wo 20187126029 A2 | 0E 0000 T

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
05 July 2018 (05.07.2018)

(10) International Publication Number

WO 2018/126029 A2

WIPO I PCT

(51) International Patent Classification:
HO4L 29/06 (2006.01) HO041 9/32 (2006.01)
HO4L 9/08 (2006.01) HO4W 4/70 (2018.01)

(21) International Application Number:
PCT/US2017/068743

(22) International Filing Date:
28 December 2017 (28.12.2017)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

62/441,070 30 December 2016 (30.12.2016) US

(71) Applicant: INTEL CORPORATION [US/US]; 2200
Mission College Blvd., Santa Clara, California 95054 (US).

(72) Inventors: SMITH, Ned M.; 375 SW Delta Drive, Beaver-
ton, Oregon 97006 (US). BRADY, John; 11 Abbey Green
Abbey Farm, Celbridge, KE (IE). NOLAN, Michael; 6
Castlepark Drive, Dunboyne Road, Maynooth, KE (IE).
NOLAN, Keith; 202 Ashefield, WH N91, Mullingar,
C7W7 (IE). KELLY, Mark; Collinstown Industrial Es-
tate Leixlip, Leixlip, KE Co (IF). MACIEIRA, Thia-
go J.; 2221 SW 1st Ave, Apt. 122, Portland, Oregon
97201 (US). ZHANG, Zheng; 13293 NW Keeton Park
LN, Portland, Oregon 97229 (US). ANDERSON, Glen JI.;
16140 NW Somerset Drive, Beaverton, Oregon 97006 (US).
MUTTIK, Igor; Target House Gatehouse Road, Aylesbury
BKM, Buckinghamshire HP19 8ED (GB).

Agent: ANDERSON, Robert D. et al.; INTERNATION-
AL IP LAW GROUP, P.L.L.C., 13231 Champion Forest
Drive, Suite 410, Houston, Texas 77069 (US).

74

(54) Title: BLOCKCHAINS FOR SECURING IOT DEVICES

320

326

3

302

300

FIG. 3

(57) Abstract: A trusted communications environment includes a primary participant with a group creator and a distributed ledger, and
a secondary participant with communication credentials. An Internet of Things (IoT) network includes a trusted execution environment
with a chain history for a blockchain, a root-of-trust for chaining, and a root-of-trust for archives. An IoT network includes an IoT device
with a communication system, an onboarding tool, a device discoverer, a trust builder, a shared domain creator, and a shared resource
directory. An IoT network includes an IoT device with a communication system, a policy decision engine, a policy repository, a policy
enforcement engine, and a peer monitor. An IoT network includes an IoT device with a host environment and a trusted reliability engine
to apply a failover action if the host environment fails. An IoT network includes an IoT server including secure booter/measurer, trust

anchor, authenticator, key manager, and key generator.

324
306
A Y
l“ ioT | UJ loT I
10 7 . Z
25 308} .
g 312
Gateway E‘I 4 ;;(
S
E‘%30& e
I_“ loT I loT l
AN -~
A4

[Continued on next page]

WO 2018/126029 A2 {1000 A A

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA,CH, CL,CN, CO,CR, CU, CZ, DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,
KR,KW,KZ,LA,LC,LK,LR,LS,LU,LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

— as to the identity of the inventor (Rule 4.17(i))

— as to applicant’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

Published:
— without international search report and to be republished
upon receipt of that report (Rule 48.2(g))

WO 2018/126029 PCT/US2017/068743

Blockchains For Securing loT Devices

Cross Reference to Related Application
[0001] The present application claims the benefit of the filing date of United
States Patent Provisional Application Serial No. 62/441,070, by Ned M. Smith et al.,
entitled “THE INTERNET OF THINGS,” filed December 30, 2016, and which is

incorporated herein by reference.

Technical Field
[0002] The present techniques relate generally to Internet of Things (loT) devices.
More specifically the present techniques relate to devices that can perform remote

sensing and actuation functions.

Background
[0003] A current view of the Internet is the connection of clients, such as personal
computers, tablets, smart phones, servers, digital photo-frames, and many other
types of devices, to publicly-accessible data-centers hosted in server farms.
However, this view represents a small portion of the overall usage of the globally-
connected network. A very large number of connected resources currently exist, but
are not publicly accessible. Examples include corporate networks, private
organizational control networks, and monitoring networks spanning the globe, often
using peer-to-peer relays for anonymity.
[0004] It has been estimated that the internet of things (IoT) may bring Internet
connectivity to more than 15 billion devices by 2020. For organizations, I0T devices
may provide opportunities for monitoring, tracking, or controlling other devices and
items, including further loT devices, other home and industrial devices, items in
manufacturing and food production chains, and the like. The emergence of loT
networks has served as a catalyst for profound change in the evolution of the
Internet. In the future, the Internet is likely to evolve from a primarily human-oriented
utility to an infrastructure where humans may eventually be minority actors in an

interconnected world of devices.

WO 2018/126029 PCT/US2017/068743

[0005] In this view, the Internet will become a communications system for
devices, and networks of devices, to not only communicate with data centers, but
with each other. The devices may form functional networks, or virtual devices, to
perform functions, which may dissolve once the function is performed. Challenges
exist in enabling reliable, secure, and identifiable devices that can form networks as

needed to accomplish tasks.

Brief Description of the Drawings
[0006] Fig. 1 is a drawing of interconnections that may be present in the Internet
in accordance with some embodiments.
[0007] Fig. 2 is a drawing of a network topology for a number of internet-of-things
(loT) networks coupled through backbone links to gateways in accordance with
some embodiments.
[0008] Fig. 3 is a drawing of a cloud computing network, or cloud, in
communication with a number of 0T devices in accordance with some
embodiments.
[0009] Fig. 4 is a drawing of a cloud computing network, or cloud, in
communication with a mesh network of [0T devices, which may be termed a fog
device, operating at the edge of the cloud in accordance with some embodiments.
[0010] Fig. 5 is a schematic diagram of a semi-permissioned distributed ledger
transaction in accordance with some embodiments.
[0011] Fig. 6 is a process flow diagram of an example method for performing
semi-permissioned transactions in accordance with some embodiments.
[0012] Fig. 7 is a block diagram of an example of components that may be
present in an loT device for creating coalition groups in accordance with some
embodiments.
[0013] Fig. 8 is a block diagram of a non-transitory, machine readable medium
including code to direct a processor to securely communicate in groups in

accordance with some embodiments.

WO 2018/126029 PCT/US2017/068743

[0014] Fig. 9 is a schematic diagram of the use of a trusted execution
environment (TEE) to securely boot a device in an loT environment in accordance
with some embodiments.

[0015] Fig. 10 is a block diagram of a blockchain block holding boot integrity
transactions in accordance with some embodiments.

[0016] Fig. 11 is a schematic diagram of the use of a whitelist image collection
with a blockchain in accordance with some embodiments.

[0017] Fig. 12 is a drawing of a blockchain block with integrity transactions for
whitelist images in accordance with some embodiments.

[0018] Fig. 13 is a process flow diagram of an example method for a secure boot
process flow using blockchain roots-of-trust in accordance with some embodiments.
[0019] Fig. 14 is a block diagram of an example of components that may be
present in an loT device for creating coalition groups in accordance with some
embodiments.

[0020] Fig. 15 is a block diagram of a non-transitory, machine readable medium
including code to direct a processor to securely communicate in groups in
accordance with some embodiments.

[0021] Fig. 16 is a schematic drawing illustrating interoperability across public
domains, private domains, and public-private domains in accordance with some
embodiments.

[0022] Fig. 17 is a schematic drawing of interoperability across a heterogeneous
network of wired networks and wireless networks in accordance with some
embodiments.

[0023] Fig. 18 is a schematic diagram of devices that are onboarded by different
domains being incorporated by a shared domain created to allow the devices to
participate as components of a new domain in accordance with some embodiments.
[0024] Fig. 19 is a schematic diagram of the creation of a shared resource to
allow a device to participate across domains in accordance with some embodiments.
[0025] Fig. 20 is a process flow diagram of an example method for establishing a
combined loT domain including shared resources in accordance with some

embodiments.

WO 2018/126029 PCT/US2017/068743

[0026] Fig. 21 is a block diagram of an example of components that may be
present in an loT device for creating shared resources in accordance with some
embodiments.

[0027] Fig. 22 is a block diagram of a non-transitory, machine readable medium
including code to direct a processor to establish shared resources across domains in
accordance with some embodiments.

[0028] Fig. 23(A) is a schematic drawing of the hierarchical policy management
system used in many current computer networks in accordance with some
embodiments.

[0029] Fig. 23(B) is a schematic drawing of policy management in a peer-to-peer
(P2P) network, such as an loT mesh network in accordance with some
embodiments.

[0030] Fig. 24 is a schematic diagram of systems in nodes to implement a
distributed policy management system in accordance with some embodiments.
[0031] Fig. 25(A) is a ladder diagram of an example method of a new non-
configured node attempting to discover policies on a network, for example, from a
peer node in accordance with some embodiments.

[0032] Fig. 25(B) is a ladder diagram of an example method of a new non-
configured node discovering policies from a configured node in accordance with
some embodiments.

[0033] Fig. 26 is a ladder diagram of an example method of a configured node
communicating with a node having an updated policy to update the policies of the
configured node in accordance with some embodiments.

[0034] Fig. 27 is a ladder diagram of an example method showing the
concatenation of policies obtained from different nodes by the configured node in
accordance with some embodiments.

[0035] Fig. 28 is a block diagram of an example of components that may be
present in an loT device for the distributed management of policies in accordance
with some embodiments.

[0036] Fig. 29 is a block diagram of a non-transitory, machine readable medium
including code to direct a processor to manage policies in an 10T network in

cooperation with other loT devices in accordance with some embodiments.

WO 2018/126029 PCT/US2017/068743

[0037] Fig. 30 is a schematic diagram of a failover mechanism for a failed device
in accordance with some embodiments.

[0038] Fig. 31 is a process flow diagram of an example method for implementing
a failover mechanism using a trusted reliability engine (TRE) in accordance with
some embodiments.

[0039] Fig. 32 is a block diagram of an example of components that may be
present in an |0T device for implementing a failover mechanism using a trusted
reliability engine in accordance with some embodiments.

[0040] Fig. 33 is a block diagram of a non-transitory, machine readable medium
including code to direct a processor to implement a failover mechanism using a
trusted reliability engine in accordance with some embodiments.

[0041] Fig. 34 is a ladder diagram of an example method for unified key
management in an loT network environment in accordance with some embodiments.
[0042] Fig. 35 is a block diagram of an example of components that may be
present in an loT device for managing keys in a network of loT mesh devices in
accordance with some embodiments.

[0043] Fig. 36 is a block diagram of a non-transitory, machine readable medium
including code to direct a processor to manage keys for secure communications in
accordance with some embodiments.

[0044] The same numbers are used throughout the disclosure and the figures to
reference like components and features. Numbers in the 100 series refer to features
originally found in Fig. 1; numbers in the 200 series refer to features originally found

in Fig. 2; and so on.

Description of the Embodiments
[0045] The Internet-of-Things (loT) is a system in which a large number of
computing devices are interconnected to each other and to a communications
network (e.g., the Internet) to provide a functionality, such as data acquisition and
actuation, at very low levels in networks. Low levels indicate devices that may be
located at or near the edges of networks, such as the last devices before the
networks end. As used herein, an loT device may include a device performing a

function, such as sensing or control, among others, in communication with other 0T

WO 2018/126029 PCT/US2017/068743

devices and a communications network. The IoT device may include an
autonomous device or a semiautonomous configured to perform one or more
functions. Often, 10T devices can be limited in memory, size, or functionality,
allowing larger numbers to be deployed for a similar cost to a smaller number of
larger devices. However, an loT device may be a smart phone, laptop, tablet, PC,
and/or other larger device. Further, an IoT device may be a virtual device, such as
an application on a smart phone or other computing device. loT devices may include
loT gateways, used to couple IoT devices to other loT devices and to cloud
applications, for data storage, process control, and the like.

[0046] Networks of loT devices may include commercial and home devices, such
as water distribution systems, electric power distribution systems, pipeline control
systems, plant control systems, light switches, thermostats, locks, cameras, alarms,
motion sensors, and the like. The loT devices may be accessible through a
controller, such as computers, servers, and other systems, for example, to control
systems or access data. The controller and the loT devices can be remotely located
from one another.

[0047] The Internet can be configured to provide communications to a large
number of 10T devices. Accordingly, as described herein, a number of innovations for
the future Internet are designed to address the need for network layers, from central
servers, through gateways, down to edge devices, to grow unhindered, to discover
and make accessible connected resources, and to support the ability to hide and
compartmentalize connected resources. Any number of network protocols and
communications standards may be used, wherein each protocol and standard is
designed to address specific objectives. Further, the protocols are part of the fabric
supporting human accessible services that operate regardless of location, time or
space. The innovations include service delivery and associated infrastructure, such
as hardware and software. The services may be provided in accordance with the
Quality of Service (QoS) terms specified in service level and service delivery
agreements. The use of 10T devices and networks present a number of new
challenges in a heterogeneous network of connectivity including a combination of

wired and wireless technologies as depicted in Figs. 1 and 2.

WO 2018/126029 PCT/US2017/068743

[0048] Fig. 1 is a drawing of interconnections that may be present between the
Internet 100 and 10T networks in accordance with some embodiments. The
interconnections may couple smaller networks 102, down to the individual 10T device
104, to the backbone 106 of the Internet 100. To simplify the drawing, not every
device 104, or other object, is labeled.

[0049] InFig. 1, top-level providers, which may be termed tier 1 (“T1”) providers
108, are coupled by the backbone 106 of the Internet to other providers, such as
secondary or tier 2 (“T2”) providers 110. In some aspects, the backbone 106 can
include optical fiber links. In one example, a T2 provider 110 may couple to a tower
112 of an LTE cellular network, for example, by further links, by microwave
communications 114, or by other communications technologies. The tower 112 may
couple to a mesh network including loT devices 104 through an LTE communication
link 116, for example, through a central node 118. The communications between the
individual loT devices 104 may also be based on LTE communication links 116.
[0050] In another example, a high-speed uplink 119 may couple a T2 provider
110 to a gateway 120. A number of I0T devices 104 may communicate with the
gateway 120, and with each other through the gateway 120, for example, over
Bluetooth low energy (BLE) links 122.

[0051] The backbone 106 may couple lower levels of service providers to the
Internet, such as tier 3 (“T3”) providers 124. A T3 provider 124 may be considered a
general Internet service provider (ISP), for example, purchasing access to the
backbone 106 from a T2 provider 110 and providing access to a corporate gateway
126 and other customers.

[0052] From the corporate gateway 126, a wireless local area network (WLAN)
can be used to communicate with loT devices 104 through Wi-Fi® links 128. A Wi-Fi
link 128 may also be used to couple to a low power wide area (LPWA) gateway 130,
which can communicate with 10T devices 104 over LPWA links 132, for example,
compatible with the LoRaWan specification promulgated by the LoRa alliance.
[0053] The T3 provider 124 may also provide access to a mesh network 134
through a coordinator device 136 that communicates with the T3 provider 124 using
any number of communications links, such as an LTE cellular link, an LPWA link, or
a link 138 based on the IEEE 802.15.4 standard, such as Zigbee®. Other

WO 2018/126029 PCT/US2017/068743

coordinator devices 136 may provide a chain of links that forms cluster tree of linked
devices.

[0054] In some aspects, one or more 0T devices 104 include the appropriate
transceiver for the communications with other devices. Further, one or more IoT
devices 104 may include other radio, optical, or acoustic transceivers, as well as
wired network interfaces, for communications using additional protocols and
frequencies. In some aspects, one or more loT devices 104 includes components
described in regard to Fig. 7.

[0055] The technologies and networks may enable the growth of devices and
networks. As the technologies grow, the network may be developed for self-
management, functional evolution, and/or collaboration, without needing direct
human intervention. Thus, the technologies may enable networks to function without
centralized controlled systems. The technologies described herein may automate the
network management and operation functions beyond current capabilities. Further,
the approaches may provide the flexibility to have a centralized control operating
without human intervention, a centralized control that is automated, or any
combinations thereof.

[0056] Fig. 2 is a drawing of a network topology 200 that may be used for a
number of internet-of-things (loT) networks coupled through backbone links 202 to
gateways 204 in accordance with some embodiments. Like numbered items are as
described with respect to Fig. 1. Further, to simplify the drawing, not every device
104, or communications link 116, 122, 128, or 132 is labeled. The backbone links
202 may include any number of wired or wireless technologies, and may be part of a
local area network (LAN), a wide area network (WAN), or the Internet.

[0057] Although the topologies in Fig. 2 are hub-and-spoke and the topologies in
Fig. 1 are peer-to-peer, it may be observed that these are not in conflict, but that
peer-to-peer nodes may behave as hub-and-spoke through gateways. It may also be
observed in Fig. 2 that a sub-net topology may have multiple gateways, rendering it
a hybrid topology rather than a purely hub-and-spoke topology rather than a strictly
hub-and-spoke topology.

[0058] The network topology 200 may include any number of types of loT
networks, such as a mesh network 206 using Bluetooth Low Energy (BLE) links 122.

WO 2018/126029 PCT/US2017/068743

Other IoT networks that may be present include a WLAN network 208, a cellular
network 210, and an LPWA network 212. Each of these 10T networks may provide
opportunities for new developments, as described herein.

[0059] For example, communications between IoT devices 104, such as over the
backbone links 202, may be protected by a decentralized system for authentication,
authorization, and accounting (AAA). In a decentralized AAA system, distributed
payment, credit, audit, authorization, brokering, arbitration, and authentication
systems may be implemented across interconnected heterogeneous infrastructure.
This allows systems and networks to move towards autonomous operations.

[0060] Inthese types of autonomous operations, machines may contract for
human resources and negotiate partnerships with other machine networks. This may
allow the achievement of mutual objectives and balanced service delivery against
outlined, planned service level agreements as well as achieve solutions that provide
metering, measurements and traceability and trackability. The creation of new supply
chain structures and methods may enable a multitude of services to be created,
mined for value, and collapsed without any human involvement.

[0061] The loT networks may be further enhanced by the integration of sensing
technologies, such as sound, light, electronic traffic, facial and pattern recognition,
smell, and vibration, into the autonomous organizations. The integration of sensory
systems may allow systematic and autonomous communication and coordination of
service delivery against contractual service objectives, orchestration and quality of
service {QoS) based swarming and fusion of resources.

[0062] The mesh network 206 may be enhanced by systems that perform inline
data-to-information transforms. For example, self-forming chains of processing
resources comprising a multi-link network may distribute the transformation of raw
data to information in an efficient manner. This may allow such functionality as a first
stage performing a first numerical operation, before passing the result to another
stage, the next stage then performing another numerical operation, and passing that
result on to another stage. The system may provide the ability to differentiate
between assets and resources and the associated management of each.

Furthermore, the proper components of infrastructure and resource based trust and

WO 2018/126029 PCT/US2017/068743

service indices may be inserted to improve the data integrity, quality assurance, and
deliver a metric of data confidence.

[0063] As described herein, the WLAN network 208 may use systems that
perform standards conversion to provide multi-standard connectivity, enabling loT
devices 104 using different protocols to communicate. Further systems may provide
seamless interconnectivity across a multi-standard infrastructure comprising visible
Internet resources and hidden Internet resources.

[0064] Communications in the cellular network 210 may be enhanced by systems
that offload data, extend communications to more remote devices, or both. The
LPWA network 212 may include systems that perform non-Internet protocol (IP) to IP
interconnections, addressing, and routing.

[0065] Fig. 3 is a drawing 300 of a cloud computing network, or cloud 302, in
communication with a number of Internet of Things (loT) devices in accordance with
some embodiments. The cloud 302 may represent the Internet, or may be a local
area network (LAN), or a wide area network (WAN), such as a proprietary network
for a company. The loT devices may include any number of different types of
devices, grouped in various combinations. For example, a traffic control group 306
may include 10T devices along streets in a city. These I0T devices may include
stoplights, traffic flow monitors, cameras, weather sensors, and the like. The traffic
control group 306, or other subgroups, may be in communication with the cloud 302
through wireless links 308, such as LPWA links, and the like. Further, a wired or
wireless sub-network 312 may allow the |oT devices to communicate with each
other, such as through a local area network, a wireless local area network, and the
like. The loT devices may use another device, such as a gateway 310 to
communicate with the cloud 302.

[0066] Other groups of 10T devices may include remote weather stations 314,
local information terminals 316, alarm systems 318, automated teller machines 320,
alarm panels 322, or moving vehicles, such as emergency vehicles 324 or other
vehicles 326, among many others. Each of these |oT devices may be in
communication with other loT devices, with servers 304, or both.

[0067] As can be seen from Fig. 3, a large number of IoT devices may be

communicating through the cloud 302. This may allow different 10T devices to

10

WO 2018/126029 PCT/US2017/068743

request or provide information to other devices autonomously. For example, the
traffic control group 306 may request a current weather forecast from a group of
remote weather stations 314, which may provide the forecast without human
intervention. Further, an emergency vehicle 324 may be alerted by an automated
teller machine 320 that a burglary is in progress. As the emergency vehicle 324
proceeds towards the automated teller machine 320, it may access the traffic control
group 306 to request clearance to the location, for example, by lights turning red to
block cross traffic at an intersection in sufficient time for the emergency vehicle 324
to have unimpeded access to the intersection.

[0068] Clusters of 10T devices, such as the remote weather stations 314 or the
traffic control group 306, may be equipped to communicate with other IoT devices as
well as with the cloud 302. This may allow the loT devices to form an ad-hoc network
between the devices, allowing them to function as a single device, which may be
termed a fog device. The fog device is discussed further with respect to Fig. 4.
[0069] Fig. 4 is a drawing 400 of a cloud computing network, or cloud 302, in
communication with a mesh network of [oT devices, which may be termed a fog
device 402, operating at the edge of the cloud 302 in accordance with some
embodiments. Like numbered items are as described with respect to Fig. 3. As used
herein, a fog device 402 is a cluster of devices that may be grouped to perform a
specific function, such as traffic control, weather control, plant control, and the like.
[0070] In this example, the fog device 402 includes a group of IoT devices at a
traffic intersection. The fog device 402 may be established in accordance with
specifications released by the OpenFog Consortium (OFC), among others. These
specifications allow the formation of a hierarchy of computing elements between the
gateways 310 coupling the fog device 402 to the cloud 302 and to endpoint devices,
such as traffic lights 404 and data aggregators 406 in this example. The fog device
402 can leverage the combined processing and network resources that the collective
of 10T devices provides. Accordingly, a fog device 402 may be used for any number
of applications including, for example, financial modeling, weather forecasting, traffic
analyses, and the like.

[0071] For example, traffic flow through the intersection may be controlled by a

plurality of traffic lights 404 (e.g., three traffic lights 404). Analysis of the traffic flow

11

WO 2018/126029 PCT/US2017/068743

and control schemes may be implemented by aggregators 406 that are in
communication with the traffic lights 404 and each other through a mesh network.
Data may be uploaded to the cloud 302, and commands received from the cloud
302, through gateways 310 that are in communication with the traffic lights 404 and
the aggregators 406 through the mesh network.

[0072] Any number of communications links may be used in the fog device 402.
Shorter-range links 408, for example, compatible with IEEE 802.15.4 may provide
local communications between I0T devices that are proximate to the intersection.
Longer-range links 410, for example, compatible with LPWA standards, may provide
communications between the 10T devices and the gateways 310. To simplify the
diagram, not every communication link 408 or 410 is labeled with a reference
number.

[0073] The fog device 402 may be considered to be a massively interconnected
network wherein a number of |oT devices are in communications with each other, for
example, by the communication links 408 and 410. The network may be established
using the open interconnect consortium (OIC) standard specification 1.0 released by
the Open Connectivity Foundation™ (OCF) on December 23, 2015. This standard
allows devices to discover each other and establish communications for
interconnects. Other interconnection protocols may also be used, including, for
example, the AllJoyn protocol from the AllSeen alliance, the optimized link state
routing (OLSR) Protocol, or the better approach to mobile ad-hoc networking
(B.A.T.M.A.N.), among many others.

[0074] In some aspects, communications from one |loT device may be passed
along the most convenient path to reach the gateways 310, for example, the path
having the fewest number of intermediate hops, or the highest bandwidth, among
others. In these networks, the number of interconnections provide substantial
redundancy, allowing communications to be maintained, even with the loss of a
number of 10T devices.

