HOLLOW GROUND DOUBLE EDGE FLEXIBLE RAZOR BLADE

Filed May 9, 1940
UNITED STATES PATENT OFFICE

2,262,588

HOLLOW GROUND DOUBLE EDGE FLEXIBLE RAZOR BLADE

Joseph L. Mallman, New York, N. Y.

Application May 9, 1940, Serial No. 334,131

1 Claim. (Cl. 39—357)

This invention relates to wafer razor blades for use with safety razors.

An object of my Invention is to provide a double edge flexible razor blade which will maintain a straight cutting edge, thus giving a better shaving edge.

Another object of my invention is to provide a double edge flexible razor blade having hollow ground double edge for giving a better shave.

Another object of my invention is to provide a better shaving double edge flexible razor blade which will be inexpensive to produce, easy to manufacture, give a keener edge and more perfect edge and from which greater use can be obtained.

These and other objects and advantages will appear from the following description taken in connection with the accompanying drawing.

Referring to the drawing:

Fig. 1 is a perspective view of my razor blade.

Fig. 2 is an end view of the blade.

Fig. 3 shows the position of my blade in laterally flexed position.

Fig. 4 is an enlarged broken end view of the old type of razor blade edge and the portions cut away by the old method.

Fig. 5 is an enlarged broken end view of my new razor blade edge and the portions cut away by my method.

Referring to Fig. 1 of the drawing, numeral 10 represents a double edge razor blade which has a smooth flat central portion 11 with a cut out slot or elongated opening 12 along the longitudinal central medial line of the blade and having extensions 13 on each side of the blade. Adjacent the longitudinal edges of the flat central portion 11 of the blade, hollow ground channels 14 are cut on both sides of the blade. Adjacent the edges of the channels 14, V-shaped or spearhead-shaped cutting edges 15 are ground forming opposed longitudinal cutting edges 16 defined by flat cutting surfaces.

As best shown in Figure 5, it will be seen that the V-shaped cutting edges are defined by flat cutting faces. Also, that the plane defining each flat cutting face is in spaced relation from the flat body portion. It is also to be noted that the width of a channel 18 is substantially twice the width of a cutting face 16.

When the razor blade 10 is flexed in position, as shown in Fig. 3, in the standard curved razor, the alignment of the cutting edges are considerably improved, thereby giving the user a better shave and also considerably prolongs the life of the cutting edges.

As best shown in Figure 5, it will be seen that the maximum crosswise thickness of a spearhead is less than one-half the thickness of the body of the blade.

The customary method of making double edge safety razor blades consists in grinding a great amount of steel 17, as shown in Fig. 4. Because of the enormous heat developed by this method, the sharpness of the edge is difficult to control and the temper of the steel becomes an uncertain factor.

By my method, the first operation removes a large amount of steel, as shown in Fig. 5 at 18; the second grinding removes very little of the steel as shown in Fig. 5 at 19. Since such cutting is very light and removes very little steel, no appreciable heat is developed and the structure and temper of the steel is maintained at the cutting edge, thus insuring a fine cutting edge of the best shaving qualities.

It is obvious that various changes and modifications may be made in the details of construction and the method of making my blades without departing from the general spirit of the invention, as set forth in the appended claim.

I claim:

A rectangular double edge razor blade adapted to be flexed in a direction perpendicular to its length, the longitudinal edge portions of said blade terminating in acute spearhead-shaped cutting edges defined by flat cutting surfaces, said blade having a through elongated opening centrally and lengthwise thereof, each side of said blade being hollow ground and forming channels positioned between said opening and said edge portions, said channels terminating in considerably spaced relation from said opening and providing a flat central body portion of considerable area, the curved wall defining one of said channels being in intersecting relation with one of said flat cutting faces, the width of a channel being substantially twice the width of a cutting face, the maximum crosswise thickness of said spearhead being less than one-half the thickness of said flat central body portion, the plane defining each flat cutting surface being in spaced relation from said flat body portion and forming a clearance space between said plane and the marginal edge of said flat body portion, whereby said cutting surfaces may be considerably honed without contacting any portion of said blade other than the actual surface honed.

J. L. MAILMAN.