aacatccagg	360
ccgtgcgcac	ccaggagaag	gagcagatca	agaccctcaa	caacaagttt	gcctcttca	420
tagacaaggt	acggttcctg	gagcagcaga	acaagatgt	ggagaccaag	tggagctcc	480
tgcagcagea	gaagacggct	cgaagcaaca	tggacaacat	gttcgagagc	tacatcaaca	540
accttagggcg	gcagctggag	actctgggccc	aggagaagct	gaagctggag	gcggagcttg	600
gcaacatgca	ggggctggtg	gaggactca	agaacaagta	tgaggatgag	atcaataagc	660
gtacagagat	ggagaacgaa	tttgcctca	tcaagaagga	tgtggatgaa	gcttacatga	720
acaaggtaga	gctggagtct	cgcctggaa	ggctgaccga	cgagatcaac	ttcctcaggc	780
agctatatga	agaggagatc	cgggagctgc	agtcccagat	ctcggacaca	tctgtggtgc	840
tgtccatgga	caacagccgc	tccctggaca	tggacagcat	cattgctgag	gtcaaggcac	900
agtacgagga	tattgccaac	cgcagccggg	ctgaggctga	gagcatgtac	cagatcaagt	960
atgaggagatc	gcagagcctg	gctgggaagc	acggggatga	cctgcggcgc	acaaagactg	1020
agatctctga	gatgaaccgg	aacatcagcc	ggctccaggc	tgagattgag	ggcctcaaag	1080
gccagagggc	tccctggag	gcccatttgc	catatgcgca	gcagcgtgga	gagctggcca	1140
ttaaggatgc	caacgccaag	ttgtccgagc	tggaggccgc	cctgcagcgg	gccaaaggcagg	1200
acatggcgcg	gcagctgcgt	gagtaccagg	agctgtatgaa	cgtcaagctg	gccctggaca	1260
tcgagatcgc	cacctacagg	aagctgtctg	agggcgagga	gagccggctg	gagtctggga	1320
tcgcagaacat	gagtattcat	acgaagacca	ccagcggcta	tgcaggtgg	ctgagctcgg	1380
cctatggggg	cctcacaacgc	cccgccctca	gctacagcct	gggcctccagc	tttggctctg	1440
gcgcgggctc	cagtccttc	agccgcacca	gctcctccag	ggccgtgggt	gtgaagaaga	1500
tcgagacacg	tgtatggaaag	ctgggtgtctg	agtccctctg	cgtcctgccc	aagtgaacag	1560
ctgcggcagc	ccctcccagc	ctaccctcc	tgcgctgccc	cagagccctgg	gaaggaggcc	1620
gctatgcagg	gtagcactgg	gaacaggaga	cccacctgag	gctcagccct	agccctcagc	1680
ccacctgggg	agtttactac	ctggggacc	cccttgccca	tgcctccagc	tacaaaacaa	1740
ttcaattgct	ttttttttt	ggtccaaat	aaaacctcag	ctagctctgc	caatgtcaaa	1800
aaaaaaa						1807

<210> SEQ ID NO 7

<211> LENGTH: 483

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 7

-continued

Met Ser Ile Arg Val Thr Gln Lys Ser Tyr Lys Val Ser Thr Ser Gly
 1 5 10 15
 Pro Arg Ala Phe Ser Ser Arg Ser Tyr Thr Ser Gly Pro Gly Ser Arg
 20 25 30
 Ile Ser Ser Ser Phe Ser Arg Val Gly Ser Ser Asn Phe Arg Gly
 35 40 45
 Gly Leu Gly Gly Tyr Gly Ala Ser Gly Met Gly Gly Ile Thr
 50 55 60
 Ala Val Thr Val Asn Gln Ser Leu Leu Ser Pro Leu Val Leu Glu Val
 65 70 75 80
 Asp Pro Asn Ile Gln Ala Val Arg Thr Gln Glu Lys Glu Gln Ile Lys
 85 90 95
 Thr Leu Asn Asn Lys Phe Ala Ser Phe Ile Asp Lys Val Arg Phe Leu
 100 105 110
 Glu Gln Gln Asn Lys Met Leu Glu Thr Lys Trp Ser Leu Leu Gln Gln
 115 120 125
 Gln Lys Thr Ala Arg Ser Asn Met Asp Asn Met Phe Glu Ser Tyr Ile
 130 135 140
 Asn Asn Leu Arg Arg Gln Leu Glu Thr Leu Gly Gln Glu Lys Leu Lys
 145 150 155 160
 Leu Glu Ala Glu Leu Gly Asn Met Gln Gly Leu Val Glu Asp Phe Lys
 165 170 175
 Asn Lys Tyr Glu Asp Glu Ile Asn Lys Arg Thr Glu Met Glu Asn Glu
 180 185 190
 Phe Val Leu Ile Lys Lys Asp Val Asp Glu Ala Tyr Met Asn Lys Val
 195 200 205
 Glu Leu Glu Ser Arg Leu Glu Gly Leu Thr Asp Glu Ile Asn Phe Leu
 210 215 220
 Arg Gln Leu Tyr Glu Glu Glu Ile Arg Glu Leu Gln Ser Gln Ile Ser
 225 230 235 240
 Asp Thr Ser Val Val Ser Met Asp Asn Ser Arg Ser Leu Asp Met
 245 250 255
 Asp Ser Ile Ile Ala Glu Val Lys Ala Gln Tyr Glu Asp Ile Ala Asn
 260 265 270
 Arg Ser Arg Ala Glu Ala Glu Ser Met Tyr Gln Ile Lys Tyr Glu Glu
 275 280 285
 Leu Gln Ser Leu Ala Gly Lys His Gly Asp Asp Leu Arg Arg Thr Lys
 290 295 300
 Thr Glu Ile Ser Glu Met Asn Arg Asn Ile Ser Arg Leu Gln Ala Glu
 305 310 315 320
 Ile Glu Gly Leu Lys Gly Gln Arg Ala Ser Leu Glu Ala Ala Ile Ala
 325 330 335
 Asp Ala Glu Gln Arg Gly Glu Leu Ala Ile Lys Asp Ala Asn Ala Lys
 340 345 350
 Leu Ser Glu Leu Glu Ala Ala Leu Gln Arg Ala Lys Gln Asp Met Ala
 355 360 365
 Arg Gln Leu Arg Glu Tyr Gln Glu Leu Met Asn Val Lys Leu Ala Leu
 370 375 380
 Asp Ile Glu Ile Ala Thr Tyr Arg Lys Leu Leu Glu Gly Glu Ser
 385 390 395 400
 Arg Leu Glu Ser Gly Met Gln Asn Met Ser Ile His Thr Lys Thr Thr
 405 410 415

-continued

Ser Gly Tyr Ala Gly Gly Leu Ser Ser Ala Tyr Gly Gly Leu Thr Ser
420 425 430

Pro Gly Leu Ser Tyr Ser Leu Gly Ser Ser Phe Gly Ser Gly Ala Gly
435 440 445

Ser Ser Ser Phe Ser Arg Thr Ser Ser Ser Arg Ala Val Val Val Lys
450 455 460

Lys Ile Glu Thr Arg Asp Gly Lys Leu Val Ser Glu Ser Ser Asp Val
465 470 475 480

Leu Pro Lys

<210> SEQ ID NO 8
<211> LENGTH: 1901
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 8

acaggcctt	ccttacacctc	ctccatgctg	tccacttcct	ctgtaaagct	ctcaaccctg	60
tccccttccc	cctctctct	ggaaagagc	cctccatgc	ctagctgctg	ctcttaggga	120
ccctgtggct	agggtgcgggg	atggaaatcc	aggatctccg	cctggttcgg	cccgccctgcc	180
tccacttcctg	cctctaccat	gtccatcagg	gtgaccaggaa	agtctacaa	ggtgtccacc	240
tctggggccc	gggccttcag	cagccgtcc	tacacgagtg	ggcccggttc	ccgcatcagc	300
tcctcgagct	tctcccgagt	gggcagcagc	aacttgcg	gtggcctggg	cgccggctat	360
ggtggggcca	gccccatggg	aggcatcacc	cgagttacgg	tcaaccagag	cctgtcgagc	420
ccccttgtcc	tggaggtgga	ccccaaatcc	caggccgtgc	gcacccagga	gaaggagcag	480
atcaagaccc	tcaacaacaa	gttgcctcc	ttcatagaca	aggtacgggt	cctggagcag	540
cagaacaaga	tgcgtggagac	caagtggagc	ctcctgcagc	agcagaagac	ggctcgaagc	600
aacatggaca	acatgttca	gagctacatc	aacaaccta	ggccgcagct	ggagactctg	660
ggccaggaga	agctgaagct	ggaggcggag	cttggcaaca	tgcaggggct	ggtggaggac	720
ttcaagaaca	agtatgagga	tgcgtacat	aagcgtacag	agatggagaa	cgaatttgc	780
ctcatcaaga	aggatgtgga	tgcgtttac	atgaacaagg	tagagctgga	gtctgcctg	840
gaagggctga	ccgacgagat	caacttcctc	aggcagctat	atgaagagga	gtccgggag	900
ctgcagtccc	agatctcgga	cacatctgt	gtgcgtccca	tggacaacag	ccgcctccctg	960
gacatggaca	gcatcattgc	tgaggtcaag	gcacagtacg	aggatattgc	caacccgcagc	1020
ccccgtgggg	ctgagagcat	gtaccagatc	aagtatgagg	agctgcagag	cctggctggg	1080
aagcacgggg	atgacctgctg	gacatgttca	actgagatct	ctgagatgaa	ccggaaacatc	1140
agccggctcc	aggctgagat	tgaggggctc	aaaggccaga	gggcttcct	ggaggccgccc	1200
attgcagatg	ccgacgacgc	tggagagctg	gccattaagg	atgcacacgc	caagttgtcc	1260
gagctggagg	ccgcctctgca	ggggccaaag	caggacatgg	cgccggcagct	gcgtgagttac	1320
caggagctga	tgcgtggctt	gacatcgaga	tgcacccacta	caggaagctg		1380
ctggaggggcg	aggagagccg	gctggagtct	gggatgcaga	acatgagat	tcatacgaa	1440
accaccagcg	gctatgcagg	tggctctgac	tcggcctatg	ggggcctcac	aagccccggc	1500
ctcagctaca	gcctgggctc	cagctttggc	tctggcgccg	gctccagctc	cttcagccgc	1560
accagctct	ccagggccgt	ggttgtgaag	aagatcgaga	cacgtgatgg	gaagctgggt	1620

-continued

tctgagtcct	ctgacgtcct	gcccaagtga	acagctgccc	cagccctcc	cagcctaccc	1680
ctcctgcgt	gccccagac	ctgggaaggc	ggccgctatg	caggtagca	ctgggaacag	1740
gagacccacc	tgaggctcag	ccctagccct	cagcccacct	ggggagttt	ctacctgggg	1800
accccccctt	cccatgcctc	cagctacaaa	acaattcaat	tgctttttt	tttggtcca	1860
aaataaaacc	tcagctagct	ctgccaatgt	aaaaaaaaa	a		1901

<210> SEQ_ID NO 9

<211> LENGTH: 456

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 9

Met	Thr	Thr	Phe	Leu	Gln	Thr	Ser	Ser	Ser	Thr	Phe	Gly	Gly	Gly
1														
			5				10				15			

Ser	Thr	Arg	Gly	Gly	Ser	Leu	Leu	Ala	Gly	Gly	Gly	Phe	Gly	Gly
			20			25			30					

Gly	Ser	Leu	Ser	Gly	Gly	Gly	Ser	Arg	Ser	Ile	Ser	Ala	Ser	Ser
			35			40			45					

Ala	Arg	Phe	Val	Ser	Ser	Gly	Ser	Gly	Gly	Tyr	Gly	Gly	Met
			50			55			60				

Arg	Val	Cys	Gly	Phe	Gly	Gly	Ala	Gly	Ser	Val	Phe	Gly	Gly
			65			70		75		80			

Phe	Gly	Gly	Val	Gly	Gly	Phe	Gly	Gly	Phe	Gly	Gly	Gly
			85			90			95			

Asp	Gly	Gly	Leu	Leu	Ser	Gly	Asn	Glu	Lys	Ile	Thr	Met	Gln	Asn	Leu
			100			105			110						

Asn	Asp	Arg	Leu	Ala	Ser	Tyr	Leu	Asp	Lys	Val	Arg	Ala	Leu	Glu	Glu
			115			120			125						

Ala	Asn	Ala	Asp	Leu	Glu	Val	Lys	Ile	His	Asp	Trp	Tyr	Gln	Lys	Gln
			130			135			140						

Thr	Pro	Thr	Ser	Pro	Glu	Cys	Asp	Tyr	Ser	Gln	Tyr	Phe	Lys	Thr	Ile
			145			150		155		160					

Glu	Glu	Leu	Arg	Asp	Lys	Ile	Met	Ala	Thr	Thr	Ile	Asp	Asn	Ser	Arg
			165			170			175						

Val	Ile	Leu	Glu	Ile	Asp	Asn	Ala	Arg	Leu	Ala	Ala	Asp	Asp	Phe	Arg
			180			185			190						

Leu	Lys	Tyr	Glu	Asn	Glu	Leu	Ala	Leu	Arg	Gln	Gly	Val	Glu	Ala	Asp
			195			200			205						

Ile	Asn	Gly	Leu	Arg	Arg	Val	Leu	Asp	Glu	Leu	Thr	Leu	Ala	Arg	Thr
			210			215			220						

Asp	Leu	Glu	Met	Gln	Ile	Glu	Gly	Leu	Asn	Glu	Glu	Leu	Ala	Tyr	Leu
			225			230		235		240					

Lys	Lys	Asn	His	Glu	Glu	Met	Lys	Glu	Phe	Ser	Ser	Gln	Leu	Ala
			245			250			255					

Gly	Gln	Val	Asn	Val	Glu	Met	Asp	Ala	Ala	Pro	Gly	Val	Asp	Leu	Thr
			260			265			270						

Arg	Val	Leu	Ala	Glu	Met	Arg	Glu	Gln	Tyr	Glu	Ala	Met	Ala	Glu	Lys
			275			280			285						

Asn	Arg	Arg	Asp	Val	Glu	Ala	Trp	Phe	Phe	Ser	Lys	Thr	Glu	Glu	Leu
			290			295			300						

Asn	Lys	Glu	Val	Ala	Ser	Asn	Thr	Glu	Met	Ile	Gln	Thr	Ser	Lys	Thr
			305			310			315			320			

-continued

Glu Ile Thr Asp Leu Arg Arg Thr Met Gln Glu Leu Glu Ile Glu Leu
 325 330 335
 Gln Ser Gln Leu Ser Met Lys Ala Gly Leu Glu Asn Ser Leu Ala Glu
 340 345 350
 Thr Glu Cys Arg Tyr Ala Thr Gln Leu Gln Gln Ile Gln Gly Leu Ile
 355 360 365
 Gly Gly Leu Glu Ala Gln Leu Ser Glu Leu Arg Cys Glu Met Glu Ala
 370 375 380
 Gln Asn Gln Glu Tyr Lys Met Leu Leu Asp Ile Lys Thr Arg Leu Glu
 385 390 395 400
 Gln Glu Ile Ala Thr Tyr Arg Ser Leu Leu Glu Gly Gln Asp Ala Lys
 405 410 415
 Met Ala Gly Ile Gly Ile Arg Glu Ala Ser Ser Gly Gly Gly Ser
 420 425 430
 Ser Ser Asn Phe His Ile Asn Val Glu Glu Ser Val Asp Gly Gln Val
 435 440 445
 Val Ser Ser His Lys Arg Glu Ile
 450 455

<210> SEQ ID NO 10
 <211> LENGTH: 1861
 <212> TYPE: DNA
 <213> ORGANISM: Homo sapiens
 <400> SEQUENCE: 10

```

cactcaaggt gtgcagggcag ctgtgtttgt caggaaggca gaaggagttg gctttgttt 60
agggggaggag acgagggtccc acaacacccct ctgaagggtta tataaggagc cccagcgtgc 120
agcctggcct ggtacctctt gccagcatct cttgggttttgc ctgagaactc acgggctcca 180
gttacactggc catgaccacc acattttgtc aaacttttcc ctccacccccc ggggggtggct 240
caaccccgagg gggttccctc ctggctggggg gaggtggctt tgggtgggggg agtctctctg 300
ggggagggtgg aagccgaagt atctcagttt cttctgtctag gtttgccttc tcagggtcag 360
gaggaggata tgggggtggc atgagggtct gtggctttgg tggagggggct ggttagtgg 420
tcgggtggagg ctttggaggg ggctgtgggtg ggggttttgg tgggtggctt ggtgggtggcg 480
atgggtggctt cctctctggc aatgagaaaa ttaccatgca gaacccatgca gaccgcctgg 540
cctcttaccc ggacaaggta cgtgccctgg aggaggccaa tgctgacccctg gaggtgaaga 600
tccatgactg gtaccagaag cagaccccaa ccagccaga atgcgactac agccaaact 660
tcaagaccat tgaagagatc cgggacaaga tcatggccac caccatcgac aactccggg 720
tcatccttggc gatcgacaat gccaggctgg ctgcggacga cttcaggctc aagtatgaga 780
atgagctggc cctgcgccag ggcgttgagg ctgacatcaa cggcttgcgc cgagtccctgg 840
atgagctgac cctggccagg actgacccctgg agatgcagat cgaggccctg aatgaggagc 900
tgccttaccc ttggatggatc cacgaagagg agatgaagga gttcagcagc cagctggccg 960
ggccaggatca tggatggatc gacgcgacac cgggtgttgc cttcaggctc gttgtggcag 1020
agatgaggaa gcatgttgcgg agaagaaccg ccggatgttc gaggttgcgtt 1080
tcttcagccaa gactgaggag ctgaacaaag aggtggccctc caacacagaa atgtatccaga 1140
ccagcaagac ggagatcaca gacctgagac gcacgttgcga ggagctggag atcgagctgc 1200
agtcccagct cagcatgaaa gctgggttgc agaactcaact ggccgagaca gagttgcgtt 1260
  
```

-continued

atgcccacgca	gctgcagcag	atccaggggc	tcattggtgg	cctggaggcc	cagctgagtg	1320
agctccgatg	cgagatggag	gctcagaacc	aggagtacaa	gatgtcgctt	gacataaaga	1380
cacggtctgg	gcaggagatc	getacttacc	gcagcctgtct	cgagggccag	gatgecaaga	1440
tggctggcat	tggcatcagg	gaaggcttctt	caggaggtgg	tggtagcagc	agcaatttcc	1500
acatcaatgt	agaagagtc	gtggatggac	aggtggtttc	ttcccaacaag	agagaaatct	1560
aagtgtctat	tgccaggagaa	acgtcccttg	ccactcccca	ctctcatcag	gccaaagtgg	1620
ggactggcca	gagggcctgc	acatgcaaacc	ccagtcctct	gccttcagag	agctgaaaag	1680
ggtcctctgg	tcttttattt	cagggctttg	catgcgcctt	attccccctc	tgccctctccc	1740
cacccctttt	ggagcaagga	gatgcagctg	tattgtgtaa	caagctcatt	tgtacagtgt	1800
ctgttcatgt	aataaagaat	tacttttctt	tttgc当地ata	aaaaaaaaaa	aaaaaaaaaa	1860
a						1861

<210> SEQ ID NO 11

<211> LENGTH: 430

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 11

Met	Ser	Phe	Thr	Thr	Arg	Ser	Thr	Phe	Ser	Thr	Asn	Tyr	Arg	Ser	Leu
1															15

Gly	Ser	Val	Gln	Ala	Pro	Ser	Tyr	Gly	Ala	Arg	Pro	Val	Ser	Ser	Ala
															30

Ala	Ser	Val	Tyr	Ala	Gly	Ala	Gly	Ser	Gly	Ser	Arg	Ile	Ser	Val

Ser	Arg	Ser	Thr	Ser	Phe	Arg	Gly	Gly	Met	Gly	Ser	Gly	Gly	Leu	Ala
															60

Thr	Gly	Ile	Ala	Gly	Gly	Leu	Ala	Gly	Met	Gly	Gly	Ile	Gln	Asn	Glu
															80

Lys	Glu	Thr	Met	Gln	Ser	Leu	Asn	Asp	Arg	Leu	Ala	Ser	Tyr	Leu	Asp
															95

Arg	Val	Arg	Ser	Leu	Glu	Thr	Glu	Asn	Arg	Arg	Leu	Glu	Ser	Lys	Ile
															110

Arg	Glu	His	Leu	Glu	Lys	Lys	Gly	Pro	Gln	Val	Arg	Asp	Trp	Ser	His
															125

Tyr	Phe	Lys	Ile	Ile	Glu	Asp	Leu	Arg	Ala	Gln	Ile	Phe	Ala	Asn	Thr
															140

Val	Asp	Asn	Ala	Arg	Ile	Val	Leu	Gln	Ile	Asp	Asn	Ala	Arg	Leu	Ala
															160

Ala	Asp	Asp	Phe	Arg	Val	Lys	Tyr	Glu	Thr	Glu	Leu	Ala	Met	Arg	Gln
															175

Ser	Val	Glu	Asn	Asp	Ile	His	Gly	Leu	Arg	Lys	Val	Ile	Asp	Asp	Thr
															190

Asn	Ile	Thr	Arg	Leu	Gln	Leu	Glu	Thr	Glu	Ile	Glu	Ala	Leu	Lys	Glu
															205

Glu	Leu	Leu	Phe	Met	Lys	Lys	Asn	His	Glu	Glu	Val	Lys	Gly	Leu	
															220

Gln	Ala	Gln	Ile	Ala	Ser	Ser	Gly	Leu	Thr	Val	Glu	Val	Asp	Ala	Pro
															240

Lys Ser Gln Asp Leu Ala Lys Ile Met Ala Asp Ile Arg Ala Gln Tyr

-continued

245	250	255	
Asp Glu Leu Ala Arg Lys Asn Arg Glu Glu Leu Asp Lys Tyr Trp Ser			
260	265	270	
Gln Gln Ile Glu Glu Ser Thr Thr Val Val Thr Thr Gln Ser Ala Glu			
275	280	285	
Val Gly Ala Ala Glu Thr Thr Leu Thr Glu Leu Arg Arg Thr Val Gln			
290	295	300	
Ser Leu Glu Ile Asp Leu Asp Ser Met Arg Asn Leu Lys Ala Ser Leu			
305	310	315	320
Glu Asn Ser Leu Arg Glu Val Glu Ala Arg Tyr Ala Leu Gln Met Glu			
325	330	335	
Gln Leu Asn Gly Ile Leu Leu His Leu Glu Ser Glu Leu Ala Gln Thr			
340	345	350	
Arg Ala Glu Gly Gln Arg Gln Ala Gln Glu Tyr Glu Ala Leu Leu Asn			
355	360	365	
Ile Lys Val Lys Leu Glu Ala Glu Ile Ala Thr Tyr Arg Arg Leu Leu			
370	375	380	
Glu Asp Gly Glu Asp Phe Asn Leu Gly Asp Ala Leu Asp Ser Ser Asn			
385	390	395	400
Ser Met Gln Thr Ile Gln Lys Thr Thr Arg Arg Ile Val Asp Gly			
405	410	415	
Lys Val Val Ser Glu Thr Asn Asp Thr Lys Val Leu Arg His			
420	425	430	

<210> SEQ ID NO 12
 <211> LENGTH: 1485
 <212> TYPE: DNA
 <213> ORGANISM: Homo sapiens

<400> SEQUENCE: 12

tccggggcgg	gggcggggcc	tcactctgcg	ataataactcg	ggtcgcgcgg	ctcgcgagg	60
ccggccaccgt	cgtccgcaaa	gcctgagtcc	tgtcccttct	ctctccccgg	acagcatgag	120
cttcaccact	cgtcccacct	tctccaccaa	ctaccggtcc	ctgggctctg	tccaggcgcc	180
cagctacggc	gccgggcccgg	tcagcagcgc	ggccagcgtc	tatgcagggcg	ctgggggctc	240
tggttcccg	atctccgtgt	cccgctccac	cagttcagg	ggcggcatgg	ggtccgggggg	300
cctggccacc	gggatagccg	ggggctggc	aggaatggga	ggcatccaga	acgagaagga	360
gaccatgcaa	agcctgaacg	accgcctggc	ctcttacctg	gacagagtga	ggagcctgga	420
gaccgagaac	cggaggctgg	agagcaaata	ccgggagcac	ttggagaaga	agggacccca	480
ggtcagagac	tggagccatt	acttcaagat	catcgaggac	ctgagggctc	agatcttcgc	540
aaatactgtg	gacaatgccc	gcatcggtct	gcagattgac	aatgcccgtc	ttgctgctga	600
tgactttaga	gtcaagtatg	agacagagct	ggccatgcgc	cagtctgtgg	agaacgacat	660
ccatgggctc	cgcaagggtca	ttgatgacac	caatatcaca	cgactgcagc	tggagacaga	720
gatcgaggct	ctcaaggagg	agctgcttct	catgaagaag	aaccacgaag	aggaagtaaa	780
aggcctacaa	gcccagattg	ccagctctgg	gttgaccgtg	gaggtagatg	cccccaaata	840
tcaggacctc	gccaagatca	tggcagacat	ccgggcccua	tatgacgagc	tggctcgaa	900
gaaccgagag	gagctagaca	agtactggtc	tcagcagatt	gaggagagca	ccacagtgg	960
caccacacag	tctgctgagg	ttggagctgc	tgagacgacg	ctcacagagc	tgagacgtac	1020

-continued

agtccagtc	ttggagatcg	acctggactc	catgagaaa	ctgaaggcca	gcttggagaa	1080
cagcctgagg	gagggtggagg	cccgctacgc	cctacagatg	gagcagacta	acgggatcct	1140
gtgtcacctt	gagtcaagagc	tggcacagac	ccggggcagag	ggacagcgcc	aggcccagga	1200
gtatgaggcc	ctgtctgaaca	tcaaggtaaa	gctggagggt	gagatcgcca	cctaccgccc	1260
cctgctggaa	gatggcgagg	actttaatct	tggtgatgcc	ttggacagca	gcaactccat	1320
gcaaaccatc	caaaaagacca	ccacccggcg	gatagtggat	ggcaaagtgg	tgtctgagac	1380
caatgacacc	aaagttctga	ggcattaagc	cagcagaagc	agggtaccct	ttggggagca	1440
qqqqqqccat	aaaaaaatca	qaqttcaaaa	aaaaaaaaaa	aaaaaa		1485

<210> SEQ ID NO 13

<211> LENGTH: 430

<212> TYPE: PRT

<212> TYPE: PRI
<213> ORGANTISM: Homo sapiens

<400> SEQUENCE: 13

Met Ser Phe Thr Thr Arg Ser Thr Phe Ser Thr Asn Tyr Arg Ser Leu
 1 5 10 15

Gly Ser Val Gln Ala Pro Ser Tyr Gly Ala Arg Pro Val Ser Ser Ala
20 25 30

Ala Ser Val Tyr Ala Gly Ala Gly Gly Ser Gly Ser Arg Ile Ser Val
35 40 45

Ser Arg Ser Thr Ser Phe Arg Gly Gly Gly Met Gly Ser Gly Gly Leu Ala
50 55 60

Thr Gly Ile Ala Gly Gly Leu Ala Gly Met Gly Gly Ile Gln Asn Glu
65 70 75 80

Lys Glu Thr Met Gln Ser Leu Asn Asp Arg Leu Ala Ser Tyr Leu Asp
85 90 95

Arg Val Arg Ser Leu Glu Thr Glu Asn Arg Arg Leu Glu Ser Lys Ile
 100 105 110

Arg Glu His Leu Glu Lys Lys Gly Pro Gln Val Arg Asp Trp Ser His
115 120 125

Tyr Phe Lys Ile Ile Glu Asp Leu Arg Ala Gln Ile Phe Ala Asn Thr
130 135 140

Val Asp Asn Ala Arg Ile Val Leu Gln Ile Asp Asn Ala Arg Leu Ala
145 150 155 160

Ala Asp Asp Phe Arg Val Lys Tyr Glu Thr Glu Leu Ala Met Arg Gln
165 170 175

Ser Val Glu Asp Ile His Gly Leu Arg Lys Val Ile Asp Asp Thr
180 185 190

Asp Ile Thr Arg Leu Glu Leu Glu Thr Glu Ile Glu Ala Leu Lys Glu
195 200 205

Glu Leu Leu Phe Met Lys Lys Asn His Glu Glu Glu Val Lys Gly Leu
210 215 220

225 230 235 240

245 250 255

260 265 270

275 280 285

-continued

Val Gly Ala Ala Glu Thr Thr Leu Thr Glu Leu Arg Arg Thr Val Gln
 290 295 300

Ser Leu Glu Ile Asp Leu Asp Ser Met Arg Asn Leu Lys Ala Ser Leu
 305 310 315 320

Glu Asn Ser Leu Arg Glu Val Ala Arg Tyr Ala Leu Gln Met Glu
 325 330 335

Gln Leu Asn Gly Ile Leu Leu His Leu Glu Ser Glu Leu Ala Gln Thr
 340 345 350

Arg Ala Glu Gly Gln Arg Gln Ala Gln Glu Tyr Glu Ala Leu Leu Asn
 355 360 365

Ile Lys Val Lys Leu Glu Ala Glu Ile Ala Thr Tyr Arg Arg Leu Leu
 370 375 380

Glu Asp Gly Glu Asp Phe Asn Leu Gly Asp Ala Leu Asp Ser Ser Asn
 385 390 395 400

Ser Met Gln Thr Ile Gln Lys Thr Thr Arg Arg Ile Val Asp Gly
 405 410 415

Lys Val Val Ser Glu Thr Asn Asp Thr Lys Val Leu Arg His
 420 425 430

<210> SEQ ID NO 14

<211> LENGTH: 1439

<212> TYPE: DNA

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 14

gcagcctcga gggccaacaa cacctgctgt ccgtgtccat gcccggttgg ccaccccggt 60
 tctgggggca tgagcttcac cactcgctcc accttctcca ccaactaccg gtccctggc 120
 tctgtccagg cggccagcta cggcgcccg cccggtcagca gcgccggccag cgtctatgca 180
 ggcgctgggg gctctgggta cggatctcc gtgtcccgct ccaccagctt cagggggcggc 240
 atggggtccg ggggcctggc caccggata gccgggggtc tggcaggaat gggaggcatc 300
 cagaacgaga aggagaccat gcaaagcctg aacgaccggc tggccttta cctggacaga 360
 gtgaggagcc tggagaccga gaaccggagg ctggagagca aaatccggga gcacttggag 420
 aagaagggac cccaggtcag agactggagc cattacttca agatcatcga ggacctgagg 480
 gtcagatct tcgcaaaatac tggacaat gcccgcacatg ttctgcacat tgacaatgcc 540
 cgtcttgctg ctgatgactt tagagtcaag tatgagacag agctggccat ggcgcagtct 600
 gtggagaacg acatccatgg gtcggcaag gtcattgtg acaccaatat cacacgactg 660
 cagctggaga cagagatcga ggtctcaag gaggagctgc tttcatgaa gaagaaccac 720
 gaagaggaag taaaaggcct acaagcccg attgccagct ctgggttgac cgtggaggta 780
 gatgccccca aatctcagga ctcgcacaa atcatggcag acatccgggc ccaatatgac 840
 gagctggctc ggaagaacccg agaggagctc gacaagtact ggtctcagca gattggaggag 900
 agcaccacag tggtcaccac acagtctgct gaggttggag ctgctgagac gacgctcaca 960
 gagctgagac gtacagtcca gtccttggag atcgacctgg actccatgag aatctgaag 1020
 gcccaggcttgg agaacagect gagggaggtg gaggcccgct acgcctaca gatggaggac 1080
 ctcaacggga tcctgctca cttgactca gagctggcac agacccggc agagggacac 1140
 cggcaggccc aggagtatga ggccctgctg aacatcaagg tcaagctgga ggctgagatc 1200
 gcccacctacc gcccctgct ggaagatggc gaggacttta atcttggtga tgccttggac 1260

-continued

agcagcaact ccatgcaaac catccaaaag accaccaccc gccggatagt ggatggcaa 1320
 gtggtgtctg agaccaatga caccaaagg ctgaggcatt aagccagcag aagcaggta 1380
 cccttgggg aageaggaggc caataaaaag ttcagagttc aaaaaaaaaa aaaaaaaaa 1439

<210> SEQ ID NO 15
 <211> LENGTH: 400
 <212> TYPE: PRT
 <213> ORGANISM: Homo sapiens

<400> SEQUENCE: 15

Met Thr Ser Tyr Ser Tyr Arg Gln Ser Ser Ala Thr Ser Ser Phe Gly
 1 5 10 15

Gly Leu Gly Gly Ser Val Arg Phe Gly Pro Gly Val Ala Phe Arg
 20 25 30

Ala Pro Ser Ile His Gly Gly Ser Gly Gly Arg Gly Val Ser Val Ser
 35 40 45

Ser Ala Arg Phe Val Ser Ser Ser Gly Ala Tyr Gly Gly Gly
 50 55 60

Tyr Gly Gly Val Leu Thr Ala Ser Asp Gly Leu Leu Ala Gly Asn Glu
 65 70 75 80

Lys Leu Thr Met Gln Asn Leu Asn Asp Arg Leu Ala Ser Tyr Leu Asp
 85 90 95

Lys Val Arg Ala Leu Glu Ala Ala Asn Gly Glu Leu Glu Val Lys Ile
 100 105 110

Arg Asp Trp Tyr Gln Lys Gln Gly Pro Gly Pro Ser Arg Asp Tyr Ser
 115 120 125

His Tyr Tyr Thr Thr Ile Gln Asp Leu Arg Asp Lys Ile Leu Gly Ala
 130 135 140

Thr Ile Glu Asn Ser Arg Ile Val Leu Gln Ile Asp Asn Ala Arg Leu
 145 150 155 160

Ala Ala Asp Asp Phe Arg Thr Lys Phe Glu Thr Glu Gln Ala Leu Arg
 165 170 175

Met Ser Val Glu Ala Asp Ile Asn Gly Leu Arg Arg Val Leu Asp Glu
 180 185 190

Leu Thr Leu Ala Arg Thr Asp Leu Glu Met Gln Ile Glu Gly Leu Lys
 195 200 205

Glu Glu Leu Ala Tyr Leu Lys Lys Asn His Glu Glu Glu Ile Ser Thr
 210 215 220

Leu Arg Gly Gln Val Gly Gly Gln Val Ser Val Glu Val Asp Ser Ala
 225 230 235 240

Pro Gly Thr Asp Leu Ala Lys Ile Leu Ser Asp Met Arg Ser Gln Tyr
 245 250 255

Glu Val Met Ala Glu Gln Asn Arg Lys Asp Ala Glu Ala Trp Phe Thr
 260 265 270

Ser Arg Thr Glu Glu Leu Asn Arg Glu Val Ala Gly His Thr Glu Gln
 275 280 285

Leu Gln Met Ser Arg Ser Glu Val Thr Asp Leu Arg Arg Thr Leu Gln
 290 295 300

Gly Leu Glu Ile Glu Leu Gln Ser Gln Leu Ser Met Lys Ala Ala Leu
 305 310 315 320

Glu Asp Thr Leu Ala Glu Thr Glu Ala Arg Phe Gly Ala Gln Leu Ala
 325 330 335

-continued

His Ile Gln Ala Leu Ile Ser Gly Ile Glu Ala Gln Leu Gly Asp Val
 340 345 350

Arg Ala Asp Ser Glu Arg Gln Asn Gln Glu Tyr Gln Arg Leu Met Asp
 355 360 365

Ile Lys Ser Arg Leu Glu Gln Glu Ile Ala Thr Tyr Arg Ser Leu Leu
 370 375 380

Glu Gly Gln Glu Asp His Tyr Asn Asn Leu Ser Ala Ser Lys Val Leu
 385 390 395 400

<210> SEQ ID NO 16

<211> LENGTH: 1490

<212> TYPE: DNA

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 16

agatataccgc ccctgacacc attcctccct tccccccccc accggccgcg ggcataaaag	60
gcgcagggtg agggcctcgc cgctcctccc gcaaatcgca gcttctgaga ccagggttgc	120
tccgtccgtg ctccgcctcg ccatgacttc ctacagctat cgccagtcgt cggccacgtc	180
gtccttcgga ggcctggcg gggctccgt gcttttggg cggggggtcg ccttgcgc	240
gcccagcatt caegggggct cggcggccg cggcgtatcc gtgtcctccg cccgcttgc	300
gtcctcggtcc tcctcggggg cctacggggg cggctacggc ggcgttctga ccgcgtccga	360
cgggctgctg gcgggcaacg agaagctaac catgcagaac ctcaacgacc gcctggcctc	420
ctacctggac aagggtcgccg ccctggaggc ggccaacggc gagctagagg tgaagatccg	480
cgactggta cagaaggcagg ggctctggcc ctcccgccgac tacagccact actacacgac	540
catccaggac ctgcgggaca agattctgg tgccaccatt gagaactcca ggatttgcct	600
gcagatcgac aatgcccgtc tggctgcaga tgacttccga accaagtttgc agacggaaaca	660
ggctctgcgc atgagcgtgg agggcgacat caacggcgtc cgcagggtgc tggatgagct	720
gaccctggcc aggaccgacc tggagatgca gatcgaaggc ctgaaggaaag agctggccta	780
cctgaagaag aaccatgagg agggaaatcg tacgctgagg ggccaagtgg gaggccagg	840
cagtgtggag gtggattccg ctccggcac cgtatctgccc aagatcttgcgt gacatgcg	900
aagccaatat gaggtcatgg ccgagcagaa ccggaaggat gctgaagcct gtttaccat	960
ccggactgaa gaattgaacc gggaggtcgc tggccacacg gagcagctcc agatgagcag	1020
gtcccgagggtt actgacactgc ggccgacccct tcagggtctt gagatttgcgt tgcagtcaca	1080
gctgagcatg aaagctgcct tggaaagcac acggcagaa acggaggccg gctttggag	1140
ccagctggcg catatccagg cgctgatcg cggatttggaa gcccagttgg gcgatgtgc	1200
agctgatagt gagcggcaga atcaggagta ccagcggctc atggacatca agtcgcggct	1260
ggagcaggag attgccaccc accgcagccct gctcgaggaa caggaagatc actacaacaa	1320
tttgtctgcc tccaagggtcc tctgaggcag caggctctgg ggcttctgt gtcctttgg	1380
gggtgtcttc tgggttagagg gatggaaagg aaggggaccct taccggccgc tcttctcctg	1440
acctgccaat aaaaatttat ggtccaagggg aaaaaaaaaa aaaaaaaaaa	1490

<210> SEQ ID NO 17

<211> LENGTH: 378

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

-continued

<400> SEQUENCE: 17

```

Met Asp Ser Val Arg Ser Gly Ala Phe Gly His Leu Phe Arg Pro Asp
1 5 10 15

Asn Phe Ile Phe Gly Gln Ser Gly Ala Gly Asn Asn Trp Ala Lys Gly
20 25 30

His Tyr Thr Glu Gly Ala Glu Leu Val Asp Ser Val Leu Asp Val Val
35 40 45

Arg Lys Glu Cys Glu Asn Cys Asp Cys Leu Gln Gly Phe Gln Leu Thr
50 55 60

His Ser Leu Gly Gly Thr Gly Ser Gly Met Gly Thr Leu Leu Ile
65 70 75 80

Ser Lys Val Arg Glu Glu Tyr Pro Asp Arg Ile Met Asn Thr Phe Ser
85 90 95

Val Val Pro Ser Pro Lys Val Ser Asp Thr Val Val Glu Pro Tyr Asn
100 105 110

Ala Thr Leu Ser Ile His Gln Leu Val Glu Asn Thr Asp Glu Thr Tyr
115 120 125

Cys Ile Asp Asn Glu Ala Leu Tyr Asp Ile Cys Phe Arg Thr Leu Lys
130 135 140

Leu Ala Thr Pro Thr Tyr Gly Asp Leu Asn His Leu Val Ser Ala Thr
145 150 155 160

Met Ser Gly Val Thr Thr Ser Leu Arg Phe Pro Gly Gln Leu Asn Ala
165 170 175

Asp Leu Arg Lys Leu Ala Val Asn Met Val Pro Phe Pro Arg Leu His
180 185 190

Phe Phe Met Pro Gly Phe Ala Pro Leu Thr Ala Arg Gly Ser Gln Gln
195 200 205

Tyr Arg Ala Leu Thr Val Pro Glu Leu Thr Gln Gln Met Phe Asp Ala
210 215 220

Lys Asn Met Met Ala Ala Cys Asp Pro Arg His Gly Arg Tyr Leu Thr
225 230 235 240

Val Ala Thr Val Phe Arg Gly Arg Met Ser Met Lys Glu Val Asp Glu
245 250 255

Gln Met Leu Ala Ile Gln Ser Lys Asn Ser Ser Tyr Phe Val Glu Trp
260 265 270

Ile Pro Asn Asn Val Lys Val Ala Val Cys Asp Ile Pro Pro Arg Gly
275 280 285

Leu Lys Met Ser Ser Thr Phe Ile Gly Asn Ser Thr Ala Ile Gln Glu
290 295 300

Leu Phe Lys Arg Ile Ser Glu Gln Phe Thr Ala Met Phe Arg Arg Lys
305 310 315 320

Ala Phe Leu His Trp Tyr Thr Gly Glu Gly Met Asp Glu Met Glu Phe
325 330 335

Thr Glu Ala Glu Ser Asn Met Asn Asp Leu Val Ser Glu Tyr Gln Gln
340 345 350

Tyr Gln Asp Ala Thr Ala Glu Glu Gly Glu Met Tyr Glu Asp Asp
355 360 365

Glu Glu Glu Ser Glu Ala Gln Gly Pro Lys
370 375

```

<210> SEQ ID NO 18
<211> LENGTH: 1851

-continued

<212> TYPE: DNA

<213> ORGANISM: *Homo sapiens*

<400> SEQUENCE: 18

agacactcac cccggactcc cttgaacagg gacagggagg aaccccaggc agctagaccc
cagcagcagc cacacgagca cactgtgggg cagggagggg catcttga gaacaaaaga 120
tccatttctc gactttccaa actggagagc ttcttgagag aaaagagaga gacaggtaca 180
ggtccacgccc acccacacac agccctgtgc acacagaccc gacacaggcg tccacagttc 240
tgggaagtca tcagtgtatga gcatggcata gaccccagcg gcaactacgt gggcgactcg 300
gacttgcagc tggagccgat cagcgtctac tacaacgagg cctttctca caagtacgtg 360
cctcgagcca ttcttggtgga ccttggaaaccc ggaaccatgg acagtgtccg ctcaggggccc 420
tttggacatc tcttcaggcc tgacaatttc atctttggtc agagtggggc cggcaacaac 480
tgggccaagg gtcactacac ggagggggcg gagctggtgg attcggtcct ggatgtggtg 540
cggaaggagt gtgaaaactg cgactgcctg cagggctcc agctgaccca ctcgtgggg 600
ggcgccacgg gtcceggcat gggcacgtt ctcacatcgca aggtgcgtga ggagtatccc 660
gaccgcatac tgaacacccctt cagcgtcggt ccctcacccca aggtgtcaga cacgggtgg 720
gagccctaca acgcccacgct gtccatccac cagctggtgg agaacacggg tgagacctac 780
tgcacatcgaca acgaggcgct ctacgacata tgcattccca cccctcaagct ggccacgccc 840
acctacgggg acctcaacca cctggatcgc gcccacatga gggagtcac caccccttg 900
cgcttcccg gccagtcata cgctgacccgt cgcaagctgg cggtaacat ggtggcccttc 960
cccgccctgc acttcttcat gccccggcttc gccccctca cagccgggg cagccagcag 1020
taccgggccc tgaccgtgcc cgagctcacc cagcagatgt tgcacatccaa gaacatgtat 1080
ggcgccctgc acccgccca cggccgctac ctgacgggtt ccaccgtgtt cggggccgc 1140
atgtccatga aggaggtgga cgagcagatg ctggccatcc agagcaagaa cagcagctac 1200
ttcgtggagt ggatccccaa caacgtgaag gtggccgtgt gtgacatccc gccccggc 1260
ctcaagatgt cctccacccctt catcgggaaac agcacggcca tccaggagct gttcaagcgc 1320
atctccgagc agttcacggc catgttccgg cgcaaggccctt tctgcactg gtacacgggc 1380
gaggggatgg acgagatgga gttcacccgg gcccggagca acatgaacga cctgggtgtcc 1440
gagttaccaggc agtaccaggc cggccacggcc gaggaagagg gggagatgtt cgaagacgc 1500
gaggaggaggtt cggaggccca gggccccaag tgaagctgtt cgcagctggc gtgagaggca 1560
ggtgtggccccc gggggccgaag ccagcgtgtt ctaaaccctt ggagccatct tgctggccgac 1620
accctgtttt cccctcgcccc tagggctccc ttgcggccctt cctgcagttat ttagggccctc 1680
gtcttccccc cctaggccac gtgtgagctgtt ctcctgtctc tgccttattt cagctccagg 1740
cctgacgttt tacggttttt gttttactg gttgtgtttt atatttcgg ggataacttaa 1800
taaatctatt qctqtcqat acccttaaaa aaaaaaaaaa aaaaaaaaaa a 1851

<210> SEQ ID NO 19

<211> LENGTH: 450

<212> LENGTH: 13

<213> ORGANISM: *Homo sapiens*

<400> SEQUENCE: 19

Met Arg Glu Ile Val His Ile Gln Ala Gly Gln Cys Gly Asn Gln Ile
1 5 10 15

-continued

Gly Ala Lys Phe Trp Glu Val Ile Ser Asp Glu His Gly Ile Asp Pro
 20 25 30
 Ser Gly Asn Tyr Val Gly Asp Ser Asp Leu Gln Leu Glu Arg Ile Ser
 35 40 45
 Val Tyr Tyr Asn Glu Ala Ser Ser His Lys Tyr Val Pro Arg Ala Ile
 50 55 60
 Leu Val Asp Leu Glu Pro Gly Thr Met Asp Ser Val Arg Ser Gly Ala
 65 70 75 80
 Phe Gly His Leu Phe Arg Pro Asp Asn Phe Ile Phe Gly Gln Ser Gly
 85 90 95
 Ala Gly Asn Asn Trp Ala Lys Gly His Tyr Thr Glu Gly Ala Glu Leu
 100 105 110
 Val Asp Ser Val Leu Asp Val Val Arg Lys Glu Cys Glu Asn Cys Asp
 115 120 125
 Cys Leu Gln Gly Phe Gln Leu Thr His Ser Leu Gly Gly Thr Gly
 130 135 140
 Ser Gly Met Gly Thr Leu Leu Ile Ser Lys Val Arg Glu Glu Tyr Pro
 145 150 155 160
 Asp Arg Ile Met Asn Thr Phe Ser Val Val Pro Ser Pro Lys Val Ser
 165 170 175
 Asp Thr Val Val Glu Pro Tyr Asn Ala Thr Leu Ser Ile His Gln Leu
 180 185 190
 Val Glu Asn Thr Asp Glu Thr Tyr Cys Ile Asp Asn Glu Ala Leu Tyr
 195 200 205
 Asp Ile Cys Phe Arg Thr Leu Lys Leu Ala Thr Pro Thr Tyr Gly Asp
 210 215 220
 Leu Asn His Leu Val Ser Ala Thr Met Ser Gly Val Thr Thr Ser Leu
 225 230 235 240
 Arg Phe Pro Gly Gln Leu Asn Ala Asp Leu Arg Lys Leu Ala Val Asn
 245 250 255
 Met Val Pro Phe Pro Arg Leu His Phe Phe Met Pro Gly Phe Ala Pro
 260 265 270
 Leu Thr Ala Arg Gly Ser Gln Gln Tyr Arg Ala Leu Thr Val Pro Glu
 275 280 285
 Leu Thr Gln Gln Met Phe Asp Ala Lys Asn Met Met Ala Ala Cys Asp
 290 295 300
 Pro Arg His Gly Arg Tyr Leu Thr Val Ala Thr Val Phe Arg Gly Arg
 305 310 315 320
 Met Ser Met Lys Glu Val Asp Glu Gln Met Leu Ala Ile Gln Ser Lys
 325 330 335
 Asn Ser Ser Tyr Phe Val Glu Trp Ile Pro Asn Asn Val Lys Val Ala
 340 345 350
 Val Cys Asp Ile Pro Pro Arg Gly Leu Lys Met Ser Ser Thr Phe Ile
 355 360 365
 Gly Asn Ser Thr Ala Ile Gln Glu Leu Phe Lys Arg Ile Ser Glu Gln
 370 375 380
 Phe Thr Ala Met Phe Arg Arg Lys Ala Phe Leu His Trp Tyr Thr Gly
 385 390 395 400
 Glu Gly Met Asp Glu Met Glu Phe Thr Glu Ala Glu Ser Asn Met Asn
 405 410 415
 Asp Leu Val Ser Glu Tyr Gln Gln Tyr Gln Asp Ala Thr Ala Glu Glu

-continued

Glu Gly Glu Met Tyr Glu Asp Asp Glu Glu Glu Ser Glu Ala Gln Gly
435 440 445
Pro Lys
450

<210> SEQ ID NO 20
<211> LENGTH: 1794
<212> TYPE: DNA
<213> ORGANISM: *Homo sapiens*

<400> SEQUENCE: 20

gacatcagcc gatgcgaagg gcggggccgc ggtataaga gcgcgggccc gcggccccg
accctcagca gccagcccg cccgcccggc cccgtccgca gccgcccggc agacgcggc
agatgaggg agatcgtgca catccagggc ggcagtgcg gcaaccagat cggggccaag
ttctggaaag tcatcagtga tgagcatggc atcgacccca gcccggcaacta cgtggggc
tcggacttgc agctggagcg gatcagcgtc tactacaacg aggccttgc tcacaagtac
gtgcctcgag ccattctgggt ggacctggaa cccggaaacca tggacagtgt cccgtccagg
gcctttggac atctcttcag gcctgacaat ttcatctttg gtcagagtgg ggccggcaac
aactgggcca agggtacta cacggagggg gcccggactgg tggattcggt cctggatgt
gtgcggaaagg agtgtgaaaa ctgcgactgc ctgcagggtt tccagctgac ccactcgctg
ggggggccgc cgggctccgg catgggcacg ttgtctcatca gcaagggtgcg tgaggaggt
cccgaccgca tcatgaacac cttcagcgtc gtgccttcac ccaagggtgtc agacacgggt
gtggagccct acaacgcccac gctgtccatc caccagctgg tggagaacac ggtatgagacc
tactgcatcg acaacgaggc gctctacgac atctgttcc gcaccctcaa gctggccacg
cccaacctacg gggaccccaa ccacccgtta tggccacca tgagccgggtt caccaccc
ttgcgttcc cggggccagct caacgctgac ctgcgcaagc tggccgtcaa catgggtcccc
ttcccgccgc tgcacttctt catggccggc ttgcggggggc tcacagcccg gggccggcc
cagtagccggg ccctgaccgt gcccggactc acccagcaga tgttcgatgc caagaacatg
atggccgcct ggcggccggc ccacggccgc tacctgacgg tggccaccgtt gttccggggc
cgcatgtcca tgaaggaggt ggacggcggc atgtgtccca tccagagcaa gaacaggc
tacttcgtgg agtggatccc caacaacgtg aagggtggccg tggatgtacat cccggccccc
ggccctcaaga tgcctccac cttcatcgaa aacagcacgg ccacccggg gctgttcaag
cgcatctccg agcaggatccac ggccatgttc cggccggcagg cccgtccgtca ctggatcc
ggccggccggc tggacggat ggagttcacc gaggccggaa gcaacatgaa cggccggat
tcccgatacc agcaggatccca ggacggccacg gcccggggaa aaggccggat gtcacgg
gacggggagg agtcggaggc ccaggggcccc aagtgaagct gtcgcagct ggagtgag
gcaggatggcg gcccggggcccg aagccggcggc tggatccaaacc cccggccggca tccgttgc
gacaccctgc ttccctcg cccttagggctt cccttgcggc cccgtccgtca tattttatgg
ctcgatcc cccacccatggc cacgtgtggat ctgcgtccgtt ctctgttcaat tggccgttcc
aggccctgacg ttttacgggtt ttgttttttcaat tgggttggat tttatattttt cggggataact
taataaaatctt attgtgttca gataccctta aaaaaaaaaaaa aaaaaaaaaaaa aaaa
1794

-continued

```

<210> SEQ ID NO 21
<211> LENGTH: 163856
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 21

gccccccaggc gggggccggcc gcagagcagc accggccgtg gtcggtag cagcaaggc 60
gaaccccgct cccgcgtccgc ttccgttccgc gtccttccgg cccttggcc tccaaacacc 120
agtccccggc agtcgttgc gcattgcgc ctccccgcgc ccaggatgcc ggttaacccgag 180
aaggatctag ctgaggacgc gccttggaaag aagatccagc agaacacgtt cacacgttgg 240
tgcaacgcgc acctcaagtgc cgtgaacaaac cgcacggca acctgcacgc cgacccgttgc 300
gacgggctgc ggttcgttgc gtcgttgcag gtaagegtat gtaccgttgc 360
taccatcgtc ggcacccatc tccatcgttgc agttcttgc ccggggccat 420
ttccgttgcacc gttgttgcac ccgttgcacat cttccgttgc ccggggccat 480
gcgcacccatc tgggttgcac ccgttgcacat cttccgttgc ccggggccat 540
ccgcacccatc ggatataagg gggatgttgc cccagggttgc gtttatagg 600
ggcttagatcc ccctcccccgg tggatggggat cttccgttgc tcgttccccc 660
ccatccgcacc cagcgttgc cttccgttgc gtaagggttgc ggggttgc 720
caggaggaga ggtggatgttgc ttccatcgttgc ctacacccatc tgggttgc 780
gggactagaa accctcgatc gtcgttccgc gggggccgc ctgggttgc atgttccgc 840
gagtgttgc cttccgttgc ccagggttgc gtcgttgc gtcgttgc ggggttgc 900
tcggaggccg ggccgttgc cttccgttgc aaccgttgc tcgttccgc ccctccgttgc 960
ccagggttgc accagagatcc ggttccgc cttccgttgc ctggatggggat tggggccccc 1020
gagggttgc ggggttgc ggggttgc cttccgttgc tctccgttgc gtcgttgc 1080
ggccgcgcgc cgcagggttgc accctacatc tggatggggat gttataatcc agatgttgc 1140
gtggtaacatc taattgttgc cttccgttgc gccaactatc cttccgttgc gtcgttgc 1200
cttccgttgc tatctccgttgc cttccgttgc ctggatggggat agaccatcc 1260
tacagataatc ggggttgc ggggttgc acctgttgc ggttgc gtcgttgc 1320
ctggatgttgc aaggatgttgc gcaacatgttgc gtcgttgc gtcgttgc 1380
aaacccatcc cagggttgc cttccgttgc ggggttgc gtcgttgc gtcgttgc 1440
gccttccgttgc ctggggatggat ggggttgc gtcgttgc gtcgttgc 1500
gagggttgc accagggccac aagggttgc ataggatgttgc gtcgttgc gtcgttgc 1560
atgtgtgttgc gcatgttgc gtttgc gtcgttgc agaacatgttgc tacacatcc gtcgttgc 1620
ataggatgttgc cttccgttgc ggggttgc gtcgttgc gtcgttgc 1680
ccacccatcc cttccgttgc ggggttgc gtcgttgc gtcgttgc gtcgttgc 1740
gggttggggat ggggttgc gtcgttgc gtcgttgc gtcgttgc gtcgttgc 1800
ccctggccgttgc tggatggggat ggggttgc gtcgttgc gtcgttgc gtcgttgc 1860
acaggttgc accatccatcc ggggttgc gtcgttgc gtcgttgc gtcgttgc 1920
ctctaggatgttgc agccatccatcc ggggttgc gtcgttgc gtcgttgc gtcgttgc 1980
ctggcaggatc ggggttgc gtcgttgc ggggttgc gtcgttgc gtcgttgc 2040
atctccatcc ggggttgc gtcgttgc ggggttgc gtcgttgc gtcgttgc 2100

```

-continued

cgcgtttgtc	ttctttctgg	ggtccatctc	ctgtactggg	gagggagaac	ctcagaatct	2160
cctggaaattc	tttaccattc	agaaaccaggc	ctccccctctg	aagaatccca	aggcccagct	2220
gggctcaatt	tggatctgtt	ctttgttta	aaaatgtgt	tttatttaat	taactgaata	2280
aagaaactta	aagtaaacca	gaagtatcca	aatacgacat	gaaatctcta	aaacaacaac	2340
aaaacccaaac	caaaccgcag	cactagcaaa	tcacagactg	cctgatctac	ccactgttta	2400
cagaggcagc	agctacttcc	agcactgtct	ctcatcagtg	cccgggctg	tgggtctcat	2460
tctagattt	gtctacattt	ttttacatgg	ttctcctgat	tccctgtcc	ccctccccac	2520
caccggcccg	cctggagatg	gagccttgct	ctgtctccag	gctggagatc	aatggtgcca	2580
tctctgctca	ctgcaacctc	caccccccgg	gttcaagcga	ttcttctgcc	tcageccct	2640
gagtagctag	aattacaggc	acatgccacc	acgcccggct	aatttttgt	ttcttagtag	2700
agatggggtt	tcaccatgtt	ggccaggctg	gtctcgaact	cttgcacctca	tgatatgccc	2760
gcctcggcct	cccaagtgcg	ggggttacag	ccctgagcca	ccgcgcgg	cccggtcctc	2820
cttttatttt	cgaatccact	caggccctag	ctactccat	tgtcccgacg	ttccagggtt	2880
agtttagctc	ccttcctctg	tgtgggcct	gtgggctgtt	ggcagcttct	tcctgttcct	2940
accacaactt	gcattctatt	tttttccttt	ttaatgattt	cttggatcat	attccccaga	3000
gtgacattcc	tgggttaaag	ggtgtgacca	catttatgac	ttgtatcatt	ggctgcctaa	3060
ttgtctctcc	gagagatctt	gcaacaaaca	ggttttccag	cctctggaga	ccacagagag	3120
ccctggcaag	tgccaggact	gctgtgggaa	taaagcagga	ggcttctcc	ctaagcttt	3180
gaggctgtt	tgggtatgg	tccttcattcc	ttcaaggcaa	agttacccctc	agcttgact	3240
aaggttcata	tattcaactgc	ttagggttgc	ttacattgt	ctgacaatga	cactagctc	3300
aatttggggg	caccaactgg	gtgttaagt	tgttctgtt	atcacccat	tgaattttca	3360
tgcataatcat	tgattgacag	caactactgc	cctatctcta	atgatctgt	tctgcgaagtc	3420
acttagagag	tccagggttt	aacactgtcc	tgggcattgt	ttgcattaa	aatgggcct	3480
gttaattaaa	taaggtgt	tctaataatt	atctcaaaag	taatgcagg	gctggatgcc	3540
gtggctcacg	cctgtatcc	cagcaactta	ggaggcgaag	gtgggtggat	cacctgaggt	3600
caggagttcg	agaccagcc	ggacaacatg	gtgaaaccct	agctctacta	aaaataaaaa	3660
aattagctgg	gcatgggtt	gcacaccctg	agtcccagct	actcgggagg	ctgaggcagg	3720
agaattgtt	gaacccggga	ggtggaggtt	gcagtgagcc	gaggtctttg	tgtaactgca	3780
ctccagccgt	ggagagcgcag	actctgactc	aaaaaaaaaa	aaaaaaaaaa	aagtcatgcc	3840
cgaatggttt	gcacaccgaa	gggacgttca	aaatttaggg	agaacagcc	ggtgtttgt	3900
ttctgtttgg	ttgatcatac	tcttgccatg	gttagtattt	ttatctttat	ttaaagatgg	3960
gaaacaggag	tgaagccact	tgtggaggt	acccagctag	ctagtaatg	gtgtctgaaa	4020
cccaggtctg	cccagcttt	gaattggagc	cttaactgac	ttgccttcca	gtttcagaga	4080
tgagtaaaat	acagctttc	tctccacatc	agagggtccc	tgcaacacta	ggtttgcaag	4140
tcttaggtgt	taggtgtgt	gctggatacc	cacactctga	acctctgacc	ttggacaaaa	4200
tagggatgtc	agggccttcc	atgattggca	ggatgaatcc	tctgggtgt	gatgaaggc	4260
tcacaagttg	agagtcaagcc	gggaattaag	tggatca	ttgccttcc	tgttttcc	4320
attgtgtttt	ggttgggtgg	ttgagattt	ctactacca	atggatgt	ttttatcc	4380
tcgtcaggga	aggatcattt	gaatgaatac	agggtttgt	atgcatttgg	taagaccaga	4440

-continued

cagttgtgga	gtcattagaa	ttgtgtacat	gcctccagct	ctgagatagg	tggtgtttca	4500
acagctgcca	gaggactctg	gttttttgc	ctagaattca	ctgaaagaca	accctggctta	4560
ttgattcaca	tttgggttc	attgttaagg	aggccccatg	gcgcctatcca	aaagttgaaa	4620
atttccttac	gtttttgtt	atgtgatggg	cagttcatag	tgaggactca	gtgtctttaa	4680
ttccagctgt	ttggcaggag	ttggcagttt	tatttacttg	tttttccaaa	aacctttctg	4740
acatggggca	gtccagccag	ctgggaggaa	aaggggcttc	tcagccaaag	aatgatgatc	4800
aaggcctaga	agtttgggtg	gtgtgtttt	ttttgggcct	ttagagaaaag	gaattgttcc	4860
ctttcagag	gatgtggct	aaccctaaag	tttacttgac	tgacttaaac	caggccagcg	4920
ccagagcagg	cagggtgegt	gttcccaaga	cttcgggtca	ctaggcagct	tccagggtgg	4980
tgggtcaactg	gtccagtcag	cttcttttcc	ttcctctccc	ttttgtctca	ctactaccaa	5040
ataatttcc	aaataacctt	aagttctgct	ctttcttgca	tgtctagcag	atgccagcat	5100
gtcttttggg	tagtacagag	agtgcctaaa	aagtagcaaa	gttggccgga	cgtggggct	5160
catgcctgta	atcccagcac	cctgggaggc	caagggtgggt	ggatcacctg	aggctggag	5220
ttttagacca	gcctgacca	catggagaaa	ccccatctct	actaaaaata	caaaattttaga	5280
tggccgtgg	ggtgcatgcc	tgtatccca	gctacgtggg	aggctgaggc	aggacaata	5340
cttgaatcca	agggcagagg	ctgtgtttag	ctgagatcat	gccattgcac	tccagcttgg	5400
gcaacaggag	caaaactcca	tctcaaaaaa	aagtagcaaa	gtacgtatgt	ttgtcagaat	5460
tattaataac	aagttgtggg	ccatgtacaa	gttggcacat	tagcattca	tgtcaactgt	5520
gttagtagta	agagcaagga	ttcttgggtt	aaatcccact	tgccactaag	tagtatttag	5580
aaacttctgt	gccttggttt	ccttatact	aaaatgggg	taataactac	cttcttaaaa	5640
ggctgttata	aagattaaac	aagttataaa	tttttaagt	gcttggcaca	gtttatggta	5700
catagtaagt	gctctgtgaa	tgctgttta	ttaataagg	cactgttta	taatctcaaa	5760
agtcatgccg	gaaaggttt	cacactgaaa	gggcatttga	aatcagcgcg	ctctggggag	5820
aacagcttgg	ttggctaagg	ttgtatctac	ttgctaaaat	acggctatgg	actgcctaga	5880
gggtgtcacc	tccttgaag	gggctgcccc	ctgctatgtt	atggctgcct	ccagggccca	5940
ttcacaccag	ctttgttcc	aagctggaca	gggagctcca	ggcgtctgg	catccagcc	6000
tcccacccct	ttcaggaatc	tctggccaa	atcacttcca	gatgggtgtt	gggcctctgt	6060
ggagttctcc	cagcaacggc	ggagccagca	tgccagtcgg	cagccgcctt	cgttcttgg	6120
gagtcctgac	taaaggaggg	cttgcatttg	gagccaaatt	gtgtctcttg	ggtcctgg	6180
ttgtgtgt	aggcaggtac	catggagtgg	gctgctggct	tagttgagga	tggctgcct	6240
gctcctttagg	ggagcagata	cccaggccct	ggagccttta	ggccctgcct	ccagtagctc	6300
catggtcagg	gtgccagtca	ccttgcgtt	tcttttttctt	tttttttag	atggagtc	6360
gctctgtcgc	ccagggttgg	gtgcagtggc	gtgatctgg	ctcactgca	cctctgtctc	6420
ccggggtaaa	gcaattctcc	tgccctagcc	tcctgagtag	ctgggattac	aggcgtgcgc	6480
cactatgtct	ggctaatttt	tgtatttta	gtagagatgg	ggtttccact	tgttgggtcag	6540
gctggctctcg	aactccaaac	ctcgatcc	acctgcctcg	gcctccaaa	gtgctgggat	6600
tacaggcgtg	agccacccga	cccagccaa	tttgctacat	cagttccag	gtagcatatc	6660
ctaggcaaaa	ctggatgtag	cctagtgtatt	cagggcctcg	gtctgaagct	agactgtctg	6720