[0075] In some aspects, the fog device 402 can include temporary l0T devices. In
other words, not all of the 10T devices may be permanent members of the fog device
402. For example, in the exemplary system 400, three transient 10T devices have

joined the fog device 402, a first vehicle 412, a second vehicle 414, and a pedestrian

12

WO 2018/126029 PCT/US2017/068743

416. In these cases, the 10T device may be built into the vehicles 412 and 414, or
may be an app on a smart phone carried by the pedestrian 416. Other IoT devices
may also be present, such as loT devices in bicycle computers, motorcycle
computers, drones, and the like.

[0076] The fog device 402 formed from the loT devices may be presented to
clients in the cloud 302, such as the server 304, as a single device located at the
edge of the cloud 302. In this example, the control communications to specific
resources in the fog device 402 may occur without identifying any specific loT device
within the fog device 402. Accordingly, if one loT device within the fog device 402
fails, other loT devices in the fog device 402 may be able to discover and control a
resource, such as an actuator, or other device attached to an loT device. For
example, the traffic lights 404 may be wired so as to allow any one of the traffic lights
404 to control lights for the other traffic lights 404. The aggregators 406 may also
provide redundancy in the control of the traffic lights 404 and other functions of the
fog device 402.

[0077] In some examples, the 0T devices may be configured using an imperative
programming style, e.g., with each |loT device having a specific function and
communication partners. However, the 10T devices forming the fog device 402 may
be configured in a declarative programming style, allowing the IoT devices to
reconfigure their operations and communications, such as to determine needed
resources in response to conditions, queries, and device failures. This may be
performed as transient IoT devices, such as the pedestrian 416, join the fog device
402.

[0078] As the pedestrian 416 is likely to travel more slowly than the vehicles 412
and 414, the fog device 402 may reconfigure itself to ensure that the pedestrian 416
has sufficient time to make it through the intersection. This may be performed by
forming a temporary group of the vehicles 412 and 414 and the pedestrian 416 to
control the traffic lights 404. If one or both of the vehicles 412 or 414 are
autonomous, the temporary group may instruct the vehicles to slow down prior to the
traffic lights 404. Further, if all of the vehicles at the intersection are autonomous, the
need for traffic signals may be diminished since autonomous vehicles’ collision

avoidance systems may allow for highly inter-leaved traffic patterns that may be too

13

WO 2018/126029 PCT/US2017/068743

complex for traffic lights to manage. However, traffic lights 404 may still be important
for the pedestrian 416, cyclists, or non-autonomous vehicles.

[0079] As the transient devices 412, 414, and 416, leave the vicinity of the
intersection of the fog device 402, the fog device 402 may reconfigure itself to
eliminate those IoT devices from the network. As other transient IoT devices
approach the intersection, the fog device 402 may reconfigure itself to include those
devices.

[0080] The fog device 402 may include the traffic lights 404 for a number of
intersections, such as along a street, along with all of the transient 10T devices along
the street. The fog device 402 may then divide itself into functional units, such as the
traffic lights 404 and other loT devices proximate to a single intersection. This type of
combination may enable the formation of larger IoT constructs, e.g., groups of loT
devices that perform a particular function, in the fog device 402.

[0081] For example, if an emergency vehicle joins the fog device 402, an
emergency construct, or virtual device, may be created that includes all of the traffic
lights 404 for the street, allowing control of the traffic flow patterns for the entire
street. The emergency construct may instruct the traffic lights 404 along the street to
stay red for opposing traffic and green for the emergency vehicle, expediting the
passage of the emergency vehicle.

[0082] As illustrated by the fog device 402, the organic evolution of 0T networks
is central to improving or maximizing the utility, availability and resiliency of loT
implementations. Further, the example indicates the usefulness of strategies for
improving trust and therefore security. The local identification of devices may be
important in implementations, as the decentralization of identity ensures a central
authority cannot be exploited to allow impersonation of objects that may exist within
the loT networks. Further, local identification lowers communication overhead and
latency.

[0083] Blockchains may be used to decentralize identification as they may
provide agreement between devices regarding names and identities that are in
current use. As used herein, a blockchain is a distributed database of identity
records that is made up of data structure blocks. Further, as used herein, the term

blockchain may include any one or more of other distributed ledger systems. Other

14

WO 2018/126029 PCT/US2017/068743

distributed ledger approaches include Ripple, Hyperledger, Multichain, Keyless
Signature Infrastructure, and the like. Each data structure block is based on a
transaction, where the issuance of a new name to a device, composite device, or
virtual device is one example of a transaction.

[0084] Using blockchains for identification, impersonation may be detected by
observing re-issuance of names and identities without a corresponding termination.
Public blockchains may be most useful, as they can enable a diverse community of
observers to detect misnaming, malicious naming, or failure of a naming
infrastructure. Thus, trustworthy identity infrastructure may be central to trusting loT
networks.

[0085] Fig. 5 is a schematic diagram of enabling communications between
devices using a semi-permissioned distributed ledger transaction 500 in accordance
with some embodiments. As used herein, a semi-permissioned distributed-ledger
system uses Enhanced Privacy Identification (EPID) keys to introduce transaction
keys into the ledger. A namespace authority, termed a Distributed Ledger
Enumeration Authority (DLEA) 502 allocates a unique number to an instance of a
ledger. The DLEA 502 may be operated by the Internet Assigned Numbers Authority
(IANA), a public agency, a private entity, or any entity that manages a number space
by taking steps to avoid reuse of numbers in use.

[0086] It may be observed that the algorithm used by the DLEA 502 for assigning
names/numbers may be distributed because the number space is sparse in relation
to the assigned numbers in use. Thus, the possibility of collisions is small. Hence it is
possible that multiple instances of the DLEA 502 could operate independently.
Accordingly, the DLEA 502 may be hosted across geo-political boundaries where
there isn’t a need for a central controlling authority such as a government or the UN
or a single large private organization. Further, the independence of distributed
blockchains may not be compromised by a centralized naming authority.

[0087] The operational integrity of the DLEA 502 may be cross-checked using a
public distributed ledger system that publishes DLEA numbers in use. This ledger,
DLS-0 504 is assigned the value of zero '0’ and is off limits for the DLEA 502 to
assign. The proper behavior of the DLEA number assignment may be strengthened

by implementing the number space allocation algorithm in a trusted execution

15

WO 2018/126029 PCT/US2017/068743

environment (TEE) such as an Intel SGX enclave, an ARM TrustZone, or a hardware
security module (HSM), among others. In these environments, the number
assignment algorithm may be confirmed by the global community of experts. Thus,
the DLEA 502 may be trusted, to a very high level, to perform the simple function of
avoiding re-assigning an already assigned number.

[0088] A participant, for example, P1 506, may send a request 508 for an
identifying number for communication transactions, e.g., DLS-X#, to the DLEA 502.
The request may take the form [request DLS-X#, Krxroot] Ktxroot, in Which the
information in the brackets is the message, and the number outside the brackets is
the public key for P1 506, Krxroot, Which indicates a signing of the message.

[0089] The DLEA 502 may assign a unique number to an instance of a semi-
permissioned distributed ledger system (DLS), and post 510 the DLEA allocated
number to DLS-0 504 along with the public key, Krxroot- DLS-0 504 is the public
distributed ledger system (DLS) and is only writable by the DLEA 502, but is visible
to all.

[0090] P1 506 may monitor 512 the ledger, DLS-0 504, to determine when the
assignment of a new key, X, has been recorded. The assigned number, X, may be
used by P1 506 as the root or starting key of a newly formed ledger, DLS-X 514.
This may be performed by creating the ledger, DLS-X 514, by committing a message
516 to the new ledger DLS-X 514: [Ktxroot]KpLs-x; [KpLs-x, perm] Krxroot; @and [Krypz]
K1xroot; Where Krypo is @ new ledger transaction key.

[0091] The new ledger, DLS-X 514, may also be used to implement the EPID
‘join’ protocol that establishes EPID private keys for each new member of DLS-X
514. All subsequent use of EPID private keys may be verified using the public key,
Krxroot, Of the first transaction to the ledger, DLS-X 514. Any of the EPID private keys
may introduce ledger transaction keys (Kry) to DLS-X 514 by signing the new TxK
with the EPID key.

[0092] For example, another participant, P2 518 may send a join request 520 to
the first participant, P1 506. The join request 520 may include the message: [JoinP
DLS-X]Kwmtgz; [Krxp2]KTxp2. The second participant, P2 518, may have obtained the
transaction key, Krp2, by accessing DLS-X 514. The second key, Kuig2, may be a

manufacturer's EPID key, such as Kwig2, Where the root Kry is attested, or signed, by

16

WO 2018/126029 PCT/US2017/068743

a manufacturer supplied EPID key of the format Kuig. The Kwugg attests that the
trusted execution environment (TEE) containing the root TxK is sufficiently
trustworthy. Likewise, a Ky in the TEE of the new participant device is used to
attest that the temporal key used to protect the join request 520, e.g., Knxpz, is
legitimate and trustworthy.

[0093] If P1 506 authenticates the request, it may return a message 522 to P2
518 to finalize the join. The message 522 may include [[Joinl DLS-X]Ktxroot]Kmig1, in
which Kwig1 is the manufacturer’s EPID for P1 506. The root Kry, Krxroot iS Used to
authenticate the join protocol response.

[0094] The devices P1 506 and P2 518 may exist at two different hierarchical
levels. Thus a number of devices at the level of P2 518 may join with P1 506, for
example, as a composite object and sub-objects as described herein. Similarly, other
devices may join with P2 518 at a lower level, such as participant P3 524. To join, P3
524 may send a join protocol request 526 to P2 518 of the form [JoinP DLS-X]Kigs;
[Kxp3]Kmps. If P2 518 authenticates the join protocol request 526, it may respond
with a message 528 of the format: [[Joinl DLS-X]Krxp2]Kwmige; [TXData, Krxps]Krxp2. P3
524 may commit the transaction to the distributed ledger, DLS-X 514 by recording a
sighed message 530 of the format: [[TxData, Krxps]Kt«p2]KbLs-xps in the ledger DLS-X
514.

[0095] Instead of using JoinP transactions P2 and P3 may be peer nodes in the
blockchain (X). Accordingly, they may use the transaction keys (KT) to engage in
commerce. For example, the message 528 may be buying a good or service and the
message 526 may be selling the good or service. In this case, they only need KTx
keys, and the technique is describing a blockchain transaction key behavior.

[0096] Further, blockchains generally don't have a KDLS key. That means the
blockchains may not be able to enforce semi-permissioned transactions. For
example, in message 528, P2 is buying a good or service, and P3 knows that P2 is a
member of a club, for example, a commercial establishment, an online auction site, a
casino club, and the like. Accordingly, P2 may get a discounted offer if the Seller, P3,
is also part of the club, or if club-owned currency, such as gambling chips, are

exchanged for different goods or services provided by the club members.

17

WO 2018/126029 PCT/US2017/068743

[0097] It may make sense to use EPID as a transaction key (KTx) in order to
maintain several wallets for convenience. As used herein, a wallet may be a
cryptographically protected electronic storage that holds a currency or a link to a
credit account. In this example, P2 and P3 may be different wallets that each hold a
share of a distributed wallet, for example, each other’s distributed wallets.

[0098] Another case in which the EPID may be used as a transaction key is when
P2 and P3 are each members of a group, such as a group of employees at a
company or a group of people that represent a church or civic enterprise, where the
various members can act as agents of the enterprise. From a blockchain
perspective, it doesn’'t matter semantically whether the Tx key is an EPID key or
other types of keys as long as the signature verifies the identities.

[0099] Fig. 6 is a process flow diagram of an example method 600 for performing
semi-permissioned transactions in accordance with some embodiments. The method
600 of Fig. 6 may be implemented by the 10T device 700 described with respect to
Fig. 7. The block 602 represents, for example, when a device is instructed to join
with other devices. At block 604, a first participant determines that a community of
things, such as the 10T devices forming a fog device, among others, may interact
with high integrity assurances.

[0100] At block 606, the first participant reserves a name representing the
community. This may be performed, for example, by sending a name, e.g., DLS-X,
and a public key for the first participant to a DLEA. The name, e.g., DLS-X, may be a
universally unique identifier (UUID), or other identification that has a very low
likelihood of replication. The message may be signed by a private key for the first
participant.

[0101] At block 608, the DLEA determines whether the name is in current use or
has been previously assigned. If so, process flow returns to block 606 for the first
participant to select a new name. If not, at block 610, the DLEA reserves the name,
DLS-X, by committing it to a distributed ledger, DLS-0. The key used to authenticate
the initial transaction to the DLEA may be committed to the ledger along with the
name.

[0102] At block 612, the first participant may use the DLS-X hame when that

name appears on DLS-0. This may be determined by the first participant monitoring

18

WO 2018/126029 PCT/US2017/068743

the DLS-0 ledger. At block 614, the first participant establishes a DLS-X group public
key using EPID, and defines a permissioning policy. The group public key and policy
are committed to the DLS-X ledger using the first participant’s transaction key. The
first participant’s transaction may also be committed to the DLS-X using the EPID
group private key.

[0103] At block 616, a second participant may join the DLS-X group by obtaining
a DLS-X group private key from the first participant. The first participant may be
acting as EPID group key issuer. The second participant may attest the
trustworthiness of its device using a manufacturer’s key, for example, a
manufacturers EPID key. At block 618, a determination is made as to whether the
attestation of the second device is trustworthy. If not, the method 600 ends at block
620.

[0104] If the attestation is trustworthy, at block 622, second participant receives
EPID join protocol response allowing it to generate a second group private key under
the EPID group public key for DLS-X. At block 624, a second participant self-signs its
transaction key, delivers it to the first participant. First participant signs second
participant’s public key and commits the transaction to the ledger, DLS-X, thereby
introducing the second participant to DLS-X. At block 626, a determination is made
as to whether there is another participant. If so, process flow returns to block 616 to
resume the next registration.

[0105] At block 628, a third participant may introduce itself to a second
participant. This may be done by the third participant self-signing a third participant
transaction key and sending it to the second participant. The second participant
signs the third participant public transaction key and optionally includes transaction
data and signs with its transaction key and DLS-X group key.

[0106] At block 630, the third participant commits the transaction to DLS-X. This
may be performed by the third participant signing the second participant’s
transaction data using the third participant’s DLS-X group private key before
committing the transaction to the DLS-X blockchain. The second participant may
also commit the transaction data to the DLS-X ledger using its DLS-X group private
key. In this scenario, the third participant also signs his self-signed tx key with the
third participant’s DLS-X group key. The method 600 then ends at block 620.

19

WO 2018/126029 PCT/US2017/068743

[0107] Fig. 7 is a block diagram of an example of components that may be
present in an loT device 700 for creating coalition groups in accordance with some
embodiments. Like numbered items are as described with respect to Fig. 3. It can be
noted that different components may be selected and used for the loT device 700
than for other IoT devices discussed herein.

[0108] The loT device 700 may include any combinations of the components
shown in the example. The components may be implemented as ICs, portions
thereof, discrete electronic devices, or other modules, logic, hardware, software,
firmware, or a combination thereof adapted in the loT device 700, or as components
otherwise incorporated within a chassis of a larger system. The block diagram of Fig.
7 is intended to show a high level view of components of the |oT device 700.
However, some of the components shown may be omitted, additional components
may be present, and different arrangement of the components shown may occur in
other implementations.

[0109] The loT device 700 may include a processor 702, which may be a
microprocessor, a multi-core processor, a multithreaded processor, an ultra-low
voltage processor, an embedded processor, or other known processing element.
The processor 702 may be a part of a system on a chip (SoC) in which the processor
702 and other components are formed into a single integrated circuit, or a single
package, such as the Edison™ or Galileo™ SoC boards from Intel. As an example,
the processor 702 may include an Intel® Architecture Core™ based processor, such
as a Quark™, an Atom™ an i3, an i5, an i7, or an MCU-class processor, or another
such processor available from Intel® Corporation, Santa Clara, CA. However, any
number other processors may be used, such as available from Advanced Micro
Devices, Inc. (AMD) of Sunnyvale, CA, a MIPS-based design from MIPS
Technologies, Inc. of Sunnyvale, CA, an ARM-based design licensed from ARM
Holdings, Ltd. or customer thereof, or their licensees or adopters. The processors
may include units such as an A5-A9 processor from Apple® Inc., a Snapdragon™
processor from Qualcomm® Technologies, Inc., or an OMAP™ processor from
Texas Instruments, Inc.

[0110] The processor 702 may communicate with a system memory 704 over a

bus 706. Any number of memory devices may be used to provide for a given amount

20

WO 2018/126029 PCT/US2017/068743

of system memory. As examples, the memory can be random access memory
(RAM) in accordance with a Joint Electron Devices Engineering Council (JEDEC)
low power double data rate (LPDDR)-based design such as the current LPDDR2
standard according to JEDEC JESD 209-2E (published April 2009), or a next
generation LPDDR standard, such as LPDDR3 or LPDDR4 that will offer extensions
to LPDDR2 to increase bandwidth. In various implementations the individual memory
devices may be of any number of different package types such as single die
package (SDP), dual die package (DDP) or quad die package (Q17P). These
devices, in some embodiments, may be directly soldered onto a motherboard to
provide a lower profile solution, while in other embodiments the devices are
configured as one or more memory modules that in turn couple to the motherboard
by a given connector. Any number of other memory implementations may be used,
such as other types of memory modules, e.g., dual inline memory modules (DIMMs)
of different varieties including but not limited to microDIMMs or MiniDIMMs. For
example, a memory may be sized between 2GB and 16GB, and may be configured
as a DDR3LM package or an LPDDR2 or LPDDR3 memory, which is soldered onto
a motherboard via a ball grid array (BGA).

[0111] To provide for persistent storage of information such as data, applications,
operating systems and so forth, a mass storage 708 may also be coupled to the
processor 702 via the bus 706. To enable a thinner and lighter system design, the
mass storage 708 may be implemented via a solid state drive (SSD). Other devices
that may be used for the mass storage 708 include flash memory cards, such as SD
cards, microSD cards, xD picture cards, and the like, and USB flash drives.

[0112] In low power implementations, the mass storage 708 may be on-die
memory or registers associated with the processor 702. However, in some
examples, the mass storage 708 may be implemented using a micro hard disk drive
(HDD). Further, any number of new technologies may be used for the mass storage
708 in addition to, or instead of, the technologies described, such resistance change
memories, phase change memories, holographic memories, or chemical memories,
among others. For example, the 10T device 700 may incorporate the 3D XPOINT

memories from Intel® and Micron®.

21

WO 2018/126029 PCT/US2017/068743

[0113] The components may communicate over the bus 706. The bus 706 may
include any number of technologies, including industry standard architecture (ISA),
extended ISA (EISA), peripheral component interconnect (PCI), peripheral
component interconnect extended (PCIx), PCl express (PCle), or any number of
other technologies. The bus 706 may be a proprietary bus, for example, used in a
SoC based system. Other bus systems may be included, such as an I°C interface,
I°C interface, an SP! interface, point to point interfaces, and a power bus, among
others.

[0114] The bus 706 may couple the processor 702 to a mesh transceiver 710, for
communications with other mesh devices 712. The mesh transceiver 710 may use
any number of frequencies and protocols, such as 2.4 gigahertz (GHz) transmissions
under the IEEE 802.15.4 standard, using the Bluetooth® low energy (BLE) standard,
as defined by the Bluetooth® Special Interest Group, or the ZigBee® standard,
among others. Any number of radios, configured for a particular wireless
communication protocol, may be used for the connections to the mesh devices 712.
For example, a WLAN unit may be used to implement Wi-Fi™ communications in
accordance with the Institute of Electrical and Electronics Engineers (IEEE) 802.11
standard. In addition, wireless wide area communications, e.g., according to a
cellular or other wireless wide area protocol, can occur via a WWAN unit.

[0115] The mesh transceiver 710 may communicate using multiple standards or
radios for communications at different range. For example, the IoT device 700 may
communicate with geographically proximate devices, e.g., within about 10 meters,
using a local transceiver based on BLE, or another low power radio, to save power.
More distant mesh devices 712, e.g., within about 50 meters, may be reached over
ZigBee or other intermediate power radios. Both communications techniques may
take place over a single radio at different power levels, or may take place over
separate transceivers, for example, a local transceiver using BLE and a separate
mesh transceiver using ZigBee. The mesh transceiver 710 may be incorporated into
an MCU as an address directly accessible by the chip, such as in the Curie® units
available from Intel.

[0116] An uplink transceiver 714 may be included to communicate with devices in

the cloud 302. The uplink transceiver 714 may be LPWA transceiver that follows the

22

WO 2018/126029 PCT/US2017/068743

IEEE 802.15.4, |IEEE 802.15.4¢g, IEEE 802.15.4¢, IEEE 802.15.4k, or NB-loT
standards, among others. The loT device 700 may communicate over a wide area
using LoRaWAN™ (Long Range Wide Area Network) developed by Semtech and
the LoRa Alliance. The techniques described herein are not limited to these
technologies, but may be used with any number of other cloud transceivers that
implement long range, low bandwidth communications, such as Sigfox, and other
technologies. Further, other communications techniques, such as time-slotted
channel hopping, described in the IEEE 802.15.4e specification may be used.
[0117] Any number of other radio communications and protocols may be used in
addition to the systems mentioned for the mesh transceiver 710 and uplink
transceiver 714, as described herein. For example, the radio transceivers 710 and
712 may include an LTE or other cellular transceiver that uses spread spectrum
(SPA/SAS) communications for implementing high-speed communications, such as
for video transfers. Further, any number of other protocols may be used, such as Wi-
Fi® networks for medium speed communications, such as still pictures, sensor
readings, and provision of network communications.

[0118] The radio transceivers 710 and 712 may include radios that are
compatible with any number of 3GPP (Third Generation Partnership Project)
specifications, notably Long Term Evolution (LTE), Long Term Evolution-Advanced
(LTE-A), Long Term Evolution-Advanced Pro (LTE-A Pro), or Narrow Band loT (NB-
loT), among others. It can be noted that radios compatible with any number of other
fixed, mobile, or satellite communication technologies and standards may be
selected. These may include, for example, any Cellular Wide Area radio
communication technology, which may include e.g. a 5th Generation (5G)
communication systems, a Global System for Mobile Communications (GSM) radio
communication technology, a General Packet Radio Service (GPRS) radio
communication technology, or an Enhanced Data Rates for GSM Evolution (EDGE)
radio communication technology. Other Third Generation Partnership Project (3GPP)
radio communication technology that may be used includes UMTS (Universal Mobile
Telecommunications System), FOMA (Freedom of Multimedia Access), 3GPP LTE
(Long Term Evolution), 3GPP LTE Advanced (Long Term Evolution Advanced),
3GPP LTE Advanced Pro {Long Term Evolution Advanced Pro)), CDMA2000 (Code

23

WO 2018/126029 PCT/US2017/068743

division multiple access 2000), CDPD (Cellular Digital Packet Data), Mobitex, 3G
(Third Generation), CSD (Circuit Switched Data), HSCSD (High-Speed Circuit-
Switched Data), UMTS (3G) (Universal Mobile Telecommunications System (Third
Generation)), W-CDMA (UMTS) (Wideband Code Division Multiple Access
(Universal Mobile Telecommunications System)), HSPA (High-speed Packet
Access), HSDPA (High-Speed Downlink Packet Access), HSUPA (High-Speed
Uplink Packet Access), HSPA+ (High-speed Packet Access Plus), UMTS-TDD
(Universal Mobile Telecommunications System - Time-Division Duplex), TD-CDMA
(Time Division - Code Division Multiple Access), TD-SCDMA (Time Division -
Synchronous Code Division Multiple Access), 3GPP Rel. 8 (Pre-4G) (3rd Generation
Partnership Project Release 8 (Pre-4th Generation)), 3GPP Rel. 9 (3rd Generation
Partnership Project Release 9), 3GPP Rel. 10 (3rd Generation Partnership Project
Release 10) , 3GPP Rel. 11 (3rd Generation Partnership Project Release 11), 3GPP
Rel. 12 (3rd Generation Partnership Project Release 12), 3GPP Rel. 13 (3rd
Generation Partnership Project Release 13), 3GPP Rel. 14 (3rd Generation
Partnership Project Release 14), 3GPP LTE Extra, LTE Licensed-Assisted Access
(LAA), UTRA (UMTS Terrestrial Radio Access), E-UTRA (Evolved UMTS Terrestrial
Radio Access), LTE Advanced (4G) (Long Term Evolution Advanced (4th
Generation)), cdmaOne (2G), CDMA2000 (3G) (Code division multiple access 2000
(Third generation)), EV-DO (Evolution-Data Optimized or Evolution-Data Only),
AMPS (1G) (Advanced Mobile Phone System (1st Generation)), TACS/ETACS
(Total Access Communication System/Extended Total Access Communication
System), D-AMPS (2G) (Digital AMPS (2nd Generation)), PTT (Push-to-talk), MTS
(Mobile Telephone System), IMTS (Improved Mobile Telephone System), AMTS
(Advanced Mobile Telephone System), OLT (Norwegian for Offentlig Landmobil
Telefoni, Public Land Mobile Telephony), MTD (Swedish abbreviation for
Mobiltelefonisystem D, or Mobile telephony system D), Autotel/PALM (Public
Automated Land Mobile), ARP (Finnish for Autoradiopuhelin, “car radio phone”),
NMT (Nordic Mobile Telephony), Hicap (High capacity version of NTT (Nippon
Telegraph and Telephone)), CDPD (Cellular Digital Packet Data), Mobitex,
DataTAC, iDEN (Integrated Digital Enhanced Network), PDC (Personal Digital
Cellular), GSD (Circuit Switched Data), PHS (Personal Handy-phone System),

24

WO 2018/126029 PCT/US2017/068743

WIDEN (Wideband Integrated Digital Enhanced Network), iBurst, Unlicensed Mobile
Access (UMA, also referred to as also referred to as 3GPP Generic Access Network,
or GAN standard)), Wireless Gigabit Alliance (WiGig) standard, mmWave standards
in general (wireless systems operating at 10-90 GHz and above such as WiGig,
IEEE 802.11ad, IEEE 802.11ay, and the like. In addition to the standards listed
above, any number of satellite uplink technologies may be used for the uplink
transceiver 714, including, for example, radios compliant with standards issued by
the ITU (International Telecommunication Union), or the ETSI (European
Telecommunications Standards Institute), among others. The examples provided
herein are thus understood as being applicable to various other communication
technologies, both existing and not yet formulated.

