(57) Abstract: The present invention includes a ferro fuse cell comprising a ferroelectric storage capacitor electrically connected to a plate on one side and to a sense amplifier on the other side. A ferroelectric measurement capacitor is electrically connected between the ferroelectric storage capacitor and the sense amplifier.
Reliable Ferro Fuse Cell

Field of the Invention

The present invention relates to the implementation of ferro fuse cells.

Background of the Invention

Electrical fuses are used to store address information for redundancy repair of high-density memories or other set-up information in memory or logic circuit components. In contrast to conventional laser fuses, electrical fuses can be set and reset even in packaged components. Such electrical fuses can be implemented with non-volatile memory cells using ferroelectric capacitors. Read out of such a ferroelectric capacitor memory cell typically requires a certain optimized "measurement" capacitance. In memory circuits, the parasitic bit-line capacitance is used for this purpose. In ferro fuse circuits, typically only one single cell is connected to the sense amplifier, i.e. no bit line or only a very short bit-line exists. Therefore, the bit-line capacitance is replaced by a gate oxide capacitance.

FIGURE 1 shows a ferro fuse circuit 101 of the prior art. A ferroelectric capacitor (C1) 103 is connected to a plate (PL) 105 on one side and to a measurement capacitor (C2) 107 on the other side. By pulsing the plate (PL) 105, a read signal develops on a node F 109 depending on the stored polarization state in the capacitor C1 103. If a "1" was stored in the ferroelectric capacitor C1 103 then a bigger voltage is obtained on the node F 109 (switching). If a "0" was stored then a smaller voltage is obtained on the node F 109 (non-switching). These two voltage levels are compared to a reference voltage VREF 111 by a differential sense amplifier (SA) 113 and the fuse data is available on a node FD 115. As the read operation is destructive, a write back is required, which is performed automatically by the sense amplifier 113.

FIGURE 2 shows another prior art ferro fuse circuit 201. The circuit 201 uses two cells like the cell 101 in FIGURE 1 are combined to store one single data bit. Two ferroelectric capacitors C1 203 and C3 204 are connected to a plate (PL) 205 on one side and to measurement capacitors C2 207 and C4 208
on the other. The two ferroelectric capacitors C1 203 and C3 204 always contain reversed data (i.e. if a "1" signal is obtained on a node F 209 then a "0" signal is obtained on a node /F 210, and visa versa). Thus the differential signal between the nodes F 209 and /F 210 is doubled compared to the implementation of FIGURE 1. Fuse data output from a sense amplifier 213 is available on a node FD 215. Furthermore, no reference voltage is required. However, in the implementation of FIGURE 2, the area for storage and measurement capacitors is doubled.

It would be desirable to produce a ferro fuse having a large signal margin.

Summary of the Invention

The ferro fuse of the present invention provides both a large signal margin while reducing chip area and improving the reliability by using ferroelectric capacitors as "measurement" capacitors.

In a first example of the present invention, the "measurement" capacitance is implemented using a ferroelectric capacitor which is always in its non-switching state utilizing the high dielectric constant of the ferroelectric film. Alternatively, in a second example of the present invention, the "measurement" capacitance is implemented using a ferroelectric capacitor which is always in the reversed polarization state relative to the ferroelectric storage capacitor. In the first example, the area required for the "measurement" capacitance is reduced by one or two orders of magnitude depending on the chosen ferroelectric material. In the second example, the read signal is significantly increased and the reliability of the fuse circuit is enhanced.

In general terms, the present invention includes a ferro fuse cell comprising a ferroelectric storage capacitor electrically connected to a plate on one side and to a sense amplifier on the other side. A ferroelectric measurement capacitor is electrically connected between the ferroelectric storage capacitor and the sense amplifier.
Brief Description of the Figures

Further preferred features of the invention will now be described for the sake of example only with reference to the following figures, in which:

FIGURE 1 shows a ferro fuse circuit of the prior art.
FIGURE 2 shows a prior art ferro fuse circuit having two storage and two measurement capacitors.
FIGURES 3a and 3b shows the inventive use of ferroelectric capacitors as the measurement capacitors.
FIGURES 4 and 5 show the major control signals and the obtained voltages for reading “1” and “0” suitable for operating the circuits in FIGURES 3a and 3b.
FIGURES 6 and 7 show other embodiments of the present invention wherein capacitor pairs are always maintained in the reversed polarization states.
FIGURES 8 and 9 show the major control signals and the obtained voltages for reading “1” and “0” suitable for operating the circuits in FIGURES 6 and 7.
FIGURE 10 shows how the read signal obtained from the circuits of the present invention are significantly enhanced.
FIGURE 11 shows an implementation of a differential sense amplifier for use as the sense amplifier of the circuits of FIGURES 3, 6 and 7.
FIGURE 12 shows a timing diagram with all the major required control signals for the circuit of FIGURE 7.