-continued

gattctaatac	cgcactctgc	ctgataccag	ctgtgcaact	ctagtcact	gctttaac	ct	6780
ttctgtgcct	gcttccctgt	ctataaaatg	caagagcaaa	atagttgcta	tcttagagtt		6840
gctgggagca	ttatatttga	tgaggttaag	ttatagcaca	gtgttgc	tatcactatg		6900
aatattgtgc	ttttggaccc	aagtccagga	ctttgtctg	tcttctgtct	attctctggc		6960
cagtcagat	attttggaa	tcctattgct	gtcatctggt	gtgttagctg	ttccctttct		7020
cbaagttcag	aacgtctgtat	gaagatgtct	cccaagatcc	tttcttc	tttcattca		7080
acaaatata	gaaagccat	ctctgaacca	ggccctgtgc	tgggtgctag	gacaacagga		7140
atgagaggat	catgtcctt	gctgcctca	gatactgctc	agaggagaag	agacaagcaa		7200
gcaggggagag	ccatgcagag	gagagctgct	caaacc	ttca	ggccatgtct	catcac	7260
ggactttgtt	aaaaatgcag	gtctgattga	gttaggtgc	gggtgttaggc	tgggattctg		7320
cgtttccagt	cagttcaga	tcctgctgc	tgtgcaccgt	gctgt	taagta	gcaaggatct	7380
aggtgccaag	ccctctgaaa	aggaggagca	cctgccc	ta	ggctgggtat	gggtatcta	7440
gaaggttccc	tggaggaagg	gacctttag	ctaagacca	aagcgt	gact	agaatttaggc	7500
aggcaaacag	acatttacac	aggagcagac	gagtgtgc	gtttagaggt	cttgat	gtct	7560
aggtcagagg	ggcagtgag	gggtgggag	ggctgggtt	ccaagg	gtt	tctgaaactg	7620
gaggctgcct	atggggat	ctccttgagt	ttgtttgtt	gtttttttt	ttgagtt	gga	7680
gtttcaatct	tgttcctag	gctggagtgc	agtac	atgtgg	catgat	tcg	7740
gcctccatct	cccggttca	agagattctc	ctgcctgagc	ctcccaagta	gctgg	aaatta	7800
taggcacatgt	cacac	ctggc	taatttgt	tttttag	atatgg	ttt	7860
ggtcaggctg	gcctcgaact	cctgac	ctca	ggtgatccac	ccac	ctagcc	7920
ctgggattac	aggcgtgagc	cacggc	atcc	cc	ttgt	tttgc	7980
cagccaaag	gggtcg	tta	tcaggg	ctcac	ctg	tttattag	8040
cagaagttt	tgtatgtgc	ccttc	c	at	at	atat	8100
atatttataa	gttataaaaca	tactctact	tcaat	ttgt	tat	taat	8160
tagttctt	tttagatgaca	aatccaaata	taaaatctgt	tttttctg	gtct	taacgg	8220
attatcttat	gtccc	ttgg	gacata	ccttttgg	aggc	ccctgt	8280
gtttctacat	tttagttt	tcttttcc	atattctgt	tattctgtt	tta	attttca	8340
tctttgagta	ttctaaatta	aggagctg	ta	tgtaatt	taacac	ttc	8400
aagtttaact	aatgaaaata	ttcaatgg	ta	gcccattt	taat	ctaaat	8460
cctg	ttta	aatgattac	at	ttgtttt	catgacat	tc	8520
tactgtt	taatctgtt	ttcattaaac	gggcacag	atcc	taat	ttggct	8580
tattgtataa	taaacaacaa	tacttctt	ttcaggag	ct	tgaga	atgt	8640
ttaaagg	gcc	taactaactt	ttcatggg	actgag	tca	tgtactgg	8700
ttggggaaa	tgattagaaa	accaa	atggg	tctt	ttat	gactga	8760
ggtgagagta	ggtatagat	gtacag	agg	tttta	atc	aggccc	8820
c	tttagt	atca	tttatt	tttatt	tat	tttga	8880
cgcttgc	atccagg	ctg	gag	tcag	g	cgctat	8940
tcccggtt	aagagatt	cctgc	c	ctca	ag	ctgggatt	9000
gccatcacac	ctggataatt	ttttgcatt	tttagt	agaggtt	tccat	gttgg	9060

-continued

tcaggctgg	ctcgaactcc	cgtatctcagg	tgatccgccc	gctttggcc	ctcaaagtgc	9120
tgggattgca	ggtgtgagcc	atcgcgctg	gccagtgtca	ggattttatc	tgtgggaggg	9180
gaggaggaca	aagaaaaata	ctgagctatg	tttgaagctc	ctgcctctca	agagecttag	9240
agcagctgac	ttaaatgtgt	tcctttgata	aactgttagat	ggttgttgc	actcttctgc	9300
aaactgttta	tttttaaaaa	caatttgatg	agattttact	tatgcccatt	gtttgagtag	9360
agcatttacc	aaagaacaat	tttggccaga	tcggatgcag	tagaatgccc	ttggcoaaaa	9420
ttttcttgta	ctataagcaa	agaagcagtt	tggttttca	cttaggcaag	actgectatc	9480
agactgagtt	attgtgacag	agccgctgac	tctctccctt	tccccattat	caaaatctgg	9540
cttttctaag	cagcgcgt	aaaaagctt	gcaaggagga	cccttgcct	cctacatatt	9600
attttttggc	tcttcttggt	accaagaata	catacaaata	atgctggct	tgtactgaat	9660
gtttaggtgt	gcactgttga	ggatattcat	cctctaata	aacatctagt	atttctcaca	9720
ccttcgtct	gctgagcatt	ggtctatctt	acttataacta	cttctaatacc	tcgtgaactc	9780
tgcaaaacta	gtggctttac	atctatgaga	aaagaaaaga	acttttatcg	gaagaagggt	9840
agtcccttta	aagtatcagg	cctggaaaga	cattaaatga	gacagegaac	acatcctgct	9900
accctcttg	agctatgtat	tcattgactt	ttttttttt	ttttttttt	tttgaggca	9960
gagttttgtt	ttgtcaccag	gctggagtgt	agtggtgca	tcttggctca	ctgcaacctc	10020
tgcctccggg	gttcaagtga	ttctcatgcc	acagcctcct	gagtagctgg	gattacaggc	10080
gcctgccacc	ttgctggct	agttttggta	tttttatttt	tatttathta	tttaagaca	10140
gggtctact	ctgtcaccca	ggctggagta	cagtggcg	atcttgc	actgcaacct	10200
ctgectcccg	ggtccagcg	attctctgc	ctcaacctct	ccagtagctg	ggattacagg	10260
cgcctggca	ccacagccag	ttaattttt	gtattttag	tagaaacggg	gtttcagcat	10320
gttggccagg	ctggctcga	actcccaacc	tcaggtatac	cgcctgc	ggcctccaa	10380
agtgtggga	ttacgagtgt	gagccattgt	gccccgcct	tgtattcatt	tcttaaaatt	10440
ggtgtgtggc	taggtgtgtt	ggtacatgc	tgtcctataa	tcacagact	ttggaaaggcc	10500
ggtgtggag	gatctattga	ggccaggagt	ttaagaccag	cctgggtgag	atcacatctc	10560
tacaaaaaaa	aaaaaaaaaa	aaaaaattat	ctggatgcag	tggcacaagc	ctacatagtt	10620
gtagctgctt	ggggggctga	gttggggagga	tagcttgagc	ccaggagttt	gagtctgcag	10680
tgagctatga	ttgcgtca	gcactctagc	ctggcgaca	gagtgagacc	cgtttctaa	10740
acaaagaaat	tgtattgtc	acaatttagt	ataaaattaat	ctaataatgc	tgcacgcagt	10800
accataatcc	acaccctata	gcttaacgt	ggatggccaa	ccactaatca	atgctattc	10860
tgtacgcca	tgagaattcc	tgacaaaaaa	ctttgtatca	gccccactcc	ctgtctgtcc	10920
cctttttgc	ttttaaaaac	ctgcttgtaa	caaaggccaa	acagagctca	tatccaaggt	10980
tacttggcc	tgagtcttc	aggcagctgt	cttcactttg	gctcaagtaa	actctttaat	11040
agtttaaatt	ttaagcctct	gcctcttct	tttaggttga	catctgttcc	cattttacag	11100
atgagaaaaac	tgaggctcag	ctctgcctca	ctttacaggt	caggcttaat	ccctaataccc	11160
tgccgtcata	atgctgtaaa	ggactttgt	gtcaaaaactg	agtttcaacac	tctgtaaagt	11220
aaaatagata	tattgttagt	agagggtgt	gaagagactg	ttttctgctt	ctgtggattt	11280
ttttcttcc	tgttttgttt	tgctccaaac	tttactcatt	tgccgttgc	tcatgtgaaa	11340

-continued

ctgaaatttc	cttctacaga	acaaaactt	ttgggggcta	cttaccatat	ctttccac	11400
accgtggagc	tctgactggg	acctttcca	gtttttggag	acattgtcc	agttcttcc	11460
ctgccttgg	tttccagggg	gcagtaatgt	caccgcaggt	gtggacagta	gggaccagct	11520
aaagggtgct	ttggaggagg	tggcagggc	ttttgtttgt	gagggtctaga	aaccagaggt	11580
gaggaaggag	gtgtccctgg	aactccccc	ggctgcaggg	ctcacagcac	acaccatgac	11640
accacagggg	tgtgtgtgt	tgtgtgtgt	tgtgtgtgt	tgtgtgtgt	tgtgtgtgt	11700
ggggagtgtt	gttgagagcc	aactatgcca	ggagatccctt	ggtgacagcg	gacataggca	11760
cagctatgct	ctgtcaggaa	ttagttcacc	cacacccttt	tcttctgcta	ccttgttaa	11820
ctgggtggag	ggtgtgctgg	gttgtgtttg	ctgggtgagcc	cagcaactgc	acccttcttt	11880
ccaggcctag	caccctagct	ttatcagtct	catggccctg	gcacaagtgg	gcagctgct	11940
tccaatccaa	gcaggcagct	ttccgctcat	ctgcaggtag	cctcgtgtgt	tggcagcaca	12000
aagttgtgt	agccagagct	gaacttgtga	tccccacggg	catctcctga	ggcgacaccc	12060
tcctgagaga	gaaagctgg	ccgtccagcc	cattcaggc	tcagcctccc	cagccgtcgc	12120
agggctggct	tgtgaaagg	tctgggtgtt	aacacagcac	tcctgttctc	tctctctgaa	12180
ggcccttat	gctggcatga	attccttttc	tcatagagat	ctgaaagctc	ttttgactaa	12240
atgggtcacc	tttctgagta	tttcataaag	gctgtcagcc	tttaccatgc	cagacaagtt	12300
ttctggaatt	tcctttccag	aaaaaaaaaa	aaaaaaaggt	actaaagagg	ttggagttat	12360
ttggaacaca	gggtgaaatt	ctggcattcg	aactataggg	aaacgggtgg	ggattttgtgg	12420
caggcaactat	gtaaatttgc	cgcaagccca	taaattcaga	ctttaagatg	aaagatggca	12480
agcagcagtc	agctttcctt	caacaggcag	gaacgggtct	accttccgcc	tgtgtgtagt	12540
gtgactgagg	gagaggcagg	cctccctagg	aggccggggc	aggaaaggtt	tcttgggtggc	12600
taaaatagga	tttctcagtt	tccccctgt	cccaagaaaa	taagtttta	tcatgttgt	12660
accacacttc	ttgtgcgtat	caccctgggt	tcctgcacc	tccttgaagt	ggtttatcag	12720
atcccaggga	cacaagaatg	gtttggcattc	tacagcctat	tgtgggagca	ggggccccgc	12780
ctgggtcttc	ttgcccagga	acaaactgt	tgttccctg	gtgtgggtta	aagcaggccca	12840
gagtatggga	ccaggccctg	cctccctagg	gacctgaggt	gcaaggcttt	ttagctgaga	12900
ccctaaaagg	cctttgttag	tctgttagtc	tatcgttga	gcagagtca	gggttctgtt	12960
tacaagattc	cctctcagca	gaggcaggga	ggggtaacctg	ctggaagacc	aggaatgtgc	13020
tgctgtgggg	atgggggccc	tcgggtggagc	ttctageccat	ctggaggcag	aaccctagaat	13080
gtgttcttag	ttagggcgcct	tggcagagtt	ggcttgaag	cacctaggca	gtggctgtc	13140
acattcctta	tctccaccaa	aggaggcag	ctagcacctg	ggggatggct	ctcccatcag	13200
ggagtccctt	acaggatgtg	atccaggtgt	cacattacac	ttcctgcagg	tgtgcaccc	13260
ttacctaatt	gtctctccta	tcctttttc	tcagcacat	tgtctgacat	ccatggggag	13320
tcacacccaa	agttggcatt	gaggctct	cctggcacc	caacaccc	ttttttgtt	13380
tttgtttttt	ttggagatag	agtcttgctc	tgtcaccctag	gctagagtgc	agtgggtccca	13440
tcacagctcg	ctgcagccctc	gaccccttg	gctcaagcga	tcctcccacc	tcagectccc	13500
acgttagtcag	aattacaggc	acacacacca	acactgtgg	ctaattttgt	atttttgt	13560
gattcggttt	gctatgttgc	ccaggctgg	cttgaactcc	tgggctcaag	cgatctgcct	13620
gcctcagcct	cccaaagtgt	ggggattaca	ggcatgagcc	acctcacttg	gccacactgc	13680

-continued

cctcttactg agccgtattg gtgttctaaa tggccttctt actctccac gggtcatcag 13740
 tgctccaggg gcaggcgctg tgcgtctgtt ttacctctgt ggctctgacc ttggcactta 13800
 ataggaattt aataaataac ttgttaataa aacagtctt agtataatag cttgagttt 13860
 aagactggta cattgactta tttgcaattc agaaaaatgca aaacagtggt tctttgtc 13920
 cttagtcaa gtggaaatata tatgttagtag acaactgggt ctggggtccc agtggAAC 13980
 ttcgtttttg gactgtgtat ctgaacttaa agaactcagc agttcatgtt cattctctgg 14040
 acatctgtga tttgcttcaa caactgttag agaacaaggc ctttccagg tgaagtcag 14100
 aaaaatgaatt taataggaaa ttactgaaag tcacaatcat agtaacagtt tcatttagtta 14160
 cagtgaatat agagagagcc catacaaagt accaggcatt gtgataaacc cttcttacta 14220
 atagctatac aaaacatcat tgcaattctg agaagttagt attgttcaa ttcccgat 14280
 gcagatgaga aaactgaggc acacccagat tggccagtga gtgtgtggattt attactcaga 14340
 ttcttgcgtg agattttaat ctcatattt tactgctttc ccaaggaaag ccatcagctc 14400
 agcaagtctt tgaatattgc ttctttttt tttttgaga cagagtcttgc ctgtgtctcc 14460
 caggctggag tacagtggcg caatcttggc tcactgcaac ctccgcctcc tgggttcaag 14520
 cgattcttgc gcctcagect cccgagtagc tggaaatata gttgcattcc accacacctg 14580
 gctatTTTGT atTTTGTAGT gagaCGGGGT ttcaccatgt tggccagctt ggtcctgAAC 14640
 tcctgatctc gagatccacc tgcctcgcc tcctaaagtgc ctggatcag gcttgagcc 14700
 ccgaactcgg cttttttttt tttttttt gaaatgtgtt ctcctttgt tgccaaact 14760
 gcagtcttgg ctcaactgca cttctgcctc ctgggttcaa gtgatttcc tgcctcagcc 14820
 tccccgatgtat ctggactac aggcacgtgc caccatgccc agctaatttt tgatTTT 14880
 tagagacagg ctaagctgtt cttgaactcc tgacctcaag tgatccaccc acctggccct 14940
 cccaaagtgc tgggattaca ggagtggcc cctgtgecca gcctgaaatt caattctaat 15000
 aaatTTTAT tggagcatta aaaagttaca tctgttagttt ttacttcttgc caaaaatttt 15060
 caagaacaca gaaaaatata aaaaaaaaatc acacctgtga agaattttaa tgaatTTT 15120
 tctacttttta ggggattttt cttacagctg ctttttatac agaataggaa agaaagat 15180
 tccttctca gaaaaaaagt gactgtggac tggaaatgtt ttgtgaaata atTTTGTCA 15240
 tactgatgtt tataacaaga ttctgttca attgagttat tgctgagctt tgccaaacat 15300
 taaaatgaaa ggtctcattt gagtctcattt gtgggttgca agtctccctt ggtcttagaaa 15360
 tatgtttggt caaccacggc atggaggtgt tccagccact ttctgtctct taaaatTTT 15420
 taggacctac ttttattggg actgccaggc tctcttaata atagtttata tacttggtaa 15480
 ctattgtgac ctgtctcat aggcagccca gcatagaaac tcatttagct tttagttgt 15540
 cagtccttac agtgtttaa acatgttca gatgtggcc tgacaatgtt cttggcagc 15600
 ttgggttacc cttgactgcc tggaaactttt gagaagtctg aaaattatat gtagccctaa 15660
 ggtcttcattt gtattgtttt tttggaggca ccattttccaa atagccctga ggacaccagg 15720
 cccatgaagc ctcctgtct cagccaggag gcagaggaga tggaaatggaa accacttctg 15780
 gatacagatc cagccacttc cggagtgctt cagagcatgg gtcagataga ctttgcgtct 15840
 ttcttagctgg cagacttggg gaagggttggt tgacctcttctt gagttgtgtt cccagactat 15900
 agcagtagcc ctttactggc gttatcgaag ataaaatgtat ataatcctga taaatcactt 15960

-continued

gaccaggccc ttggagggtgg tgggtggggc tggggtaagt gccccatcaa tggtggtcat 16020
catgctcccc accaacctcc tttctctctt ctcccttccc gtcttcaca cccctaattc 16080
ctggacctgg gggtggtctc tccagactag atgaagaagc aatctaatta tcttaggaagg 16140
tgaaggtgg ttggaaatac tcccagaaaat aggccaaaga taccgcctcc tacctaacag 16200
actctttta gaagaagagg caacctgggt ttttggataa ctgttgagta ggaaccatca 16260
tgagtggcat ttctgcattt ctggtctctt ggccaagcct cctttttttt ttttttttt 16320
tttttttttta accttgagac agtcttgctt tggtgccagg ctggattgca atggtgcagt 16380
cttggctcac tgcaacactcc atctcccagg ttcaagcgtat tctcctgcct cagcctcctg 16440
agtagctggt actacaggtg cggccactat gcccagctaa tttttgtatt tttagtaggg 16500
acggggtttc atcatattgg ccaggatggt ctcaatctct tgacctcata ctctgcccgc 16560
ctcggccctcc caaaagtgcca gaattacaag cgtgagccac tgagcccagc cttcctttt 16620
ttttttttttt ttaagtagc tccattgcc tccctcaccc tttcttttgc tccctgtaat 16680
gtccttcctt tccattttttt tttcttttct tctttcttc tttctttttt 16740
tttttttttga gataggatct cattctgtgg caaaggctgg agtgttagtgg cacattcacs 16800
gctcattgca gcctcgacctt ccaggactca ggtgatccctc acatctcagc ctcccgagta 16860
gctgggacca caggcacaca ccaccacacc cggctaattt ttgcattttt ttagagggta 16920
gtgttttgcg atgtttccca ggctggctt gagctcctgg gctcaagtga tactccctcc 16980
tcagcctccc aaattgctga gattacagggc ataagctct gcacccggcc ttccctctca 17040
tttttttttcc ttcctgtgtt ttgcctgtcc cagaccaccc tcttggaaag atgctctccc 17100
agcagcggca gtaagggtctt ggtcttgcgtt ttgcctggc gcctgagttt tggctttgt 17160
gttttgcgtt tagctggctg acaccaggaa gctgcttccc tccaggagcc tgcgtccat 17220
atgtgaatgt tgatccttaa atgctctgtt ttacaggggc cagacattgtt ggctcatgca 17280
tttcagggggg ctgaggcgctg cagatcaactt gaggccagga gtttggagacc agcctggcca 17340
acatggcgaa accctgtctc tactaaaaat aaaaaatttta gcccggaggtg gtagtgcgt 17400
ccttaatttcc cagctacttg gaaggctgag gcaggaaaat cgctagaacc tggggaggcgg 17460
aggttgcgtt gagccgagat catgccactg cactccagcc tgcataacag agcgagattt 17520
tctcaaacaa acaaacaaaaa aatgttctgc cttacagagt tcttaggtat aaaagagaag 17580
gtgcctctaa agcttgcgc accgtgcctt gtttatagta agtgcctggt aaacgtcagc 17640
tgctgtgtttt tgggtgttagt tttcagcattt gttgcgtgtt gaccctgcac ttccctactt 17700
gccttggaaa aataagtctt cactttttttt ccatgggtttt ccgtttttttt tttcagggtt 17760
tcttggagga gggtggagat ggagagacac gtggggggact gcccgggttta catcctccat 17820
gaggctgagg ctgtgcgtac tgccttgcgtt gctttcaacc tggagtaaag ggtggctgt 17880
ccagctgcctcc ccatccccca ggagtctgcac tgcgtccctgc cttggccctgg ggcagcactt 17940
tccctccat tctttggca tctgggggtca tgggtggggctt gcttgcacatc tgcataattt 18000
tttgcgtgtccc tgggtgtgtt ggttaaaaaacc cgcactatcc aacttgggtt catggagctg 18060
gcgacaatat ttttacagtg gtttagtgcgtt ggaaactggaa cttctgggtt atgcctgt 18120
caaacagcat caaagtcgctt gggcttaggtt gacagaggag gctgccaaca gggaaattctg 18180
tggctccctgg gacaggaatg gatatggag gttggggggcc agtattttcg gttcttttgc 18240
ggagttggcg agtatttagtc tttgcctgaa tggatagaag gaatctgtt gttgttttgc 18300

-continued

tgaaccgtgt acttccccca gttactcctt ggacaccagc tgcctgtgt tcataattgg 18360
 gccagatttc taatactgca ggcgtaccaa atgtcagtt taggcacatct ctgggttagc 18420
 cagggAACgc ccaacacccctt tcccaaaggat agaatttgc tgggtttac ttcaactgagt 18480
 gactaatgca gatctttatg tttaatgat gggaaagaaat tcgtcagccgt gggtactttt 18540
 tccatgtgtat ggggcaaaaaa tttaaaacac ttgcacaacg gctttgtttt ctccagctac 18600
 taaagggtgac tgcatttttag gcattatcgat tatgatcagc tgatgttaac ccactccct 18660
 tctggagacc cggttctgtt tctggaaag gtgttaggaca tgctggattt ggcaagattg 18720
 cagggtcccaag gcagatgtcc ggacttagac tctggctttt tttttttttt ccagacagg 18780
 tctccctctg tcacccagtc tggagtgcag tggcgccgatc tggctcacc acaaccccg 18840
 cctcccaaggat tcaagggttccat ctcctgcctc agccccctga gtatgtggaa ttacaggcgt 18900
 gcaccactat gcccagctaa ttctttttt ttttttgaga tagaggctca ctgtcaccc 18960
 gttggagtg cggtggcccg gtccgcctgc ctcagccctcc caaagtgtta ggattacagg 19020
 tggagccac cgtgcctggc ctcagctaaac ttttgtattt ttagtatcaa cgaggttca 19080
 ccatgttggc caggctggct ttgaattccctt ggcctcaattt gatctgcctt cctcggccct 19140
 ccaaaagtgtt gggattacag gcatgagccca ccgcgcctgg cccagaccct ggctttact 19200
 cctaggtctta cctctaccat cactggggcc ctcgcctgaa ccttttgcctt catctataaa 19260
 atgggagaac tagacttaggt ctgtgtcccc caagcttcaa tcatttgcata aggaaccacc 19320
 tttactatcc tgcctatcc cacggctgtc tctatttcat ttttgcactt atattatcc 19380
 cccctgcagt tgactcaattt gtaaaacaaat ttttgcata aaggagactt tggttcaacta 19440
 taataacggaa aaaacagegt cacttaggtaa atggaaaggtt accataaata aaccccaaac 19500
 agttattaaa ttccagccag cactgttgcc ttttcacaac atgaggcata ctctttttt 19560
 gttaaaaagg gaaatttagca agagatggag aggtgttgc ggttacccatg cactacattt 19620
 agcctttcc ttgacctgtt caggaggattt gagaagaac taggagaactt gggaaagagaa 19680
 taacgtctttt ttgtgtatca aagtgcctgaa gtgtgcacca gagctcagag tagtaatgt 19740
 tagatgtttt gttggatac ttatgcagcc attaccatgtt ggcagggttgc tagagggct 19800
 aggagtagatg aggggattgg gacttgcata ctgacttctg gttgcattgtt gtcttagatg 19860
 ggggaggtgg tcatagaata ttgaataacaa acgaagatcg aacaggctgc aggggtttaa 19920
 tagaaaaatc acaggactaa attctgtcat gtgtacatgg ggttacccatgaaatgtt 19980
 tttagatttt tttaatttta aatttcccat gaaatataaa tctatttcat tccagaatgt 20040
 ttcttagagaa gctctaaata cattaaaggat gtgttggctg ggtgcagtttgc ctcatgcctg 20100
 taatccccccgc accttgggag gctgaggctg gagaatcaactt ttttgcacccagg agtttgcac 20160
 cagcctggcc aacatgggag accttatctc taccaaaaaa aattttttt tctttttttt 20220
 tttttttttt tgagacaaatg ttgccttgc ttttgcacccagg cttaggtgcata atggcatgt 20280
 ctcaactcac tgcacccctcc gctccctgg ttcaagcaat tctcctgcctt cagcctccca 20340
 agtagctggg attacaggca tgcgttgcacca caccgcgttcaat ttttgcacccagg aggtgttgcac 20400
 gaggtgggat ttccacccatgtt cgttgcacccagg ggttgcacccagg aggtgttgcac 20460
 cccatctcag tctcacaaatg ttttgcacccagg acaggcgttgcata gccactgcac ctggccaaaa 20520
 acattttaat aaatgttgcacccagg ggttgcacccagg ttttgcacccagg taatcctcagc ttttgcacccagg 20580

-continued

-continued

gcaagctccg	cctcccggt	tcgcgccatt	ctccctgcctc	agcctcccg	gtagctgg	22980	
ctacaggcgc	ccgcacccac	gcctggctaa	ttttttgtat	tttttagcaga	gacgggg	23040	
caactgttta	gccaggatgg	tctcaatctg	ctgaccttgt	gatctgcctg	cctcgccctc	23100	
ccaaagtgt	aggggattac	agacgtgagc	caccgtgccc	tgcccttttt	ttttttttt	23160	
tttttttttta	aaggcagagt	cttgcctgt	tggccaggt	gca	gtgca	23220	
ttggctca	cagttccac	ctcccg	ggt	caagcaatcc	tcccac	tcg	23280
tagctggac	tacaggtatg	tgccaccaag	cctggctaa	ttttccat	ttt	aaagg	23340
tgccatgtt	cccaggctgg	tctcgaa	cc	ctgg	ttca	gcccac	23400
tccaaattt	ctgggactat	agacgtgaa	cactgcaccc	ccatccaaa	gtgt	atttt	23460
aatgctgaca	tactgcatta	ctaagcttga	ccagggaa	agaaaaaaa	atac	ttgt	23520
tttattattt	tttttgtt	tttggtag	acagggtt	gctcttctc	ccagg	ctaga	23580
gtcagtg	atgaacatgg	ctca	ctg	cac	cc	agggtca	23640
cacttcagecc	tcccaagtag	ctgggattac	agg	gtgt	gtgc	caccacac	23700
tctttttt	ttttttgt	ttttggtag	agacagg	gcccag	gtct	gtaact	23760
cctgagctca	agcaatcc	tcttcag	ccaaag	tgg	attaca	gtatgag	23820
actgtgc	cc	ctgtt	ttt	ttt	aa	gacagttt	23880
aaaacagacc	atc	tttagg	tgtcaggat	at	tttgac	aaaggcat	23940
ggatttctct	ccccctac	ccac	ccaa	tttgc	tttgc	tttgc	24000
atgt	taagg	ct	ctgt	tttgc	tttgc	tttgc	24060
gcttcagaag	cttgcct	ggag	cg	tca	tttgc	tttgc	24120
atattgctca	agg	taccatc	tca	agg	tttgc	tttgc	24180
gtt	aaaag	tc	tttttttt	tttgc	tttgc	tttgc	24240
tctaa	agaaca	c	ttttt	tttgc	tttgc	tttgc	24300
ccccatctag	tgg	ttgt	tttgc	tttgc	tttgc	tttgc	24360
ttaat	ttttt	tttgc	tttgc	tttgc	tttgc	tttgc	24420
cattttgg	ggcc	tttgc	tttgc	tttgc	tttgc	tttgc	24480
caacattt	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	24540
acatgcac	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	24600
gaagtcaaga	ctgc	tttgc	tttgc	tttgc	tttgc	tttgc	24660
gagacattt	ctca	tttgc	tttgc	tttgc	tttgc	tttgc	24720
ttgttata	atgaaga	aca	tttgc	tttgc	tttgc	tttgc	24780
tacactcaca	catc	aggaaa	tttgc	tttgc	tttgc	tttgc	24840
ccagaagttt	c	tttgc	tttgc	tttgc	tttgc	tttgc	24900
ccatgctca	agc	tttgc	tttgc	tttgc	tttgc	tttgc	24960
gcctttata	taa	atg	tttgc	tttgc	tttgc	tttgc	25020
tcactctgtt	acc	agg	tttgc	tttgc	tttgc	tttgc	25080
tccccagatt	taa	gtt	tttgc	tttgc	tttgc	tttgc	25140
tgctatcatg	cct	tttgc	tttgc	tttgc	tttgc	tttgc	25200

-continued

-continued

-continued

gtttttgcca	tgttggccag	gtcggtctcg	aactcctgac	ctcaggtgat	ccacacgcct	29880
tggcctccca	aagtgtgggg	attacaggcg	tgagccacca	tgctcgccct	gttcttattt	29940
ttaaaaagag	agatttgtgt	gaaagctgct	gacgtctttt	tggcaccagg	tcaagactga	30000
gttagttctt	gtcagaatct	gattgttgt	gaattgatgg	ctttttttt	tttcttgagt	30060
tgggggtctc	gctctgtgc	ccaggctgga	gtacgaccac	tataacctca	aattgtggg	30120
ctcaagcaat	ccttccgcct	cagctgccc	agttagctgg	actactaggc	atgctccacc	30180
atgcccagtt	aattaatttt	ttttttttt	tgagagacag	ggtctacta	tgttccccag	30240
gctggctca	aattcctggc	ctcaagtgt	ctcctgcctc	agcctccaa	agctctggg	30300
ttacaggagc	gagccactgt	gcctggccgg	attttaaagt	tctgcccatt	caccccttta	30360
gctctggcag	ttactacttg	caggcatctc	ctttgtctgc	cctgcccctt	gttaggaaag	30420
gctgtgctga	ctgtcagctg	gcacccagtg	catagaagag	atagttctct	gtagatgatg	30480
ttgaacaatg	tggtaactata	atcccaacct	gttgtatctt	tgtttactct	caaaagcaac	30540
aattgggctg	ggcatggtg	ctcatgcctg	taatcgac	actttgggag	gctaaggtgg	30600
gagggttgct	tgaagttagt	tcctttttt	ttttttttt	aaaaaaaaa	caagatctcg	30660
ctctgtcacc	ccggctggaa	tgcaagtggca	tgatcatagc	tcactgcac	cttgaccacg	30720
tgggctcaag	gaatgaacca	ttgtgccagg	agttcaacac	cagcctggat	aacatagcga	30780
gaccctgtct	ctcaggaaa	aaaaaaaaaa	aagaagaatt	gcataagtat	catcagaact	30840
gttgaatgg	aaatcagact	ttgtggggtt	ggtttggtaa	ttacttctcg	ttggattaga	30900
atttgatagg	aaaaaaaaaa	aaaaaaagggt	tagaaaagtg	attccagct	tgagcaaatt	30960
ttaatggaa	aacggtgtct	tggttctctg	ttcactacaa	cttgtatcta	agggaaagcc	31020
tagtcatgca	gacatttcat	ttcgtgtatgg	gaaaactgtat	gcccagaggt	tcacagctga	31080
ccaggggcta	gtctgactgg	ggggatctag	gtcaccaccc	cccttgccct	gtttccctag	31140
ctagtgcatt	tcctactaga	cttgactcta	ctgttaattca	agttgtctgag	tagcaaacaa	31200
gaactacaat	gactagaagg	aacagaacta	gttttttgt	gctctgaaag	tggaaactta	31260
ttgagggttc	ttttccctcc	agagaatgca	gaagtgcct	gatttgctt	tggaaaggaca	31320
ccattcaatt	tattgcctct	tttcattgtt	gcccagaata	tcaccatgat	ttattcatgg	31380
gtgggtggga	gggttagcact	agtgtatgt	ccagcaaaag	aggaacatct	cacgttgtga	31440
agagatgcgc	aaaactaaggc	cagggcaggg	tgtggtggt	catgcctgta	atcccagcac	31500
tttggaaagc	tgaggtgggc	agatcacctg	aggtcaagag	ttgaagacca	ccctggccaa	31560
catggtaaaa	ctctgtctgt	actaaaaata	caaaaattag	ctgggtctga	ttgcaggtgc	31620
ctctaattgc	agctacttgg	gaggctgagg	caggagaatt	tcttgaacct	gggaggcaga	31680
ggttgcagtg	agctgagact	gtgccgttgt	actctagct	ggcaacaag	agccatctca	31740
aaaaaagaag	caagccat	cttgggggt	ctgtgacggc	aatccccca	gcgcgtggcct	31800
ctcaggttct	cttgcgggat	tagtgggtt	tgaataataa	gcaatacacc	ctgaccacagc	31860
gagccaaagc	aaacaggaca	gttaactgaaa	ctgcagggga	gtgtgagtaa	acagttacct	31920
tctaccctca	tggagctggc	ctctggccag	caacatgata	gctgtttgca	tcttactctt	31980
atggagccat	tggccctctc	attaaggatgg	gggcagcttc	tggccatgc	ctgcaagtcc	32040
tcatgggagt	gggttacactga	cagggtgtaa	agggttaggtc	tgaggacatg	gtttttttt	32100
tttattgttg	ttgagatgga	atcctgtct	tgtcacacag	tctggagatgc	agtggctgaa	32160

-continued

tctcggtctca	ctgcaacctc	cgtctcaactg	gttcaagcga	ttctcctgcc	taagectcct	32220
gagtagctgg	gactataggc	gcatcctgcc	atgcctggct	aagttttgtat	tttttagtag	32280
agacggggtt	tcaccacgtt	ggccagggcg	gtctcgaaact	cctgaccctca	ggtgatccac	32340
ccacccatcgc	ctccccaaagt	gtctggattt	caggcgtag	ccaccgtccc	cagccaaacat	32400
ggtttcttta	aaatataactc	ccogctcoat	ccatccatg	tgtggagtt	gagctgcac	32460
tgggttttcc	ttttctcttt	ttctgttaat	ctttattgtat	tttttttgg	atcatagaat	32520
ggatacatgt	ttcttaaagt	ttgatcatta	tagaaactta	attagactat	tatttgagtg	32580
ctaaccatag	tgagttagtg	cttactgtgt	gttaggtggc	tttttatgcc	tcatgtca	32640
tacatgaggt	ctgaggaacg	gtgttaatcc	cggtttgcag	ctgagggaaac	tgaggctaca	32700
ttagcggtca	cctagctggc	aagcaagtgg	ctgagccctgg	agcagcagca	gatctgggga	32760
actccacaaa	ccagatttct	gtgtggatc	cctgtggaca	caaggattta	acttgattct	32820
ttttgcttcc	agtatcaatt	tatgatatta	caatgagctt	gcagtattta	ttttcagaag	32880
aaaagccaga	ttattccat	ttatgagaga	agcagccagg	tgggcaggga	tttccagcgc	32940
tgaaccagcc	agtgtgtca	ttgtctcttc	ccgctgagcg	gccctgggt	gctgggttag	33000
tctgtgagcc	acaggaaatg	ttgtcagggc	ctctgggctt	ttggatgtca	gcaggccctc	33060
agtgggtgagg	aggttggcgc	tggactcaga	ggactccttg	ctttgtgtca	acgaccctcc	33120
ccaccaacca	ccaccaccac	caccagtggg	actagccat	gagctgtaa	ccaaaccttt	33180
ccttcctaacc	ttaattttcc	aaagaatagt	aacttacca	ccaccactgc	agtcaactgg	33240
ccgggaagac	aagcaacttt	gccttgaatc	catgccttga	gccagtagcc	ttgaccagg	33300
gtaaaggagt	tatgtgttg	ggtcacccgg	gtcatgttt	tgaaattgcc	tcaagctac	33360
cttacaaatc	cttcctggaa	ccctgcttgg	cttttcttgc	tggcctccc	ttaggaggga	33420
agcttcccgaa	gcagcttgc	ttgactgtat	ccagctgggt	ggtcccagcc	acagaattta	33480
actgtcaaac	agcaccagaa	gggttctca	tccagctgc	ttgccccaa	tgcctctt	33540
gctttctttt	tagagagttc	tgagactcat	tagagagtt	agagattta	gcattttga	33600
agttctttct	gtggtcagtt	ttgtgaacca	cttcatttct	aaagttctc	agttgacccc	33660
attttcccc	agcttgcatt	tctccatgaa	gccacccgt	tttgggtgt	atgggtttc	33720
tgcaacctag	gttgaacaag	tcctctagaa	tcctgaacaa	ttgggtatc	atgtggccct	33780
ggttttctta	attggcctgg	aaatgtggct	gtatgtggaca	caagtggact	tggcctccct	33840
tttgcgttgc	gtaaacttta	gatttgcatt	agctctgtt	gatttagagga	tcttactgg	33900
ttttgttgtt	atttatttac	cttttaggag	ctttagtctc	tgttaggttt	ttttttttt	33960
tttttaaagt	ccgggtctta	ctctgtcacc	caggctaggg	tgcagtgcc	tgatcacagc	34020
tcactgcagg	ccccacccctc	ctgggctcag	gtgatccctc	cacccatgtt	tcctgagtag	34080
ctgggactac	aggcatgtgc	caccatgcc	agcaaattt	tttctacttt	ttgaaaacag	34140
ggtctcaactt	tgtcacccag	gccagaatgc	agtagcacga	tcatggctca	ctgcagtc	34200
aacctccag	gcttaaggga	ttctccacc	tcagcctccc	aatgtggct	gaggctactt	34260
ggcatgcattc	acaaggccca	gctaattttgt	gtttttctt	gttagaggccg	ggttttgcc	34320
tgttgccca	gctggctctcg	aactcctggg	gtcaagttat	actctctct	ttgcctccag	34380
ccatgagccg	ttcggtgcgc	ctgggctagt	cattatagat	ttatcccttc	tttcatctca	34440

-continued

tgctacaaaa	gcagttcttg	tatTTTtacc	cgacttgcga	ttttctactg	ggaatgtttg	34500
tttgtatgg	ttagcagggt	gctgagggg	aattaatccc	aggaggccca	atattggcc	34560
atgtcgtgt	gttgagcaca	gtcatttgac	acctataact	tctcatcaat	tcttctgata	34620
gactgaggag	gaattggaa	atTCCTAGA	gttttgcTG	cattattggg	ttgttttag	34680
aacataaaacc	ttaaactcta	gctatgtaaa	ctggataagt	cattttgta	atTTggcatt	34740
cTTTTTTT	ttttttttt	tttttagac	agagttcac	tctgtgccc	ggggaaatga	34800
tctctgctca	ctgcaacetc	tgccTcccag	gttcaagcaa	ttcttctgcc	tcagectccc	34860
aagtagttgg	gactacaggc	acactccacc	gtgtccggct	aattttgt	tttttaatag	34920
agacaggatt	tcatcatgtt	gaccaggctg	gtaatttgc	attctttga	gtacaagtga	34980
gagaaactca	cttgagctgg	cttaagtgaa	aaaattctt	gtcaggagag	ttttgtgaat	35040
ttctgtttag	tggcaagttg	tagaaaccac	ttgaaactgc	ttaaaggca	aagaggagc	35100
cacttgc	ccacttgc	actaactgag	acatcccaga	gccgactgcc	cccaaggcatt	35160
aagtttcaaa	cgggtctca	gggtttgatc	tctctcctca	tctccagtc	gtttcattca	35220
tttggctct	atgtggtggc	agaagggctt	ctggcatctc	tggacctta	tgcccccag	35280
gtccaaaccc	agccagaaag	gagagtgaga	gtgctgagtg	caaaactctc	ctatagetcc	35340
tatacaagtc	caggatttgc	tattagactc	cttgaattat	gtgccca	ctgagccaaat	35400
ggctgtgctt	aggaggctcc	tgtctcatgc	acccacccca	gtactggca	tcagaaacaa	35460
ccagtgtatcc	ctataatgaa	ccacgggttc	acagacttaa	gtgtatcc	gcagcaggc	35520
ctcaggaaga	cttgaaccc	aaaatcagaa	agccatggtt	tcttgc	ctgggtctg	35580
ttttgtccct	tccctctgta	gaggagtct	gtatcactg	caggcaacgg	ggctgcctg	35640
cagtcctgc	tgtttacatt	tcactcggt	tagccatagg	cagagac	ctcaggagaacc	35700
tgattcggt	tggattgagt	caggttccac	cccagtc	tcagttgtgg	actgagaggt	35760
gatgaggctg	ggccctttaa	gacaaatctg	ggtgggtgg	gtctgtctt	aatgaagttg	35820
tgatgttagc	tgtatggccca	gaagggactg	gttaggtcct	ctcattgtct	ggttggaaag	35880
cattctctta	agtccaaat	gatgataat	agtattagc	caggtgc	gtcatgcctc	35940
tataccca	actttgagag	gccaaggctgg	gaggatcgt	tgagcccaga	agttcaaa	36000
cagagtggc	aacataaaaga	gaccctgtct	ctacaaaaaa	caaaca	acaacaaacaa	36060
aaaaacccca	caacaattag	ccaggcatga	tggcgacac	cagtagtccc	agctactcag	36120
gaggctgagg	tggggaggatt	gtttgac	ggcggtcga	ggttgc	agctgtgatc	36180
acacctctgc	gctccagect	gggtgacaga	gtgagaccct	gtctcaaaaa	gtaaaaaatt	36240
caaataaaata	aacaataat	atcaaggcc	tctctccaa	gcttaggaaga	tatcagctga	36300
agctctagecc	cagctacgtg	gatggctc	tctgcctgg	aagcgatgc	cagatcagca	36360
cTTGGGACC	cccccgtact	tgcctctgc	ccagtggtgg	cccttc	ctgcagagga	36420
gacagcactg	tctgagaggc	atgaatgaga	atttccct	tctaggccca	agtcagcatg	36480
actcgaggat	ggctttgact	ggaaaaactg	aatcaaagag	tgtgtc	acagccaaggattt	36540
ccccaaacac	taatcagtgc	tgattactc	caggatattg	ccttggctc	tgtggagtt	36600
tgtccactgt	ggctgcaatg	tctggctct	gctgcccaga	agatgagaa	tgagttgtaa	36660
gggatgagcc	tgggtgaagg	gatgtcccc	ctcaccatcc	tgac	cattat	36720
agaccctgat	tgcacaaattc	ataggtcatg	ggttggctct	gcctccagca	ttaacacttg	36780

-continued

ggggtggagt tggggaatca tagtattact tgcataaaatg gaatcctaaa agtttgg 36840
 gacagtttca taaaaatctt caccatgatc agtttggaaa tgacgttccc ttcatgtt 36900
 tgcgttctga actgagttgc aatgctgagt atgagttga gatcccag accatctaaa 36960
 gcaaggctgt ccaacccaca gactgcaggc tgcgttccc ccaggacagc tctgaatgcg 37020
 ccccaacaca aattcgtaaa ctttcttaaa acattatgag atccttcgc atttgggg 37080
 taaaagctcat cagctatcat tagtggtagt gtatcttgc tggccaaagc aattcttctt 37140
 ctcccaatgtt ggcggcaggga agccaaagaga ttggacaccc ccgattttaa ggaagtaact 37200
 caatttgtt aacctgaaac ttgtatctgg atgaacccaa tgaaattttt tgattcttctt 37260
 aagctcacga aagttcaata actgtgtgt gtaaaataga ggtaaaagac ttgagttgg 37320
 ccaggaaatgg ttgctcatgc ctgtatccc agcactctgg gaggctgagg cgggtgcac 37380
 acttgaagtc aggaggtaa gaccagcccg gccaacatgg tgaaaccctg tttctactaa 37440
 aaatataaaa attagccggg cgtggtagt tgcgttgcgtt gtcttagctt cttggggaggc 37500
 tgaggcagga taatcccttg aacccaggag gtggagggtt cagttagca gatcatacca 37560
 ctgcactaca gcgttggctt cagagcggaa ctccgtctcc aaaaaaaaaa aaaaaaaaaa 37620
 aaaaagactt gagttgggtc taatagaata cttggagaa cctcaagatg ctttgcgtt 37680
 cagccagggtt tacagattgg aagatattct gttaatcaga atctcagaga gggacaggcc 37740
 ctgtatcaagg taacacatgt agttgggtt gctgggttgc gctagaacctt gggcttcctt 37800
 gttccaggtt cacagggacc aagggtttt gttgtctt gtcctacttg taactacaat 37860
 actgccttctt gcttaggaaga ataagagctt gcaggctaga ggaattttata ggaattttct 37920
 ttctttaaaa aaatcccccc aaaaccagct ttactgagat ataactcaca caccataaaa 37980
 ttcacccttt taaagtatgc aatttttagt atattcacag aattatgcaaa ctatcatcac 38040
 tataatttttta gaattttttt tttttttttt gagaacggagt ctactcttgc cccaggctgg 38100
 agtgcagtgg tgcagtcttgc gtcactgca acctccatct cccagggttca agcgattctc 38160
 ctccctcagc ctccctggatc gctgggttgc taggtgtatc ccaccacacc caactaattt 38220
 ttgtatttttt agtagacatg gggtttaccat ttttttttttca ggctgggttc aaactccggcc 38280
 tgccttggcc tcccaaagtg ttgggattac aggtgtgagc cactgtgcctt gccaattttt 38340
 agaatattttt tattgcctca gaagaacccc tgcgttccattt agcagtcaactt ctcccttcc 38400
 ctcccccaac caggcccaat aaaccactaa tctactctgt ctctatggat ctgtccatcc 38460
 agaacatttc atatggtaaa atcatacagc tgcgttgggtt ttactgactt ctttacttca 38520
 gcagaatgtt ttcacagggttca agccatgttca tgcgttgcactt ttatctttt ttacggccaa 38580
 gtgttggaaat gtgttggattt tgcgttccatc aataaagctt taaagttttc agattttttt 38640
 ttactttgttgc tgggtgtttt tttctggatc agccaaacttc tacattttttt gataaaaaga 38700
 caaactttctt caaaactccctt gtacctaactt ggttgcgttctt tttctttttt gttttgacac 38760
 caaagagaaa aattgggttc tggaaagaaag tgcgttccatc tttattttttt gataaaaatgg 38820
 tgcgttcaat ttaatataaga tgcgttccatc ccaggatgttca aatgaaatctt tttctttat 38880
 ttatcttttttca gatgttttgc ttttttttttca aatgaaatctt tttctttat 38940
 ccactcccaa atttatttttca aaccctcaat caacccttattt tttttttttt ttttagat 39000
 gggatctcac ttttttttttca aggctgggttca gggaaacccctc actctttagat atatgttgc 39060

-continued

agaagattat	agccaactct	tatataacct	tccccagagc	ctccaatgt	taatgtttt	39120
ccatatttgc	ttgctctatc	acttgcctca	aagatgcata	tcacacac	ttttttttt	39180
taatttattt	ttgagacaga	gtctggctct	gtcgcccagg	ctgttagtgca	gtggcatgat	39240
cttggcttac	tgcatcctct	gcctcctggg	ttcaagcgat	tctcctgcct	tagtctcctg	39300
atgtatgtgg	attacaggca	cgggcccacca	tgcccagcta	atttttgtat	tttttagtaga	39360
gatggggttt	gccaagctgg	tcgtgaacta	ttgaccccaa	gtgatecc	tgcctcagcc	39420
tcccaaagt	ctaggattac	aggagtgagc	caccatgcct	ggccacatgc	gtgttttta	39480
ttgaatcatt	tgaaaagtact	cagctcgat	catgacc	caccccccaca	tactccaaca	39540
agcatctcta	agaaaaagga	cattctecta	accacagtgt	ctctgcattc	ccaggacatt	39600
cttctaacca	cagcgtca	gcatacccaa	gaggtagca	ccgatacagt	aataacatct	39660
tgtgtaaaac	ttcccaaaat	gtcccaagt	gtccctttagt	acagttaaa	aaaaaatggc	39720
attttttggg	atccaggaac	caattaacga	ttactcaatt	gaatttgg	tcaaagt	39780
atacctcaac	tttccttta	atcaagaaca	gccccctgc	cttttacaca	ttttttgtc	39840
tttgcgtgacc	gtgtcattt	tgaagaaatc	aggcccgtg	tctttagaa	ctgggtttc	39900
tcaagtgtgc	ttgggagggt	cttgtaaaa	tgcacattct	gattctggag	aacagggtgg	39960
agcctggaa	tctgcatttc	cagccagcat	cccggtgat	ccagtgcagc	tggtctcgg	40020
ctgtagaatg	ttccacattc	taggtctgtc	tgttccctg	tgattaaatt	caagttgaat	40080
atttttggct	agggcacttc	ctgaggtcat	aggtacttcc	cactgcctca	cagcacaggc	40140
tcacaatctc	agtttgcct	gttacttgc	ggtgctaagt	gtggtaacct	gtttcaagt	40200
gtgtccgcct	gtctctgtt	gaaacaatac	ctttctcta	gtataatgt	tagttaacct	40260
gtgattgtaa	ttggtaagta	atctttaga	ctacatgaat	atcctgttcc	ccagcagttt	40320
tcactcattt	gtgaactgtt	ttggaaaaaa	taataggatc	ttacagtat	aataccctgc	40380
tggtaacaca	tggctttac	ataatcga	gttaatttgg	tgtatgtgt	ttaattttta	40440
ttttaaaat	gttaacttagt	actggtaact	ctcatttgc	ttttaaacat	tggctttac	40500
agcttctcag	tacatttcac	tctgtgtat	tttttggtag	agcatttgg	gtccctgtata	40560
atggttttag	aaatcctata	ggccaaatga	agggctggag	actcacctgt	gttcccacca	40620
ctgtgtttca	ctgtgtattt	ccagagaaaa	tacagttaaa	tttgaatttc	agatagacaa	40680
tgaataactt	tttagtataa	gtatgttcca	agtgtggcag	acagctctca	caagttacaa	40740
gtcggtgcgt	aggacatacc	tatgtaaac	gatttgcgt	ttatcttaat	taatatgtaa	40800
ctgatatactt	gtatctttat	ttgtacgatc	ttccaaagccc	acgtccacacc	gccttctcgg	40860
ggatggccac	catttgcgtt	tgctgcctgg	tggtgtttgc	agctgagaga	agggecttgg	40920
aggaggagca	aagtgttagt	gtatctcg	gtgtggcct	tggcactgg	ggtgggggtt	40980
agatgagtaa	ttagctgaat	atgacccatc	ccatgaagaa	tgtgccttgc	ctaggtatta	41040
gcagaggtt	aggctccagg	gagccattgt	cagaagcttgc	tcaagtatgt	catcagctgg	41100
aaggggccagc	tttcaggccct	caggaaaaag	cttggaaagtc	agggctccag	ttttggtaat	41160
aaatgggaat	ggagttcac	aggttagggtg	tggaggaatt	tatttgac	ggaagctga	41220
tggagccct	tgcctgtgt	cagccccccag	ccaggtttct	gagttctgtat	gaactaccag	41280
aaacttccac	cacggccctgt	gattacactg	ttggcccaat	gccctggaaa	aattggcttgc	41340
ctctcgggga	acactccagg	agctgcaaag	gggggtgtcag	gactgttg	cagtccttct	41400

-continued

taaattgggg aggaggggtg gctgatgtgg aaactgttca ttagactgct caggtagtg 41460
 tgagaaaacg tgataatctgt gggcatctac ccctagctgc ccctctgatc tcacccacta 41520
 ctgtgggagg accccgtgga tggggcaga ggagggtctt ctggatttag acactcaca 41580
 aactccctt tacottgttc attggaaagaa atagaaaatg cctttttttt ttttttttc 41640
 ttttttttgc agacagagtc tcgctctgtt gacaggctgg agtgcagtgg catgatctt 41700
 gctcaccgca acctctgcct ccogggtctt aacaattctc ctgcctcagc ctctggagta 41760
 gctggacta cagccacgtg ccaccacacc cagctaattt ttgtatTTTt agtacagacg 41820
 gggtttccacc atgttgcaca ggacggtctt gagcttgcata cctcgttatc caccgcctc 41880
 ggcctcccaa agtgcgtggaa ttacaggcgt gagccaccat gcctggtctc ttttcatTT 41940
 ttaaagggtta atttgcgtg caggagtggg ctctcagacc agaagtgggg acctgaatga 42000
 aatcaaggac tgagtatggt aactacagcc atttaatttt atttgaagtc tcccgtaaaa 42060
 tgttctggaa aaaacagggg ttccaggcgt ggggtggcag tttcaatcat ggactggatt 42120
 ttgtggttca gatttctctg ggcctgttgg aggttcccct taagcaatta cccaaaggcag 42180
 ttctgcccag ctgaagactt gattacgtgc acactatacc agtgaggact catgggttag 42240
 cagatgggag gcactgagct tgattctgaa accctggcct ccatcccacc tgacattcaa 42300
 tgtcagatta gaatttggaa gaccctaagt ctccagatgt gtgcactggg tagctctga 42360
 aatggggtgg ctgagacagg tccctgtgc cccctccac agcttccctt gggcccttc 42420
 tgctcactgg catgtgcctc tggcaataa ggccctctcc accattttttt ttggctctgt 42480
 gaaatggggtt aatattttt cctattgcgg gtgaagcgct gctgtggaa tgctcaggt 42540
 actcaactccg tgggttagctg atattgcgtt ggcaagtggc attttagagg aaatctgtc 42600
 catcaaaaga gttggacctg atcacacttt tgctttgaa tatgctttgt cccagctgg 42660
 ccattcgtca cttgggaccc cctgagtctc tctgacccca ctgtaaaatg gatatgcat 42720
 ggagttgtcc caggaatcaa gggcagggtcc tctccagtgaa gtatgggct tgcctctcac 42780
 ttctctaaca cccttctgtt tccctgttga agatttcaact attagtggctt attctttttt 42840
 acagaagaaa aaggagacg catgcctctt ccagttcaact gttcaccatt gcagcatatt 42900
 tattccaagg gactggccga atcatccctt tctttgttag aatgtggttt tgttgcctt 42960
 agacaagtgg cccgcgttgc tgcaactgaag gaggcttgc gcaataggct tgggcaccc 43020
 cggttctgca agcatgtaca gtacttgctc tctttccct ttctttgtat acttttctg 43080
 gtctgctacg tgcctcatgt catgtggata aagggtcgctc gtcttgagta gtgattttgc 43140
 tgtgatgtga ttccctgttag gtcttagtgc acacagtgtat tccgaaggta gaccctgt 43200
 gaaagctttt aaattgtgtaa tactccagcc ccactccca agagatgtctt atttttttt 43260
 gttttggggaa gggcagttttt tttgggtttt ttttttaagc tttttgtatgt gtgcagggg 43320
 ttgagactga agtgatTTTTt gtgagtaacg gagaagtgtt aaggcttgag aagttggaa 43380
 agccatgctt gagataggac caaggtcata tccccggcat tagcacagag caaccctgac 43440
 ctgttggaga gttgggctgg atggatgcgg tcaggggaga gactcgctt attttatTT 43500
 ttttagagata cagtttcaact cttgtcaccc aggctggagt gtaatggcact gatctcggt 43560
 cactgcaacc tctgcctctt gggttcaagt gattctcggt cctcagccctc ctgagttggct 43620
 gggactccag gcacgcgcgg ccacaccctg ctagtttttgc tgttttact agagacagg 43680

-continued

tttcaccatt	gttggccagg	ctggtcttga	actcctgacc	tcaggtgatc	cggccacctc	43740
ggcctaccaa	agtgcgtggg	ttatgggtgt	gagccactgt	gcccagcctc	gactcgctt	43800
attatatcca	cacttggaaat	acaattcggg	ttgattgtag	tggggcattt	tataattagg	43860
aaaaattaat	caggaaaaat	cactccatgt	agatttagtac	caccatatga	ggggacaaga	43920
atttcttcag	attaggaact	tcttccaaca	ggactgacag	ggtccaaaac	tactcttgg	43980
tccagcttta	agatggaccc	agccccactgt	tgagtcctct	ctgaggtctt	ctctctgtgg	44040
atggatttga	ttgttaacaa	tggctgagtc	atgtggcacc	cagcccggtg	agtaagacag	44100
ctgagtaaga	ggggaaacag	ggcctttgg	cagaaaaacc	agactgactt	cagtcttac	44160
tgttagaga	agccccagaa	gctgcaaaaa	ttgcagctc	cagactttag	tgtgcctgtgg	44220
tcatgacatc	ggtgtggatg	gcagggttgc	atctgagcag	tcaggggtgc	agcacacagc	44280
ttgcgggctg	gctgatggcc	gaggtgtgtg	aactgacctg	ccccaaatgt	cttcagtgt	44340
gggcacagca	taggagcagt	actaatgata	tggacagtat	gctcagagga	cgtagggag	44400
cacagctttg	tgtaaagggc	atgcctgccc	ctgtccggat	ttaaaggcagc	tatagactg	44460
aaacccatg	gtcacccctcg	catttctaca	cttctgcctg	tgccaaatct	agtttgcgt	44520
cctcctccat	tttgtgtgt	catggggta	ttttttctg	ctaggcaact	gttattatgt	44580
cctctcagta	ctgtacttag	tgtgttaccat	tcctgcaagg	tatagacatt	gtcagccat	44640
tttacagatg	aggaaaaatgg	agttttttag	agggtgagat	cattcagtg	cagaatggaa	44700
tgttaaccca	ggtagtctaa	cctctctgt	gttagatctg	tgtccatgg	aacttttagac	44760
ttcccatctg	tgtctacagt	ctagccctta	aaaaatgtg	taaacaggtt	tttaggttaag	44820
tctgttaatt	tcagaaagac	attattattt	tttttttagaa	agtttagagct	tatgttaggg	44880
ctcagtctat	cctcctgtct	cagctgcctg	aatagctgg	actgcaggca	catgcacca	44940
tgcctggta	atttctgtgg	tatacatcat	tgattactg	gaagtcacag	tccgttggta	45000
aataactgag	ctattcatag	ccaaatcatt	tttaaaaaca	caaataaag	caaaaacaaa	45060
acatttattt	atttattttat	tgagacggag	tctcgctgtc	accgggctg	gagtgcagtg	45120
gegtatctc	agetcactgc	aacctctgc	tcctgggttc	aagtgattct	tctgettcag	45180
cctccccagt	agctgggact	acagacaccc	actaccatgc	ccggctaaatt	ttttttttat	45240
tttttagtaga	gacagggttt	caactgtgtt	gtcaggatgg	tctttatctc	ctgacottgt	45300
gatctgccc	cctcggcctc	ccaaagtgt	gggattacag	acgtgagcca	ctgtacatgg	45360
ccaaacatg	tggttttttt	aatgaaaatg	gtgttcattt	tacaaacagt	gcattttac	45420
taattttaca	ggccctgtgc	tagggacatg	gcctcgctt	ccgctatctt	agagtgaaaga	45480
agtaaaagaca	gagaaagtgt	tcacaagttg	ctgcacaagt	ctcattgcag	tgcctccag	45540
aggcgcgaag	agecaacaccc	ttcacctggg	ctgtccctaga	aggccctgtg	cagggtgggg	45600
tttgtgaaca	ctggggctta	agggggtgaa	ttcagaagac	aaaggaccc	ctgggcaaaag	45660
aaggccccag	tagtggaaag	tgcaggagtg	tgagagtgc	tggaaattgc	cactcactgg	45720
ctctggagct	tggtgctgag	tgcttggaa	gtgttggag	gatcgttat	attgtgtggct	45780
gggttctaaa	gaacactccaa	agtttacata	aaagttaccc	ttgatttgc	tgttctaccc	45840
tccagtcacg	tggctaaatt	aattaaatca	aattttaaat	taagctcagc	cataccaagt	45900
atatccagtg	tcaataggt	acatgtggct	tgtggctgt	gcactggaca	gtgtacat	45960
aaaacatttc	catcggttgc	gaaaacttct	ttgaacagca	gttgttattag	tccgttctca	46020

-continued

acactgctgt gaagaaatac ctgagactgg gtaattata aaggaaagag gtttaattga 46080
 ttcccagttc cacagggtcg gggaaactt caatcatggc agaaggggaa 46140
 gcaaacatgt ctttttac atggaggccg cagcaaggag aagtgcagag agaagagggg 46200
 gaaaagcccc ttataaaacc atcagatott gtgagaacag cagcatgggg gtaaccoattc 46260
 ccctgattca attacctcc accaggtocc tccaatgacc tgtgggatt atgggaacta 46320
 caatthaaga tgagatgg gtggggacat agccaagccca catcgtgtt gttacacacc 46380
 acagtggtgc tgtgggtgt aggtggaaa actatggcat gggggccata tctggtcctc 46440
 tgcctatttt tataaagttt tatttggaaaca taggcccacac tcattttttt atgtactgtc 46500
 tatggatgtt ttcacactgc aacaatagat ccaaatagtt gcaaagagac tgtgtggccc 46560
 acaaaaccta aatatttact atccaggccca ggcatggtgg ctcatgcctg taattccagc 46620
 actttggag gttgagggtgg gcagatccct tgaggtcagg agttcaagac catcttagcc 46680
 aacatggtga aatcctgtct ctacaaaaaa tacaaaaattt agctaggctt ggtgggtctt 46740
 gcctgtaatc ccagctactt ggggtgcag acacgagaat tgcttgaacc cagaaggcag 46800
 aggttgcagt gagctggat catgccactg tactccagcc tgggtgcacag agtgagattc 46860
 tgtctctcaa aaaaaaaaaa cttactcttt ggccctttat ggaaagtttgc tgaccccttt 46920
 ctgttagatgg tagggtaacgg tagaagggtgt tcaaggccagg agtaacatgaa atgattgtat 46980
 ttatggccta agaggataac tctgtgggtt gggcgccca tatttggaa gagaccatt 47040
 ttcagtgact tccaagagtc tgcgtgagag atgactgagg tcttgcctg gcaggaatgg 47100
 ttccattaaat ctgtgtctca tttgacaaat gaggaaactac aaatggaaac agtttaagat 47160
 gagatttggg tggggacaca gccaaaccac atcagtggtg ctaatagaca gtgggtctgt 47220
 ggtgtgtagt agggaaaaact atggccctgtg ggccaaattt tgaagtcctt ttacttttt 47280
 gttctaaaaa ttatattttt tagccagagt tgtaactta atatgtctt gaccccttgg 47340
 gctctctgaa gactgtactc tttcttccaa cttataata tacatggaaat tgcaaaggaa 47400
 accaatgata ttgaaataga tatcagaaat aaaattttt gatatacgaa taaatgcaca 47460
 tctgtattaa aatgtgtat aacaagatct aacagtgagt ctaagaacta ctataattat 47520
 catgttagcaa tggcataaag gatagtttg gctatctaa acagtcaatg acaggagaaa 47580
 atctgatttc tttgggtgata aaacgcacagg tgctgtaat acaccctgtt tttatgtct 47640
 tcgttgtaa tgaaaagaaa tgccattaaat aaattttattt tatttttttta tttattttt 47700
 tattttttt tttttttttt gaggtggagt ctcactctgt cggccaggct gaagtgcagt 47760
 ggcatgatct cggcgtacta ctacccctc ctcctgggtt caagggttc ttctgcctca 47820
 ggctcctgag tagctggat tacaggcgcc caccaccatg ccaagctaat ttttttattt 47880
 ttaatagagg tgggggtttc accatgttgcc caggctagt ctcgaactcc tgacccctgt 47940
 atctgcctac ctcgggcctcc caaagtctgtt ggattacagg tttttttttt ggcacccggc 48000
 cagatgctgg gatgtttttt aagaccttag accctaagcc tatcatatca aatacaatgaa 48060
 aacacacccca ctttcacac tttaaaaaaa gtgtgtttt gtttattgtt gtaaaatagt 48120
 ttgaaaacttt tttaaaaaaaat tttttttttt gtcataactt gtgtttttttt aaagttttt 48180
 gctatgacta actcagttat gtattttttt attttttttt gacggagttt ctcgtttttt 48240
 tgccaggct ggagtgcagt ggcacccctt cggcgtactg cagtcgcgc ctcctgggtt 48300