[0119] A network interface controller (NIC) 716 may be included to provide a
wired communication to the cloud 302 or to other devices, such as the mesh devices
712. The wired communication may provide an Ethernet connection, or may be
based on other types of networks, such as Controller Area Network (CAN), Local
Interconnect Network (LIN), DeviceNet, ControlNet, Data Highway+, PROFIBUS, or
PROFINET, among many others. An additional NIC 716 may be included to allow
connect to a second network, for example, a NIC 716 providing communications to
the cloud over Ethernet, and a second NIC 716 providing communications to other
devices over another type of network.

[0120] The bus 706 may couple the processor 702 to an interface 718 that is
used to connect external devices. The external devices may include sensors 720,
such as accelerometers, level sensors, flow sensors, temperature sensors, pressure
sensors, barometric pressure sensors, and the like. The interface 718 may be used
to connect the IoT device 700 to actuators 722, such as power switches, valve
actuators, an audible sound generator, a visual warning device, and the like.

[0121] While not shown, various input/output (I/O) devices may be present within,
or connected to, the loT device 700. For example, a display may be included to show
information, such as sensor readings or actuator position. An input device, such as a
touch screen or keypad may be included to accept input.

[0122] A battery 724 may power the 10T device 700, although in examples in

which the loT device 700 is mounted in a fixed location, it may have a power supply

25

WO 2018/126029 PCT/US2017/068743

coupled to an electrical grid. The battery 724 may be a lithium ion battery, a metal-air
battery, such as a zinc-air battery, an aluminume-air battery, a lithium-air battery, a
hybrid super-capacitor, and the like.

[0123] A battery monitor / charger 726 may be included in the loT device 700 to
track the state of charge (SoCh) of the battery 720. The battery monitor / charger
726 may be used to monitor other parameters of the battery 724 to provide failure
predictions, such as the state of health (SoH) and the state of function (SoF) of the
battery 724. The battery monitor / charger 726 may include a battery monitoring
integrated circuit, such as an LTG4020 or an LTG2990 from Linear Technologies, an
ADT7488A from ON Semiconductor of Phoenix Arizona, or an IC from the
UCD90xxx family from Texas Instruments of Dallas, TX. The battery monitor /
charger 726 may communicate the information on the battery 724 to the processor
702 over the bus 706. The battery monitor / charger 726 may also include an analog-
to-digital (ADC) convertor that allows the processor 702 to directly monitor the
voltage of the battery 726 or the current flow from the battery 724. The battery
parameters may be used to determine actions that the loT device 700 may perform,
such as transmission frequency, mesh network operation, sensing frequency, and
the like.

[0124] A power block 728, or other power supply coupled to a grid, may be
coupled with the battery monitor / charger 726 to charge the battery 724. In some
examples, the power block 728 may be replaced with a wireless power receiver to
obtain the power wirelessly, for example, through a loop antenna in the 10T device
700. A wireless battery charging circuit, such as an LTC4020 chip from Linear
Technologies of Milpitas, CA, among others, may be included in the battery monitor /
charger 726. The specific charging circuits chosen depend on the size of the battery
724, and thus, the current required. The charging may be performed using the Airfuel
standard promulgated by the Airfuel Alliance, the Qi wireless charging standard
promulgated by the Wireless Power Consortium, or the Rezence charging standard,
promulgated by the Alliance for Wireless Power, among others. In some examples,
the power block 728 may be augmented or replaced with solar panels, a wind

generator, a water generator, or other natural power systems.

26

WO 2018/126029 PCT/US2017/068743

[0125] The mass storage 708 may include a number of modules to implement the
coalition group formation described herein. Although shown as code blocks in the
mass storage 708, it may be understood that any of the modules may be fully or
partially replaced with hardwired circuits, for example, built into an application
specific integrated circuit (ASIC). The mass storage 708 may include a group creator
730 that determines if a group of objects can interact with high trust assurances.
[0126] As discussed herein, the assurances may be based attestation keys
programmed into the 10T device 700, and other mesh devices 712 by manufacturers.
The group creator 730 may create a name for the group. A DLEA accessor 732 may
access a DLEA to determine if the name is available, or if the 10T device 700 will
have to create another name. If the name is available, the DLEA will commit the
name to a distributed ledger, DLS-0. The DLEA accessor 704 may monitor DLS-0 to
determine if the name was committed. A key creator 734 may create a key based on
name created by the group creator 730, for example, using an EPID server. The key
creator 734 may commit the key to a local distributed ledger, DLS 736. DLS 736 may
exist in the 10T device 700, or may exist in another mesh device 712. An attestation
validator 738 may be included to determine if a join request from another device is
valid. If so, a group joiner 740 may send out a join message with the group key.
[0127] Fig. 8 is a block diagram of a non-transitory, machine readable medium
800 including code to direct a processor 802 to securely communicate in groups in
accordance with some embodiments. The processor 802 may access the non-
transitory, machine readable medium 800 over a bus 804. The processor 802 and
bus 804 may be selected as described with respect to the processor 702 and bus
706 of Fig. 7. The non-transitory, machine readable medium 800 may include
devices described for the mass storage 708 of Fig. 7 or may include optical disks,
thumb drives, or any number of other hardware devices.

[0128] Fig. 8 is a block diagram of an exemplary non-transitory, machine
readable medium 800 including code to direct a processor 802 to determine that a
group may communicate with high integrity in accordance with some embodiments.
The processor 802 may access the non-transitory, machine readable medium 800
over a bus 804. The processor 802 and bus 804 may be selected as described with

respect to the processor 702 and bus 706 of Fig. 7. The non-transitory, machine

27

WO 2018/126029 PCT/US2017/068743

readable medium 800 may include devices described for the mass storage 708 of
Fig. 7 or may include optical disks, thumb drives, or any number of other hardware
devices.

[0129] The non-transitory, machine readable medium 800 may include code 806
to direct the processor 802 to determine that a group may communicate with high
integrity. Code 808 may be included to direct the processor 802 to generate a name
for the group, and reserve the name with a Distributed Ledger Enumeration Authority
(DLEA). Code 810 may be included to direct the processor 802 to create other keys
from the registered name and commit the information to a new distribute ledger,
DLS-X 812.

[0130] Code 814 may be included to direct the processor 802 to validate a join
request for the group from IoT devices, composite objects, or both. The join request
may include attestation information, such as a manufacturer’'s key provided to a
requesting device. Code 816 may be included to direct the processor 802 to issue
credentials to the requestor, such as an EPID. Code 818 may be included to direct
the processor 802 to commit transaction data to the distributed ledger, DLS-X, using
a private key, a public key, or a combination of both.

[0131] In addition to secure communications, security during booting may be
useful to protect the network from intrusion. While a secure boot may be
implemented in a less constrained system, including larger loT devices, using a
trusted execution module (TEM), or other hardware device, this may be more
challenging for more resource-constrained loT devices.

[0132] Fig. 9 is a schematic diagram 900 of the use of a trusted execution
environment (TEE) to securely boot a device in an loT environment in accordance
with some embodiments. Trusted computing is primarily concerned with the ability of
a device to attest to trustworthy attributes of a computing device. Attributes typically
affecting trust include a trusted or secure boot.

[0133] Trusted boot instruments the boot sequence with measurement operations
that compute a hash of the next code block to be loaded and executed.
Measurements are stored in secure storage, such as a trusted module (TEE) 902. In
an loT device, the trusted module 902 may be a separate device or may be a

protected memory region that is encrypted or otherwise not generally accessible to

28

WO 2018/126029 PCT/US2017/068743

the processor or general operating code of the loT device. A secure boot is an
extension to a trusted boot environment which adds the checking of measurements
against a whitelist of permitted processes. Typically, the boot sequence is altered if
actual and whitelist measurements do not agree, for example, by booting into a non-
secure environment and informing other devices of this.

[0134] Once the trusted boot is complete, it may provide the TEE for secure
execution. If code is loaded into, or is statically bound, to a hardened execution
environment, such as the TEE, the operations performed may resist some attacks. A
hardened execution environment may include any number of hardware enhanced
security systems, such as a trusted platform module (TPM) to create the TEE. The
hardening techniques may include Software Guard Extensions (SGX) from Intel®,
TrustZone® from ARM®, hardware security modules (HSMs) such as a TPM, smart
cards, or virtualization, among others.

[0135] The TEE may also provide an environment for secure update. Secure boot
checks code authenticity at load time. Secure update uses code signing to ensure
integrity and authenticity, such as with the Authenticode™ technology from
Microsoft. A manifest structure may be used to manage association of code hash
values and signatures over hash values as part of the install image. Technologies for
installation image packages include the ltsy Package Management System (IPKG),
Debian Linux installation files (DEB), RPM package manager files (RPM), and Clear
Linux Bundles, among others.

[0136] The TEE may provide secure storage for both temporal and long term
storage of security relevant data. Data types include keys, whitelists, blacklists,
measurements, audit logs, passwords, biometrics, certificates and policies.
Hardening techniques include isolation, anti-tampering, encryption and obfuscation.
[0137] Attestation may be a part of the secure environment. Attestation, as
described herein, is a reporting function tied to a secure execution or secure storage
function in which the device or platform self-reports its trust properties. It details the
hardening techniques and assurances that are applied to the secure function in
question. The attestation function itself must be a secure function where hardening

and assurances exceed the level of quality of the function over which it is reporting.

29

WO 2018/126029 PCT/US2017/068743

[0138] Trusted computing challenges may increase in an loT setting due to
several factors. For example, loT devices may be constrained by size, functionality,
and economics. Security hardening often comes as a trade-off to these costs.
Inclusion of trusted computing building blocks may be missing or incomplete on cost
constrained devices.

[0139] Further, 10T networks may distribute functionality over multiple devices,
which results in a greater dependency on network building blocks. Consequently,
network behaviors may be more problematic as the network becomes a larger
ingredient of the overall computing fabric. Undesirable behaviors may be amplified
as network complexity and scale increases.

[0140] IoT networks may often include devices and application from a number of
vendors, value-added-resellers, integrators, suppliers and analysts. Each of these
players may create systems that have to cooperate to ensure interfaces, structures,
computing environments and operations procedures fit together properly - without
introducing unexpected and undesired behavior.

[0141] In some aspects, to address these issues, 0T networks may have a
distribution of trust across multiple devices. Distribution is one way to address
diminished reliability, availability and safety that centralization brings. Distribution
also scatters decision processes as the natural central control points dissolve.
[0142] In some aspects, trusted computing attestation in 10T networks may be
improved with the use of blockchain technology. Trusted computing concepts define
a set of trust roots that perform a function fundamental to security where the proper
and expected behavior of root functionality is implicitly trusted to work as expected.
The trusted computing group (TCG), for example, in the trusted module 902, may
include several trust roots.

[0143] A root of trust for measurement (RTM) 904 is a function that measures and
may verify the first loadable object in a system. A root of trust for reporting (RTR)
906 is a function that attests to values in the root of trust for storage (RTS) 908 and
to the computing environment that implements the RTM 904, RTR 906, and RTS
908. The attestation function may be recursively defined within the RTR 906. The
root of trust for storage (RTS) 908 is the function that stores values produced and
consumed by the RTM 904 and RTR 906.

30

WO 2018/126029 PCT/US2017/068743

[0144] Blockchain roots-of-trust may be used in 0T network environments to
increase security by distributing the security functions. Distributed trust in loT
networks using blockchain may add two additional roots-of-trust for the blockchain. A
root of trust for chaining (RTC) 910 is a function that exposes a blockchain resource
to local trusted computing roots, such as the RTR 906. The RTC 910 and RTR 906
can work together to commit attested attributes to a blockchain, for example, by
saving the attested attributes to a chain history 912. The trust properties of
blockchains are highly desirable because they employ distribution as a mechanism
for guaranteeing expected behavior using threshold consensus protocols.

[0145] A root of trust for archival function (RTA) 914 adds an availability
component to the other roots. A constrained IoT device may not have the resources
to maintain a history of measurements 916 and measurement logs spanning multiple
reboots. Further, it may not be capable of storing expansive whitelists 918 that
describe past or anticipated configurations. Trusted computing inquiry may require
searching historical context. The RTA 914 adds archival capability to RTC nodes that
may not maintain the full block history.

[0146] The system described herein may be used with blockchain logic 920 that
works with blockchain logic 922 in other devices to maintain the chain history 912.
This may include, for example, propagating 924 the chain history 912 of the
blockchain to other devices. In other devices, the chain history 912 may be
compared to local copies to make sure that the changes made are authorized. If a
majority of devices agrees that the change was not authorized, the blockchain logic
920 reverts the chain history 912 to the previous history.

[0147] Fig. 10 is a block diagram 1000 of a blockchain block 1002 holding boot
integrity transactions in accordance with some embodiments. Referring also to Fig.
9, the blockchain block 1002 forms a single record in the chain history 912 or other
distributed ledger system. The RTC 910 constructs a block including measurements
1004 in platform configuration registers (PCR). The PCR may be memory locations
in a protected region, in a specific hardware device, or both.

[0148] In some aspects, the sample rate for the measurements used for the
blockchain block 1002 may be more granular than rate at which measurements are

saved to the PCR, for example, PCR extends. However, every PCR extend may

31

WO 2018/126029 PCT/US2017/068743

trigger a transaction that is added to a block. PCR values are signed by an
attestation signing key 1006 that may differ from the block-signing key. In essence,
the RTR 906 is attesting to the blockchain its current integrity state. The RTC 910 is
attesting that the PCRs have not been overwritten by undetected system resets.
[0149] The block diagram 1000 can also indicate the presence of previous
blockchain blocks 1010 and 1012. Although not shown in this figure, these blocks
1010 and 1012 may hold other boot integrity transactions, or may hold information
on composite objects, object types, coalition group compositions, secure transaction
data, or any number of other items to support the security of an IoT network.

[0150] Fig. 11 is a schematic diagram 1100 of the use of a whitelist image
collection with a blockchain in accordance with some embodiments. Like numbered
items are as described with respect to Fig. 9. A boot process is taking place on a first
loT device 1102. An image repository 1104 may be accessed to obtain a whitelist
image 1106, for example, using communications 1108 that are encrypted with a
manufacturer’s key 1112 programmed into the system. In some examples, they may
be accessed from a chain history 912 or blockchain instead of, or in addition to, the
image repository 1104. The images in the image repository 1104 may have been
stored by other, similar, 10T devices 1110 such that a reference count can be
maintained. Since each device may sign their blockchain transaction that records
boot integrity reports, the reference count can distinguish between re-boot activity
from the same device vs. activity from different devices.

[0151] Measurements are taken as the |oT device 1102 boots, for example, by
calculating a hash code of the next software to be run in the boot sequence. The
measurements may be compared to whitelist values, for example, in the whitelist
image 1106 to ensure integrity. An image manifest 1114 may be used to validate
origination of the whitelist value. The manifest 1114 may include white list hash
values that can be compared with a dynamically obtained hash of the image 1106.
[0152] Construction of whitelists in 10T networks is challenging because of the
rate at which the population of images changes, for example, as the image
repository 1104 grows, the greater the likelihood that devices in a deployment
depend on the repository for finding reference images selected for inclusion in a

whitelist. Unless there is a data de-duplication function and a trusted delete function

32

WO 2018/126029 PCT/US2017/068743

in the network, the number of images monotonically increases because there may be
an loT device referencing the image in the repository. The blockchain history is a
way to inform the Image Repository regarding the popularity of devices referencing
its images. Devices that are no longer in service would not show up in the history
912 hence would not be reference counted by the image repository. The image
repository 1104 may maintain a “heat map” revealing the devices that perform boot
integrity checking. A strategy obsoleting older devices no longer in deployment may
be to remove their image 1106 from the image repository 1104, and block whitelist
referencing. This approach may be tuned to select a rate of decommissioning that
correlates to a rate of growth that new images are created.

[0153] Fig. 12 is a drawing of a blockchain block 1202 with integrity transactions
for whitelist images in accordance with some embodiments. To implement the
blockchain block, vendors, makers and code generation factories may incorporate
blockchain capabilities in their production process. Each whitelist image may be
signed using a manifest structure 1204 that includes the manifest 1206. The
developer or factory generating the image may sign it using a manufacturer’'s key
1208, which may be an EPID key, to establish which entity manufactured the image.
Signed manifests 1204 are added to the blockchain block 1202 and committed to the
chain history 912 (Fig. 9) of the blockchain using an appropriate transaction key, as
described herein.

[0154] Fig. 13 is a process flow diagram of an example method 1300 for a secure
boot process flow using blockchain roots-of-trust in accordance with some
embodiments. The method 1300 of Fig. 13 may be implemented by the loT device
1400 described with respect to Fig. 14. The block 1302 represents, for example,
when a boot integrity agent measures an object. As discussed herein, this may be
performed by calculating a hash code of the next code to be booted, creating an
image of the code. At block 1304, a determination is made as to whether the image
is known to be good. If so, the method 1300 ends at block 1306 when the loT device
continues normal operations. If not, at block 1308, a determination is made as to
whether the image is known to be bad. If so, the method 1300 ends at block 1310

with the quarantine of the code and remediation of the issue.

33

WO 2018/126029 PCT/US2017/068743

[0155] If the image is not known to be bad at block 1308, process flow proceeds
to block 1312, where a determination is made as to whether the image is unknown. If
not, the method 1300 may end at block 1314, for example, with the status being
listed as not trusted. If so, the method 1300 may end at block 1316 where a local
policy is consulted to determine the action to be applied.

[0156] To obtain an image for use in the comparison at block 1304, at block 1318,
a site administrator may obtain a reference hash, for example, from a cloud
repository. The hash may be obtained from other sources, including other IoT
devices, manufacturers, and the like. At block 1322, a determination is made as to
whether the signature on the hash is valid. If not, the method 1300 ends at block
1322. At block 1324, a determination is made as to whether the image hash is equal
to the blockchain (BC) hash. If so, at block 1326, the site administrator signs the
manifest for the image. At block 1328, the image is added to the whitelist and the
whitelist is committed to the blockchain for access by the boot code. The whitelist
image may then be used in the comparison at block 1304, for example, by an loT
device accessing the whitelist in the blockchain or in an image repository.

[0157] If the image hash does not match the BC hash at block 1324, at block
1330, a determination is made as to whether the image hash contains an attack
signature. If so, at block 1332, the image may be added to a blacklist, and the
blacklist may be committed to the blockchain. The blacklist image may then be used
in the comparison at block 1308, for example, by an loT device accessing the
blacklist in the blockchain or in an image repository.

[0158] If at block 1330, the image hash does not match a known attack signature,
at block 1334, the image may be added to an unclassified list. The unclassified list
may then be added to the blockchain. The unclassified image may then be used in
the comparison at block 1312, for example, by an IoT device accessing the
unclassified list in the blockchain or in an image repository.

[0159] The attack signatures can be identified by any number of techniques. For
example, at block 1336, a forensics lab may identify the attack and generate the
attack signature for the image. As used herein, a forensics lab may be a commercial
security service that identifies malware, viruses, and other problematic code in

circulation. At block 1338, the forensics lab may write the attack signature for the

34

WO 2018/126029 PCT/US2017/068743

image to the blockchain. In some examples, the site administrator may obtain the
attack signature from a commercial forensics lab, and write the attack signature to
the blockchain. At block 1340, the attack signature may be obtained from the
blockchain for use at block 1330.

[0160] As described herein, the secure boot process may be extended to include
using a blockchain to obtain and validate reference measurements, formulate a
whitelist, blacklist, or an unclassified list that may be used to evaluate local
measurements. Secure boot enforcement occurs normally. Thus, the blockchain may
provide information for enforcement points for network quarantine, which may place
firewall restrictions on the flow of packets to or from devices when a known bad or
unknown configuration is found. Further, the blockchain may inform software update
servers that may seek to obtain reference measurements from a reliable source.
[0161] Fig. 14 is a block diagram of an example of components that may be
present in an loT device 1400 for secure booting in accordance with some
embodiments. Like numbered items are as described with respect to Figs. 3and 7. It
can be noted that different components may be selected and used for the |oT device
1400 than for those selected for the 10T device 700 discussed with respect to Fig. 7,
and other loT devices discussed herein.

[0162] The mass storage 708 may include a number of modules to implement the
coalition group formation described herein. Although shown as code blocks in the
mass storage 708, it may be understood that any of the modules may be fully or
partially replaced with hardwired circuits, for example, built into an application
specific integrated circuit (ASIC).

[0163] The mass storage 708 may include a root-of-trust measurer (RTM) 1402
that measures and may verify the first loadable object in a system. A root-of-trust
storage manager (RTS) 1404 may store values produced and consumed by other
security systems, such as the RTM 1402 and a root-of-trust reporter (RTR) 1406.
The RTR 1406 may attests to values in the root of trust for storage (RTS) 908 and to
the environment that implements the RTM 904, RTR 906, and RTS 908. A root of
trust archiver (RTA) 1410 may add archival capability to RTC nodes that may not

have the capabilities to maintain a full chain history 1412.

35

WO 2018/126029 PCT/US2017/068743

[0164] Various historical databases may be maintained in the 10T device 1400, or
may be accessed on other mesh devices 712. For example, blockchain logic 1414
may maintain a chain history 1412 that includes the blocks of the blockchain.
Further, the blockchain logic 1414 may push changes to other mesh devices 712, or
accept and validate changes made in the blockchain by other mesh devices 712. A
whitelist history 1416 may hold the whitelist, and changes made to the whitelist
items, for example, before the changes are committed to the chain history 1412.
Further, the whitelist history 1416 may hold other lists and changes, such as the
blacklist, and the unclassified list. A measurement history 1418 may hold current and
past measurements made during the boot process, for example, for comparison to
the images.

[0165] Fig. 15 is a block diagram of an exemplary non-transitory, machine
readable medium 1500 including code to direct a processor 802 to securely boot in
accordance with some embodiments. The processor 802 may access the non-
transitory, machine readable medium 1500 over a bus 804. The processor 802 and
bus 804 may be selected as described with respect to the processor 702 and bus
706 of Fig. 7. The non-transitory, machine readable medium 1500 may include
devices described for the mass storage 708 of Fig. 7 or may include optical disks,
thumb drives, or any number of other hardware devices.

[0166] The non-transitory, machine readable medium 1500 may include code
1502 to direct the processor 802 to measure a code object before running the code
object. Code 1504 may be included to direct the processor 802 to compare the
measurement to a list of know good images. Code 1506 may be included to direct
the processor 802 to compare the object to a list of known bad images. Code 1508
may be included to direct the processor 802 to classify the image and determine a
trust level, for example, allowing the processor to boot into a trusted execution
environment, allowing the processor to boot into an untrusted environment, or
blocking a boot and alerting a site administrator. Code 1510 may be included to
direct the processor 802 to maintain a blockchain, for example, committing
transaction to a chain history, forwarding transaction changes to other loT devices,
or validating changes from other loT devices, among others. Code 1512 may be

included to maintain roots-of-trust, for example, as described with respect to Fig. 9

36

WO 2018/126029 PCT/US2017/068743

for the RTM 904, the RTR 906, the RTS 908, the RTC 910, and the RTA 914. The
machine readable medium 1500 may also store the blockchain, such as the chain
history 912, described with respect to Fig. 9.

[0167] Fig. 16 is a schematic drawing 1602 illustrating interoperability across
public domains 1602, private domains 1604, and public-private domains 1606 in
accordance with some embodiments. The network topology may be in a continuous
state of change, making any attempt at permanent maps impossible. Accordingly,
loT devices may use the backbone resources, such as domain name servers (DNS)
to send packets between domains. The packets may be routed between the domains
1602, 1604, and 1606 through the Internet backbone, shown as routers 1608.
[0168] In some aspects, the routers 1608 provide the edge connections that
couple the domains to one another. As described herein, any number of services
may be provided at the edges of the domains 1602, 1604, and 1606 to enhance the
interconnectivity. For example, interconnections between the public domain 1602
and the private domains 1604 may provide opportunities for micropayments for
domain access, explicit permission and tracking for domain access, and the
separation of public and private traffic, among others. Similarly, interconnections
between the public domain 1602 and the public-private domain 1606 may provide
opportunities for services such as time-based leases, resource marketplaces, and
distributed identity servers, among others. Interconnections between the private
domains 1604 and the public-private domains 1606 may provide opportunities for
inline service interconnects, behavior based threat analysis, and proof-of-
provenance, among others.

[0169] Fig. 17 is a schematic drawing of interoperability across a heterogeneous
1700 network of wired networks 1702 and wireless networks 1704 and 1706 in
accordance with some embodiments. The wireless networks 1704 and 1706 may be
communicatively coupled by devices in the wired network 1702. This provides
opportunities for efficiency improvements in communications between devices in the
wireless networks 1704 and 1706, as well as improvements in communications
between devices in a wireless network 1704 or 1706 and a device in the wired
network 1702. For example, edge device 1708 coupling a first wireless network 1704

to the wired network 1702 may provide a data to information transform to reduce the

37

WO 2018/126029 PCT/US2017/068743

size of the payload. Further, the edge device 1708 may have a permissioning system
that allows packets from the first wireless network 1704 to pass, while blocking
unpermitted packets from transferring. The permissioning system may include
systems to make micropayments to allow the information to move across the wired
network 1702. As an example, the first wireless network 1704 may be a ground
moisture sensor array on an agricultural site. The reporting frequency may depend
on the rate of change, which may increase costs due to the need to purchase
bandwidth to match the highest reporting rate. Thus, a micropayment system may
lower costs by allowing transactions to paid for on an as-needed basis.

[0170] 10T networks may be considered a collection of devices forming a fog
device. The individual devices may connect via a variety of network transport,
session, and application layer communication paths. An owner of the IoT network,
such as a user, organization, or group has a common interest and participation in the
loT network. The owner may determine that devices belong to an organization
because the owner manages, legally owns, or orchestrates collaboration among the
various devices.

[0171] A device may be onboarded into an IoT network so as to allow an owner to
take ownership of the device, thereby registering it with the owner as an owned
device. As used herein, onboarding indicates that activities to join a device, such as
the exchange of join requests, and verification of identities, and the creation of
device resources, have taken place. A device may in turn acknowledge ownership in
the domain by recording the owner / domain information in device resources. A
device may allow or have multiple owners. In some examples, the devices may exist
in multiple domains, complicating the recognition of the devices by each other.
[0172] Fig. 18 is a schematic diagram 1800 of devices that are onboarded by
different domains being incorporated by a shared domain created to allow the
devices to participate as components of a new domain in accordance with some
embodiments. In the schematic diagram 1800, a first device 1802 is onboarded into
a first domain A 1804 by an onboarding tool (OBTA) 1806. A second device 1808 is
onboarded into a second domain B 1810 by a second onboarding tool (OBTB) 1812.
In this example, the devices 1802 and 1808 may regard themselves as members of
domains A 1804 and B 1810 respectively.

38

WO 2018/126029 PCT/US2017/068743

[0173] Interactions between devices D1 1802 and D2 1808 may be permitted
under the security levels, for example, if the domains are part of a family, but may
not be permitted, in some cases, because the disparate OBTA 1806 and OBTB 1812
establish a division between the resources 1814 or 1816 in the networks. Thus, the
OBTA 1806 for domain A 1804 may not recognize or trust a device onboarded in a
foreign domain B 1810. This could be due to, for example, the respective onboarding
tools not sharing a common resource 1814 or 1816 containing onboarded, and,
therefore, trusted devices 1802 and 1808.

[0174] Inthe techniques described herein, when trust is established between the
onboarding tools 1806 and 1812 in the respective domains 1804 and 1810, a new
domain 1818 may be created that has a shared resource 1820. The shared resource
1820 may include information from resources 1814 or 1816 in the individual parent
domains 1804 and 1810. This is discussed further with respect to Fig. 19.

[0175] Fig. 19 is a schematic diagram 1900 of an exemplary creation of a shared
resource to allow a device to participate across domains in accordance with some
embodiments. Like numbered items are as described with respect to Fig. 18. As
described in Fig. 18, discovering local onboarding resources R1 1812 and R2 1816
in another domain results in the creation of a shared resource, R3 1820, such that
records contained in R1 1814 are stored in R3 1820, allowing access by the
onboarding tool, OBTB 1812, in domain B 1810. Similarly, records contained in R2
1816 are stored in R3 1820, and may be accessed by the onboarding tool, OBTA
1814, in domain A 1804. Furthermore, the shared resource R3 1820 may resolve
naming conflicts, for example, when a presumed domain name by OBTA 1806 is the
same as a presumed domain name by OBTB 1812, among other conflicts.

[0176] The techniques find or create a new domain ID for the union of the
domains 1804 and 1810, for example, a new UUID, such that the shared resource
R3 1820 synchronizes a DomainID in a local resource R1 1814 and R2 1816. A
subdomain ID 1902 in R1 1814 may differ from a subdomain ID 1904 in R2 RP16
such that each subdomain respectively becomes a subdomain of the newly formed
domain 1818. The shared resource R3 1820 synchronizes with the respective local
resources, R1 1814 and R2 1816, to populate the merged resource showing the

multiple sub-domain IDs.

39

WO 2018/126029 PCT/US2017/068743

[0177] The onboarding tools OBT-A 1806 and OBT-B 1812 similarly are
synchronized with the shared resource 1820 establishing each as members of a
common domain 1818. Similarly, devices D1 1802 and D2 1808 are synchronized
with the shared resource 1820 establishing each as a member of the same common
domain 1818 but may retain, respectively, membership in the respective sub-domain
1804 or 1810 that originally onboarded the device 1802 or 1808.

[0178] Fig. 20 is a process flow diagram of an exemplary method 2000 for
establishing a combined IoT domain including shared resources in accordance with
some embodiments. The method 2000 of Fig. 20 may be implemented by the loT
device 2100 described with respect to Fig. 21. As used herein, the shared resources
may include virtualized resources, storage resources, communication resources,
onboarding resources, service provider resources, and the like. The resources may
exist at the domain level, the sub-domain level, or the device level. The block 2002
represents, for example, when a first onboarding tool joins a first device to a first
network domain. At block 2004, the first onboarding tool adds the device to a local
resource, for example, as a member or owned device.

[0179] At block 2006, a second onboarding tool adds a second device to a
second network domain. At block 2008, the second onboarding tool adds the device
a local resource, for example, as a member or owned device.

[0180] At block 2010, the onboarding tools discover each other on a network and
establish trust between them. This may be performed by, for example, mutual
attestation, individual pairing, through an administrative console, or by a blockchain,
as described herein.

[0181] At block 2012, the onboarding tools create a shared resource, where they
are shareholders in the resource. At block 2014, the onboarding tools link their
respective resources to the shared resource. As a result, the resources of the first
device are accessible to the second onboarding tool, and the resources of the
second device are accessible to the first on-boarding tool. At block 2016, a new
domain is formed that is based on the union of the two device domains. The Domain
ID for the new domain is recorded in the shared resource.

[0182] At block 2018, a determination is made as to whether the subdomain ID in

the first domain is the same as or similar to the subdomain ID in the second domain.

40

WO 2018/126029 PCT/US2017/068743

If so, at block 2020 a new subdomain ID is chosen for the subdomain ID in the
second resource, and all resources accessing that subdomain ID are updated with
the new name.

[0183] At block 2022, a determination is made as to whether the OBT ID, or
onboarding tool ID, in the first domain is equal to the OBT ID in the second domain.
If so, at block 2024 a new OBT ID is chosen for the OBT ID in the second resource,
and all resources accessing that OBT ID are updated with the new name.

[0184] At block 2026, a determination is made as to whether the device ID in the
first domain is equal to the device ID in the second domain. If so, at block 2028 a
new device ID is chosen for the device ID in the second resource, and all resources
accessing that device ID are updated with the new name.

[0185] Although the method is shown for two devices and domains, any number
of devices that need to be incorporated from overlapping domains may be used. For
example, two domains with multiple devices may be joined by a shared domain
created by onboarding tools in both domains. In another example, devices in three or
more domains may be joined by a shared domain.

[0186] Fig. 21 is a block diagram of an example of components that may be
present in an loT device 2100 for creating shared resources in accordance with
some embodiments. Like numbered items are as described with respect to Figs. 3
and 7. It can be noted that different components may be selected and used for the
loT device 2100 than for those selected for the loT device 702 discussed with
respect to Fig. 7, and other loT devices discussed herein.

[0187] The mass storage 708 may include a number of modules to implement the
cross domain sharing of resources described herein. Although shown as code blocks
in the mass storage 708, it may be understood that any of the modules may be fully
or partially replaced with hardwired circuits, for example, built into an application
specific integrated circuit (ASIC).

[0188] The mass storage 708 may include an onboarding tool 2102 that joins
devices to the domain of the IoT device 2100, and creates a store of device
resources 2104 for the devices. A device discover 2106 may identify devices in other
domains that may be used as part of a fog device with devices in the current domain.

The device discoverer 2106 may use information provided by an orchestrator to

41

WO 2018/126029 PCT/US2017/068743

discover other devices, as described herein. A trust builder 2108 may use various
techniques to establish trust between the onboarding tool 2102, and an onboarding
tool in another domain. The trust builder 2108 may exchange attestation information,
identification keys, or may use an assigned trust certificate from an administrator
workstation. In some examples, the trust builder 2108 may use a blockchain root-of-
trust, as described herein.

[0189] A shared domain creator 2110 may work to assist the onboarding tool in
working with onboarding tools from the other domains to create a shared domain.
The shared domain may include a shared resource directory 2112 that is accessible
to all of the onboarding tools across the different domains, or is mirrored in each of
the loT devices hosting onboarding tools.

[0190] Fig. 22 is a block diagram of a non-transitory, machine readable medium
2200 including code to direct a processor 802 to establish shared resources across
domains in accordance with some embodiments. The processor 802 may access the
non-transitory, machine readable medium 2200 over a bus 804. The processor 802
and bus 804 may be implemented in @ manner similar to the processor 802 and bus
804 described with respect to Fig. 8. The non-transitory, machine readable medium
2200 may include devices described for the mass storage 708 of Fig. 7 or may
include optical disks, thumb drives, or any number of other hardware devices.

[0191] The non-transitory, machine readable medium 2200 may include code
2202 to direct the processor 802 to join a device to a domain. Code 2204 may be
included to direct the processor 802 to create local resources for the device in the
domain. Code 2206 may be included to direct the processor 802 to discover relevant
devices in other domains, including, for example, onboarding tools in those domains.
Code 2208 may be included to direct the processor 802 to link resources for local
devices to resources in other domains. Code 2210 may be included to direct the
processor 802 to create a shared domain that holds the shared resources for all of
the devices. Code 2212 may be included to direct the processor 802 to determine if
there are any name, or ID, overlaps between domains, onboarding tools, and
devices. Code 2214 may be included to direct the processor 802 to correct the name
overlaps by renaming domains, onboarding tools, or devices that were last to join,

and propagating the new names to all relevant resources.

42

WO 2018/126029 PCT/US2017/068743

[0192] The networking communication and authentication systems described
above provide a number of aspects for implementing loT networks for particular
applications. In one example, a distributed network may be used to implement
traceability of end products, such as food stuffs, pharmaceuticals, or industrial
product.

[0193] For any lifecycle tracing system, there is the question of how the players in
the system will establish trust that the system is behaving according to an expected
behavior model versus something that is outside the model. The challenge is that the
entity that defines good behavior may not be trustworthy. To that end, provincial
trust, e.g. device-to-device, and institutional trust mechanisms, e.g., controlled by
central authorities, have weaknesses. However, infrastructural trust may be a more
reliable form of trust enforcement and that blockchain is a technology for
implementing infrastructural trust. Therefore, the incorporation of devices in other
domains, as described with respect to Fig. 18 may allow the formation of devices
from groups of 10T devices, and the establishment of trust between those devices.
This may be performed using various systems to establish trust, such as the
blockchain roots-of-trust discussed with respect to Fig. 5.

[0194] In cases where a ‘record key’ is used, a method is provided for
establishing trust properties of the record key. As the use of [oT to develop a
traceability system that touches many industries, including new industries that have
not yet been established, the framework, such as the blockchain trust described
herein, may be useful for developing trust in the traceability system.

[0195] Policies are defined as a set of rules to manage and control access to
network resources. A policy may include a set of events, conditions, actions,
subjects and targets. A policy aggregates the events, conditions, actions, subjects
and targets into a policy structure that directs a device or network to respond to
conditions that arise.

[0196] However, for [oT mesh networks, such as in the different stages of the
production process in the example above, the propagation of policies may need to
be addressed. Further, the use of widely distributed loT networks may increase the
relevance of policies, such as policies to protect the security of data, to change the

data collected, or to increase the accessibility of that data.

43

WO 2018/126029 PCT/US2017/068743

[0197] Fig. 23(A) is a schematic drawing of a hierarchical policy management
system 2300 used in computer networks in accordance with some embodiments. An
approach for the real time management of device policies is a hierarchical broadcast
architecture. This may be replaced with a publication-subscription model based on
bloom filters, as described herein. The typical flow is from a central system, such as
a centralized cloud server 2302, which propagates policies to subunits, such as a
gateway 2304. The gateway 2304 may then propagate the policy to a lower level
2306, including loT endpoint devices 2606. One of the IoT endpoint devices 2308
may then propagate the policies to a lower level 2310, for example, to sensor
devices or other units.

[0198] In the hierarchical policy management system 2300, the individual devices
are directly addressable. By its nature the deployment of policies in this architecture
may require the administrator to explicitly know the address of all the targeted nodes
and how to replace defective nodes, or policies. In addition, devices may often store
a limited number of policies in the local memory due to resource constraints and
replace the policies when additional policies are implemented.

[0199] As described herein, a distributed policy-based management framework
may be implemented to store, locate, access, and execute policies in a network. This
framework may use a peer-to-peer (P2P) policy storage and deployment mechanism
to utilize available memory, for example, in the 10T mesh network. This may result in
a policy system that helps with respect to node failure, and single points of failure.
[0200] Fig. 23(B) is a schematic drawing of policy management in a peer-to-peer
(P2P) network, such as an IoT mesh network in accordance with some
embodiments. In the P2P network, a coordinator 2312, such as a gateway,
distributes policies 2314 to neighbors, such as coupled nodes 2316, which may be
the nearest neighbors. These neighbors may then pass the policy along to other
coupled nodes 2316.

[0201] Asthe IoT mesh network scales and becomes heterogeneous in nature,
large numbers of policies may need to be defined and continuously amended to help
ensure the loT mesh network satisfies operational objectives. Autonomic network
management, such as distributed policy management, may automate and distribute

the decision making processes involved in optimizing network operations. This may

44

WO 2018/126029 PCT/US2017/068743

enable administrators to focus less on low-level device configuration processes.
Incorporating policies into an autonomic management system may involve methods
and algorithms for policy translation, code generation, conflict analysis and policy
enforcement.

[0202] Fig. 24 is a schematic diagram of systems in nodes 2316 to implement a
distributed policy management system 2400 in accordance with some embodiments.
Like numbered items are as discussed with respect to Fig.23. Each of the nodes
2316 may implement a policy decision engine 2402, a policy enforcement engine
2404, a policy repository 2406, and a monitor 2408. The policy repository 2406
stores the policies for the node 2316, which may not require a high storage capacity.
The policy decision engine 2402 makes decisions on which policies are going to be
enforced that are passed to the policy enforcement engine 2404. The decisions may
be based on the policies stored in the policy repository 2406 as well as on state
information reported by the monitor 2408. The policy decision engine 2402 interacts
with other nodes 2316 in order to distribute policies to non-configured nodes. In a
non-configured node, the policy decision engine 2402 may communicate with other
nodes 2316 to access policies.

[0203] The policy enforcement engine 2404 implements policy decisions provided
by the local policy decision engine 2402. The local policy enforcement engine 2404
also collects information about its state, network traffic, transmission errors and
information reported to it from the monitor 2408.

[0204] The monitor 2408 interfaces to the local policy enforcement engine 2404
and to monitors 2408 in other nodes 2316. The monitor 2408 collects information at
specific intervals and stores it in a database, for example in the local policy
repository 2406. Examples of information that may be collected by the monitor 2408
include current device configuration, capabilities and functions supported by each
node. Other information that can be collected by the monitor 2408 includes
information about the services which are being offered, node requirements for the
network, resource availability estimation, triggered events, and the like.

[0205] Fig. 25(A) is a ladder diagram of an example method 2500 of a new non-
configured node 2502 attempting to discover policies on a network, for example,

from a peer node 2504 in accordance with some embodiments. The method 2500 of

45

WO 2018/126029 PCT/US2017/068743

Fig. 25(A) may be implemented by the loT device 2800 described with respect to
Fig. 28. When the new non-configured node 2502 joins the network it initiates a
policy discovery action. It may broadcast a discover message 2506 to a peer node
2504 and wait until a discover timeout timer 2508 expires. If it does not receive any
response, it re-sends the discover message 2506.

[0206] The roles of a coordinating node, configured nodes and new non-
configured nodes may be modeled using a pub-sub notification system using bloom
filters, as described herein. In this example, a bloom filter ‘router’ node may serve as
a coordinator node to help ensure that new non-configured nodes can find existing
configured nodes. Existing configured nodes are publishers of the policy objects they
currently implement. New non-configured nodes may subscribe to the policy objects
of the configured nodes. Changes or updates to configured nodes’ policy objects
may generate a cascade of notification traffic that may permeate the network.

[0207] Fig. 25(B) is a ladder diagram of an example method 2510 of a new non-
configured node 2502 discovering policies from a configured node 2512 in
accordance with some embodiments. The method 2510 of Fig. 25(B) may be
implemented by the 10T device 2800 described with respect to Fig. 28. The
configured node 2512 has a high level policy that satisfies an objective of the
network. In one example, the high level policy may include how devices in the
network are to handle communications to balance quality of service with power
reserve. Any number of other policies may be implemented. The new non-configured
node 2502 sends a discover message 2506 to the configured node 2512. The
configured node 2512 responds with an offer message 2514.

[0208] Upon receiving the offer message 2514, the non-configured node 2502
checks the message. If the offer is accepted, it sends an accept message 2516 as a
response. Otherwise, a reject message is sent back to the configured node 2512.
[0209] Upon receiving the accept message 2516, the configured node 2512
sends an InitPolicy message 2518 to the non-configured node 2502. The InitPolicy
message 2518 incorporates the policies to be sent to the non-configured node 2502.
The non-configured node 2502 processes the policy objects, installs the policies, and

updates 2520 its state to a configured node 2522.

46

WO 2018/126029 PCT/US2017/068743

[0210] An updated policy may be dispatched, for example, from a coordinator
2524, in an update message 2526 that is received by a configured node 2512. The
configured node 2512 may perform an update 2528 to the policy in force following
validation and policy integrity checks.

[0211] The validation check may determine whether the policy conflicts with a
current objective. For example, a policy directing all devices to conserve power may
be dispatched to all the nodes in a network. As described herein, this may be
described in terms of a pub-sub system, in which a power management policy is
enumerated and subscribed to as the pub-sub “topic”. For example, a policy direction
that says to operate at power level 4 may be published to subscribers of the power
management topic. An efficient bloom filter based message delivery system will help
ensure subscribers of the power management topic will be notified of the policy
change.

[0212] If the policy object implies a security or safety critical function then receipt
of the topic notification message may be followed by opening a secure session to a
policy decision point where the node may authenticate and establish end-to-end
security credentials before acting on the notification. However, the nodes may
already be actively implementing a policy which requires the devices to maintain a
particular quality of service (QoS). The implementation of the power conserving
policy could conflict with the QoS policy. Therefore, the new policy may be rejected.
[0213] If the policy does fail a validation check, the update may perform a partial
replacement of the policy in force. A partial replacement may involve the calculation
of a differential between the current policy in force and the updated policy. The
partial update can potentially reduce the impact of a complete policy change by only
modifying the affected policy parameters or conditions. This is discussed further with
respect to Fig.26.

[0214] The update message 2526 may also involve a concatenation of policies.
This is especially applicable in distributed and dispersed network environments
where a base level policy is augmented by additional policy rules received from
neighboring nodes. This is discussed further with respect to Fig.27.

[0215] If a configured node 2512 has updated or replaced a policy, a conflict alert

message 2540 may be sent to another configured node 2522 to alert it to the policy

47

WO 2018/126029 PCT/US2017/068743

conflict. Policy conflict analysis processes must be efficient and scalable to cope with
the dynamic nature and size of such communications networks. A policy selection
process for policy conflict analysis may maintain a history of previous policy
comparisons in a tree based data structure to reduce the number of comparisons
required in subsequent iterations.

[0216] Fig. 26 is a ladder diagram of an example method 2600 of a configured
node 2522 communicating with a node 2602 having an updated policy to update the
policies of the configured node 2522 in accordance with some embodiments. The
method 2600 of Fig. 26 may be implemented by the loT device 2800 described with
respect to Fig. 28. Like numbered items are as described with respect to Fig. 25.
This may occur, for example, when the configured node 2522 receives a conflict alert
message 2540 from the other node 2602. The configured node 2522 may send a
discover message 2506 to the updated node 2602.

[0217] The updated node 2602 may reply with an offer message 2514 that alerts
the configured node 2522 to the policy update. The configured node 2522 may then
reply with an accept message 2516 to indicate to the updated node 2602 that it may
send the updated policy. The updated policy may then be sent in an update
message 2604 from the updated node 2602 to the configured node 2522. After
validation and policy integrity checks the configured node 2522 may then perform
2528 a complete or partial replacement of a policy in force.

[0218] To determine if only a partial replacement is needed, a method may be
implemented to calculate a delta between the policies. For example, a comparison
may be made between individual rules in the new policy and the old policy to
determine if rules have been added, removed, or modified, such as by the change of
a parameter value for the rule. In a bloom filter model, the different tenants of a
policy are representable as notifications in the bloom filter. Changes in policy
decision are propagated to policy enforcement points, who are the subscribers to
PDPs which are the publishers. The same efficiency aspects afforded by bloom filter
notification messaging, as described herein, may be leveraged to implement
distributed policy management.

[0219] Asthe number of 10T devices scales, appropriate delta technology will be

integral to a distributed policy management system. A smaller file size for a delta file

48

WO 2018/126029 PCT/US2017/068743

may lower the update file size that is distributed over the network, taking less time,
and causing less network congestion. As policy updates may be varied in terms of
priority, complexity, and size, sending only the changes may generate smaller files.
These files would effectively encapsulate the difference (or delta) between the
currently policy and the new policy, for example, by selecting an adaptive delta
compression technique based on the requirements or desires of the client.

[0220] Policy updates may also take into account limitations of the hardware on
the client-side. For example, in various 10T mesh networks, such as automotive
Electronic Control Units (ECUs), embedded modules, and Machine-to-Machine
(M2M) devices used in utilities, manufacturing, and logistics, devices may be
constrained. A compressed file that is sent out can only be reconstructed according
to the capacity of the hardware. It may be limited by CPU, memory and storage. If
the receiving device doesn’t have the resources to implement a policy change, then
the sender may need to anticipate this. These restrictions may vary from device to
device so an adjustable and adaptive system may need to be able to compress
accordingly.

[0221] The ability to incorporate historical information into the selection process
may be performed by a two phase approach in the conflict analysis algorithm. The
first phase of the algorithm initializes a relationship pattern matrix between a
candidate policy and a deployed policy, the second phase matches this pattern
against a conflict signature. Some solutions compare candidate policies against all
deployed policies sequentially. However, the exemplary approach described herein
may reuse the patterns already discovered from previous iterations of the algorithm
to reduce the number of comparisons. Performance improvements may be made
using this approach, but the degree of this improvement may depend on the nature
of the relationships between deployed policies.