-continued

caaggctcag	cctctcgagt	agctagaatt	acaggcgtgc	tccaccatac	ccagctaatt	48360
tttgtatttt	tagtagagat	ggggttttac	catattggtc	aggatagtct	tgatctcctg	48420
acctcctgat	ctgcctgct	cggcctccca	aagtgctggg	attacaggcg	tgagccacca	48480
cgcctgtga	ctaactcagt	tatthaacaa	ttgactgtaa	tttctcagca	atcagtgtat	48540
acttggaaat	tcttggatg	tgagaaaact	aacctataac	tcattttctt	ttttcttga	48600
ggtgaggct	ctcttggta	cccaggctgg	cgtgcagttg	catgaacagg	gctcaactgca	48660
gccttgacct	cctgggctca	atccctccac	ctcagtctcc	tgagttagctg	ggactactgg	48720
cacgtgccac	catgcctggt	taatttttgt	attttctgta	gaaatggggt	ctcactgtgt	48780
tgcggcaggct	gatcctgaac	tcctgagctc	aagcaatccca	cccacttgg	cctcccaaca	48840
taccgggatt	acaggcatga	atgagccacc	atgcctggcc	tgcaacttct	ataaaatagca	48900
aagtttagtaa	ttagtgaaga	tgatgggatg	caagcaactga	attatacttc	tatthaatttc	48960
atttcccttc	aatttctaa	tgttttgc	ccaatctgct	ctgtctgcct	ctacctagct	49020
ttagaagtgt	tttggatgtt	cctgagatgg	agctgtgcct	gaagggtatg	aggttaccct	49080
ctgggttcag	cggggagatt	tggaaagagt	tttgattttg	aggccagtaa	aggggctgta	49140
cattagatga	tggctgctgg	gctagggaaac	aacttagagg	cagctaacag	gattcaggga	49200
gagtggattt	ggtgggagag	agtagtctag	gatgaatccca	attgggatgg	tatgagtagt	49260
ttaggtatgg	tttgactggg	tgggtggcc	cttggtaatt	atttgttgc	tagtgggtgt	49320
tgggttaggt	tggttacact	tacattatag	tcgatggaaat	ctcagatttgc	gatctaatac	49380
cacatgttaag	tcgagtggat	tttttttgc	gacagatgtt	tgctttgtt	gctcaggctg	49440
gagtgcagtg	gaacagtctc	agtcaccac	aacctccgccc	tcccagggttc	aagcgattct	49500
cctacccctcg	cctcccgagt	agctgggatt	acaggcatgc	gccaccacgc	cgggctaatt	49560
ttgtattttt	aagagttggg	ggtttccacca	tattggtcag	gctggctcg	aactccgcac	49620
ctcaggtgtat	cgcctgcct	tggctctca	aagtgtggc	attacaggggg	tgagccactg	49680
tgcctggcca	gttgagtgaa	tttttttagc	actcaagctt	cgtggctcat	tgctatttt	49740
gtgcatgtga	gcgttttatac	tttcagttgc	attaggatgc	ctacttggat	gtgttttagt	49800
tattacagaa	atagttttta	ctaactttta	ctaagttatac	tttccctctcc	tgtgttaggaa	49860
gttttagatgt	aagcggcagt	tggctggagg	ttctgaaggt	ttcccccattt	cacataattt	49920
gatgttccag	ttgccccat	caggacgact	ccctctttt	ctactgtatgt	aagcagtggtt	49980
ccaaattatg	gggttccatc	cctgcattt	cctacttgc	taaatctcg	tcacagacaa	50040
catattgctc	taaaggaaac	ctagaaaggaa	ggagaagctg	gttttgc	aaattctca	50100
aaatcatcgc	ctgttgcata	agaattacag	tttgcactgg	aacaataaga	tgttccctaa	50160
tgtggttttt	aagtgagttg	gttgctgcct	gaatttcata	aacactggct	aggattgtg	50220
caaaagggtg	tgttccctt	tagcatectt	aatttagggac	agcggtttga	aaactgtctt	50280
ttattgtctt	ttatctgcaa	aacttcttgc	atccaaatag	cgagattctc	atttcttaat	50340
cactgccaca	gaaagggtta	gattagagaa	agctccatt	ccttatttcc	tgttccctt	50400
tctttctgtg	tgtttattgc	ctgtgtctca	tcctcactcc	tgccagtttt	atagaatgtt	50460
acctccca	ctctggaaat	gtttggaga	cttgcata	gaggatctga	agagcgttt	50520
aaagtggact	tacccaaact	atcttctggaa	gaacattagt	ctctttggag	ataaaatttt	50580
taaacatccg	ctagtccaaat	agtgttggca	aattccctgt	gacactgtag	ccctctttt	50640

-continued

gagattgtca atgtacgttg gcatgttaaa ggctctgaga agtcctgcag cagttaaaaa 50700
 attgttttagt cttagtgcgc cccagttgtt tggccactga aacccccc ttctggaaaaa 50760
 ccagctaaaca tctggtagtc ttttctaaga ggtggactg aagatgatac tcatgttaca 50820
 catttaaaaa ttcttaacatg tgttttcat gtgtttataa aatgcaacta atgtatcaaa 50880
 cctgtgattt ccaggacata attacttaag ctaaggaaaa aagaaaacat gagtgaagga 50940
 aaaaactttag taaataggcc aggtggtaag aggagagagc cttgtctgtg agtgtggct 51000
 agggggatgc tggacctagc ttttcagagc taggttcagg cagagctgct ctgagatgta 51060
 gacactgcag ctggggttct tggtagccg ggaagcagct tctgactaag gtgcagactg 51120
 ttttagatgag ctggcataa agagccctga ctgtggactg cgtctccagc cacggcagca 51180
 gctgggtggat ggggtgatgc ctggatatt tatcgtgtt ttcttgctg gcctgcctt 51240
 ggacagtgcg cctcaggaat gttagaatgt gttccccc tttagcagcaaa gccgatctgc 51300
 tggtagtttgc ttctgtttat cttaactgcga cgaccgttta tcacgggcca gagttcaggg 51360
 gcacactgat aaatctctt taggaggatg atgtaaccct cagcattttc cccctacttg 51420
 gttctgagtt tttaaagtt ttgttaacacc atcatgtcct tggttggca tcttcctgtg 51480
 tactcccggtt tgggtctcca ggggtgaaata gccaacagtg gattctggag tcatggcctg 51540
 gtttcaaaatt cctgctctgc tgcttatcaa ctctgacttt gggtttattt gaccttattca 51600
 ttatttttct taatctggaa aatggagcca acagcagttc ctcataaagc agctgttaagg 51660
 attcagggggg gtaactgcac agggccaagc cctcagggtt cacctctcac tggaggtcg 51720
 gacctctgca taatggacaa gctctcttag ggtgcaagtg aacggggcgca caagggagtt 51780
 aggaagggtgg gtgtttttt tttttgtttt ttgggtggctt gaaaaacatg cccaaaggctg 51840
 ggtgtgggtgg ctcatgcctg taattccagc acttttggaaagc gcaaggccgg gagcattgtt 51900
 tgagcccggtt agtttggat cagcctggcc aacatggtaa gaccctgtt ctctttttt 51960
 tttttttttt ttgagatgga gtctcgctct gtggccaga ctggagtgcgt gttggcaat 52020
 ctcagctcac tgcaacccctc accccccagg tcaagtgatt ctccctgcctc agcctcccaa 52080
 gtagctggaa ttacagggcgt gtgccattgt gcccagctaa tttttgtgt ttttagtagag 52140
 atggggttttt gtcattgtgg ccaggctggt ctgcgaactcc tgatcacagg tgaccatcc 52200
 accttggcct cccaaaggcgtc taggattata ggcgtgagct actgtgcctg gctgacccaa 52260
 aaaatttagct gggcggtggc gcacacaccc ctgttagtccc agctacttgtt gaggctgggg 52320
 caggaggatt gcttgaggcc acgctggcc acagagcaag accttgcctc aaaaaaaaaa 52380
 aaaaaaaaaaaaaa aaaaaaaaaaaa gaaagaaaaga aaagaaaaga aaagaaaaga aaaacatgcc 52440
 caaaggcaac caaatgactc catctttgc aatgtaatct tcaacatgcg ctcctctggc 52500
 aagctgtttt gaaatggcaa agtccatctc ctgaggctgg gagattgtt gtcaggacg 52560
 ggtgtgtctg gtgaggaatg gaaggcattt ggtatggccac tgagaaagct gagccaagga 52620
 gcatcagaaa gacaatcagg caaacccaca gagtctccag gtattccctt gctgataggt 52680
 aacattgcac tagcgattta aacaaacagg tgaaaggccca ttgccttacc accccacctc 52740
 acctctattt cttgtctgc tttccagaag caactgcattg gtctggaaac agtttttgtt 52800
 cttgtcaaga gacagtctgt acatagatgaa attcaattat attacttctg tagtaccctg 52860
 tactcaaatt tgaacctgtc atacacattt gttttatcat ttcataatac ctgttgattt 52920

-continued

tcccacgtta	gtacctata	atcctgacaa	gcaattttgt	taagatgaag	agttcttc	52980		
atgtattgt	at	ctatgttct	tttttgc	atgtatgtca	agatttatta	taaaagtaac	53040	
agatgggt	gg	catggtgg	ctcattcctg	tgc	atcccagc	actttgggag	accgagatgg	53100
gaggattg	ct	g	tgagcccggg	agtttaagac	aagcctggg	aacctggcga	aatcctgtct	53160
ctacaaaat	ta	cgaaaatt	agccaggcat	ggtgg	gtact	gtccagct	cttgggaccc	53220
aatgtccc	ca	gatactcagg	aagctgagtc	gggagcctg	tcctcagagg	tcgagg	ttgc	53280
agtgagcc	gt	gattgcacca	ctgcactcc	gcctaggt	gaga	ccctgtctcc	53340	
ccctggc	ct	caaaaaaaaaa	aaaaaaagta	acatatgt	tag	ttttaat	ttttaat	53400
tttttgggg	gg	ctgggtgt	gg	gtggctcat	gcctgtat	ccagcac	ttt	53460
ggtggc	aga	tcacctgaga	tc	aggagttc	aagaccag	cc	ggcggcc	53520
tgtctct	aga	aaaacacaaa	aattagct	gg	catgtat	ggg	gcctgt	53580
acttggg	agg	ctgagg	ggg	agaatcg	ctt	g	ggcggagg	53640
gaaatcat	gc	cactgcactc	cag	cctggg	gacag	gca	gactcc	53700
ataaaaaatc	aag	caatgc	gaataaataa	caacaataa	atgaa	aggccc	atcttc	53760
atcagctt	ct	tagtttctt	cct	agaagga	gcc	agt	tttgc	53820
ccagatctt	ct	gttcagat	gc	agtcat	g	tttgc	aaaa	53880
cttttct	a	aca	attatcccc	ttcc	cttaat	acat	ataga	53940
aacaacatt	t	tttatttctt	ttc	acagcac	cct	gttgc	tgt	54000
tat	taacca	c	ttactgt	ggg	aggcatt	tttgc	cccc	54060
agttgtct	tg	taat	gact	tttgc	aa	agat	atc	54120
cac	ccat	taaaaaa	aga	atcatgtt	gg	aaactt	ca	54180
tgtttaattt	t	ctat	cagca	gtgg	cccc	ct	gc	54240
tgggagg	agt	gggg	ttgg	tc	gact	tg	cc	54300
cgagcaagaa	ac	atctt	gt	atc	gg	atgt	gt	54360
ctt	gt	tt	agc	atc	gg	atgt	gt	54420
cg	ct	tc	atc	atc	gg	atgt	gt	54480
gg	gg	cc	tt	atc	gg	atgt	gt	54540
gtt	gt	gt	tt	atc	gg	atgt	gt	54600
ttactcc	atc	gtat	cac	gc	atc	gt	gt	54660
gt	gagg	ac	atc	atc	gc	atc	gt	54720
gt	gtt	gg	gt	gaacc	atc	atc	atc	54780
gccc	cat	ta	act	gtt	atc	atc	atc	54840
c	cc	act	gtt	atc	atc	atc	atc	54900
ctt	gg	at	tttgc	atc	atc	atc	atc	54960
ag	at	tttgc	atc	atc	atc	atc	atc	55020
taattt	gt	tttgc	atc	atc	atc	atc	atc	55080
agacagg	gg	ca	atc	atc	atc	atc	atc	55140
cccc	ct	atc	atc	atc	atc	atc	atc	55200
gtc	ag	atc	atc	atc	atc	atc	atc	55260

-continued

cttaaatttggagttttgt tcccttttat gacttcacaa tctttggca ggctgcac 55320
 tctacagcag gctaatatga gttgttaactt gaggtgagtt acaggggaaa aatggaaagct 55380
 gatttctccc cttaaaacc aaggaageca ctttgatctg actttgttaac aaagetcaac 55440
 ttttgttaagt ttgcaattaa aggataaata cctatcctat ttattattat tattacttt 55500
 ttattataaa aggggaaaaaa actcccagga aacatagct aatatgaggg aaaaaagcc 55560
 aaaagggtttt tttttcttc cttaaaaggg tcttcaatgt cttgcctgtt ggagaoacca 55620
 gtttccatta taataacgac attatctt tttcaagccaa atttaacttt 55680
 ctcatttaaa agtataattt gtttccatca cagagctggg agtcagtagt gcatgtttagaa 55740
 aatatgtta tttttttttt gacgaagttt cactcttgc accttaggtt ggttgcagttt 55800
 gtgcgttctt ggtttactgc aaccccccacc tcccggttca aagcaattt cctgcgttcc 55860
 cttcccaat agtggaaactt acaggcactt accaccacgc ccaactaattt ttgttattttt 55920
 tagtagagat ggggtttcac catggctggt ctcaaaactcc ttgtttccgc caggctggtt 55980
 tcaaaactcc gatttccatgtt gatcttccctt cttggccctt ctaaagtgtt ggcattatag 56040
 gcatgagcca cagcacccctgg ctggcgttta ggaaatattt attgttattt agaaaagaaa 56100
 aatagagcaa attgttattt caagtagtat gtgtttttt ctaatttccctt ttttctggaa 56160
 aacacacagg ctgtatagttt tggtaataa agagcagagc tgcatcttctt ctaaatttcc 56220
 ctgttccctt caaggagttt cttggataa gtttccctt gtttccctt gtttccctt 56280
 gggacccctt gaatggaggg acagttccattt atcattttt tcccccattt cagccatgtt 56340
 cagttggctca tgccctgtat cccagcactt tgagaggccca atgtggccagttt attgttcc 56400
 ttcaggagttt caagacttgc ctggcaaca tggcaaaacc ttgttccccc ccggccacaca 56460
 cacaccacac agacacacac acacacacac actggcttggc cttttttttt ggttccctt 56520
 gtccctgttcc cttttttttt tttttttttt tttttttttt tttttttttt 56580
 cttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 56640
 ctgttccctt caaggatgtt tttttttttt tttttttttt tttttttttt tttttttttt 56700
 ctgttccctt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 56760
 ctgttccctt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 56820
 gtttccctt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 56880
 aagcacagca tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 56940
 cataactgaa cttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 57000
 gtttccctt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 57060
 gtgttccctt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 57120
 gtttccctt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 57180
 gtttccctt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 57240
 gtttccctt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 57300
 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 57360
 gtttccctt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 57420
 gtttccctt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 57480
 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 57540

-continued

gccatcaggc tgagggctcc agagctcatg ctgggcttta acctgaggct cttgggggct 57600
 gggctctgag ctccctccact tctgctcatg cccaggcgct cttgggggct ttgaactgtc 57660
 agttgtccag gagaactgtg tggcagcaac agaatgagtt tgtatagcaa cctgttgctt 57720
 tgaggttaa aacttagttt agaacgcaat tgctttgacc attttggagt gtctatactt 57780
 tttttcttct tctttaagtt ttcttttttc tttttttctt tttttttttt ttgagacaga 57840
 gttttgtctt tttttgtctt tttttgtctt tttttttttt ttgagacaga 57900
 acctcttaccc cctgggttca agtattctc ctgcctcgcc cttctgagta gctgggattt 57960
 caggcggcccg ccaccatgcc tgaccaattt ttgttattttt agtagagacg ggtttcaccg 58020
 tggcaccagg gctggctcg aactcctgac ctcagggtat tcatctgctt tggcctccca 58080
 aatgctggg attacaggca taagccatca agccctgctt ttttgggttcc cttcttcgac 58140
 ctttctaaaca agaggttggaa atcctcgtt tgacttttaa aggattttcc agtgcgtagaa 58200
 agtggtaaga tagttactgt atccttaggcc cttagcaga cctgtctcat tgatcattt 58260
 ttttagtccag tttggcttttggata ttaagtaatt ctcaaaattt taccttttca 58320
 aaagtggcat tgaaaataaa ggcattgggtt gatgaaaatg gaacttttaa atacagtgt 58380
 tcctgttaac cagaaatagg gtgtttggaa taatttatga agcagttacac catcatagat 58440
 actatgagct gaaagttcac caaactctct atcccaaataa aacaataagg tattttatgaa 58500
 gtgattcggtt ccaacttattt gaggcaaaaa ttgtccagca agtgagagag aacagaagga 58560
 atagttggca aaataggaa tttgaagtct gaggttatgc ataaggaatg tggtatggc 58620
 ctatagtaga aatctcaaat cagggatttag ggaatgttta ctcagttctg ttgcagagaa 58680
 atcctggcca cgaactcccc atgcctatgcc cagggcaggc attgctaattt ttcactgcct 58740
 ccattctcca tgcctcttca acggaagaca tttctaatgc attttagcag tttttttttt 58800
 ttttgctgaa tccagatgtg gcctcagaat ctttctcaac acagtgtact agcaccactt 58860
 ggtgctcctg atctactgtt tcatcttgc aaaaactact aacatgaaaa gacctgccaa 58920
 gtcaacttta tatttaactga acccttgaca cagtgtatggaa taaaaattttt ttcaaacagc 58980
 ttctttgtga tctttgatgtt gttcatgagc aagaaagaga attggaaatc cagccaaactt 59040
 cggccccctt gtctacttgtt attttactgtt gggtttatgtt ttctcttacc aatttagata 59100
 ggccccatgag acttctggtc ttccaaagcc cagaacatcc ccacattata gtttaaccac 59160
 tgtaacaaag aggtttttttt tggtttttttt tttgtttttt tttttgggac 59220
 agaatctcgc tctgtcgecc aggtggagt gcaatggcat gatctggct cactgaaagc 59280
 tccgcctccc aggttcacgc cattctctg ctcagccctc cttagtgcgtt ggggttacag 59340
 ggcgcacca tcacggccgg ctaatttttt gcattttttta atagagacgg ggtgtctggaa 59400
 tctctgaccc cgtgtatccgc ccacccctccgc ctcccaaagt gctgggatata cagggcgtgag 59460
 ccaccacgccc tggccagagg ttttcttaaa aacaataaca acaaaaacag ttgtggaaag 59520
 catgttagagt gtgggtttttt tgggtcttca ggttggcagg gcatctgata ctgggaccca 59580
 ggttccttcc ctcacccctgc tggcctctc cttagtgcagg cccaaaggccat gtgactgcgc 59640
 tgtctgggtt cctggctggc aatcgaaaagaa agagtgcgtt gaggcaggcat gcccactgtt 59700
 cagggtccatca agccgtggctt catttcataat catttgcgttgc ttatggaaa gacaggcaca 59760
 gcactgactt ccaggggagg ctgactgacc atcttaggtgg aagttgcgtt cctgggaggg 59820
 agaaggggac aaaggccaca gataggcatac agttatcagg gccttaagtc tgccttgg 59880

-continued

gcatgcagcc	ttttatttgg	tcaaggccct	ggagaaaaagc	cctgagcagg	aggagataag	59940	
ccagcttgg	cccttcata	ctacccagg	gcctctgggg	tacctgagcc	aaagtgcaca	60000	
gttcatttgc	tgtgtggat	gaagggat	gggacttgaa	aatgggacac	tggctctgg	60060	
cagctgaccg	acatggctt	ccttaacctg	ctgtctgggg	agatgggtt	catctggcta	60120	
ggttttgc	gaggaactga	ggagagctgt	cagctgtccc	cgctttggtt	cagaatgccc	60180	
ttttgttgg	acagctgaag	cctacaattc	agccatggtt	tgtttgggt	cagaaaaacag	60240	
gcaaggatgg	agagaaaactg	caaagctgac	ctgggctgtc	agtgggcacc	aggtectgtc	60300	
ggcttgggt	ctggatgcag	gagatctgag	ctttcaatg	tgggggtggc	ttgcagcagc	60360	
tcttcacagg	ctgctgctgc	tgctgctgt	ggctcaccca	agcageccaag	acggacagga	60420	
tctattctag	ttttgtgcag	agttggat	agaagaggca	ttagaggag	agggatggg	60480	
gaaggagttc	caggccaggt	gagcatgggg	cacagtaac	tgggatgtt	aggagggcc	60540	
agtttgcac	cagctgggc	aacatggcgg	aaccctgtct	ctataaaaaa	ttaaatttagc	60600	
caggtgggt	gcatgtgcct	gtagtcctag	ctacccagga	ggctgaggtg	gaaggatcgc	60660	
ttagccccag	gaggccgat	ttgcagtgcag	cagagattgt	accattgtat	tctagctgg	60720	
atgaccgaga	ccctgtcttt	aaaaaaaaaa	aaaaaggagg	ggccagaccc	ctgaccata	60780	
tgtgctgctc	ttttcttca	gggaggctct	ataaaaat	atgtagttca	ttctttttt	60840	
ttttttttt	tttttctga	gatggagtct	tgctctgtt	cccaggctgg	agtgcata	60900	
agtgatttgc	gctca	acccgtct	cccaggttca	agtgatttt	gtgcctcagc	60960	
ctcccaagta	gctgggatta	caaggtgcc	accgcattc	ctggctgatt	tttgat	61020	
tagtagcgcac	agggtttc	catattgtcc	aggctgtct	cgaactcgt	acctcaggag	61080	
gtcctcctgc	ctcagcc	caaagtgt	ggattatagg	cgtgagccac	catgccccgc	61140	
ccatagttca	gttctttag	tggttcttgg	tgctgcata	gagatctct	caagaaggac	61200	
acgtctgagc	cgggtgg	agaagaccag	catggccaa	gaccctcaga	gcaacaccaa	61260	
gaaccaccta	aaatttttc	tca	acgtgt	catttgc	gagatctc	gtgccccagg	61320
ttagctgcag	cgttaggg	cagcc	ttggagcagg	agagcagg	ccttggaggt	61380	
ggcagtcatg	gccctctaa	ttaattgc	ggctcagaga	agtgcacaa	tgaacattc	61440	
aaccacgt	taattcaca	ggta	cttctt	gctgc	aaaaacactt	61500	
ggagtagtgc	ttgtggatgt	ctggccct	ggaagagt	ttggcacata	gcaggactt	61560	
aagtattagg	aaaatgag	tggaggg	ggagggaa	ttattaagcg	ccaaactgt	61620	
agacaggcat	tgtgc	tcttctt	ttttttt	ttttttgg	acagagtctc	61680	
tttctgtcac	ccaggctg	gtgc	agtg	atcactg	ccgcgcctcc	61740	
tgggttcaag	tgat	ttcg	ccaa	tggattaca	gggcctg	61800	
attatgcct	gcta	tttt	atgt	ggat	ggccaggct	61860	
gtctcgact	cctgac	gtgat	ctgc	tgcc	tccaaatgt	61920	
aggcgtgagc	cactgtg	ggcc	gacact	ttgg	cattct	61980	
acagccctgg	gaagtag	accatgg	tttctt	atgt	gaggaaaataagg	62040	
ttcagagatg	gattgtt	caacc	gtatgt	ctag	tcacgtgt	62100	
tttgc	caaccc	ctctaccat	tg	gggtgg	taga	gatgagg	62160

-continued

agtgcatggc atccctgttcc ccagatggcc aagtcttagt gcgagtgtgt gtggccttgg	62220
taacttgtgt caagcacaca ccccatctct ctctctctct cttttttttt ttttttttga	62280
aacggaggctc cactcggtca cccaggctgg agtgcagtgg tgctatcttgc gctca	62340
acctctgcct cctgggttca ggcattctc ttgcctcagc ctcccgagta gctggacta	62400
caggcacatg ccaccacgccc cagcaaattt ttagaagaga ctgggttca ccatgttggc	62460
caggatggtc ttgaactcct gacccgtga tctgccttcc ttggcctccc aaagtgc	62520
gattacaggc tctcttgctc tctctctctc ttgtttttt ttttttggaga cagagtctta	62580
cttgggttgc cagcttggag tgca	62640
tgcaactggcg tgatcatggt tca	62640
ctcgatctcc tggctcaagc aatccctctg cctcagcc	62700
tcaagtacta gttggta	62700
atgggc	62700
accactacac ctgactaattt ttttttattt tttgttaggaa cagggtgtcc ctatgttgc	62760
caggctctgg tcttgaactc ctgggctcga gctatctcc tgc	62820
tgc	62820
ctcgcattac agagatgaac cgcctggc	62880
acacacccct atctctctc gattttttt	62880
ttttttttt ttttttggag acagagtctc cctctgtctc ccaggctgga gtgc	62940
gtgc	62940
gtatcttgg ctca	63000
ctgttag	63000
cctatggc	63000
ccaggttcaa	63000
gcgattttt	63000
tgctttagcc	63000
acccaagtag ctgggattac aggcacacac caccatgccc	63060
agctaatttt ttttttggaa	63060
gttagagac	63120
ggtttacccg tgtagccag gctggctcga	63120
aactctgac	63120
cccaagtgat	63120
cctctgtcct	63180
cgccctccca aagtgtttag	63180
attataggttg	63180
tgagccacca	63180
tgctggc	63180
ctctttagt	63240
cttacagtc	63240
cttgggttgc	63240
tgttctgc	63240
tcagcagta	63240
cctgcattgt	63300
ggccaaagg	63300
tgaccttac	63300
cttctcagga	63300
ggccaaaat	63300
gtggaaatgt	63300
gtctgtccat	63300
gcctctctc	63360
atgggttacc	63360
acctctgcca	63360
ccgtggtaa	63360
tca	63360
ccaggagaga	63360
agctgctgg	63420
actgacccct	63420
gggaactccc	63420
tggatggttt	63420
ggtgcaggaa	63420
tgttagggc	63420
atacacgtt	63480
ttgcgtggat	63480
ctgggc	63480
ctgtatgttag	63480
tagagaggta	63480
aaaggccacc	63480
atctccttga	63540
cctctggg	63540
actcatccac	63540
aaagaagat	63540
tttccaagat	63540
gtttctgaag	63540
attgcctaa	63600
aatagccgt	63600
ttccacccccc	63600
gtgatgtc	63600
ccatttttaga	63600
atgccttcc	63600
accaggacca	63660
gagaactgt	63660
ttacagaagt	63660
gacatgaaaa	63660
cattccatcc	63660
cagaatttgc	63660
agtagctcaa	63720
attaagttt	63720
tagtattaa	63720
aaagaaaa	63720
aaacaaaact	63720
aaacaaaaca	63720
cacccaccc	63780
gtca	63780
ctacttag	63780
aagcaacact	63780
gagtaattt	63780
aagtgttcc	63780
agaaaaatgt	63780
tgtggttga	63840
gggtcagggt	63840
tgtccagac	63840
caagaccagt	63840
tatgtggaa	63840
ttgttattgg	63840
ctggatttgg	63900
ggaggagaaa	63900
cccatggccc	63900
aattccaaacc	63900
cactgaaatc	63900
taagcagatt	63960
ctaggtgg	63960
aggcggac	63960
ggtaggcgtt	63960
ggtttatttt	63960
atcccgaaa	63960
aaggccctgg	63960
agcaagtctt	64020
cacatggaa	64020
cctgtgtaaa	64020
ggctccggc	64020
tcatctggcc	64020
ttttcttctt	64020
cttaagg	64080
tgctccatgt	64080
tttaccctcg	64080
gcgtaaacat	64080
tgca	64080
gac	64080
tttgc	64080
gttca	64140
aaaagtgtc	64140
tcatctacgt	64140
gatgttcaga	64140
cgttgc	64140
tgtgtatgc	64140
tgtgtaa	64140
ttcattttcg	64200
aggcttgggg	64200
agtctcttat	64200
ttcatgtgg	64200
tggaaacctg	64200
gagg	64200
tttgc	64200
ggcaagtcgc	64260
cattttttta	64260
ttgttccaag	64260
agtttggta	64260
agcgtttgaa	64260
ccttcac	64260
ctg	64320
tcaaaatcag	64320
ttttggaaatg	64320
agaactgtc	64320
tctctctag	64320
ccttataata	64320
gcagaaggaa	64320
gttacattt	64380
atcccaatga	64380
gaccataaaag	64380
ggggcttcc	64380
cgtgtggaca	64380
cccac	64380
tgtgttgc	64440
aaacagaaat	64440
tctgggcatt	64440
gtat	64440
tttttgc	64440
taaatttggc	64440
tcagacttca	64440
actggatcat	64500
atttccccca	64500
aaatctttc	64500
aaaaaagact	64500
tgtgttcat	64500
tcctttagac	64500

-continued

tagcatgtgt aagctgggta aaaatagagc aagccgattt catgttaatg atttcatgtt 64560
aggtttgtga atcaaatctg caagtctgtc tttgaaaagc atttaacata taacttggga 64620
aagtttgagt ttgcagact aatgcctgtc gcccgtatgag acttcatacg tccatccaat 64680
ccctccttgtt gcaagagatc aatgcctgtc ggggtgcctgg ccaccaccat taccctgaca 64740
gtataccac tatttattta ttttattttt tatttattta ctttattttt gtttaaccctt 64800
ttgaagatttgc ctcttctcc tttactttaa aggaatttggc atggaaaactt gtttgcattt 64860
gaatttctga taatcagtag gtagtaactc cgtaatcaat agcacttcaa aacaacaacc 64920
aaataacagg ataactaatac caaaaaatttca agtcatggtc aaggacttcc agctcaggaa 64980
atgtctggtc ccgtgggtt gattccttggg ataaaccaagt tccgtgcagg gcctggagtt 65040
ttatgcagac cattgtctt tatttgcacca caggacctca aaaggaggggc tggcttcattt 65100
accacatgac ccgtgtgtc agaaggggcc tttttttttt tttttttttt tttttttttt tttttttttt 65160
tcttgaagtt cttataaaaa tttttttttt tggacttggg gagttgcagt ttcaaaacaac 65220
acttatttcat tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 65280
tccctctgtc cgggtctac gagactacaa ggaagggttcc atctagggtt tttttttttt tttttttttt 65340
tgaatgccta actaaggaaa aatccacttc attcagggtt attcagggtt tttttttttt tttttttttt 65400
ccatttctgt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 65460
gctaacctca gttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 65520
aattcataac acagggttcc tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 65580
taaagggttcc tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 65640
atttttctgt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 65700
tataaaggct tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 65760
atgacccttca ccaagaacat cagcattacc tacgaatttta ttggaaatttta aaatttccctt 65820
gtttcacccca aggcctgtta aatcagaaac tttttttttt tttttttttt tttttttttt tttttttttt 65880
aacagatctt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 65940
aggcagggttcc tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 66000
gagctggaa atgggttccaa aatcagatca tttttttttt tttttttttt tttttttttt tttttttttt 66060
gcaaaagaga gtaagaaga gaaactaaaaaa aagcaagag gttttttttt tttttttttt tttttttttt 66120
caaacagtttta aagacagcaaa cacatggcaaa aggttggaa tttttttttt tttttttttt tttttttttt 66180
aagcaattttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 66240
tagggggctt gttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 66300
aagttcttaa tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 66360
tatgttagaca tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 66420
ggaaacccctt aatcagatca tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 66480
atactctttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 66540
caaaattttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 66600
ttgggtgtgg gttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 66660
aattaaaaaaa ataaaggcttca ccccttttca tttttttttt tttttttttt tttttttttt tttttttttt 66720
cagcatgtga gttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 66780

-continued

tgtgttcaac	cagcattcag	gtggcttgg	gtgggtggct	ggggagacac	caagatcgag	66840
atagctcagt	cactcctcaa	caagcggctt	agttctggaa	tgaggtggaa	ggccaaggaa	66900
ctcacacata	aatgctggtg	ggagtgaagt	gccaccagct	gtagaatctg	gtgtcagaat	66960
gatgagccag	gagttatccc	acaggaggat	gggtgaaggt	cttcccatca	aaggataga	67020
gaacatgtga	agaggtccag	gggctcaggg	caagatgtag	tccaggaaca	aggagtctt	67080
gaggcctgcag	tatggtgggt	ggaagtgccg	agagtggaaa	gcccattgg	tggggttat	67140
gttagttctg	aggtgctgtg	tatgtttaag	gagctgattt	tgtgcagcgg	gaaccctgg	67200
gaatttggaa	gcacagaggc	acctgacgag	aaagatggtt	ctggggttat	gtgaacagtg	67260
attcggcttc	aaggctatca	aagacaaaaaa	tgtttattgg	gagggtatag	aaaagggttt	67320
gccaaaagag	ttaggttaggg	atagaattga	cacattgtgg	aaactataacc	cagagttaa	67380
gaggtggagt	ccaggatagt	gcccatgtt	gtagcttggg	gtcctggtag	aatgggagct	67440
ggctatggag	tatctttgtt	ggagagtggg	tataggggaa	cggagagaga	gagaaagttt	67500
caggggggtgc	gggagatgga	tagctgcaga	gaaggcaagg	gcaggggaaag	tggaaacaaa	67560
tggcagttag	actcctggaa	ggtgctggcc	aggggcattgg	catggcatgt	tctgttaagc	67620
aaggaaagga	ctagaaaggg	gcccattttt	tggctggca	cttacccccc	tcacaacagg	67680
acgcatttgt	gtcatggctt	actcttaaga	atgactgacg	tgtcagaata	gcaaataatga	67740
aaatgattga	taaacacccat	cattggtgat	atttgcagg	ataacttagct	ggccctttaa	67800
atctatagat	aggaatgtaa	acagaaacaa	actttttata	gggaaaagat	atcttaggaca	67860
taatgattaa	tggaaatggaa	aaaattccctt	cctatcgaaa	aacgtgaattt	caggcagcaa	67920
acacacatgc	atgtatacac	atacacacgt	gcacacacgc	atacacacac	aatctggtag	67980
gctgtatact	accagtttag	caggttgta	cctctggat	gcagtcaactc	ctttttgtt	68040
tgtatattt	tggaaatgtt	tcttcaattt	tttgagacag	ggtctcaactc	tgttgccag	68100
gctggagtgc	agtggcgtga	cgtcagctct	ctgcaactt	cacttccccc	gctcaagcga	68160
tcctccaaacc	tcaatctct	gagtagctgg	gactacagga	gtgagccacc	atgctcggct	68220
aatttttttt	ttttttttgg	gtagagggg	agttttgcct	tgttgccag	gctgggtttt	68280
aactccctaa	ctcaaaagcaa	tccctctgccc	tccggccccc	aaaagtgtcg	gggttacagg	68340
agtgtgccac	tgcacccggc	cattattatg	gaaaattttt	ggcgtatacaca	aaagtagagaa	68400
cagtggtgtc	ttacatgttc	atgaacccat	gatccagtga	catccgtta	tggcattttt	68460
gaatcatatt	tcatctgttt	ttgtccctcaa	atgttttggaa	gcaaaatttca	gcattacatc	68520
atttcaactct	taaatatctc	agtaggtttt	tataatagtt	gaagactcca	tttacatttt	68580
tataaggagc	ataatttaca	cttggatgtac	ccaaagggaa	gaccaagctt	gtgcttctct	68640
ccccagatag	caaagccatt	gtggatgggg	acctgaagct	catcttgggt	ctgggtgtgg	68700
cgcgtatcct	ccactactcc	atctccatgc	ccgtgtggg	ggatgtgggg	gtatgtatgt	68760
ccaagaagca	gacgccaag	cagaggctgc	tgggggtggat	tcagaacaag	atccctact	68820
tgcctccatcac	caactttaac	cagaactggc	aagacggcaa	agccctgggg	gccctggtag	68880
acagctgtgc	tccaggttaag	tggccagg	tgcctaaacc	atctgtccag	gatgggggt	68940
tgtgggtccc	aaacattctg	gtttcaacg	ggaatgtat	cttgcattt	attagctgtat	69000
ttctccaggt	cttagccat	tataagccca	ttataaggaa	actaaaactg	gctctgtgt	69060
cccttccaag	ggcagat	ctaggtat	ccatagacat	gtttgagcat	caagttgagt	69120

-continued

ctttatcca aattccaatg aaggagttgg tgcttagaag caagacttgg gtttagttc 69180
 cagactccaa aatccctgtgt cttcccacat tggtgctcag tttctcattg gattttggaga 69240
 aacattttgtt cctatttaggt gggttggcat gaaaatctga aaacttccat ggagtggaaa 69300
 gtacccattt ttatatacca ctgggttgc tatatatggc attctccacc ctttttttc 69360
 tgggttgcgtg tggaaatagca tttggtcagg atccagttgg agcctttcc acccttgcgt 69420
 ggctgctcat ttcttagtgg ttgagttgtat atgaaggttgc taattttcc cactggaggg 69480
 ttttagattga tgggttagagt ttgctggta acactcagta gaaagaccag agtcagagtt 69540
 tacacacacc ccctaaagtt gattttaata aaaaaaaaaaag gtattaaatca tattttccat 69600
 ttactgtgtat ttctgttattt actggcaca ttagtatttta gtttagttgtt ggttcttgc 69660
 atactcaaag cagaactagt gtcagttggg taggggaggg ctgaaggctt catttttact 69720
 tgagagccata taagttggta tcatccagga aaaattcaaa gtgcagcattt aatttttttc 69780
 ctaatatcctt cttctttactt tccatataag gacacattt aggataacctc tttccaaattt 69840
 aaacctggga gtttttactc tagtccttta cctcatgtgc ttacaaaggc ttttaagata 69900
 attcttaggtt tggccttttgc agcaagtggaa tttttgaatc acacaggatg ctatttttaga 69960
 ctttttagat atatccagga atagagtaaa aaataaaatc cttcttgcata aaaggccacca 70020
 ggctttttcc aagcttttttgc tattttttaa caccacttct tcaaggaatg gataatcccc 70080
 atcttcatgc aagaacatag caccggagg agaagtctca gtaatggagg atagtttaca 70140
 ccctggcaca ctcatacctg tgatactttt tgccttattaa atatatgatt tgctcattt 70200
 ttaggaaaaa atattttctc gaactaaag aaaaaatggg gtttagtttag gcacatgggtt 70260
 tccttaatc tctttggta gctaattgtca aaagaatctt ttgtgttctg ttaacaggtc 70320
 tggcccaga ctggaaatcc tgggacccgc agaagctgtt ggataatgca cgagaagccca 70380
 tgcagcagggc agatgactgg ctgggttgc cacaggatg cacaagggtt ccaggctctg 70440
 tgaggctgcc cccacccact agcttggctt gtggatgcct tcccggtca ggcagccgaa 70500
 cttcttggc attgagactt cagagagcat tgcctgtat gctctctcat cttcttcagt 70560
 ttaccataa taatagtagg ttctcattga ctcagggtgtat tataatgtttt agtgtgttgg 70620
 ttaatgttag atcatccaga aattttcatg tcacttttctt ttgtcacaca ctggcaaattt 70680
 ttcttagtatt tcttcctaa atattttgaa gactacctt aaacccaga ctacaatata 70740
 ggacccttaac tattaggttg agccataaga aattgtatgtt atttgaccat ttttcaatct 70800
 acattttaaa aggttaattt aatccatag cttaagaaaa gtcacaggac ttaaaatttt 70860
 tttttttttt tgagatgggg tctcgctttg tcggccaggc tggagtgcag tgggtgtatc 70920
 tccactcaact gcaacctctg cctccgggt tcaagcaattt ctcctgcctc agccttcgt 70980
 gtagctggga ttataggtgc gcaccaccac acctggctaa tttttgtattttttagtag 71040
 acagggtttt accatgttgg tcaggctgtt ctcgaactcc tgacctcgat atctggccgc 71100
 ctcagcctcc caaagtgcgtt ggattacagg cgtgagccac tggcctggc cgacttaaaa 71160
 cttttaaaaa catgtaaagcc aggataatcc accattaatg gaaactgtgg aagaatctct 71220
 atcacccata atccttatcact aggaatataa caagagaact cagaaatcaa ataagtttgc 71280
 gataccatct acagtagtca cattgcttag ttgaagttgtc atcttccttag ctgggaggaa 71340
 aaccagtgtt ttctttccag aaactccctc taacagttgttgc accatgttgc tcccggttcc 71400

-continued

aaaggcttagc	caggaaagat	tgcaggtgc	cagtgcctgt	ggactgtatgg	cgtcactata	71460
ggctgcattg	aggctctgagt	tcagtgtatt	ttgttaacagg	gtcccttggaa	aggtagaaca	71520
acatgcctgt	ttctttggtt	tggtttggaa	gtcatgtctc	tcctacatgg	ctcattggtt	71580
tcttggctcg	tccaccctca	ggaagtgggt	tgggtgtt	ttcatctccg	cttaaaccta	71640
aaccgtctcc	ttttacgtt	cacgtgtatgt	tggcatgggt	gaagtttgg	aaggagctgc	71700
tgggaagaaaa	tgc当地atcg	acacacatcc	tactttttat	ggaatgtatt	gaaggcgact	71760
gttcaaacc	aagtagctct	tttgc当地ctg	caggctaatg	gtc当地atgt	tttctgggtgc	71820
ttttatcac	atggggaggg	aagttggaca	catctgtt	tcattgcaca	tggtaacct	71880
ggtccatgag	acagagcctc	tgttcatctg	aggaagtgtg	atttacccctc	ttagcaccat	71940
tactggaggc	agggaggact	ctgcaagctg	tttagggctg	ggtc当地atga	tggtaactgaa	72000
actgaggtgg	tggcacccctc	agggaaagtca	cctgtccagg	atgggtctag	tcttgc当地ct	72060
aagctgaata	tcaagagaag	ttcacccatt	ccctat	ttttttttt	tttgagatgg	72120
agtcttgctc	tgtcacatag	gctggagtg	agtggcacga	tctcagatca	ctgcaaccc	72180
cgcctccat	gtacaagcga	tttc当地tgc	tcagcctccc	gagtagctgg	gactgc当地gt	72240
gtatgccacc	atgc当地tggct	aattttgc当地	tttttagtaga	aatggggttt	caccatgtt	72300
gccaggcttg	tcttgaactc	ctgacccctg	gatccaccca	cctc当地cc	ccaaagtgct	72360
gggattacag	gtgtgagcta	ctgc当地tgg	cctttttttt	ttttttaag	agacagcgtc	72420
ttactccct	tttacccagg	ctggagtgca	gtggcatgat	ctc当地tcc	tgaaaccc	72480
acctgctggg	ttcaagccat	cctccctgc	cagcctccct	agtagctggg	attacaggtg	72540
tctgccacca	cactgggcta	attttgc当地	tttttagtaga	gactggg	taccatgtt	72600
gccaggcttg	tctcgaactc	ctgacccaa	gtgatttctc	ttgtcttgc	ctc当地aa	72660
gatgggatta	cagtc当地gag	ctaccacgc	tggcttccct	attttttaa	tggctctaa	72720
tatattgaga	tcacatatct	aatatttaca	tgttatttct	tttttattta	cctttttaa	72780
ttagtagagt	taatacagat	acagaccatg	agtataacaag	caaaggaaaa	agctggtaa	72840
cctgtgcact	tttttgc当地	atgc当地taat	ccatgtgtg	tttgc当地tct	catttccctg	72900
ccttgctata	gtttatcctt	ttatcattt	tgaaatttgc	accagaggag	taatggact	72960
tttggggaaat	ggggaggaca	atgaactttt	ggaagttaca	tgc当地at	tttggagagg	73020
ggccccc当地	tttcaaaagg	gttgc当地att	tctcaaaaat	ggtaaaaac	actgatattg	73080
gtgtgttgg	tttaaggtaat	ttcacttaat	tgagaagctg	actc当地tctc	ttaatatttgc	73140
tagtgcttgg	tttaaggaggc	atttgc当地aa	acttcaatag	ttgcaagtg	atgtgttctg	73200
gggtgttccatc	caccatgtca	ttatcctagg	tcatcactcc	tgaagaaatc	attc当地ccgg	73260
atgtggacga	gcactcagtt	atgacttacc	tgtcccagg	ccccaaagcc	aagctcaagc	73320
cgggggctcc	tctcaaaacc	aaactcaacc	cgaagaaa	cagggcctat	ggcagagg	73380
agtgtgg	ctctgggtt	gtattggaga	catgtc当地ct	ggtgttggag	atgatttcat	73440
ggcttcaaga	gtgtatgttct	tagaatcaa	aatagatagg	tgtatcc	aaagagaccc	73500
caaggcttcc	ttgttaacaca	ttttatgact	gttttatttct	gccttgc当地ttt	tctaaagg	73560
taagaaatgt	tttgc当地tag	atggaaagg	caagtttgc	gttgc当地tgc	tttagtgca	73620
taagccatgt	ctccat	tcagaagagg	aatcgc当地gggg	tagggagtg	ggggagg	73680
gttttgc当地cc	agtc当地accac	agtcaatgt	gggggtgggc	catgtggctg	ctgatttcat	73740

-continued

tctccttctg	ttacactaag	cctgcctcag	atttccagcc	ggagtggag	ctattgttaa	73800
ccccctggcag	atacttcctt	gctaagacat	cctgtttatg	actgcgaggc	agctgcggaa	73860
caccgttttgc	ctcagaacat	tatagtgggt	agaagccatt	tcaaggcatt	ttgtgttgt	73920
attggcacct	gacttcaago	acactagtt	tgtgaagaga	acagttacat	ggctgaaag	73980
tgtggtttct	ggtgaagatc	aacatggcca	gatacaactt	aatgcctttt	ctatggggga	74040
ggggaggag	tgcattttat	tttgcatttt	tcataattaa	gaaaatatcg	gccgggtgt	74100
atggttcatg	cctataatct	cagcaactt	agaggccgag	gcggcagat	cacctgaggt	74160
caggagttgg	agaccagect	ggccaacatg	gtgaaaccct	gtctctacaa	aaaataaaaa	74220
aattagccag	gcatggtggc	gggtgcctgt	aatcccagct	attcaggagg	ctgaggcagg	74280
agaatcgctt	gaacccagga	ggcagaggtt	gcatcgagcc	gagatcttgc	cactgcaactc	74340
cagcctgggt	gacagagtgc	gtgagcctcc	gtctcaaaaa	aaaaaaaaacga	gaaagaaaaat	74400
gttatcccag	tgggataata	gttatacaca	cagtattctg	tatattcttct	cccagaatttgc	74460
acagttgtta	ccattcttagc	ttaatagttt	tctcttgc	tttgtgtgt	tttgcataatgc	74520
tgttcatgtg	tatgtattgt	gaattatttg	aaaataagtt	gcaagcatgg	tgacagttct	74580
gtcctcagta	catcactaag	cttctctaa	gaataggata	tcctctagca	taaccacagt	74640
attcattgcc	acatgtaa	aaattaacaa	tagttcata	taatctaata	ttcagttgt	74700
tgtagaattt	ctctattgtc	ctaagattat	cttttatagt	tgttgctgtt	ttacaaacta	74760
agatctgatt	aaggttcaact	tactacattt	gtttgttatt	tctctttaga	ctctttcat	74820
gctaaataat	ttccccaaac	ttttttttttt	ttttttttaa	atgacactga	ctttctgaat	74880
agtttaaggc	atgtgtcttg	tagatgttc	cttccctaca	aatgtccct	ttgaataaaag	74940
tatttcctg	cttggtatca	gtttagtctt	ttttttttttt	tttttttttg	agagtcttgc	75000
tctgtcgccc	aggctggagt	gcagtgccac	gatctcagct	cactgcaacc	tctgcctcct	75060
gggttcaagc	gatcctcctg	cctcagccctc	ccgagtagct	gggattacag	gcatccacca	75120
ccatgcctgg	ctaatttttg	tattttttagt	agagatgggg	tttcaccatg	ttggccaggc	75180
tggtctccaa	ctccctggcct	caggtgatct	gcccggctcg	gcctccaaat	ccgcttattc	75240
ttaagacgac	acatggctag	ggcagtgatg	ctgaccacgt	gtgttttca	cctcagtggt	75300
cgagtcttct	catctgactt	tttggccatg	atttagaccc	gcagatagtt	ctggaaacaaa	75360
cccttacca	tttgagggttc	cgtttgcagt	gggttgtgag	gtgtgtgaga	catcacttgt	75420
gttatgttagg	gactaggac	ttcaaagccc	tcctccatt	cacagtcaact	tgaaggctgg	75480
catgtcctca	ctttctttaa	aagtgccttc	tttggccggg	cttgggtggct	cacacgttca	75540
atccctagcac	tttggaggct	gaggcaggca	gatcacaagg	tcagaagatt	gagaccatcc	75600
tggctaacaa	ggtaaaaccc	catctctact	aaaaatacaa	aaattagctt	ggcgtgggt	75660
tacaagcctg	tagtcccac	tactcgggag	gctgaggcag	gagaattgt	tgaacctggg	75720
aggcggaggt	tgcaatgtac	cgagatcgcg	ccactgcact	ccagcctggg	tgacagaacg	75780
agactctgtc	tcaaaaaaaaa	aaaaaaaaaa	gtgcatttttt	taaggcatac	cacaggttgt	75840
ggctggaatg	aggaatctct	gactttaaag	gttatgc	cttaatgaca	aaacagttgc	75900
aaacaaccaa	ttaatcctt	tgtcaaccag	attggtcaaaa	tggactgaat	ctaatcaagg	75960
catagtgtat	gtttgtataa	accttatac	tggccatccg	gttccctgt	tgttaatgt	76020

-continued

agacggttc	cttcacggt	gctattttct	agaaaaatgtat	cacttgttat	ggttcaggaa	76080
tgtggctgg	cattgccatt	tccttcatct	gcctcttagc	aagtgtgggt	cacttgtaga	76140
gaaacacac	ccttttaaaa	aaaaattttt	tttatatgt	gtgcttttg	cattttta	76200
attgtggaa	aatatccata	acataaaattt	cactattta	accattttta	agtgtggcat	76260
taagtgtatt	cacgttgtt	tgcaaccgcc	actgctatcc	atctccagaa	cttttcaac	76320
tc(ccaaact	gaaactccat	actcattaaa	caatagcgcc	ccattctccc	ctctctctg	76380
ctcctggtaa	ccttattct	actccctgtc	tctatgaatt	tgcttattct	agggacctcc	76440
tagaagtgaa	atcatatgct	gtctgttagg	tacctcctag	aagtggaaatc	atacgctgtc	76500
tgttaggtac	ctcctagaag	tagaattcata	tgctgtctt	ttttctctgg	cttacttcat	76560
ttgtcatatg	tttcagggt	tcaccatgtt	gtacatgtg	ttagaatttc	attcctttt	76620
aaggctgaat	aatattcctt	tgtacgtgt	tatcacattt	tgcttataca	ttcgctgtct	76680
gatagacatt	tgggtgtta	cattctttt	gctattgtga	ataatgtgc	tatgaaaaca	76740
tgggtgtaca	agtgtgttt	gagaccctgc	tttcaattct	tttagggata	tacccagaag	76800
tggaaattgg	ggatcatatg	gtatttctat	atgcagctt	ttttcagga	ggaagtggcc	76860
tcactctgt	ttttaaagta	ggagacaaaa	ttgtcatatt	aggtgacagg	gtcacaaggc	76920
cacatgggt	gggctgtgag	atatgtccct	gtcatgtgg	tagatgaaag	ccggggctag	76980
ttttggctt	ctctgtgt	ccacattgt	tcatttctgc	cacctgagcc	caggaagaga	77040
gaccgttca	tcttctagtt	tctaaaagat	ttgaaagtgt	tgttttattt	tttatttct	77100
gattgtttaa	tagatgccag	ttgcagccca	gttagcattt	gttgatccat	tcactgagtc	77160
ccaccttgc	tagttctagt	gggttcaaag	gagagaggc	tggggtgagg	tggaccccca	77220
gccacaaaaca	gatctttgt	gtgggctcc	ttgcagggtt	agctatgt	aaagcattcg	77280
tccatgagct	aatcagaat	cttgtaaaaa	atctagttct	ctatgaagca	tttactgtag	77340
agcaatcctt	aagcaccctt	ctatctgag	aatcagaggg	gtaccagtt	tctccttca	77400
tggtaagcaa	agtcggcag	aagtttacag	agttgggtg	tggttcaact	ttctaaccag	77460
ccatggttag	ccacgggtga	ccaacccaag	cccagaccc	tgacaagctg	cagagtacgt	77520
tgttcttag	gctgctggag	tcacacgaag	tggaaacttt	agtattttag	gtgcattgtt	77580
atttacttac	ttatttttgt	tgttgtcg	ttcagataga	gtctcactct	ctctctctgt	77640
gtgtggagtg	tcgtgatg	atcacggota	actgcagcct	tgaccttctg	ggctcaagt	77700
atttccctc	ctcagcttcc	ctagtagttc	ggaccacagg	tgtgcaccac	catgtccagc	77760
ttttttttt	ttaatattt	tagttgaga	ccagcctggc	catgttgc	aggctggct	77820
caaaatcctg	agtcagac	atccccctgc	ctggcccccc	tcaaagtgt	gggattacag	77880
gcatgagcca	ccatgcttgg	ctattaggt	tatgtttaaa	tccatttgc	tatatcagg	77940
acataaccc	agtgttatgt	aaatcttaag	caaaagaaaa	atatatgaaa	aaaaattga	78000
aactcactt	ccaaactgeca	atctcattcc	tgccttcaa	gttccaggt	tttatttcta	78060
gcctttttc	tatgctgagt	taaactgtgt	atcttcttg	cttgcattt	cttactgagc	78120
agtgtggaa	ggctaccc	taaaattat	ttgttagttct	ttataattt	taccttctt	78180
tttaggcaga	aagattatct	tattatataa	cagtctacgg	ccatttttc	ttaaactaaa	78240
ttattggaa	atgaatagaa	atccagagta	tagtaacaaa	tgacctagtg	tctttaacag	78300
attggtagct	aggaaaagga	agtggggag	agacagccgg	agattaaatg	agacttaaga	78360

-continued

gacttagcaa ccatttgtaa tatgtgacct tatttggatc ctattcaaac taatggtaa 78420
 aaaaattcat gatagctggg catggtggtc cacgcctgta atcccagtac tttgggaggc 78480
 tgaggtgggt ggatcacgag gtcaggagat cgagaccate ctggccaacg tggtaaaacc 78540
 cccttacca aaaatacaca aatttagctgg gcatggcgcc atgtgcctgt agtcccaagct 78600
 acttgggagg ctgaggcagg aaaatcgott gaacctggga ggtggaggtt gcagtgaacc 78660
 gagatggcgc cactgcactc caggctggcg acagagctag actctgtctc aaacaaacaa 78720
 acaaacaaat aaaaattcat gataaagcag cagctcaagg tgctgttaa aattcatgat 78780
 atttataaga taattgaaaa ttgttaacact gaatatttga cattaaggaa ttatTTTT 78840
 ttatatggta tcgatattgt gggtaactttg caagtatctt ttaaggatac atagtgattg 78900
 tggataaaaa atctgaggtc taggatttg gtcaaaataa tacaggaagg ggaggtggcg 78960
 ggagtgaagg tgaacaacaaga ccagctgtga gttgatagtt gttgaagctg ggtacaggag 79020
 gtccactgtg cagtgtctc tacatctgtt tttgttaatc tttttttttt ttgagacgga 79080
 gtctcactct gtgcggcagg ctggagtgca gtggcatgat ctgcggccac tgcaacctct 79140
 gctgccccggg ttcagcgtt ctctgcctc agcctgcacaa gtagctggga ttacaggcgc 79200
 ccaccaccac acccggtctaa tttttagttt ttagtagaga tggggtttca ccatcttggc 79260
 caggctggtc ttgaactctt gacctctgtc tccacctgcc tcggcctccc gaagtgttgg 79320
 gattacaggt gtgagccact gggccagcc ttttttttga gacagagttt cgctttgtt 79380
 gcccaggctg gagtgcaatgc acacgtctc ggctcactgc aacctctgca tcctggattc 79440
 aagtaattctt cctgcctcag cttcccaagt agctggattt acaggcatgc accaccacac 79500
 cccgccaatt ttgtatTTTT agtagagaca aggttacacc atgttggtaa ggctggcttt 79560
 gaactgctga cttgggtga tctgcccacc ttggcctcga aagtgtgag attacaggtg 79620
 tgaaccacgg cggccagect tttttttttt tttttttttt tgctgaattt tcacttctgt 79680
 ttcacagggtt ggagtgcattt ggtatgtctt tggctcgtc caaccccgcc ctctgcctcc 79740
 tgggtcaag ggattctcctt gcctcagccctt cccgagtagc tgagattata ggcacatcacc 79800
 atcacacctg gctaattttt gtatTTTT tagagacgga gtttccacat gttggccagg 79860
 ctggtctcga actcctgacc tcaggtatc cacctgcctt ggcctccaa attgtggaa 79920
 ttacaggtgtt gagccactgtt gtccagccta gtttggattt cttcataataaaaaggctttt 79980
 taaaaaggta atatTTGGAC ttctgcctt ggaaagatgg aataggactt ttcttaattt 80040
 ttcttctaa ctacaactaa aacccctggg ctatacataa ggaaaacaca gggagctct 80100
 gaaaaaggat gaggcagacc aaccagggtt cttggactc gaggaatgac acagtactga 80160
 gttccttggg ttactttgc ttatataatc ccagacttgg agccaaagaa agaagctgac 80220
 aacctgaaaaa tgccagtggtt cacaaacaca gaaagtgcac aacaaagctc ccctgtccag 80280
 ccagaagacc agggaaaggcc agcccagtgc ggcagaaaaac ttaaagatgc actgctctac 80340
 tccaggtcca caccatagaa aaaactatgc agccccacac ttacacccgc agaggtgaat 80400
 ggggagccta ggcttgaca acagtctacg aataaggaag ccactctccg gggccatgg 80460
 ggagcagtaa tgaggcactc ctacttcctc cagccagaac tcccacccctc acgcaccagt 80520
 aatgagcccc ccaatcttgc gcatcagtgc aggttgaatg gagagccatg acttctccc 80580
 ccactgttag taacaagggtg tggtaacccttc cttccctgc cacagtggta tcataaaatg 80640

-continued

ccagctacaa	cagaacattt	acagaagacc	cagagtctca	ttacatgata	ccccaaatat	80700
ccagttcaa	aaaaaaaaag	aaatcaactt	tcataccaag	aaccaggaa	atctcaaact	80760
gaatgaaaaa	gacagttat	gccaacactg	aggtgataga	gatgttagaa	tcctatgaca	80820
aaaattttaa	agcagccatt	aaaaaaggct	tcaatgcctt	ggcgtgggg	ctcaacttgg	80880
gaggcttata	atcccaggac	tttgggaggc	cgagggggc	agatcacctg	aggtcaggaa	80940
ttcgataccaa	gcctgaccaa	ccttatgaaa	cccagtctt	actaaaaata	caaaaaattt	81000
gccaggtgag	gtgggtggca	cctgtatcc	cagctactcg	ggaggctgag	gcaggagaat	81060
cgcttgaac	tgggagggtgg	aggttgcagt	gagctgaggt	catgcccgg	ccctccagcc	81120
tgggcaagaa	gagtgagact	ccatctcaa	aaaaaaaaaa	aaggcttcgg	taggcagtt	81180
agaacaatca	tgaaaaaat	gaaaaattt	aaaatctcaa	caaagaaata	caatgtccca	81240
gcaaaataat	aataaaaatt	taggagataa	aaagaaccaa	atggacattt	tagaatttgg	81300
aattgcagta	actgaaataa	aaacttattt	gataagcgca	atagcagggt	ggaaggacag	81360
agaaaagaat	ccttcaactg	gacaacaattt	ggttgtttt	ttctgaggt	gagttttgt	81420
cttgcaccc	aggcttaggt	acagtggagt	gatcttgct	tactgcaacc	tctgcctcct	81480
gggttcaagc	tattctcccg	cctcagcctc	cctagtagct	gggcttacag	gtgcccacca	81540
ccacttctgg	ctaattttt	tatttttagt	agagacgtag	tttcaccctg	ttggcctggc	81600
tggctttagaa	ctcctgaccc	taggtgtatcc	acctcggtaa	tccaccttag	gtgatccaaa	81660
gtgctggat	tacaggtgt	agccactgga	cccgccctt	gtaagctttt	ttctgtgttt	81720
aaaactttt	attttgcac	tttttttttt	tttttttttt	tttaaacaca	cacattagtc	81780
tagacttaca	cagggtcagg	atcatcatta	tcactatctt	ccacccctt	atccctgtccc	81840
actgtcccac	tggtaggtcg	tcaagagcag	taatgtgtgg	aaccggccgtc	tcctataata	81900
acaatgcctt	cttctagaat	atttctgaa	ggacttgctt	gaggctgctt	tacagttaac	81960
ttaattttta	aatagaagat	gcccactcta	aaatataatg	ataaaaagta	tagcatatta	82020
aatacataaa	ccagtagcat	tgtcatttt	catcaagtat	tatgtattga	acataattgt	82080
ctgtgcata	tatgtttcta	tggccggtag	cccagtgggt	ttgttttatac	cagcatcatc	82140
acaatatacat	gagtaatgcg	atgcgttact	gtgacgtcag	taggcaacag	gaatttttt	82200
gctctatcta	taatcttacg	ggaccatcat	tgtatgtgt	gactttttt	gactgaaact	82260
tcattattta	gcaaatgact	atattagcaa	ataaaaattga	gctgtatata	atgaagaagt	82320
atgcattata	accaagtgggg	gtttatttgc	gggatgcaag	gcctcgatca	ctattagaaa	82380
atcagtcaac	agectggc	ggtggctcac	gcctgtatc	ccagcacattt	gggaggccga	82440
ggtggggcgtat	ggggggatca	tggggcgtt	agatcaagac	catcctggct	aacacgggt	82500
aaccctgtct	ctactaaaaa	tacaaaaat	tagctggcg	tgggggggg	tgcctgtat	82560
cccagctact	cggggggct	aggcaggaga	atggcatgaa	cccgggggc	agagcttgca	82620
gtgagccaa	attgtgccac	cgcactgtat	cctggggc	agagcgagac	tccgtctcaa	82680
aaaaaaaaaa	aaaaagtcaa	atagtaaaga	taccacctt	cctcaaaattt	tcattcaggt	82740
ttgatgcaat	tgctgtcaaa	atcccagca	gagttttgc	agatagcaag	attattttt	82800
taaaacctat	atggaaaggc	aaaggaattt	aagtagcaaa	aacaatttt	agaaagaagt	82860
acaacatgga	ggaatcagcc	ttcctgattt	caagacttgc	tgtatagct	cagaagtcca	82920
gattttgtat	tattggtcaa	aggatagaca	ttatagatca	gtgaaacaga	attgcagccc	82980

-continued

cacacaaaata tgcacaactg attattgaca aagggtgcaaa gataagtcat tggggaaaa 83040
 aaccttttcg gcacatggtg gcagagaaaat tgaacatccc taggcaaaaac aaaacaaaag 83100
 caaaaaaaaa accaaaaaaac aaaaaaccca tataactata aaacttttag aaaaaaact 83160
 agaagagaat ctttgagatc tagagcttagg caaatagttc tcagatttga cacaaaaac 83220
 atgatccatt aaaaaaaaaat aagttggatt tcatcaaaat taaaaacttt ttaatgttt 83280
 aagaaggatg gtctgtctca aagactcaac atggtacatg gtgggtggcc tttatgtct 83340
 gttgagggtt ttcctgcatt gaagggtgca ctctgggtc acctactgtc ctgcaagaca 83400
 agctgtctta gcctcacac tataaaaagcc acccgacac cgtctcaaac agaactcaaa 83460
 atgttgcgtga gactgggatc tggggctgg attttacttt tacaacaat taaaaacttt 83520
 ttacagttaa gaggatgaat atacaggctt aagactggga gaaaaaattt gcaaaaccata 83580
 tgcctcaacag aacacttagta tctagaacat gtagaaagaa ctctcaagtc ttatgttta 83640
 aaaaacagac aaacatttaa ccaaacaacc caataagaaa atgggcaaaa gacataaaca 83700
 gtttctgctg aagagaacgt ccatatgaca aaaaaacaca tcgaaatttgc ttcagtatca 83760
 ttaaccatga gaaaaatcg aatataatcc agtacacact atcagaacgg ctaaaataaa 83820
 aaatattaat actgataaca cttaatgcag aacggatgga gagaaactga atctggatca 83880
 ctcaactcata cattgcttgtt gggatgtt aatgggttagt ctactttggaa acactgttt 83940
 gtagtttctt aataaagaaa taggctgggc acagtgcactc cttctgttaa tcccgact 84000
 ttggggaggct gaggctggag gatcacttgcg gcccaggagt ttgagaccag cctggcaac 84060
 atagggagat tgcacatctca caaataattt taaaaatata tacaggtgtg gtggatgca 84120
 cctgtggctc cagctactca ggagatttagt gcaggaggat tgcctgagcc tggggaggct 84180
 aggttgcagt gagccgtaat tgcgtccactg tgctccagcc tgggctacag agttagactt 84240
 ggtctcaaaa caaaaacaaa aacaaaaccc taaaaacag tacatgcaac taccatatgg 84300
 ccaacaattt gcactccttgc cattttatcc cagagaaatg aaaacttact gtatatgaga 84360
 gcaactgttt ttccttctat agtctcacatg cttaagaaa aaaacttttgc tcatcttctc 84420
 tactactctt ctcagttttt cgttccggat cacaaaaatc tatggatttc tgccccat 84480
 actgacaagt tctccaattt tatgtggaca acaagttagt gtcctataat caattccctt 84540
 caattctgac actatctacc tgaagtttagt gcagacgcca ttaagggtctc ggtccctcaa 84600
 aactgccccct gacttcagag gccagtcaga agtgggtgggt cctcaggatcccccacagctt 84660
 ctgtccaggt ttgttacaaa tcagaaggatc ccattttcccttcatgt tatgttattt 84720
 gctagagtggtt ctcacagaac tcaggaaac acttacctt agcagttgtg tagtgaagga 84780
 tatgtatagat gatacagatg atgccccaga tgaagggatg cacggggcaaa agtttagagg 84840
 cgttttgcac acaggagcgt ctgtcccttgc gaaatgggg tggggccatcc tcttggcaca 84900
 tggatgtgtt caccaaccaaa gaagttgggg tggggccatcc tcttggcaca 84960
 agtcacgtatg gcgtgatttgc catatgtt gactacagtt cctctccctt ccctgttagga 85020
 tggggaggatgggg ggcggaaatg tctaagtttc tgatcatgac ttggcttttc tgttgattag 85080
 ccacatcttgc aagactatcc gggagccac taagatgtc ctgatttagaa cagaagatgc 85140
 tcttgcacc aaggacatttgc aaggggtttt aggaactctg gaaccagggg cagagaccta 85200
 tataatataat ttcttactat tttataacttgc tggccacaca cacacacaca cacacacaca 85260