[0222] The policies may be tiered. For example, a policy may have a flag that
requires it be implemented without hypothesis checking. Conversely, a node could
suggest a policy compromise in the event that it could not implement a policy. This
could be conducted in a closed loop system. An example may be a policy that

requests that the 10T devices increase transmission intervals from every 5 minutes to

49

WO 2018/126029 PCT/US2017/068743

every 5 hours. If implemented this policy could breach the QoS requirements for the
device. The device may offer a transmission rate of every hour.

[0223] It may be appreciated that a set of policies representing the available
parameters controllable by a site policy may be modeled using a set of policy object
identifiers, each corresponding to a notification message further representable by a
bloom filter, as described herein. An existing notification delivery capability based on
bloom filters may be leveraged to deliver notifications corresponding to policy
changes imposed by a network administrative entity. When a policy change
notification is received, the node may open a secure connection to a policy server to
obtain further direction regarding policy enforcement point adjustments.

[0224] Non-file base policies may be implemented for enhanced security. Further,
non-file based systems could be used for storing polices in devices lacking storage
outside of RAM. According to some aspects, when a device receives a policy, the
policy isn’t stored, instead certain parameters are, for example, updated in RAM and
implemented on the fly. Further, policy parameters may be stored in ROM. In a
secure lightweight device, the execution of the policies may be performed from ROM
with some parameters read from RAM. Thus, a ROM may act as the kernel with all
other features operating in RAM.

[0225] Fig. 27 is a ladder diagram 2700 of an example method for the
concatenation of policies obtained from different nodes by the configured node in
accordance with some embodiments. The method 2700 of Fig. 27 may be
implemented by the 10T device 2800 described with respect to Fig. 28. Like
numbered items are as described with respect to Fig. 25. In this example a first node
2702 has updated policy component A, while a second node 2704 has updated
policy component B. The configured node 2522 may have received a conflict alert
message 2540 indicating that it needs to update policies in the configured node
2522. The configured node 2522 sends a first discovery message 2706 to the first
node 2702. The configured node also sends a second discover message 2708 to the
second node 2704. In response, the first node 2702 sends a policy update message
2710 to the configured node 2522. The policy update message 2710 includes policy
component A, which the configured node 2522 appends 2712 to the current policy.

50

WO 2018/126029 PCT/US2017/068743

[0226] The second node 2704 sends an offer message 2714 to the configured
node 2522, letting the configured node 2522 know that the second node 2704 has
policy component B. The configured node 2522 sends an acceptance message 2716
to the second node 2704, letting it know that it accepts the update. The second node
2704 then sends a policy update message 2718, which includes policy component B,
which the configured node 2522 appends 2720 to the current policy. This results in a
policy configuration for the configured node 2522 that is a combination of the policy
components from the various other nodes, as shown in Table 3.

[0227] If a bloom filter structure is used for policy distribution, the policy object
may associate a policy object identifier (OID) with line items in the policy structure
where each policy OID may correspond to a bit in a bloom filter. In this example,
every node implementing a set of OIDs may subscribe to the bloom filter covering an
OID. Consequently, the same notification system that implements pub-sub routing

may be leveraged to implement a distributed policy enforcement method.

[0228] Table 3: Policies in the configured node
POLICY

Base Level

Policy component from node 1

Policy component from node 2

Policy component from node N

[0229] The nodes in a mesh network are not limited to implementing all of the
same policies, or all in the same way. For example, a node that is experiencing a low
battery may implement a policy to conserve battery power, while other nodes not
sharing this limitation may continue with policies that maintain a QoS.

[0230] Fig. 28 is a block diagram of an example of components that may be
present in an loT device 2800 for the distributed management of policies in
accordance with some embodiments. Like numbered items are as described with

respect to Figs. 3, 7, and 24. It can be noted that different components may be

51

WO 2018/126029 PCT/US2017/068743

selected and used for the IoT device 2800 than for those selected for the loT device
700 discussed with respect to Fig. 7, and other 10T devices discussed herein.

[0231] The mass storage 708 may include a number of modules to implement the
coalition group formation described herein. Although shown as code blocks in the
mass storage 708, it may be understood that any of the modules may be fully or
partially replaced with hardwired circuits, for example, built into an application
specific integrated circuit (ASIC).

[0232] The mass storage 708 may include a policy decision engine 2402 to
determine which policies are going to be enforced. A policy enforcement engine
2404 implements the policy decisions. A policy repository 2406 stores the policies for
the loT device 2800. The monitor 2408 communicates with monitors in other nodes
in the mesh network 712, and collects information including, for example, the device
configuration, capabilities, and functions supported by the nodes.

[0233] A data collector 2802 may collect data from the sensors 720 through the
interface 718. A communicator 2804 may transfer the data collected from the data
collector 2802 or from other units such as the monitor 2408 or the local policy
decision engine 2402, to other devices in the mesh 712 or in the cloud 302.

[0234] Fig. 29 is a block diagram of a non-transitory, machine readable medium
2900 including code to direct a processor 802 to manage policies in an loT network
in cooperation with other 10T devices in accordance with some embodiments. The
processor 802 may access the non-transitory, machine readable medium 2900 over
a bus 804. The processor 802 and bus 804 may be as described with respect to Fig.
8. The non-transitory, machine readable medium 2900 may include devices
described for the mass storage 708 of Fig. 7 or may include optical disks, thumb
drives, or any number of other hardware devices.

[0235] The non-transitory, machine readable medium 2900 may include code
2902 to direct the processor 802 to discover policies in other nodes. Code 2904 may
be included to direct the processor 802 to update policies from messages sent by the
other nodes. Code 2906 may be included to direct the processor 802 to concatenate
the policies obtained from multiple nodes. Code 2908 may be included to direct the

processor 802 to validate the policies obtained from the other nodes. Code 2910

52

WO 2018/126029 PCT/US2017/068743

may be included to direct the processor 802 to calculate a Delta, or change, for
policies from current policies.

[0236] Code 2912 may be included to direct the processor 802 to reject policies
that conflict with group objectives. The code 2912 may be included to direct the
processor 802 to negotiate partial implementation of policies that conflict with group
objectives. Code 2914 may be included to direct the processor 802 to change
policies implemented to match current conditions.

[0237] In addition to distributing policies and performing functions, maintaining the
availability of 0T devices is relevant, for example, to helping to prevent the loss of
data collected by the loT devices. A technique that may increase the availability of
loT devices could use out-of-band mechanisms to ensure their availability.

[0238] In addition to ensuring the availability of loT devices, techniques for
dealing with the failure of IoT devices are provided. These techniques may include
alerting other |oT devices to the failure, for example, through the use of block chains
as described herein. The loT devices that are alerted to the failure may include an
loT device similar enough to the failed device to take over the functionality from that
device.

[0239] Fig. 30 is a schematic diagram of a failover mechanism 3000 for a failed
device 3002 in accordance with some embodiments. The failed device 3002 may
include a trusted reliability engine (TRE) 3004 that has an independent power supply
3006. The TRE 3004 may implement blockchain logic 3008 in hardware, such as
ASIC, FPGA, or EC, among others.

[0240] A host environment 3010 may include a watchdog agent (WA) 3012 that
generates watchdog messages 3014 that report on the health and operation of the
host environment 3010 to the TRE 3004. The host environment 3010 may run on
host hardware 3016 separate from the hardware of the TRE 3004.

[0241] The TRE may be a MESH network, for example, including multiple
instances of 3004, that cooperate to perform a last-ditch failover function when
expected watchdog reports stop coming in from the local host. A lack of a watchdog
messages 3014 may be an indication the host environment 3010 has died or

otherwise is inoperable. An aspect at this point is to get a failover message delivered

53

WO 2018/126029 PCT/US2017/068743

before the node goes dark. The TRE 3004 is designed with a small amount of
reserve power, for example, enough to perform the failover actions with a peer TRE.
[0242] The WA 3012 may independently deliver watchdog messages 3014 to a
blockchain where blockchain observers may analyze the pattern of received
watchdog events to draw conclusions about the health of the host. Intermittent
losses may be an indication of potential failures in the host environment 3010 or a
network environment. These may be health conditions that can be proactively
corrected, but may not prompt failover actions.

[0243] The watchdog messages 3014 may be written to a block chain 3020,
through block chain transactions 3018 from the block chain logic 3008. Writing the
watchdog messages 3014 to the blockchain 3020 may synchronize them across
other loT devices, for example, in a mesh or fog network.

[0244] Some of the other IoT devices in the mesh network may possess similar
functionality as the failed device and may have spare cycles, enabling them to act as
a fail-over target. For example, a failover device 3022 or a repair/replacement drone
3024, may assess functional compatibility with the failed device 3002 using
composite object identities, for example. In those examples, the blockchain 3020
may include a history of similar object types, which may be authenticated as such.
[0245] When a failover condition exists, 0T devices having similar object types,
such as the failover device 3022, may compete to become the target device by
periodically registering their candidacy with the TRE records, for example, through a
transaction 3026 to the block chain 3020. The TRE 3004 may maintain a list of viable
failover candidates, obtained 3028 from the block chain 3020, as it receives periodic
registrations.

[0246] When a failure is observed by the TRE 3004, for example, the loss of
watchdog messages 3014 from the watchdog agent 3012 in the host environment
3010, a failover action may be applied. To begin, the TRE 3004 may first perform a
local strategy 3030 to recover the host. This may be applied assuming the TRE 3004
is not damaged by the failure event. The local strategy 3030 by the TRE 3004 may
involve restoring a host replacement image 3032 to the host environment 3010.
[0247] A TRE 3004 on a suitable failover target, such as the failover device 3022,

may observe 3034 watchdog activity in the block chain 3020, and may note the

54

WO 2018/126029 PCT/US2017/068743

absence of it. If the local strategy 3030 is unsuccessful, for example, if the local
strategy 3030 is not realized within a window of time, a suitable failover peer, such
as the failover device 3022, may assume 3036 the role of the failed device 3002.
This may be achieved by posting a transaction to the blockchain 3020 claiming
failover target rights. The synchronization of the block chain 3020 among loT devices
ensures a first claimant is selected and does not race with a second.

[0248] Although the failover device 3022 may take over for the failed device 3002
temporarily, a permanent solution may be obtained. A repair or replacement drone
3024 may be dispatched 3038 to either repair or replace the failed device 3002. The
repair or replacement drone 3024 may automatically dispatch itself, for example, by
monitoring the block chain 3020 to determine that a device has failed. A replacement
drone may be a direct replacement, moved into place by a repair drone or a service
technician. In some examples, the replacement drone may be an autonomous unit
that moves itself into place. Once the repair or replacement drone 3024 is in place, it
may take over 3040 functionality for the failed device 3002, allowing the failover
device 3022 to return to normal operations. At that point, the TRE 3004 in the failed
device 3002 may decommission 3042 the failed device 3002. Observers of activity in
the blockchain 3020 may monitor failures and plan a strategy for repairing, removing
or replacing the failed device 3002.

[0249] Fig. 31 is a process flow diagram of an example method 3100 for
implementing a failover mechanism using a trusted reliability engine (TRE) in
accordance with some embodiments. The method 3100 of Fig. 31 may be
implemented by the 10T device 3200 described with respect to Fig. 32. The TRE may
implement a self-reliant strategy by first monitoring for host failure using the TRE
while also informing a blockchain regarding device health state. The first self-reliant
strategy may use a replacement image to recover the damaged or failed host, for
example, replacing a corrupted image in a failed device. A second strategy may
detect a failover device and transfer the device workload from the failed device to the
failover device. A third strategy may dispatch a replacement device using an
automated dispatch device, such as a replacement or repair drone. A fourth strategy
decommissions the failed device to decrease the probability of unknown behaviors

and lowering a risk of causing failures in surrounding network devices. The TRE may

55

WO 2018/126029 PCT/US2017/068743

also perform trusted execution environment (TEE) functions including storage and
management of keys, attestation and cryptographic operations. The method 3100
starts at block 3102, when the IoT device including the TRE is powered.

[0250] At block 3104, the TRE monitors the host environment. This may include
monitoring operations and functionality of the memory, bus, or CPU, among others.
Further the TRE monitors the host environment for watchdog messages, or pings,
confirming that the host environment is operational. For example, the loT/device
attestation measurement includes the heartbeat reporting, generated by the
watchdog (WD) pings. This may include a historical record of multiple heartbeats or
the most recently reported heartbeat. If no pings are received over a selected period
of time, for example, a millisecond (ms), 5 ms, 15 ms, or longer, the TRE may
determine that there is been a failure of the host environment.

[0251] At block 3106, the TRE produces a WD message including the WD pings.
The TRE attestation key may be used to sign the WD message in response to an
attestation request or to sign the WD message. At block 3108, the WD message may
be sent to a monitoring entity, for example, committing the WD message as a
transaction to a block chain. The WD message generation logic may remain
protected within the TRE, which provides greater assurance and resistance to being
impacted by host failures. Nodes monitoring the WD messages in the block chain
may observe the block chain updates across a variety of subnets, devices, and
networks.

[0252] At block 3110, a failure of the IoT device may be detected locally, for
example, by the TRE. If no local failure is detected at block 3110, a remote device
may detect failure at block 3112. If no remote detection of failure is made at 3112, at
block 3114 the monitoring resumes at block 3104.

[0253] If a remote failure is detected at block 3112, a process failure message is
sent to the TRE in the local device at block 3116, for example, by the remote device
that detected the failure. In the event the process failure message is received or a
local failure is detected at block 3110, at block 3118 failure processing is begun.
[0254] At block 3120, a determination is made as to whether the host is
recoverable locally. This may be determined, for example, by noting that the host is

still powered and may have just hung up at a particular code segment. If so, at block

56

WO 2018/126029 PCT/US2017/068743

3122 a host replacement image may be installed, for example, overwriting the
current operational memory of the failed device. The TRE may then attempt a restart
of the host device in the code of the host replacement image. The TRE may attempt
an initial restart of the host environment prior to installing the host replacement
image. This may save time when the failure is not due to a corruption of the
operating code, but is due to, for example, a software crash or hang.

[0255] If the host device is not locally recoverable, at block 3124 a determination
may be made by the TRE that a failover device is nearby. If a failover device is
nearby, at block 3126, the failover device is configured to begin performing the host
functions.

[0256] If a failover device is not nearby at block 3124, at block 3128 a
determination is made as to whether a host is replaceable or repairable. If so at
block 3130, a replacement device or repair drone may be dispatched to perform the
repair or replacement of the failed device. Even if a failover device has been
identified and has taken over the functions of the failed device, at block 3126, a
repair or replacement drone may still be dispatched at block 3130 to allow the
failover device to return to normal operations.

[0257] At block 3132, a determination is made as to whether the failure is
resolved, for example, if the functions of the failed device are being performed. If so,
the method 3100 ends at block 3136, for example, by returning to normal monitoring
operations at block 3104. If the failed device has not returned to normal operations at
block 3132, at block 3134, the failed device is decommissioned. The TRE in the
failed device may be placed in a sleep state. In this example the failover device or
the replacement device has taken over the function of the failed device, and
continues to provide the services of the failed device. The method 3100 then ends at
block 3136.

[0258] In a scenario where host failure is malicious, the compromising event may
not be distinguishable from normal anomalies or unexpected behavior. The TRE
environment may improve security of an endpoint device and increase the probability
that an attacker will be unable to prevent release of a WD 'sos’ message. Further, an
attacker may be limited in the ability to cover up audit trail evidence that may have

been collected during the normal course of a security audit.

57

WO 2018/126029 PCT/US2017/068743

[0259] Fig. 32 is a block diagram of an example of components that may be
present in an loT device 3200 for implementing a failover mechanism using a trusted
reliability engine in accordance with some embodiments. Like numbered items are
as described with respect to Figs. 3, 7, and 30. It can be noted that different
components may be selected and used for the 10T device 3200 than for those
selected for the loT device 700 discussed with respect to Fig. 7, and other loT
devices discussed herein.

[0260] The trusted reliability engine (TRE) 3004 may provide a trust execute
environment (TEE) containing reliability logic and isolation, for example,
implemented by a trusted platform module (TPM). Accordingly, the TRE 3004 may
include a number of functional units that are protected from general access. These
functional units may duplicate other functional units in the loT device 3200. These
may include the TRE logic 3008, the host replacement image 3032, and the block
chain 3020, as discussed herein. In addition, the TRE 3004 may include a
microprocessor 3202, and independent power supply 3204, a TRE communicator
3206, and a memory 3208. The power supply 3204 may couple to the power from
the power block 728, or may have an independent power supply, for example, a
battery linked to a charger.

[0261] The mass storage 708 may include a number of modules to implement the
failover mechanism using the trusted reliability engine described herein. Although
shown as code blocks in the mass storage 708, it may be understood that any of the
modules may be fully or partially replaced with hardwired circuits, for example, built
into an application specific integrated circuit (ASIC).

[0262] The mass storage 708 of the host may include a watchdog (WD) agent
3012 that sends WD messages to the TRE 3004 over the bus 706. As described
herein, the TRE 3004 may create a watchdog message and commit the watchdog
message to the block chain 3020. The TRE logic 3008 may propagate the block
chain 3020 to mesh devices 712 or devices in the cloud 302 over one more
communications links, for example, through a mesh transceiver 710, an uplink
transceiver 714, and a NIC 716, among others. The TRE 3004 may access the
communications links through the TRE communicator 3206, which may power the

transceivers 710 or 714 or the network interface controller 716 as needed. This may

58

WO 2018/126029 PCT/US2017/068743

ensure that the TRE 3004 maintains communications with external devices even if
the host system in the 10T device 3200 has failed.

[0263] According to some aspects, not all of the functionality of the system is
contained within the TRE 3004. In addition to the watchdog agent 3012, the storage
708 of the loT device 3200 may contain a number of other blocks providing
functionality to the system. For example, the mass storage 708 may include host
block chain logic 3210 to maintain a host block chain 3212 outside of the TRE 3004.
The host block chain 3212 may include all transactions in the block chain 3020 in the
TRE 3004, and may include a more extensive set of transactions. For example, the
block chain in the mass storage 708 may include identity blocks, peer device blocks,
and other blocks that are not present in the block chain 3020 in the TRE 3004 due to
memory constraints.

[0264] The mass storage 708 of the loT device 3200 may include an image
creator 3212 to copy a host image 3214 and send it to the TRE 3004 over the bus
706 to be saved as a host replacement image 3032. The host image 3214 may
include the operating system, drivers, and functional code for the host environment
of the 10T device 3200.

[0265] The mass storage 708 may include a communicator 3218 that accepts
packets or frames from mesh devices 712 or devices in the cloud 302, and sends
packets or frames to other mesh devices 712, devices in the cloud 302, and the like.
The communicator 3218 may perform other functions, such as translation of packets
between protocols, accepting micropayments, and the like.

[0266] Fig. 33 is a block diagram of a non-transitory, machine readable medium
3300 including code to direct a processor 802 to implement a failover mechanism
using a trusted reliability engine in accordance with some embodiments. The
processor 802 may access the non-transitory, machine readable medium 3300 over
the bus 804. The processor 802 and bus 804 may be as described with respect to
Fig. 8. The non-transitory, machine readable medium 3300 may include devices
described for the mass storage 708 of Fig. 7 or may include optical disks, thumb
drives, or any number of other hardware devices.

[0267] The non-transitory, machine readable medium 3300 may include code

3302 to direct the processor 802 to monitor host environment for heartbeat

59

WO 2018/126029 PCT/US2017/068743

messages, or pings. Code 3304 may be included to direct the processor 802 to
produce watchdog messages, for example, including the heartbeat messages. Code
3306 may be included to direct the processor 802 to post the watchdog messages to
a block chain, for example, as a transaction. Code 3308 may be included to direct
the processor 802 to detect failures in a local device associated with the TRE. Code
3310 may be included to direct the processor 802 to detect failures in a remote
device, for example, by examining the watchdog messages in a block chain.

[0268] Code 3312 may be included to direct the processor 802 to install a host
replacement image in place of that currently stored in a host environment. Code
3314 may be included to direct the processor 802 to configure a failover device.
Code 3316 may be included to direct the processor 802 to dispatch a repair or
replacement drone. Code 3318 may be included to direct the processor 902 to
decommission a failed device.

[0269] Security in loT networks is a consideration, especially as the networks
grow in size. Private key storage, updates and in-transit interception, rogue key
detection, and rapid new key generation are potential concerns. However, in many
cases loT devices are constrained by memory, processing power, and other issues,
such as limited components. Further, 10T networks may have limited bandwidth to
share data and all other functions. Thus, it is useful to maximize the efficiency of
communications between the devices.

[0270] Inthe techniques described herein, I0T nodes in a network may not need
to receive or dispatch a full private key, for example, with each message. Instead,
they may dispatch and receive fractional parts of the key. In addition to improving the
efficiency of communications, this may reduce the attack surface for a secure loT
network, as no individual node needs to store the full key sequences in persistent
storage.

[0271] The key management and generation processes described herein provide
a number of techniques for managing security in an environment that includes loT
devices. However, in some instances, managing the generation, lifespan,
termination, and reissuing of keys may be complex in an lIoT network environment.
[0272] Fig. 34 is a ladder diagram of an example method 3400 for unified key

management in an loT network environment in accordance with some embodiments.

60

WO 2018/126029 PCT/US2017/068743

The method 3400 of Fig. 34 may be implemented by the loT device 3500 described
with respect to Fig. 35. In this example, a service provider (SP) 3402 may be used to
provide the overall roots of trust. This service provider 3402 may be a blockchain
managed by a group of loT devices, in the 10T network. In another example, the
service provider 3402 may be an external device providing security services to the
loT network.

[0273] An loT server 3404 may manage the local security for an 0T network, for
example, storing secure information in a secure storage location 3406 accessible
from the loT server 3404. The secure storage location 3406 may be in a trusted
execute environment (TEE), for example, managed by a trusted platform module
(TPM).

[0274] An loT client 3408 may interact with both the service provider 3402 and
the loT server 3404 to obtain keys for encryption and decryption of data and
communications. Another entity 3410 may participate in the communications, for
example, determining that a key has been compromised and triggering the
revocation of the keys and generation of new keys. The entity 3410 may be another
loT device in the loT network, may be a user at administrative console, or may be a
manufacturer of 10T devices in the loT network, among others.

[0275] The method 3400 may be used to manage both symmetric keys and
asymmetric keys. For certain communications, all data may be protected using
symmetric keys. The method 3400 may begin when the loT server 3404 is
onboarded into an loT network and receives a service provider credential 3412. The
service provider credential 3412 may be used to validate the loT server 3404 to the
service provider 3402 in an authentication message 3414. The authentication
message 3414 may request that the service provider 3402 provide credentials for
secure communications. The service provider 3402 may respond with a trust
message 3416 that includes a trust anchor 3418. The trust anchor 3418 may include
a hash of a public key, or a certified path, or chain to a trusted root of authority.
[0276] An loT client 3408 may send symmetric key message 3420 to the service
provider 3402, requesting that symmetric keys be provided for communications. The
symmetric key message 3420 may be signed by a public or private key from the loT
client 3408.

61

WO 2018/126029 PCT/US2017/068743

[0277] If the symmetric key message 3420 is validated by the service provider
3420, the service provider 3402 may respond with a message 3422 that includes a
symmetric key, or ticket. The message 3422 may be signed by the service provider
3402 using the same key provided by the loT client 3408. The loT client 3408 may
then provide the symmetric key to the 10T server 3404 in a message 3424. The IoT
server 3404 may save the symmetric key 3426 to the secure storage 3406. The loT
server may also determine if the secure key is expired by comparing a timestamp to
a secure time 3429 in the secure storage 3406. The result of this comparison may be
saved in a secure key status 3430.

[0278] The entity 3410 may make a determination that a key 3432 has been
compromised. Ro example, the entity 3410 may find data that was protected by the
key, or the key itself, in network searches. For the secure key 3426 this may result in
a message 3434 to the service provider 3402 to revoke the secure key 3426. In
response to the message 3434, the service provider 3402 may send a revoke
message 3436 to the |oT server. Another message 3438 may be sent to the loT
client 3408, instructing the 0T client 3408. The IoT server 3404 may then re-
authenticate with the service provider 3402 by sending an authentication message
3414 to repeat the process.

[0279] The loT client 3408 is not limited to using symmetric keys, but may send
an authentication message 3440 to the service provider 3402 using a private key.
The service provider 3402 may then decrypt the authentication message 3440,
confirming the identity of the loT client 3408, using a public key belonging to the loT
client 3408.

[0280] If the authentication of the authentication message 3440 indicates the IoT
client 3408 is valid, the service provider 3402 may send a message 3442 including a
certificate. The message 3442 may be signed with the public key for the service
provider 3402. The IoT client 348 may then send a message 3444 to the loT server
3404 including the certificate. The message 3444 may be signed with a public key
for the loT client 3408. The public key 3446 may be saved by the loT server to
secure storage 3406. The IoT server 3404 may also determine 3448 if the certificate

has expired, for example, by comparing a timestamp in the certificate to a secure

62

WO 2018/126029 PCT/US2017/068743

time value 3450 stored in the secure storage 3406. The status of the private key
3452 may also be saved to the secure storage 3406.