-continued

-continued

-continued

gttaacatct	tggtgtggac	ctctctgagg	gcctgtctcc	tgttacttg	ttttgtgtt	89940
gttgttgggg	gaacagagaa	tcactctatt	gcccagactg	gagtgcagtg	gcgtgtatctt	90000
ggctcaacgc	aacctccgccc	tcctgggttc	aagcgattct	catacatcag	cctctcaagt	90060
agctgggatt	acaggcgtgc	gccaccatgc	ttggctaatt	tttgtatttt	tttttagtaga	90120
gacggatttc	accatgttgg	ccaggctgg	ctcgaaatcc	tgacctaag	tgatctaccc	90180
acctcggcct	ctcgaagtgc	tgggattaca	agcatgagcc	accacactgg	tcctgtttgc	90240
attttgcact	cagcagcagt	gagctttcag	agagggtgac	ttgggctcat	ggaatgcttg	90300
ctttctgtta	ggagctgggt	tgggtgacat	tgggtggag	gtggaagata	cccaggggaa	90360
gaacaccgtg	gagttgctcg	tggaaagacaa	aggaaaccag	gtgtatcgat	gtgtgtacaa	90420
acccatgcag	cctggccctc	acgtggtcaa	gatcttctt	gctgggacata	ctattcctaa	90480
gagtccttc	gttgcagg	ttgggaaagg	tgagtgcagg	gctgctggcc	acatgtgctt	90540
ctcataggga	agctgactgc	acagctggc	agggaggcc	ggaaaacagt	cagggccaa	90600
cattgacctt	atgcctatcc	cttttctgccc	agggctactt	cagcaga	tggcttactt	90660
tgtcctcaat	atattaat	taatatcttc	tatgagccac	gcagagac	aatgttttgc	90720
cattatattaa	ctcattttact	tctctccaaa	acacatgtac	aggagagata	ttatcctcat	90780
ggagggaggt	gggactgagg	cagtggagg	actcggtac	ataactgaag	ttagcagcag	90840
caacatgggc	cctgcagect	ccattgttgc	gccttactg	gcccaggcac	ttaccatgac	90900
tgcataat	cattgcacca	gcctgtgt	tgcagggtct	attattatcc	ctagcttgca	90960
ggtgaggatg	ctgaggctta	gatagcgtt	ggtatcagta	ctacaaggca	tcagcaggc	91020
tagaaccaca	gactctgttgc	gccttaccc	taactactct	gctaaactcc	ctctggcgct	91080
gggggtacgc	attttctca	aatgttagac	tctctccctc	tgactttgtt	gcccctttt	91140
ttctgttttgc	ttttgttttgc	ttttgttttgc	caactgtact	acctttctca	acccacactt	91200
gccttccct	gttctgtct	ctgaatctgc	gtctgcagac	gtggcttcc	cttccgaatc	91260
ctacctctgg	gccagcctgg	accctgaagc	tgttggctt	ctagttgaga	ccactggcc	91320
agaggcctct	tgttggtaa	gggctggttg	ggtgggac	ccttgcacgt	tctttgtgt	91380
gcttgtgaat	gttagctgg	cccggtttct	gtgtgat	aggaaactct	gtgcagggt	91440
tattattaca	gcctgtccag	ccggaaaccca	aacccactgt	ctaattgcct	ttaaaacacat	91500
ctagggctt	tttagatgg	gaaggagotg	gtggtgccct	tcagactcta	gccccattta	91560
atgtttat	gaactcagca	attactctt	tgtatgttgc	actgttgcac	atgttataaa	91620
tttccatgag	tgtgtgtgt	tttcttaaga	cacattaaag	ccctccgagg	aagtctgtc	91680
attgtattgt	gactgacttc	tggatgacc	aactttctc	cccttgacaa	agaaaaaaaca	91740
ggcaaaaaaaa	attctaaacat	attcctaagc	aaagctttt	tttacataag	agagcatttt	91800
gaatagctt	cctaattcta	ctattgtttt	ccaaaccc	ctcactcg	gacttcc	91860
ttctttctg	gcctgtacat	cctataactat	ttagcattt	atgataacc	tttttcttt	91920
aatttactaa	cacccctct	cccacctaa	tgattttaca	tatgtaaaaa	aaaaatataat	91980
atataatttgc	aggggcgggg	tgggaaggat	acagggtctc	actctgttctt	ttgggctgga	92040
gtgcagtgtt	accatcatgg	ctcacttgta	gcctcgac	cccaggctca	aatgatcctc	92100
ccacttcagc	ctcttgagta	gctaagactg	tagatgtgcg	ccaccatgcc	tggttacatt	92160
ttttaccctt	tttttttctt	tttcttttcc	ttttttttt	tgttttgc	tgttttgc	92220

-continued

catgtggag tgggtgggtg tcatcttgc tcactgcagg 92280
ttctgttcc ctgggtcaag tgattcttc ctcagccacc tgagtagctg ggactacagg 92340
tgcacaccac cacgcctggc taagtttt tgactttt gcagacacag ggtttacta 92400
tggtggccag gctggctcg aactcctgtat gtcaagtgtat ccacccgtt cggccccc 92460
aaatgctggg tttacaggca taagccacca tgcctgacct aatttttctt tttttgttag 92520
aggtggggtc tcactctgtt gtccagactg gtcttaaacc cttggactca agcaactcc 92580
ccgcctcagc ctcccaaagt gctgggttta cagatgtaaa ttatttatg taaaaagaaa 92640
ctttatatac ctttcacaat ggaaaaccaa agtcacttgc cataaagtgc caccgtaa 92700
ttatgttcat ccataaaacca tctaaaatca tctcttaactc caagggtatg tttatgtactc 92760
tttggaaagc agttgttgc caaatagcca gctaaggcca ttgcaggaag gaggaaccag 92820
aggaggaatt acttccgtc tggagtag agtcccgct tctggagtct gtgacccctt 92880
tgtatagaga ttgtcaaat ttctagtttgc agatggaa aggaaaagcc acttaataac 92940
atgacatttt ccccaactagt ctcccggttca tatttactga aaaggttgc cgtgtggc 93000
agaagattta ttcttagggca taaaggatc ttatatacact ctctagatac catggaaacag 93060
tagttctgtg gacatttcaa gtaaggcata ttggaaagctt tcttcgcctt taacttttag 93120
acttacaact ctaggttttc aagcttagacc cggaaatgaa atcagaatacg tggttactg 93180
ctaattatttgc cttttatagc caccacatt ctgaaggctt tgtaacagac agcacgaaaa 93240
gattggctcg ctcagccaa ggtggggctg aactggcttc ttccaaagct gtgtgggtt 93300
ttttgcctg gttgttcaagg cggaaagacaa caacatttag acacttaaaa atggctgacc 93360
cagggtttgg aaccacagaca ggcattttca agtactgtat ttccaaagaa gacttggaaa 93420
agtccagtc atccaattac tgagccctt agtatggcag tgagggttga ataatgtcca 93480
gcactcggcc ttaactccct ttcacaaatg aaaggttaaa tgctggaaagc aggagcacag 93540
catggatttg ctgtgtctc ctgttttctt tgccaaagtc acttttctcc agtccttctg 93600
tgggtgtact ggacaaagtt atattgttgc tggatgttgc agccctgggtt gctcccttgc 93660
tgggaccctt ggtcttggc aactactgca tactatttgc gcaaaagcaaa tattttcttgc 93720
gggggtggctt ccaggttacc ttgggttca cgactctgac taaagaatga aagattgaat 93780
tgatgtcaaa actgtgtctg cagccgtca tccaaatgca tgccggggca gtggccggagg 93840
cttacaaccc aaaggcgtcc gtatccggaa gaccacatg ttcaaggttgc acaccaaa 93900
tgcaggaagt ggggagctcg gtgttaaccat gaagggttgc agttaagtgtt cttttgttcc 93960
tctatctcg gtgtggttt ggcttaactt gcagccatgg catatggatt tcatccccacg 94020
gccagttgtc ctcataatac ccagaaggct atgtcaagga ttggaggctt tctgggttcc 94080
ttggggaaaga cggcagtgat tgatttagaa tggatgttgc ggtatggggcc agtgggttgc 94140
ttgacagctt tacattacat caagacttgc gggagtagaa aaagcagtga tggtaaggag 94200
ttggggaaat gctgtgttgc gaacaagtttgc ctcattttt attttagaca tctgggttca 94260
gagaggaagg ctcttgccta aggtcataca gctttgttgc tcatctgagc tggaaattca 94320
gcacagtctc caaaggccat gatcccaatc ctacagggttgc cattttatag agtataat 94380
tatgtcaagt acttaattac tatgtatcgtt gctttagaa ggagaataaaa attccctaa 94440
attaagttttt ctttgcgtat aatgtccatt tggggagggttgc cagggttaccc cctgtca 94500

-continued

attttctcttc cctctttgg ggaaggagac agcagatgtg gggatgggtg tcttcacttt 94560
 tttcggttga acagagaagc atttcagcac ttcttagtctc gggtagtca gcctttgggtg 94620
 gtttactcc catgcctgtg gaatcttgag ctccctgtac caggattgtcttac 94680
 gtgtcccaa caggctgggg caggagcatt ctgagctcca gaaagttat atttgacttc 94740
 acagcaccag gcttgggtc aggctgtgcc ctgagggttag ccgagggtct agactgccc 94800
 gacctggagt caagctgttt gggactgtc ttccctccca gattattcca acaggagcca 94860
 aggagggtgt gtgtgtgtgt gtgtgcacgc gcgtgcatgc ctctgctat 94920
 gtgtgcgtac gtgtgtgttt ttcctgacc ttgaatactt gcttgactca acgggttcc 94980
 tggccaaacc tcagggctca acacaaaaca agttccctgcc tgatggctgg gtttggagtt 95040
 tgcagcgtca catctaaaac ctgtcctctt gcagatagcg tctgaggact ttctgcttt 95100
 tgggtccag ctttagatgg aaaagtatac gctggaacac tgaacctaaa actcatacca 95160
 aatacttcta aaggtttact tcttccccag ttttgtggg ggacttaggaa gggtagctat 95220
 gattattggg aaataactgaa atgtgactgg atttatctt atgcaggccc agggagttca 95280
 ggacctcagg gcccctcgta gccaagcaag atttctaaag ccaatttagct gggaaatcct 95340
 ccatttccttc ataccttcaa gcagagatgg ctgtgtttt agcttggaaa taatctccca 95400
 ggcttgggg ggagagggtcc catactctgg ggcagccac ttgggtttta tggatggttt 95460
 atgtttgtt cagtgtggct gctctctgt tcttgcctt ttgatttca ttttggcct 95520
 aggattgtgt tggaaagatt atctccttcc ttcccacaga gggctggag gagctggtga 95580
 agcagaaaaga ctttctggat ggggtctacg cattcgagta ttacccacg accccgggga 95640
 gatacagcat tgccatcaca tgggggggac accacattcc aaagaggtga ggctctgct 95700
 gcagagggtt cttctctgga ggggtctcgcc cccaggccgg actcatgggt agttgttcc 95760
 cgggctgcag gaggaaaga gatctgtttt gttgaaaact tttttttt tttttcgga 95820
 gcagcacaga catttgcctt gttctcaaaa gcagcagaaa gttgtgtgg ttttagctga 95880
 cttgctttaa atcaaattgtt ggtggtagg ggctgggtgg aggccaggga ggcagaagga 95940
 gcagtttagag caaatgggtt gtgtgtctag atgcccgcattt ataaactgag attcttcttt 96000
 tcaatgaact cctttgttca tgaatgccac ggggcagaat ctgctgtggt ttacatthaag 96060
 accgtctacg tgagtgtctgt cagggccaa gggacgcagt ctacagctt gccttgggg 96120
 cattgcactt gcccctctgc gttctgtgtt ttccagctcc cctggagggtg caactttaaa 96180
 ctccgaataa attcagtttag ctttgcggaaa tattttggca ttattttgggtt ccgaataacct 96240
 accacgcctt ttttttaag cttccatgc caagggtaca gcacattcat tcatgtatga 96300
 gataaagccc attcaaccaa gtttctgggt tatagcataa gcaggatata gtgtgtggac 96360
 tctctcaactt tccagggtca tagtctgggg aggccctgcac acaaaggtaa aggccagga 96420
 ggctgggtca aagcagcgtg gcttgcgtc caacccagtg gccacctgag ctcccaagaag 96480
 cagtcacatt acattatatt gttgacataa cagtagctat gggtagagg cctgcaggag 96540
 gaagggtctg gctgcagttt gggatgcggc atgaaaggat caggcaagtg gaaagaatgt 96600
 gcaaaggaac tgcaagttat ggctatagtg acaccttact ttacttctt ttgatgttc 96660
 ttctattccctt ttcctgttag ccccttggaa gttcaagttg gcccgtgaagc gggtatgcag 96720
 aaagtccgtg cttggggccc tgggctccat ggtgggtatg tcgggggtc agcggacttc 96780
 gtggtagaaat ccattggcgc tgaagtgggg tctctgggtt agtggacaca gctgaccagc 96840

-continued

atcttctgga ggactgagga ttacaggcgtccgggtgtgt gtcaggctgg atgttggggc 96900
cttgccctagc ctaataacct ttagcttccct ggccctctgg ccaccctaag ccatctctgc 96960
gtgtgtctgt acatTTgeag ttgcctctga taccaggcatt gatTCattca ggagacctt 97020
agggcagaaa ccttatgtgg gtattgtgc taaaacaatg cttggAACgt agtaaacact 97080
tagcaaataag tgTTgactga cctttatAGt ttagatgaat gaatgaatga atTTTgtga 97140
aatttggatt tggaagataa atatttcott tggagcacag ctgaagtata ttttaaatac 97200
atgtctaatg tataatatgtat cattttatAT caggagtcaG ccagctttt ctataaaagg 97260
ccagatggca aataTTTcc acctgtgggc cttatggct ctgtcacagt tatttgactc 97320
tgccgttgta gcctgaaAGC agctataAGGA atacgtAAAC aaacgtgtgtt gGCCatgttc 97380
cagtaaaACT ttatTTgca aagtaAGcaA tggGCCAGat gtggccttca gactgtcgTT 97440
tagcaacccg ttttaggtaa tagcaataAG caaaAGAGAA aaataAGAAA tcacattaa 97500
ttttcccttc tagagagatg atatgaatcg tcttGTatAT tcttagtctA gagataatAT 97560
taagtctttt agtgtatcct tctagacttt tttctctata tatgcatgca aatattgatt 97620
tggTacagaa aataatTTAG acaagtctttt atatctttat gctgtAAat agggtatGCC 97680
ttcattttcc atagcttcca tggAAttcca ttgtatggct ctatccatttG tcaggctt 97740
cagttatttc cagggttttG ctataAAAC agtgcTgact gtgtatcctt ggtaattGCC 97800
ttcagataAA aaccCAGAAG tggatttggT ggtgcTAAGA gtgggtgttG gttcaaggct 97860
tttgcacat gttGCCacat ctccAAcAGA agggTTTgCT ggttggactt cccctgtt 97920
atgtatgataa aatacatata atgtatTTAA tactatataat atatataat atatataatcc 97980
tcctggcctc aagtgtatca cctgcctcg ccctccAAA gtgcTggatG gacaggTgt 98040
agccaccaca cccagcccAG gcttacattt gaaaaAAAaa aataatataat atatTTCCA 98100
cccttccat ctctactgaa gacttaatGA gcttggTTT ggaAGAAAG gataAAACa 98160
gatttcaatc ttctggccaa cacttggctt ttagggagGC agcggGAatG agctgtcgta 98220
acatagaata ggtgtttcc accatataAC caggGAAGAC cttccacctc caccCCTAG 98280
gTTTgCCat tgaaggcccc tctcaggcAA agattgAGta caacgaccAG aatgtatggat 98340
cgtgtatgt caaaataCTGG cccaggAGC ctggcgaata tgctgttcaC atcatgtgt 98400
acgacgaaga catcaaggAC agccccgtaca tggccttcat ccaccCAGC acggggaggct 98460
acaacccCTGA tctgggtGAAT cagctgtgt gcttctgtct tcttGTccCT ggccccTgg 98520
tcctcaccCC catgcccGAA gttgccttAA gcagcatgtt gagAGatGGC agagAGGAat 98580
cattggatt ttagGAAGGA aacaggcctg catttggTTt tttgtttttt tgTTTgtt 98640
tttggTTGA gacagactct tgcTctgtcg cccaggCTGG ggtacggTgg catgatcaca 98700
gctcaCTGGA acctctgct cctgggttca agtGattCTC gtgccttAGC ctcccaAGtA 98760
gctggAAacta caggcatgtG ccaccacAGC tggctaatct ttgtattgtt tagtagAGat 98820
ggggTTTcAC catgttggcC aggctggctt cgaactcctG gcctcaAGtG atccacCCGc 98880
ctcgccCCTC ccaaaAGTgtG gggattACAG gtgtgAGCt ccacaccAG cccaggGCTA 98940
catttGAATC ctggtagtag cacttagCAC ttttataAGtG ttgggcaAGt aacttACtta 99000
tctgacttC ggtgttCCt tctataAGAC aggaatGATA gtgtctGtG cttagAGAGA 99060
gcttctAGGA tgattcAGGA ggtggcatGC ataaAGACCG ccttggctt atgcctggcC 99120

-continued

catgcaggga gtcctataag ctgttattt cttgcaactc cggggatcat atgtcagtc 99180
tacagccatt ttctatagtt attatttcaa ggtgctccat agataaagga ttttttttc 99240
ctagttccgt gtctcttaag ttggagcaat gttccaaga gtgtcctctc aaacccttag 99300
caggctgata agcatcaagt ctgagccago ctggctgaca gggagttggc cccagaggcc 99360
acgtgtgcta ctgttggccc acacgggcag ctgtccatag gctgatgtca gtctggctg 99420
gtagctacc cgttttgccc aaatgatatt ccttgcctt ctagggcaaa tgggtccgt 99480
ggtaaagatt ctgagtcccc tcaaagtggg aacgtgaaa ctgggcatga cttaggtct 99540
ctgccccagt tgtagaagt tcttttagtc aactcagaat aaggcaggga gcatgggta 99600
gtttagggcat ggtttagaa caggggttc caatatttg cttccctgg gccacactgg 99660
aaggagaaga attgtcttgg gccacacata aaatactaata gatagccat gaacaaaac 99720
aaaaacaaaaa aaaaaattgc aaaaaatttt ataacattt aagaagttt acaaatttgt 99780
gttgggtgc attcaaagcc atcctggcc gcatggggc ttcaggccgt gggttggatt 99840
tgtaga 99900
tttttctccc ttatgaggga gagacatttg ttttaagtt acaacactact 99900
ttagcacttt acttcccccata accaaacctt tatgtggata ctgtaaaacc agacacaggt 99960
cattttgttc ttcccccaacc ccctggttac ctgtcttgcata agttggggca 100020
ttacacagaa agagacttac tatctgcctt tggttcagggt tcgagcatac gggccagggt 100080
tggagaaatc tggatgcatt gtcaacaacc tggccgagtt cactgtggat cctaaggatg 100140
ctggaaaagc tcccttaaag atattgtctc aggttaaattt cagggggcca cctgtgcagg 100200
taattgtcag gtaacaagat ctgaccacgt aatggcaagt tgctgagtc atctgatctt 100260
cagtttctc atctgcaccc tggaaatgt aagaagatta tctttataggg ttatgtgagg 100320
gttcagttagt actaccatgt agagtactgg gctttaaaaa aatcagctt ctgatttata 100380
ttctgtggaa atgaggctg ttttttcag gttattctat aatgtctttt ggtgtggctg 100440
aagctgtga ggcattgggg ggagattgt aaacaaggat taaaaaagta tgtttattta 100500
atctaattgtaa atttggccaa aggactttaa tgcaggaatt gagtggccaa agcttgcattt 100560
ttgggtcact tgctcttaat aactaaaaat aaataaatgc atgtcatatt ttgtcactgg 100620
ttgtcaccgt gtttgaaaaa tatggcacat tggtagttgt ccatgaagtt ttgttgtata 100680
agcaagtggt gacttggctg tcttgggagg ccacagtgc cctgtctgtat agagacagtg 100740
tgagggccac ctctggctc agctctggct ttttgcagg atggggaaagg ccaacgcatt 100800
gacatccaga tgaagaaccc gatggacggc acatatgcat gtcatacac cccgggtgaag 100860
gccatcaagc acaccattgc tgggtctgg ggaggcgtga acatccgcac cagccctac 100920
agggtaggtt gtggggcaga atcctggctg ttttatggaa atgcctggc atacaccagg 100980
tctgggtatc atgcctgaca gccaaggcag acatatggaa ggaaccatc cctgggtggc 101040
cttgaatgtatc ggagggccccc gaaggccaga gtgtccacg ctgctcagaa gaactatttc 101100
taacaatgtt ttttaatagt attttactgg gtccaaagtgg aggagaactt gatgaccc 101160
tccatgtctt ctcttaggtca acatggcaca aggttagccat cctcagaagg tcaaagtgtt 101220
tggggccagggt gtggagagaa gtggtctgaa ggcaaatgaa cttacacact tcacgggtga 101280
ctgtactgag gctggggaaag gtggagaaagg gctttgttca acccagtgat cattgtcccg 101340
tggggaaaggc agtttttcaataacgttca atgcctttt gaacttaggaa gtgtccatc 101400
tgaataggtt atcatctact gagectctga gtctttttt ctttgcataatcc 101460

-continued

atcatccctt tccccaaatc cttactcttt ctcaggttcc ttactagaaa cttcccaatt 101520
gcttttgag ggtgttaacc tgagctggaa gagattgcac aggacatgt gtttcttgta 101580
agctggtgtct aataagctgg tctgttccag gtgatgtcaag tggatggatt aagtgtgatg 101640
ccccgggtgtt aagtgaagat gaggaagacg tggatgttgc cattatttcac aatgcacatg 101700
atacggttccac agtccaaatata gtgcctctg ctgctggcg atacactatc aaagttctct 101760
ttgcatctca ggtacgttgtt ggggcctggg aggagatggg tggagtaggc ctggattctc 101820
tttggccact tggatgtcatg tctcatctac tttttggtgtt tttgttagta ttattatattt 101880
tgagatggag tctcaactttt tcacccaaggc tagagtgcag tggatgtgatc ttggatctact 101940
gcaacccctg cctccagggt tcaagtgtatc ctcccaaccc agcctccaa gtagatgggg 102000
actacaggtt cataccacca cccagctaat ttttttttaa tttgttttaa tttttttattt 102060
ttttttttgtt gatggagtt tggatgttgtt gccaaggctg gaggatgtcaatg gcatgtatctt 102120
ggctcaactgc aacccctgtcc tccgggttcc aagtgttctt cctgcctcag cctcccaagt 102180
agctgggatt acaggccacc acgcctggct aatttttttg tatttttata gaaatggggt 102240
ttcaccatgt tagccaggct ggtctcaaa ttctgcaccc agatgtatgc cctgccttgg 102300
cctcccaaaag tgctgggatt ctaggtgtga gccaccgtgc ctggccactc agctaattgt 102360
tttgcatttt tagtagagac ggttggccag actgctctcg agtcctgac ctcaggccca 102420
cctggccctcc caaagtgttg ggattatagg catgagccac cacatttggc ctcccttttg 102480
gtgttttact gacagggaaag ttgtcttgag aacactgtc aatcgtttc tctctggctc 102540
cttacaacca agaaggaaaa aaaatttacc cagagctaaa ttattaccac ttctctaacaa 102600
aagtgaggca gtgtgttcag tggtaaaag caggggtctg gagagagact agtttgaat 102660
aaattttcat caatattttg gttgaaatgc agtttagttc tagatatgtt ctactttgtat 102720
gccttgaag caatgactgt ggtctccacc cttaaatttt tatagagaga ggtgatttga 102780
agtttcagggt atgcaatagt gaagataggg tgagcaggat cctgaaagag agaattttga 102840
aatccttaggg attaaaatta accttacata aaaatggaaa tcttagtaga atgttctgt 102900
cctaaaggta gtggtcttga catccattta accttctctg cctttatcc aatagtctgc 102960
aacattcttt ttgaagaatt ataatcatcc tggatgtatc cacttctgtc atttccccag 103020
accttagctc tcagctgtcc ctggaggaca ttcccttccc ccagccccc gtattattgt 103080
cgtttttgtt ttattttcttgc ttggcatttt tcattcctgag tactcaacat tcagtattaa 103140
aggctcaaagg tccctcggtt tggttgcac atcagggtac caggcattag agagtgcacct 103200
gttataagaag gccccttccc aatgctggc cttttggct tatcttaccc ttctgtttac 103260
ctgtggtaat agaagtctgc tcaccactcg ctaagtcaga gtgatgtcaa ggttccccc 103320
ttgttgaagg ctccctgagc tctggctgtt gtttcagggg ctttcctact aagactgtgt 103380
ctctgctaca ggaatcccc gccagccctt tcagagtcaa agttgcacct tcccacatg 103440
ccagcaaaatg gaaggcagaa ggcggcaggc tcagcaaagc aggttaagatg gcacgtctag 103500
gttgccttgg gcccctctgc cagccgggtt cactggggct gtttcattca cggccttgg 103560
gaacttcatc tccaccaaca ccaacaccaa gctggcagggt tttctgtgca gctctgtatgc 103620
agcagtggct ggcaggccc gttgctggct gtcataatag acctgggtctg gttgaacctg 103680
tctgacgggt tctcaaaatgc aaactactcc agctggtctg tctctcaact tcacagtata 103740

-continued

-continued

ctgttgtgaa taatgctggg tgtacaaaata tctctttgag tctctgcatt taattcttgt 106140
gattataaac ccgaaatggaa attgctggat catatggaaa tctctttta attttttgag 106200
aaactactat actgttattcc acagtggctg cactacttta cagtcctgcc aacagcatgc 106260
aagggtcctg gtttctccac atccttgcata acatttgtt tttttctgtt ttttttttt 106320
gttgggttgg ttgttgttga tagtgaccat cctgttgagt gtaagatggt gtcttattgt 106380
gtttttgatt tgcattttcc taatgatttag ttagtgcgtat catctttca tggcttatt 106440
ggtcctttgc atattttctt tggagaattt tctacttgcc catttttata tcaacccct 106500
taatttttagt ttgagtttta ggaatttctcc atgtattctg gatatttagtt ctttattcaga 106560
taaatgattt gcaaataatata tctctcaactt cttgggttgc ctttcaacgc cgtaaacagt 106620
tctcgtgtgc aggttataaa cggggcttct tatctccaga cttgcttcc ctgtgtttta 106680
aaataaaaaaa tccaaaacaa aacattcattt attagtaatg ataaaactaa cacttttata 106740
gatagagcat tcttttctca tcaggccactt caatagtaag taggttaatta ttttctgtt 106800
gatggttctg aggggttggg ggagccttac tactgggtgc accacgctga atcttctttg 106860
ttgccaattt ctccatattt ttttaggagaa agcaccagaa agccatacggt gtctgcttac 106920
aatgactggg atcacaaggc catgacgtct tctaaaaaca ttttgcgtact tctgctttat 106980
tctatgtcta tatgcctttt agtgttttgg ctgagccgtt agaaagtagt ttgcagatata 107040
caggacaggg tcagggtttt acctgcattt ttggaaagga ctgcagaacc cagtacccca 107100
gacgtccccctt gctgctgggtt gaggcagaag tggagatgtt gaggcttaggtt ccggttttgt 107160
cccccttggaa gtaatgctgg agtggggcgc tccttacttc agagtcaccc caaggtcaca 107220
ttcatccagt tctctgtatag cagcagggtt gagaactgtt gccatgtca gtactcaattt 107280
agggttttgtt gtccggatgc tccaggatgtt cattcaagga gcccgggtggg cttgggtggc 107340
ggtcgtgtcc accaagtggc aacatccaag ctgcttgcag ccaccccaa ccccaacaacc 107400
aagagaagag aagacccaaag tcttcaggta aatcacaagt gtgaatgtact tgcaagggtgg 107460
caactgggttc ctcttgggtt tttgttgcgtt ggagctgggtt ttattgttca attattttggg 107520
caacttgcaa ttctgcctat tttctatgg caaagaacac attaaatctc tccttagattt 107580
gaatttccctt cccacccca cccccagcac agagcctggc cctataagtgc ctctgtgtgg 107640
attaatggctt gtgagtgacg gaataatgtt catggcgctt ggattcacaa gcccggatgg 107700
cctaagaacg ttgtatctg gttagagggtt gatgttgcaca ccttccttgcattt ctcccttggaa 107760
ctctgttttc tgaagagcag ctaaaagctc aagactgggc taaggaagtgc tgcccttggaa 107820
tgtgggttaag agacccatggg cagccacccaa agccacccccc tgacacgggg gagggagcat 107880
actttgaggg ctgacacccca caggcacacc ttctcatggt agtgggttggg tataacaggc 107940
tggaaatccc cagaaagggtt gctgcttggg catgggtgtt tcctggctgtt gtgtggcgc 108000
ttccccctca gaacacaggc tggccacgtt ggggagccga ggtcctgcctt gatgttggatgg 108060
ggtccctgtat tgctgggtttt gctccctgac acctgcaggc ctgcactcc acctcgcaaa 108120
gtccctgaggtt gacagcttgc aggtgcttgc ctgcctgggg tggatgttggg atgtggatgg 108180
ctgttaggatc ctgtgagttcc cttgaggatgtt caaaagtaga ggcgcgttttgc ctttagaggtt 108240
atggacttgtt tggcttgggg cttgaggacc ctcccagaggc tcaaagactc ggttttatag 108300
aagggaagtg atttccctga ggactttggg cttctttctt cttgggttgg ggtggcttca 108360

-continued

agcagcttaa atttctcacc gcacgttccc ctgcgcagag cagttgaga agctggtggc 108420
aatgtctcca ttacgtgctg tgctgggagc cactaggatt ggggaccact ccatgttagta 108480
ctctggcacc ttagaaatcc cctgtgagct cacagaccct cacagagtaa cagcttctac 108540
cttgaatgt tcttaacgtg gtggctctgg ctgctctgg agggccctaa aaggatggt 108600
gctgagggtg gctctctcag tcccatectc ttctgagctg tctggcagt gtcttgta 108660
tgtatatttt gaagaataag attcaggtt cagaagcatg tagaggagag tgaaactgtc 108720
ttgcagcctg cgaagtcgtg gcgaaatgca ctggccatca ctacccagac atccctact 108780
tcatagccct gttgggaat aaacacagtc cattccttag ttggggcctc aggggacact 108840
ttaaaatgt gtggcattt taggtgtaaa tctccgagat ttttccctc ccccttctta 108900
ggttatttaa ggtacagttc attttctatc tgagttttt ttttggggactt gactggtaac 108960
aagagcatac ttcttttat gggatgggtg ggcttaactg gaagagggtt ttccctctc 109020
tttttagca ctccagagaa gaggccagaaa aactttatgc gggtgaggga ggaggtatcc 109080
ccaagacctc tggtagctt gaggtctgct tagtgagccc ctgaattgtt aggggctgt 109140
ggaaacggg agtcggaa gagttggcac gttgggatg ccacgttgc tgaagtagcg 109200
agtcaagtcc gccttaaaca gtacaaaag gagaccttcc ctgccccctt gctggctccc 109260
agctctgtt aatttgcact gtacacattt taccaggaaa tgggtttcac atgaggcagg 109320
ggccaaattt gttttgtgtc cagtgcttaa aaatgtgga aaattaatcc tcttttctt 109380
gatgcaacca gttttttttt ttttttcttgc ctcccttaccc ctttcccttatacaaaaagga 109440
atgtgacaaa atatacatag gccaaatgtc acaccctttt aacacttgat cagcaacagc 109500
tttcagcagg gcctgcattt cagcaaggct gctggattct tggggggac tcgtctctcc 109560
ctcacacttt cctgttacat tatgcctggc cgattgtgtt gaaggggatc ttgatctact 109620
gagacagcca tgagattttt tggagctcg atttgggggg agggaaacttgc gccaaccatg 109680
gagagaagaa gccggctgtg tgccagectg gaaccggcga gaggagagaa atggcgacaca 109740
catggctatc gcgtgccacc cggccaccccg tgagggtgcc tgccaatctt gcaagcacca 109800
tctgccttca cacttgcattt tttatccatggaa aatggaaatc cagatattgt 109860
gcatggcttct tagcacaggctt ctaggtgaac tcttgcattt ccctgttgca gcctgggggc 109920
ctcaaaactgtt ttccttaggac agaaatgggtt ctgtttgggtt agtggcccca ggcccaactgt 109980
caactggctgg cactgggtat gatgatgggg aggtgggtgt gcagagcagc taggacacag 110040
atttgggggc catgggtatg agggccactt cgcaccctt ccaagggtgtg tgactttgggg 110100
caacttccctt taccaggctg agccacaggctt tccatctctg aaaaatgtt atgacagtag 110160
gaactacccc ttaggactgtt tttgatcttgc aattggggaa atgcataaaa gcacatagca 110220
tggtgcttgg tggtagaaa atgctcatta agttgtttctt gttatttataa gctgttctt 110280
tttgatctttaa ttttctgtt attttgttgc tttgtgtcaaa agctagaaga aatagatcta 110340
agatacttcc tacattgtt ggaatcaagt ctccctgtc cgtgagaaga atgagggttc 110400
ttgagggttgc tttaaatgttca aagttgttgc tttgtgtaccc aaaggtaaac tgagtttctt 110460
ctcttgcatttcc agggcaacat gcagggttgc gtgacttacg gtggcgatcc catccctaaa 110520
agcccttca ctgtgggtgt tgctgcaccg ctggatctga gcaagataaa actcaatggg 110580
ctggaaaaca gtaagtgcctt gaaatggagag cagatgggtt gttgtatgacc ccccaacgtg 110640
gctgctgggtt agatttttttt caaaagggtga aatttgcaga gaagcaattt ctatgttaag 110700

-continued

agactttgca gttgcacaga ctttggttcg aattaaggcc gtgggtgtgaa gtaactgtga 110760
ctgtgtctgc cccttagcca caccgagact cagctttctc atttgtacag tgggggggtgg 110820
tcggcgaaaa gagggttgaga acacccatgg gaatattttg aaaattataat gagctaattgg 110880
ttcagaggct ggcacgtgt cagccccctg gcattgcagt aggaagttt cattaaaaag 110940
agaatttggg ctatgttgct ttgtgtatgag tttctaactg tgccagctat ccttggcaac 111000
tgaatccgca ctaagggttgc gagtcaagca taaatgccaa atccctggca ctcagaagtc 111060
actaccacca cacctctgcc ccatcccaat gttcccttag cttgttaggg attttactag 111120
tataagctca ttgcgtttat ttcaatttt ctgattattt tttagtaggg aaaatttcaa 111180
acagaaaaagg aaagagaata gtataacatg aacactgtat tacttacac tcagttcag 111240
atgtgcaaca catgctcata aaatgatttt ttatatacaag taaaaatata tccattttc 111300
atctaaaaaa cattacagtt aaggataat tccactttaa ccctcacctc tccttctccc 111360
tagggtaaac caaagtttc aattcagttt ctgttcttcc agatcttctc tctgtatcta 111420
tacatataga tgcgtgttg gaacacattt ggctgtatatt atttgcatt aaagttgccc 111480
tgctgtataa acctacttct tggcctgc ttccaaacagt gcatctcgaa aatcattcac 111540
tcctacatct ttccgtctg tgtttactgc tgagtggctc cagactggat gtacctcagg 111600
gctcacatc acctggtttc aggcttactg aggcaaggct gagtgcatac cccaggacg 111660
gggctcctg tattcacctg tgagggttcc tccagagtac cactagcagt gccatttagt 111720
agcatcttcc ttcaactcgta acccaagtgc acaagttgc agcaaggcca gtcggcaggat 111780
gcagagatcc aaagtggagact ctcactgttg gctttgtgg ctggagcagc cagctctgag 111840
tgtgtaaacg tccactgecc aaccctgtca tgcgtccct tgcactctt ttccccaaaga 111900
caactgagac tttgactcca gaacaggaaa agcagggtgc caatttagaa agccttttt 111960
ccgggtggaa gtagcgatcc gggaccttcc tgcgtgttgc tcggcagtgt ccatttgc 112020
aggccctatg ttccattcaga gtcaagggttc tctgggttgtt ggcaggggcc ctgtgttccc 112080
agtgcgtttt tttgggtaa agtccatttcc ctgttcttgc ctaatctaa acttgggtt 112140
cctgcagccc tgctttgcag agaccttttgc gaaaccatca cggtacagtc agtctcagc 112200
acttgcttca atcggctcgat atttggcagc tctgtgactt ctgctttctt gagggggagg 112260
gggtgcctata agatggagtt ggctggcaag aatttagtaaa taaaacatttgc actttaggagg 112320
gtgtttggat atcaagttaa cacaaaaatgg aagtaaataa gagacgcacag tgcgtatgtt 112380
caactttctg gtcagcaag attgtgggtt caggttaatt tcactttggat tcccaatgtt 112440
gcaggctgct gcatatgtca ccctggacaa gttacttaac ctctctgagc atcagttcc 112500
ccatctgtga aagccattgg ttaataataa atacccatataa ggattgtggat gaaaatataag 112560
acaataaccc atttgtgtttt ggcataataaa atgcatttgc taaatgtatgc ccgttattgc 112620
tgtcatcact aattgattat tgcgtgttgc cttgttgcata ctgaggctga gatgtgtatg 112680
atacttactc agctttgtgt cttgttgcata gcagcagctg ttgttttgc tggaggctga 112740
gataagtccc cgtgtccaaa gaaccattgc ttctgtgtc tggattgttc ctgtgtgtga 112800
aaagggttagt ctttcacact cagttgtgt ttcttttccaa ggggtggaaat ttggaaagga 112860
tcaggagttc accgttgata ccaggggggc aggaggccag gggaaagctgg acgtgacaat 112920
cctcagcccc tctcgaaagg tcgtgttgcata cttgtgtatgc cctgtgtacag gccggggagaa 112980

-continued

cagcacggcc aagttcatcc ctggggagga ggggctgtat gctgttagacg tgacctacga 113040
tggacacccct gtgcggggga gcccctacac agtggaggcc tcgctgcac cagatcccag 113100
caaggtcagc cttgtttt gtcccagaac ttgtctcatt gctgtcaaac atgacaccat 113160
agtcttctc tggttctcc tggcaaagac cttctgaaaa tcgtttgtg atgaaagtt 113220
gcacaattca ctgtgaaagg tcccctgggt aggtgggtca caaccctgtc cctctctt 113280
ctctctact acaagactt ggtgaggggc tcccctgtcc agagtcttct ttcttcgtt 113340
gttagcataa tcacagtcct cactacaag ccagcctgta agggtaggt gagttagcaa 113400
acgtggaggc ctctgcccag cacccagctc acagacggag ctcacccctcc agaagctaga 113460
atcatgtaat ataaaaatac attattctgg ccaggcgcgg tggctcatgc ctgtaaatccc 113520
agcactttgg gaggccgagg cggcggatc atgaggtcag gagatcaaga ccaccccttgc 113580
taccacgggt aaacccctgc tccactaaaa atacaaaaaa ttagctggc atggtggcgg 113640
gcacctgttag tcccagctac tcggggaggct gaggcaggag aatggtgtga acctgggagg 113700
cggagcttgc agtgagctga gatcacaacc ctgcactcca gcctggcga cagagaaga 113760
ctccgtctca aaaaaaaaaa aaaaaaaacc aaaaaaaaaa acattattct tggctggcgc 113820
cagcggctca cgcctgtaat cactgcactt tgggaggcca aggtggatgg ataaacttgag 113880
gtcaggagtt tgagaccaac ctggccaaca tggtaaacc ccatctctac taaaaataca 113940
aagattagct ggggtgtggc acgcacgtt gtaatcccag ctactcgga ggctggatgt 114000
ggataatcgc ttgaacctgg gaggcagagg ttgcagttagt ctgagattgtt gccactgcac 114060
tccagcctgg gcaacagagt gagattccgtt cccctccaaa aaaaaaaaaa aaagttcatc 114120
gtcattttttt catagtaacc ctgactcaag gggttttggg agatttccag tggctcaat 114180
ggtgtgaatc ctatgaaggt gtcttatttg ttgaatttgc ggtgaaagcc tccttctca 114240
ctttttttt gaaacagttt agttttattt ttatgcagaa tttgttgcgaa aaattgcaac 114300
agcccaagcc acagcttagct ccacaagagc cttccatga gcctcaacc tggatctcg 114360
tgtatctttt ttggaatggc cattaggttt ccaagtccag gcctgtgatt tagaagggtc 114420
agggtgggta ggagagagga gagtcttggc ggggctgtcc catgggggtc acacccctct 114480
cctgtgggtt ttgcgtggc attgagttctt gaggcatttg ctgcatttgc tggatgtact 114540
ttaactcggt tgcacgtgtc acacataaa ccccaagaga agggctgcct ggctcgatgt 114600
caactccatg ctgattatat gcatgggtgt tgaaagcagt gctggctgag cagcgatccc 114660
agtgcagttt gactttattt tttgctcaaa taggtgaagg cccacgggtcc cggcctcgaa 114720
ggtgtctcg tggcaagcc tgccgagttc accatcgata cccaaaggagc tggtaactgg 114780
ggtctgggtt taacgggtggc aggtccgtgc gaggccaaa tcgagtgctc cgacaatgg 114840
gatgggaccc gctccgtctc ttacccccc aaaaaaccgg gggagttactt cgtcaacatc 114900
ctctttgaag aagtccacat acctgggtctt cccttcaag ctgacatttg aatggccctt 114960
gaccctctta aagtctggc atcggggcca ggtctcgagc acgggaaggt gggtaagct 115020
ggcctccctta gcgtcgactg ctgggaagcc ggaccggggg ccctgggctt ggaagctgtc 115080
tcggactcgg gaacaaaagc cgaagtcaatg attcagaaca acaaagatgg cacctacgc 115140
gtgacactacg tgccctgtac ggccggcatg tacacgttgc ccatgaatg tggtggcga 115200
ctcgtgccac acttccccgc cccgggtcaag gtggagcccg ccgtggacac cagcaggatc 115260
aaagtctttt gaccaggaat agaaggaaa ggtgggtttc atttaaaaaa aaaaaaaaaa 115320

-continued

aaaaaaagac aagctggac ttaaggcata cctgaaactt ggagctgcaa actcagccac 115380
ctgcaggagc caggtgacat ataaggcggt gtcacactgt tccctctgcc tcggggagta 115440
gttggggggc cctggtaag gttaagecaca ttgcattct ggggaccgtg ctactcaacc 115500
cctgtttcttcttcttccat ggggaaacagg accttagcatt gtcagcgaaat tctctatgtt 115560
tttggcaaaag gcagaaatct tgattttctt ctggaaactc aacatacaac atgttggcat 115620
ttaattggaa aaaagtttaa aatgtatgt tgcataacac ctgcataccca cacagoaggt 115680
tagtcttcaa cctttaaccc gtcctcgagc cgggtgtgag cagtcgtgtt gtcacttagc 115740
cgtggctact ctgaaaggc ctctttggg atggaggggg ttaatattct tgatttggaga 115800
gttagaaaaa ccagtttcc agttactgaa attggacttc atgtgtctg aagtgcac 115860
aaccttggttt ctgggggttgc ctgggtactg gtggcagtgt tagctatgt 115920
cttgctctgc agatgtgttc cgggaagcta ccaccgactt tacagttgac tctcgccgc 115980
tgacccaggt tgggggtgac cacatcaagg cccacattgc caacccctca ggggcttcca 116040
ccgagtgctt tgcacagac aatgcggatg ggacctacca ggtggaaatac acacccttg 116100
agaaaggtga gcccctgt cctcggactg gaccctcggtt cagagctgcc cttggcatt 116160
gcctcctggg ggctggactt gatgcctgcc ccatgtgcta ggcctgtctc agcaggcc 116220
cgtgcagagt gacagagtgg aagtcaatcggtt cggctgcgtt cacctgcac 116280
ggcttgcggg ccttgcgtaa taggtggctt gggtttagcc tcagtctcac ctcagcaagt 116340
tatggggtaa tgcacatgtt ttgcattt gtcatttgcgtt tgaatttctt 116400
tcttcctttagt tatttaggaat tataaaaaat ttcaataat agaaaaccat aaagaaaaaa 116460
aagtgcctatg tataatctca ctacctggatg atcggaaagcc tgcgatattc tgatatagat 116520
attttcagtc ttcttgcgtt tgcctgtttc ttctgttca cgggttgcgc tttttttttt 116580
ggttaatggc tggatgggtt tttcccaat gagagtatgtc tggtaggtt gactgacttg 116640
aatatttgcg tgggtgggtt ggagtggtt atgtgactgc agatagacgg tttgtattat 116700
ttaaaagtca gatcataacctt acattactgtt gggattgttt tgggtttttt tggaaacagga 116760
tgcactctg ttgcggcaggc tggagtgcaat tgggtgtatc acggctactt gcaggctcaa 116820
cctccctgggc tcaaatgatc ctccctgcctc agccccctga gtagctggaa ctgcagggtt 116880
gcaccaccac actcagctaa ttttgcattt ttttgcgtt gatgggtctc gccatgttgc 116940
ccaggctgggtt cttgaactcc tggactcaatg tgcgttgcctt acctcgccctt cccaaagtgc 117000
tgggattata ggtgtaaagcc actggccccc gccacattac tgcgttttta accccctttt 117060
ccaaataaca tagtatagca tgcagacttc gatgcgtt gaaactctga agtagagaat 117120
cattttcac aaatagggga tttgtatgca aatatgcgtt tgcgttttgcgtt tttttttttt 117180
ggctccatg tagtggaggtt gacatgttgcgtt tcccaaaacag tcccttcac 117240
gtggctgtca ctgaaggctg ccagccatctt aggggtgcaag cccaaaggacc tggattgaaa 117300
gaggccttta ccaacaagcc caatgtcttc accgtggtta ccaggttaggc aaggccctac 117360
atttgggttgc ttcgttgcgtt ttttttttttgcgtt tgcgttttgcgtt tttttttttt 117420
acttttgcgtt ttcgttgcgtt ttttttttttgcgtt tgcgttttgcgtt tttttttttt 117480
ttacatagaa agatgaattt ttatgttgcgtt aacatgttgcgtt tgcgttttgcgtt tttttttttt 117540
aactatgttgcgtt ttcgttgcgtt ttttttttttgcgtt tgcgttttgcgtt tttttttttt 117600

-continued

gccaacccctt taagtat tattaaagtt ggttgcagg catatgcctg cgttgtactt 117660
gcagtcctag ccagtgcatt tagataagaa aaataggctg ggtgtggcgg ctcacacctg 117720
taatctcagg acttcagggtg gcccggacgg gacaattgc tgagggcagg agtttgagac 117780
cagcctggcc aacatggcaa aaccccatcc ctacaagaaa tataaaaatt agctgggctt 117840
ggtagtacac gcctgtatac ccagctacta cttggggaggc tgaggcatgt gaattgctt 117900
aaccctaagag acatagggtt cagtggcccg agaccgcgc actgcactcc agcctggca 117960
atggagtgag actctgtctc aggaaaaaga aaaataaatg aagcataagc attgaaaatg 118020
aggggtcaga gtgtctttac ttacattata ctaatgtgaa attccctatg tgagaggtgt 118080
agtaattttag gttgggtggc tacgtggaaat agtttataaa gggaaatttgc atgaattttg 118140
gcaataagca gaccagcata aataaatggt gcacattca ctttctttc cactcttcc 118200
agaggcgcag gaatttgggg gcttggcata actgttgagg gaccatcaga gtcgaagata 118260
aatttgcagag acaacaagga tggcagctgc agtgctgagt acattccctt cgcaccgggg 118320
gattacgatg ttaatatcac atatggagga gcccacatcc cccgtgagct attccctcaga 118380
gaggacccca gagaataatt gatttgcag gaaaatgggt ttgattttgg ttatctct 118440
gagtggggaa aacaatctga tatttgcata agctgcaaaa ggagagttt tcttagggct 118500
acatctccaa gattatctca actcccgatg gaaccggtaa catggcaaaa agcatcggt 118560
tagaatttttgcactt gttgtgcgtg tggtggagga cctagttctt gattcagggg 118620
aaagctgggtt cttaaaaaatgc cttttttttt ttactgttgcata atactatgggg 118680
tggggaggccca aggcatgcag attgtttcgtg gtcaggagtt tgagaccagc ccaggcaaca 118740
tggggaaatcc ccatcttac aagaaataca aaacttagct ggtgtgtatg gtgcgtgcct 118800
gtaatccatg ctatgtgggg tggggctgt gatggacgat gttctgatgat gggagcctgg 118860
gagggttgcactt gatggacgat tggccactg cgctccagct tgggtgacag aggaagaccc 118920
tgtctcaaaa aaaaaaaaaa agaaaaagaa agaaaatttc taccttattt tggcttggc 118980
tccttattca tggctttttt ttactgttgcata atactatgggg 119040
tatgcagatt caaattctt ctttgttattt tagtgcgttgc atgtgcatac actgtgaaac 119100
acggtttctc aactccggca ctatgcactt ttggggctgtg tgatttttgc tgggtgggg 119160
ctgtccgtt cattgttagac tttgtcgc atccctgtcc tggcttgcgttgc atgtgcctt 119220
agcagacttc tccttccca ttcttatttgc tggcaaccaa aatgtctcc atatcttgc 119280
agatgtctta agggacaaaaa tcacttcaggc ctgaaccact gctgtaaaga ttcaacaaat 119340
aaataaatat atgacttaag tagtgcataa cccctccca tttgtttttgg ggggaggact 119400
ctccataggt tctatgttattt tactcaatgc atttgttgcctt ccacacatattt tatttattt 119460
tttcaatagc tttggggatc aagtgcgttgc tggcttgcgttgc atgtgtgtatg 119520
attctgagac caccctccca gccccatcc ttcaaaaggcggc aggcaagtgt gttgtgtgg 119580
cagaagacccg agggctgggg ctgttctggg ccacttgc tggcttgcgttgc 119640
aagggccaa agccccaccc caggacccca ggaggcagaaa gggcctcaggc ggggtttgt 119700
tcttcttctt ctgggtcactg ctgagagggg aagggcagggt tgagggccctt actgtgggt 119760
tctgggtttaa ctctcaggca gctggatgtt ccactgcata caccgttcc tggcttgc 119820
cctgcttccc ctttaccaca tggaaatgtg cacacacactt cacactcactt ctctctcaca 119880
ctgtcataatgaa agtatttgcata ttcaactcg actgttgcata ctcagatactt catttaagcc 119940

-continued

tcaagtcat taaaacaaca tgtttctcct caaacttgcg cttgcggctc attcaatata 120000
gatttaaaaa attcctataa tcactagtct aggggactc agctgtggc aagacaaagt 120060
tcctgcctc agggagctta ctgtctaggg cttttacaac taaaacttgt gatgactgct 120120
atgaagaatg agaatggggc tcgggtgacag aattcagagc tacgggctt gtttggagtt 120180
ttgtaacact tgcgtagga gagagttggg cacaggaac gggtagaagg ctgctccag 120240
gagggggtgat gtggctccga cctggcaggc aacagtggag atgaacatct cctgtggcaa 120300
tgaaaacttt tgactatggg gaaaggctgg tgagtgcac cagcttccga atccccctta 120360
cagaaagggg tcagagtttgc tccctgtgg cggacctgtg agcttaaagc aaatggtcgt 120420
ctttgagcat aacaacagaa agacactcat ttgtggttt cccatcaggt gtggatggc 120480
ccttttatg ttccaggttc tctgttgcct cccagagac caaatgcggg cttttccaga 120540
accccagaac ttcccaggc agagatattt agtgaagtgt tggttggttt tctaagcata 120600
aggcttctta gctaaggcata cctatggggg tactgcggg aaacagtccg ctacctgcca 120660
ccttctaatt tgcttcatg gtaattctgg gtgcttaat attagcctag ttttctctgg 120720
cctggtaaaa aacccggagt ggagttattt ttaacaacgt gtcctgtctt acccgtaatg 120780
gcatgttcat ttcctgtggt agggcagctg tggttgggtg gtggcggctc cctagaccac 120840
tggattgact ggggttcaga gtgcattggg aagaagatct ggcattgggg aatggtgaca 120900
tgtgtctggg catgaaacag gggagttggcg gataatgcctt ggggtctgcc atcttgaca 120960
gttatctta cccgggtttt tgggttttgc gctactctca tgctgagctc agacaacttc 121020
tagtggaggc tctgacttaa agattggcctt cagaggtagt cccttgcatt cagctgtga 121080
cattgaaatc ctcaactgtc actctctaa gtaaaageccc ctttgcattc tctcacccca 121140
gtgtggaggc ctgtgttgc ttgccaggc cagccattta tttcaegtag ctaaagacct 121200
ggatgccgtt gaaacccaggc tggtgttaga aagccaggga ctcaattctt tggtgtctt 121260
ggctgtctac catctctaat tctacaaagt ataaattctc tggtgtgcaaa agcagagatc 121320
cctcagctt cacggcagtc attaactttt ccagatacca tggggagcac caggactccc 121380
atgcgaggca gaggtgcacg tagcccttg gtgtatggcg tggtagctg aggcatgctg 121440
ccgttcgtg gatggggagg tccccctcca cagtgaggc catgagtgcc cttggcttag 121500
ccctgtttc tctgtttac acttctctag caaatcacta tctccctcctc tcgactccctc 121560
tgtgtttcat cttaaaaact gacaccctca aggagtcaaa ggccctcagg gtccccggg 121620
gggtcagcca tggtagcagga gtcagctta cactcaggaa gacggcaagg cttcaccagg 121680
tggccgagtg accgagaagg ctgagttgtgg tcagaaggtagt ccagctgcatt tggaggaggaa 121740
ggagtctggg ggacacacag gagccatgtg tggggggacag ggctggatgt gggctgcagg 121800
gcctgccccat ctctctccgt tctgttgcctt caccacttgg cttccctcctt cagttgtctcc 121860
agcagcctgt ctccctccctc gcctctaggc tcctgcattgt gctgaggctt ctctacttgc 121920
agcacctctc tggtagtgcctt ctctgtgcc gcaactgaga tggtagtggaa aagcttctc 121980
tggtagtcccg cagaccaggtaattgcctc ctgagtgctc cacccctccac accccaaata 122040
tggtatgttag gatgttagag tgacttgctt gcctcatctt tctccctgcag ttgtgggttc 122100
ctgggggggtg ttaaccgcctc aggtccaggc acgtggcaca acatctgcac gtagtaggtg 122160
ttctgtgaga atgggtgaca acaatgagta ggcacatgag cagtgacac acgtgaggcag 122220

-continued

ggggagctga ccgaggcctg catggccgag gtcccgaaaa agcagcagtg ctattctggg 122280
tgtgcacaag gtggctccaa attcccagct tgtgctcaga atcccacaac ctctcttcca 122340
ggcagccccct tcaggggttcc tgtgaaggat gttgtggacc ccagcaaggt caagattgcc 122400
ggccccgggc tgggctcagg cgtcccgagcc cgtgtcttcg agtccttcac ggtggacagc 122460
agcaaggctg gcctggctcc gctggaaagtg agggttctgg gcccacgagg taagtgtgca 122520
ccctgccttc ctgcagacat tcatctgccc caggcagggg cagctgtAAC ccagagcaga 122580
tgcttgctt ttgagttgc tcatgagctt aaaattaaat taaaaaaaaat tattgtttca 122640
tttctatgtta aacagtagaa attcctgctt acaagtaagc aggcttgc tttctccagt 122700
gatctgtccc cccatTTAAAT aatatggcta tcaattttttt agaggaaagca gcagtatttg 122760
ggctgtcata tgtaatatgg tggcactgt ttcattatgt gtttcagcat ttgtgagggg 122820
gtggggttgct ctggatgtgg cagatgggtgg ggTTTggagg tgataactca ttgagatatac 122880
ttgggttcca tgggttacat accagaacctt ctgggaatgc caggcacatg atgcacgtga 122940
tacgtggctt tgcatttgc tttagttcccc agagagagag tgggtcttgg ggaatgggct 123000
ttgtggcaa ttggcctgc ctgtggca gcttggact tgggtttggg aaggctagcg 123060
ggccatatacg ggacaaagcc ctgaagtgc tggaaacttgc ctttttttgc taagtgcacca 123120
tgtttctcc tccagcactt aaaatgtgcc ttctccac atagaggaca gtgtgcctaa 123180
tttcttacgt aatctggatt ttctcgccaa atgatatgtt ctggatgtca cagaagtggc 123240
aaatggggtt ttccctctttt gaagaggaac ttctccttc atgggggtca gcaggagggtt 123300
ttatcttttgc aagtcaggg cagaaatgggt tggggggaaa tttaggtcatg ggtctgggat 123360
cagattctgt gaagttactg agtttcagga cttgcattgtg tttgtgtgca tggatgtgtc 123420
cctgtgtatg tggatgtgag agagggagaa aaagaagaaa gagaagctttt acttggatata 123480
ctgcctctat tatgaaggac tctcaagtaa cagccttttgc attttagctg acgacacgg 123540
ttcccaagtca tggcgcagcc ctttgcggc ctttcagag ttcttttgc ttgttgcaccc 123600
gggtgacttt aataagacag gtttgcattt tcccatggct gctgaattttt gtaaccacaa 123660
tgcttcttgc tggcctcaact tctaaaattt cttacacccgc cttcatctgc tttgtttttt 123720
gagcatgcca tcctttgatt aacccatccgc ggagttgacc cttccatgc tggatgttgc 123780
gaagctggga tctggactct gcaacccaaac gctgtgccttgc attatgtttt agcataatct 123840
ctaacatctc cacaggcttc accttggggg tcccttgc ccatgagatt ggcacccctca 123900
cctgccttc acctatgcggc cagcatgtgtc gtaccacagt gttctttgc caaagggtggc 123960
cacaagtctt gactagccag cccattgggtt aatttttgc cttcacaattt ctggacttctt 124020
tggcagtgtc tcagctgttag agtaaaattt ccacatccctt gctgtgcctt accagcttgc 124080
aaggttatata tgggttcca acacacatca tccacataca ccctccagca gcaagacacag 124140
gcagtcttgc taattataact tggggcaga ctggatgtat ttttttttttgc aaaaagctaa 124200
agggtgtctt cgggggttcaattt tctgcacca tggatgtggg atcctgtgtat ttttttgcagg 124260
cctgtgattt tgggttgcggc ctttttttttgc actcatcaactt gggaaaccaat agctcttggg 124320
gatggatgtg gtcttatttc agactcagcc aagggtggag taaagggtggag gccaggcagc 124380
tccttaaacc tctcatcttgc tggcgttgc cttggatgtggc cttggatgttgc ggtggacaaat 124440
ggagatggca cacacacagt aacccatccgc ccatctcagg agggaccccttca tgggttcca 124500
gtttaaatatg ctgtatgttca gattcctcgcc aggttgc tggatgttgc catccatctgc cccatccattt 124560

-continued

-continued

ataaagagtgg ctgaaataaa tgagattatt ctctcttgg aaggaacccc aggctaagcc 126900
acctgggtgc cctgcagtc accaaggaaag tcagctccat ctctctgctc ctctacctag 126960
catgtggctt ctgtccttaa ggtctctcc tggaccataa ggctgccagt gctctggcca 127020
tcacatccac atggcaggcc agaaggagga agaaagaagg gaaaaagggg tcctccagc 127080
tcagtggct ctcttaagca gcccgtccaa aagtccatca tagacttcca ttcccttctg 127140
atttgggggg ggttggtcac aattcacatt acctagtggc aaggatgcta ggaagtggat 127200
tcccatcttc tgggagcgggt gcacctagct aagagttatg gtcctgttaa taaagagaaa 127260
agggagactg gatgtggtgg tgtgtgagca gaagcctctg ctcctcccc tccctacatt 127320
tcagaggatt tcgagctaaa acactcttg ttcacctgac aacaaaattt ctaaaaaattt 127380
gccatgtctg tcatgggttt aaagggatct gtgaccctct actctcccta ccaaaaaaca 127440
aaacaaaaact agattgtatt aagccatcaa ttctgtctgt ttccactaga ggcactaattt 127500
gaaaaatatg tcagggtttt ccatgaatgt tttctacatc ttgacaacat cctaaatagc 127560
atttctctat gatccacagg accaagaagg aaaacccaaa agagccattt tccatgacaa 127620
taaagatggc acgtatgtt tcacctacat cccgacaag actggggct atatgattgg 127680
agtcacctac ggggggtgacg acatcccact ttctccttat cgcatccgag ccacacagac 127740
gggtgatgcc agcaagtgcc tggccacggg tgtagtacagg gcatctcaag gtcaggggca 127800
caggcttgc aatcagaaag cggggccgta gcccctctt gtgacttaca agctacatga 127860
tctgggcacg ttgtcaacc tcaactgaact tcagtttgac atagattgaa gctctttgtt 127920
tttatttttga gaacattttag atccaagaag ctcttctaag gaacagagac tgttttacag 127980
ggttactgca aagatttagat gaggtcaggc atgaaaaatg cttacacag tgcttaggtac 128040
atgataacta ttattatatg cttttgaaat gttgagaacc caactctgtat ggccggctcc 128100
atgaaaagca gcacatttct gccttttatg agtagatagt tactcaggat tcatcaaga 128160
gcatttcagg tcagcattag agaaacacat ttaaggatct aggtttttt catcatgcat 128220
atgtaaacct ctcaggaatt ctccatgaat attttagcat cacagtttct ttggtttctt 128280
tctttttttt tcccttcctt tttccttcag tttctaaagac acaactattt actgtacacag 128340
gccattcttt tttttttttt tttttttttt gagatggagt cttgctctgt tgcccaggct 128400
ggagtgcagt gacgcaatct cagctcaactt cagcctcagc ctccctgagta gctggggacca 128460
caggtgcccc cgaccatgcc cggctaaattt ttgtatttt agtggattca gggtttacc 128520
ataattggcc aggctggtot cgaactcttg gctcaagtg atctgccttc ctcaacttcc 128580
caaaggctgtg ggattacagg tgtgagcacc acgcctggcc ggccttcag ttttaagaa 128640
cagcccttgg gcagctcagt gctgctgtc aaggagattt taaaacacgaa atccccatct 128700
ctaaaatgag acagatttac ttctttttaa ataagaagac taaacacagg accacccctt 128760
atgtgttctg tttctcttctt agcccatctt tttttgaatg gagaaaatct gggctttcac 128820
ggcaagggtt gtaattgttc agcgtggccc tttttggctc acccatggca aaaaatggaa 128880
aaatttttggaa atgcaggccaa atccaccacc tccttaggtct atgcagctgc cagcgcacac 128940
cagatcatct ttactaattt atggcatgtt aacgttggat gggacttcc cccttcctt 129000
gcaggcccta ttccctcccc cagcttggcc agaagcctga gctgaatact tgcctttgg 129060
ccacacctct gggctgtca ttcaagggtct tccacagatt gactccagtc ttctcttcca 129120
ctccctccctg aacaaaactgt ttttggccacc ctccctatata ctcctacgca cttggctcat 129180

-continued

atctaccaat gtgttttag ttcatgttt tctgcatttc ctgatatgtg gatcctgtgt 129240
aaaggggcgc cagaatcaa gagagagact ggtcaactggg gagaggtgc aagtctccct 129300
tagctaacag caccatctt tcagggttca gccatgttcc ctttctttag gaageccctt 129360
gtcagtgcgg caaccctggg atataaattc ttagaaccctt tgcttagata tgctgcaga 129420
caacttctcg aggaacagtt tgttatttt totgtaaccc agttcccttcc cagcatttcc 129480
actgcagttg gaaatgtcg tcttgggcgg tggccctgtt aacatcttgc gagcaggac 129540
tgtgtcttgc ccaccccttgc gtgtacccgg cacttaagaa aatgcccata atgtttgcta 129600
ttgaaagtca accttcatttgc ccataccctt aaatgtcgca aaaccggcggc taacccctttag 129660
tcaacactca gagtttacag atgctccctt ttttagtaagt aatttgatgac gtaaccctt 129720
gagcaacacc ttagtggggg atctttgggg tattccctcg aatggcagca gttggaggcc 129780
taacatttac aggacacagac aacatggatg ggtatgattt gttcttgggc ctccaggatg 129840
tgtgtccata ctccatttgc ctccctcg aacttcttcc aggtccttgc atcgccttca 129900
ctgtgaaaac tggcgaagaa gtaggccttg tgggtgatgc caagactgcc gggaaaggta 129960
aagtgacctg cactggctcg accccagatg gcaactggc cgagggccat gtcattgaga 130020
atgaagatgg aacctatgac atcttctaca cagctgcca gcccggcaca tatgtatct 130080
atgtgcgtt cgggggtt gatattccta acagccctt cactgtcatg gtaaggaaaa 130140
ttccttctcc cgagcatgct gttattgggt gaaactgtaa cagctgcgtt ttgttgaacc 130200
ctgacttagga tattcccttc acctttttt tcccttggaa aaaaatttgc taagcagtca 130260
tgacccctgta gactccca gtaatctcta gaaactcaga gacccttgg ctgtaaagggt 130320
tttttagggaa tcttactggc caccaagggtg tctatcataa taaggactt gggcaatatac 130380
ctggcctaag cccaggcatt ttgaaagata actcctcaga aaaacacacc tttatgaaaa 130440
tgcatttaca taaaacatga cagggtttt accggccagc tcttccttcc tccatcttca 130500
tggccatttcc ccatggctgg aggagagac ttccctgatgc tgggttgggg ggagacttga 130560
ctctgaaatc ccaggactca aagtaccccttcc acttgggtt tggaaagattt cacactttat 130620
gtatgagggg gaaataccctc gtcttttgc gcttaggaaca tctggataa aaggagggaa 130680
ccattatgca aacacccctggg tttagtgaatg accaaggctt ttcatttca gttgtgagtt 130740
acttataatgtt cttccctctgtt ttattttttt ttatttttttccatccatcatac 130800
tattccatca ccaggaaaag ggttagaaac cttgggggaca ttaccccttccatccatcatac 130860
aaccatggcat cgttggctttt ttacccatcatac aacccatccatcatac 130920
accatgctgtt cttcccttccatcatac ggttggctttt gatactgtgg tcagcagccg cacttgcacca 130980
caagggtttat aggccctttaa tgacccctggcc ttgtgcacag ccgacaaagc acccttcaat 131040
tattccatccatcatac tttccatccatcatac ggttggctttt ccatccatcatac 131100
caggggactttt cttccatccatcatac gtttttttccatccatcatac ccatccatcatac 131160
ctgtttatctt gtaaacacagca tgccagagat ctggaggctc tttttatgtctt caagttatgtta 131220
aatgttaaaca cttgtcaact tttgacatgg ttcattttaag agtgttttcccttccatccatcatac 131280
agaaagaaat acagctggga agttgtatgc cttattcaca gagaaggta ccagttgttag 131340
ttttcagaat ctgttttttag cccatagtggtt gttttatcttccatccatcatac 131400
aggagggaaag agcagccaaag cactgagcag tggtcatggg cctgctgggtg caatgatttgc 131460

-continued

ggggtaagag aagaccatat tgggaaggtc tacgtgagaa agtcagagta aaaaaattga 131520
ggacccttt tgcagaagt gaggcttcca aactcagtaa taagtgtctt ctggccctg 131580
aatacacaca aagcaagaat actttgtt tacccactgc cccctgacca ctgctgaagg 131640
cagaaaggga cgatcaccta cagtacctgg tttgggtctt tattctctca ttccaggag 131700
agaaccttaa ctagatggac tgactgactg ttcatggct ttgggtgggt agattccctg 131760
cttccctcta taagttgac gccaaaaaag gacaccgacc agcactgcag tcatacgaaa 131820
tgtctcaagg agacccacag ggtggttct tcaaatacac tactcacaca cagcacatgg 131880
agtcatggac aaacagctta actgcccatt gccttggaga agtcctggac caaaggccat 131940
agctcagcca ttgaaagatc ttccctctga ctgatatgtc cctgcatacg tccaaacctgt 132000
gcaggcagag gatagggctg ttccaaatgt cgctcacaga gtcgccttg cctttctgca 132060
gatcccaaga tacacacaaa gcagttaaaca tgggtaataa ggccttcctc ttaggagag 132120
ggcttctgat tcttattctt tcttatggcg gaagagggtg ttgagagggg ttcccttgct 132180
gttggttctg ttgaatcagg agcattaaat ctttttggc ttttttgag acagaatctc 132240
actctgtcac ccaggctgga gtacagttgt gcaatctcg ctctctgca cctccacctc 132300
ctgggtttaa gcgattctcc tgcctcagec tcccgagtag ctgggattat aggacactgc 132360
caccacgcg ggctattttt tgtatattta gtagagatgg ggtttcacca tggggccag 132420
gctggtaact cctgacctcc agtgatccac ctgccttggc ctcccaaagt gctgggatta 132480
ccggcatgag ccactgcgcc cagccatgag cattaaagct aagattgtt gaaaatgaat 132540
ttataaaaaa ctttagaaac attaactgt gacatggc gtcacatggct gaaatctcg 132600
cagtttggg ggc当地ggc aggggttgc tggatcccag gagtttaaga ccagctggg 132660
caatacagtg agaccccatc tctaccaaaa aaaaaaaaata ataatttagcc tgggtggcgt 132720
gtgcacgcct ctagtcccaa ctgctcagga ggctgaggtg ggaggatcac ctggcccg 132780
aagggttggg ctgttagtaag ctgagattgc gccactgcac tccagccctgg atgacagac 132840
aaaactctgc ctcaaaaaaa attaataat taaccacagt agacatttca caagaaaaaa 132900
aagaacttt tcctgattct gtgtgcaga gatgcctgt gtttagttt acctacttac 132960
acttcacaca cctcacttcc atgectgggg tcacaccgtc catactgctt tcgcacccctg 133020
cttcctcc tcaatgtgtc ataggtaacc ttacatattg attcatttggc cctgactgccc 133080
atgttccact ggacagactc accagaattt atttgaccaaa atcccttcca gatggacatt 133140
gggttgcattt agtttgcac gaccacagac agcaccagtc aaggtcctta cacacatcaa 133200
ttaactatgg agtctccgc cagcttaggt ctgcgtgcta caagtggtt tgggtggctca 133260
cagggcatgc gcatctgaca gttgaagaga ggacaccaac tgccttccaa aaggggcgt 133320
agaaagtgc cttcgctaga gtgagttgtc cactgcgtt caagatggag cagttgggg 133380
agcagctctg tgggtggtagt ctactgagtg tattccttcca gatgggtcc caactaatct 133440
ccatggccca ctgaccaggc cacagatggg gaagtcacag ccgtggagga ggcaccggta 133500
aatgcgttc cccctggatt cagggcttgg gtacaatttt ggttttcc tttttgtt 133560
tctgtgttta ctcagccctc atttcagaaa atctgcacatc tgcttctggg attgtttaag 133620
ccctgtgggtt gtcctggcata ttgggtgtcc ctcactgtc cagccatca cgatgtcccc 133680
tgcttttct gtaataagat caccttgcg tcaccatccg tgctccacga atcgccagcc 133740
gtcggtgtctg tgatcagct cgggtcgatgt tgctctgtt tttaaagaga aagacagaca 133800

-continued

gctgtctgca gcctcctgc tgccctcaa agccgccact tgcacattca gtttctgttc 133860
agggggaaag ccacccactg ctactctctg ccacttaaaa tgcacctct tttccaggcc 133920
acaagcaact aaacccccc agatggagcc tcttggact catagacatt gctgtctc 133980
actttccac ttcccgtgg gtgctgtgg gaattttaca aacagactcc cgagtgattg 134040
ctaacagttg gtcagcatga cctctccagt ccctcaggtt ctaccctggg tctggagcca 134100
cttagacaaa gcccatacca caatgggcaag ccgcattccc aaatccggc ctcactggct 134160
tgtagaattc ccagcagetc taacccctgt agttcacca gctcccgctg ttgtctgctt 134220
tacccagtga ccactgcctt ctgttttag gtgaccgaag aggccatgtt cccagtgagt 134280
gacatgaacg gcctgggatt taagccctt gacctggtca ttccggttc tgcaggaaa 134340
ggagaaatca ctggtaagca cttggccataa aggccgtctc attctcaatt gctctcacga 134400
gctcccaaga atgggtctgg ggaggtgtt ccactgtccc ccagaccag gtccttaac 134460
ccagggtcac gagttcttgg tctccgggtg tggccgtgg gctccgtaaa ctacagaata 134520
tgccacgtgt gtgtttctct gaagaagtgg ctcactgaca acttgcattt ctttcttgag 134580
cagtcccatg attctctcta ggttaaaaac tgctgtgtt agatactca tgactgtcg 134640
gttcttgtt gccccctttt cctgccttctt cttatggac tttccagat gtgactttga 134700
cactgagtct gtcatacagg agttcccttc tcccccacgc ctctttcaa tggcccaatt 134760
ctcttgggtt tcatgtctta tgcattccacg tggttcatg gtgttctcaa gtccttctg 134820
agcttgattt tgcagttgtt agaaaactct ttaagagtgt tctgctat tttgtgaaag 134880
ccaaatggaa ctggaaaaaaa aaaaaagaaa agagcaatg gtctctccca ttgtggact 134940
tgaatgtttt aggccagcaac gaatgttctt gggctggaa accttttattt tgaatacatc 135000
tgtgccttgg gctctgttcc tctggggaaag gttgctgggt ggcttcattt cccctctct 135060
ctgtgctcca taggagaggt ccacatgcct tctgggaaga cagccacacc tgagattgt 135120
gacaacaagg acggcacggc cactgttaga tatgccccca ctgaggtcg 135180
atgcacatca aatacatggg cagccacatc cctggtaacg tgagtcagca gggccagcag 135240
ggctccacca ttcagggca tccgggcagc ctgcagacac tcctcagccg ctttgcaggg 135300
agcagcttc ggcagcaggc tggagaatgc agcggtggta cccctgtgaa accaaacagt 135360
ctgggaccctt agcaggtcca gctgattctt ggaaggatg atgttagctca gtgtcttgg 135420
tcacagtgc tgcctttggg tctgtgggtt tttatcttgc tcaactacgt gagggtggcc 135480
agaggtcaag ctgggagaaa aatggggaggc atgggtgaggg actttccacg ctggcctgca 135540
gagccctgtg tgggtggag gcttggggcc aggtcagagg tggagaaga ggaccagcag 135600
ccctggaaaga agaggaccag cagccctcta caagggaaac cagcccaagg ttcatgggtc 135660
accaaccaggc acagtgtcac cagttcattt tttcttttgc tagttgtatt tgttttttaa 135720
tttagtattt tgaataggtt acacattctc atgggtcaaa aataaaaatg atacgaagaa 135780
agtttccctt cctacccttc tccttgcact agactatcat aaattttttt atgttcgatt 135840
tcagagtttcc agggttttat ttttattttt tttgtggaga tagggctca ctgtgttgca 135900
cagattggtc tcaaactctt gtcctcaaggc agacccccc ctttgcctc cttaagtgtt 135960
gggataacag gcatgagccg ccacgcctgg ccaatttcag agtattttta agactctcca 136020
tgcaaacggaa aatacagata tataagagag tgcattccca gcctccctc atgtggacga 136080

-continued

accattacat attgaccat ttccctattt gagggcattt tggttcttcc tgccctcgct 136140
gtccccagtg ttgctgcgca aatcgacttt tcccctagtc acctcacact cacaagatg 136200
tatctgtgag attagttac cagaggaggc aatgctaggg ccccagtgcgca ggcatctatg 136260
attttgacag atcttgccaa attgccttc agagggctg ttgcagtca cacgcctct 136320
ggccatggag aagagcacct tctttccac aaaatttgcg agtagaaatg ggtatcaat 136380
ttttggagct ttgcagtct gatgggtggg aagaaacaga atctcagcgt tgctttattt 136440
gtatttctct tggtaatgag accacacaac ttccctatg tctatttgcg tttcttttc 136500
tgtgaactga acatttggat ccacggcctg ttttctattt tggttattgg cctttgtcat 136560
atagtttcta agagcaatgt aaacattggg gagatttgcg ctttgcgtt ggagtggcaa 136620
atgtttctct gagatttggca ttacttttg tttgcgtat gtaatatgg tttaaagcaa 136680
aaatgttata tctgcttcta tttaaatattt ctaaagcggc agatggagag agagaaaaaa 136740
atgtctttct cacaatctgcc atccacttcc actgctgggt tgagttgtg atctttcag 136800
atgtttctct ctgtatctac aaacatacat ataattttat tctattttgt ttttaagga 136860
atagcataat ggtattcata gtttatacgca acttgctttt tttctttta atgcatacata 136920
ttatggataa tttctcaagt cagtaaacat gggcttcact cactttttt aatggcccat 136980
gagtagatca gcatttattt aaccggtccc ctgttgcgaa cacttaggtc tttcttgat 137040
gtgcacccga acactgcaga aatgaaatgt cttacatagg gcttagggatc ggggtggca 137100
gagaagacca ctgtggggtt gattccttac aggttgaatg gcatgggcaa atggccttcc 137160
aaaagccctt tccacttacc ttccctctgg ccatgggtcc tttcaccacc cagtgcaaaa 137220
gtttcttcct tatttgcag gttgggttgg taccttaccc tagccccctt cctcatctgg 137280
agcagcttcc aggattgtt ttcttatgtt gtgattgaag gaataatact gcgttagaccc 137340
tctctgatgt cctaggatgg cggggatgg gaggtgcgt tgcatctct tctgttctt 137400
catgcctctg cttaggaggc gccagacctg tagagggatg gacgtcaaga tgccagttgt 137460
ccagggtctt cgttcacccc ttaatgagca ccaattttgt ttgtgcctt cgtaaaccca 137520
gagagccac tccagttcta cgtgaactac cccaaacagtg gaagtgttcc tgcatcagg 137580
ccaggcctcg tttatggatg ggcacaaactt actgccacct tcaccatcgat cacagaggat 137640
gcaggagaag gtactgtgtg gtttacgtgt ttataacgctt ccagctgtcc atttggaggg 137700
tgaagtggac acgggtccag ggtggctttt aaaagtggaa caatcgaatg gtagtattt 137760
tcttgccttt tctctctgtt aaatctgtttt cttctttaga gccgcttcgtt cttctaccca 137820
gacagacatt ttgaagtcc tttgtgttcc aactgaaatc agattcatgc tatgaaatac 137880
tttatgtgac ttgtctggaa tttaagtgtt ttttgggttt tgatgtttt gttcttgcgtt 137940
cacatgtatc cacaagacca catgacttac tgagtggctc tttttgataa agctgtgtgc 138000
ccattccctgtt ggtattcatg gataatccca aatctgtgtt tctaatggga tttccgtat 138060
ggcagccagt gcctgtatggg cagggacaat ccacctctgc cctccaccac ccacggcttc 138120
ctatgtgtaa ttgtatgtaca cggctcccttc cttttctcat cccatgcgtc ctgagatgt 138180
agagagctcc agggttactt gcagtggaa actcagatgt ttgggttcc ttctcagtg 138240
gtgttttac tgcgtggact gtttacgtt gacatgtc cctttgcctt cagtcacgt 138300
ggagtgcgtc aatccattgtt cccacggatc agggctgcctt tggatgagtt gttaaaagga 138360
aactcttaaa acaaggcaac tctctccctt acacccctgc atccctgttc ccacttgcgt 138420

-continued

-continued

ataaacagtt cgtgtgcctc aagggtgggg gaggaagtgt cacctccag agagagctt 143100
gttcacattt taggtacaga gttggaccct ggctgccccca tcctcatagc cacgtctgct 143160
caacttccag tcacatttgtt gtactcatcc actgttttg tggcatctt cccacotcaa 143220
aaaatagaca tccacatcat ctcttcatg accctgataa aatgccattt cattcaatgg 143280
aactatttgtt gatagaaaaa gagagattcc atttcatgtc tagatgoatc aaccttcgtt 143340
actcatctct gtgcctcaga tcccatatc aaggctgcgt tgacatttgc caccctgtgc 143400
tcaggctgtg ggetggatgc ccaggagtgg gctggggctgg tgcatttcag atgctgccat 143460
gccttggcag acggccctcc acatcttc acatcccccc accagactg gggctgtctc 143520
tccttctcac tttggccaaac ctgatggaaa aacatggcat tcagtgttca gttcatatc 143580
ttcgattact agtcatatgt gtactgtgtt ttctttcat ttgctttaca ttctcattt 143640
ggcaaaattt ctgtgctctg cttatttctt gaggaaactag caagtatctg cagtggtggac 143700
gtttaccctt tctcttaagt ctcttcagc tcttggccat tttgttattc ttttagttac 143760
ttagtaccag atgactctgg gtgaggctcg atttccact cattacccaa atgatctct 143820
cgagatccc ctcccttta atggaggaca gctcaactaac ttccagatgtc ctccggaccc 143880
aggttttgcg gggcatctt gtcagttgg gctgctgttag caaaatcaca tgaacttagt 143940
ggcaaccaac agaaaatgtat gcctcacagt tggagggct ggaagtcacaa gatcagggtgc 144000
cagcatggcc agattgtggt gagggcctcc ttccaggctg caaaccgaca gcgtccccctt 144060
gtatcctcac atgctggaga acggaggagg ccagctgtct gggactctta caaggccact 144120
gaccccatca cagggtcgct ccactttcat gaccttatct aatctaatt gcctcccaa 144180
ggcccatgat aatcccatca cattgttggg ggtagggtt caatattga atttggagg 144240
gacacaaaca ttcaagttcat tacatgggtt accctttt caacccctt tccctttct 144300
gtccctcaggg gtcagagtca tgaactgctc tgcccagatc ctgtggggct ggagggtgca 144360
gtttcatact ggctcttagt gatggcagtg ctccgtgccc cgcatgccc cgcctggcct 144420
caccacggca gtgcaggcac agtcgttggc atgacgttag cagtcacgg agagtgtatgt 144480
ggtcttgcgt cctagcaactg gtgacccgag acattgttt tctgaaagtg tggccctgg 144540
tctttggttt gctcaaagct ttgctcacgc atggttccc ctctgccatt gggacttaca 144600
tatgttcacc ttttctcta actttgtctt gttgcctaaa agaaaatgcca aagcttctt 144660
acggtaaagg atgatggctc ttgtttctta cccttaccta tctgtggaaa ggagcccgta 144720
tgtgcatgat ggtgaccac gtcaccttgc gaaaaaagtc tcagtcccc cagcatgggt 144780
ggcctgaagg gcccgtccca ctccatgctg gccacagaag ggcaggacc cagcctgaag 144840
ggaaggaagc ctggggcacct cacgtccacc gggctgcaca cacctgtctc tcggctgctt 144900
gccctgcattt ctctggccctg tctcaggcccc ttggccctaaac cctcttctt ccccaaccc 144960
ccctccctctt ttcagaaatc aacagcagtg atatgtcgcc ccacgtcacc agccctctg 145020
gccgtgtgac tgaggcagag attgtgccc tggggaaagaa ctcacactgc gtccgggtt 145080
tgccccagga gatggggctg cacacggtaa gctgtcaagta ccgtggggcag cacgtcacc 145140
gcagccccctt ccagttcacc gtggggccac ttgggtgaagg aggcgcac aaggtgcggg 145200
caggaggcccc tggcctggag agaggagaag cgggagtcac aggtgagcat tgcggcagg 145260
attttcaactt gggagaata gagttgagcc caggcagttt gggcacccac atactttttt 145320

-continued

gccccatttg aaagagaaga cttctgata gtcggcattaa gggcattatt taaaacaagg 145380
catcatgact aagtctggca cagttgtaa ctaagcttg ctcacttacg taaagccaa 145440
caggtttctt actgggagcc tccttggagc ccgtatctt ttagtgcac cctgagtc 145500
taattgggaa gcagagtaat acggttcca gagcatctt cagggctgtat gttctgtgg 145560
acataactaga aagctacaaa actgactgta agcattttt cctgtgggtt ccgctgggt 145620
gaagatctgt agggaaaaaa tggAACATT tcatttttctt ctggcttggta taagggttat 145680
tcattttta aattttttat ttaatatctt tttctctttt gtttggtaga gatggggtcc 145740
caactatctt ctcagactgg ttttgaactc ctgggctcaa gtatccccc tgccttggcc 145800
tcctaaagtgc tggggattat aggcattggc cactgtgcct ggccggtaa gatgtattca 145860
gggctgggcg tggggctca cacctgtaaac tctagcaccc ttggcaggccg aggcaggcag 145920
actgccttag ctcaggagtt caagaccggc ctggggcaaca cggtgaaacc ccattttac 145980
taaaatataa aagaattttt ctgggcatgg cggcatggc ctgtatgc agctactcg 146040
gaggctgaga caggagaatt gcttgaacac aggagatgga gcttgcgtg agctgagatt 146100
gcaccactgc actccagcc gggcagcaga gcaagactcc gtctaaaaaaa aaaaaaaaaa 146160
aagacatgtc ttcagaggac tccagatgtc ctgtgaattt agttatcaat agtgcatttt 146220
aggaaacttc agcaatggac ctggacattt gcttgggttc tgcttgggtt tggagaaaga 146280
gaaaggcgtc agcaacacgac gaaaccttgc actgcagggtt tgaacaaggaa tggaaagagg 146340
acaggggctc tggggggctc agtcaactaac cagggttctc tttgctctca gctgaggatca 146400
gcatttggac ccggggaaagca ggcgctggag gcctctccat cgctgttgc ggccccagta 146460
aggccgagat tacattcgat gaccataaaa atgggtcgat cggtgtatct tatattgccc 146520
aagagcctgg tatgtattca gggttcacaa gaggacattt tccttgggtt aacatgatta 146580
ggttgcagg aacagaaatc catcaagttt gctgaagtc atgaggaatc tatgtgtatg 146640
ggcacatggg acagccttgc agaaatccag ttgcaagata catggccaga cctcttaagg 146700
gtgggaacgc ttgttctgg tgcctttgc ctttctccat tagcctctt gcttcttgc 146760
ttcattcaat tgcatttttccatc ttccaccaa ccagcctctg tctgcccacc catggatacc 146820
ctggctggct gccccagaag agtggccttg gcatctggc tccctctagc aggagcttt 146880
aacctttgtt gtggcattga ctgttccat ctggcgaagc ctatggggac tggcttggg 146940
ataatgtttt aaagcacata aaatgaaata tgcacatata taaaagaaat cattgatatt 147000
atagtagt taccaaaatc ttacaagaac aaatatgca catagaaaca tgcataatctt 147060
cgtaataaca ttaaatcata agatgggtt acgtatatt aactgtatc aaagtgcacaa 147120
agtaataagt gaaaatgata cgtaaaata actgtaaaat gacataaaaa tatatgattt 147180
ttaatggta tgcatttttgc atgtacttatt aatgtgcgtt gatttcttgc caacatttt 147240
gaagaaagga aatggtaat ttcatggatc gatgggtt gatgggtt aattttttt 147300
cccatgaaag tccatggatc tgcatttttgc aatacaggcc atttggggac cctgtgagcc 147360
ccggtaaga gtccttggcc ttacccactt aaggaaatca tatggccca gcctcagcc 147420
ggcgactccc actcaaccaa tcaatgttgc ccattggatc gggctgggtt tctctgttgc 147480
catttttagcc tttgggttgc agcaagatgc cactctgggtt ccagatctc tgaaatgtt 147540
ggactttctt gtccttgcat gtaactacga ggtgtccatc aagttaatgc atgagcacat 147600
cccgaaagc cccttacctgg tgccttggatc cgcacccctcc gacgacgccc ggcgcctcac 147660

-continued

tgttatgagc ctccaggtga gatgcaagga agcatccatc tccttgccg cagggcacca 147720
gtgagacccc tggactcctg aggctgcttc aatgtccct taggtgtcga ggccccttt 147780
cacatttga ccacagatgt caccacgtca ctggggagct ttccctgtggc agagtcact 147840
ccccatacac tttagggcgg a tgacacttgg ggcgagcaaa aacagagcca cagtcaacaa 147900
cacaccttaa tgtttggga cacgttgtt tttaaagggtt tatttaagag aaacaaggaa 147960
agcctgttca taactggta agggataaca agggcttca aaacaaaacc aacacaaaaa 148020
taacagtgtca gtgtatgtt a g o c t g c t g t g t g t g g c t g c a t t c t c a a g a a g t c a g t 148080
tgcaacttac tgtgtattcat taataagtgt gcagggaaact atattaagag ctttattcagt 148140
gttacacctag taaatccttg caatagectg acaagtaggt tctcttgacc ccatttaat 148200
gatggaaaaa cagagataca aggagggtttt gtccactggg aaccagctag tatgaggcag 148260
aacaggcaca gtgtggctcc agaacctgta tttttgttg tttgtgttg ttgttgaggc 148320
agagtctcgc tctgtcacc c aggctggagt gcagtgcat gatctcgct cactgaaacc 148380
tctgcctccc aggttcaagt gattcttctg cctcagecctc ctgagtagct gagactccag 148440
gcacgcgcca tcacacccgg ctaattttg gat t t t c g t agatgggg ttgcaccatg 148500
ttggccaggc tgggtctcaaa ctccgtacct gaggtgtatcc accccactca acctccaaa 148560
gtgtgggat tacagacgtg agccactgtg cctggccaga acctgtgcc ttaacggcaa 148620
cctctcta ac cccacactga t g t t g t g g c a c a c g t t g c a tagtccatcc cattaggata 148680
ccaggagatg caacat tttt cctcgtctca aacaggtcac ttaattcaag gttgtactag 148740
cacacccgg caaactaaga accatcggg atgcctctgg gttttggcc aggacactga 148800
aaaataatta ggtgtctgaa ctgggagtag caattaagg t g t g a a a t a a c t c c 148860
caaagtatga tttctggta agagttctt aatagcctt g a g t g c c c c a g t t g a a 148920
aatattggat tcattaaaat ccaatctgtat gtctaagatt ggtgatata t t g g c t t a g 148980
ttccatacac ttggtttaca tttgagattc taatcttact ctgaggggaa ctgggatacc 149040
tccagttgtt ccaaacatta gtcttcatt tagagacgt aacagaaacc aaaccagact 149100
cagtcacac attgaagcgg cctcattccgg agaataccaa gggtaactaac tggttactgt 149160
ggtgttagatg ttttcttgc ttttcattt aaggcttctt aacagaagt g t c t t t g t g g 149220
ccaaacttaac taaaacactac ggaggggat aaacccagca cttattgagg gcaggagctg 149280
ccctcatgca tctcgaagat ttcttcaaa tctggcggagg catttatctc ccttgcagg 149340
at t t a g c g c a a g c g g a t t c a g t a a t g a t t c t g t c t a a a a g g a 149400
aaaaatcccc tccagggaaac ttctgttagag t g c t c t c g t c a t a g t g g g t c a t a a a t g t t 149460
tcagtaagtgc cacagcaggc t g t t t c t t a a g t t t g t a a c c a g c t g c t g c g c a g g g a g a 149520
agtgtgttca tcagcatcgc cccctgttct tccgggtca tttgatggcc agtgtatgt 149580
aaattattga tcagagattt tgcggaggcc cacgcaagca acatctggt g t g g t t a g c a 149640
aagagaggca t g t a t c g t t t t g t c t t g c t t t g a g a c t t t t a g g a a a t t g g a g t a g g c t 149700
ggcacttggg gtgggggtgg gatggggatg atctgggtat c a a a g a c c c t c t a a t t c t g t 149760
gttctgtcct ccctcctcag tctatatccc ctagggcagc acagtccat agtaggttct 149820
gcagtgtatca a a t g c t t c a a g t c t a t g c t a t g c a g c a t g a t a g g c c a c t a a t g t g 149880
actattgaac atctgaaatg tggccagagg aaccaaggag ctggatgtt tttttttttt 149940

-continued

-continued

atttgtatag ttagttgga aatctaggct ctgaccaggc atggggc acacctgtaa 152340
tctcagca ctgggaggat cagttgaccc caggagttt ggaccaacct gggtaacata 152400
gtgagacccc ttctctacaa aaaaaagtaa aaaaaaaatt agccaggcat ggtggcacac 152460
acctgttagtc tacttgtggg ggatgaggtt ggaggattgc ttatgtccag gagggtcaga 152520
ctgtgtgag ctgtgtatcat gccattgcac tccagccctgg gtaacacagc aagacocgt 152580
ctcaaaaaga aagaaaaagg aatgttaggc ctgtgtgaac attagatct atgtttccta 152640
gtagggcagaa aggcagtgaa gggcctcagg aggaacaagt gtaaaggatg gggtcagatc 152700
ctggtttttag tctgaaaggc caagtggcaaa gctgggtcgc ccagagttt ccatttgagg 152760
aagcagtggc actggaaatg gagaggaggg acttgaggcc agagatctat ggtggctata 152820
gagagtgaga gagagaatcc attccaaat gttccacgt gcttagtgc tgggtcggaa 152880
gatgacatgc cagttatcg aactaggcc agccaggcag agggtgggtg aggattggc 152940
agggccttaa agggtttaat atttacttt gaggggtttt gaaggatccc caataccaa 153000
atggagatgt ttactagatc actgtgaggc ttgggtggcct cagccccaa agtccctcac 153060
tgggtaccct ccctcttctc ttaaagccaa tggcttcag gggaaactt ctccacccca 153120
gacaggattt gaacccctac agatgtatga gatcatttcg atgacacagt tactattgt 153180
tgcaaattac agaataccca gctcaagccaa actcacacaa taaagggcc cagtaagtt 153240
cataactaga aagttcaaga catccaagac aggttcagc aatttgcattt ggtcattgag 153300
ctgegcctg caaggcgtca aatatttctg ctgttctgct ttgggtggcct gttctggcc 153360
ttccctttgg tggcaggatg gcttcctctc tgggtggcagg atggctgcag cagcaccaga 153420
tgtcccacct tcacgcccaca tcaattaaga gagacaccct ctcaggattc tttagaagtgc 153480
agagcctctt ttcccagaag tctccagcac gctcgcctc ccctctcaact gacctggaca 153540
catgcccact gctgagtcat ttctgtggc taaagaaatg ccatgtgcattt attgactaag 153600
gcttagtgc gaaaggatcc ttccctgtcc actcaggggc cacacctggc catggcggtg 153660
gagccagctt cccctacaac acattggctt taagggggc ggtggggac tgggtggagga 153720
tgttcagtgc caaaggacgt aggggtgcaca gtttcatggc ggtgcacctc tggggagacg 153780
tccagaggca gggagaagag ctttggggaa cacaattct gagagggatg aagagtacta 153840
ggcaccaggc agagaccgag agactacctg gagaggtagg aggagaacac gctctgcacc 153900
ctgggcagga gggcttcag gagaaagccg cagtcagggt gtcacaaatg ggttagatgtt 153960
ctaggtgccc acttcagttt acagattacc ttgttacatg ctgtgaccca aacgcacage 154020
cacaacacctg ccctgtgggg gcatgttccat gctttgagct taattaaggc gcatataatgc 154080
cagttggaaac cgtttttttt cccttcag tggccaaataa gagaaacata gaagaagtga 154140
gtttttcttt ttcccttca tatataattcc tttttatttc ttgttgc tttccaaaac 154200
agagacattt aacagtagtt agaatggccaa tctcccaatg tttaaaaaca aactgaactc 154260
cccaatgggtt gaaacaaatg aagagtagta acctggagtt cagctgagta agccgcgtcg 154320
gagcccttaag tgggtggatgc ttccaaatttc agagtgctgt gtcctcaact tggatcatca 154380
tttttagtggaa aaaaataat ttaattttgg tggaaatgaga ttcatctcgat gacaggat 154440
gtaacacatc tcacagaattt tcacactgaa gaagtgaggtt ttctaaaga aagggaaatgt 154500
tcttctgagg caggggtcag agtcttgc tgggtttata ggatttgcaa tggatgtcg 154560

-continued

tttcccttgg ggctgtatgag ggataccca ggggtctgtc tggttctgaa atccaggatg 154620
ctgagtgcca ggctccctgt agaactgtt atttaaatg ggcacatctca gcttggccctc 154680
catcctttat cctcaactgaa ctcaggggtg tccatttgct tgatttcacc ctgtgcctt 154740
gctcattctc ctagataagt atgctgtcg ctcatccct catgagaatg gtgtccacac 154800
catcgatgtc aagttcaatg ggagccacgt gggttggaaagc cccttcaaag tgcgcttgg 154860
ggagccttggaa caagcgggaa accctgcctt ggttccggcc tatggcacgg gactcgaagg 154920
gggcaccacca ggttaacccac tcttctgtt ctgttgcct taactgaacc agctccagg 154980
accaagccacg atggaaatcc tcaagccccaa tgaaagctt ttacacgtac tccccgttgg 155040
aactggggtc atgcacacattt cggaggcgct tgctgtccaa agctgttttggagttgcgg 155100
tttgaccacca gataatcca gagttagagc tcgttgcctt tgttatcaca cctcattact 155160
gttagttgtt attcagattt cttctctgc caagtttctt gactttcaga acaggatgt 155220
gatagtcagg gaacacagca cagtgtcatt aatttttggg gtttcttgc ctgcacagaa 155280
ttcatgtatgc gtccaaagtgg gctcctaccc gctgttctt tcatggtacc aggctccag 155340
aaatgcactg aaggcacaat aagacctgtc ccagccatcc tccctctt tttactctca 155400
gatcttaatg gaggaggaga aaagactgaa atgttcaaag aattctgaag cttttagac 155460
ccgttacaat ttactttat tctttgcac agatggacca tgtttggata tgaaagatac 155520
aggcagtgaa gaagtaataa aagttagact cactccatct totctcttcc tccccaccc 155580
gggtcttggaa gcaaaacggct ctggggaggg aggaccttca ccctgttgcgtt catcttatt 155640
tctgtcttca ttcttgggtt ctgggttggtagt tagtaattt gttcatttgcgca 155700
cagagtttttgc ttttgcatttca acagaaagaa tcttactgtt tccactgtgtt ggtatagctt 155760
gtgttttgc ttttgcatttca taaagatctt tccatgtcag aacagatctt cccctctt 155820
tcttgggtgtt agttagaaattt cctgtgttca atgcagtttca tttgaacagg tggcatcg 155880
tggtgccgacat tgagtgcgtc actgttatgg aggctccag ggtggagagt cagtcatttgc 155940
tctttgcagg ggaagtgccgc agtgtggact cactggggca tgtttgcatttgcgttact 156000
ttggacccctc ttggaaagc agttagtgcctt ggttcttgcgtt gtttgcatttgcgttact 156060
caccccgcat aaggagagtg ggttggacca gacttgcctt ccagggttgcgaa 156120
gtgtcatgtt tgcctggcat ccagcccttgcgca ggttgcgttgcgca 156180
tctccgggtt caggagtgac tgggtggctt gcaggcttgcgca 156240
tggcctcagg aaagccaccc acagggttgcgtt gtttgcgttgcgtt gtttgcatttgcgttact 156300
ccagccggc tccacgttgcgtt gtttgcgttgcgtt gtttgcatttgcgttact 156360
tcattttacc gtaagtgttgcgtt tccatccatc agttagtggaa agttagtgcgtt gtttgcatttgcgttact 156420
tcaactccca aacaacactc ccccaaaaag cagtcagcttgcgtt gggaggaggca 156480
tcaagtgttgcgtt gtttgcatttgcgtt gtttgcatttgcgttact 156540
taagtggctt gtttgcatttgcgtt gtttgcatttgcgttact 156600
aaaccaggac ccctgttgcgtt gtttgcatttgcgttact 156660
cttggccctt gtttgcatttgcgttact 156720
agcgttgcgtt gtttgcatttgcgttact 156780
aggaagcatttgcgttact 156840
ttttgggtgtt tggcatgttgcgttact 156900

-continued

ggacgctgct gagagaaggga gttgtcttg cagggaaagt ccttagccagg aggggagagg 156960
tacagaaccg cctgttcaa accctgtgt aatattgtc ttgtcacagg gaaggcgct 157020
tgttttcca gcccctctgc tcccaagctt ttccctaaat atccattctg agattacaca 157080
gctgcagtgt gcatggaatg aaaaggatc tggcttggc cgccagagcg cccagatcc 157140
tgaccttctg aacaaagcaa acctccctct gttttaatg ggtgagttt ctgtatctct 157200
tggtcaagc tttaatggc ccattctgt aattttggag tagggaaatg tggagaattt 157260
ggggcgggac cctgtggag gcccgttgc aggtctggg atagaccagg gagctccaga 157320
ttctttggag cctgtgagca atttcccaa tgaatggtc caggaacccc agtgtgctcg 157380
gggtataccca gaagggccctc cttecttaac tgccttgaag aacaagcagt gctgcgttta 157440
acatgcatttta aactcacagg aactgagctg gacatatttgg ggggggtggg ggaagaccgc 157500
cagccccaga gatgttttgc ggtgtcgat acaggttata gctagaggca gtggtgagag 157560
acttctgtt gttggatttt ttccctccat ctctctcgta gtaagtgtt tagctccaaag 157620
ttggacagac ttatgttta aatcccaggctt ctgtggtcc ccagctgtgt gactccagat 157680
gaatttatctg acttctactgt gcctctgtt ctttccctgtt aaaaacaggat taataacagg 157740
acccacccaa taggcttgc tggagctgt aaggaggtaa cagccaaatgta gtagctctt 157800
tccctataacc cctgttttctt ctttcccac ctgcgttcc ctgcctttt gggccctcac 157860
agtcaagatg aactgatttt tgggtggca aatattgtca ttagggccaa atgggtgcgg 157920
tggtcatgc ctgtatcaa agcactttgg aaggccaaagg cagaaagat gtttggggcc 157980
aaagatggta gaccagccctg ggtgacatag taaaactcca tctctaccaa aaaaaaaaaat 158040
ttttaagac gaaacttagga atgaaacacgc ttgttaaaaa atgggtggaaac ttcccttcgc 158100
agccacatca ttcaacttc actttaaaaa tatcttttgc ctggcaca gtggctcaca 158160
cctgtatcc cagcacttttgc ggagggtggag gtggggaggat cacttgagcc taggatgg 158220
agaccagccc aggcaacaca gcaaaacccc atctctacaa aaaaatttaa aaatttagcca 158280
ggcggtgggg tgcgtgcctg aagttccacgc tactttggag gctgaggcag gaggatggct 158340
tgagcctgga agattgacgc tgggtggagc tggatcatgc ccaccgtact ccagcctggg 158400
caacagagga agactttatc taaaaaaaaa aatattgtatc ataggccgg tgcgttggc 158460
tcatgcctgt aatccttagca ctttggaga ccaagggtggg cagatcactt gaggtcagga 158520
gtctcaagacc agcctggcca acatggtgag accccatctc tactaaagaa atacaaaat 158580
tagctggcga tgggtggcgag tgcctgtat cccagctaat caggaagctg aagcaggaga 158640
atcgcttggaa cctggggaggc ggagggttgc ataaaggccaa atcatggtac tgcactccag 158700
cctgggcaac agagcgagac tctatctcaa tcaatcaatc aataaaaat ctttccttat 158760
catcacctta cagctgttcc ctggatggac acactgtctc ctgttgcctc acctcccgct 158820
tcttccttac gtagccccag gcctcagagc tgcgtcttgc ggggcttctt ggctgcacag 158880
attagatacc atgatgaggt tgagatagtg ttgggggtggc accttggggc aggagccctca 158940
agagcttccca ggaacagctg ggttgggttt gagagttgc cgtatgcagc tctttgttt 159000
ttatgtatcc ccaagaat aatttttctt ctggacttagg agctataattt aaacaaaat 159060
atttccctggc tggggcagtg tcttagggctc tggcagaagc atagccctgc atggggatgc 159120
tagccaggc atgccccata gagggcactg tagcaggcat ggcgcagacc tgatgactga 159180

-continued

-continued

aaccatcgac atgaccctgt tctcctgcac ttaatatttt taaatgattt ctttctttt 161580
tgcctttga acttgggtat ttatgggtt ttcaagggtc ggttgcctgg gttctggcat 161640
ccagtagaccc tgggctggaa acctagttacc gccacttcat tcattcatc gtttgttcta 161700
aaacttattt agccatgtga ctttggaaat ttatggaaat tctttccaaa agtcagttc 161760
ctcttcctcg aagtacccctc cttaagggtgc ttgtgagagt aaacaagaag attctoatag 161820
ccaacactta gaatagccct tactgtgtgc taggtttga caccataac tcttaaacct 161880
cacaactagt tcgtgaggta tggctgttc tcattccctg tttacagatg gggaaagctga 161940
gctaggggaga ggtgagatcc cagtcacccgg tcaacccagg agcaagtggc agggcaggga 162000
ttcgaaccca caccgtcagg ctctatgagc ctctgcttgt aattgcccacg ctctccacc 162060
tcttaggggc cccagcatta tggtaaggc accttacccct tggctctcat atttctctt 162120
cttccctgtgc ctgtccctgat gcatccgggt ggagtaacca cctttgcct cctaggctcc 162180
aacatgctgc tgatccccgtt ccatggggcc accacccct gcgaggaggctt ccctatgaag 162240
catgtaggca accagcaata caacgtcaca tacgtcgta aggagagggg cgattatgtg 162300
ctggctgtga agtggggggaa ggaacacatc cttggcagcc ctttcatgt cacagtgcct 162360
taaaacagtt ttctcaaatac ctggagagag ttcttgcgtt tgctttgtt gcttgcgtt 162420
aattcatttt atacaaagcc ctccagcctg tttgtggggc tggaaacccca tccctaaaat 162480
attgctgttg taaaatgcct tcagaaataa gtcctagact ggactcttga gggacatatt 162540
ggagaatctt aagaaatgca agcttgcata gggggctgag aagatctgca gtacactagg 162600
tgcaaaaccag aactcttggt ggaacagacc agccactgca gcagacagac caggaacaca 162660
atgagactga catttcaaaa aaacaaaact ggctagectg agctgttgtt tcactcttca 162720
gcatttatga aacaaggcta ggggaagatg ggcagagaaaa aagggggacac ctagtttgt 162780
tgtcatgttgg caaaggagat gacttaaat ccgttaatc tcttccatgt tccgtttaa 162840
tgtatgttggc tattagatca ctggactgc tttaccgcctc ctcatgcacca acaccccat 162900
gctctgtggc ctcttacac ttctcagagg gcagactggc agccgggcac cctacagaaa 162960
ctcagagggc agagtggcag ccaggccac atgtctctca agtacctgtc ccctcgctct 163020
ggtgattatt ttctcagaa tcaccacacg agaccatccc ggcagtcatg gttttgcctt 163080
agttttccaa gtccgtttca gtccttcctt tggctgtgaag aaattctgca gtggcgagca 163140
gtttccact tgccaaagat cccttttaac caacactagc ccttgcgtt aacacacgct 163200
ccagcccttc atcagcctgg gcagtttac caaaatgttt aaagtgtatct cagagggggcc 163260
catggattaa cgccttcattc ccaagggtccg tcccatgaca taacactcca caccggcccc 163320
agccaaacttc atgggtcaact tttctgtggaa aataatgttc tgcacagaca ggacagaatg 163380
aaactcctgc gggctttgg cctgaaagttt gggatgggtt gggggagaga agggcagcag 163440
cttattgttgc tgcctttcac cattggcaga aacagtggaa gctgtgttgtt gcagaaatcc 163500
agaaatgagg tgcggaaat tttgcctgccc ttccatgcaga cctgagctgg ctttggaaatg 163560
aggtaaagt gtcaggggacg ttgcctgagc cccaaatgtgtt agtgcgttgtt gggcaggcag 163620
accttttaggt tttgcgttgtt agtccctgagg aagtggccac tcttgcgtggca ggtgttagtat 163680
ctggggcggag tgggggggtt aaaagccaccc cctacagaaa gtggaaacagc ccggagccctg 163740
atgtgaaagg accacgggtg ttgtaaatgtt ggacacggaa gccaacttgg aatcaaacgc 163800

-continued

cgactgtaaa ttgttatctta taacttatta aataaaacat ttgctccgta aagttg 163856

<210> SEQ ID NO 22
<211> LENGTH: 2633
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 22

Met Pro Val Thr Glu Lys Asp Leu Ala Glu Asp Ala Pro Trp Lys Lys
1 5 10 15

Ile Gln Gln Asn Thr Phe Thr Arg Trp Cys Asn Glu His Leu Lys Cys
20 25 30

Val Asn Lys Arg Ile Gly Asn Leu Gln Thr Asp Leu Ser Asp Gly Leu
35 40 45

Arg Leu Ile Ala Leu Leu Glu Val Leu Ser Gln Lys Arg Met Tyr Arg
50 55 60

Lys Tyr His Gln Arg Pro Thr Phe Arg Gln Met Gln Leu Glu Asn Val
65 70 75 80

Ser Val Ala Leu Glu Phe Leu Asp Arg Glu Ser Ile Lys Leu Val Ser
85 90 95

Ile Asp Ser Lys Ala Ile Val Asp Gly Asn Leu Lys Leu Ile Leu Gly
100 105 110

Leu Val Trp Thr Leu Ile Leu His Tyr Ser Ile Ser Met Pro Val Trp
115 120 125

Glu Asp Glu Gly Asp Asp Ala Lys Lys Gln Thr Pro Lys Gln Arg
130 135 140

Leu Leu Gly Trp Ile Gln Asn Lys Ile Pro Tyr Leu Pro Ile Thr Asn
145 150 155 160

Phe Asn Gln Asn Trp Gln Asp Gly Lys Ala Leu Gly Ala Leu Val Asp
165 170 175

Ser Cys Ala Pro Gly Leu Cys Pro Asp Trp Glu Ser Trp Asp Pro Gln
180 185 190

Lys Pro Val Asp Asn Ala Arg Glu Ala Met Gln Gln Ala Asp Asp Trp
195 200 205

Leu Gly Val Pro Gln Val Ile Thr Pro Glu Glu Ile Ile His Pro Asp
210 215 220

Val Asp Glu His Ser Val Met Thr Tyr Leu Ser Gln Phe Pro Lys Ala
225 230 235 240

Lys Leu Lys Pro Gly Ala Pro Leu Lys Pro Lys Leu Asn Pro Lys Lys
245 250 255

Ala Arg Ala Tyr Gly Arg Gly Ile Glu Pro Thr Gly Asn Met Val Lys
260 265 270

Gln Pro Ala Lys Phe Thr Val Asp Thr Ile Ser Ala Gly Gln Gly Asp
275 280 285

Val Met Val Phe Val Glu Asp Pro Glu Gly Asn Lys Glu Glu Ala Gln
290 295 300

Val Thr Pro Asp Ser Asp Lys Asn Lys Thr Tyr Ser Val Glu Tyr Leu
305 310 315 320

Pro Lys Val Thr Gly Leu His Lys Val Thr Val Leu Phe Ala Gly Gln
325 330 335

His Ile Ser Lys Ser Pro Phe Glu Val Ser Val Asp Lys Ala Gln Gly
340 345 350

Asp Ala Ser Lys Val Thr Ala Lys Gly Pro Gly Leu Glu Ala Val Gly

-continued

355	360	365
Asn Ile Ala Asn Lys Pro Thr Tyr Phe Asp Ile Tyr Thr Ala Gly Ala		
370	375	380
Gly Val Gly Asp Ile Gly Val Glu Val Glu Asp Pro Gln Gly Lys Asn		
385	390	395
Thr Val Glu Leu Leu Val Glu Asp Lys Gly Asn Gln Val Tyr Arg Cys		
405	410	415
Val Tyr Lys Pro Met Gln Pro Gly Pro His Val Val Lys Ile Phe Phe		
420	425	430
Ala Gly Asp Thr Ile Pro Lys Ser Pro Phe Val Val Gln Val Gly Glu		
435	440	445
Ala Cys Asn Pro Asn Ala Cys Arg Ala Ser Gly Arg Gly Leu Gln Pro		
450	455	460
Lys Gly Val Arg Ile Arg Glu Thr Thr Asp Phe Lys Val Asp Thr Lys		
465	470	475
Ala Ala Gly Ser Gly Glu Leu Gly Val Thr Met Lys Gly Pro Lys Gly		
485	490	495
Leu Glu Glu Leu Val Lys Gln Lys Asp Phe Leu Asp Gly Val Tyr Ala		
500	505	510
Phe Glu Tyr Tyr Pro Ser Thr Pro Gly Arg Tyr Ser Ile Ala Ile Thr		
515	520	525
Trp Gly Gly His His Ile Pro Lys Ser Pro Phe Glu Val Gln Val Gly		
530	535	540
Pro Glu Ala Gly Met Gln Lys Val Arg Ala Trp Gly Pro Gly Leu His		
545	550	555
Gly Gly Ile Val Gly Arg Ser Ala Asp Phe Val Val Glu Ser Ile Gly		
565	570	575
Ser Glu Val Gly Ser Leu Gly Phe Ala Ile Glu Gly Pro Ser Gln Ala		
580	585	590
Lys Ile Glu Tyr Asn Asp Gln Asn Asp Gly Ser Cys Asp Val Lys Tyr		
595	600	605
Trp Pro Lys Glu Pro Gly Glu Tyr Ala Val His Ile Met Cys Asp Asp		
610	615	620
Glu Asp Ile Lys Asp Ser Pro Tyr Met Ala Phe Ile His Pro Ala Thr		
625	630	635
Gly Gly Tyr Asn Pro Asp Leu Val Arg Ala Tyr Gly Pro Gly Leu Glu		
645	650	655
Lys Ser Gly Cys Ile Val Asn Asn Leu Ala Glu Phe Thr Val Asp Pro		
660	665	670
Lys Asp Ala Gly Lys Ala Pro Leu Lys Ile Phe Ala Gln Asp Gly Glu		
675	680	685
Gly Gln Arg Ile Asp Ile Gln Met Lys Asn Arg Met Asp Gly Thr Tyr		
690	695	700
Ala Cys Ser Tyr Thr Pro Val Lys Ala Ile Lys His Thr Ile Ala Val		
705	710	715
Val Trp Gly Gly Val Asn Ile Pro His Ser Pro Tyr Arg Val Asn Ile		
725	730	735
Gly Gln Gly Ser His Pro Gln Lys Val Lys Val Phe Gly Pro Gly Val		
740	745	750
Glu Arg Ser Gly Leu Lys Ala Asn Glu Pro Thr His Phe Thr Val Asp		
755	760	765

-continued

Cys Thr Glu Ala Gly Glu Gly Asp Val Ser Val Gly Ile Lys Cys Asp
 770 775 780

Ala Arg Val Leu Ser Glu Asp Glu Glu Asp Val Asp Phe Asp Ile Ile
 785 790 795 800

His Asn Ala Asn Asp Thr Phe Thr Val Lys Tyr Val Pro Pro Ala Ala
 805 810 815

Gly Arg Tyr Thr Ile Lys Val Leu Phe Ala Ser Gln Glu Ile Pro Ala
 820 825 830

Ser Pro Phe Arg Val Lys Val Asp Pro Ser His Asp Ala Ser Lys Val
 835 840 845

Lys Ala Glu Gly Pro Gly Leu Ser Lys Ala Gly Val Glu Asn Gly Lys
 850 855 860

Pro Thr His Phe Thr Val Tyr Thr Lys Gly Ala Gly Lys Ala Pro Leu
 865 870 875 880

Asn Val Gln Phe Asn Ser Pro Leu Pro Gly Asp Ala Val Lys Asp Leu
 885 890 895

Asp Ile Ile Asp Asn Tyr Asp Tyr Ser His Thr Val Lys Tyr Thr Pro
 900 905 910

Thr Gln Gln Gly Asn Met Gln Val Leu Val Thr Tyr Gly Gly Asp Pro
 915 920 925

Ile Pro Lys Ser Pro Phe Thr Val Gly Val Ala Ala Pro Leu Asp Leu
 930 935 940

Ser Lys Ile Lys Leu Asn Gly Leu Glu Asn Arg Val Glu Val Gly Lys
 945 950 955 960

Asp Gln Glu Phe Thr Val Asp Thr Arg Gly Ala Gly Gln Gly Lys
 965 970 975

Leu Asp Val Thr Ile Leu Ser Pro Ser Arg Lys Val Val Pro Cys Leu
 980 985 990

Val Thr Pro Val Thr Gly Arg Glu Asn Ser Thr Ala Lys Phe Ile Pro
 995 1000 1005

Arg Glu Glu Gly Leu Tyr Ala Val Asp Val Thr Tyr Asp Gly His
 1010 1015 1020

Pro Val Pro Gly Ser Pro Tyr Thr Val Glu Ala Ser Leu Pro Pro
 1025 1030 1035

Asp Pro Ser Lys Val Lys Ala His Gly Pro Gly Leu Glu Gly Gly
 1040 1045 1050

Leu Val Gly Lys Pro Ala Glu Phe Thr Ile Asp Thr Lys Gly Ala
 1055 1060 1065

Gly Thr Gly Gly Leu Gly Leu Thr Val Glu Gly Pro Cys Glu Ala
 1070 1075 1080

Lys Ile Glu Cys Ser Asp Asn Gly Asp Gly Thr Cys Ser Val Ser
 1085 1090 1095

Tyr Leu Pro Thr Lys Pro Gly Glu Tyr Phe Val Asn Ile Leu Phe
 1100 1105 1110

Glu Glu Val His Ile Pro Gly Ser Pro Phe Lys Ala Asp Ile Glu
 1115 1120 1125

Met Pro Phe Asp Pro Ser Lys Val Val Ala Ser Gly Pro Gly Leu
 1130 1135 1140

Glu His Gly Lys Val Gly Glu Ala Gly Leu Leu Ser Val Asp Cys
 1145 1150 1155

Ser Glu Ala Gly Pro Gly Ala Leu Gly Leu Glu Ala Val Ser Asp
 1160 1165 1170

-continued

Ser Gly Thr Lys Ala Glu Val Ser Ile Gln Asn Asn Lys Asp Gly
 1175 1180 1185
 Thr Tyr Ala Val Thr Tyr Val Pro Leu Thr Ala Gly Met Tyr Thr
 1190 1195 1200
 Leu Thr Met Lys Tyr Gly Gly Glu Leu Val Pro His Phe Pro Ala
 1205 1210 1215
 Arg Val Lys Val Glu Pro Ala Val Asp Thr Ser Arg Ile Lys Val
 1220 1225 1230
 Phe Gly Pro Gly Ile Glu Gly Lys Asp Val Phe Arg Glu Ala Thr
 1235 1240 1245
 Thr Asp Phe Thr Val Asp Ser Arg Pro Leu Thr Gln Val Gly Gly
 1250 1255 1260
 Asp His Ile Lys Ala His Ile Ala Asn Pro Ser Gly Ala Ser Thr
 1265 1270 1275
 Glu Cys Phe Val Thr Asp Asn Ala Asp Gly Thr Tyr Gln Val Glu
 1280 1285 1290
 Tyr Thr Pro Phe Glu Lys Gly Leu His Val Val Glu Val Thr Tyr
 1295 1300 1305
 Asp Asp Val Pro Ile Pro Asn Ser Pro Phe Lys Val Ala Val Thr
 1310 1315 1320
 Glu Gly Cys Gln Pro Ser Arg Val Gln Ala Gln Gly Pro Gly Leu
 1325 1330 1335
 Lys Glu Ala Phe Thr Asn Lys Pro Asn Val Phe Thr Val Val Thr
 1340 1345 1350
 Arg Gly Ala Gly Ile Gly Gly Leu Gly Ile Thr Val Glu Gly Pro
 1355 1360 1365
 Ser Glu Ser Lys Ile Asn Cys Arg Asp Asn Lys Asp Gly Ser Cys
 1370 1375 1380
 Ser Ala Glu Tyr Ile Pro Phe Ala Pro Gly Asp Tyr Asp Val Asn
 1385 1390 1395
 Ile Thr Tyr Gly Ala His Ile Pro Gly Ser Pro Phe Arg Val
 1400 1405 1410
 Pro Val Lys Asp Val Val Asp Pro Ser Lys Val Lys Ile Ala Gly
 1415 1420 1425
 Pro Gly Leu Gly Ser Gly Val Arg Ala Arg Val Leu Gln Ser Phe
 1430 1435 1440
 Thr Val Asp Ser Ser Lys Ala Gly Leu Ala Pro Leu Glu Val Arg
 1445 1450 1455
 Val Leu Gly Pro Arg Ala Asp Asp Thr Asp Ser Gln Ser Trp Arg
 1460 1465 1470
 Ser Pro Leu Lys Ala Leu Ser Glu Phe Phe Lys Gly Asp Pro Lys
 1475 1480 1485
 Gly Asp Phe Asn Lys Thr Gly Leu Val Glu Pro Val Asn Val Val
 1490 1495 1500
 Asp Asn Gly Asp Gly Thr His Thr Val Thr Tyr Thr Pro Ser Gln
 1505 1510 1515
 Glu Gly Pro Tyr Met Val Ser Val Lys Tyr Ala Asp Glu Glu Ile
 1520 1525 1530
 Pro Arg Ser Pro Phe Lys Val Lys Val Leu Pro Thr Tyr Asp Ala
 1535 1540 1545
 Ser Lys Val Thr Ala Ser Gly Pro Gly Leu Ser Ser Tyr Gly Val

-continued

1550	1555	1560
Pro Ala Ser Leu Pro Val Asp Phe Ala Ile Asp Ala		Arg Asp Ala
1565	1570	1575
Gly Glu Gly Leu Leu Ala Val Gln Ile Thr Asp Gln		Glu Gly Lys
1580	1585	1590
Pro Lys Arg Ala Ile Val His Asp Asn Lys Asp Gly		Thr Tyr Ala
1595	1600	1605
Val Thr Tyr Ile Pro Asp Lys Thr Gly Arg Tyr Met		Ile Gly Val
1610	1615	1620
Thr Tyr Gly Gly Asp Asp Ile Pro Leu Ser Pro Tyr		Arg Ile Arg
1625	1630	1635
Ala Thr Gln Thr Gly Asp Ala Ser Lys Cys Leu Ala		Thr Gly Pro
1640	1645	1650
Gly Ile Ala Ser Thr Val Lys Thr Gly Glu Glu Val		Gly Phe Val
1655	1660	1665
Val Asp Ala Lys Thr Ala Gly Lys Gly Lys Val Thr		Cys Thr Val
1670	1675	1680
Leu Thr Pro Asp Gly Thr Glu Ala Glu Ala Asp Val		Ile Glu Asn
1685	1690	1695
Glu Asp Gly Thr Tyr Asp Ile Phe Tyr Thr Ala Ala		Lys Pro Gly
1700	1705	1710
Thr Tyr Val Ile Tyr Val Arg Phe Gly Gly Val Asp		Ile Pro Asn
1715	1720	1725
Ser Pro Phe Thr Val Met Ala Thr Asp Gly Glu Val		Thr Ala Val
1730	1735	1740
Glu Glu Ala Pro Val Asn Ala Cys Pro Pro Gly Phe		Arg Pro Trp
1745	1750	1755
Val Thr Glu Glu Ala Tyr Val Pro Val Ser Asp Met		Asn Gly Leu
1760	1765	1770
Gly Phe Lys Pro Phe Asp Leu Val Ile Pro Phe Ala		Val Arg Lys
1775	1780	1785
Gly Glu Ile Thr Gly Glu Val His Met Pro Ser Gly		Lys Thr Ala
1790	1795	1800
Thr Pro Glu Ile Val Asp Asn Lys Asp Gly Thr Val		Thr Val Arg
1805	1810	1815
Tyr Ala Pro Thr Glu Val Gly Leu His Glu Met His		Ile Lys Tyr
1820	1825	1830
Met Gly Ser His Ile Pro Glu Ser Pro Leu Gln Phe		Tyr Val Asn
1835	1840	1845
Tyr Pro Asn Ser Gly Ser Val Ser Ala Tyr Gly Pro		Gly Leu Val
1850	1855	1860
Tyr Gly Val Ala Asn Lys Thr Ala Thr Phe Thr Ile		Val Thr Glu
1865	1870	1875
Asp Ala Gly Glu Gly Gly Leu Asp Leu Ala Ile Glu		Gly Pro Ser
1880	1885	1890
Lys Ala Glu Ile Ser Cys Ile Asp Asn Lys Asp Gly		Thr Cys Thr
1895	1900	1905
Val Thr Tyr Leu Pro Thr Leu Pro Gly Asp Tyr Ser		Ile Leu Val
1910	1915	1920
Lys Tyr Asn Asp Lys His Ile Pro Gly Ser Pro Phe		Thr Ala Lys
1925	1930	1935

-continued

Ile	Thr	Asp	Asp	Ser	Arg	Arg	Cys	Ser	Gln	Val	Lys	Leu	Gly	Ser
1940							1945				1950			
Ala	Ala	Asp	Phe	Leu	Leu	Asp	Ile	Ser	Glu	Thr	Asp	Leu	Ser	Ser
1955							1960				1965			
Leu	Thr	Ala	Ser	Ile	Lys	Ala	Pro	Ser	Gly	Arg	Asp	Glu	Pro	Cys
1970							1975				1980			
Leu	Leu	Lys	Arg	Leu	Pro	Asn	Asn	His	Ile	Gly	Ile	Ser	Phe	Ile
1985							1990				1995			
Pro	Arg	Glu	Val	Gly	Glu	His	Leu	Val	Ser	Ile	Lys	Lys	Asn	Gly
2000							2005				2010			
Asn	His	Val	Ala	Asn	Ser	Pro	Val	Ser	Ile	Met	Val	Val	Gln	Ser
2015							2020				2025			
Glu	Ile	Gly	Asp	Ala	Arg	Arg	Ala	Lys	Val	Tyr	Gly	Arg	Gly	Leu
2030							2035				2040			
Ser	Glu	Gly	Arg	Thr	Phe	Glu	Met	Ser	Asp	Phe	Ile	Val	Asp	Thr
2045							2050				2055			
Arg	Asp	Ala	Gly	Tyr	Gly	Gly	Ile	Ser	Leu	Ala	Val	Glu	Gly	Pro
2060							2065				2070			
Ser	Lys	Val	Asp	Ile	Gln	Thr	Glu	Asp	Leu	Glu	Asp	Gly	Thr	Cys
2075							2080				2085			
Lys	Val	Ser	Tyr	Phe	Pro	Thr	Val	Pro	Gly	Val	Tyr	Ile	Val	Ser
2090							2095				2100			
Thr	Lys	Phe	Ala	Asp	Glu	His	Val	Pro	Gly	Ser	Pro	Phe	Thr	Val
2105							2110				2115			
Lys	Ile	Ser	Gly	Glu	Gly	Arg	Val	Lys	Glu	Ser	Ile	Thr	Arg	Thr
2120							2125				2130			
Ser	Arg	Ala	Pro	Ser	Val	Ala	Thr	Val	Gly	Ser	Ile	Cys	Asp	Leu
2135							2140				2145			
Asn	Leu	Lys	Ile	Pro	Glu	Ile	Asn	Ser	Ser	Asp	Met	Ser	Ala	His
2150							2155				2160			
Val	Thr	Ser	Pro	Ser	Gly	Arg	Val	Thr	Glu	Ala	Glu	Ile	Val	Pro
2165							2170				2175			
Met	Gly	Lys	Asn	Ser	His	Cys	Val	Arg	Phe	Val	Pro	Gln	Glu	Met
2180							2185				2190			
Gly	Val	His	Thr	Val	Ser	Val	Lys	Tyr	Arg	Gly	Gln	His	Val	Thr
2195							2200				2205			
Gly	Ser	Pro	Phe	Gln	Phe	Thr	Val	Gly	Pro	Leu	Gly	Glu	Gly	
2210							2215				2220			
Ala	His	Lys	Val	Arg	Ala	Gly	Gly	Pro	Gly	Leu	Glu	Arg	Gly	Glu
2225							2230				2235			
Ala	Gly	Val	Pro	Ala	Glu	Phe	Ser	Ile	Trp	Thr	Arg	Glu	Ala	Gly
2240							2245				2250			
Ala	Gly	Gly	Leu	Ser	Ile	Ala	Val	Glu	Gly	Pro	Ser	Lys	Ala	Glu
2255							2260				2265			
Ile	Thr	Phe	Asp	Asp	His	Lys	Asn	Gly	Ser	Cys	Gly	Val	Ser	Tyr
2270							2275				2280			
Ile	Ala	Gln	Glu	Pro	Gly	Asn	Tyr	Glu	Val	Ser	Ile	Lys	Phe	Asn
2285							2290				2295			
Asp	Glu	His	Ile	Pro	Glu	Ser	Pro	Tyr	Leu	Val	Pro	Val	Ile	Ala
2300							2305				2310			
Pro	Ser	Asp	Asp	Ala	Arg	Arg	Leu	Thr	Val	Met	Ser	Leu	Gln	Glu
2315							2320				2325			

-continued

Ser Gly Leu Lys Val Asn Gln Pro Ala Ser Phe Ala Ile Arg Leu
 2330 2335 2340
 Asn Gly Ala Lys Gly Lys Ile Asp Ala Lys Val His Ser Pro Ser
 2345 2350 2355
 Gly Ala Val Glu Glu Cys His Val Ser Glu Leu Glu Pro Asp Lys
 2360 2365 2370
 Tyr Ala Val Arg Phe Ile Pro His Glu Asn Gly Val His Thr Ile
 2375 2380 2385
 Asp Val Lys Phe Asn Gly Ser His Val Val Gly Ser Pro Phe Lys
 2390 2395 2400
 Val Arg Val Gly Glu Pro Gly Gln Ala Gly Asn Pro Ala Leu Val
 2405 2410 2415
 Ser Ala Tyr Gly Thr Gly Leu Glu Gly Gly Thr Thr Gly Ile Gln
 2420 2425 2430
 Ser Glu Phe Phe Ile Asn Thr Thr Arg Ala Gly Pro Gly Thr Leu
 2435 2440 2445
 Ser Val Thr Ile Glu Gly Pro Ser Lys Val Lys Met Asp Cys Gln
 2450 2455 2460
 Glu Thr Pro Glu Gly Tyr Lys Val Met Tyr Thr Pro Met Ala Pro
 2465 2470 2475
 Gly Asn Tyr Leu Ile Ser Val Lys Tyr Gly Gly Pro Asn His Ile
 2480 2485 2490
 Val Gly Ser Pro Phe Lys Ala Lys Val Thr Gly Gln Arg Leu Val
 2495 2500 2505
 Ser Pro Gly Ser Ala Asn Glu Thr Ser Ser Ile Leu Val Glu Ser
 2510 2515 2520
 Val Thr Arg Ser Ser Thr Glu Thr Cys Tyr Ser Ala Ile Pro Lys
 2525 2530 2535
 Ala Ser Ser Asp Ala Ser Lys Val Thr Ser Lys Gly Ala Gly Leu
 2540 2545 2550
 Ser Lys Ala Phe Val Gly Gln Lys Ser Ser Phe Leu Val Asp Cys
 2555 2560 2565
 Ser Lys Ala Gly Ser Asn Met Leu Leu Ile Gly Val His Gly Pro
 2570 2575 2580
 Thr Thr Pro Cys Glu Glu Val Ser Met Lys His Val Gly Asn Gln
 2585 2590 2595
 Gln Tyr Asn Val Thr Tyr Val Val Lys Glu Arg Gly Asp Tyr Val
 2600 2605 2610
 Leu Ala Val Lys Trp Gly Glu Glu His Ile Pro Gly Ser Pro Phe
 2615 2620 2625
 His Val Thr Val Pro
 2630

<210> SEQ ID NO 23
 <211> LENGTH: 9560
 <212> TYPE: DNA
 <213> ORGANISM: Homo sapiens

<400> SEQUENCE: 23

gcggccaggg	gcggggggcc	gcagagcagc	accggccgtg	gctccggtag	cagcaagttc	60
gaaccccgct	cccgctccgc	ttcggttctc	gtcccttcgg	cccttgggcc	tccaaacacc	120
agtccccggc	agtcgttgc	gcattgcgt	ctccccgcga	ccaggatgcc	ggtaaccgag	180