[0281] The loT server 3404 may then generate a temporal symmetric key (TSK)
3454 for communications. The loT server 3404 may send a key exchange message
3456 including the TSK 3454 to the loT client 3408. The IoT client 3408 may then
communicate with the loT server 3404 using the TSK 3454, for example, to encrypt a
message 3458.

[0282] If the entity 3410 detects 3432 that the public key 3426 has been
compromised, it may send a revocation message 3460 to the service provider 3402.
The service provider 3402 may then send a revocation message 3462 to the loT
server 3404 instructing revoke the public key 3446. The service provider 3402 may
also send a message 3464 to the loT client 3408 instructing it to delete the private
key generated for the public key 3446 sent on to the loT server 3404.

[0283] The TSK 3454 does not last indefinitely, and may have a lifespan shorter
than the public keys. For example, a message 3466 may be sent by the loT client
3408 to the loT server 3404 after being encrypted using the TSK 3454. A secure
time value 3468 in the secure storage 3406 may be used by the 10T server 3404 to
determine 3470 whether the TSK 3454 has expired. The TSK status 3472 may then
be stored in the secure storage 3406 and, if expired, the TSK 3454 may be refreshed
with the new value that is exchanged 3456 with the 10T client 3408.

[0284] Further if the entity 3410 determines that the TSK 3454 has been
compromised, the entity 3410 may send a revocation message 3474 to the service
provider 3402. The service provider 3402 may then send a revocation message
3476 to the loT server 3404 instructing it to change the TSK status 3472 to invalid.
The service provider 3402 may also send a message 3478 to the IoT client 3408
instructing it to delete the TSK 3454. At this point, the 10T server 3404 may attempt
to re-authenticate to the service provider 3402 by sending the authentication
message 3414, restarting the process.

[0285] The symmetric key 3426 may have a lifespan, as determined by a secure
time value 3482 stored in the secure storage 3406. The IoT server 3404 may
determine 3484 that the secure key, or ticket, has expired by comparing the time of

use to the secure time 3450. The IoT server 3404 may then issue a refreshed key,

63

WO 2018/126029 PCT/US2017/068743

SK'. The refreshed key, SK’, may then be used until the secure time 3450 is
exceeded. The entity 3410 may also monitor to determine if the key, SK’, has been
compromised, and send out a revocation message 3434 if needed.

[0286] As described herein, a key exchange or key management protocol may
result in temporary, or temporal, symmetric keys that are used to protect data,
including confidentiality, integrity, or both. The temporal keys presume the
authentication and trust properties established by the authentication / key exchange
event based on an assumption that the temporal keys have not be compromised
since they were initially established.

[0287] Temporal keys may, however, may have variable lifetimes. Lifetime may
be dynamically adjusted based on context and situation. For example, a node that is
entering and exiting a sleep mode may not diminish key lifetime while it is sleeping.
[0288] Further, key revocation of any keys, symmetric and asymmetric, may be
performed by sending a revocation message to both the Client and the Server. In the
case where a key is revoked, the credential (certificate or ticket) may be deleted by
sending a key deletion message that instructs the Clients and Servers possessing
the certificate or the ticket to delete them. Deletion may differ from revocation in that
revocation may only instruct the Clients or Servers to refuse verification of revoked
keys while deletion may instruct the keys to be physically expunged from the system.
Both revocation and deletion messages may take effect immediately, whereas the
certificate or ticket expiration may allow the key to be used up to the date of expiry -
and subsequent to a key compromise event.

[0289] Key lifecycle management further applies to symmetric key cache systems
where a temporal key may be reused for a second or third message even though the
key is deemed to be temporal. Temporality of cached keys is determined by the
cache expiry policy. Hence a key cache policy doubles as a ticket structure where
the cache policy configuration message may be specified using a 'ticket’ structure
that does not contain a symmetric key.

[0290] Unified key management leverages key management messages and flows
for both symmetric and asymmetric keys allowing reuse efficiencies in

implementation that benefits constrained loT environments.

64

WO 2018/126029 PCT/US2017/068743

[0291] Fig. 35 is a block diagram of an example of components that may be
present in an loT device 3500 for managing keys in a network of IoT mesh devices
712 in accordance with some embodiments. Like numbered items are as described
with respect to Figs. 3 and 7. The loT device 3500 may be the IoT server 3404 or the
loT client 3408, described with respect to Fig.34. It can be noted that different
components may be selected and used for the loT device 3500 than for those
selected for the loT device 700 discussed with respect to Fig. 7, and other loT
devices discussed herein.

[0292] In this example, the 10T device 3500 may function as either the 10T server
3404 or the loT client 3408, described with respect to Fig. 34. In other examples, the
loT device 3500 may function only as an 10T client 3408, for example, if the 0T
device 3500 is more constrained. In further examples, the IoT device 3500 may
function only as an loT server 3404.

[0293] The loT device 3500 may include a trusted platform module (TPM) 3502,
for example, compliant with the specification promulgated by the Trusted Computing
Group as ISO/IEC 11889 in 2009. The TMP 3502 may include a cryptographic
processor (CP) 3504, non-volatile memory (NVM) 3506, and secure memory (SM)
3508. The CP 3504 may provide a random number generator, an RSA hash
generator, a SHA-1 hash generator, and an encryption-decryption engine, among
others. The NVM 3506 may include keys programmed at the time of manufacture
that include, for example, an RSA key, among others. The SM 3508 may hold
measurements taken on software in platform configuration registers. As used herein,
a measurement is a hash code calculated on a code or data segment stored in the
storage 708 or memory 704. Starting from a measurement of a boot code segment,
the measurements may be used to establish a trusted execution environment (TEE),
by creating a chain-of-trust from the initial booting. The SM 3508 may provide the
secure storage 3406 described with respect to Fig. 34.

[0294] The mass storage 708 may include a number of modules to implement the
key management functions described herein. Although shown as code blocks in the
mass storage 708, it may be understood that any of the modules may be fully or
partially replaced with hardwired circuits, for example, built into an application

specific integrated circuit (ASIC).

65

WO 2018/126029 PCT/US2017/068743

[0295] The mass storage 708 may include a secure booter/measurer 3510 that
performs measurements on code or data. An initial boot measurement may be
performed by the processor 702, or the TPM 3508, to set up the secure
booter/measurer 3510 to perform additional measurements. This may create a
trusted execute environment (TEE) to provide security to the loT device 3500.
Succeeding measurements in the TEE may be performed by the TPM 3508 as code
segments are prepared for operation.

[0296] An authenticator 3512 may be used to authenticate communications with
other mesh devices 712, or devices in the cloud 302. The authenticator 3512 may
use a packet communicator 3514 to send and receive encrypted packets from the
other mesh devices 712, or devices in the cloud 302. The authenticator 3512 may
authenticate the communications using a symmetric key provided by a service
provider 3402, or a temporal symmetric key (TSK) generated in the 10T device 3500.
[0297] A key generator 3516 may be used to generate the temporal symmetric
keys (TSKs) for communications with other devices. The authenticator 3512 may
exchange the TSKs with other devices. The key generator 3516 may also generate
new TSKs, or new symmetric keys (SKs), after the keys have expired, for example,
when a secure time for the life of the key has been exceeded. An
encryptor/decryptor 3518 may encrypt or decrypt communications using the TSKs or
SKs.

[0298] A key manager 3520 may be included to monitor and manage the keys.
This may include determining if a key has expired and using the key generator 3516
to generate a new key for reissue. The key manager 3520 may monitor
communications received through the communicator 3514 for a revocation message
from another mesh device 712, or a device in the cloud 302, that indicates that a key
has been compromised. Upon receiving the revocation message, the key manager
3520 may change a status of the key to indicate that the key is no longer valid. The
key manager 3520 may then re-trigger authentication through the authenticator 3512
to regenerate the keys.

[0299] Fig. 36 is a block diagram of a non-transitory, machine readable medium
3600 including code to direct a processor 802 to manage keys for secure

communications in accordance with some embodiments. The processor 802 may

66

WO 2018/126029 PCT/US2017/068743

access the non-transitory, machine readable medium 3600 over a bus 804. The
processor 802 and bus 804 may be as described with respect to Fig. 8. The non-
transitory, machine readable medium 3600 may include devices described for the
mass storage 708 of Fig. 7 or may include optical disks, thumb drives, or any
number of other hardware devices.

[0300] The non-transitory, machine readable medium 3600 may include code
3602 to direct the processor 802 to authenticate to a service provider. Code 3604
may be included to direct the processor 802 to obtain a key for secure
communication or storage. The code 3604 may direct the processor 802 to request a
symmetric key, such as a ticket, or an asymmetric key, such as a certificate, from a
service provider.

[0301] Code 3606 may be included to direct the processor 802 to generate a
symmetric key for communications. The symmetric key may be a TSK that is
exchanged with another device after authentication through exchange of a
public/private key pair. The symmetric key that is generated by the code 3606 may
also be a new key generated to refresh a key that has expired.

[0302] Code 3608 may be included to direct the processor 802 to determine if the
key has reached a preset key lifetime. Code 3610 may be included to direct the
processor 802 to refresh an expired key. Code 3612 may be included to direct the
processor 802 to encrypt and decrypt communications from other devices. Code
3614 may be included to direct the processor 802 to revoke keys and repeat the
authentication to the service provider, for example, if a revocation message is
received.

[0303] The key management techniques described herein may be used in any
number of contexts. For example, when an object activates and needs to connect, it
may use information from a registrar about other services or agents running in the
network about how to register itself and to find other services and agents. However,
public registrars are prone to distributed denial-of-service (DD0S) attacks. If it is
feasible, implementing a registrar based on a decentralized protocol may be useful.
In a decentralized protocol, a blockchain or ledger may act as a replacement for a
public key infrastructure (PKI) to assess device or agent identities by means of their

blockchain addresses. The blockchain may be used as a name space that is secure,

67

WO 2018/126029 PCT/US2017/068743

memorable, and decentralized. Names in a namespace are a limited resource that
may be managed in some decentralized manner. Further, lower level addresses that
are usually regulated by leases, such as Internet protocol (IP) in a dynamic host
configuration protocol (DHCP), may be charged and regulated by micropayments or
other credit or currency.

[0304] Example 1 includes an apparatus. The apparatus includes a trusted
communications environment, including a primary participant including a group
creator to initiate creation of a trusted group, and a distributed ledger to store
identities and credential for group members. The apparatus also includes a
secondary participant including communication credentials for the trusted group
provided by the primary participant.

[0305] Example 2 includes the subject matter of example 1. In example 2, the
communications credentials include a private key for the trusted group, and a
transaction key obtained from the distributed ledger.

[0306] Example 3 includes the subject matter of either of examples 1 or 2. In
example 3, the primary participant includes a join request for a distributed ledger
enumeration authority (DLEA), wherein the join request includes a trusted group
name signed with a private key for the primary participant.

[0307] Example 4 includes the subject matter of any of examples 1t0 3. In
example 4, the apparatus includes a distributed ledger enumeration authority (DLEA)
accessor to determine if a trusted group name was created.

[0308] Example 5 includes the subject matter of any of examples 1 to 4, including
the distributed ledger to 5. In example 5, the distributed ledger includes a public key
for the trusted group and a permissioning policy.

[0309] Example 6 includes the subject matter of any of examples 1t0 5. In
example 6, the primary participant includes a key creator to create a key based, at
least in part, on a trusted group name.

[0310] Example 7 includes the subject matter of any of examples 1t0 6. In
example 7, the apparatus includes an attestation validator to validate a join request

from the secondary participant.

68

WO 2018/126029 PCT/US2017/068743

[0311] Example 8 includes the subject matter of any of examples 1to 7. In
example 8, the apparatus includes a group joiner to issue the communication
credentials to the secondary participant.

[0312] Example 9 includes the subject matter of any of examples 1t0 8. In
example 9, the apparatus includes a tertiary participant including secondary
communication credentials for the trusted group provided by the secondary
participant.

[0313] Example 10 includes the subject matter of any of examples 1t0 9. In
example 10, the secondary communication credentials include a private key for the
group and a secondary transaction key.

[0314] Example 11 includes the subject matter of any of examples 1 to 10. In
example 11, the apparatus includes a plurality of secondary participants including
communication credentials issued by the primary participant.

[0315] Example 12 includes the subject matter of any of examples 1to 11. In
example 12, the apparatus includes a plurality of tertiary participants each including
secondary communication credentials issued by the primary participant.

[0316] Example 13 includes the subject matter of any of examples 1 to 12. In
example 13, the distributed ledger includes transaction data signed by a group key
and a private key for a participant.

[0317] Example 14 includes a method for securing communications transactions
in an loT network. The method for securing communications transactions in an loT
network includes determining by a first participant that a group of participants can
communicate with integrity assurances, reserving a name for the group from a
distributed ledger enumeration authority (DLEA), establishing a distributed ledger for
the group using the name, and providing a private key for the group to a second
participant.

[0318] Example 15 includes the subject matter of example 14. In example 15,
reserving the name includes sending the name and a public key for the first
participant to the DLEA in a message signed using a private key for the first
participant, determining that the group has been created when the DLEA commits
the name to a public distributed ledger, and establishing a group public key using an

enhanced privacy identification (EPID) system.

69

WO 2018/126029 PCT/US2017/068743

[0319] Example 16 includes the subject matter of either of examples 14 or 15. In
example 16, establishing the distributed ledger for the group includes committing a
transaction from the first participant to the group distributed ledger, wherein the
transaction includes a group public key and a permissioning policy, signed by a
transaction key for the first participant.

[0320] Example 17 includes the subject matter of any of examples 14 to 16. In
example 17, providing a private key includes receiving a join request from the
second participant requesting permission to join the group, and validating
trustworthiness of the second participant.

[0321] Example 18 includes the subject matter of any of examples 14t0 17. In
example 18, validating trustworthiness includes verifying a manufacturers key used
to sign the join request.

[0322] Example 19 includes the subject matter of any of examples 14 to 18. In
example 19, the method includes generating a second private key for the group in
the second participant, wherein the second private key is under a group public key,
sending a message to the first participant, wherein the message is a public key for
the second participant, signed by the second private key, and committing a
transaction to the group distributed ledger, wherein the transaction includes the
second participant’s public key, signed by the private key.

[0323] Example 20 includes the subject matter of any of examples 14to 19. In
example 20, the method includes creating a join request in a third participant,
wherein the join request includes a third participant transaction key signed by a
private key for the third participant, sending the join request to the second
participant, signing the join request by the second participant with a public key for the
third participant, a transaction key for the second participant, and the group key to
create a signed transaction, and sending the signed transaction back to the third
participant.

[0324] Example 21 includes the subject matter of any of examples 14 to 20. In
example 21, the method includes including transaction data from the second
participant in the signed transaction.

[0325] Example 22 includes the subject matter of any of examples 14 to 21. In

example 22, the method includes signing the signed transaction with a private group

70

WO 2018/126029 PCT/US2017/068743

key for the third participant, and committing the signed transaction to the group
distributed ledger.

[0326] Example 23 includes the subject matter of any of examples 14 to 22. In
example 23, the method includes signing transaction data at the second participant
using the private group key for the second participant, and committing the
transaction data to the group distributed ledger.

[0327] Example 24 includes a non-transitory, machine readable medium. The
non-transitory, machine readable medium includes instructions to direct a processor
to determine that a group has integrity assurances, reserve a group name with a
distributed ledger enumeration authority (DLEA), create a group public key and a
permissioning policy, and commit the group hame and group public key to a group
distributed ledger.

[0328] Example 25 includes the subject matter of example 24. In example 25, the
non-transitory, machine readable medium includes instructions to direct the
processor to validate a join request from a second participant, and send a join
message to the second participant, wherein the join request includes a group private
key.

[0329] Example 26 includes the subject matter of either of examples 24 or 25. In
example 26, the non-transitory, machine readable medium includes instructions to
direct the processor to sign transaction data with a group private key, and commit
the signed transaction data to the group distributed ledger.

[0330] Example 27 includes an apparatus. The apparatus includes an loT
network, wherein the loT network includes a trusted execution environment (TEE).
This also includes a chain history for a blockchain, wherein the chain history includes
a whitelist of hash signatures, a root-of-trust for chaining (RTC) to provide the chain
history to local computing roots-of-trust, and a root-of-trust for archives (RTA) to
provide an archive function to constrained devices in the loT network.

[0331] Example 28 includes the subject matter of example 27. In example 28, the
TEE includes a root-of-trust measurer (RTM) to verify a first loadable object in a
system.

[0332] Example 29 includes the subject matter of either of examples 27 or 28. In

example 29, the TEE includes a root-of-trust for reporting (RTR) to attest to values in

71

WO 2018/126029 PCT/US2017/068743

a root-of-trust for storage, and the root of trust for storage (RTS) to store values for
root-of-trust devices.

[0333] Example 30 includes the subject matter of any of examples 27 to 29. In
example 30, the TEE includes blockchain logic to migrate the chain history to other
devices and verify chain histories from other devices.

[0334] Example 31 includes the subject matter of any of examples 27 to 30. In
example 31, the TEE includes a whitelist history including current configurations,
past configurations, or anticipated configurations or any combinations thereof.
[0335] Example 32 includes the subject matter of any of examples 27 to 31. In
example 32, the TEE includes including a measurement history to record
measurements made during a boot process.

[0336] Example 33 includes the subject matter of any of examples 27 to 32. In
example 33, the measurement history includes measurement logs from multiple boot
sequences.

[0337] Example 34 includes the subject matter of any of examples 27 to 33. In
example 34, the apparatus includes a mesh network of devices that boot into a
trusted environment.

[0338] Example 35 includes the subject matter of any of examples 27 to 34. In
example 35, the chain history includes a blockchain block that includes a plurality of
values from platform control registers (PCRs) that are each signed by an attestation
key.

[0339] Example 36 includes the subject matter of any of examples 27 to 35. In
example 36, the blockchain block includes a block-signing key.

[0340] Example 37 includes the subject matter of any of examples 27 to 36. In
example 37, the apparatus includes an image repository storing whitelist values.
[0341] Example 38 includes the subject matter of any of examples 27 to 37. In
example 38, the chain history includes a blockchain block that includes a plurality of
manifests of whitelist images that are each signed by a manufacturers attestation
key.

[0342] Example 39 includes the subject matter of any of examples 27 to 38. In

example 39, the blockchain block includes a block-signing key.

72

WO 2018/126029 PCT/US2017/068743

[0343] Example 40 includes a method for securely booting a device in an loT
network. The method for securely booting a device in an IoT network includes
measuring a code object before running the code object, comparing the
measurement to a known good image retrieved from a blockchain, and running the
code object if the measurement matches the known good image.

[0344] Example 41 includes the subject matter of example 40. In example 41, the
method includes comparing the measurement to a known bad image retrieved from
a blockchain, quarantining the device if the measurement matches the known bad
image, and remediating the code if the measurement matches the known bad image.
[0345] Example 42 includes the subject matter of either of examples 40 or 41. In
example 42, the method includes following a predefined policy if the measurement
does not match a known good image or a known bad image.

[0346] Example 43 includes the subject matter of any of examples 40 to 42. In
example 43, the predefined policy instructs the device to boot into an untrusted state
and not communicate with trusted devices.

[0347] Example 44 includes the subject matter of any of examples 40 to 43. In
example 44, the method includes obtaining the image for a measurement from a
cloud repository, confirming that a signature for the image is valid, confirming that
the image is a hash of a bootchain, signing a manifest for the image, adding the
image to a whitelist, and committing the whitelist to a blockchain.

[0348] Example 45 includes the subject matter of any of examples 40 to 44. In
example 45, the method includes determining that an image is not of a bootchain,
determining that the image is an attack image, adding the attack image to a blacklist,
and committing the blacklist to a blockchain.

[0349] Example 46 includes the subject matter of any of examples 40 to 45. In
example 46, the method includes determining that an image is not of a bootchain,
determining that the image is an unknown image, adding the unknown image to an
unclassified list, and committing the unclassified list to a blockchain.

[0350] Example 47 includes the subject matter of any of examples 40 to 46. In
example 47, the method includes creating a block including an image of a

successfully run code block, and committing the block to the blockchain.

73

WO 2018/126029 PCT/US2017/068743

[0351] Example 48 includes the subject matter of any of examples 40 to 47. In
example 48, the method includes creating a block including an image of a rejected
code block, and committing the block to the blockchain.

[0352] Example 49 includes a non-transitory, machine readable medium. The
non-transitory, machine readable medium includes instructions to direct a processor
to measure a code object before running the object to obtain a measurement,
compare the measurement to a known good image retrieved from a blockchain, and
classify the code object as good if there is a match between the measurement and
the known good image.

[0353] Example 50 includes the subject matter of examples 49. In example 50,
the non-transitory, machine readable medium includes instructions to direct the
processor to compare the measurement to a known bad image, and prevent the
code object from running if the measurement matches the known bad image.

[0354] Example 51 includes the subject matter of either of examples 49 or 50. In
example 51, the non-transitory, machine readable medium includes instructions to
direct the processor to maintain a blockchain including a chain history, and maintain
root-of-trust measurements in the blockchain.

[0355] Example 52 includes an apparatus. The apparatus includes an Internet-of-
Things (IoT) network, wherein the 10T network includes an |loT device. The loT
device includes a communication system to communicate with other loT devices in a
domain, an onboarding tool to discover a device in the domain and create resources
for the device, a device discoverer to discover a remote device serviced by a remote
onboarding tool located in a remote domain, a trust builder to establish trust with the
remote onboarding tool, a shared domain creator to form a shared domain with the
remote onboarding tool, and a shared resource directory storing resources for both
the device and the remote device.

[0356] Example 53 includes the subject matter of example 52. In example 53, the
device in the domain is represented by resources in a first resource block, the
remote device in the remote domain is represented by resources in a second
resource block, and a virtual domain stores a third resource block, wherein the third
resource block includes the resources from the first resource block and the second

resource block.

74

WO 2018/126029 PCT/US2017/068743

[0357] Example 54 includes the subject matter of either of examples 52 or 53. In
example 54, the communication system includes a mesh transceiver, an uplink
transceiver, or a network interface controller, or any combinations thereof.

[0358] Example 55 includes the subject matter of any of examples 52 to 54. In
example 55, the apparatus includes a plurality of devices in a plurality of domains
that form a fog device, wherein a common resource block in a virtual domain stores
resources for all of the plurality of devices.

[0359] Example 56 includes the subject matter of any of examples 52 to 55. In
example 56, the apparatus includes an orchestrator to provide information on a
plurality of remote devices to the onboarding tool.

[0360] Example 57 includes the subject matter of any of examples 52 to 56. In
example 57, the trust builder includes an attestation key, an identification key, or an
assigned trust from an administrator, or any combinations thereof.

[0361] Example 58 includes the subject matter of any of examples 52 to 57. In
example 58, the trust builder includes a blockchain system to form a blockchain root-
of-trust.

[0362] Example 59 includes a method for sharing resources across domains. The
method for sharing resources across domains includes joining a device to an loT
network in a first domain, adding resources for the device in the first domain to a
local resource block, discovering a remote device in a remote domain, creating trust
with the remote domain, and creating a shared resource block including resources
for the device and the remote device.

[0363] Example 60 includes the subject matter of example 59. In example 60, the
method includes creating a local resource block if not already in existence.

[0364] Example 61 includes the subject matter of either of examples 59 or 60. In
example 61, discovering the remote device includes receiving information from an
orchestrator about the remote device.

[0365] Example 62 includes the subject matter of any of examples 59 to 61. In
example 62, discovering the remote device includes discovering an onboarding tool
in the remote domain, and exchanging device information with the onboarding tool in

the remote domain.

75

WO 2018/126029 PCT/US2017/068743

[0366] Example 63 includes the subject matter of any of examples 59 to 62. In
example 63, creating trust with the remote device includes exchanging attestation
information with the remote device.

[0367] Example 64 includes the subject matter of any of examples 59 to 63. In
example 64, creating trust with the remote device includes looking up the remote
device in a blockchain.

[0368] Example 65 includes the subject matter of any of examples 59 to 64. In
example 65, creating trust with the remote device includes accepting an assigned
trust setting from an administrator.

[0369] Example 66 includes the subject matter of any of examples 59 to 65. In
example 66, the method includes renaming a sub-domain ID if the sub-domain ID
matches a previous sub-domain ID in the shared resource block, and propagating
the new sub-domain ID to all devices that use the sub-domain ID.

[0370] Example 67 includes the subject matter of any of examples 59 to 66. In
example 67, the method includes renaming an object ID if the object ID matches a
previous object ID in the shared resource block, and propagating the new object ID
to all devices that use the object ID.