-continued

aaggatctag	ctgaggacgc	gccttggaaag	aagatccagc	agaacacgtt	cacacgctgg	240
tgcaacgagc	acctcaagtg	cgtgaacaaa	cgcatcgcca	acctgcagac	cgacacctgagc	300
gacgggctgc	ggtctatcgc	gtctcgag	gtgtcteagcc	agaagegcat	gtacccgaag	360
taccatcagc	ggcccacctt	tcgcccagatg	cagctcgaga	atgtgtccgt	ggcgctcgag	420
ttcctggacc	gtgagagcat	caagctcgta	tcacatcgata	gcaaagccat	tgtggatggg	480
aacctgaagc	tcatcttggg	tctggtgtgg	acgctgatcc	tccactactc	catctccatg	540
cccggtgtgg	aggatgaagg	ggatgtatgat	gccaagaagc	agacgcacaa	gcagaggctg	600
ctgggggtgga	ttcagaacaa	gatcccattc	ttgcccattca	ccaactttaa	ccagaactgg	660
caagacggca	aaggcctggg	agccctggta	gacagctgtg	ctccaggct	gtgcccagac	720
tgggaatcct	gggacccgca	gaaggcctgtg	gataatgcac	gagaaggccat	gcageaggca	780
gatgactggc	tgggtgtccc	acaggtcatc	actccctgaa	aatcatatca	cccgatgtg	840
gacgagca	cagttatgac	ttacctgtcc	cagttccca	aagccaaatc	caageccgggg	900
gctcctctca	aacccaaact	caacccgaag	aaagccagg	cctatggcag	aggaatcgag	960
cccaactggaa	acatggtaa	gcagccagcc	aagttcactg	tggacaccat	cagcgcgggg	1020
caaggagacg	tgtatggtt	tgttggagac	ccagaaggga	acaaagagga	ggcacaatgt	1080
acccctgaca	gtgacaagaa	caagacatac	tctgtggagt	atctgccaa	ggtcacccggg	1140
ctacacaaag	tcacagtcct	cttgcagga	cagcacatct	ccaagagccc	atttgaatgt	1200
agtgttgcaca	aggcccagg	agatgccagt	aaagtcactg	caaaggatcc	agggttggaa	1260
gctgttaggaa	acatcgccaa	taagcccacc	tactttgaca	tctataccgc	aggagctgg	1320
gtgggtgaca	ttgggtgtgg	ggttggaaat	ccccagggg	agaacaccgt	ggagttgtc	1380
gttggaaagaca	aaggaaacca	ggtgtatcga	tgtgtgtaca	aacccatgca	gcctggccct	1440
cacgtggta	agattttctt	tgctggggac	actattctt	agagtcctt	cgttgtcag	1500
gttggggaaag	cctgcaatcc	aaatgcctgc	cgggcccagt	gccgaggcct	acaacccaaa	1560
ggcgtccgta	tccggagac	cacagattt	aagggttgcaca	ccaaagctgc	aggaagtgg	1620
gagctcggtg	taaccatgaa	gggtccctaag	ggtctggagg	agctgggtgaa	gcagaaagac	1680
tttctggatg	gggtctacgc	attcgatgt	tacccatgca	ccccggggag	atacagcatt	1740
gccatcacat	gggggggaca	ccacattcca	aagagccct	ttgaagtca	agttggccct	1800
gaagcgggta	tgcagaaatgt	ccgtgtttgg	ggccctgggc	tccatggtgg	gattgtcgg	1860
cggtcagcgg	acttcgttgt	agaatccatt	ggctctgaa	tggggtctct	ggggtttgc	1920
attgaaggcc	cctctcaggc	aaagattgag	tacaacgacc	agaatgtatgg	atcgatgtat	1980
gtcaaatact	ggcccaagga	gcctggcgaa	tatgtctgttc	acatcatgtg	tgacgcacgaa	2040
gacatcaagg	acagcccgta	catggccttc	atccacccag	ccacgggagg	ctacaacccct	2100
gatctggttc	gacgatcagg	gccaggttt	gagaaatctg	gatgcattgt	caacaacctg	2160
gccgagttca	ctgtggatcc	taaggatgct	ggaaaagctc	ccttaaagat	atttgcctag	2220
gatggggaaag	gccaacgcac	tgacatccag	atgaagaacc	ggatggacgg	cacatatgca	2280
tgctcataca	ccccgggtaa	ggccatcaag	cacaccattg	ctgtggcttg	gggaggcgt	2340
aacatccgc	acagccctta	cagggtcaac	atcgggcaag	gtagccatcc	tcagaaggc	2400
aaagtgtttt	ggccagggtgt	ggagagaatgt	ggtctgaagg	caaataatgaa	tacacacttc	2460

-continued

acgggtggact	gtactgaggc	tggggaaagggt	gatgtcagtg	ttggcataa	gtgtgatgcc	2520
cgggtgttaa	gtgaagatga	ggaagacgtg	gattttgaca	ttattcaca	tgccaatgat	2580
acgttcacag	tcaaataatgt	gcctcctgct	gctggcgat	acactatcaa	agttctctt	2640
gcatctcagg	aaatccccgc	cagcccttgc	agagtcaaag	ttgacccttc	ccacgatgcc	2700
agcaaagtga	aggcagaagg	cccagggctc	agcaaagcag	gtgtggaaa	tggaaaccg	2760
acccacttca	ctgtctacac	caagggggct	gggaaagccc	cgctcaacgt	gcagttcaac	2820
agccctcttc	ctggcgatgc	agtgaaggat	ttggatata	tcgataatta	tgactactct	2880
cacacggta	aatatacacc	caccaacag	ggcaacatgc	aggttcttgt	gacttacgg	2940
ggcgatccca	tccctaaaag	cccttcaact	gtgggtgtg	ctgcaccgct	ggatctgagc	3000
aagataaaac	tcaatgggct	ggaaaacagg	gtggaaagtg	ggaaggatca	ggagttcacc	3060
gttgatacca	ggggggcagg	aggccagggg	aagctggacg	tgacaatct	cagccctct	3120
cggaaaggctcg	tgccatgcct	agtgacacct	gtgacaggcc	gggagaacag	cacggccaag	3180
ttcatccctc	gggaggagggg	gctgtatgct	gtagacgtga	cctacgatgg	acaccctgt	3240
ccggggagcc	cctacacagt	ggaggcctcg	ctgccaccag	atcccagca	ggtgaaggcc	3300
cacggccccg	gcctcgaagg	tggctctgt	ggcaagcctg	ccgagttcac	catcgatacc	3360
aaaggagctg	gtactggagg	tctggctta	acggtggaag	gtccgtgcga	ggccaaaatc	3420
gagtgtccg	acaatggta	tggacactgc	tccgtcttt	accttccac	aaaacccggg	3480
gagtacttcg	tcaacatct	ctttgaagaa	gtccacatac	ctgggtctcc	cttcaaaagt	3540
gacattgaaa	tgcctttga	ccctctaaa	gtcgtggat	cgggggccagg	tctcgagcac	3600
gggaagggtgg	gtgaagctgg	cctccttagc	gtcgactgct	cggaagcggg	accgggggccc	3660
ctggggcttgg	aagctgtctc	ggactcggga	acaaaagccg	aagtcaagtat	tcagaacaac	3720
aaagatggca	cctacgeggt	gacctaegtg	ccctgacgg	ccggcatgta	cacgttgacc	3780
atgaagtatg	gtggcgaact	cgtgccacac	ttccccgccc	gggtcaagg	ggagcccgcc	3840
gtggacacca	gcaggatcaa	agtcttgg	ccaggaatag	aaggaaaga	tgtgtccgg	3900
gaagctacca	ccgactttac	agttgactct	cgcccgctga	cccaggttgg	gggtgaccac	3960
atcaaggccc	acattgccaa	ccctcaggg	gcctccaccc	agtctttgt	cacagacaat	4020
gcggatggga	cctaccaggt	ggaatacaca	cccttggaga	aaggcttcca	tgtgtggag	4080
gtgacatatg	atgacgtgcc	tatccaaac	agtcccttca	aggtggctgt	cactgaaggc	4140
tgccagccat	ctagggtgca	agccaagg	cctggattga	aaggccctt	taccaacaag	4200
cctaattgtct	tcaccgttgt	taccagaggc	gcaggaattg	gtgggttgg	cataactgtt	4260
gagggaccat	cagactcgaa	gataaattgc	agagacaaca	aggatggcag	ctgcagtgt	4320
gagtagatcc	cttgcacc	gggggattac	gatgttaata	tcacatatgg	aggagccac	4380
atccccggca	gccccttcag	ggttcctgt	aaggatgtg	ttggacccag	caaggtaag	4440
attgccggcc	ccgggctggg	ctcaggeg	cgagcccg	tcctgeagtc	cttcacgg	4500
gacagcagca	aggctggcct	ggctccgct	gaagtggagg	ttctggccc	acgagctgac	4560
gacacggatt	cccagtcatg	gcccggcccc	ttgaaagccc	tttcagagtt	ctttaagg	4620
gaccgcagg	gtgactttaa	taagacaggc	ttgggtggagc	cagtgaacgt	ggtggacaat	4680
ggagatggca	cacacacagt	aacctacacc	ccatctcagg	agggaccctt	catggtctca	4740
gttaaatatg	ctgatgaaga	gattcctcg	agtcccttca	aggtcaagg	ccttccacaca	4800

-continued

tatgtatgcca	gcaaagtgac	tgccagtggc	ccggcctta	gttcctatgg	tgtgcctgcc	4860
agtctacctg	tggactttgc	aatttgc	cgagatgccc	gggaaggct	gttgcgttt	4920
caaataacgg	accaagaagg	aaaacccaaa	agagccattg	tccatgacaa	taaagatggc	4980
acgtatgctg	tcacccat	ccccgacaag	actggggcgt	atatgtatgg	agtcacatc	5040
gggggtgacg	acatcccact	tttcccttat	cgcatccgag	ccacacagac	gggtgatgcc	5100
agcaagtgcc	tggccacggg	tccttgcattc	gcctccactg	tggaaactgg	cgaagaagta	5160
ggcttgcgg	tttgcattc	gactgcggg	aagggtaaag	tgacctgcac	ggttctgacc	5220
ccagatggca	ctgaggccga	ggccgatgtc	atttgcatttgc	aagatggaa	cattgcacatc	5280
ttctacacag	ctgccaagcc	gggcacatata	gtgtatctatg	tgccgttcgg	ttgtgttgat	5340
atccatcaaca	gcccccttac	tgtcatggcc	acagatgggg	aatgcacatc	cgtggaggag	5400
gcacccgtaa	atgcatgtcc	ccctggattc	aggccctggg	tgaccgaaga	ggcctatgtc	5460
ccagtgcgt	acatgaaatgg	cctgggattt	aaggcttttg	acctggtcat	tccgtttgct	5520
gtcaggaaag	gagaatcac	tggagaggtc	cacatgcctt	ctgggaagac	agccacacct	5580
gagattgtgg	acaacaagga	cggcacggtc	actgttagat	atgcacccac	tgagggtcggt	5640
ctccatgaga	tgcacatcaa	atacatgggc	agccacatcc	ctgagagccc	actccagttc	5700
tacgtgaact	accccaacag	tggagttgtt	tctgcatacg	gtccaggcct	cgtgtatgg	5760
gtggccaaca	aaactgcccac	cttcaccatc	gtcacagagg	atgcaggaga	aggtggctgt	5820
gacttggcta	ttgagggecc	ctcaaaagca	gaaatcagct	gcattgacaa	taaagatgg	5880
acatgcacag	tgaccttac	gcccactctg	ccagggcact	acagcatct	ggtcaagttac	5940
aatgacaagc	acatccctgg	cagcccttc	acagccaa	tcacatgt	cagcaggccg	6000
tgctcccaagg	tgaagttggg	ctcagccgct	gacttctgc	tcgacatcg	tgagactgac	6060
ctcagcagcc	tgacggccag	cattaaggcc	ccatctggcc	gagacgagcc	ctgtctcctg	6120
aagaggctgc	ccaacaacca	cattggcattc	tccttcattcc	cccgaaagt	ggcgaacat	6180
ctggcagca	tcaagaaaaa	tggcaaccat	gtggcaaca	gccccgtgtc	tatcatgg	6240
gtccagtcgg	agattggta	cgcccgccg	gccaaggct	atggcccg	cctgtcagaa	6300
ggccggactt	tcgagatgtc	tgacttcatc	gtggacacaa	ggatgcagg	ttatgg	6360
atatccctgg	cggtggaaagg	ccccagcaaa	gtggacatcc	agacggagg	cctggaaat	6420
ggcacctgca	aagtcttcta	cttccctacc	gtgcctgggg	tttatatgt	ctccaccaaa	6480
ttcgctgacg	agcacgtgcc	tggagccca	tttaccgtga	agatcgtgg	ggagggaaaga	6540
gtcaaagaga	gcatcacc	caccagtccg	gccccgtccg	tggccactgt	cgggaggatt	6600
tgtgacctga	acctgaaaat	cccagaaatc	aacagcgtg	atatgtccgc	ccacgtcacc	6660
agccctctg	gccgtgtac	tgaggcagag	atttgccttca	tggggaa	ctcacactgc	6720
gtccggtttgc	tgccccagga	gatggccgt	cacacggtca	gcgtcaagta	ccgtggccag	6780
cacgtcacc	gcagccctt	ccagttcacc	gtggggccac	tttgtgaagg	aggcgcac	6840
aagggtgcgg	caggaggccc	tggcctggag	agaggagaag	cgggagttcc	agctgat	6900
agcatttgga	cccgaaa	aggcgctgga	ggcctctcca	tcgctgtga	ggggccca	6960
aaggccgaga	ttacattcga	tgaccataaa	aatgggtcgt	gcgggtatc	ttatattgc	7020
caagagcctg	gtaactacga	ggtgtccatc	aagttcaatg	atgagcacat	cccgaaagc	7080

-continued

ccctacctgg	tgccggcat	cgacccctcc	gacgacgccc	gccgcctcac	tgttatgagc	7140
cttcaggaat	cgggattaaa	agttaaccag	ccagcatcct	ttgtctataag	gttgaatggc	7200
gcaaaaggca	agattgatgc	aaaggtgcac	agcccctctg	gagccgtgga	ggagtgccac	7260
gtgtctgagc	tggagccaga	taagtatgct	gttcgttca	tccctcatga	aatgggtgc	7320
cacaccatcg	atgtcaagtt	caatgggagc	cacgtggtgt	gaagccctt	caaagtgcgc	7380
gttggggagc	ctggacaagc	ggggaaaccct	gcccctggtgt	ccgcctatgg	cacgggactc	7440
gaagggggca	ccacaggtat	ccagtcggaa	ttctttattta	acaccacccg	agcaggtcca	7500
gggacattat	ccgtcaccat	cgaaggccca	tccaagggtta	aatggattt	ccagggaaaca	7560
cctgaagggt	acaagtcat	gtacacccccc	atggctcctg	gtactacact	gtcagcgctc	7620
aaatacggtg	ggcccaaccca	catcgtggc	agtcccttca	aggccaaagg	gacaggccag	7680
cgtctagttt	gcccggctc	agccaacag	acctcatcca	tcctgggat	gtcagtgacc	7740
aggtcgtcta	cagagacctg	ctatagcgcc	attcccaagg	catcctcgga	cgccagcaag	7800
gtgacctcta	agggggcagg	gctctaaag	gcctttgtgg	gccagaagag	ttcccttcctg	7860
gtggactgca	gcaaaagctgg	ctccaacatg	ctgctgatcg	gggtccatgg	gcccaccacc	7920
ccctgcgagg	aggtctccat	gaagcatgt	ggcaaccagc	aataacaacgt	cacatacg	7980
gtcaaggaga	ggggcgatta	tgtgctggct	gtgaagtggg	gggaggaaca	catccctggc	8040
agccctttt	atgtcacagt	gccttaaaac	agttttctca	aatcctggag	agagtttttg	8100
tggttgctt	tgttgctt	ttgttaattca	ttttatacaa	agccctccag	cctgtttgt	8160
gggctgaaac	cccatcccta	aaatattgt	gttgtaaaat	gccttcagaa	ataagtccct	8220
gactggactc	ttgagggaca	tattggagaa	tcttaagaaa	tgcaagctt	ttcagggggc	8280
tgagaagatc	ctgagttacac	taggtgcaaa	ccagaactct	tggtggaaaca	gaccagccac	8340
tgcagcagac	agaccaggaa	cacaatgaga	ctgacattt	aaaaaaacaa	aactggctag	8400
cctgagctgc	tggttcactc	ttcagcattt	atgaaacaag	gctaggggaa	gatggcaga	8460
gaaaaagggg	acacctagtt	tggttgtcat	ttggcaaagg	agatgactt	aaatccgctt	8520
aatctttcc	agtgtccgt	ttaatgtatt	tggctttag	atcaactagca	ctgttttacc	8580
gtctctcatc	gccaacaccc	ccatgctctg	tggccttctt	acacttctca	gagggcagag	8640
tggcagccgg	gccccctaca	gaaactcaga	gggcagagtg	gcagccaggc	ccacatgtct	8700
ctcaagtacc	tgtccccctcg	ctctggtgat	tatttcttgc	agaatcacca	cacgagacca	8760
tcccgccagt	catggtttttgc	ctttagtttgc	ccaaagtccgt	ttcagtcct	tccttggct	8820
gaagaaattc	tgcagtgccg	agoagttcc	cacttgccaa	agatccctt	taaccaacac	8880
tagcccttgt	ttttaacaca	cgctccagcc	cttcatcagc	ctggcagtc	ttacccaaat	8940
gtttaaagt	atctcagagg	ggcccatgga	ttaacgcct	catcccaagg	tccgtccat	9000
gacataacac	tccacacccg	ccccagccaa	cttcatgggt	cacttttct	ggaaaataat	9060
gatctgtaca	gacaggacag	aatgaaactc	ctgcgggtct	ttggcctgaa	agttggaaat	9120
ggttggggga	gagaagggca	gcagcttatt	ggtggtctt	tcaccatgg	cagaaaacgt	9180
gagagctgtg	tggtgccaga	atccagaaat	gaggtgtagg	gaattttgcc	tgccttcctg	9240
cagacctgag	ctggcttgg	aatgaggta	aagtgtcagg	gacgttgct	gagccaaat	9300
gtgttagtgt	gtctggccag	gcagacctt	aggttttgc	gcttagtcct	gaggaagtgg	9360
ccactcttgt	ggcaggtgta	gtatctgggg	cgagtgttgg	gggtaaaagc	ccaccctaca	9420

-continued

gaaagtggaa cagcccgag cctgatgtga aaggaccacg ggtgtttaa gctgggacac 9480
 ggaagccaaa ctggaatcaa acgcccactg taaattgtat cttataactt attaaataaa 9540
 acatttgctc cgtaaagttg 9560

<210> SEQ ID NO 24
 <211> LENGTH: 2591
 <212> TYPE: PRT
 <213> ORGANISM: Homo sapiens

<400> SEQUENCE: 24

Met Pro Val Thr Glu Lys Asp Leu Ala Glu Asp Ala Pro Trp Lys Lys
 1 5 10 15

Ile Gln Gln Asn Thr Phe Thr Arg Trp Cys Asn Glu His Leu Lys Cys
 20 25 30

Val Asn Lys Arg Ile Gly Asn Leu Gln Thr Asp Leu Ser Asp Gly Leu
 35 40 45

Arg Leu Ile Ala Leu Leu Glu Val Leu Ser Gln Lys Arg Met Tyr Arg
 50 55 60

Lys Tyr His Gln Arg Pro Thr Phe Arg Gln Met Gln Leu Glu Asn Val
 65 70 75 80

Ser Val Ala Leu Glu Phe Leu Asp Arg Glu Ser Ile Lys Leu Val Ser
 85 90 95

Ile Asp Ser Lys Ala Ile Val Asp Gly Asn Leu Lys Leu Ile Leu Gly
 100 105 110

Leu Val Trp Thr Leu Ile Leu His Tyr Ser Ile Ser Met Pro Val Trp
 115 120 125

Glu Asp Glu Gly Asp Asp Ala Lys Lys Gln Thr Pro Lys Gln Arg
 130 135 140

Leu Leu Gly Trp Ile Gln Asn Lys Ile Pro Tyr Leu Pro Ile Thr Asn
 145 150 155 160

Phe Asn Gln Asn Trp Gln Asp Gly Lys Ala Leu Gly Ala Leu Val Asp
 165 170 175

Ser Cys Ala Pro Gly Leu Cys Pro Asp Trp Glu Ser Trp Asp Pro Gln
 180 185 190

Lys Pro Val Asp Asn Ala Arg Glu Ala Met Gln Gln Ala Asp Asp Trp
 195 200 205

Leu Gly Val Pro Gln Val Ile Thr Pro Glu Glu Ile Ile His Pro Asp
 210 215 220

Val Asp Glu His Ser Val Met Thr Tyr Leu Ser Gln Phe Pro Lys Ala
 225 230 235 240

Lys Leu Lys Pro Gly Ala Pro Leu Lys Pro Lys Leu Asn Pro Lys Lys
 245 250 255

Ala Arg Ala Tyr Gly Arg Gly Ile Glu Pro Thr Gly Asn Met Val Lys
 260 265 270

Gln Pro Ala Lys Phe Thr Val Asp Thr Ile Ser Ala Gly Gln Gly Asp
 275 280 285

Val Met Val Phe Val Glu Asp Pro Glu Gly Asn Lys Glu Glu Ala Gln
 290 295 300

Val Thr Pro Asp Ser Asp Lys Asn Lys Thr Tyr Ser Val Glu Tyr Leu
 305 310 315 320

Pro Lys Val Thr Gly Leu His Lys Val Thr Val Leu Phe Ala Gly Gln
 325 330 335

-continued

His Ile Ser Lys Ser Pro Phe Glu Val Ser Val Asp Lys Ala Gln Gly
 340 345 350
 Asp Ala Ser Lys Val Thr Ala Lys Gly Pro Gly Leu Ala Val Gly
 355 360 365
 Asn Ile Ala Asn Lys Pro Thr Tyr Phe Asp Ile Tyr Thr Ala Gly Ala
 370 375 380
 Gly Val Gly Asp Ile Gly Val Glu Val Glu Asp Pro Gln Gly Lys Asn
 385 390 395 400
 Thr Val Glu Leu Leu Val Glu Asp Lys Gly Asn Gln Val Tyr Arg Cys
 405 410 415
 Val Tyr Lys Pro Met Gln Pro Gly Pro His Val Val Lys Ile Phe Phe
 420 425 430
 Ala Gly Asp Thr Ile Pro Lys Ser Pro Phe Val Val Gln Val Gly Glu
 435 440 445
 Ala Cys Asn Pro Asn Ala Cys Arg Ala Ser Gly Arg Gly Leu Gln Pro
 450 455 460
 Lys Gly Val Arg Ile Arg Glu Thr Thr Asp Phe Lys Val Asp Thr Lys
 465 470 475 480
 Ala Ala Gly Ser Gly Glu Leu Gly Val Thr Met Lys Gly Pro Lys Gly
 485 490 495
 Leu Glu Glu Leu Val Lys Gln Lys Asp Phe Leu Asp Gly Val Tyr Ala
 500 505 510
 Phe Glu Tyr Tyr Pro Ser Thr Pro Gly Arg Tyr Ser Ile Ala Ile Thr
 515 520 525
 Trp Gly Gly His His Ile Pro Lys Ser Pro Phe Glu Val Gln Val Gly
 530 535 540
 Pro Glu Ala Gly Met Gln Lys Val Arg Ala Trp Gly Pro Gly Leu His
 545 550 555 560
 Gly Gly Ile Val Gly Arg Ser Ala Asp Phe Val Val Glu Ser Ile Gly
 565 570 575
 Ser Glu Val Gly Ser Leu Gly Phe Ala Ile Glu Gly Pro Ser Gln Ala
 580 585 590
 Lys Ile Glu Tyr Asn Asp Gln Asn Asp Gly Ser Cys Asp Val Lys Tyr
 595 600 605
 Trp Pro Lys Glu Pro Gly Glu Tyr Ala Val His Ile Met Cys Asp Asp
 610 615 620
 Glu Asp Ile Lys Asp Ser Pro Tyr Met Ala Phe Ile His Pro Ala Thr
 625 630 635 640
 Gly Gly Tyr Asn Pro Asp Leu Val Arg Ala Tyr Gly Pro Gly Leu Glu
 645 650 655
 Lys Ser Gly Cys Ile Val Asn Asn Leu Ala Glu Phe Thr Val Asp Pro
 660 665 670
 Lys Asp Ala Gly Lys Ala Pro Leu Lys Ile Phe Ala Gln Asp Gly Glu
 675 680 685
 Gly Gln Arg Ile Asp Ile Gln Met Lys Asn Arg Met Asp Gly Thr Tyr
 690 695 700
 Ala Cys Ser Tyr Thr Pro Val Lys Ala Ile Lys His Thr Ile Ala Val
 705 710 715 720
 Val Trp Gly Gly Val Asn Ile Pro His Ser Pro Tyr Arg Val Asn Ile
 725 730 735
 Gly Gln Gly Ser His Pro Gln Lys Val Lys Val Phe Gly Pro Gly Val

-continued

740	745	750	
Glu Arg Ser Gly Leu Lys Ala Asn Glu Pro Thr His Phe Thr Val Asp			
755	760	765	
Cys Thr Glu Ala Gly Glu Gly Asp Val Ser Val Gly Ile Lys Cys Asp			
770	775	780	
Ala Arg Val Leu Ser Glu Asp Glu Glu Asp Val Asp Phe Asp Ile Ile			
785	790	795	800
His Asn Ala Asn Asp Thr Phe Thr Val Lys Tyr Val Pro Pro Ala Ala			
805	810	815	
Gly Arg Tyr Thr Ile Lys Val Leu Phe Ala Ser Gln Glu Ile Pro Ala			
820	825	830	
Ser Pro Phe Arg Val Lys Val Asp Pro Ser His Asp Ala Ser Lys Val			
835	840	845	
Lys Ala Glu Gly Pro Gly Leu Ser Lys Ala Gly Val Glu Asn Gly Lys			
850	855	860	
Pro Thr His Phe Thr Val Tyr Thr Lys Gly Ala Gly Lys Ala Pro Leu			
865	870	875	880
Asn Val Gln Phe Asn Ser Pro Leu Pro Gly Asp Ala Val Lys Asp Leu			
885	890	895	
Asp Ile Ile Asp Asn Tyr Asp Tyr Ser His Thr Val Lys Tyr Thr Pro			
900	905	910	
Thr Gln Gln Gly Asn Met Gln Val Leu Val Thr Tyr Gly Gly Asp Pro			
915	920	925	
Ile Pro Lys Ser Pro Phe Thr Val Gly Val Ala Ala Pro Leu Asp Leu			
930	935	940	
Ser Lys Ile Lys Leu Asn Gly Leu Glu Asn Arg Val Glu Val Gly Lys			
945	950	955	960
Asp Gln Glu Phe Thr Val Asp Thr Arg Gly Ala Gly Gln Gly Lys			
965	970	975	
Leu Asp Val Thr Ile Leu Ser Pro Ser Arg Lys Val Val Pro Cys Leu			
980	985	990	
Val Thr Pro Val Thr Gly Arg Glu Asn Ser Thr Ala Lys Phe Ile Pro			
995	1000	1005	
Arg Glu Glu Gly Leu Tyr Ala Val Asp Val Thr Tyr Asp Gly His			
1010	1015	1020	
Pro Val Pro Gly Ser Pro Tyr Thr Val Glu Ala Ser Leu Pro Pro			
1025	1030	1035	
Asp Pro Ser Lys Val Lys Ala His Gly Pro Gly Leu Glu Gly Gly			
1040	1045	1050	
Leu Val Gly Lys Pro Ala Glu Phe Thr Ile Asp Thr Lys Gly Ala			
1055	1060	1065	
Gly Thr Gly Gly Leu Gly Leu Thr Val Glu Gly Pro Cys Glu Ala			
1070	1075	1080	
Lys Ile Glu Cys Ser Asp Asn Gly Asp Gly Thr Cys Ser Val Ser			
1085	1090	1095	
Tyr Leu Pro Thr Lys Pro Gly Glu Tyr Phe Val Asn Ile Leu Phe			
1100	1105	1110	
Glu Glu Val His Ile Pro Gly Ser Pro Phe Lys Ala Asp Ile Glu			
1115	1120	1125	
Met Pro Phe Asp Pro Ser Lys Val Val Ala Ser Gly Pro Gly Leu			
1130	1135	1140	

-continued

Glu His Gly Lys Val Gly Glu Ala Gly Leu Leu Ser Val Asp Cys
 1145 1150 1155
 Ser Glu Ala Gly Pro Gly Ala Leu Gly Leu Glu Ala Val Ser Asp
 1160 1165 1170
 Ser Gly Thr Lys Ala Glu Val Ser Ile Gln Asn Asn Lys Asp Gly
 1175 1180 1185
 Thr Tyr Ala Val Thr Tyr Val Pro Leu Thr Ala Gly Met Tyr Thr
 1190 1195 1200
 Leu Thr Met Lys Tyr Gly Gly Glu Leu Val Pro His Phe Pro Ala
 1205 1210 1215
 Arg Val Lys Val Glu Pro Ala Val Asp Thr Ser Arg Ile Lys Val
 1220 1225 1230
 Phe Gly Pro Gly Ile Glu Gly Lys Asp Val Phe Arg Glu Ala Thr
 1235 1240 1245
 Thr Asp Phe Thr Val Asp Ser Arg Pro Leu Thr Gln Val Gly Gly
 1250 1255 1260
 Asp His Ile Lys Ala His Ile Ala Asn Pro Ser Gly Ala Ser Thr
 1265 1270 1275
 Glu Cys Phe Val Thr Asp Asn Ala Asp Gly Thr Tyr Gln Val Glu
 1280 1285 1290
 Tyr Thr Pro Phe Glu Lys Gly Leu His Val Val Glu Val Thr Tyr
 1295 1300 1305
 Asp Asp Val Pro Ile Pro Asn Ser Pro Phe Lys Val Ala Val Thr
 1310 1315 1320
 Glu Gly Cys Gln Pro Ser Arg Val Gln Ala Gln Gly Pro Gly Leu
 1325 1330 1335
 Lys Glu Ala Phe Thr Asn Lys Pro Asn Val Phe Thr Val Val Thr
 1340 1345 1350
 Arg Gly Ala Gly Ile Gly Gly Leu Gly Ile Thr Val Glu Gly Pro
 1355 1360 1365
 Ser Glu Ser Lys Ile Asn Cys Arg Asp Asn Lys Asp Gly Ser Cys
 1370 1375 1380
 Ser Ala Glu Tyr Ile Pro Phe Ala Pro Gly Asp Tyr Asp Val Asn
 1385 1390 1395
 Ile Thr Tyr Gly Gly Ala His Ile Pro Gly Ser Pro Phe Arg Val
 1400 1405 1410
 Pro Val Lys Asp Val Val Asp Pro Ser Lys Val Lys Ile Ala Gly
 1415 1420 1425
 Pro Gly Leu Gly Ser Gly Val Arg Ala Arg Val Leu Gln Ser Phe
 1430 1435 1440
 Thr Val Asp Ser Ser Lys Ala Gly Leu Ala Pro Leu Glu Val Arg
 1445 1450 1455
 Val Leu Gly Pro Arg Gly Leu Val Glu Pro Val Asn Val Val Asp
 1460 1465 1470
 Asn Gly Asp Gly Thr His Thr Val Thr Tyr Thr Pro Ser Gln Glu
 1475 1480 1485
 Gly Pro Tyr Met Val Ser Val Lys Tyr Ala Asp Glu Glu Ile Pro
 1490 1495 1500
 Arg Ser Pro Phe Lys Val Lys Val Leu Pro Thr Tyr Asp Ala Ser
 1505 1510 1515
 Lys Val Thr Ala Ser Gly Pro Gly Leu Ser Ser Tyr Gly Val Pro
 1520 1525 1530

-continued

Ala Ser Leu Pro Val Asp Phe Ala Ile Asp Ala Arg Asp Ala Gly
 1535 1540 1545
 Glu Gly Leu Leu Ala Val Gln Ile Thr Asp Gln Glu Gly Lys Pro
 1550 1555 1560
 Lys Arg Ala Ile Val His Asp Asn Lys Asp Gly Thr Tyr Ala Val
 1565 1570 1575
 Thr Tyr Ile Pro Asp Lys Thr Gly Arg Tyr Met Ile Gly Val Thr
 1580 1585 1590
 Tyr Gly Gly Asp Asp Ile Pro Leu Ser Pro Tyr Arg Ile Arg Ala
 1595 1600 1605
 Thr Gln Thr Gly Asp Ala Ser Lys Cys Leu Ala Thr Gly Pro Gly
 1610 1615 1620
 Ile Ala Ser Thr Val Lys Thr Gly Glu Glu Val Gly Phe Val Val
 1625 1630 1635
 Asp Ala Lys Thr Ala Gly Lys Gly Lys Val Thr Cys Thr Val Leu
 1640 1645 1650
 Thr Pro Asp Gly Thr Glu Ala Glu Ala Asp Val Ile Glu Asn Glu
 1655 1660 1665
 Asp Gly Thr Tyr Asp Ile Phe Tyr Thr Ala Ala Lys Pro Gly Thr
 1670 1675 1680
 Tyr Val Ile Tyr Val Arg Phe Gly Gly Val Asp Ile Pro Asn Ser
 1685 1690 1695
 Pro Phe Thr Val Met Ala Thr Asp Gly Glu Val Thr Ala Val Glu
 1700 1705 1710
 Glu Ala Pro Val Thr Glu Glu Ala Tyr Val Pro Val Ser Asp Met
 1715 1720 1725
 Asn Gly Leu Gly Phe Lys Pro Phe Asp Leu Val Ile Pro Phe Ala
 1730 1735 1740
 Val Arg Lys Gly Glu Ile Thr Gly Glu Val His Met Pro Ser Gly
 1745 1750 1755
 Lys Thr Ala Thr Pro Glu Ile Val Asp Asn Lys Asp Gly Thr Val
 1760 1765 1770
 Thr Val Arg Tyr Ala Pro Thr Glu Val Gly Leu His Glu Met His
 1775 1780 1785
 Ile Lys Tyr Met Gly Ser His Ile Pro Glu Ser Pro Leu Gln Phe
 1790 1795 1800
 Tyr Val Asn Tyr Pro Asn Ser Gly Ser Val Ser Ala Tyr Gly Pro
 1805 1810 1815
 Gly Leu Val Tyr Gly Val Ala Asn Lys Thr Ala Thr Phe Thr Ile
 1820 1825 1830
 Val Thr Glu Asp Ala Gly Glu Gly Gly Leu Asp Leu Ala Ile Glu
 1835 1840 1845
 Gly Pro Ser Lys Ala Glu Ile Ser Cys Ile Asp Asn Lys Asp Gly
 1850 1855 1860
 Thr Cys Thr Val Thr Tyr Leu Pro Thr Leu Pro Gly Asp Tyr Ser
 1865 1870 1875
 Ile Leu Val Lys Tyr Asn Asp Lys His Ile Pro Gly Ser Pro Phe
 1880 1885 1890
 Thr Ala Lys Ile Thr Asp Asp Ser Arg Arg Cys Ser Gln Val Lys
 1895 1900 1905
 Leu Gly Ser Ala Ala Asp Phe Leu Leu Asp Ile Ser Glu Thr Asp

-continued

1910	1915	1920
Leu Ser Ser Leu Thr Ala Ser Ile Lys Ala Pro Ser Gly Arg Asp		
1925	1930	1935
Glu Pro Cys Leu Leu Lys Arg Leu Pro Asn Asn His Ile Gly Ile		
1940	1945	1950
Ser Phe Ile Pro Arg Glu Val Gly Glu His Leu Val Ser Ile Lys		
1955	1960	1965
Lys Asn Gly Asn His Val Ala Asn Ser Pro Val Ser Ile Met Val		
1970	1975	1980
Val Gln Ser Glu Ile Gly Asp Ala Arg Arg Ala Lys Val Tyr Gly		
1985	1990	1995
Arg Gly Leu Ser Glu Gly Arg Thr Phe Glu Met Ser Asp Phe Ile		
2000	2005	2010
Val Asp Thr Arg Asp Ala Gly Tyr Gly Gly Ile Ser Leu Ala Val		
2015	2020	2025
Glu Gly Pro Ser Lys Val Asp Ile Gln Thr Glu Asp Leu Glu Asp		
2030	2035	2040
Gly Thr Cys Lys Val Ser Tyr Phe Pro Thr Val Pro Gly Val Tyr		
2045	2050	2055
Ile Val Ser Thr Lys Phe Ala Asp Glu His Val Pro Gly Ser Pro		
2060	2065	2070
Phe Thr Val Lys Ile Ser Gly Glu Gly Arg Val Lys Glu Ser Ile		
2075	2080	2085
Thr Arg Thr Ser Arg Ala Pro Ser Val Ala Thr Val Gly Ser Ile		
2090	2095	2100
Cys Asp Leu Asn Leu Lys Ile Pro Glu Ile Asn Ser Ser Asp Met		
2105	2110	2115
Ser Ala His Val Thr Ser Pro Ser Gly Arg Val Thr Glu Ala Glu		
2120	2125	2130
Ile Val Pro Met Gly Lys Asn Ser His Cys Val Arg Phe Val Pro		
2135	2140	2145
Gln Glu Met Gly Val His Thr Val Ser Val Lys Tyr Arg Gly Gln		
2150	2155	2160
His Val Thr Gly Ser Pro Phe Gln Phe Thr Val Gly Pro Leu Gly		
2165	2170	2175
Glu Gly Gly Ala His Lys Val Arg Ala Gly Gly Pro Gly Leu Glu		
2180	2185	2190
Arg Gly Glu Ala Gly Val Pro Ala Glu Phe Ser Ile Trp Thr Arg		
2195	2200	2205
Glu Ala Gly Ala Gly Gly Leu Ser Ile Ala Val Glu Gly Pro Ser		
2210	2215	2220
Lys Ala Glu Ile Thr Phe Asp Asp His Lys Asn Gly Ser Cys Gly		
2225	2230	2235
Val Ser Tyr Ile Ala Gln Glu Pro Gly Asn Tyr Glu Val Ser Ile		
2240	2245	2250
Lys Phe Asn Asp Glu His Ile Pro Glu Ser Pro Tyr Leu Val Pro		
2255	2260	2265
Val Ile Ala Pro Ser Asp Asp Ala Arg Arg Leu Thr Val Met Ser		
2270	2275	2280
Leu Gln Glu Ser Gly Leu Lys Val Asn Gln Pro Ala Ser Phe Ala		
2285	2290	2295

-continued

Ile	Arg	Leu	Asn	Gly	Ala	Lys	Gly	Lys	Ile	Asp	Ala	Lys	Val	His
2300					2305				2310					
Ser	Pro	Ser	Gly	Ala	Val	Glu	Glu	Cys	His	Val	Ser	Glu	Leu	Glu
2315					2320				2325					
Pro	Asp	Lys	Tyr	Ala	Val	Arg	Phe	Ile	Pro	His	Glu	Asn	Gly	Val
2330					2335				2340					
His	Thr	Ile	Asp	Val	Lys	Phe	Asn	Gly	Ser	His	Val	Val	Gly	Ser
2345					2350				2355					
Pro	Phe	Lys	Val	Arg	Val	Gly	Glu	Pro	Gly	Gln	Ala	Gly	Asn	Pro
2360					2365				2370					
Ala	Leu	Val	Ser	Ala	Tyr	Gly	Thr	Gly	Leu	Glu	Gly	Gly	Thr	Thr
2375					2380				2385					
Gly	Ile	Gln	Ser	Glu	Phe	Phe	Ile	Asn	Thr	Thr	Arg	Ala	Gly	Pro
2390					2395				2400					
Gly	Thr	Leu	Ser	Val	Thr	Ile	Glu	Gly	Pro	Ser	Lys	Val	Lys	Met
2405					2410				2415					
Asp	Cys	Gln	Glu	Thr	Pro	Glu	Gly	Tyr	Lys	Val	Met	Tyr	Thr	Pro
2420					2425				2430					
Met	Ala	Pro	Gly	Asn	Tyr	Leu	Ile	Ser	Val	Lys	Tyr	Gly	Gly	Pro
2435					2440				2445					
Asn	His	Ile	Val	Gly	Ser	Pro	Phe	Lys	Ala	Lys	Val	Thr	Gly	Gln
2450					2455				2460					
Arg	Leu	Val	Ser	Pro	Gly	Ser	Ala	Asn	Glu	Thr	Ser	Ser	Ile	Leu
2465					2470				2475					
Val	Glu	Ser	Val	Thr	Arg	Ser	Ser	Thr	Glu	Thr	Cys	Tyr	Ser	Ala
2480					2485				2490					
Ile	Pro	Lys	Ala	Ser	Ser	Asp	Ala	Ser	Lys	Val	Thr	Ser	Lys	Gly
2495					2500				2505					
Ala	Gly	Leu	Ser	Lys	Ala	Phe	Val	Gly	Gln	Lys	Ser	Ser	Phe	Leu
2510					2515				2520					
Val	Asp	Cys	Ser	Lys	Ala	Gly	Ser	Asn	Met	Leu	Leu	Ile	Gly	Val
2525					2530				2535					
His	Gly	Pro	Thr	Thr	Pro	Cys	Glu	Glu	Val	Ser	Met	Lys	His	Val
2540					2545				2550					
Gly	Asn	Gln	Gln	Tyr	Asn	Val	Thr	Tyr	Val	Val	Lys	Glu	Arg	Gly
2555					2560				2565					
Asp	Tyr	Val	Leu	Ala	Val	Lys	Trp	Gly	Glu	Glu	His	Ile	Pro	Gly
2570					2575				2580					
Ser	Pro	Phe	His	Val	Thr	Val	Pro							
2585					2590									

<210> SEQ ID NO 25

<211> LENGTH: 9434

<212> TYPE: DNA

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 25

gcggccaggg	gcggggcgcc	gcagagcagc	accggccgtg	gctccggtag	cagcaagttc	60
gaaccccgct	cccgctccgc	ttcggttctc	gctccttcgg	cccttgggcc	tccaaacacc	120
agtccccggc	agtcgttgc	gcattgcgtc	ctccccgcca	ccaggatgcc	ggtaaccgag	180
aaggatctag	ctgaggacgc	gccttggaaag	aagatccagc	agaacacgtt	cacacgctgg	240
tgcaacgagc	acctcaagtgc	cgtgaacaaa	cgcacggca	acctgcagac	cgacacctgagc	300

-continued

gacggggtgc ggctcatcgc gctgctcgag gtgctcagcc agaagcgcac gtaccgcaag 360
taccatcagc ggcccacctt tcgeccagatg cagctcgaga atgtgtccgt ggccgtcgag 420
ttcctggacc gtgagagcat caagctcggt tccatcgata gcaaagccat tggatggg 480
aacctgaagc tcatcttggg tctgggtgtgg acgctgatcc tccactactc catctccatg 540
cccggtgtggg aggtgaagg ggtatgtatgat gccaagaagc agacgccaagg gcagaggctg 600
ctgggggtgga ttcaagaacaa gatcccctac ttgcggatca ccaactttaa ccagaactgg 660
caagacggca aagccctggg agccctggta gacagctgtg ctccaggatct gtgcccagac 720
tggaaatccctt gggaccggca gaagccctgtg gataatgcac gagaagccat gcagcaggca 780
gtgactggc tgggtgtccc acaggtcatc actcctgtgaa aatcattca cccggatgtg 840
gacgagact cagttatgac ttacctgtcc cagttccca aagccaagct caagccgggg 900
gtccctctca aacccaaact caacccgaag aaagccaggg cctatggcag aggaatcgag 960
cccaactggaa acatggtgaa gcagccagcc aagttcactg tggacccat cagcgggggg 1020
caaggagacg tggatgggttt tggatgggac ccagaaggaa acaaagagga ggcacaagtg 1080
acccctgaca gtgacaagaa caagacatac tctgtggagt atctgcccggg ggtccacccggg 1140
ctacacaaag tcacagtcct ctttgcagga cagcacatct ccaagagccc atttgaagtg 1200
agtgttgcaca agggccaggg agatgcccactg aaagtcaactg caaaagggtcc aggggtggaa 1260
gtgttaggaa acatcgccaa taagccacc tactttgaca tctatacgcc agggagctgg 1320
gtgggtgaca ttgggtgtgg aggtaatggat ccccaggggaa agaacaccgt ggagtgtc 1380
gtggaaagaca aaggaaacca ggtgtatcga tggatggata aacccatgca gcctggccct 1440
cacgtgttca agatcttctt tggatggggac actattccta agagtcctt cgttgcag 1500
gttggggaaag cctgcaatcc aaatgcctgc cggccagtg gcccaggct acaacccaaa 1560
ggcgtccgttccggggagac cacagattc aagggttgcaca ccaagactgc aggaatggg 1620
gagctcggttgcataaccatgaa gggccctaa ggtctggagg agctggtgaa gcagaaagac 1680
tttctggatgggtctacgc attcgagtttaccccgac ccccgaggatcatacgcatt 1740
ccatcacat gggggggaca ccacattca aagagccctt tggatggatca agttggccct 1800
gaagcggggta tgcagaaagt cctgtctgg gggccctggcc tccatgggtgg gatttgcggg 1860
cggtcagccgg acttcgtgttgc agatccattt ggtctgtgg tgggtctctt ggggtttgc 1920
attgttgcaccccttcagggc aaagattgtg tacaacgacc agaatgtatgg atcgtgtgtat 1980
gtcaaaataact ggcccaagga gcctggcgaa tatgtctgttc acatcatgtg tgacgacgaa 2040
gacatcaagg acagcccgta catggcccttc atccaccccg ccacggggagg ctacaaccct 2100
gatctggatcc gggatggatcc taaggatgttgc gggaaatctg gatgttgcatttgc 2160
ggcggatgttca ctgtggatcc taaggatgttgc gggaaatctg cttaaagat atttgcatt 2220
gatggggaaag gccaacgcac tgacatccag atgttgcacccggg cacatgtca 2280
tgatgttgcataccca gggatggatcc taaggatgttgc gggaaatctg gatgttgcatttgc 2340
aaatcccgcc acagccctta cagggtcaac atccggccat gtagccatcc tcagaaggcc 2400
aaatgttttggccagggtgttgc gggatggatcc taaggatgttgc gggaaatctg cttaaagat 2460
acgggtggact gtactgaggc tggggaaatgttgc gatgttgcatttgc ttggcattaa gtgtgtat 2520
cggttgcataccca gggatggatcc taaggatgttgc gggaaatctg cttaaagat atttgcatt 2580

-continued

acgttcacag	tcaaatatgt	gcctcctgct	gtggcgat	acactatcaa	agttctttt	2640
gcatctcagg	aaatccccgc	cagcccttgc	agagtcaaag	ttgacccttc	ccacgatgcc	2700
agcaaagtga	aggcagaagg	cccagggtc	agcaaagcag	gtgtggaaa	tggaaaccg	2760
acccacttca	ctgtctacac	caagggggct	gggaaagccc	cgctcaacgt	gcagttcaac	2820
agcccttcc	ctggcgatgc	agtgaaggat	ttggatatca	tcgataatta	tgactactct	2880
cacacggta	aatatacaccc	cacccaacag	ggcaacatgc	aggttctgg	gacttacgg	2940
ggcgatccca	tccctaaaag	cccttcaact	gtgggtgttg	ctgcaccgct	ggatctgagc	3000
aagataaaac	tcaatgggct	ggaaaacagg	gtggaagtgt	ggaaggatca	ggagttcacc	3060
gttataccca	ggggggcagg	aggccagggg	aagctggacg	tgacaatcct	cagccctct	3120
cggaaaggctg	tgccatgcct	agtgacacct	gtgacaggcc	gggagaacag	cacggccaag	3180
ttcatccctc	gggaggaggg	gtgttatgt	gtagacgtga	cctacgatgg	acaccctgt	3240
cccgaggagcc	cctacacagt	ggaggcctcg	ctgccaccag	atcccagcaa	ggtgaaggcc	3300
cacggtcccg	gcctcgaagg	tggtctcg	ggcaagcctg	ccgagttcac	catcgatacc	3360
aaaggagctg	gtactggagg	tctggctta	acggtgaaag	gtccgtgcga	ggccaaaatc	3420
gagtgctccg	acaatggtga	tggacactgc	tccgtcttt	accttccac	aaaaccggg	3480
gagtaacttcg	tcaacatcct	ctttaagaa	gtccacatac	ctgggtctcc	cttcaaagct	3540
gacattgaaa	tgcctttga	ccctctaaa	gtcgtggcat	cgggggccagg	tctcgagcac	3600
gggaagggtgg	gtgaagctgg	cctccttagc	gtcgactgt	cggaagcggg	accgggggccc	3660
ctggggcttgg	aagctgtc	ggactcggga	acaaaaggcg	aagtcaagtat	tcagaacaac	3720
aaagatggca	cctacgcggt	gacctacgtg	ccctgacgg	ccggcatgt	cacgttgacc	3780
atgaagtatg	gtggcgaact	cgtgccacac	ttccccgccc	gggtcaagg	ggagcccgcc	3840
gtggacacca	gcaggatcaa	agtctttgga	ccaggaatag	aaggaaaga	tgtgttccgg	3900
gaagctacca	ccgactttac	agttgactct	cgccgcgt	cccaggttgg	gggtgaccac	3960
atcaaggccc	acattgccaa	ccctcaggg	gcctccaccc	agtgtttgt	cacagacaat	4020
cgggatggga	cctaccagg	ggaatacaca	ccctttgaga	aaggcttcca	tgtgttggag	4080
gtgacatatg	atgacgtgcc	tatccaaac	agtcccttca	aggtggctgt	cactgaaggc	4140
tgccagccat	ctagggtgca	agcccaagg	cctggattga	aagggttcc	taccaacaag	4200
cccaatgtct	tcaccgtggt	taccagaggc	gcaggaattt	gtgggttgg	cataactgtt	4260
gagggaccat	cagactcgaa	gataaattgc	agagacaaca	aggatggcag	ctgcagtgt	4320
gagtaatcc	cttcgcacc	gggggattac	gatgttaata	tcacataatgg	aggagccac	4380
atccccggca	gcccccttca	ggttcctgt	aaggatgtt	tggacccac	caaggtcaag	4440
attgcggccc	ccgggctggg	ctcaggg	cgagcccg	tcctgcagtc	cttcacgg	4500
gacagcagca	aggctggc	ggctccgt	gaagtgg	ttctggccc	acgaggctt	4560
gtggagccag	tgaacgtggt	ggacaatgga	gatggcacac	acacagtaac	ctacacccca	4620
tctcaggagg	gaccttacat	ggtctcgtt	aaatatgt	atgaagagat	tcctcgagt	4680
ccctcaagg	tcaagg	tccacat	gatgccag	aagtgtact	cagtggcccc	4740
ggccttagtt	cctatgg	gcctgcc	ctacctgtt	actttgcaat	tgtatggcc	4800
gatgcgggg	aaggcctg	tgctgttca	ataacggacc	aagaaggaaa	acccaaaaga	4860
gccattgtcc	atgacaataa	agatggc	actgtgtca	cctacatccc	cgacaagact	4920

-continued

gggcgcgtata tgattggagt cacctacggg ggtgacgaca tcccacttgc tccttatcg 4980
atccgagcca cacagacggg tgatgccgc aagtgcctgg ccacgggtcc tggatcgcc 5040
tccactgtga aaactggcga agaagtaggg tttgtggtt atgccaagac tgccggaaag 5100
ggtaaagtga cctgcacggt tctgacccca gatggcactg aggccgaggc cgatgtcatt 5160
gagaatgaag atggAACCTA tgacatctt tacacagctg ccaagccggg cacatatgtg 5220
atctatgtgc gcttcgggtgg tggatatt cctaacacgc ccttcactgt catggccaca 5280
gatggggaaag tcacagccgt ggaggaggca ccgggtgaccg aagaggccta tggccca 5340
atgtgacatga acggcctggg atttaaggct tttgaccctt tcattccgtt tggctgtcagg 5400
aaaggagaaa tcactggaga ggtccacatg ccttctggga agacagccac acctgagatt 5460
gtggacaaca aggacggcac ggtcaactgtt agatatgccc ccactgaggt cgggctccat 5520
gagatgcaca tcaaatacat gggcagccac atccctgaga gcccacttca gttctacgtg 5580
aactacccca acagtggaaag tggatctgca tacgggtccag gcctcggtt tggagtgcc 5640
aacaactg ccacccctcac catcgtcaca gaggatgcag gagaagggtgg tctggacttg 5700
gctattgagg gcccctcaaa agcagaaatc agctgcattt acaataaaga tgggacatgc 5760
acagtgaccc acctgcccac tctggccaggc gactacagca ttctggtcaa gtacaatgac 5820
aagcacatcc ctggcagcccc cttcagcc aagatcacag atgacagccg cgggtgtcc 5880
caggtgaagt tgggctcagc cgctgactt ctgctcgaca tcaatggagac tgacccctc 5940
agcctgacgg ccagcattaa ggccccatct ggccgagacg agccctgtct cctgaagagg 6000
ctgccccaca accacattgg catctccctt atccccccggg aagtgggca acatctggtc 6060
agcatcaaga aaaaatggcaa ccatgtggcc aacagccccg tggatcatcat ggtggccag 6120
tcggagattt gtagccccc cggagccaaa gtctatggcc gggccgttc agaaggccgg 6180
actttcgaga tggatctgactt catcggtggc acaagggatg caggatggatgg tggcatatcc 6240
ttggcggtgg aaggccccag caaagtggac atccagacgg aggacctgg aagatggcacc 6300
tgcaaaatctt cctacttccc taccgtgcctt ggggttata tggatccac caaatttcgt 6360
gacgagcacg tggctggag cccatattacc gtgaagatca gtggggaggg aagagtcaaa 6420
gagagcatca cccgcaccag tggggccccc tccgtggccca ctgtcggtgg cattttgtgac 6480
ctgaacactga aaatcccaaga aatcaacacg agtgcattatgt cggccacgt caccagcccc 6540
tctggccgtg tgactgaggc agagattgtt cccatgggg aagacttcaca ctgcgtccgg 6600
tttgcggccccc aggagatggg cgtgcacacg gtcagcgtca agtaccgtgg gcagcacgtc 6660
acccggcagcc cttccagttt caccgtgggg ccacttgggtt aaggaggcgc ccacaagggt 6720
cgggcaggag gcccctggcc gggagagagga gaagcggggag tcccgatgtt gttcagcatt 6780
tggatcccccggg aagcaggccgc tggaggccctt tccatcgatgtt tggagggccc cagtaaggcc 6840
gagattacat tggatgacca taaaatggg tggatcggtt tatcttat tggccaaagag 6900
cctggtaact acggatgttc catcaaggctt aatgtgcgtt acatccggaa aagcccttac 6960
ctggatcggtt tggatcgacc cttccgcacg gcccgcgcgc tggatcgatgtt gggccatgt 7020
gaatcggtt aaaaatggg ccacggcgtt tggatcgatgtt tggatcgatgtt gggccatgt 7080
ggcaagattt atgcaaaatggt gcaacggccca tggatcgatgtt gggatggatgtt ccacgtgtct 7140
gagctggaggc cagataagta tggatcgatgtt tggatcgatgtt atgcaaaatggt tggatcgatgtt 7200

-continued

atcgatgtca	agtcaatgg	gagccacgtg	gttggaaagcc	ccttcaaagt	gcgcgttggg	7260
gagcctggac	aagcggggaa	ccctgcctg	gtgtccgcct	atggcacggg	actcgaaggg	7320
ggcaccacag	gtatccagtc	gaaattctt	attaacacca	cccgagcagg	tccagggaca	7380
ttatccgtca	ccatcgaagg	cccatccaag	gttaaaatgg	attgccagga	aacacctgaa	7440
gggtacaaaag	tcatgtacac	ccccatggct	cctggtaact	acctgatcg	cgtcaaatac	7500
ggtggggcca	accacatgt	gggcagtc	ttcaaggc	aggtgacagg	ccagcgtcta	7560
gttagccctg	gctcagccaa	cgagacctca	tccatctgg	tggagtc	gaccaggtcg	7620
tctacagaga	cctgctatag	cgccattccc	aaggcatcct	cggacgc	caaggtgacc	7680
tctaaggggg	cagggtctc	aaaggc	ttggggc	agagttc	cctggggac	7740
tgcagcaaag	ctggctccaa	catgctgctg	atgggggtcc	atggggccac	cacccctgc	7800
gaggagggtct	ccatgaagca	tgtaggcaac	cagcaataca	acgtcacata	cgtcgtaag	7860
gagagggg	cg	attatgtgct	ggctgtgaag	tggggggagg	aacacatccc	7920
tttcatgtca	cagtgc	cttaaaatc	ctcaaaatc	ggagagagtt	cttgggtt	7980
ctttgttgc	ttgttgtt	ttcatttt	acaaaggc	ccagc	tgtggggct	8040
aaacccatc	cctaaaat	at	tgctgtt	aaatgc	agaaataa	8100
actcttgagg	gacatattgg	agaatctt	aaatgca	cttgg	tggagatgg	8160
gatcctgagt	acacttagtg	caaaccagaa	cttgg	aacagaccag	ccactgc	8220
agacagacca	ggaacacaat	gagactgaca	tttcaaaaaa	acaaaactgg	ctagc	8280
ctgctgg	ttc	actttc	atttat	caagg	gatgg	8340
ggggacac	ct	agttgg	tcatttgg	aaggagat	ctt	8400
ttccagtgtc	cgtgtt	atg	tattgg	cttagat	actgc	8460
categccaac	acccc	atgc	tctgtgg	tcttac	ctc	8520
ccggcaccc	ta	cacaa	ctgg	agtg	ggc	8580
tac	ctgt	ccc	ctcg	ctgt	ttc	8640
cagtc	at	ttt	tttgc	tttca	actgc	8700
attctgc	act	ttt	ccacttgc	ccaa	agatcc	8760
ttgtttt	aa	cacac	gtcc	cacca	ttaacc	8820
agtgtat	ctca	gaggg	tttgc	tttgc	actgc	8880
acactcc	cac	cc	ccat	ccat	tttgc	8940
ttac	act	cc	ctgc	ctgc	tttgc	9000
ggg	gg	gg	gg	gg	gg	9060
tgtgtgg	tc	tttgc	tttgc	tttgc	tttgc	9120
tgagctgg	tttgc	tttgc	tttgc	tttgc	tttgc	9180
tgtgg	tc	tttgc	tttgc	tttgc	tttgc	9240
ttgtgg	tc	tttgc	tttgc	tttgc	tttgc	9300
gga	gg	gg	gg	gg	gg	9360
caaactgg	tcaaa	ccgc	actgt	aaatt	gtatcttata	9420
gctccgt	aaa	gtt				9434

-continued

<210> SEQ ID NO 26
 <211> LENGTH: 2578
 <212> TYPE: PRT
 <213> ORGANISM: Homo sapiens
 <400> SEQUENCE: 26

Met	Pro	Val	Thr	Glu	Lys	Asp	Leu	Ala	Glu	Asp	Ala	Pro	Trp	Lys	Lys	
1				5				10					15			
Ile	Gln	Gln	Asn	Thr	Phe	Thr	Arg	Trp	Cys	Asn	Glu	His	Leu	Lys	Cys	
					20		25					30				
Val	Asn	Lys	Arg	Ile	Gly	Asn	Leu	Gln	Thr	Asp	Leu	Ser	Asp	Gly	Leu	
				35		40					45					
Arg	Leu	Ile	Ala	Leu	Leu	Glu	Val	Leu	Ser	Gln	Lys	Arg	Met	Tyr	Arg	
				50		55					60					
Lys	Tyr	His	Gln	Arg	Pro	Thr	Phe	Arg	Gln	Met	Gln	Leu	Glu	Asn	Val	
				65		70		75			80					
Ser	Val	Ala	Leu	Glu	Phe	Leu	Asp	Arg	Glu	Ser	Ile	Lys	Leu	Val	Ser	
				85		90					95					
Ile	Asp	Ser	Lys	Ala	Ile	Val	Asp	Gly	Asn	Leu	Lys	Leu	Ile	Leu	Gly	
				100		105					110					
Leu	Val	Trp	Thr	Leu	Ile	Leu	His	Tyr	Ser	Ile	Ser	Met	Pro	Val	Trp	
				115		120					125					
Glu	Asp	Glu	Gly	Asp	Asp	Asp	Ala	Lys	Lys	Gln	Thr	Pro	Lys	Gln	Arg	
				130		135					140					
Leu	Leu	Gly	Trp	Ile	Gln	Asn	Lys	Ile	Pro	Tyr	Leu	Pro	Ile	Thr	Asn	
				145		150				155			160			
Phe	Asn	Gln	Asn	Trp	Gln	Asp	Gly	Lys	Ala	Leu	Gly	Ala	Leu	Val	Asp	
				165		170					175					
Ser	Cys	Ala	Pro	Gly	Leu	Cys	Pro	Asp	Trp	Glu	Ser	Trp	Asp	Pro	Gln	
				180		185					190					
Lys	Pro	Val	Asp	Asn	Ala	Arg	Glu	Ala	Met	Gln	Gln	Ala	Asp	Asp	Trp	
				195		200					205					
Leu	Gly	Val	Pro	Gln	Val	Ile	Thr	Pro	Glu	Glu	Ile	Ile	His	Pro	Asp	
				210		215					220					
Val	Asp	Glu	His	Ser	Val	Met	Thr	Tyr	Leu	Ser	Gln	Phe	Pro	Lys	Ala	
				225		230					235			240		
Lys	Leu	Lys	Pro	Gly	Ala	Pro	Leu	Lys	Pro	Lys	Leu	Asn	Pro	Lys	Lys	
				245		250					255					
Ala	Arg	Ala	Tyr	Gly	Arg	Gly	Ile	Glu	Pro	Thr	Gly	Asn	Met	Val	Lys	
				260		265					270					
Gln	Pro	Ala	Lys	Phe	Thr	Val	Asp	Thr	Ile	Ser	Ala	Gly	Gln	Gly	Asp	
				275		280					285					
Val	Met	Val	Phe	Val	Glu	Asp	Pro	Glu	Gly	Asn	Lys	Glu	Ala	Gln		
				290		295					300					
Val	Thr	Pro	Asp	Ser	Asp	Lys	Asn	Lys	Thr	Tyr	Ser	Val	Glu	Tyr	Leu	
				305		310				315			320			
Pro	Lys	Val	Thr	Gly	Leu	His	Lys	Val	Thr	Val	Leu	Phe	Ala	Gly	Gln	
				325		330					335					
His	Ile	Ser	Lys	Ser	Pro	Phe	Glu	Val	Ser	Val	Asp	Lys	Ala	Gln	Gly	
				340		345					350					
Asp	Ala	Ser	Lys	Val	Thr	Ala	Lys	Gly	Pro	Gly	Leu	Glu	Ala	Val	Gly	
				355		360					365					
Asn	Ile	Ala	Asn	Lys	Pro	Thr	Tyr	Phe	Asp	Ile	Tyr	Thr	Ala	Gly	Ala	

-continued

370	375	380
Gly Val Gly Asp Ile Gly Val Glu Val Glu Asp Pro Gln Gly Lys Asn		
385	390	395
395		400
Thr Val Glu Leu Leu Val Glu Asp Lys Gly Asn Gln Val Tyr Arg Cys		
405	410	415
Val Tyr Lys Pro Met Gln Pro Gly Pro His Val Val Lys Ile Phe Phe		
420	425	430
Ala Gly Asp Thr Ile Pro Lys Ser Pro Phe Val Val Gln Val Gly Glu		
435	440	445
Ala Cys Asn Pro Asn Ala Cys Arg Ala Ser Gly Arg Gly Leu Gln Pro		
450	455	460
Lys Gly Val Arg Ile Arg Glu Thr Thr Asp Phe Lys Val Asp Thr Lys		
465	470	475
475		480
Ala Ala Gly Ser Gly Glu Leu Gly Val Thr Met Lys Gly Pro Lys Gly		
485	490	495
Leu Glu Glu Leu Val Lys Gln Lys Asp Phe Leu Asp Gly Val Tyr Ala		
500	505	510
Phe Glu Tyr Tyr Pro Ser Thr Pro Gly Arg Tyr Ser Ile Ala Ile Thr		
515	520	525
Trp Gly Gly His His Ile Pro Lys Ser Pro Phe Glu Val Gln Val Gly		
530	535	540
Pro Glu Ala Gly Met Gln Lys Val Arg Ala Trp Gly Pro Gly Leu His		
545	550	555
555		560
Gly Gly Ile Val Gly Arg Ser Ala Asp Phe Val Val Glu Ser Ile Gly		
565	570	575
Ser Glu Val Gly Ser Leu Gly Phe Ala Ile Glu Gly Pro Ser Gln Ala		
580	585	590
Lys Ile Glu Tyr Asn Asp Gln Asn Asp Gly Ser Cys Asp Val Lys Tyr		
595	600	605
Trp Pro Lys Glu Pro Gly Glu Tyr Ala Val His Ile Met Cys Asp Asp		
610	615	620
Glu Asp Ile Lys Asp Ser Pro Tyr Met Ala Phe Ile His Pro Ala Thr		
625	630	635
635		640
Gly Gly Tyr Asn Pro Asp Leu Val Arg Ala Tyr Gly Pro Gly Leu Glu		
645	650	655
Lys Ser Gly Cys Ile Val Asn Asn Leu Ala Glu Phe Thr Val Asp Pro		
660	665	670
Lys Asp Ala Gly Lys Ala Pro Leu Lys Ile Phe Ala Gln Asp Gly Glu		
675	680	685
Gly Gln Arg Ile Asp Ile Gln Met Lys Asn Arg Met Asp Gly Thr Tyr		
690	695	700
Ala Cys Ser Tyr Thr Pro Val Lys Ala Ile Lys His Thr Ile Ala Val		
705	710	715
715		720
Val Trp Gly Gly Val Asn Ile Pro His Ser Pro Tyr Arg Val Asn Ile		
725	730	735
Gly Gln Gly Ser His Pro Gln Lys Val Lys Val Phe Gly Pro Gly Val		
740	745	750
Glu Arg Ser Gly Leu Lys Ala Asn Glu Pro Thr His Phe Thr Val Asp		
755	760	765
Cys Thr Glu Ala Gly Glu Gly Asp Val Ser Val Gly Ile Lys Cys Asp		
770	775	780