[0371] Example 68 includes the subject matter of any of examples 59 to 67. In
example 68, the method includes renaming a device ID if the device ID matches a
previous device ID in the shared resource block, and propagating the new device ID
to all devices that use the device ID.

[0372] Example 69 includes the subject matter of any of examples 59 to 68. In
example 69, the method includes accessing the resources of the remote device from
the first domain.

[0373] Example 70 includes the subject matter of any of examples 59 to 69. In
example 70, creating the shared resource block includes forming a union between
the local resource block and a remote resource block.

[0374] Example 71 includes a non-transitory, machine readable medium. The
non-transitory, machine readable medium includes instructions that, when executed,
direct a processor to join a device to an loT network, create a local resource for the
device in a local resource block, discover devices in other domains, create a shared

domain, create a shared resource block in the shared domain, and merge the local

76

WO 2018/126029 PCT/US2017/068743

resource and remote resources for devices in the other domains in the shared
resource block.

[0375] Example 72 includes the subject matter of example 71. In example 72, the
non-transitory, machine readable medium includes instructions that, when executed,
direct the processor to discover an onboarding tool in a remote domain, create trust
with the onboarding tool in the remote domain, and exchange information on a
plurality of devices in a local domain and the remote domain.

[0376] Example 73 includes the subject matter of either of examples 71 or 72. In
example 73, the non-transitory, machine readable medium includes instructions that,
when executed, direct the processor to discover an onboarding tool in a remote
domain, and access a blockchain to validate the onboarding tool in the remote
domain.

[0377] Example 74 includes the subject matter of any of examples 71 to 73. In
example 74, the non-transitory, machine readable medium includes instructions that,
when executed, direct the processor to detect a name overlap in the shared resource
block, correct the name overlap by changing an overlapping entry to a new name,
and propagating the new name to all devices that use that name.

[0378] Example 75 includes the subject matter of any of examples 71 to 74. In
example 75, the non-transitory, machine readable medium includes instructions that,
when executed, direct the processor to form a fog device including a device in a local
domain and a remote device in a remote domain.

[0379] Example 76 includes an apparatus. The apparatus includes an Internet-of-
Things (IoT) network, wherein the 10T network includes an |loT device. The loT
device includes a communication system to communicate with other loT devices in
the loT network, a policy decision engine to determine which policies are going to be
enforced, a policy repository to store the policies and state information reported by a
network monitor, a policy enforcement engine to enforce the policies determined by
the policy decision engine, and a peer monitor to monitor policies enforced by the
loT device, and by other loT devices in the loT network.

[0380] Example 77 includes the subject matter of example 76. In example 77, the
communication system includes a mesh transceiver, an uplink transceiver, or a

network interface controller, or any combinations thereof.

77

WO 2018/126029 PCT/US2017/068743

[0381] Example 78 includes the subject matter of either of examples 76 or 77. In
example 78, the IoT network includes a plurality of devices forming a fog device.
[0382] Example 79 includes the subject matter of any of examples 76 to 78. In
example 79, the policy decision engine is to base a determination of which policies
are going to be enforced on a parameter for the loT device.

[0383] Example 80 includes the subject matter of any of examples 76 to 79. In
example 80, the parameter includes a remaining capacity of a battery in the loT
device, other loT devices coupled through a mesh transceiver, or a status of an
uplink transceiver to devices in a cloud, or any combinations thereof.

[0384] Example 81 includes the subject matter of any of examples 76 to 80. In
example 81, the policy decision engine changes the policies being enforced based,
at least in part, on a change in the parameter.

[0385] Example 82 includes the subject matter of any of examples 76 to 81. In
example 82, the policy decision engine distributes policies to non-configured nodes.
[0386] Example 83 includes the subject matter of any of examples 76 to 82. In
example 83, the peer monitor collects information and stores it in a database.
[0387] Example 84 includes the subject matter of any of examples 76 to 83. In
example 84, the information includes current device configuration, a capability of a
peer node, a service being offered, a node requirement for a network, a resource
availability estimation, or a triggered event, or any combinations thereof.

[0388] Example 85 includes the subject matter of any of examples 76 to 84. In
example 85, the apparatus includes a coordinator to distribute policies to peer nodes
in the 10T network.

[0389] Example 86 includes the subject matter of any of examples 76 to 85. In
example 86, the coordinator includes a gateway between the |oT network and a
cloud device.

[0390] Example 87 includes the subject matter of any of examples 76 to 86. In
example 87, the |oT device is to distribute policies to nearest neighboring nodes.
[0391] Example 88 includes the subject matter of any of examples 76 to 87. In
example 88, the policy decision engine communicates with peer nodes to access

policies.

78

WO 2018/126029 PCT/US2017/068743

[0392] Example 89 includes a method for distributing policy management across
loT devices in an loT network. The method for distributing policy management
across loT devices in an loT network includes receiving a discover message at a
node, wherein the discover message is intended to identify new policies, change
policies, or both, responding to the discover message with an offer message,
wherein the offer message identifies policies, receiving an accept message, wherein
the accept message requests the policies, and responding with a message that
includes the policies.

[0393] Example 90 includes the subject matter of example 89. In example 90, the
method includes installing policies received from a peer node, and updating a status
to a configured node.

[0394] Example 91 includes the subject matter of either of examples 89 or 90. In
example 91, the method includes receiving an updated policy in an update message.
[0395] Example 92 includes the subject matter of any of examples 89 to 91. In
example 92, the method includes performing a validation on the updated policy
received in the update message, and installing the updated policy.

[0396] Example 93 includes the subject matter of any of examples 89 to 92. In
example 93, the validation includes determining whether the new policy conflicts with
a current policy, and, if so, rejecting the new policy.

[0397] Example 94 includes the subject matter of any of examples 89 to 93. In
example 94, the validation includes determining whether the new policy conflicts with
a current policy, and, if so, partially implementing the new policy.

[0398] Example 95 includes the subject matter of any of examples 89 to 94. In
example 95, the method includes sending a conflict alert message to a peer node to
alert the peer node to a policy conflict.

[0399] Example 96 includes the subject matter of any of examples 89 to 95. In
example 96, the method includes receiving a discover message from the peer node
for the policy update, replying with an offer message, receiving an accept message
from the peer node to indicate that the policy update may be sent, and sending an

update message including the new policy.

79

WO 2018/126029 PCT/US2017/068743

[0400] Example 97 includes the subject matter of any of examples 89 to 96. In
example 97, the method includes performing a validation on the updated policy
received in the update message, and installing the updated policy.

[0401] Example 98 includes the subject matter of any of examples 89 to 97. In
example 98, the method includes generating a file including a delta between a
current policy and a new policy, and sending the file to a peer node.

[0402] Example 99 includes the subject matter of any of examples 89 to 98. In
example 99, the method includes determining if a peer node has hardware capacity
for the policies, modifying the policies to match the hardware capacity of the peer
node, and sending the modified policies to the peer node.

[0403] Example 100 includes the subject matter of any of examples 89 to 99. In
example 100, the method includes determining changes between new policies and
current policies, and sending the changes in policies to the peer node.

[0404] Example 101 includes a non-transitory, machine readable medium. The
non-transitory, machine readable medium includes instructions that, when executed,
direct a processor to direct the processor to discover policies in other nodes, and
update policies from messages sent by other nodes in an IoT network.

[0405] Example 102 includes the subject matter of example 101. In example 102,
the non-transitory, machine readable medium includes instructions that, when
executed, direct a processor to concatenate policies from multiple nodes.

[0406] Example 103 includes the subject matter of either of examples 101 or 102.
In example 103, the non-transitory, machine readable medium includes instructions
that, when executed, direct a processor to validate policies received in messages
from other nodes, and reject policies that conflict with group objectives.

[0407] Example 104 includes the subject matter of any of examples 101 to 103.
In example 104, the non-transitory, machine readable medium includes instructions
that, when executed, direct a processor to change implemented policies to match
current device conditions.

[0408] Example 105 includes the subject matter of any of examples 101 to 104.
In example 105, the non-transitory, machine readable medium includes instructions

that, when executed, direct a processor to calculate a delta between policies.

80

WO 2018/126029 PCT/US2017/068743

[0409] Example 106 includes an apparatus. The apparatus includes an Internet-
of-Things (loT) network, wherein the loT network includes an 10T device. The loT
device includes a host environment, including a watchdog agent to send watchdog
messages that report on health and operation of the host environment, and a trusted
reliability engine (TRE), including a power supply separate from the power supply for
the host environment, TRE distributed ledger logic to write the watchdog messages
to a TRE blockchain, and TRE logic to apply a failover action if the host environment
fails.

[0410] Example 107 includes the subject matter of example 106. In example 107,
the host environment includes an image creator to make an image of the host
environment and send image copy to the TRE to be saved as a host replacement
image (HRI).

[0411] Example 108 includes the subject matter of either of examples 106 or 107.
In example 108, the host environment includes host blockchain logic to maintain a
host blockchain.

[0412] Example 109 includes the subject matter of any of examples 106 to 108.
In example 109, the host blockchain includes watchdog message blocks, peer
device blocks, or identity blocks, or any combinations thereof.

[0413] Example 110 includes the subject matter of any of examples 106 to 109.
In example 110, the host environment includes a communicator to communicate with
other mesh devices, devices in a cloud, or both.

[0414] Example 111 includes the subject matter of any of examples 106 to 110.
In example 111, the TRE includes a communication system to allow the TRE to
communicate with external devices if the host environment fails.

[0415] Example 112 includes the subject matter of any of examples 106 to 111.
In example 112, the TRE includes a host replacement image (HRI).

[0416] Example 113 includes the subject matter of any of examples 106 to 112.
In example 113, the HRI includes a copy of an operating system, drivers, and
functional code for the loT device.

[0417] Example 114 includes a method for implementing a failover mechanism
using a trusted reliability engine (TRE). The method for implementing a failover

mechanism using a trusted reliability engine (TRE) includes monitoring a host

81

WO 2018/126029 PCT/US2017/068743

environment for a failure, posting a watchdog message to a blockchain, detecting a
failure of the host environment, and implementing a failure process to recover from
the failure of the host environment.

[0418] Example 115 includes the subject matter of example 114. In example 115,
monitoring the host environment includes receiving pings from the host environment.
[0419] Example 116 includes the subject matter of either of examples 114 or 115.
In example 116, when posting the watchdog message includes incorporating a ping
into the watchdog message, and committing the watchdog message to the
blockchain as a transaction.

[0420] Example 117 includes the subject matter of any of examples 114 to 116.
In example 117, detecting the failure of the host environment includes determining
that no pings have been received from the host environment for a selected period of
time.

[0421] Example 118 includes the subject matter of any of examples 114 to 117.
In example 118, detecting the failure of the host environment includes determining
that no communications are taking place over a bus of the host environment.

[0422] Example 119 includes the subject matter of any of examples 114 to 118.
In example 119, detecting the failure the host environment includes determining that
a CPU has halted.

[0423] Example 120 includes the subject matter of any of examples 114 to 119.
In example 120, detecting the failure of the host environment includes determining
that a memory in the host environment has failed.

[0424] Example 121 includes the subject matter of any of examples 114 to 120.
In example 121, the failure process includes determining if the host environment is
locally recoverable, and, if so installing a host replacement image in the host
environment, and restarting the host environment.

[0425] Example 122 includes the subject matter of any of examples 114 to 121.
In example 122, the failure process includes determining if a failover device is
nearby, and, if so configuring the failover device to begin performing a function of the
host environment.

[0426] Example 123 includes the subject matter of any of examples 114 to 122.

In example 123, the failure process includes determining if a device including the

82

WO 2018/126029 PCT/US2017/068743

host environment is repairable, and, if so, dispatching a repair drone to repair the
device.

[0427] Example 124 includes the subject matter of any of examples 114 to 123.
In example 124, the failure process includes determining if a device including the
host environment is replaceable, and, if so, dispatching a repair drone to replace the
device.

[0428] Example 125 includes the subject matter of any of examples 114 to 124.
In example 125, the failure process includes determining if the failure is resolved,
and, if so, decommissioning the host environment, placing the TRE in a sleep state,
or both.

[0429] Example 126 includes a non-transitory, machine readable medium. The
non-transitory, machine readable medium includes instructions that, when executed,
direct a processor to monitor a host environment for a heartbeat message, produce a
watchdog (WD) message, post the WD message to a blockchain, and detect a
failure in a host environment.

[0430] Example 127 includes the subject matter of example 126. In example 127,
the non-transitory, machine readable medium includes instructions that, when
executed, direct the processor to detect the failure in a local host environment, and
install a host replacement image.

[0431] Example 128 includes the subject matter of either of examples 126 or 127.
In example 128, the non-transitory, machine readable medium includes instructions
that, when executed, direct the processor to detect the failure in a remote host
environment, and configure a failover device to function as the remote host
environment.

[0432] Example 129 includes the subject matter of any of examples 126 to 128.
In example 129, the non-transitory, machine readable medium includes instructions
that, when executed, direct the processor to detect the failure in a remote host
environment, and dispatch a drone for repair or replacement of a device including
the remote host environment.

[0433] Example 130 includes the subject matter of any of examples 126 to 129.

In example 130, the non-transitory, machine readable medium includes instructions

83

WO 2018/126029 PCT/US2017/068743

that, when executed, direct the processor to determine that the failure has been
resolved, and decommission a failed device.

[0434] Example 131 includes an apparatus. The apparatus includes an Internet-
of-Things (loT) network, wherein the I0T network includes an |oT server. The loT
server includes a secure booter/measurer to use a trusted platform module (TPM) to
create a trusted execute environment (TEE), a trust anchor for confirming an identity
of a service provider, an authenticator to authenticate communications with an loT
client using a symmetric key (SK), a key manager to determine if a key has expired,
and a key generator to generate the key.

[0435] Example 132 includes the subject matter of examples 131. In example
132, the trust anchor includes a hash of a public key, or a certified path, or chain to a
trusted root of authority

[0436] Example 133 includes the subject matter of either of examples 131 or 142.
In example 133, the SK is a temporal symmetric key (TSK) generated by the key
generator.

[0437] Example 134 includes the subject matter of any of examples 131 to 133.
In example 134, the 10T server includes a public key (PK) for decrypting messages
from a service provider.

[0438] Example 135 includes the subject matter of any of examples 131 to 134.
In example 135, the 10T server includes an expiration time for the public key.

[0439] Example 136 includes the subject matter of any of examples 131 to 135.
In example 136, the loT server includes an SK received from the service provider.
[0440] Example 137 includes the subject matter of any of examples 131 to 136.
In example 137, the loT server includes an expiration time for the SK.

[0441] Example 138 includes the subject matter of any of examples 131 to 137.
In example 138, the loT server includes a service provider credential to validate the
loT server to the service provider.

[0442] Example 139 includes the subject matter of any of examples 131 to 138.
In example 139, the apparatus includes the loT client including an SK for

communication.

84

WO 2018/126029 PCT/US2017/068743

[0443] Example 140 includes the subject matter of any of examples 131 to 139.
In example 140, the apparatus includes the loT server including a status for a public
key.

[0444] Example 141 includes the subject matter of any of examples 131 to 140.
In example 141, the apparatus includes an entity to detect that a public key has been
compromised, and to send a revocation message to the 10T server.

[0445] Example 142 includes a method for unified key management in an loT
network environment. The method for unified key management in an IoT network
environment includes sending a request from an loT client to a service provider for a
communication key, receiving the communication key at the loT client from the
service provider, sending the communication key to an loT server from the loT client,
and communicating with the 10T server using a symmetric key to decrypt messages
received from the loT server.

[0446] Example 143 includes the subject matter of example 142. In example 143,
the communication key includes the symmetric key.

[0447] Example 144 includes the subject matter of either of examples 142 or 143.
In example 144, the communication key includes a certificate provided by the loT
server.

[0448] Example 145 includes the subject matter of any of examples 142 to 144,
including receiving a temporal symmetric key at the IoT client from the 10T server to
145. In example 145, the temporal symmetric key includes the symmetric key.
[0449] Example 146 includes the subject matter of any of examples 142 to 145.
In example 146, the method includes requesting credentials for the loT server from a
service provider for secure communications, and receiving a trust anchor at the loT
server from the service provider.

[0450] Example 147 includes the subject matter of any of examples 142 to 146.
In example 147, the method includes generating a temporal symmetric key in the loT
server.

[0451] Example 148 includes the subject matter of any of examples 142 to 147.
In example 148, the method includes receiving a revocation message at the loT

server to revoke the communication key.

85

WO 2018/126029 PCT/US2017/068743

[0452] Example 149 includes the subject matter of any of examples 142 to 148.
In example 149, the method includes expiring the communication key, and
requesting a new communication key to be provided by the service provider.

[0453] Example 150 includes a non-transitory, machine readable medium. The
non-transitory, machine readable medium includes instructions that, when executed,
direct a processor to authenticate to a service provider, obtain a key from the service
provider, provide a communication key to a device, and communicate with the device
using the key to encrypt and decrypt data.

[0454] Example 151 includes the subject matter of examples 150. In example
151, the non-transitory, machine readable medium includes instructions that, when
executed, direct the processor to receive the key from the device.

[0455] Example 152 includes the subject matter of either of examples 150 or 151.
In example 152, the non-transitory, machine readable medium includes instructions
that, when executed, direct the processor to generate the communication key in
response to the key received from the service provider.

[0456] Example 153 includes the subject matter of any of examples 150 to 152.
In example 153, the non-transitory, machine readable medium includes instructions
that, when executed, direct the processor to determine if the key has passed a
predetermined lifespan.

[0457] Example 154 includes the subject matter of any of examples 150 to 153.
In example 154, the non-transitory, machine readable medium includes instructions
that, when executed, direct the processor to revoke the key and repeat
authentication to the service provider.

[0458] Example 155 includes the subject matter of any of examples 150 to 154.
In example 155, the non-transitory, machine readable medium includes instructions
that, when executed, direct the processor to refresh a revoked or expired key.
Example 156 includes the subject matter of any of examples 150 to 155. In example
156, the non-transitory, machine readable medium includes instructions that, when
executed, direct the processor to receive a revocation message and revoke the key.
[0459] Example 157 includes an apparatus including means to perform a method

as in any other Example.

86

WO 2018/126029 PCT/US2017/068743

[0460] Example 158 includes machine-readable storage including machine-
readable instructions, when executed, to implement a method or realize an
apparatus as in any other Example.

[0461] Some embodiments may be implemented in one or a combination of
hardware, firmware, and software. Some embodiments may also be implemented as
instructions stored on a machine-readable medium, which may be read and
executed by a computing platform to perform the operations described herein. A
machine-readable medium may include any mechanism for storing or transmitting
information in a form readable by a machine, e.g., a computer. For example, a
machine-readable medium may include read only memory (ROM); random access
memory (RAM); magnetic disk storage media; optical storage media; flash memory
devices; or electrical, optical, acoustical or other form of propagated signals, e.g.,
carrier waves, infrared signals, digital signals, or the interfaces that transmit and/or
receive signals, among others.

[0462] An embodiment is an implementation or example. Reference in the

specification to “an embodiment,” “one embodiment,” “some embodiments,” “various
embodiments,” or “other embodiments” means that a particular feature, structure, or
characteristic described in connection with the embodiments is included in at least
some embodiments, but not necessarily all embodiments, of the techniques. The
various appearances of “an embodiment”, “one embodiment”, or “some
embodiments” are not necessarily all referring to the same embodiments. Elements
or aspects from an embodiment can be combined with elements or aspects of
another embodiment.

[0463] Not all components, features, structures, characteristics, etc. described
and illustrated herein need to be included in a particular embodiment or
embodiments. If the specification states a component, feature, structure, or
characteristic “may”, “might”, “can” or “could” be included, for example, that particular
component, feature, structure, or characteristic is not required to be included. If the
specification or claim refers to “a” or “an” element, that does not mean there is only
one of the element. If the specification or claims refer to “an additional” element, that

does not preclude there being more than one of the additional element.

87

WO 2018/126029 PCT/US2017/068743

[0464] Itis to be noted that, although some embodiments have been described in
reference to particular implementations, other implementations are possible
according to some embodiments. Additionally, the arrangement and/or order of
circuit elements or other features illustrated in the drawings and/or described herein
need not be arranged in the particular way illustrated and described. Many other
arrangements are possible according to some embodiments.

[0465] In each system shown in a figure, the elements in some cases may each
have a same reference number or a different reference number to suggest that the
elements represented could be different and/or similar. However, an element may be
flexible enough to have different implementations and work with some or all of the
systems shown or described herein. The various elements shown in the figures may
be the same or different. Which one is referred to as a first element and which is
called a second element is arbitrary.

[0466] The techniques are not restricted to the particular details listed herein.
Indeed, those skilled in the art having the benefit of this disclosure will appreciate
that many other variations from the foregoing description and drawings may be made
within the scope of the present techniques. Accordingly, it is the following claims

including any amendments thereto that define the scope of the techniques.

88

WO 2018/126029 PCT/US2017/068743

CLAIMS

What is claimed is:

1. An apparatus, comprising a trusted communications environment,
comprising:
a primary participant comprising:
a group creator to initiate creation of a trusted group; and
a distributed ledger to store identities and credential for group
members; and
a secondary participant comprising communication credentials for the trusted

group provided by the primary participant.

2. The apparatus of claim 1, wherein the communications credentials
comprise:
a private key for the trusted group; and

a transaction key obtained from the distributed ledger.

3. The apparatus of claim 1, wherein the primary participant comprises a
join request for a distributed ledger enumeration authority (DLEA), wherein the join
request comprises a trusted group name signed with a private key for the primary
participant.

4, The apparatus of claim 1, comprising a distributed ledger enumeration

authority (DLEA) accessor to determine if a trusted group name was created.
5. The apparatus of claim 1, comprising the distributed ledger, wherein

the distributed ledger comprises a public key for the trusted group and a
permissioning policy.

89

WO 2018/126029 PCT/US2017/068743

6. The apparatus of any of claims 1-5, wherein the primary participant
comprises a key creator to create a key based, at least in part, on a trusted group

name.

7. The apparatus of any of claims 1-5, comprising an attestation validator

to validate a join request from the secondary participant.

8. The apparatus of any of claims 1-5, comprising a group joiner to issue

the communication credentials to the secondary participant.

9. The apparatus of any of claims 1-5, comprising a tertiary participant
comprising secondary communication credentials for the trusted group provided by

the secondary patrticipant.

10. The apparatus of claim 9, wherein the secondary communication

credentials comprise a private key for the group and a secondary transaction key.

11. The apparatus of any of claims 1-5, comprising a plurality of secondary

participants comprising communication credentials issued by the primary participant.

12. The apparatus of any of claims 1-5, comprising a plurality of tertiary
participants each comprising secondary communication credentials issued by the

primary participant.

13. The apparatus of any of claims 1-5, wherein the distributed ledger

comprises transaction data signed by a group key and a private key for a participant.

14. A method for securing communications transactions in an loT network,
comprising:
determining by a first participant that a group of participants can communicate

with integrity assurances;

90

WO 2018/126029 PCT/US2017/068743

reserving a name for the group from a distributed ledger enumeration
authority (DLEA);
establishing a distributed ledger for the group using the name; and

providing a private key for the group to a second participant.

15. The method of claim 14, wherein reserving the name comprises:

sending the name and a public key for the first participant to the DLEA in a
message signed using a private key for the first participant;

determining that the group has been created when the DLEA commits the
name to a public distributed ledger; and

establishing a group public key using an enhanced privacy identification
(EPID) system.

16. The method of claim 14, wherein establishing the distributed ledger for
the group comprises committing a transaction from the first participant to the group
distributed ledger, wherein the transaction comprises a group public key and a

permissioning policy, signed by a transaction key for the first participant.

17. The method of claim 14, wherein providing a private key comprises:

receiving a join request from the second participant requesting permission to
join the group; and

validating trustworthiness of the second participant.

18. The method of claim 17, wherein validating trustworthiness comprises

verifying a manufacturers key used to sign the join request.

19. The method of claim 14, comprising:

generating a second private key for the group in the second participant,
wherein the second private key is under a group public key;

sending a message to the first participant, wherein the message is a public

key for the second participant, signed by the second private key; and

91

WO 2018/126029 PCT/US2017/068743

committing a transaction to the group distributed ledger, wherein the
transaction comprises the second participant’s public key, signed by
the private key.

20. The method of any of claims 14-19, comprising:

creating a join request in a third participant, wherein the join request
comprises a third participant transaction key signed by a private key for
the third participant;

sending the join request to the second participant;

signing the join request by the second participant with a public key for the
third participant, a transaction key for the second patrticipant, and the
group key to create a signed transaction; and

sending the signed transaction back to the third participant.

21. The method of claim 20, comprising including transaction data from the

second participant in the signed transaction.

22. The method of claim 20, comprising:
signing the signed transaction with a private group key for the third participant;
and

committing the signed transaction to the group distributed ledger.

23. The method of any of claims 14-19, comprising:
signing transaction data at the second patrticipant using the private group key
for the second participant; and

committing the transaction data to the group distributed ledger.

24. A non-transitory, machine readable medium comprising instructions to
direct a processor to:

determine that a group has integrity assurances;

reserve a group name with a distributed ledger enumeration authority (DLEA);

create a group public key and a permissioning policy; and

92

WO 2018/126029 PCT/US2017/068743

commit the group name and group public key to a group distributed ledger.

25. The non-transitory, machine readable medium of claim 24, comprising
instructions to direct the processor to:

validate a join request from a second participant; and

send a join message to the second patrticipant, wherein the join request

comprises a group private key.

26. The non-transitory, machine readable medium of any of claims 24-25,
comprising instructions to direct the processor to:
sign transaction data with a group private key; and

commit the signed transaction data to the group distributed ledger.

27. An apparatus for securing communications transactions in an loT
network, comprising:
means for determining by a first participant that a group of participants can
communicate with integrity assurances;
means for reserving a name for the group from a distributed ledger
enumeration authority (DLEA);
means for establishing a distributed ledger for the group using the name; and

means for providing a private key for the group to a second participant.

28. The apparatus of claim 27, wherein the means for reserving the name
comprises:

means for sending the name and a public key for the first participant to the
DLEA in a message signed using a private key for the first participant;

means for determining that the group has been created when the DLEA
commits the name to a public distributed ledger; and

means for establishing a group public key using an enhanced privacy

identification (EPID) system.

93

WO 2018/126029 PCT/US2017/068743

29. The apparatus of claim 27, wherein the means for establishing the
distributed ledger for the group comprises means for committing a transaction from
the first participant to the group distributed ledger, wherein the transaction comprises
a group public key and a permissioning policy, signed by a transaction key for the

first participant.

30. The apparatus of claim 27, wherein the means for providing the private
key comprises:
means for receiving a join request from the second participant requesting
permission to join the group; and

means for validating trustworthiness of the second participant.

31. The apparatus of claim 30, wherein the means for validating
trustworthiness comprises means for verifying a manufacturers key used to sign the

join request.

32. The apparatus of claim 27, comprising:

means for generating a second private key for the group in the second
participant, wherein the second private key is under a group public key;

means for sending a message to the first participant, wherein the message is
a public key for the second participant, signed by the second private
key; and

means for committing a transaction to the group distributed ledger, wherein
the transaction comprises the second participant’s public key, signed

by the private key.

33. The apparatus of any of claims 27-32, comprising:

means for creating a join request in a third participant, wherein the join
request comprises a third participant transaction key signed by a
private key for the third participant;

means for sending the join request to the second participant;

94

WO 2018/126029 PCT/US2017/068743

means for signing the join request by the second participant with a public key
for the third participant, a transaction key for the second participant,
and the group key to create a signed transaction; and

means for sending the signed transaction back to the third participant.

34. The apparatus of claim 33, comprising means for including transaction

data from the second participant in the signed transaction.

35. The apparatus of claim 33, comprising:

means for signing the signed transaction with a private group key for the third
participant; and

means for committing the signed transaction to the group distributed ledger.

36. The apparatus of any of claims 27-32, comprising:
means for signing transaction data at the second participant using the private
group key for the second participant; and

means for committing the transaction data to the group distributed ledger.

95

PCT/US2017/068743

WO 2018/126029

1/36

No;

WO 2018/126029 PCT/US2017/068743

2/36

WO 2018/126029 PCT/US2017/068743

3/36

loT

Cloud z
302 T
u loT E_E_ ol
ol
i)
318~ ijT v
loT 316
326j

300

FIG. 3

WO 2018/126029 PCT/US2017/068743

4/36

W
O
<

= . o
PN Mxm mne e pam nam mem laan SO

WO 2018/126029 PCT/US2017/068743

5/36

502\}

Dist. Leger
Enumeration

Authority
(DLEA)

A

508

506 \}

Participant (P1)
<KTxRoot>
<KDLS-XP1>

4

"~ 522

520~ 530

A 4

/—-526 %
Participant (P2) % Participant (P3)
<KDLS-XP2> <KDLS-XP3>
<KTxP2> <KTxP3>

518/ K\528 \\-—-524

&)
-

FIG. 5

PCT/US2017/068743

WO 2018/126029

6/36

9 Old

009

8cY ~

juediolied puoses e o

Jj8sy] sednposu} juedpiEd pIY LY

- Juedoied
T DN e RS

Jedioned 18414 8y} 0} $80NpoAY|
sijuedioiped pucoeg vy

L]

asuodsay 10003044 UIOP (Qid3
SOAIB08Y Emga_tmn_ pUOISg By

oEtoEme N mu_é.

cmaaﬁma puz 1o co_ummmsq mm

UIBLOYI0IG X-§71C 01 uoioesuel|
BU) sjuiLog) juediojed payL 8yl

C 0co

juedionied

18414 U} Wol A8y sieALld dnois)

X-$710 e Buiuielqo Ag dnoi X-5710
BU} SUIOP JUBAIIUEH PUOISS Y

oo/ 1

X-§710 0} PRRIWWOD
ale Ao1od pue A8y o1gnd dnon
ay) ‘Aniod Bulucissiuued e ssule(
pue Aoy ofjand dnousy X-$1d

2

O-§guo
sieaddy awep Jeu sy dWeN

X-§71Q 8yi esn juediofled 1sild 8y
¥ 219

SWEN X-571(s2Als9 ¥31d
- 019
o %Em_mm,q

M%o_\a& 10 98() Ui 81 X~ mi_a
) mmc_ehmac E 5

@%J

Aunwwon ayy Buguesaldey swiepN
B 50AI859Y JUBdiDied 1Sil4 By L

L]

seoueinssy Alubau) ubid upm
yoelaiu] Aepy | sBuiy], Jo Ajunwiwion
B SauiuLsiaq] uedionied 18i4 v

09 J

WO 2018/126029 PCT/US2017/068743

7/36

700 \i

ioT Device 712 \\
028 4708 70]
Processor je—wig—3» Mesh] MiESD LBVICES /
Transceiver Fog
3
704 :
D 714
Memory e -
s Uplink
~ Transceiver
708N Storage
730 =+~ Group By 302
| ' 716
Creator
732 S| N .
™ > NIC o —
Accessor : 720
7344 Key 718 —#1 Sensors
Creator > Interface .
736-| Distributed 724 —p1 Actuators
Ledger DLS-X Battery . o9
738 Attestation
Validator @f?’%
4 Grou Battery Monitor | |
740, Jairae?; :.m.ga | Charger |€ Power Block
N-728

FIG. 7

WO 2018/126029 PCT/US2017/068743

8/36

800 \‘}

804 ~ Machine Readable Medium

802 }
Determine That /*‘“”"’ 806

Processor fe——s Group has Integrity
Assurances

Reserve Name — 808
with //
DLEA

Create Group Public /"““‘"‘ 810
Key and New
DLEA

DLS-X —812

Validate Join Request 814

from Participant

NN NN

Send Join Message 816
to Participant

Commit Transaction 818
Data to DLS-X

FIG. 8

PCT/US2017/068743

9/36

WO 2018/126029

6 Ol
006
ZL6 916
- £ (2
Koty T fasy | [RosH sisienum
urey? JusLIRINSEaly pue shay
,,,,,,,,,,,,,,,,,, | S —
2607 N\ 716~
UIBYOXO0| W,,,,,,,,,,Emwm@ﬁ Vi SiH | 206
* e S oL i
,,,,,,,,,, | \
0186 LY
,,,,,,,,,, | 706
| 0z6~" <J3L> - SINPOJ PaIsn.
ceh 4 \ z06

WO 2018/126029 PCT/US2017/068743

10/36

p
Tx Block Bn (

POW = hash (Bn) /7 1006

10024 [PCRIKRTR K/;/*‘///
[PCRIKRTR? ¥ /

[PCR] KR’"R3

Tx Block Bn-1

Tx Block Bn-2

PCT/US2017/068743

WO 2018/126029

11/36

5607
UIBLYOYO0IG
®

Ll Ol

00LL

bgmw&mm P
abeuw)

wv

801

Ng \N“\:\

\cgmf (LAM) %x
urey? Biw

331 - 1SOH By U Iopuep f/

G_‘,:\

331 - 180H DIy 7 Jopusp /

331 - 1s0H By A 1opuap /

ommo..m 1SaIUB
” gmzoxoo_m abeuy N~
abewy _

331 - 180H By X Iopusp

~ PLLL

~ 9011

\.zoLL

WO 2018/126029 PCT/US2017/068743

12/36

1206 1208

Tx Block Bn

\ ‘
\Po\f\i hash (Bn /ﬁ

\\\ [Manifest Kw//
1202 < \ [Manifest]Kv2 /

e —

(/1 008

> 1204

R

[Manifest] Kva
~ 1010
Tx Block Bn-1 -
1012
Tx Block Bn-2 -
1200

PCT/US2017/068743

WO 2018/126029

13/36

uonoy panddy
oy fonod _moﬁ INSUOD

‘1817 patyissejoun o) abew| ppy

UIBUDYDOG - PECL

0} }5I7 paiisseouf) ppy

8zl
[

UIRLOXO0| O 1SI0RIE
PRY wm_mxommm E mwmc: PPY

UIBLDYOOIG O} ISHBYUM
PRV JSieNyAA o) sbew ppy

i

m:_ﬁcoo ;mmx

ureyaYo0lg E,o: aimeubig
yoejly suiejq jusbly yoog

¥ afewy Joy
1SBJUEN wcm_w LILUPY 8liS

f@mmm\

%mz g = USEH @mme

i

108{g0 saInsesyy
weby Aubau) jo0g

UeYIMo0|g
01 X abew Joy simeudiq

YOBNY SOl B S2ISUSIDS ha GEC L

)

< ,m,ﬁ_mm\/ sunjeubiq mm

Lzocl

¥ abeuwy Joj aimpeubig
YOBJY SPUi GB7 $DISUSI0

YSeH aousiajay
X ebew suejg0 uwpy i

\geel

\giel

NOZEL ZZE L/

WO 2018/126029 PCT/US2017/068743

14/36
1400 *\
ioT Device 71 2\\
7 710
702~ %/‘ 06 [/’ i .
Processor je—wig—3» Mesh] MiESD LBVICES /
Transceiver Fog
3
704 :
D 714
Memory e -
s Uplink
- Transceiver
708N Storage
~ ~ 1404
1402 rrm || RTS 716 - 302
1406 <
T P NIC e 720
RTR {| RTC | 140 — ~
1410 BC ,/”“’““?4“ £ 1 Sensors
RTA Logic P interface o
1416+ Whitelist 124 —® Actuators
History Battery . .
1418~4] Measurement
History @f?’%
- Chain Battery Monitor | |
1412, History :~m§> / Charger & Power Block
N-728

FIG. 14

WO 2018/126029 PCT/US2017/068743

15/36

1500
)

804 ~ Machine Readable Medium
802 \}
—1502
o Measure Code /
Procassor fe—-— > | Object to be Run

Compare —1504
Measurement to //
Known Good Images

Compare Object 1506
to Known /
Bad Images

Classify Image and — 1508

Determine Trust

Maintain /m%m
Blockchain
MaintainRoots |7 014
of Trust
Chain /M912
History

FIG. 15

1602

WO 2018/126029

16/36

PCT/US2017/068743

1604

WO 2018/126029

1702

17/36

1708
-~

PCT/US2017/068743

1700

FIG. 17

WO 2018/126029

1814 ~

PCT/US2017/068743

18/36

~ 1818

loT Network

Domain AB

— T _-1820
Shared Resource r

OTA, D1, ...
o718, D2, ...

1816

OBT-A Resource /

OBT-B
Resource

OTA, D1, ...

Onboarding
Tool-A

Domain A

Y1806

OTB, D2, ...

Onboearding
Tool-B

Domain B

41804 A

1800

FIG. 18

WO 2018/126029 PCT/US2017/068743

19/36

1814 ~
OBT-AResource {R1) 182@\

1902 Domain D} FFOT b DomainAB Resource (R3)
Y SubDomain D | FFOT e | ~~~_ (Shared)

ObtiD 0007 b Seo “’% Domain D | FF03

\\ £ ' V)

DevicelD 1 000F b | >~. 7 .SubDomain D | FFO1 K

\]

SubDomain ID | FF02 h

N %A
1816 ™ OBT-BResource (R2) |/ ~¢* ObtiD | 0001 ‘
A ObtiD] 0002 &)

y Yl
DomeinD__[FFO2 ¥ J-° <" % DevicelD | 00CF Y}
, ;
1904 N surtoman o [FrO2f .- a__DevicelD | OOOE |

oo o000 | .-
DevicelD | OO0 J*~

1900

FIG. 19

WO 2018/126029

2002 \

PCT/US2017/068743

20/36

7~ 2006

A First Onboarding Tool {(GBT-A)
Joins a Device (D1) to & First
loT Network (aka fog’)

A Second Onboarding Tool (OBT-B)
Joins a Device (D2} to a Second

loT Network

v

v

AFirst OBT-AAdds a First
Device {(D1) tc a Local
Resource (R1)

A Second OBT-B Adds a Second

Device (D2) to a Local

2004 ~ \

Resource (R2)
\\ 2008

OBT-A and OBT-B Discover Each Otheron a
Same Network and Establish ‘Co-Trust’

¥

OBRT-A and OBT-B Create a Shared Resource

— 2012

v

Rescurces (R1 & RZ) io be Shared Resources

OBT-A and OBT-B Link Their Respective Local

_— 2014

v

A New Domain is Formed

~Boes Sub-DomainiD in KT

2022~ e
""" Does OBUID INRY

2026

~Does DevicelD in R1

~.Equal Sub-DomainlD in
—_ Equal ObtDInR2? o

~_Equal DevicelD in R2? o

2020

Choose a New Sub-DomainiD for
R2 and Update All RZ Resources
That Referen_ge the R2 Sub-DomainiD

2024

Choose a New ObtiD for
R2 and Update All RZ Resources
That Reference the R2 OhtlD

Ve 2028

Choose a New DevicelD for
RZ and Update All R2 Resources
That Reference the R2 DevicelD

F

2000

1G. 20

WO 2018/126029 PCT/US2017/068743

21/36

2100
)

ioT Device 10 712 \\
7
702 ~ {?QS f/ i —
Processor jet——pie—mp Mesh] V€SN Devices /
Transceiver Fog
3
704 :
A 714
Memory e .
s Uplink
~ Transceiver
708N Storage A
2102 +] Onb_](};;fing - 716 \-302
o
2104 - Device NIC « 790
Resources = -
2106 i, Device £ ¥ Sensors
Discoverer > interface g
2108 ~| Trust 724 —p1 Actuators
Builder Batiery g 722
2110 -] Shared Domain
Creator @{ 726
Battery Monitor
Shared , S
2112 4 Resiﬁce > Charger [€ Power Block
Directory \“"--?’28
A4

FIG. 21

WO 2018/126029

802
)

22/36

2200
)

PCT/US2017/068743

804 ~

Processor

Machine Readable Medium

Join Device to loT
Network

Create Local Resource
for Device

Discover All Other Devices
in Domains

Link Local Resources
to Other Domains

Create Shared Domain

Detect Name QOverlaps

Correct Name Overlaps

NN NN N N N

FIG. 22

2202

2204

2206

2208

2210

2212

2214

WO 2018/126029 PCT/US2017/068743

23/36

2300

FIG. 23

WO 2018/126029

2316

2406

Enforcement

Pdlicy

Engine

%

Monitor

Local Policy

Decision
Engine

Node 1 \\. 2402

PCT/US2017/068743

24/36

2404
(2316
olicy

Enforcement

Engine ,

Monitor

N

-, | Local Poiicy
=1 Decision

2406

Engine
Node 2 i\ 2402

2400

FIG. 24

PCT/US2017/068743

WO 2018/126029

25/36

JOIBUIRI00T

BPON
painBiuon

\ yz6z

\z16Z

BPON
panbyUoT-UoN
ABN

\ z0Sz

8PON
paInbyuon-UoN
MaN

\ z067

WO 2018/126029 PCT/US2017/068743

26/36

2522 2602
[a

Node with
Updated Policy

Configured Node

2600

FIG. 26

WO 2018/126029 PCT/US2017/068743

27/36
/1—2522 ff’27Q2 ff"Z?Q4
Node 1 with Node 2 wit%‘s
Configured Node Updated Policy Updated Policy
Component A Component B
H
i H
| 2706 \ § |
’ >4 2708
| # [J
5 |)
i 2710
e VA ! |
§ i H
B —— :
le/2712 ! !
§
o I e L

2700

FIG. 27

WO 2018/126029 PCT/US2017/068743

28/36

2800'\‘

ioT Device 10 712 \\
7
7
Processor la—ie—p Mesh] p] €SN DBVICES |
Transceiver Fog
7 3
704 ;
2 714
Memory e -
Uplink
. Transceiver
708 N Storage
2402 - Policy Decision 1302
A . 716
Engine
e P
| olicy e NIC LA 720
2404 Enforcement =78 -
Engine £ ——»! Sensors
Repository 794 ——31 Actuators
2408 N[o e Battery N 722
2802 [Dat $/726
Battery Monit
Collector o 2 /ecrgarg();; O lej--~4 Power Biock
2804 TN Communicator 798
\

FIG. 28

WO 2018/126029 PCT/US2017/068743

29/36

2900
)

Machine Readable Medium
807 \) 804

Discover Policies

Processor in Other Nodes

Update Policies from
Messages sent by
Other Nodes

— 2902

— 2904

— — 2906
Concatenate Policies

from Multiple Nodes

2908
Validate
Policies
— 2910
Calculate Delta
for Policies
Reject Policies that — 2912
Conflict with Group
Objectives
— 2914

\\\\)\\\

Change Policies
Implemented to
Match Conditions

FIG. 29

PCT/US2017/068743

WO 2018/126029

30/36

-~ 0c0¢e

(ureyoxaoig)
WBIsAg
JabpaT aijund

\\bw.w@m

j aoejday
POjEWOINY
yz08/
9¢0¢ y

Amc&em

f10qoy) siedey | |

90081 Qmmhmgoa
. XNV MH -
=Nl SR N g10¢
800€ - 00T L ;inmwsm 10
| mmmgm WA U
Amvmogmmw 0€0€ iwzmrdmmm - wewuoinuz| oo
o o 50
Ze08 ~ il 1SOH ff
]
! J — 010¢
, J P00¢- 90IAB(] Polie4
L ZZ0¢ ,f

¢00¢

WO 2018/126029 PCT/US2017/068743

31/36

3102~

3104 ~ 31347
i Decommission Host; Place i N
TRE Monitors TRE in Slesp / Wake State [R a ‘ure(p
Host Environment N~
3106
2 $ Dispatch Installation of a
TRE Produces » Replacement Device /
a WD Message Repair Drone / Robot
N-3130
3108 ~ $ Configure Failover Device
to Begin Performing
TRE Posts WD Host Function{s)
Msgtoa \\-3'1 26
Blockehain _{install Replacement
Image

\\ 3122

Start Failure
Processing 2118

i

Send
i PROCESS_FAILURE
Message to TRE ~3116

(Contmue enitoring}

@ |

FIG. 31

WO 2018/126029 PCT/US2017/068743

32/36

3200
)

0T Device 10 712 \\
7
7@2"\ %//”796 /’ Ei - :
Processor le—sla—3s- Mesh o p] V1SN DeVICES
Transceiver - Fog
3
704 :
2 714
Memory e -
Uplink »
- Transceiver e
708 Storage ~716
3012 <4 Watchdog e NIC b
Agent PN 3?;@;“"
3210 - jHost Blockchain 3020 3 &
Logic TRE |Blockehain| | ¢ ..
3212 Image 3004
Creator TRE “‘““ 3008
ot @; uP Logic PW &~
Image M | AR ;
L T 3032
3216 “Nlhost Blockchain 32@?3208 E 720
718 | | —> Sensors
- i
3218 N communicator <« interface < ;
724 : —p Actuators
< Battery ! \ 722
H
1,726 |
Battery Monitor §
:........9 / Charger &~~~ Power Block
728

FIG. 32

WO 2018/126029

802
)

33/36

3300
)

PCT/US2017/068743

Processor

804 i

Machine Readable Medium

Monitor Host
Environment
for Pings

3302

Produce WD
Message

3304

Post WD Message
to Blockchain

3306

Detect Failure in
Local Device

3308

Detect Failure in
Remote Device

3310

install Host
Replacement
image

3312

Configure Failover
Device

3314

Dispatch Repair
or Replacement
Drone

3316

Decommission
Failed Device

3318

\\\\\}\\\\

FIG. 33

PCT/US2017/068743

WO 2018/126029

34/36

yibe~

pepe~

%254

0oy~

]
Apug

Qwﬁmaxx

00¥%¢€
" 7 V.n “
i
" ReLL 7 “ »! STIBIS YSL b Z/¥E
w_." 9Lve w 0Lve ! SlUij aindeg L QOPe
u . oove” g
: i
m mmqmm\ i ! seIS S b gebe
yw Qeve ww ﬁﬁmﬁm Q7 He vm WL 8IN%BS | 7 HE
| ¥ b ozve
e S a—
| " Cooe | ST S
w ﬁ@ﬁm\ﬂx J L SNEISYd b 7GHe
» o C9TE ! BYYE~y> 0GvE
e CPPEZ # 7 g orve
mu A m 444> m
L zve~ m Ve~) oy 8IvE
§ i
J i 1 5
- m pLbe~ m 98 N zume
ds el Lo] RS 10] lew %MWM
Ncqma\\ wo¢mg&\ %@wmax\ - 90vE

WO 2018/126029 PCT/US2017/068743

35/36
3500 \\
loT Device 10 712 -\\
7
?02\ %//?G@ f/ E —
ProCessor g Mesh - > Mesh Devices /
Transceiver Fog
 §
704
A F?M
Memory je—p =
Traniai:{;iver
708 "N Storage
3510 - Secure 16
Booter/Measurer| e
e
3512 ™ Authenticator > NIC
3502
3516 N[Key —
Generator < Trusted Platform
3518 -i[Encryplor/ Module
Decryptor CP [[NVM[SM HT~9908
i 3
3520 Key 3504 7 3506/
Manager
Dl Battery
3514 N communicator
724~ @ /726
Battery Monitor
<« | Charger &~ -~ Power Block
' N-728

FIG. 35

WO 2018/126029

802
)

804 ~,

Processor

PCT/US2017/068743

36/36
3600~

Machine Readable Medium

Authenticate to a Server Provider

Obtain a Key for Secure
Communication or Storage

Generate a Symmetric Key

N\

Determine if a Key Life is Expired

Refresh an Expired Key

Encrypt/Decrypt
Communications

Revoke Keys and Repeat
Authentication

NN NN

— 3602

— 3604

— 3606

— 3608

— 3610

— 3612

— 3614

FIG. 36

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - description
	Page 68 - description
	Page 69 - description
	Page 70 - description
	Page 71 - description
	Page 72 - description
	Page 73 - description
	Page 74 - description
	Page 75 - description
	Page 76 - description
	Page 77 - description
	Page 78 - description
	Page 79 - description
	Page 80 - description
	Page 81 - description
	Page 82 - description
	Page 83 - description
	Page 84 - description
	Page 85 - description
	Page 86 - description
	Page 87 - description
	Page 88 - description
	Page 89 - description
	Page 90 - description
	Page 91 - claims
	Page 92 - claims
	Page 93 - claims
	Page 94 - claims
	Page 95 - claims
	Page 96 - claims
	Page 97 - claims
	Page 98 - drawings
	Page 99 - drawings
	Page 100 - drawings
	Page 101 - drawings
	Page 102 - drawings
	Page 103 - drawings
	Page 104 - drawings
	Page 105 - drawings
	Page 106 - drawings
	Page 107 - drawings
	Page 108 - drawings
	Page 109 - drawings
	Page 110 - drawings
	Page 111 - drawings
	Page 112 - drawings
	Page 113 - drawings
	Page 114 - drawings
	Page 115 - drawings
	Page 116 - drawings
	Page 117 - drawings
	Page 118 - drawings
	Page 119 - drawings
	Page 120 - drawings
	Page 121 - drawings
	Page 122 - drawings
	Page 123 - drawings
	Page 124 - drawings
	Page 125 - drawings
	Page 126 - drawings
	Page 127 - drawings
	Page 128 - drawings
	Page 129 - drawings
	Page 130 - drawings
	Page 131 - drawings
	Page 132 - drawings
	Page 133 - drawings