-continued

Ala Arg Val Leu Ser Glu Asp Glu Glu Asp Val Asp Phe Asp Ile Ile
 785 790 795 800

His Asn Ala Asn Asp Thr Phe Thr Val Lys Tyr Val Pro Pro Ala Ala
 805 810 815

Gly Arg Tyr Thr Ile Lys Val Leu Phe Ala Ser Gln Glu Ile Pro Ala
 820 825 830

Ser Pro Phe Arg Val Lys Val Asp Pro Ser His Asp Ala Ser Lys Val
 835 840 845

Lys Ala Glu Gly Pro Gly Leu Ser Lys Ala Gly Val Glu Asn Gly Lys
 850 855 860

Pro Thr His Phe Thr Val Tyr Thr Lys Gly Ala Gly Lys Ala Pro Leu
 865 870 875 880

Asn Val Gln Phe Asn Ser Pro Leu Pro Gly Asp Ala Val Lys Asp Leu
 885 890 895

Asp Ile Ile Asp Asn Tyr Asp Tyr Ser His Thr Val Lys Tyr Thr Pro
 900 905 910

Thr Gln Gln Gly Asn Met Gln Val Leu Val Thr Tyr Gly Gly Asp Pro
 915 920 925

Ile Pro Lys Ser Pro Phe Thr Val Gly Val Ala Ala Pro Leu Asp Leu
 930 935 940

Ser Lys Ile Lys Leu Asn Gly Leu Glu Asn Arg Val Glu Val Gly Lys
 945 950 955 960

Asp Gln Glu Phe Thr Val Asp Thr Arg Gly Ala Gly Gln Gly Lys
 965 970 975

Leu Asp Val Thr Ile Leu Ser Pro Ser Arg Lys Val Val Pro Cys Leu
 980 985 990

Val Thr Pro Val Thr Gly Arg Glu Asn Ser Thr Ala Lys Phe Ile Pro
 995 1000 1005

Arg Glu Glu Gly Leu Tyr Ala Val Asp Val Thr Tyr Asp Gly His
 1010 1015 1020

Pro Val Pro Gly Ser Pro Tyr Thr Val Glu Ala Ser Leu Pro Pro
 1025 1030 1035

Asp Pro Ser Lys Val Lys Ala His Gly Pro Gly Leu Glu Gly Gly
 1040 1045 1050

Leu Val Gly Lys Pro Ala Glu Phe Thr Ile Asp Thr Lys Gly Ala
 1055 1060 1065

Gly Thr Gly Gly Leu Gly Leu Thr Val Glu Gly Pro Cys Glu Ala
 1070 1075 1080

Lys Ile Glu Cys Ser Asp Asn Gly Asp Gly Thr Cys Ser Val Ser
 1085 1090 1095

Tyr Leu Pro Thr Lys Pro Gly Glu Tyr Phe Val Asn Ile Leu Phe
 1100 1105 1110

Glu Glu Val His Ile Pro Gly Ser Pro Phe Lys Ala Asp Ile Glu
 1115 1120 1125

Met Pro Phe Asp Pro Ser Lys Val Val Ala Ser Gly Pro Gly Leu
 1130 1135 1140

Glu His Gly Lys Val Gly Glu Ala Gly Leu Leu Ser Val Asp Cys
 1145 1150 1155

Ser Glu Ala Gly Pro Gly Ala Leu Gly Leu Glu Ala Val Ser Asp
 1160 1165 1170

Ser Gly Thr Lys Ala Glu Val Ser Ile Gln Asn Asn Lys Asp Gly
 1175 1180 1185

-continued

Thr Tyr Ala Val Thr Tyr Val Pro Leu Thr Ala Gly Met Tyr Thr
 1190 1195 1200
 Leu Thr Met Lys Tyr Gly Gly Glu Leu Val Pro His Phe Pro Ala
 1205 1210 1215
 Arg Val Lys Val Glu Pro Ala Val Asp Thr Ser Arg Ile Lys Val
 1220 1225 1230
 Phe Gly Pro Gly Ile Glu Gly Lys Asp Val Phe Arg Glu Ala Thr
 1235 1240 1245
 Thr Asp Phe Thr Val Asp Ser Arg Pro Leu Thr Gln Val Gly Gly
 1250 1255 1260
 Asp His Ile Lys Ala His Ile Ala Asn Pro Ser Gly Ala Ser Thr
 1265 1270 1275
 Glu Cys Phe Val Thr Asp Asn Ala Asp Gly Thr Tyr Gln Val Glu
 1280 1285 1290
 Tyr Thr Pro Phe Glu Lys Gly Leu His Val Val Glu Val Thr Tyr
 1295 1300 1305
 Asp Asp Val Pro Ile Pro Asn Ser Pro Phe Lys Val Ala Val Thr
 1310 1315 1320
 Glu Gly Cys Gln Pro Ser Arg Val Gln Ala Gln Gly Pro Gly Leu
 1325 1330 1335
 Lys Glu Ala Phe Thr Asn Lys Pro Asn Val Phe Thr Val Val Thr
 1340 1345 1350
 Arg Gly Ala Gly Ile Gly Gly Leu Gly Ile Thr Val Glu Gly Pro
 1355 1360 1365
 Ser Glu Ser Lys Ile Asn Cys Arg Asp Asn Lys Asp Gly Ser Cys
 1370 1375 1380
 Ser Ala Glu Tyr Ile Pro Phe Ala Pro Gly Asp Tyr Asp Val Asn
 1385 1390 1395
 Ile Thr Tyr Gly Gly Ala His Ile Pro Gly Ser Pro Phe Arg Val
 1400 1405 1410
 Pro Val Lys Asp Val Val Asp Pro Ser Lys Val Lys Ile Ala Gly
 1415 1420 1425
 Pro Gly Leu Gly Ser Gly Val Arg Ala Arg Val Leu Gln Ser Phe
 1430 1435 1440
 Thr Val Asp Ser Ser Lys Ala Gly Leu Ala Pro Leu Glu Val Arg
 1445 1450 1455
 Val Leu Gly Pro Arg Gly Leu Val Glu Pro Val Asn Val Val Asp
 1460 1465 1470
 Asn Gly Asp Gly Thr His Thr Val Thr Tyr Thr Pro Ser Gln Glu
 1475 1480 1485
 Gly Pro Tyr Met Val Ser Val Lys Tyr Ala Asp Glu Glu Ile Pro
 1490 1495 1500
 Arg Ser Pro Phe Lys Val Lys Val Leu Pro Thr Tyr Asp Ala Ser
 1505 1510 1515
 Lys Val Thr Ala Ser Gly Pro Gly Leu Ser Ser Tyr Gly Val Pro
 1520 1525 1530
 Ala Ser Leu Pro Val Asp Phe Ala Ile Asp Ala Arg Asp Ala Gly
 1535 1540 1545
 Glu Gly Leu Leu Ala Val Gln Ile Thr Asp Gln Glu Gly Lys Pro
 1550 1555 1560
 Lys Arg Ala Ile Val His Asp Asn Lys Asp Gly Thr Tyr Ala Val

-continued

1565	1570	1575
Thr Tyr Ile Pro Asp Lys Thr Gly Arg Tyr Met Ile Gly Val Thr		
1580	1585	1590
Tyr Gly Gly Asp Asp Ile Pro Leu Ser Pro Tyr Arg Ile Arg Ala		
1595	1600	1605
Thr Gln Thr Gly Asp Ala Ser Lys Cys Leu Ala Thr Gly Pro Gly		
1610	1615	1620
Ile Ala Ser Thr Val Lys Thr Gly Glu Glu Val Gly Phe Val Val		
1625	1630	1635
Asp Ala Lys Thr Ala Gly Lys Gly Lys Val Thr Cys Thr Val Leu		
1640	1645	1650
Thr Pro Asp Gly Thr Glu Ala Glu Ala Asp Val Ile Glu Asn Glu		
1655	1660	1665
Asp Gly Thr Tyr Asp Ile Phe Tyr Thr Ala Ala Lys Pro Gly Thr		
1670	1675	1680
Tyr Val Ile Tyr Val Arg Phe Gly Gly Val Asp Ile Pro Asn Ser		
1685	1690	1695
Pro Phe Thr Val Met Val Thr Glu Glu Ala Tyr Val Pro Val Ser		
1700	1705	1710
Asp Met Asn Gly Leu Gly Phe Lys Pro Phe Asp Leu Val Ile Pro		
1715	1720	1725
Phe Ala Val Arg Lys Gly Glu Ile Thr Gly Glu Val His Met Pro		
1730	1735	1740
Ser Gly Lys Thr Ala Thr Pro Glu Ile Val Asp Asn Lys Asp Gly		
1745	1750	1755
Thr Val Thr Val Arg Tyr Ala Pro Thr Glu Val Gly Leu His Glu		
1760	1765	1770
Met His Ile Lys Tyr Met Gly Ser His Ile Pro Glu Ser Pro Leu		
1775	1780	1785
Gln Phe Tyr Val Asn Tyr Pro Asn Ser Gly Ser Val Ser Ala Tyr		
1790	1795	1800
Gly Pro Gly Leu Val Tyr Gly Val Ala Asn Lys Thr Ala Thr Phe		
1805	1810	1815
Thr Ile Val Thr Glu Asp Ala Gly Glu Gly Leu Asp Leu Ala		
1820	1825	1830
Ile Glu Gly Pro Ser Lys Ala Glu Ile Ser Cys Ile Asp Asn Lys		
1835	1840	1845
Asp Gly Thr Cys Thr Val Thr Tyr Leu Pro Thr Leu Pro Gly Asp		
1850	1855	1860
Tyr Ser Ile Leu Val Lys Tyr Asn Asp Lys His Ile Pro Gly Ser		
1865	1870	1875
Pro Phe Thr Ala Lys Ile Thr Asp Asp Ser Arg Arg Cys Ser Gln		
1880	1885	1890
Val Lys Leu Gly Ser Ala Ala Asp Phe Leu Leu Asp Ile Ser Glu		
1895	1900	1905
Thr Asp Leu Ser Ser Leu Thr Ala Ser Ile Lys Ala Pro Ser Gly		
1910	1915	1920
Arg Asp Glu Pro Cys Leu Leu Lys Arg Leu Pro Asn Asn His Ile		
1925	1930	1935
Gly Ile Ser Phe Ile Pro Arg Glu Val Gly Glu His Leu Val Ser		
1940	1945	1950

-continued

Ile	Lys	Lys	Asn	Gly	Asn	His	Val	Ala	Asn	Ser	Pro	Val	Ser	Ile
1955							1960					1965		
Met	Val	Val	Gln	Ser	Glu	Ile	Gly	Asp	Ala	Arg	Arg	Ala	Lys	Val
1970							1975					1980		
Tyr	Gly	Arg	Gly	Leu	Ser	Glu	Gly	Arg	Thr	Phe	Glu	Met	Ser	Asp
1985							1990					1995		
Phe	Ile	Val	Asp	Thr	Arg	Asp	Ala	Gly	Tyr	Gly	Gly	Ile	Ser	Leu
2000							2005					2010		
Ala	Val	Glu	Gly	Pro	Ser	Lys	Val	Asp	Ile	Gln	Thr	Glu	Asp	Leu
2015							2020					2025		
Glu	Asp	Gly	Thr	Cys	Lys	Val	Ser	Tyr	Phe	Pro	Thr	Val	Pro	Gly
2030							2035					2040		
Val	Tyr	Ile	Val	Ser	Thr	Lys	Phe	Ala	Asp	Glu	His	Val	Pro	Gly
2045							2050					2055		
Ser	Pro	Phe	Thr	Val	Lys	Ile	Ser	Gly	Glu	Gly	Arg	Val	Lys	Glu
2060							2065					2070		
Ser	Ile	Thr	Arg	Thr	Ser	Arg	Ala	Pro	Ser	Val	Ala	Thr	Val	Gly
2075							2080					2085		
Ser	Ile	Cys	Asp	Leu	Asn	Leu	Lys	Ile	Pro	Glu	Ile	Asn	Ser	Ser
2090							2095					2100		
Asp	Met	Ser	Ala	His	Val	Thr	Ser	Pro	Ser	Gly	Arg	Val	Thr	Glu
2105							2110					2115		
Ala	Glu	Ile	Val	Pro	Met	Gly	Lys	Asn	Ser	His	Cys	Val	Arg	Phe
2120							2125					2130		
Val	Pro	Gln	Glu	Met	Gly	Val	His	Thr	Val	Ser	Val	Lys	Tyr	Arg
2135							2140					2145		
Gly	Gln	His	Val	Thr	Gly	Ser	Pro	Phe	Gln	Phe	Thr	Val	Gly	Pro
2150							2155					2160		
Leu	Gly	Glu	Gly	Ala	His	Lys	Val	Arg	Ala	Gly	Gly	Pro	Gly	
2165							2170					2175		
Leu	Glu	Arg	Gly	Glu	Ala	Gly	Val	Pro	Ala	Glu	Phe	Ser	Ile	Trp
2180							2185					2190		
Thr	Arg	Glu	Ala	Gly	Ala	Gly	Gly	Leu	Ser	Ile	Ala	Val	Glu	Gly
2195							2200					2205		
Pro	Ser	Lys	Ala	Glu	Ile	Thr	Phe	Asp	Asp	His	Lys	Asn	Gly	Ser
2210							2215					2220		
Cys	Gly	Val	Ser	Tyr	Ile	Ala	Gln	Glu	Pro	Gly	Asn	Tyr	Glu	Val
2225							2230					2235		
Ser	Ile	Lys	Phe	Asn	Asp	Glu	His	Ile	Pro	Glu	Ser	Pro	Tyr	Leu
2240							2245					2250		
Val	Pro	Val	Ile	Ala	Pro	Ser	Asp	Asp	Ala	Arg	Arg	Leu	Thr	Val
2255							2260					2265		
Met	Ser	Leu	Gln	Glu	Ser	Gly	Leu	Lys	Val	Asn	Gln	Pro	Ala	Ser
2270							2275					2280		
Phe	Ala	Ile	Arg	Leu	Asn	Gly	Ala	Lys	Gly	Lys	Ile	Asp	Ala	Lys
2285							2290					2295		
Val	His	Ser	Pro	Ser	Gly	Ala	Val	Glu	Glu	Cys	His	Val	Ser	Glu
2300							2305					2310		
Leu	Glu	Pro	Asp	Lys	Tyr	Ala	Val	Arg	Phe	Ile	Pro	His	Glu	Asn
2315							2320					2325		
Gly	Val	His	Thr	Ile	Asp	Val	Lys	Phe	Asn	Gly	Ser	His	Val	Val
2330							2335					2340		

-continued

Gly Ser Pro Phe Lys Val Arg Val Gly Glu Pro Gly Gln Ala Gly
 2345 2350 2355
 Asn Pro Ala Leu Val Ser Ala Tyr Gly Thr Gly Leu Glu Gly Gly
 2360 2365 2370
 Thr Thr Gly Ile Gln Ser Glu Phe Phe Ile Asn Thr Thr Arg Ala
 2375 2380 2385
 Gly Pro Gly Thr Leu Ser Val Thr Ile Glu Gly Pro Ser Lys Val
 2390 2395 2400
 Lys Met Asp Cys Gln Glu Thr Pro Glu Gly Tyr Lys Val Met Tyr
 2405 2410 2415
 Thr Pro Met Ala Pro Gly Asn Tyr Leu Ile Ser Val Lys Tyr Gly
 2420 2425 2430
 Gly Pro Asn His Ile Val Gly Ser Pro Phe Lys Ala Lys Val Thr
 2435 2440 2445
 Gly Gln Arg Leu Val Ser Pro Gly Ser Ala Asn Glu Thr Ser Ser
 2450 2455 2460
 Ile Leu Val Glu Ser Val Thr Arg Ser Ser Thr Glu Thr Cys Tyr
 2465 2470 2475
 Ser Ala Ile Pro Lys Ala Ser Ser Asp Ala Ser Lys Val Thr Ser
 2480 2485 2490
 Lys Gly Ala Gly Leu Ser Lys Ala Phe Val Gly Gln Lys Ser Ser
 2495 2500 2505
 Phe Leu Val Asp Cys Ser Lys Ala Gly Ser Asn Met Leu Leu Ile
 2510 2515 2520
 Gly Val His Gly Pro Thr Thr Pro Cys Glu Glu Val Ser Met Lys
 2525 2530 2535
 His Val Gly Asn Gln Gln Tyr Asn Val Thr Tyr Val Val Lys Glu
 2540 2545 2550
 Arg Gly Asp Tyr Val Leu Ala Val Lys Trp Gly Glu Glu His Ile
 2555 2560 2565
 Pro Gly Ser Pro Phe His Val Thr Val Pro
 2570 2575

<210> SEQ ID NO 27
 <211> LENGTH: 9395
 <212> TYPE: DNA
 <213> ORGANISM: Homo sapiens

<400> SEQUENCE: 27

```

gccccccaggc gccccccggcc gcagagcagc accggccgtg gtcggtag cagcaagttc      60
gaaccccgct cccgcgtccgc ttccgttctc gtccttcgg cccttggcc tccaaacacc      120
agtccccggc agtcgttgc gcattgcgtc ctccccggca ccaggatgcc ggtaaccgag      180
aaggatctag ctgaggacgc gccttggaa aagatccgc agaacacgtt cacacgttgg      240
tgcaacgagc acctaagtgc cgtgaacaaa cgcacggca acctgcagac cgacctgagc      300
gacgggctgc ggctcatcgc gctgctcgag gtgctcagcc agaagcgcgt gtaccgcaag      360
taccatcagc ggcacacatt tcgcccagatc cagctcgaga atgtgtccgt ggcgcgtcgag      420
ttccctggacc gtgagagcat caagctcggt tccatcgata gcaaaggccat tggatggg      480
aacctgaagc tcatcttggg tctgggtgg acgctgatcc tccactactc catctccatg      540
cccggtgtggg aggtgaagg ggtatgtat gccaagaagc agacgccaagc gcagaggctg      600

```

-continued

ctgggggtgga	ttcagaacaa	gatcccctac	ttgccccatca	ccaactttaa	ccagaactgg	660
caagacggca	aagccctggg	agccctggta	gacagctgtg	ctccaggatct	gtgcccagac	720
tgggaatctt	gggaccccgca	gaagcctgtg	gataatgcac	gagaagccat	gcagcaggca	780
gatgactggc	tgggtgtccc	acaggtcatac	actcctgaag	aatcattca	cccgatgtg	840
gacgagact	cagttatgac	ttacctgtcc	cagttcccc	aagccaagct	caagccgggg	900
gctcctctca	aacccaaact	caacccaaag	aaagccaggg	cctatggcag	aggaatcgag	960
cccactggaa	acatggtcaa	gcagccagcc	aagttcactg	tggacaccat	cagcgccggg	1020
caaggagacg	tgatggtgtt	tgttgaggac	ccagaaggga	acaaagagga	ggcacaagtg	1080
acccctgaca	gtgacaagaa	caagacatac	tctgtggagt	atctgccca	ggtcacccggg	1140
ctacacaaag	tcacagtcct	cttgcagga	cagcacatct	ccaagagccc	atttgaagtg	1200
agtgttaca	aggcccaggg	agatgccagt	aaagtcaactg	caaaggatcc	agggttggaa	1260
gctgttaggaa	acatgcca	taagcccacc	tactttgaca	tctatacggc	aggagctgg	1320
gtgggtgaca	ttgggtgtgg	ggtggaaagat	ccccagggga	agaacaccgt	ggagttgctc	1380
gtggaaagaca	aaggaaacca	ggtgtatcg	tgtgtgtaca	aacccatgca	gcctggccct	1440
cacgtggta	agatcttctt	tgctggggac	actattctta	agagtccctt	cgttgtgcag	1500
gttggggaaag	cctgcaatcc	aaatgcctgc	cggccagtg	gccgaggcct	acaacccaaa	1560
ggcgcccgta	tccggggagac	cacagattc	aagggttaca	ccaaagctgc	aggaagtgg	1620
gagctcggtg	taaccatgaa	gggtcctaag	ggtctggagg	agctggtaa	gcagaaagac	1680
tttctggatg	gggtctacgc	attcgagtagt	tacccatgca	ccccggggag	atacagcatt	1740
gccatcacat	gggggggaca	ccacattcca	aagagccct	ttgaagttca	agttggccct	1800
gaagcgggta	tgcagaaagt	ccgtgcttgg	ggccctgggc	tccatggtgg	gattgtcggg	1860
cggtcagcg	acttcgttgt	agaatccatt	ggctctgaag	tgggtcttct	ggggtttgc	1920
attgaaggcc	cctctcaggc	aaagattgag	tacaacgcacc	agaatgtatgg	atcgtgtgat	1980
gtcaaatact	ggcccaagga	gcctggcgaa	tatgctgttc	acatcatgtg	tgacgacgaa	2040
gacatcaagg	acagcccgta	catggcccttc	atccacccag	ccacgggagg	ctacaaccct	2100
gatctggttc	gagcatacgg	gccaggtttg	gagaaatctg	gatgcattgt	caacaacctg	2160
gccgagttca	ctgtggatcc	taaggatgtc	ggaaaagctc	ccttaaagat	atttgotcag	2220
gatggggaaag	gccaacgcatt	tgacatccag	atgaagaacc	ggatggacgg	cacatatgca	2280
tgctcataca	ccccgggtaa	ggccatcaag	cacaccattg	ctgtggctctg	gggaggcggt	2340
acatccccgc	acagccctta	cagggtcaac	atcggcaag	gtagccatcc	tcagaaggtc	2400
aaagtgttttgc	ggcccggtgt	ggagagaagt	ggtctgttgc	caaataacc	tacacacttc	2460
acgggtggact	gtactgaggc	tggggaaagg	gatgtcagtg	ttggcatcaa	gtgtgtatgc	2520
cgggtgtttaa	gtgaagatga	ggaagacgtg	gatgtttgaca	ttatttccaa	tgccatgtat	2580
acgttcacag	tcaaataatgt	gcctcctgtct	gctggcgtat	acactatcaa	agttcttctt	2640
gcatctcagg	aaatccccgc	cagcccttcc	agagtcaaag	ttgacccttc	ccacgtgcc	2700
agcaaagtga	aggcagaagg	cccagggttc	agcaaagcag	gtgtggaaa	tgggaaaccg	2760
acccacttca	ctgtctacac	caagggggct	gggaaagccc	cgctcaacgt	gcagttcaac	2820
agccctcttc	ctggcgatgc	agtgaaggat	ttggatatac	tcgataattt	tgactactct	2880
cacacggtaa	aatatacacc	cacccaaacag	ggcaacatgc	agttctgtt	gacttacggt	2940

-continued

ggcgatccca	tccctaaaag	cccttcact	gtgggtgtg	ctgcaccgct	ggatctgagc	3000
aagataaaac	tcaatgggt	ggaaaacagg	gtggaaagt	ggaaggatca	ggagttcacc	3060
gttgatacca	ggggggcagg	aggccagggg	aagctggacg	tgacaatct	cageccctct	3120
cggaaaggctg	tgccatgect	agtgacac	gtgacaggcc	gggagaacag	cacggccaag	3180
ttcatccctc	gggaggaggg	gctgtatgct	gtagacgtga	cc tacgatgg	acaccotgtg	3240
cccgggagcc	cctacacagt	ggaggccctcg	ctgcccaccag	atcccagcaa	ggtgaaggcc	3300
cacggtcccg	gcctcgaagg	tggtctcg	ggcaagectg	ccgagttcac	catcgatacc	3360
aaaggagctg	gtactggagg	tctgggttta	acggtggaaag	gtccgtgcga	ggccaaaatc	3420
gagtgctcg	acaatggtga	tgggacctgc	tccgtctt	accttccac	aaaacccggg	3480
gagtacttcg	tcaacatct	ctttaagaa	gtccacat	ctgggtctcc	cttcaaagct	3540
gacattgaaa	tgcctttga	ccctctaa	gtcgtggcat	cgggccagg	tctcgagcac	3600
ggaaagggtgg	gtgaagctgg	cctccttagc	gtcgactgct	cggaagcggg	accggggggcc	3660
ctgggcctgg	aagctgtctc	ggactcggga	acaaaagccg	aagtcaagt	tcagaacaac	3720
aaagatggca	cctacgcgg	gaccta	ccctgcacgg	ccggcatgt	cacgttacc	3780
atgaagtatg	gtggcgaact	cgtgccac	ttccccgccc	gggtcaaggt	ggagcccgcc	3840
gtggacacca	gcaggatcaa	agtctttgg	ccaggaatag	aaggaaaga	tgtgttccgg	3900
gaagctacca	ccgactttac	agttgactct	cgccgcgt	cccagg	ttggtacc	3960
atcaaggccc	acattgcca	ccctcagg	gcctccac	agtgtttgt	cacagacaat	4020
gcggatggga	cctaccagg	ggaatacaca	ccctttgaga	aagg	tctcca	4080
gtgacatatg	atgacgtgc	tatccaaac	agtcccttca	aggtggctgt	cactgaaggc	4140
tgccagccat	ctagggtgca	agcccaagg	cctggatt	aagaggc	taccaacaag	4200
cccaatgtct	tcaccgttgt	taccagg	gcaggaat	gtgggtctgg	cataactgtt	4260
gagggaccat	cagagtgc	gataaattgc	agagacaaca	aggatggc	ctgcagt	4320
gagtagat	ctttcgacc	gggggattac	gatgttata	tcacat	aggagccac	4380
atccccggca	gccccttcag	ggttcctgt	aaggatgt	tggacccc	caagg	4440
attgcggcc	cggggctgg	ctcagg	cgagcc	tcctgcag	cttcac	4500
gacagcagca	aggctggct	ggctccgt	gaagt	gggg	ttctggccc	4560
gtggagccag	tgaacgttgt	ggacaatgg	gatgg	ccac	acacagtaac	4620
tctcaggagg	gaccttacat	ggtctca	aaatatgt	atgaagag	atcc	4680
cccttcaagg	tcaagg	tcccacat	gatgcc	aaatgt	ctgc	4740
ggccttagt	cctatgg	gcctgc	ctac	cttgc	atgt	4800
gatgccgggg	aaggcctgt	tgctgttca	ataacgg	aagaagg	aaaaga	4860
gccattgtcc	atgacaataa	agatggc	tatgt	cctacat	ccgaca	4920
ggcgctata	tgattggagt	cac	ctac	tcc	actt	4980
atccgagcca	cac	agac	gg	cc	ac	5040
tccactgtga	aaactggcga	aga	agtag	ttt	gtgg	5100
ggttaaagtga	cctgcac	gg	act	gtt	gg	5160
gagaatgaag	atggaaccta	tgacat	ttc	tac	acag	5220

-continued

atctatgtgc	gcttcgggtgg	tgttgcattt	cctaacagcc	ccttcactgt	catggtggacc	5280
gaagaggcct	atgtcccagt	gagtgcacatg	aacggcctgg	gatccaagcc	ttttgcaccc	5340
gtcattccgt	ttgtgtcag	gaaaggagaa	atcaactggag	aggtccacat	gccttctggg	5400
aagacagcca	cacctgagat	tgtggacaac	aaggacggca	cggtcactgt	tagatatgcc	5460
cccactgagg	tcgggctcca	tgagatgcac	atcaaataca	tgggcagcc	cateccctgag	5520
agcccactcc	agttctacgt	gaactacccc	aacagtggaa	gtgtttcgc	atacggtcca	5580
ggcctcggt	atggagtgcc	caacaaaact	gccacccctca	ccatcgctac	agaggatgca	5640
ggagaagggt	gtctggactt	ggctatttag	ggcccccctcaa	aagcagaaaat	cagctgcatt	5700
gacaataaaag	atggggacatg	cacagtgacc	tacctgcccga	ctctgcagg	cgactacagc	5760
attctggtca	agtacaatga	caagcacatc	cctggcagcc	ccttcacagc	caagatcaca	5820
gatgacagca	ggcggtgctc	ccaggtgaag	ttgggctcag	ccgctgactt	cctgctcgac	5880
atcagtgaga	ctgacccctag	cagcctgacg	gccagcatta	aggccccatc	tggccgagac	5940
gagccctgtc	tcctgaagag	gctgcccac	aaccacattt	gcatctccctt	catccccccgg	6000
gaagtggcg	aacatctggt	cagcatcaag	aaaaatggca	accatgtggc	caacagcccc	6060
gtgtctatca	tggtggtcca	gtcggagatt	ggtgacgccc	gccgaggccaa	agtctatggc	6120
cgcggcctgt	cagaaggccg	gactttcag	atgtctgact	tcatcggtt	cacaaggat	6180
gcagggttatg	tgggcatatc	cttggcgggt	gaaggcccc	gcaaaagtgg	catccagacg	6240
gaggacctgg	aagatggcac	ctgcaaaatgc	tcctacttcc	ctaccgtgcc	tgggttttat	6300
atcgctctcca	ccaaatttgc	tgacgagcac	gtgcctggga	gcccattttac	cgtgaagatc	6360
agtggggagg	gaagagtcaa	agagagcatc	acccgcacca	gtcggggccc	gtccgtggcc	6420
actgtcggtt	gcatttgcgt	cctgaacctg	aaaatccag	aatcaacag	cagtgtatgc	6480
tccggccacg	tcaccagccc	ctctggccgt	gtgactgagg	cagagattgt	gccccatgggg	6540
aagaactcac	actgcgtccg	gtttgtgcc	caggagatgg	gcgtgcacac	ggtcagcgtc	6600
aagtaccgtg	ggcagcacgt	cacccgcacg	cccttccagt	tcaccgtggg	gccacttgg	6660
gaaggaggcg	cccacaaggt	ggggcaggaa	ggccctggcc	tggagagagg	agaagcggga	6720
gtccccagctg	agttcagcat	ttggaccctgg	gaagcaggcg	ctggaggcc	ctccatcgct	6780
gttgaggggcc	ccagtagggc	cgagattaca	tgcgtatgg	ataaaaatgg	gtcggtcggt	6840
gtatcttata	ttggccaaga	gcctggtaac	tacgagggtgt	ccatcaagtt	caatgtatgg	6900
ccatccccgg	aaagccccca	cctgggtccc	gtcatacgac	cctccgcac	cgccccccgc	6960
ctcaactgtta	tgagccttca	ggaaatcggtt	ttaaaaatgtt	accagccacg	atcccttgc	7020
ataaagggttga	atggcgcaaa	aggcaagattt	gtgcacagg	tgcacagccc	ctctggagcc	7080
gtggaggagg	gccacgtgtc	tgagctggag	ccagataagt	atgctgttgc	cttcatccct	7140
catgagaatg	gtgtcccacac	catcgatgtc	aagttcaatg	ggagccacgt	ggttggaaagc	7200
cccttcaaag	tgegcgttgg	ggagcctgg	caagcgggg	accctgcct	gggtgtccgc	7260
tatggcacgg	gactcgaagg	gggcaccaca	ggtatccagt	cggaattttt	tattaacacc	7320
acccgagcag	gtccaggggac	attatccgtc	accatcgaa	gcccatccaa	ggttaaaatg	7380
gattgccagg	aaacacactga	agggtacaaa	gtcatgtaca	ccccatggc	tcctggtaac	7440
tacctgtatca	gcgtcaaata	cggtggcc	aaccacatcg	tgggcagtc	cttcaaggcc	7500
aaggtgacag	gccagcgct	agttagccct	ggctcagcc	acgagacctc	atccatccct	7560

-continued

gtggagtcg tgaccaggc gtctcacagag acctgcata gcgcattcc caaggcatcc 7620
tcggacgcca gcaagggtgac ctctaaggg gcagggtct ccaaaggcc ttgtggccag 7680
aagagttcct tcctgggtgaa ctgcagcaaa gctggctcc acatgtgtc gatggggtc 7740
catggggcca ccacccccc cgaggaggc tccatgaagc atgttaggcaa ccagaatac 7800
aacgtcacat acgtcgtaa ggagagggc gattatgtc tggctgtgaa gtgggggag 7860
gaacacatcc ctggcagccc tttcatgtc acagtgcctt aaaacagttt tctcaaatcc 7920
tggagagagt tcttgggtt gctttgttgc ttgtttgttta attcatttttataaaagccc 7980
tccagcctgt ttgtgggct gaaacccat ccctaaaata ttgctgtgtt aatgcctt 8040
cagaaataag tcctagactg gactcttgc ggacatattt gagaatctt agaaatgca 8100
gcttggtcg ggggctgaga agatccttgc tacactaggt gcaaaaccaga actcttggtg 8160
gaacagacca gcccactgcag cagacagacc aggaacacaa tgagactgac attcaaaaa 8220
aacaacaaactg gctagcctgaa gctgctggtt cactcttcg cattttatgaa acaaggctg 8280
gggaagatgg gcagagaaaa aggggacacc tagttgggtt gtcatttggc aaaggagatg 8340
acttaaaatc cgcttaatct cttccagtgt ccgtgtttaat gtatggctt attagatcac 8400
tagcactgct ttaccgctcc tcatgcctt caccatccatg ctctgtggcc ttcttacact 8460
tctcagaggc cagagtggca gcccggcacc ctacagaaaac tcagagggca gagtggcagc 8520
caggcccaca tgtctctcaa gtacctgtcc ctcgcctcg gtgattttt cttgcagaat 8580
caccacacga gaccatcccc gcaactcatgg tttgcatttttta gttttcaag tccgtttcag 8640
tcccttcctt ggtctgaaga aattctgcag tggcgagcag tttccactt gcacaaagatc 8700
ccttttaacc aacactagcc cttgtttta acacacgc tca gcccattca tcagcctggg 8760
cagtcttacc aaaatgtttt aagtgtatc agagggggcc atggattaac gcccctatcc 8820
caagggtccgt cccatgacat aacactccac acccgccccca gcacacttca tgggtcactt 8880
tttctggaaa ataatgtatc gtacagacag gacagaatgaa aactccctgc ggtctttggc 8940
ctgaaagttt ggaatgggtt ggggagagaa gggcagcagc ttattttggg tcttttccacc 9000
atggcagaa acagtgcagag ctgtgtgggtt cagaaatccca gaaatgaggt gtggaaattt 9060
ttgcctgcct tcctgcagac ctgagctggc tttggaaatgaa ggttaaagtgc tcaaggacgt 9120
tgcctgagcc ccaatgtgtt gtgtgggtctt ggcaggcaga ccttttaggtt ttgtgtctt 9180
gtcctgagga agtggccact cttgtggcag gtgttagtac tggggcaggtt gttgggggtt 9240
aaagccccacc ctacagaaaag tggaaacagcc cggagcctgaa tggaaagga ccacgggtt 9300
tgtaagctgg gacacggaaag ccaaaacttggaa atcaaacgc gactgttaat tttatctt 9360
aacttattaa ataaaacatt tqctccqtaa agttt 9395

<210> SEQ ID NO 28
<211> LENGTH: 2602
<212> TYPE: PRT
<213> ORGANISM: *Homo sapiens*

<400> SEQUENCE: 28

Met	Pro	Val	Thr	Glu	Lys	Asp	Leu	Ala	Glu	Asp	Ala	Pro	Trp	Lys	Lys
1				5					10					15	
Ile	Gln	Gln	Asn	Thr	Phe	Thr	Arg	Trp	Cys	Asn	Glu	His	Leu	Lys	Cys
					20			25					30		

-continued

Val Asn Lys Arg Ile Gly Asn Leu Gln Thr Asp Leu Ser Asp Gly Leu
 35 40 45

Arg Leu Ile Ala Leu Leu Glu Val Leu Ser Gln Lys Arg Met Tyr Arg
 50 55 60

Lys Tyr His Gln Arg Pro Thr Phe Arg Gln Met Gln Leu Glu Asn Val
 65 70 75 80

Ser Val Ala Leu Glu Phe Leu Asp Arg Glu Ser Ile Lys Leu Val Ser
 85 90 95

Ile Asp Ser Lys Ala Ile Val Asp Gly Asn Leu Lys Leu Ile Leu Gly
 100 105 110

Leu Val Trp Thr Leu Ile Leu His Tyr Ser Ile Ser Met Pro Val Trp
 115 120 125

Glu Asp Glu Gly Asp Asp Ala Lys Lys Gln Thr Pro Lys Gln Arg
 130 135 140

Leu Leu Gly Trp Ile Gln Asn Lys Ile Pro Tyr Leu Pro Ile Thr Asn
 145 150 155 160

Phe Asn Gln Asn Trp Gln Asp Gly Lys Ala Leu Gly Ala Leu Val Asp
 165 170 175

Ser Cys Ala Pro Gly Leu Cys Pro Asp Trp Glu Ser Trp Asp Pro Gln
 180 185 190

Lys Pro Val Asp Asn Ala Arg Glu Ala Met Gln Gln Ala Asp Asp Trp
 195 200 205

Leu Gly Val Pro Gln Val Ile Thr Pro Glu Glu Ile Ile His Pro Asp
 210 215 220

Val Asp Glu His Ser Val Met Thr Tyr Leu Ser Gln Phe Pro Lys Ala
 225 230 235 240

Lys Leu Lys Pro Gly Ala Pro Leu Lys Pro Lys Leu Asn Pro Lys Lys
 245 250 255

Ala Arg Ala Tyr Gly Arg Gly Ile Glu Pro Thr Gly Asn Met Val Lys
 260 265 270

Gln Pro Ala Lys Phe Thr Val Asp Thr Ile Ser Ala Gly Gln Gly Asp
 275 280 285

Val Met Val Phe Val Glu Asp Pro Glu Gly Asn Lys Glu Glu Ala Gln
 290 295 300

Val Thr Pro Asp Ser Asp Lys Asn Lys Thr Tyr Ser Val Glu Tyr Leu
 305 310 315 320

Pro Lys Val Thr Gly Leu His Lys Val Thr Val Leu Phe Ala Gly Gln
 325 330 335

His Ile Ser Lys Ser Pro Phe Glu Val Ser Val Asp Lys Ala Gln Gly
 340 345 350

Asp Ala Ser Lys Val Thr Ala Lys Gly Pro Gly Leu Glu Ala Val Gly
 355 360 365

Asn Ile Ala Asn Lys Pro Thr Tyr Phe Asp Ile Tyr Thr Ala Gly Ala
 370 375 380

Gly Val Gly Asp Ile Gly Val Glu Val Glu Asp Pro Gln Gly Lys Asn
 385 390 395 400

Thr Val Glu Leu Leu Val Glu Asp Lys Gly Asn Gln Val Tyr Arg Cys
 405 410 415

Val Tyr Lys Pro Met Gln Pro Gly Pro His Val Val Lys Ile Phe Phe
 420 425 430

Ala Gly Asp Thr Ile Pro Lys Ser Pro Phe Val Val Gln Val Gly Glu
 435 440 445

-continued

Ala Cys Asn Pro Asn Ala Cys Arg Ala Ser Gly Arg Gly Leu Gln Pro
 450 455 460
 Lys Gly Val Arg Ile Arg Glu Thr Thr Asp Phe Lys Val Asp Thr Lys
 465 470 475 480
 Ala Ala Gly Ser Gly Glu Leu Gly Val Thr Met Lys Gly Pro Lys Gly
 485 490 495
 Leu Glu Glu Leu Val Lys Gln Lys Asp Phe Leu Asp Gly Val Tyr Ala
 500 505 510
 Phe Glu Tyr Tyr Pro Ser Thr Pro Gly Arg Tyr Ser Ile Ala Ile Thr
 515 520 525
 Trp Gly Gly His His Ile Pro Lys Ser Pro Phe Glu Val Gln Val Gly
 530 535 540
 Pro Glu Ala Gly Met Gln Lys Val Arg Ala Trp Gly Pro Gly Leu His
 545 550 555 560
 Gly Gly Ile Val Gly Arg Ser Ala Asp Phe Val Val Glu Ser Ile Gly
 565 570 575
 Ser Glu Val Gly Ser Leu Gly Phe Ala Ile Glu Gly Pro Ser Gln Ala
 580 585 590
 Lys Ile Glu Tyr Asn Asp Gln Asn Asp Gly Ser Cys Asp Val Lys Tyr
 595 600 605
 Trp Pro Lys Glu Pro Gly Glu Tyr Ala Val His Ile Met Cys Asp Asp
 610 615 620
 Glu Asp Ile Lys Asp Ser Pro Tyr Met Ala Phe Ile His Pro Ala Thr
 625 630 635 640
 Gly Gly Tyr Asn Pro Asp Leu Val Arg Ala Tyr Gly Pro Gly Leu Glu
 645 650 655
 Lys Ser Gly Cys Ile Val Asn Asn Leu Ala Glu Phe Thr Val Asp Pro
 660 665 670
 Lys Asp Ala Gly Lys Ala Pro Leu Lys Ile Phe Ala Gln Asp Gly Glu
 675 680 685
 Gly Gln Arg Ile Asp Ile Gln Met Lys Asn Arg Met Asp Gly Thr Tyr
 690 695 700
 Ala Cys Ser Tyr Thr Pro Val Lys Ala Ile Lys His Thr Ile Ala Val
 705 710 715 720
 Val Trp Gly Gly Val Asn Ile Pro His Ser Pro Tyr Arg Val Asn Ile
 725 730 735
 Gly Gln Gly Ser His Pro Gln Lys Val Lys Val Phe Gly Pro Gly Val
 740 745 750
 Glu Arg Ser Gly Leu Lys Ala Asn Glu Pro Thr His Phe Thr Val Asp
 755 760 765
 Cys Thr Glu Ala Gly Glu Gly Asp Val Ser Val Gly Ile Lys Cys Asp
 770 775 780
 Ala Arg Val Leu Ser Glu Asp Glu Glu Asp Val Asp Phe Asp Ile Ile
 785 790 795 800
 His Asn Ala Asn Asp Thr Phe Thr Val Lys Tyr Val Pro Pro Ala Ala
 805 810 815
 Gly Arg Tyr Thr Ile Lys Val Leu Phe Ala Ser Gln Glu Ile Pro Ala
 820 825 830
 Ser Pro Phe Arg Val Lys Val Asp Pro Ser His Asp Ala Ser Lys Val
 835 840 845
 Lys Ala Glu Gly Pro Gly Leu Ser Lys Ala Gly Val Glu Asn Gly Lys

-continued

850	855	860
Pro Thr His Phe Thr Val Tyr Thr Lys Gly Ala Gly Lys Ala Pro Leu		
865	870	875
Asn Val Gln Phe Asn Ser Pro Leu Pro Gly Asp Ala Val Lys Asp Leu		
885	890	895
Asp Ile Ile Asp Asn Tyr Asp Tyr Ser His Thr Val Lys Tyr Thr Pro		
900	905	910
Thr Gln Gln Gly Asn Met Gln Val Leu Val Thr Tyr Gly Gly Asp Pro		
915	920	925
Ile Pro Lys Ser Pro Phe Thr Val Gly Val Ala Ala Pro Leu Asp Leu		
930	935	940
Ser Lys Ile Lys Leu Asn Gly Leu Glu Asn Arg Val Glu Val Gly Lys		
945	950	955
Asp Gln Glu Phe Thr Val Asp Thr Arg Gly Ala Gly Gln Gly Lys		
965	970	975
Leu Asp Val Thr Ile Leu Ser Pro Ser Arg Lys Val Val Pro Cys Leu		
980	985	990
Val Thr Pro Val Thr Gly Arg Glu Asn Ser Thr Ala Lys Phe Ile Pro		
995	1000	1005
Arg Glu Glu Gly Leu Tyr Ala Val Asp Val Thr Tyr Asp Gly His		
1010	1015	1020
Pro Val Pro Gly Ser Pro Tyr Thr Val Glu Ala Ser Leu Pro Pro		
1025	1030	1035
Asp Pro Ser Lys Val Lys Ala His Gly Pro Gly Leu Glu Gly Gly		
1040	1045	1050
Leu Val Gly Lys Pro Ala Glu Phe Thr Ile Asp Thr Lys Gly Ala		
1055	1060	1065
Gly Thr Gly Gly Leu Gly Leu Thr Val Glu Gly Pro Cys Glu Ala		
1070	1075	1080
Lys Ile Glu Cys Ser Asp Asn Gly Asp Gly Thr Cys Ser Val Ser		
1085	1090	1095
Tyr Leu Pro Thr Lys Pro Gly Glu Tyr Phe Val Asn Ile Leu Phe		
1100	1105	1110
Glu Glu Val His Ile Pro Gly Ser Pro Phe Lys Ala Asp Ile Glu		
1115	1120	1125
Met Pro Phe Asp Pro Ser Lys Val Val Ala Ser Gly Pro Gly Leu		
1130	1135	1140
Glu His Gly Lys Val Gly Glu Ala Gly Leu Leu Ser Val Asp Cys		
1145	1150	1155
Ser Glu Ala Gly Pro Gly Ala Leu Gly Leu Glu Ala Val Ser Asp		
1160	1165	1170
Ser Gly Thr Lys Ala Glu Val Ser Ile Gln Asn Asn Lys Asp Gly		
1175	1180	1185
Thr Tyr Ala Val Thr Tyr Val Pro Leu Thr Ala Gly Met Tyr Thr		
1190	1195	1200
Leu Thr Met Lys Tyr Gly Glu Leu Val Pro His Phe Pro Ala		
1205	1210	1215
Arg Val Lys Val Glu Pro Ala Val Asp Thr Ser Arg Ile Lys Val		
1220	1225	1230
Phe Gly Pro Gly Ile Glu Gly Lys Asp Val Phe Arg Glu Ala Thr		
1235	1240	1245

-continued

Thr	Asp	Phe	Thr	Val	Asp	Ser	Arg	Pro	Leu	Thr	Gln	Val	Gly	Gly
1250					1255						1260			
Asp	His	Ile	Lys	Ala	His	Ile	Ala	Asn	Pro	Ser	Gly	Ala	Ser	Thr
1265						1270					1275			
Glu	Cys	Phe	Val	Thr	Asp	Asn	Ala	Asp	Gly	Thr	Tyr	Gln	Val	Glu
1280					1285						1290			
Tyr	Thr	Pro	Phe	Glu	Lys	Gly	Leu	His	Val	Val	Glu	Val	Thr	Tyr
1295						1300					1305			
Asp	Asp	Val	Pro	Ile	Pro	Asn	Ser	Pro	Phe	Lys	Val	Ala	Val	Thr
1310						1315					1320			
Glu	Gly	Cys	Gln	Pro	Ser	Arg	Val	Gln	Ala	Gln	Gly	Pro	Gly	Leu
1325						1330					1335			
Lys	Glu	Ala	Phe	Thr	Asn	Lys	Pro	Asn	Val	Phe	Thr	Val	Val	Thr
1340						1345					1350			
Arg	Gly	Ala	Gly	Ile	Gly	Gly	Leu	Gly	Ile	Thr	Val	Glu	Gly	Pro
1355						1360					1365			
Ser	Glu	Ser	Lys	Ile	Asn	Cys	Arg	Asp	Asn	Lys	Asp	Gly	Ser	Cys
1370						1375					1380			
Ser	Ala	Glu	Tyr	Ile	Pro	Phe	Ala	Pro	Gly	Asp	Tyr	Asp	Val	Asn
1385						1390					1395			
Ile	Thr	Tyr	Gly	Gly	Ala	His	Ile	Pro	Gly	Ser	Pro	Phe	Arg	Val
1400						1405					1410			
Pro	Val	Lys	Asp	Val	Val	Asp	Pro	Ser	Lys	Val	Lys	Ile	Ala	Gly
1415						1420					1425			
Pro	Gly	Leu	Gly	Ser	Gly	Val	Arg	Ala	Arg	Val	Leu	Gln	Ser	Phe
1430						1435					1440			
Thr	Val	Asp	Ser	Ser	Lys	Ala	Gly	Leu	Ala	Pro	Leu	Glu	Val	Arg
1445						1450					1455			
Val	Leu	Gly	Pro	Arg	Gly	Leu	Val	Glu	Pro	Val	Asn	Val	Val	Asp
1460						1465					1470			
Asn	Gly	Asp	Gly	Thr	His	Thr	Val	Thr	Tyr	Thr	Pro	Ser	Gln	Glu
1475						1480					1485			
Gly	Pro	Tyr	Met	Val	Ser	Val	Lys	Tyr	Ala	Asp	Glu	Glu	Ile	Pro
1490						1495					1500			
Arg	Ser	Pro	Phe	Lys	Val	Lys	Val	Leu	Pro	Thr	Tyr	Asp	Ala	Ser
1505						1510					1515			
Lys	Val	Thr	Ala	Ser	Gly	Pro	Gly	Leu	Ser	Ser	Tyr	Gly	Val	Pro
1520						1525					1530			
Ala	Ser	Leu	Pro	Val	Asp	Phe	Ala	Ile	Asp	Ala	Arg	Asp	Ala	Gly
1535						1540					1545			
Glu	Gly	Leu	Leu	Ala	Val	Gln	Ile	Thr	Asp	Gln	Glu	Gly	Lys	Pro
1550						1555					1560			
Lys	Arg	Ala	Ile	Val	His	Asp	Asn	Lys	Asp	Gly	Thr	Tyr	Ala	Val
1565						1570					1575			
Thr	Tyr	Ile	Pro	Asp	Lys	Thr	Gly	Arg	Tyr	Met	Ile	Gly	Val	Thr
1580						1585					1590			
Tyr	Gly	Gly	Asp	Asp	Ile	Pro	Leu	Ser	Pro	Tyr	Arg	Ile	Arg	Ala
1595						1600					1605			
Thr	Gln	Thr	Gly	Asp	Ala	Ser	Lys	Cys	Leu	Ala	Thr	Gly	Pro	Gly
1610						1615					1620			
Ile	Ala	Ser	Thr	Val	Lys	Thr	Gly	Glu	Glu	Val	Gly	Phe	Val	Val
1625						1630					1635			

-continued

Asp Ala Lys Thr Ala Gly Lys Gly Lys Val Thr Cys Thr Val Leu
 1640 1645 1650
 Thr Pro Asp Gly Thr Glu Ala Glu Ala Asp Val Ile Glu Asn Glu
 1655 1660 1665
 Asp Gly Thr Tyr Asp Ile Phe Tyr Thr Ala Ala Lys Pro Gly Thr
 1670 1675 1680
 Tyr Val Ile Tyr Val Arg Phe Gly Gly Val Asp Ile Pro Asn Ser
 1685 1690 1695
 Pro Phe Thr Val Met Ala Thr Asp Gly Glu Val Thr Ala Val Glu
 1700 1705 1710
 Glu Ala Pro Val Asn Ala Cys Pro Pro Gly Phe Arg Pro Trp Val
 1715 1720 1725
 Thr Glu Glu Ala Tyr Val Pro Val Ser Asp Met Asn Gly Leu Gly
 1730 1735 1740
 Phe Lys Pro Phe Asp Leu Val Ile Pro Phe Ala Val Arg Lys Gly
 1745 1750 1755
 Glu Ile Thr Gly Glu Val His Met Pro Ser Gly Lys Thr Ala Thr
 1760 1765 1770
 Pro Glu Ile Val Asp Asn Lys Asp Gly Thr Val Thr Val Arg Tyr
 1775 1780 1785
 Ala Pro Thr Glu Val Gly Leu His Glu Met His Ile Lys Tyr Met
 1790 1795 1800
 Gly Ser His Ile Pro Glu Ser Pro Leu Gln Phe Tyr Val Asn Tyr
 1805 1810 1815
 Pro Asn Ser Gly Ser Val Ser Ala Tyr Gly Pro Gly Leu Val Tyr
 1820 1825 1830
 Gly Val Ala Asn Lys Thr Ala Thr Phe Thr Ile Val Thr Glu Asp
 1835 1840 1845
 Ala Gly Glu Gly Gly Leu Asp Leu Ala Ile Glu Gly Pro Ser Lys
 1850 1855 1860
 Ala Glu Ile Ser Cys Ile Asp Asn Lys Asp Gly Thr Cys Thr Val
 1865 1870 1875
 Thr Tyr Leu Pro Thr Leu Pro Gly Asp Tyr Ser Ile Leu Val Lys
 1880 1885 1890
 Tyr Asn Asp Lys His Ile Pro Gly Ser Pro Phe Thr Ala Lys Ile
 1895 1900 1905
 Thr Asp Asp Ser Arg Arg Cys Ser Gln Val Lys Leu Gly Ser Ala
 1910 1915 1920
 Ala Asp Phe Leu Leu Asp Ile Ser Glu Thr Asp Leu Ser Ser Leu
 1925 1930 1935
 Thr Ala Ser Ile Lys Ala Pro Ser Gly Arg Asp Glu Pro Cys Leu
 1940 1945 1950
 Leu Lys Arg Leu Pro Asn Asn His Ile Gly Ile Ser Phe Ile Pro
 1955 1960 1965
 Arg Glu Val Gly Glu His Leu Val Ser Ile Lys Lys Asn Gly Asn
 1970 1975 1980
 His Val Ala Asn Ser Pro Val Ser Ile Met Val Val Gln Ser Glu
 1985 1990 1995
 Ile Gly Asp Ala Arg Arg Ala Lys Val Tyr Gly Arg Gly Leu Ser
 2000 2005 2010
 Glu Gly Arg Thr Phe Glu Met Ser Asp Phe Ile Val Asp Thr Arg

-continued

2015	2020	2025
Asp Ala Gly Tyr Gly Gly Ile Ser Leu Ala Val Glu	Gly Pro Ser	
2030	2035	2040
Lys Val Asp Ile Gln Thr Glu Asp Leu Glu Asp Gly	Thr Cys Lys	
2045	2050	2055
Val Ser Tyr Phe Pro Thr Val Pro Gly Val Tyr Ile	Val Ser Thr	
2060	2065	2070
Lys Phe Ala Asp Glu His Val Pro Gly Ser Pro Phe	Thr Val Lys	
2075	2080	2085
Ile Ser Gly Glu Gly Arg Val Lys Glu Ser Ile Thr	Arg Thr Ser	
2090	2095	2100
Arg Ala Pro Ser Val Ala Thr Val Gly Ser Ile Cys	Asp Leu Asn	
2105	2110	2115
Leu Lys Ile Pro Glu Ile Asn Ser Ser Asp Met Ser	Ala His Val	
2120	2125	2130
Thr Ser Pro Ser Gly Arg Val Thr Glu Ala Glu Ile	Val Pro Met	
2135	2140	2145
Gly Lys Asn Ser His Cys Val Arg Phe Val Pro Gln	Glu Met Gly	
2150	2155	2160
Val His Thr Val Ser Val Lys Tyr Arg Gly Gln His	Val Thr Gly	
2165	2170	2175
Ser Pro Phe Gln Phe Thr Val Gly Pro Leu Gly Glu	Gly Ala	
2180	2185	2190
His Lys Val Arg Ala Gly Gly Pro Gly Leu Glu Arg	Gly Glu Ala	
2195	2200	2205
Gly Val Pro Ala Glu Phe Ser Ile Trp Thr Arg Glu	Ala Gly Ala	
2210	2215	2220
Gly Gly Leu Ser Ile Ala Val Glu Gly Pro Ser Lys	Ala Glu Ile	
2225	2230	2235
Thr Phe Asp Asp His Lys Asn Gly Ser Cys Gly Val	Ser Tyr Ile	
2240	2245	2250
Ala Gln Glu Pro Gly Asn Tyr Glu Val Ser Ile Lys	Phe Asn Asp	
2255	2260	2265
Glu His Ile Pro Glu Ser Pro Tyr Leu Val Pro Val	Ile Ala Pro	
2270	2275	2280
Ser Asp Asp Ala Arg Arg Leu Thr Val Met Ser Leu	Gln Glu Ser	
2285	2290	2295
Gly Leu Lys Val Asn Gln Pro Ala Ser Phe Ala Ile	Arg Leu Asn	
2300	2305	2310
Gly Ala Lys Gly Lys Ile Asp Ala Lys Val His Ser	Pro Ser Gly	
2315	2320	2325
Ala Val Glu Glu Cys His Val Ser Glu Leu Glu Pro	Asp Lys Tyr	
2330	2335	2340
Ala Val Arg Phe Ile Pro His Glu Asn Gly Val His	Thr Ile Asp	
2345	2350	2355
Val Lys Phe Asn Gly Ser His Val Val Gly Ser Pro	Phe Lys Val	
2360	2365	2370
Arg Val Gly Glu Pro Gly Gln Ala Gly Asn Pro Ala	Leu Val Ser	
2375	2380	2385
Ala Tyr Gly Thr Gly Leu Glu Gly Gly Thr Thr Gly	Ile Gln Ser	
2390	2395	2400

-continued

<210> SEQ ID NO 29
<211> LENGTH: 9467
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 29

ggggccaggg gcggggggcc gcagagcagc acggccgtg gtcggtag cagcaagttc 60
gaacccccgt cccgctccgc ttgggttctc gtccttcgg cccttggcc tccaaacacc 120
agtcggccggc agctcggtgc gcattgcgt ctccccccca ccaggatgcc ggttaaccgag 180
aaggatctag ctgaggacgc gccttggaaag aagatccagc agaacacgtt cacacgctgg 240
tgcaacgagc acctcaagtg cgtgaacaaa cgcattggca acctgcagac cgacctgagc 300
gacggggctgc ggctcatcgc gctgtcgag gtgtcgacc agaagcgcatt gtaccgcaag 360
taccatcagc ggcccacctt tcgccagatg cagctcgaga atgtgtccgt ggctcgag 420
ttcctggacc gtgagagcat caagctcggtc tccatcgata gcaaagccat tgtggatggg 480
aacctgaagc tcatcttggg tctgggtgtgg acgctgatcc tccactactc catctccatg 540
cccggtgtggg aggtgaagg ggatgtatgat gccaagaaggc acacgccaaa gcagaggctg 600
ctgggggtgg a ttcaaaaatccatc ttggccatca ccaactttaa ccagaacttgg 660
caagacggca aaggccctggg agccctggta gacagctgtc tccagggtct gtcccaagac 720
tggaaatccatc gggacccgca gaagctgtg gataatgcac gagaagccat gcagcaggca 780
gatgactggc tgggtgtccc acaggatcattc actcctgtgg aaatcattca cccggatgtg 840

-continued

gacgagca	cagttatgac	ttacctgtcc	cagttccccca	aagccaagct	caagccgggg	900
gctcctctca	aacccaaact	caaccgcga	aaagccaggg	cctatggcag	aggaatcgag	960
cccaactggaa	acatggtgaa	geagccagcc	aagtteactg	tggacacccat	cagegcgggg	1020
caaggagacg	tgatgggtt	tgttgaggac	ccagaaggga	acaaagagga	ggcacaagtg	1080
acccctgaca	gtgacaagaa	caagacatac	tctgtggagt	atctgcocca	ggtcaocggg	1140
ctacacaaaag	tcacagtct	ctttgcagga	cagcacatct	ccaagagccc	atttgaagtg	1200
agtgttgaca	aggcccaggg	agatgccagt	aaagtcaactg	caaaagggtcc	agggttggaa	1260
gctgttaggga	acatgccaa	taagcccacc	tactttgaca	tctatacggc	aggagctgg	1320
gtgggtgaca	ttgggtgtgg	ggtggaagat	ccccagggga	agaacaccgt	ggagttgctc	1380
gtggaagaca	aaggaaacca	ggtgtatcga	tgtgtgtaca	aacccatgca	gcctggccct	1440
cacgtggta	agatcttctt	tgctgggac	actattccct	agagtccctt	cgttgtgcag	1500
gttggggaaag	cctgcaatcc	aaatgcctgc	cggggccagt	gccgaggcc	acaacccaaa	1560
ggcgtccgta	tccgggagac	cacagattt	aagggtgaca	ccaaagctgc	aggaagtgg	1620
gagetcggtg	taaccatgaa	gggtcctaag	ggtctggagg	agctggtaa	gcagaaagac	1680
tttctggatg	gggtctacgc	attcgagtat	tacccagca	ccccggggag	atacagcatt	1740
gccatcacat	gggggggaca	ccacattcca	aagagccct	ttgaagtca	agttggccct	1800
gaagcgggta	tgcagaaagt	ccgtgcttgg	ggccctgggc	tccatggtgg	gattgtcg	1860
cggtcagcgg	acttcgttgt	agaatccatt	ggctctgaag	tgggtctct	ggggtttgc	1920
attgaaggcc	cctctcaggc	aaagattgag	tacaacgacc	agaatgtatgg	atcggtgtat	1980
gtcaaatact	ggeccaaagga	gectgggaa	tatgctgttc	acatcatgt	tgacgacgaa	2040
gacatcaagg	acagcccgta	catggccttc	atccacccag	ccacgggagg	ctacaaccc	2100
gatctggttc	gagcatacgg	gccagggtt	gagaatctg	gatgcattgt	caacaacctg	2160
gccgagttca	ctgtggatcc	taaggatgct	ggaaaagctc	ccttaaagat	atttgc	2220
gatggggaaag	gccaacgc	tgacatccag	atgaagaacc	ggatggacgg	cacatatgca	2280
tgctcataca	ccccgggt	ggccatcaag	cacaccatg	ctgtggtctg	gggaggcgt	2340
aacatcccgc	acagcccta	cagggtcaac	atcgggcaag	gtagccatcc	tcagaagg	2400
aaagtgtttg	ggccagggtgt	ggagagaagt	ggtctgaagg	caaatacacc	tacacactt	2460
acggtgact	gtactgaggc	tggggaaaggt	gatgtcagt	ttggcattaa	gtgtgtatgc	2520
cgggtgttaa	gtgaagatga	ggaagacgt	gattttgaca	ttattcaca	tgccatgtat	2580
acgttcacag	tcaaataatgt	gcctcctgt	gctgggcgt	acactatcaa	agttctctt	2640
gcatctcagg	aaatccccgc	cagcccttc	agagtcaaag	ttgacccttc	ccacgatgc	2700
agcaaagtga	aggcagaagg	cccaggcgt	agcaaagcag	gtgtggaaa	tggaaaccg	2760
acccacttca	ctgtctacac	caaggggct	gggaaagccc	cgctcaacgt	gcagttcaac	2820
agccctcttc	ctggcgatgc	agtgaaggat	ttggatata	tcgataatta	tgactact	2880
cacacggta	aatatacacc	caccaacag	ggcaacatgc	aggttctgg	gacttacgg	2940
ggcgatccca	tccctaaaag	ccctttact	gtgggtgtt	ctgcaccgt	ggatctgagc	3000
aagataaaac	tcaatgggt	ggaaaacagg	gtggaaagt	ggaaggatca	ggagttcacc	3060
gttgatacca	ggggggcagg	aggccagggg	aagctggacg	tgacaatct	cagccctct	3120

-continued

cggaaaggctcg	tgccatgct	agtgcacacct	gtgacaggcc	gggagaacag	cacggccaag	3180
ttcatccctc	gggaggaggg	gctgtatgct	gtagacgtga	cctacgtatgg	acaccctgtg	3240
cccgaggagcc	cctacacagt	ggaggcctcg	ctgccaccag	atcccagca	ggtgaaggcc	3300
cacggtccc	gcctcgaagg	tggtctcg	ggcaagecctg	ccgagttcac	catacgatacc	3360
aaaggagctg	gtactggagg	tctggctta	acggtggaag	gtccgtgcga	ggccaaaatc	3420
gagtgctccg	acaatggta	tgggacatgc	tccgtcttt	accttcccac	aaaacccggg	3480
gagtaactcg	tcaacatct	cttgaagaa	gtccacatac	ctgggtctcc	cttcaaagct	3540
gacattgaaa	tgccctttga	cccctctaaa	gtcgtggcat	cggggccagg	tctcgagcac	3600
ggaaagggtgg	gtgaagctgg	cctccttagc	gtcgactgct	cggaaggcccc	accggggggcc	3660
ctggggctgg	aagctgtctc	ggactcggga	acaaaagccg	aagtcaat	tcaacaac	3720
aaagatggca	cctacgcggt	gacctacgtg	cccctgacgg	ccggcatgt	cacgttacc	3780
atgaagtatg	gtggcgaact	cgtgccacac	ttccccgccc	gggtcaaggt	ggagcccccc	3840
gtggacacca	gcaggatcaa	agtctttgga	ccaggaatag	aaggaaaga	tgtgttccgg	3900
gaagctacca	ccgactttac	agttgactct	cggccgctga	cccaggttgg	gggtgaccac	3960
atcaaggccc	acattgccaa	cccctcaggg	gcctccaccc	agtgttttgt	cacagacaat	4020
gcggatggga	cctaccaggt	ggaatacaca	ccctttgaga	aaggcttcca	tgttagtggag	4080
gtgacatatg	atgacgtgcc	tatcccaaaac	agtccttca	agggtggctgt	cactgaaggc	4140
tgccagccat	ctagggtgca	agcccaagga	cctggattga	aaggccctt	taccaacaag	4200
cccaatgtct	tcaccgtgtt	taccagggc	gcaggaattt	gtgggtctgg	cataactgtt	4260
gagggaccat	cagagtcgaa	gataaaattgc	agagacaaca	aggatggcag	ctgcagtgt	4320
gagtaatcc	ctttcgcacc	gggggattac	gtgtttaata	tcacatatgg	aggagccac	4380
atccccggca	gcccccttaag	ggttctgtg	aaggatgtt	tggacccag	caaggtcaag	4440
attggccggcc	ccgggctggg	ctcagggcgtc	cgagcccg	tcctgcagtc	cttcacgggt	4500
gacagcagca	aggctggcct	ggctccgt	gaagtgggg	ttctggggcc	acgaggctt	4560
gtggagccag	tgaacgttgt	ggacaatgga	gtggcacac	acacgttaac	ctacacccca	4620
tctcaggagg	gacottacat	ggtctcagtt	aaatatgt	atgaagagat	tcctcgcagt	4680
cccttcaagg	tcaagggtct	tcccacat	gtgccagca	aagtgtactgc	cagtggcccc	4740
ggccttagtt	cctatgggt	gcctgccagt	ctacctgtgg	actttgcaat	tgtgtccgca	4800
gtggccgggg	aaggctgtct	tgtgttcaaa	ataacggacc	aagaaggaaa	acccaaaaga	4860
ggcattgtcc	atgacaataa	agatggcag	tatgtgtca	cctacatccc	cgacaagact	4920
ggcgcgtata	tgattggagt	cacctacggg	ggtgcacgaca	tcccacttc	tccttatcgc	4980
atcccgagcca	cacagacggg	tgtgtccagc	aagtgcctgg	ccacgggtcc	tggaatcgcc	5040
tccactgtga	aaactgggaa	agaagtaggg	tttgggttg	atgccaagac	tgccgggaaag	5100
ggttaaagtga	cctgcacgg	tctgacccca	gatggcactg	aggccgaggc	cgatgtcatt	5160
gagaatgaag	atggaaccta	tgacatctt	tacacgtcg	ccaagccggg	cacatatgt	5220
atctatgtgc	gcttcgggtgg	tgttgatatt	cctaacagcc	ctttcactgt	catggccaca	5280
gatggggaaag	tcacagccgt	ggaggaggca	ccggttaatg	catgtcccc	tggattcagg	5340
ccctgggtga	ccgaagagggc	ctatgtccca	gtgagtgaca	tgaacggcct	gggatthaag	5400
cctttgacc	tggtcattcc	gtttgctgtc	aggaaaggag	aaatcactgg	agagggtccac	5460

-continued

atgccttctg	ggaagacagc	cacacctgag	attgtggaca	acaaggacgg	cacggtcact	5520
gttagatatg	cccccaactga	ggtcgggctc	catgagatgc	acatcaaata	catgggcagc	5580
cacatccctg	agagccccact	ccagttctac	gtgaactacc	ccaacagtgg	aagtgttct	5640
gcatacggtc	caggcctcgt	gtatggagtg	gccaacaaaa	ctgccacctt	caccatcgtc	5700
acagaggatg	caggagaagg	tggtctggac	ttggctattg	agggccctc	aaaagoagaa	5760
atcagctgca	ttgacaataa	agatggaca	tgcacagtga	cctacctgcc	gactctgcca	5820
ggcgactaca	gcattctggt	caagtacaat	gacaagcaca	tccctggcag	ccccttcaca	5880
gccaagatca	cagatgacag	caggcgtgc	teccaggtga	agttgggctc	agccgctgac	5940
tccctgctcg	acatcagtga	gactgaccc	agcagcctga	cggccagcat	taaggcccc	6000
tctggccgag	acgagccctg	tctcctgaag	aggctgccca	acaaccacat	tggcatctcc	6060
ttcatcccc	gggaagtggg	cgaacatctg	gtcagcatca	agaaaaatgg	caaccatgtg	6120
gccaacagec	ccgtgtctat	catgggtgc	cagtcggaga	ttggtgacgc	ccgcegagcc	6180
aaagtctatg	gcccggcct	gtcagaaggc	cggaacttcg	agatgtctga	cttcatcg	6240
gacacaaggg	atgcaggta	tggtggata	tccttggcg	tggaggccc	cagcaaagt	6300
gacatccaga	cggaggacct	ggaagatggc	acctgcaaag	tctcctactt	ccctaccgt	6360
cctggggttt	atatcgctc	caccaaattc	gtgacgagc	acgtgcctgg	gagccattt	6420
accgtgaaga	tcagtgggga	gggaagagtc	aaagagagca	tcacccgac	cagtcggg	6480
ccgtccgtgg	ccactgtcgg	gacatttgc	gacctgaacc	tgaaaatccc	agaaatcaac	6540
agcagtgata	tgtcgccca	cgtcaccagc	ccctctggcc	gtgtgactga	ggcagagatt	6600
gtgeccatgg	ggaagaactc	acactgegtc	cggtttgtgc	cccaggagat	gggcgtgcac	6660
acggtcageg	tcaagtac	tgggcagcac	gtcacccggca	gccccttcca	gttcaccgt	6720
gggcccattg	gtgaaggagg	cgtccacaag	gtgcggcag	gaggccctgg	cctggagaga	6780
ggagaagcgg	gagtcccagc	ttagttcagc	atttggaccc	gggaagcagg	cgctggaggc	6840
ctctccatcg	ctgttgggg	ccccagtaa	gcccagat	cattcgtat	ccataaaaaat	6900
gggtcgtcg	gtgtatctt	tattggccaa	gagcctggta	actacgaggt	gtccatcaag	6960
ttcaatgt	agcacatccc	ggaaagcccc	tacctggtgc	cggtcatcg	accctccgac	7020
gacgcccccc	gcctcactgt	tatgagcc	caggaatcgg	gattaaaatg	taaccagcca	7080
gcatcccttg	ctataagg	aatggcgca	aaaggcaaga	ttgatgaaa	ggtgcacagc	7140
ccctctggag	ccgtggagga	gtgccacgt	tctgagctgg	agccagataa	gtatgtgtt	7200
cgcttcatcc	ctcatgagaa	tggtgtccac	accatcgat	tcaagttcaa	tgggagccac	7260
gtgggtggaa	gcccccttcaa	agtgcgcgtt	ggggagcctg	gacaagcggg	gaaccctg	7320
ctgggtgtcc	cctatggcac	gggactcgaa	ggggccacca	caggtatcca	gtcggaaattc	7380
tttattaaaca	ccacccgagc	aggtccaggg	acattatccg	tcaccatcg	aggcccatcc	7440
aaggtaaaa	tggattgcca	ggaaacac	gaagggtaca	aagtcatgt	caccccatg	7500
gctcctggta	actacctgat	cagcgtcaa	tacggggc	ccaaccacat	cgtggcag	7560
cccttcaagg	ccaagggtgac	aggccagcgt	ctagttagcc	ctggctcagc	caacgagacc	7620
tcatccatcc	tggtggagtc	agtgaccagg	tgcgtctacag	agacactgct	tagcgcatt	7680
cccaaggcat	cctcgga	cagcaaggtg	acctctaagg	gggcagg	ctcaaaggcc	7740

-continued

ttttgtggcc agaagagttc cttcttggtg gactgcagca aagctggctc caacatgctg 7800
ctgatcgcccc tccatggcc caccaccccc tgcgaggagg tctccatgaa gcatgttaggc 7860
aaccagcaat acaacgtcac atacgtcgtc aaggagaggg gcgattatgt gctggctgtg 7920
aagtgggggg aggaacacat ccctggcgc cctttcatg tcacagtgcc ttaaaacagt 7980
tttctcaaat cctggagaga gttcttgttgg ttgctttgt tgcttgttgc taattcattt 8040
tatacaaagc cctccagcct gtttgtggg ctgaaaccccc atccctaaaa tattgtcttt 8100
gtaaaaatgcc ttcagaaata agtcctagac tggactcttg agggacatat tggagaatct 8160
taagaaatgc aagcttgc aaaaaaaaaaaaaaaaatggggctga gaagatctg agtacactag gtgcacca 8220
gaactcttgg tggaaacagac cagccactgc agcagacaga ccaggaacac aatgagactg 8280
acatttcaaa aaaacaaaaac tggctagcct gagctgtgg ttcacttcc agcattttatg 8340
aaacaaggct agggaaagat gggcagagaa aaaggggaca cctagttgg ttgtcatttg 8400
gcaaaggaga tgactaaaa tccgttaat ctcttcagg tgcgtgtta atgtatgg 8460
ctattagatc actagcactg cttaaccgt cctcatgccc aacacccca tgctgttgg 8520
ccttcttaca cttctcagag ggcagagtgg cagccggcc caacctacagaa actcagaggg 8580
cagagtggca gccaggccca catgtctc aagtaccgtt cccctcgctc tggattat 8640
ttcttgcaaa atcaccacac gagaccatcc cggcagtcat gttttgtt tagtttcca 8700
agtccgttcc agtcccttcc ttggctgaa gaaattctgc agtggcggagc agttttccac 8760
ttgccaaaga tccctttaa ccaacactag ccctgtttt taacacacgc tccagccctt 8820
catcagcctg ggcagtctt cccaaatgtt taaaagtgtac tcagaggggc ccatggatta 8880
acgcctcat cccaaaggcc tcccatgac ataacactcc acacccggcc cagccaaactt 8940
catgggtcac tttttctgga aaataatgt ctgtacagac aggacagaat gaaactctg 9000
cgggtctttg gcctgaaaatg tggaaatggt tgggggagag aaggcagca gcttattgg 9060
ggcttttca ccattggcag aaacagtgg agctgtgtgg tgcagaaaatc cagaaatgg 9120
gtgttagggaa ttttgcctgc cttectgcag acctgagctg gttttggat gaggttaag 9180
tgcaggac gttgcctgag cccaaatgtg tagtgtggc tggcaggca gacctttagg 9240
ttttgctgct tagtctgag gaagtggca ctcttgcgc aggtgttagta tctggggcga 9300
gtgttggggg taaaagccca ccctacagaa agtggaaacag cccggaccc gatgtgaaag 9360
gaccacgggt gttgtaaagct gggacacggg agccaaactg gaatcaaacg ccgactgtaa 9420
attgtatctt ataaactttaa aataaaaaca tttgctccgt aaagttt 9480

<210> SEQ ID NO 30
<211> LENGTH: 193
<212> TYPE: PRT
<213> ORGANISM: *Homo sapiens*

<400> SEQUENCE: 30

Met Val Ala Pro Lys Ser His Thr Asp Asp Trp Ala Pro Gly Pro Phe
1 5 10 15

Ser Ser Lys Pro Gln Arg Ser Gln Leu Gln Ile Phe Ser Ser Val Leu
20 25 30

Gln Thr Ser Leu Leu Phe Leu Leu Met Gly Leu Arg Ala Ser Gly Lys
35 40 45

Asp Ser Ala Pro Thr Val Val Ser Gly Ile Leu Gly Gly Ser Val Thr
50 55 60

-continued

Leu Pro Leu Asn Ile Ser Val Asp Thr Glu Ile Glu Asn Val Ile Trp
 65 70 75 80
 Ile Gly Pro Lys Asn Ala Leu Ala Phe Ala Arg Pro Lys Glu Asn Val
 85 90 95
 Thr Ile Met Val Lys Ser Tyr Leu Gly Arg Leu Asp Ile Thr Lys Trp
 100 105 110
 Ser Tyr Ser Leu Cys Ile Ser Asn Leu Thr Leu Asn Asp Ala Gly Ser
 115 120 125
 Tyr Lys Ala Gln Ile Asn Gln Arg Asn Phe Glu Val Thr Thr Glu Glu
 130 135 140
 Glu Phe Thr Leu Phe Val Tyr Ala Pro Phe Ile Glu Lys Leu Ser Val
 145 150 155 160
 His Val Ile Glu Gly Asp His Arg Thr Leu Leu Glu Gly Ser Gly Leu
 165 170 175
 Glu Ser Ile Ile Ser Thr Leu Ala Glu Pro Arg Val Ser Val Arg Glu
 180 185 190
 Gly

<210> SEQ ID NO 31
 <211> LENGTH: 1525
 <212> TYPE: DNA
 <213> ORGANISM: Homo sapiens
 <400> SEQUENCE: 31

acatacacat	acacatgcac	acacacactc	atacacat	gcagaagctg	tgacacgtgc	60	
ggaagctgt	gtaagtgc	cat	cctc	tctc	gaaaatagat	catcatgg	120
gcaccaaaaga	gtcacacaga	tgactgggc	cctgg	gctt	tctcc	gat	180
agtca	gctgc	aaatattctc	ttctgttct	cagac	ctc	tc	240
ctaagagc	ctggaa	agg	ctc	agtggt	gtt	cgaggat	300
gtgact	ctcc	ccctaa	acat	tc	tc	gtcat	360
ccaaaaat	gtt	at	cg	acgtccc	aa	aaat	420
tac	ctt	ttt	cg	acgtt	ttt	ttt	480
ctgaa	at	ttt	cg	at	ttt	ttt	540
gaggag	ttt	ttt	cg	at	ttt	ttt	600
atcgagg	ttt	ttt	cg	at	ttt	ttt	660
ctgg	ttt	ttt	cg	at	ttt	ttt	720
agaccg	ttt	ttt	cg	at	ttt	ttt	780
gggacc	ttt	ttt	cg	at	ttt	ttt	840
tgtccc	ttt	ttt	cg	at	ttt	ttt	900
gactcct	ttt	ttt	cg	at	ttt	ttt	960
agtgg	ttt	ttt	cg	at	ttt	ttt	1020
gagact	ttt	ttt	cg	at	ttt	ttt	1080
ctgcac	ttt	ttt	cg	at	ttt	ttt	1140
cggcccc	ttt	ttt	cg	at	ttt	ttt	1200
cgaggag	ttt	ttt	cg	at	ttt	ttt	1260

-continued

gctggcctcc aaccctgcgg gccgcgcagg gcaccaactc agtgttgc agtgttgtt 1320
 tttccaagaa atggttcaaa ttgctgtca gattttaaa ttactgttag ctgcagg 1380
 acacgtgtgg accccatTTT atTTTACAC caatttggtg aaaatgctgc ttccctcagc 1440
 ctccccacaa ttAAACTGCA catggctctc aaaaaaataa aaataaataa ataaataaat 1500
 aaataaaaag tatctttct cccca 1525

 <210> SEQ_ID NO 32
 <211> LENGTH: 641
 <212> TYPE: PRT
 <213> ORGANISM: Homo sapiens

 <400> SEQUENCE: 32

 Met Val Ala Pro Lys Ser His Thr Asp Asp Trp Ala Pro Gly Pro Phe
 1 5 10 15

 Ser Ser Lys Pro Gln Arg Ser Gln Leu Gln Ile Phe Ser Ser Val Leu
 20 25 30

 Gln Thr Ser Leu Leu Phe Leu Leu Met Gly Leu Arg Ala Ser Gly Lys
 35 40 45

 Asp Ser Ala Pro Thr Val Val Ser Gly Ile Leu Gly Gly Ser Val Thr
 50 55 60

 Leu Pro Leu Asn Ile Ser Val Asp Thr Glu Ile Glu Asn Val Ile Trp
 65 70 75 80

 Ile Gly Pro Lys Asn Ala Leu Ala Phe Ala Arg Pro Lys Glu Asn Val
 85 90 95

 Thr Ile Met Val Lys Ser Tyr Leu Gly Arg Leu Asp Ile Thr Lys Trp
 100 105 110

 Ser Tyr Ser Leu Cys Ile Ser Asn Leu Thr Leu Asn Asp Ala Gly Ser
 115 120 125

 Tyr Lys Ala Gln Ile Asn Gln Arg Asn Phe Glu Val Thr Thr Glu Glu
 130 135 140

 Glu Phe Thr Leu Phe Val Tyr Glu Gln Leu Gln Glu Pro Gln Val Thr
 145 150 155 160

 Met Lys Ser Val Lys Val Ser Glu Asn Phe Ser Cys Asn Ile Thr Leu
 165 170 175

 Met Cys Ser Val Lys Gly Ala Glu Lys Ser Val Leu Tyr Ser Trp Thr
 180 185 190

 Pro Arg Glu Pro His Ala Ser Glu Ser Asn Gly Gly Ser Ile Leu Thr
 195 200 205

 Val Ser Arg Thr Pro Cys Asp Pro Asp Leu Pro Tyr Ile Cys Thr Ala
 210 215 220

 Gln Asn Pro Val Ser Gln Arg Ser Ser Leu Pro Val His Val Gly Gln
 225 230 235 240

 Phe Cys Thr Asp Pro Gly Ala Ser Arg Gly Gly Thr Thr Glu Thr
 245 250 255

 Val Val Gly Val Leu Gly Glu Pro Val Thr Leu Pro Leu Ala Leu Pro
 260 265 270

 Ala Cys Arg Asp Thr Glu Lys Val Val Trp Leu Phe Asn Thr Ser Ile
 275 280 285

 Ile Ser Lys Glu Arg Glu Glu Ala Ala Thr Ala Asp Pro Leu Ile Lys
 290 295 300

 Ser Arg Asp Pro Tyr Lys Asn Arg Val Trp Val Ser Ser Gln Asp Cys
 305 310 315 320

-continued

Ser Leu Lys Ile Ser Gln Leu Lys Ile Glu Asp Ala Gly Pro Tyr His
 325 330 335
 Ala Tyr Val Cys Ser Glu Ala Ser Ser Val Thr Ser Met Thr His Val
 340 345 350
 Thr Leu Leu Ile Tyr Arg Arg Leu Arg Lys Pro Lys Ile Thr Trp Ser
 355 360 365
 Leu Arg His Ser Glu Asp Gly Ile Cys Arg Ile Ser Leu Thr Cys Ser
 370 375 380
 Val Glu Asp Gly Gly Asn Thr Val Met Tyr Thr Trp Thr Pro Leu Gln
 385 390 395 400
 Lys Glu Ala Val Val Ser Gln Gly Glu Ser His Leu Asn Val Ser Trp
 405 410 415
 Arg Ser Ser Glu Asn His Pro Asn Leu Thr Cys Thr Ala Ser Asn Pro
 420 425 430
 Val Ser Arg Ser Ser His Gln Phe Leu Ser Glu Asn Ile Cys Ser Gly
 435 440 445
 Pro Glu Arg Asn Thr Lys Leu Trp Ile Gly Leu Phe Leu Met Val Cys
 450 455 460
 Leu Leu Cys Val Gly Ile Phe Ser Trp Cys Ile Trp Lys Arg Lys Gly
 465 470 475 480
 Arg Cys Ser Val Pro Ala Phe Cys Ser Ser Gln Ala Glu Ala Pro Ala
 485 490 495
 Asp Thr Pro Gly Tyr Glu Lys Leu Asp Thr Pro Leu Arg Pro Ala Arg
 500 505 510
 Gln Gln Pro Thr Pro Thr Ser Asp Ser Ser Ser Asp Ser Asn Leu Thr
 515 520 525
 Thr Glu Glu Asp Glu Asp Arg Pro Glu Val His Lys Pro Ile Ser Gly
 530 535 540
 Arg Tyr Glu Val Phe Asp Gln Val Thr Gln Glu Gly Ala Gly His Asp
 545 550 555 560
 Pro Ala Pro Glu Gly Gln Ala Asp Tyr Asp Pro Val Thr Pro Tyr Val
 565 570 575
 Thr Glu Val Glu Ser Val Val Gly Glu Asn Thr Met Tyr Ala Gln Val
 580 585 590
 Phe Asn Leu Gln Gly Lys Thr Pro Val Ser Gln Lys Glu Glu Ser Ser
 595 600 605
 Ala Thr Ile Tyr Cys Ser Ile Arg Lys Pro Gln Val Val Pro Pro Pro
 610 615 620
 Gln Gln Asn Asp Leu Glu Ile Pro Glu Ser Pro Thr Tyr Glu Asn Phe
 625 630 635 640
 Thr

 <210> SEQ ID NO 33
 <211> LENGTH: 2508
 <212> TYPE: DNA
 <213> ORGANISM: Homo sapiens

 <400> SEQUENCE: 33

 acatacacat acacatgcac acacacacat atatacacat gcagaagctg tgacacgtgc 60
 ggaagctgtg gtaagtgcac ctccttcac tctcagttct gaaaatagat catcatggtg 120
 gcaccaaaga gtcacacaga tgactggcctt tctccagtaa gccacagagg 180

-continued

agtcaagctc	aaatattctc	ttctgttcta	cagacccctc	tcctttcct	gctcatggga	240
ctaagagcct	ctggaaagga	ctcagccccca	acagtggtgt	cagggatcct	aggggggttcc	300
gtgactctcc	ccctaaacat	ctcagtagac	acagagatg	agaacgtcat	ctggattgg	360
ccaaaaatg	ctcttgcctt	cgcacgtccc	aaagaaaatg	taaccattat	ggtcaaaagc	420
tacctgggcc	gactagacat	caccaagtgg	agttactccc	tgtgcacat	caatctgact	480
ctgaatgatg	caggatccta	caaagccccag	ataaaaccaa	ggaatttga	agtcaccact	540
gaggaggaat	tcaccctgtt	cgtctatgag	cagctgcagg	agccccaa	gaccatgaag	600
tctgtgaagg	tgtctgagaa	cttctcctgt	aacatcactc	taatgtgctc	cgtgaagggg	660
gcagagaaaa	tgtttctgt	cagctggacc	ccaaaggaa	ccccatgttc	tgagtccaa	720
ggaggctcca	ttcttaccgt	ctcccgaaaca	ccatgtgacc	cagacctgccc	atacatctgc	780
acagccccaga	accccgctcg	ccagagaagc	tccctccctg	tccatgttgg	gcagttctgt	840
acagatccag	gagcctccag	aggaggaaca	acgggggaga	ctgtggtagg	ggtcctgg	900
gagccagtca	ccctgcccact	tgcaactccca	gcctgcccgg	acacagagaa	ggttgtctgg	960
ttgttaaca	catccatcat	tagcaaagag	agggagaag	cagcaacggc	agatccactc	1020
attaaatcca	gggatccta	caagaacagg	gtgtgggtct	ccagccagga	ctgctccctg	1080
aagatcagcc	agctgaagat	agaggacgcc	ggcccccatt	atgcctacgt	gtgctcagag	1140
gctccagcg	tcaccagcat	gacacatgtc	accctgctca	tctaccgcag	gctgaggaag	1200
ccaaaaatca	cgtggagcct	caggcacagt	gaggatggca	tctgcaggat	cagcctgacc	1260
tgctccgtgg	aggacggggg	aaacactgtc	atgtacacat	ggaccccgct	gcagaaggaa	1320
gctgttgtgt	cccaagggga	atcacacctc	aatgtctcat	ggagaagcag	tgaaaatcac	1380
cccaacctca	catgcacgc	cagcaacccct	gtcagcagga	gttcccacca	gtttctttct	1440
gagaacatct	gttcaggacc	tgagagaaac	acaaagctt	ggattgggtt	gttcctgatg	1500
gtttgccttc	tgtgcgttgg	gatttcagc	tggatgcatt	ggaagcggaa	aggacgggt	1560
tcagtcctcag	ccttctgttc	cagccaaagct	gaggccccag	cggatacacc	aggatatgag	1620
aagctggaca	ctcccccctag	gcgtggccagg	caacagccata	cacccacctc	agacagcagc	1680
tctgacagca	acctcacaac	tgaggaggat	gaggacaggc	ctgaggtgca	caagccatc	1740
agtggaaagat	atgaggtatt	tgaccaggc	actcaggagg	gcgctggaca	tgaccoagcc	1800
cctgaggggcc	aaggcagacta	tgatcccgtc	actccatatg	tcacggaagt	tgagtctgt	1860
gttggagaga	acaccatgt	tgcacaatgt	ttcaacttac	agggaaagac	cccgagtttct	1920
ccagaaggaag	agagctcagc	cacaatctac	tgctccat	ggaaacccatca	ggtggtgcca	1980
ccaccacaac	agaatgatct	tgagatcc	gaaatgcata	cctatgaaaa	tttcacat	2040
aaggaaaaagc	agctgctgcc	tctctctgg	gaccgtgggg	ttggaaagtc	agctggac	2100
catggggccct	ggggctcaca	gacagaagc	cctcagaatt	tccttcagtg	cctcagagat	2160
gcctggatgt	ggcccccctcc	cctccttc	acccttaagg	actccaaac	ccattaatag	2220
ttcagacaca	ggctcccttc	tggagcctat	gggcttcaga	tgtctttgccc	ccattttgtca	2280
cctcgacac	ttatagcg	tcctcctcga	aattctacca	agactggta	aatgttgctg	2340
agggggctgg	accagctgtc	ctttacacca	ccttctcaac	actgctgaaa	agaacccaag	2400
agaattgtca	cacatgacac	aagatgtaca	taatatcatg	ctcactgcag	tgttat	2460
aataaaaggc	aggaaataaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	2508

-continued

<210> SEQ ID NO 34
<211> LENGTH: 565
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 34

Met Val Ala Pro Lys Ser His Thr Asp Asp Trp Ala Pro Gly Pro Phe
1 5 10 15

Ser Ser Lys Pro Gln Arg Ser Gln Leu Gln Ile Phe Ser Ser Val Leu
20 25 30

Gln Thr Ser Leu Leu Phe Leu Leu Met Gly Leu Arg Ala Ser Gly Lys
35 40 45

Asp Ser Ala Pro Thr Val Val Ser Gly Ile Leu Gly Gly Ser Val Thr
50 55 60

Leu Pro Leu Asn Ile Ser Val Asp Thr Glu Ile Glu Asn Val Ile Trp
65 70 75 80

Ile Gly Pro Lys Asn Ala Leu Ala Phe Ala Arg Pro Lys Glu Asn Val
85 90 95

Thr Ile Met Val Lys Ser Tyr Leu Gly Arg Leu Asp Ile Thr Lys Trp
100 105 110

Ser Tyr Ser Leu Cys Ile Ser Asn Leu Thr Leu Asn Asp Ala Gly Ser
115 120 125

Tyr Lys Ala Gln Ile Asn Gln Arg Asn Phe Glu Val Thr Thr Glu Glu
130 135 140

Glu Phe Thr Leu Phe Val Tyr Glu Gln Leu Gln Glu Pro Gln Val Thr
145 150 155 160

Met Lys Ser Val Lys Val Ser Glu Asn Phe Ser Cys Asn Ile Thr Leu
165 170 175

Met Cys Ser Val Lys Gly Ala Glu Lys Ser Val Leu Tyr Ser Trp Thr
180 185 190

Pro Arg Glu Pro His Ala Ser Glu Ser Asn Gly Gly Ser Ile Leu Thr
195 200 205

Val Ser Arg Thr Pro Cys Asp Pro Asp Leu Pro Tyr Ile Cys Thr Ala
210 215 220

Gln Asn Pro Val Ser Gln Arg Ser Ser Leu Pro Val His Val Gly Gln
225 230 235 240

Phe Cys Thr Asp Pro Gly Ala Ser Arg Gly Gly Thr Thr Gly Glu Thr
245 250 255

Val Val Gly Val Leu Gly Glu Pro Val Thr Leu Pro Leu Ala Leu Pro
260 265 270

Ala Cys Arg Asp Thr Glu Lys Val Val Trp Leu Phe Asn Thr Ser Ile
275 280 285

Ile Ser Lys Glu Arg Glu Glu Ala Ala Thr Ala Asp Pro Leu Ile Lys
290 295 300

Ser Arg Asp Pro Tyr Lys Asn Arg Val Trp Val Ser Ser Gln Asp Cys
305 310 315 320

Ser Leu Lys Ile Ser Gln Leu Lys Ile Glu Asp Ala Gly Pro Tyr His
325 330 335

Ala Tyr Val Cys Ser Glu Ala Ser Ser Val Thr Ser Met Thr His Val
340 345 350

Thr Leu Leu Ile Tyr Arg Pro Glu Arg Asn Thr Lys Leu Trp Ile Gly
355 360 365

-continued

Leu Phe Leu Met Val Cys Leu Leu Cys Val Gly Ile Phe Ser Trp Cys
 370 375 380
 Ile Trp Lys Arg Lys Gly Arg Cys Ser Val Pro Ala Phe Cys Ser Ser
 385 390 395 400
 Gln Ala Glu Ala Pro Ala Asp Thr Pro Glu Pro Thr Ala Gly His Thr
 405 410 415
 Leu Tyr Ser Val Leu Ser Gln Gly Tyr Glu Lys Leu Asp Thr Pro Leu
 420 425 430
 Arg Pro Ala Arg Gln Gln Pro Thr Pro Thr Ser Asp Ser Ser Ser Asp
 435 440 445
 Ser Asn Leu Thr Thr Glu Glu Asp Glu Asp Arg Pro Glu Val His Lys
 450 455 460
 Pro Ile Ser Gly Arg Tyr Glu Val Phe Asp Gln Val Thr Gln Glu Gly
 465 470 475 480
 Ala Gly His Asp Pro Ala Pro Glu Gly Gln Ala Asp Tyr Asp Pro Val
 485 490 495
 Thr Pro Tyr Val Thr Glu Val Glu Ser Val Val Gly Glu Asn Thr Met
 500 505 510
 Tyr Ala Gln Val Phe Asn Leu Gln Gly Lys Thr Pro Val Ser Gln Lys
 515 520 525
 Glu Glu Ser Ser Ala Thr Ile Tyr Cys Ser Ile Arg Lys Pro Gln Val
 530 535 540
 Val Pro Pro Pro Gln Gln Asn Asp Leu Glu Ile Pro Glu Ser Pro Thr
 545 550 555 560
 Tyr Glu Asn Phe Thr
 565

<210> SEQ ID NO 35
 <211> LENGTH: 2280
 <212> TYPE: DNA
 <213> ORGANISM: Homo sapiens
 <400> SEQUENCE: 35

acatacacat	acacatgcac	acacacacat	atatacacat	gcagaagctg	tgacaacgtgc	60
ggaagctgtg	gtaagtgcac	cctccttcag	tctcagttct	gaaaatagat	catcatggtg	120
gcaccaaaaga	gtcacacaga	tgactgggc	cctgggcctt	tctccagtaa	gccacagagg	180
agtcaagctgc	aaatattctc	ttctgttcta	cagacctctc	tcctcttctt	gctcatggga	240
cttaagagcct	ctggaaagga	ctcagccccca	acagtgggtgt	cagggatcct	agggggttcc	300
gtgactctcc	cccttaaacat	ctcagtagac	acagagatg	agaacgtcat	ctggatgggt	360
ccccaaaaatg	ctcttgcttt	cgcacgtccc	aaagaaaatg	taaccattat	ggtaaaaagc	420
tacctgggcc	gactagacat	caccaagtgg	agttactccc	tgtgcacat	caatctgact	480
ctgaatgtat	caggatccta	caaagccccag	ataaaacaaaa	ggaattttga	agtcaccact	540
gaggaggaat	tcaccctgtt	cgtctatgag	cagctgcagg	agccccaaagt	caccatgaag	600
tctgtgaagg	tgtctgagaa	cttctctgt	aacatcaatc	taatgtgctc	cgtgaagggg	660
gcagagaaaa	gtgttctgt	cagctggacc	ccaagggAAC	cccatgtttc	tgagtccat	720
ggaggctcca	ttcttacatgt	ctcccgaaaca	ccatgtgacc	cagacctgccc	atacatctgc	780
acagccccaga	accccgtag	ccagagaagc	tccctccctg	tccatgttgg	gcagttctgt	840
acagatccag	gagcctccag	aggaggaaca	acgggggaga	ctgtggtagg	ggtcctggga	900

-continued

gagccagtca	ccctgccact	tgcaactccca	gcctgcccggg	acacagagaa	ggttgtctgg	960	
ttgtttaaca	catccatcat	tagcaaagag	agggaaagaag	cagcaacggc	agatccactc	1020	
attaaatcca	gggatcctta	caagaacagg	gtgtgggtct	ccagccagga	ctgtccctg	1080	
aagatcagcc	agctgaagat	agaggacgc	ggcccccattc	atgcctacgt	gtgtcaagag	1140	
gcctccagcg	tcaccagcat	gacacatgtc	accctgtc	tctaccgacc	tgagagaaac	1200	
acaaagcttt	ggattgggtt	gttcctgtat	gtttgccttc	tgtgcgttgg	gatcttcagc	1260	
tggtgcat	ttt	ggaagcgaaa	aggacggtgt	teagtcccag	ccttctgttc	1320	
gaggccccag	cggatacacc	agaacccaca	gtggccaca	cgctataactc	tgtgtctcc	1380	
caaggatatg	agaagctgga	cactccctc	aggcctgc	ggcaacagcc	tacaccacc	1440	
tcagacagca	gctctgacag	caacccata	actgaggagg	atgaggacag	gcctgagg	1500	
cacaagccca	tcagtggaa	atatgaggta	tttgaccagg	tcactcagga	gggcgttgg	1560	
catgacc	cccccag	ccaagcagac	tatgatccc	tcactccata	tgtcacggaa	1620	
gtttagtctg	tgggtggaga	gaacaccatg	tatgcacaag	tgttcaactt	acagggaaag	1680	
accc	cctcagaagga	agagagctca	gccacaatct	actgctccat	acggaaacct	1740	
caggtgg	tc	caccaccaca	acagaatgt	cttgagattc	ctgaaagtcc	1800	
aatttac	ctt	gaaaggaaaa	gcagctgct	cctctctc	gggaccgtgg	1860	
tcagctgg	act	ctcatgggc	ctggggctca	cagacagaag	cacccat	1920	
tgc	ct	atgcctggat	gtggccctc	cccctcttc	tcaccctaa	ggactccaa	1980
acccat	at	ttt	atgttc	atgggctca	gatgttttgc	2040	
ccccat	ttt	gtt	cttgc	cttgc	caagactgg	2100	
caa	atgttgc	tgagggc	ggaccagctg	tccttacac	cacccatca	acactg	2160
aaagaaccc	aa	agagaattgt	cacacatgc	acaagatgt	cataatatca	tgctactgc	2220
agtgttattt	aaaataaaag	gcagggaaata	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	2280

<210> SEQ ID NO 36

<211> LENGTH: 655

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 36

Met	Val	Ala	Pro	Lys	Ser	His	Thr	Asp	Asp	Trp	Ala	Pro	Gly	Pro	Phe
1								5	10					15	

Ser	Ser	Lys	Pro	Gln	Arg	Ser	Gln	Leu	Gln	Ile	Phe	Ser	Ser	Val	Leu
								20	25					30	

Gln	Thr	Ser	Leu	Leu	Phe	Leu	Leu	Met	Gly	Leu	Arg	Ala	Ser	Gly	Lys
								35	40					45	

Asp	Ser	Ala	Pro	Thr	Val	Val	Ser	Gly	Ile	Leu	Gly	Gly	Ser	Val	Thr
								50	55					60	

Leu	Pro	Leu	Asn	Ile	Ser	Val	Asp	Thr	Glu	Ile	Glu	Asn	Val	Ile	Trp
								65	70					75	80

Ile	Gly	Pro	Lys	Asn	Ala	Leu	Ala	Phe	Ala	Arg	Pro	Lys	Glu	Asn	Val
								85	90					95	

Thr	Ile	Met	Val	Lys	Ser	Tyr	Leu	Gly	Arg	Leu	Asp	Ile	Thr	Lys	Trp
								100	105					110	

Ser	Tyr	Ser	Leu	Cys	Ile	Ser	Asn	Leu	Thr	Leu	Asn	Asp	Ala	Gly	Ser
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

-continued

115	120	125	
Tyr Lys Ala Gln Ile Asn Gln Arg Asn Phe Glu Val Thr Thr Glu Glu			
130	135	140	
Glu Phe Thr Leu Phe Val Val Tyr Glu Gln Leu Gln Glu Pro Gln Val Thr			
145	150	155	160
Met Lys Ser Val Lys Val Ser Glu Asn Phe Ser Cys Asn Ile Thr Leu			
165	170	175	
Met Cys Ser Val Lys Gly Ala Glu Lys Ser Val Leu Tyr Ser Trp Thr			
180	185	190	
Pro Arg Glu Pro His Ala Ser Glu Ser Asn Gly Gly Ser Ile Leu Thr			
195	200	205	
Val Ser Arg Thr Pro Cys Asp Pro Asp Leu Pro Tyr Ile Cys Thr Ala			
210	215	220	
Gln Asn Pro Val Ser Gln Arg Ser Ser Leu Pro Val His Val Gly Gln			
225	230	235	240
Phe Cys Thr Asp Pro Gly Ala Ser Arg Gly Gly Thr Thr Gly Glu Thr			
245	250	255	
Val Val Gly Val Leu Gly Glu Pro Val Thr Leu Pro Leu Ala Leu Pro			
260	265	270	
Ala Cys Arg Asp Thr Glu Lys Val Val Trp Leu Phe Asn Thr Ser Ile			
275	280	285	
Ile Ser Lys Glu Arg Glu Glu Ala Ala Thr Ala Asp Pro Leu Ile Lys			
290	295	300	
Ser Arg Asp Pro Tyr Lys Asn Arg Val Trp Val Ser Ser Gln Asp Cys			
305	310	315	320
Ser Leu Lys Ile Ser Gln Leu Lys Ile Glu Asp Ala Gly Pro Tyr His			
325	330	335	
Ala Tyr Val Cys Ser Glu Ala Ser Ser Val Thr Ser Met Thr His Val			
340	345	350	
Thr Leu Leu Ile Tyr Arg Arg Leu Arg Lys Pro Lys Ile Thr Trp Ser			
355	360	365	
Leu Arg His Ser Glu Asp Gly Ile Cys Arg Ile Ser Leu Thr Cys Ser			
370	375	380	
Val Glu Asp Gly Gly Asn Thr Val Met Tyr Thr Trp Thr Pro Leu Gln			
385	390	395	400
Lys Glu Ala Val Val Ser Gln Gly Glu Ser His Leu Asn Val Ser Trp			
405	410	415	
Arg Ser Ser Glu Asn His Pro Asn Leu Thr Cys Thr Ala Ser Asn Pro			
420	425	430	
Val Ser Arg Ser Ser His Gln Phe Leu Ser Glu Asn Ile Cys Ser Gly			
435	440	445	
Pro Glu Arg Asn Thr Lys Leu Trp Ile Gly Leu Phe Leu Met Val Cys			
450	455	460	
Leu Leu Cys Val Gly Ile Phe Ser Trp Cys Ile Trp Lys Arg Lys Gly			
465	470	475	480
Arg Cys Ser Val Pro Ala Phe Cys Ser Ser Gln Ala Glu Ala Pro Ala			
485	490	495	
Asp Thr Pro Glu Pro Thr Ala Gly His Thr Leu Tyr Ser Val Leu Ser			
500	505	510	
Gln Gly Tyr Glu Lys Leu Asp Thr Pro Leu Arg Pro Ala Arg Gln Gln			
515	520	525	

-continued

Pro	Thr	Pro	Thr	Ser	Asp	Ser	Ser	Ser	Asp	Ser	Asn	Leu	Thr	Thr	Glu
530															540
Glu	Asp	Glu	Asp	Arg	Pro	Glu	Val	His	Lys	Pro	Ile	Ser	Gly	Arg	Tyr
545															560
Glu	Val	Phe	Asp	Gln	Val	Thr	Gln	Glu	Gly	Ala	Gly	His	Asp	Pro	Ala
															575
Pro	Glu	Gly	Gln	Ala	Asp	Tyr	Asp	Pro	Val	Thr	Pro	Tyr	Val	Thr	Glu
															590
Val	Glu	Ser	Val	Val	Gly	Glu	Asn	Thr	Met	Tyr	Ala	Gln	Val	Phe	Asn
															605
Leu	Gln	Gly	Lys	Thr	Pro	Val	Ser	Gln	Lys	Glu	Ser	Ser	Ala	Thr	
															620
Ile	Tyr	Cys	Ser	Ile	Arg	Lys	Pro	Gln	Val	Val	Pro	Pro	Pro	Gln	Gln
															640
Asn	Asp	Leu	Glu	Ile	Pro	Glu	Ser	Pro	Thr	Tyr	Glu	Asn	Phe	Thr	
															655

<210> SEQ ID NO 37

<211> LENGTH: 2550

<212> TYPE: DNA

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 37

acatacacat	acacatgcac	acacacactc	atatacacat	gcagaagctg	tgacacgtgc	60
ggaagctgtg	gtaagtgcac	cctccttcag	tctcagttct	gaaaatagat	catcatggtg	120
gcaccaaaga	gtcacacaga	tgactgggct	cctgggcctt	tctccagtaa	gccacagagg	180
agtcaagctgc	aaatattctc	ttctgttcta	cagacctctc	tcctttctt	gctcatggga	240
ctaagagcct	ctggaaagga	ctcagccccca	acagtgggt	cagggatcct	aggggggttcc	300
gtgactctcc	cccttaaacat	ctcagtagac	acagagattg	agaacgtcat	ctggattgg	360
cccaaaaatg	ctcttgcttt	cgcacgtccc	aaagaaaatg	taaccattat	ggtcaaaagc	420
tacctgggcc	gactagacat	caccaagtgg	agttactccc	tgtgcatcag	caatctgact	480
ctgaatgatg	caggatccta	caaagccccag	ataaaaccaa	ggaattttga	agtcaccaact	540
gaggaggaat	tcaccctgtt	cgtctatgag	cagctgcagg	agccccaa	caccatgaag	600
tctgtgaagg	tgtctgagaa	cttctctgt	aacatcac	taatgtgtc	cgtgaagggg	660
gcagagaaaa	gtgttctgt	cagctggacc	ccaaaggaa	ccatgttcc	tgagtccaaat	720
ggaggctcca	ttcttacatgt	ctcccgaaaca	ccatgtgacc	cagacctgccc	atacatctgc	780
acagccccaga	accctcgtag	ccagagaagc	ccctccctg	tccatgttgg	gcagttctgt	840
acagatccag	gagctccag	aggaggaaca	acgggggaga	ctgtggtag	ggtcctggga	900
gagccagtca	ccctgccact	tgcactccca	gcctgccggg	acacagagaa	ggttctgtgg	960
ttgtttaaca	catccatcat	tagcaaagag	agggagaag	cagcaacggc	agatccactc	1020
attaaatcca	gggatccta	caagaacagg	gtgtgggtct	ccagccagga	ctgctccctg	1080
aagatcagcc	agctgaagat	agaggacgccc	ggcccccattacc	atgcctacgt	gtgctcagag	1140
gcctccageg	tcaccagcat	gacacatgtc	accctgtca	tctaccggag	gctgaggaag	1200
cccaaaaatca	cgtggagcct	caggcacagt	gaggatggca	tctgcaggat	cagcctgacc	1260
tgctccgtgg	aggacgggggg	aaacactgtc	atgtacacat	ggaccccgct	gcagaaggaa	1320
gctgttgtgt	cccaaggggaa	atcacacactc	aatgtctcat	ggagaagcag	tgaaaatcac	1380

-continued

cccaacctca	catgcacagc	cagcaaccct	gtcagcagga	gttcccacca	gtttcttct	1440
gagaacatct	gttcaggacc	tgagagaaac	acaaagctt	ggattgggtt	gttcctgatg	1500
gttgccttc	tgtgcgttgg	gatttcage	tggtgattt	ggaagegaaa	aggacggtgt	1560
tcagtcccag	ccttctgttc	cagccaagct	gaggccccag	cggatacacc	agaaccacaca	1620
gctggccaca	cgtataactc	tgtgctctcc	caaggatatg	agaagctgga	caactccctc	1680
aggcctgcca	ggcaacagcc	tacacccacc	tcagacagca	gctctgacag	caacctcaca	1740
actgaggagg	atgaggacag	gcctgaggtg	cacaagecca	tcagtggaaag	atatgaggtt	1800
tttgaccagg	tcactcagga	ggcgcgctgg	catgacccag	cccctgaggg	ccaagcagac	1860
tatgatcccg	tcactccata	tgtcacggaa	gttgagtctg	tggttggaga	gaacaccatg	1920
tatgcacaag	tgttcaactt	acagggaaag	accccagttt	ctcagaagga	agagagctca	1980
gccacaatct	actgctccat	acggaaacct	caggtggtgc	caccaccaca	acagaatgtat	2040
cttgagattc	ctgaaagtcc	taccttatgaa	aatttcacct	gaaaggaaaa	gcagctgctg	2100
cctctctctt	gggaccgtgg	ggttggaaag	tcagctggac	ctcatggggc	ctggggctca	2160
cagacagaag	cacctcagaa	tttccttcag	tgcctcagag	atgcctggat	gtggcccttc	2220
ccccctccct	tcacccttaa	ggactccaa	acccattaat	agttcagaca	caggctcctt	2280
cttggagcct	atgggcttca	gatgtcttt	ccccattttt	cacctcgac	acttatacg	2340
tttctcttc	gaaattctac	caagactgg	caaatgttgc	tgaggggcct	ggaccagctg	2400
tccttacac	cacccctctca	acactgtga	aaagaaccca	agagaattgt	cacacatgac	2460
acaagatgt	cataatatca	tgctcactgc	agtgttattt	aaaataaaag	gcagggaaata	2520
aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa				2550

<210> SEQ ID NO 38

<211> LENGTH: 238

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 38

Met	Trp	Val	Pro	Val	Val	Phe	Leu	Thr	Leu	Ser	Val	Thr	Trp	Ile	Gly
1						5			10				15		

Ala	Ala	Pro	Leu	Ile	Leu	Ser	Arg	Ile	Val	Gly	Gly	Trp	Glu	Cys	Glu
						20			25			30			

Lys	His	Ser	Gln	Pro	Trp	Gln	Val	Leu	Val	Ala	Ser	Arg	Gly	Arg	Ala
						35			40			45			

Val	Cys	Gly	Gly	Val	Leu	Val	His	Pro	Gln	Trp	Val	Leu	Thr	Ala	Ala
						50			55			60			

His	Cys	Ile	Arg	Asn	Lys	Ser	Val	Ile	Leu	Leu	Gly	Arg	His	Ser	Leu
						65			70			75			80

Phe	His	Pro	Glu	Asp	Thr	Gly	Gln	Val	Phe	Gln	Val	Ser	His	Ser	Phe
						85			90			95			

Pro	His	Pro	Leu	Tyr	Asp	Met	Ser	Leu	Leu	Lys	Asn	Arg	Phe	Leu	Arg
						100			105			110			

Pro	Gly	Asp	Asp	Ser	Ser	His	Asp	Leu	Met	Leu	Leu	Arg	Leu	Ser	Glu
						115			120			125			

Pro	Ala	Glu	Leu	Thr	Asp	Ala	Val	Lys	Val	Met	Asp	Leu	Pro	Thr	Gln
						130			135			140			

Glu	Pro	Ala	Leu	Gly	Thr	Thr	Cys	Tyr	Ala	Ser	Gly	Trp	Gly	Ser	Ile
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

-continued

145	150	155	160												
Glu	Pro	Glu	Phe	Leu	Thr	Pro	Lys	Lys	Leu	Gln	Cys	Val	Asp	Leu	
			165					170					175		
His	Val	Ile	Ser	Asn	Asp	Val	Cys	Ala	Gln	Val	His	Pro	Gln	Lys	Val
			180				185					190			
Thr	Lys	Phe	Met	Leu	Cys	Ala	Gly	Arg	Trp	Thr	Gly	Gly	Lys	Ser	Thr
	195				200					205					
Cys	Ser	Trp	Val	Ile	Leu	Ile	Thr	Glu	Leu	Thr	Met	Pro	Ala	Leu	Pro
	210				215					220					
Met	Val	Leu	His	Gly	Ser	Leu	Val	Pro	Trp	Arg	Gly	Gly	Val		
	225				230				235						

<210> SEQ ID NO 39
<211> LENGTH: 1906
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 39

agccccaaagc ttaccaccctg caccggaga gctgtgtcac catgtgggtc cccgggtgtct 60
tcctcacccct gtccgtgacg tggattgggt ctgcacccct catcctgtct cggattgtgg 120
gaggctggga gtgcgagaag cattccaaac cctggcaggt gcttgggtc tctcggtca 180
gggcagtctg cggcggtgtt ctgggtcacc cccagtggtt cctcacagct gcccactgca 240
tcaggaacaa aagcgtgatc ttgctgggtc ggcacagcct gtttcatcct gaagacacag 300
gccaggattt tcaggtcagc cacagcttcc cacacccgct ctacgatatg agcctcctga 360
agaatcgatt cctcaggcca ggtgtatgact ccagccacga cctcatgctg ctccgcctgt 420
cagagcctgc cgagctcagc gatgtgtga aggtcatgga cctgcccacc caggagccag 480
caactggggac cacctgctac gcctcaggct ggggcagcat tgaaccagag gagtttttga 540
ccccaaagaa acttcagtgtt gtggacctcc atgttatttc caatgacgtg tggcgcgaag 600
ttcacccctca gaaggtgacc aagttcatgc tgtgtgtctgg acgctggaca gggggcaaaa 660
gcacccgtctc gtgggtcatt ctgatcacccg aactgaccat gccaggccctg cccatgggtcc 720
tccatggctc cctagtgccc tggagaggag gtgtctagtc agagagtagt cctggaaagg 780
ggccctctgtg aggacccacg gggacagcat cctgcagatg gtcctggccc ttgtccacc 840
gacccgtctca caaggactgt cctcgtggac cctccctct gcacaggagc tggaccctga 900
agtcccttcc ccacccggcca ggactggacg ccctacccct ctgttggaaat ccctggccac 960
cttcttctgg aagtccgtctc tggagacatt tctctttct tccaaagctg ggaactgcta 1020
tctgttatct ccctgtccag gtctgaaaga taggattgcc caggcagaaa ctgggactgta 1080
cctatctcac tctctccctg cttaaccct tagggtgatt ctggggggcc acttgtctgt 1140
aatgggtgtgc ttcaaggat cacgtcatgg ggcagtgaaac catgtgcctt cccggaaagg 1200
cttccctgtt acaccaagggt ggtgcattac cggaaagtggta tcaaggacac ctcgtggcc 1260
aaccctgtgac caccctatc aacccttatac tggtagtaaaac ttggaaacctt ggaatgacc 1320
aggccaaagac tcaagccctcc ccagttctac tgaccccttgc ccttaggtgt gaggtccagg 1380
gttgcttagga aaagaaatca gcagacacag gttagacca gaggatgttct taaatgggtgt 1440
aattttgtcc tctctgtgtc ctggggataa ctggccatgc ctggagacat atcactcaat 1500
ttctctgagg acacagatag gatgggggtgt ctgtgttatt tgggggtac agagatgaaa 1560

-continued

gagggggtggg atccacactg agagagtgga gagtgacatg tgctggacac tgtccatgaa	1620
gcactgagca gaagctggag gcacaacgca ccagacactc acagcaagga tggagctgaa	1680
aacataaccc actctgtcct ggaggcactg ggaagcctag agaaggctgt gagccaagga	1740
gggagggtct tcctttggca tggatgggg atgaagtaag gagagggact ggacccctg	1800
gaagctgatt cactatgggg ggaggtgtat tgaagtccctc cagacaaccc tcagattga	1860
tgatttccta gtagaactca cagaaataaa gagctgttat actgtg	1906

<210> SEQ ID NO 40

<211> LENGTH: 218

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 40

Met Trp Val Pro Val Val Phe Leu Thr Leu Ser Val Thr Trp Ile Gly	
1 5 10 15	
Ala Ala Pro Leu Ile Leu Ser Arg Ile Val Gly Gly Trp Glu Cys Glu	
20 25 30	
Lys His Ser Gln Pro Trp Gln Val Leu Val Ala Ser Arg Gly Arg Ala	
35 40 45	
Val Cys Gly Gly Val Leu Val His Pro Gln Trp Val Leu Thr Ala Ala	
50 55 60	
His Cys Ile Arg Lys Pro Gly Asp Asp Ser Ser His Asp Leu Met Leu	
65 70 75 80	
Leu Arg Leu Ser Glu Pro Ala Glu Leu Thr Asp Ala Val Lys Val Met	
85 90 95	
Asp Leu Pro Thr Gln Glu Pro Ala Leu Gly Thr Thr Cys Tyr Ala Ser	
100 105 110	
Gly Trp Gly Ser Ile Glu Pro Glu Glu Phe Leu Thr Pro Lys Lys Leu	
115 120 125	
Gln Cys Val Asp Leu His Val Ile Ser Asn Asp Val Cys Ala Gln Val	
130 135 140	
His Pro Gln Lys Val Thr Lys Phe Met Leu Cys Ala Gly Arg Trp Thr	
145 150 155 160	
Gly Gly Lys Ser Thr Cys Ser Gly Asp Ser Gly Gly Pro Leu Val Cys	
165 170 175	
Asn Gly Val Leu Gln Gly Ile Thr Ser Trp Gly Ser Glu Pro Cys Ala	
180 185 190	
Leu Pro Glu Arg Pro Ser Leu Tyr Thr Lys Val Val His Tyr Arg Lys	
195 200 205	
Trp Ile Lys Asp Thr Ile Val Ala Asn Pro	
210 215	

<210> SEQ ID NO 41

<211> LENGTH: 1335

<212> TYPE: DNA

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 41

agccccaagc ttaccacactg cacccggaga gctgtgtcac catgtggtc ccgggttgtct	60
tcctcaccct gtccgtgacg tggatgggt ctgcacccct catcctgtct cggattgtgg	120
gaggctggga gtgcgagaag cattcccaac cctggcaggt gcttgtggcc tctcggtggca	180
gggcagtctg cggcggtgtt ctgggtgcacc cccagtgggt cctcacagct gcccactgca	240

-continued

tcaggaagcc	aggtgatgac	tccagccacg	acctcatgct	gctccgcctg	tcagagcctg	300
ccgagctcac	ggatgctgtg	aaggctatgg	acctgcccac	ccaggagcca	gcactgggga	360
ccacctgcta	cgcctcaggc	tggggcagca	ttgaaccaga	ggagttcttg	acccaaaga	420
aacttcagtg	tgtggaccc	catgttattt	ccaatgacgt	gtgtgcgca	gttcacccctc	480
agaaggtgac	caagttcatg	ctgtgtgttg	gacgctggac	agggggcaaa	agcacotgct	540
cgggtgattc	tggggggccca	cttgcgtgt	atgggtgtct	tcaaggtatc	acgtcatggg	600
gcagtgaacc	atgtgcctg	cccgaaaggc	cttccctgt	caccaaggtg	gtgcattacc	660
ggaagtggat	caaggacacc	atcggtggcca	acccctgagc	acccctatca	acccctatt	720
gtagtaaact	tggAACCTG	gaaatgacca	ggccaagact	caagcctccc	cagtttact	780
gacccggatc	cttaggtgt	aggtccagg	ttgcttagaa	aagaaatcag	cagacacagg	840
tgttagaccag	agtgtttttt	aaatgggtgt	attttgcct	ctctgtgtcc	tggggaaatac	900
tggccatgcc	tggagacata	tcactcaatt	tctctgagga	cacagatagg	atgggggtgtc	960
tgtgttattt	gtggggtaca	gagatgaaag	aggggtggga	tccacactga	gagagtggag	1020
agtgcacatgt	gctggacact	gtccatgaa	cactgagcag	aagctggagg	cacaacgcac	1080
cagacactca	cagcaaggat	ggagctgaaa	acataaccca	ctctgtcctg	gaggcactgg	1140
gaaggcttaga	gaaggctgtg	agccaaggag	ggagggcttt	ccttggcat	gggatgggga	1200
tgaagtaagg	agagggactg	gacccctgg	aagctgattc	actatgggg	gaggtgtatt	1260
gaagtcctcc	agacaaccct	cagatttgat	gatttcctag	tagaactcac	agaaataaag	1320
agctgttata	ctgtg					1335

<210> SEQ ID NO 42

<211> LENGTH: 69

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 42

Met	Trp	Val	Pro	Val	Val	Phe	Leu	Thr	Leu	Ser	Val	Thr	Trp	Ile	Gly
1						5			10			15			

Ala	Ala	Pro	Leu	Ile	Leu	Ser	Arg	Ile	Val	Gly	Gly	Trp	Glu	Cys	Glu
								20	25			30			

Lys	His	Ser	Gln	Pro	Trp	Gln	Val	Leu	Val	Ala	Ser	Arg	Gly	Arg	Ala
								35	40			45			

Val	Cys	Gly	Gly	Val	Leu	Val	His	Pro	Gln	Trp	Val	Leu	Thr	Ala	Ala
								50	55			60			

His	Cys	Ile	Arg	Lys											
				65											

<210> SEQ ID NO 43

<211> LENGTH: 555

<212> TYPE: DNA

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 43

agccccaa	gttaccac	tcg	ccccggaga	gtgtgtc	ac	atgtgg	tc	ccgg	ttgt	ct	60
tcctcacc	ct	ccgt	gtac	tgat	gggt	ct	gcac	cc	at	ct	120
gaggctgg	gt	gcg	aga	at	ggc	ct	ggc	gt	gg	ca	180
ggcagtct	cg	cg	gtt	ct	gg	cc	gt	gg	ca	ct	240

-continued

tcaggaagt gatggggccc tgggtctgg ggagcagggtc tctgtgtccc agaggaaataa	300
cagctggcca ttttccccag gataacctct aaggccagcc ttgggactgg gggagagagg	360
gaaagttctg gttcaggta catggggagg cagggttggg gctggaccac cttccccatg	420
gctgcctggg totccatctg tgttctctta tgtctctttt tgtcgttcc attatgtctc	480
ttggtaactg gttcgggtg tgtctctccg tgtgactatt ttgttctctc tctccctctc	540
ttctctgtct tcaqt	555

<210> SEQ ID NO 44
<211> LENGTH: 261
<212> TYPE: PRT
<213> ORGANISM: *Homo sapiens*

<400> SEQUENCE: 44

<210> SEQ ID NO 45
<211> LENGTH: 1464
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens

-continued

<400> SEQUENCE: 45

agccccaa	gc ttaccacctg	cacccggaga	gtgtgtcac	catgtgggtc	ccgggttgtct	60		
tc	tcacccct	gtccgtgac	tggattgg	ctgcacccct	catectgtct	cggttgg	120	
gaggctgg	gtgcgagaag	cattccaa	cctggcaggt	gcttggcc	tctcg	ggca	180	
ggcagtct	cgccgggtt	ctgg	tcacc	cc	ctc	acagct	240	
tcaggaacaa	aagcgtgatc	ttgctgggtc	ggcacagcct	gttcatct	gaaga	aoacag	300	
gccagg	tatt	tcaggtcagc	cacagcttcc	cacacccgct	ctacgatatg	agcctoctga	360	
agaatcgatt	cctcag	ggt	gtact	ccagccacga	cctcatgtct	ctccgc	420	
cagagc	ctgc	cgag	ctc	acg	gtgt	gatgg	480	
cactgg	ggac	cac	ctg	cagg	gttgc	ccacc	540	
ccccaa	agaa	actt	cagt	gtgt	gac	ctcc	600	
ttcac	cctca	gaagg	tgacc	aagt	ttcatgc	tgtgt	gcaag	660
gcac	ctg	ctc	gggt	gatt	ctc	gggg	ccac	720
cgt	cat	gggg	cgt	gaa	cc	ttgc	ttgc	780
tgcatt	ac	ggat	ggat	ggat	ttgc	ccat	ccat	840
cccc	catt	tttt	tttt	tttt	tttgc	tttgc	tttgc	900
agtt	tact	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	960
agac	acag	gt	gtt	gtt	gtt	gtt	gtt	1020
gggg	aaata	act	gtt	gtt	gtt	gtt	gtt	1080
tgg	ttt	ttt	ttt	ttt	ttt	ttt	ttt	1140
ag	ttt	ttt	ttt	ttt	ttt	ttt	ttt	1200
acaac	gcacc	agac	actc	ac	act	act	act	1260
agg	cact	ggat	ggat	ggat	ggat	ggat	ggat	1320
ggat	ggat	ggat	ggat	ggat	ggat	ggat	ggat	1380
agg	gtt	gtt	gtt	gtt	gtt	gtt	gtt	1440
gaaataa	aga	gtt	tata	tc	tat	ttt	ttt	1464

1. A method for diagnosing an abnormal prostate state in a subject comprising:

- (1) determining a level of one or more prostate cancer related markers selected from the group consisting of filamin B, LY9, keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, and tubulin-beta 3 in a biological sample from the subject; and
- (2) comparing the level of the one or more prostate cancer related markers in the biological sample with the level of the one or more prostate cancer related markers in a normal control sample, wherein an altered level of the one or more prostate cancer related markers in the biological sample relative to the normal control sample is indicative of an abnormal prostate state in the subject.

2. The method of claim 1, wherein the one or more prostate cancer related markers is selected from the group consisting of filamin B, LY9, and keratin 19.

3. The method of claim 1, wherein an increased level of one or more prostate cancer related markers selected from the group consisting of filamin B, LY9, and keratin 19 in the biological sample relative to the normal control sample is indicative of an abnormal prostate state in the subject.

4. The method of claim 1, wherein no increase in the detected level of each of the one or more prostate-cancer related markers selected from the group consisting of filamin B, LY9, and keratin 19 in the biological sample relative to the normal control sample is indicative of a normal prostate state in the subject.

5. The method of claim 1, further comprising detecting the level of prostate specific antigen (PSA) in the biological sample.

6. The method of claim 5, further comprising comparing the level of PSA in the biological sample to the level of PSA in a normal control sample.

7. The method of claim **6**, wherein an increase in the level of one or more prostate cancer related markers selected from the group consisting of filamin B, LY9, and keratin 19 in the biological sample relative to the normal control sample, in combination with an increase in the level of PSA in the biological sample relative to the level of PSA in the normal control sample is indicative of an abnormal prostate state in the subject.

8. The method of claim **7**, wherein no increase in the detected level of expression of each of the one or more prostate-cancer related markers selected from the group consisting of filamin B, LY9, and keratin 19 in the biological sample relative to the normal control sample, in combination with a decreased or normal level of PSA in the biological sample as compared to the level of PSA in the normal control sample, is indicative of a normal prostate state in the subject.

9. The method of claim **2**, wherein the one or more prostate cancer markers selected from the group consisting of filamin B, LY9 and keratin 19 is: filamin B; LY9; keratin 19; filamin B and LY9; filamin B and keratin 19; LY9 and keratin 19; or filamin B, LY9, and keratin 19.

10. The method of claim **1**, wherein the abnormal prostate state is prostate cancer.

11-15. (canceled)

16. A method for identifying a subject as being at increased risk for developing prostate cancer, the method comprising:

(1) determining a level of one or more prostate cancer related markers selected from the group consisting of filamin B, LY9, keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, and tubulin-beta 3 in a biological sample from the subject; and

(2) comparing the level of the one or more prostate cancer related markers in the biological sample with the level of the one or more prostate cancer related markers in a normal control sample, wherein an altered level of the one or more prostate cancer related markers in the biological sample relative to the normal control sample is indicative of an increased risk for developing prostate cancer in the subject.

17. The method of claim **16**, wherein the one or more prostate cancer related markers is selected from the group consisting of filamin B, LY9, and keratin 19.

18-37. (canceled)

38. A method for monitoring prostate cancer in a subject, the method comprising

(1) determining a level of one or more prostate cancer related markers selected from the group consisting of filamin B, LY9, keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, and tubulin-beta 3 in a first biological sample obtained at a first time from a subject having prostate cancer;

(2) determining a level of expression of the one or more prostate cancer related markers in a second biological sample obtained from the subject at a second time, wherein the second time is later than the first time; and

(3) comparing the level of the one or more prostate cancer related markers in the second sample with the level of the one or more prostate cancer related markers in the first sample, wherein a change in the level of the one or more prostate cancer related markers in the second sample as compared to the first sample is indicative of a change in prostate cancer status in the subject.

39. The method of claim **38**, wherein the subject is actively treated for prostate cancer prior to obtaining the second sample.

40. The method of claim **38**, wherein the subject is not actively treated for prostate cancer prior to obtaining the second sample.

41. The method of claim **38**, wherein the one or more prostate cancer related markers is selected from the group consisting of filamin B, LY9, and keratin 19.

42. The method of claim **38**, wherein an increased level of one or more prostate cancer related markers selected from the group consisting of filamin B, LY9, and keratin 19 in the second biological sample as compared to the first biological sample is indicative of progression of the prostate cancer in the subject.

43. The method of claim **38**, wherein no increase in the detected level of expression of each of the one or more prostate-cancer related markers selected from the group consisting of filamin B, LY9, and keratin 19 in the second biological sample as compared to the first biological sample is indicative of non-progression of the prostate cancer in the subject.

44. The method of claim **38**, further comprising determining the level of prostate specific antigen (PSA) in the first biological sample and the second biological sample.

45. The method of claim **44**, further comprising comparing the level of PSA in the second biological sample to the level of PSA in the first biological sample.

46-61. (canceled)

62. A method for detecting a set of prostate cancer related markers, the method comprising:

(1) analyzing a biological sample from a subject for a level of two or more prostate cancer related markers of a set of prostate cancer related markers, wherein the set of prostate cancer related markers comprises filamin B, LY9, keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, and tubulin-beta 3;

(2) detecting each of the two or more prostate specific makers in the biological sample, thereby detecting the set of prostate cancer related biomarkers.

63. The method of claim **62**, wherein the set of prostate cancer related markers comprises filamin B, LY9, and keratin 19.

64. The method of claim **63**, wherein the two or more prostate cancer related markers of the set of prostate cancer related markers is: filamin B and LY9; filamin B and keratin 19; LY9 and keratin 19; or filamin B, LY9, and keratin 19.

65. The method of claim **62**, wherein the set of prostate cancer related markers comprises keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, and tubulin beta-3.

66. The method of claim **62**, wherein the set of prostate cancer related markers comprises keratin 7, keratin 8, and keratin 15.

67. The method of claim **62**, wherein the set of prostate cancer related markers comprises keratin 7 and keratin 15.

68-75. (canceled)

76. A panel of reagents for use in a detection method, the panel comprising at least two detection reagents, wherein each detection reagent is specific for the detection of at least one prostate cancer related marker of a set of prostate cancer related markers, wherein the set of prostate cancer specific markers comprises two or more prostate cancer related markers selected from the group consisting of filamin B, LY9, keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, tubulin-beta 3 and PSA.

77. The panel of claim **76**, wherein the set of prostate cancer specific markers comprises two or more prostate cancer related markers selected from the group consisting of filamin B, LY9, and keratin 19.

78. The panel of claim **77**, wherein the two or more prostate cancer related markers is: filamin B and LY9; filamin B and keratin 19; LY9 and keratin 19; or filamin B, LY9, and keratin 19.

79. The panel of claim **76**, wherein the set of prostate cancer specific markers comprises two or more prostate cancer related markers selected from the group consisting of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, and tubulin beta-3.

80. The panel of claim **76**, wherein the set of prostate cancer specific markers comprises two or more prostate cancer related markers selected from the group consisting of keratin 7, keratin 8, and keratin 15.

81. The panel of claim **76**, wherein the set of prostate cancer specific markers comprises keratin 7 and keratin 15.

82. The panel of claim **76**, wherein the set of prostate cancer specific markers further comprises PSA.

83. The panel of claim **82**, wherein the panel of reagents comprises a detection reagent specific for the detection of PSA.

84. (canceled)

85. A kit for the diagnosis, monitoring, or characterization of an abnormal prostate state, comprising:

at least one reagent specific for the detection of a level of at least one prostate cancer related marker selected from the group consisting of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, and tubulin-beta 3, filamin B, and LY9.

86. The kit of claim **85**, wherein the kit further comprises instructions for the diagnosis, monitoring, or characterization of an abnormal prostate state based on the level of the at least one prostate cancer related marker selected from the group consisting of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, and tubulin-beta 3, filamin B, and LY9 detected.

87. The kit of claim **85**, wherein the kit further comprises instructions to detect the level of PSA in a sample in which the at least one prostate cancer related marker selected from the group consisting of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, and tubulin-beta 3, filamin B, and LY9 is detected.

88. The kit of claim **85**, further comprising at least one reagent specific for the detection of a level of PSA.

89. A kit comprising at least one reagent specific for the detection of a level of at least one prostate cancer related marker selected from the group consisting of keratin 4, keratin 7, keratin 8, keratin 15, keratin 18, keratin 19, tubulin-beta 3, filamin B, and LY9 and at least one reagent specific for the detection of a level of PSA.

* * * * *