Detailed Description of the Embodiments

FIGURES 3a and 3b show embodiments of the present invention. The measurement capacitors C2 107, 207 and C4 208 of FIGURES 1 and 2 are replaced by ferroelectric capacitors C2 307, C2 307’ and C4 308 (see FIGURES 3a and 3b) similar to the ferroelectric capacitors C1 103, C1 203 and C3 204 of FIGURES 1 and 2. The measurement capacitors C2 307, C2 307’ and C4 308 of FIGURE 3 are always maintained in their non-switching state. Due to the
much higher dielectric constant of the ferroelectric material compared to a
typical gate oxide, the area required for the measurement capacitors C2 307,
C2 307' and C4 308 can be reduced by one or two orders of magnitude. The
read and write back operation is similar to the implementations of FIGURES 1
and 2.

FIGURES 4 and 5 show the major control signals and the obtained
voltages for reading “1” (FIGURE 4) and “0” (FIGURE 5) suitable for operating
the circuits in FIGURES 3. In the figure “SAE” indicates the activation of the
sense amplifier.

FIGURES 6 and 7 show other embodiments, circuits 601 and 701,
respectively, of the invention. The measurement capacitors C2 107 of FIGURE
1 and C2 207’ and C4 208 of FIGURE 2 are replaced by ferroelectric
measurement capacitors C2 607 (FIGURE 6) and C2 707 and C4 708 (FIGURE
7) which are similar to the ferroelectric storage capacitors C1 103 of FIGURE 1
and C1 203 and C3 204 of FIGURE 2. In these embodiments these
measurement capacitors C2 607, C2 707 and C4 708 are always in the
reversed state compared to the corresponding storage capacitor, e.g. if C1
stores “1” then C2 stores “0” and vice versa. Additional plate signals (PL0) 617,
717 are needed for write back of the data to the measurement capacitors. The
signal timing for operating the circuits 601, 701 are shown in FIGURES 8 and 9
for a read “1” and a read “0”, respectively. These timing sequences make sure
that each capacitor pair (C1/C2 and C3/C4) is always maintained in the
reversed polarization state, e.g. C1 = “1” and C2 = “0” or C1 = “0” and C2 = “1”.

The read signal *Vsignal* obtained from the circuits of the present
invention are significantly enhanced as shown in FIGURE 10. The intersection
of the characteristics 1005 of the storage capacitor and corresponding
characteristics 1003 of the measurement capacitor determines the read signals
and the signal differences.

FIGURE 11 shows an implementation of a differential sense amplifier
1101 for use as the sense amplifier of the circuits of FIGURES 3, 6 and 7.

FIGURE 12 shows a timing diagram with all the major required control
signals for the circuit 701 of FIGURE 7. During d2 the read signal is developed
on the nodes F and /F. During d3 the signal is amplified to full logic levels by
the sense amplifier. During d4 the data is transferred from or to an external circuit. During d5-d7 the data write back to the storage and measurement capacitors is performed.

In all of the above embodiments the described components can be formed on the same die. Also, the term “connected” as used in the present disclosure does not imply that connected components must be in direct physical contact. Rather, the components need only be electrically connected.

Thus, although the invention has been described above using particular embodiments, many variations are possible within the scope of the claims, as will be clear to a skilled reader.
Claims

We claim:

1. A ferro fuse cell comprising:
 a ferroelectric storage capacitor electrically connected to a plate on one
 side and to a sense amplifier on the other side; and
 a ferroelectric measurement capacitor electrically connected to the
 ferroelectric storage capacitor.

2. The ferro fuse cell of claim 1, wherein the ferroelectric measurement
 capacitor is electrically connected between the ferroelectric storage capacitor
 and the sense amplifier.

3. The ferro fuse cell of claim 1, wherein the ferroelectric measurement
 capacitor electrically connects the ferroelectric storage capacitor to ground.

4. The ferro fuse cell of claim 1, wherein the ferroelectric measurement
 capacitor electrically connects the ferroelectric storage capacitor to a second
 plate switched on to write back data to the measurement capacitor.

5. The ferro-fuse cell of claim 1, wherein the ferroelectric measurement
 capacitor is maintained in a non-switching state.

6. The ferro-fuse cell of claim 1, further comprising a second ferroelectric
 storage capacitor electrically connected the plate on one side and to the sense
 amplifier on the other side; and
a second ferroelectric measurement capacitor electrically connected between the second ferroelectric storage capacitor and the plate.

7. The ferro-fuse cell of claim 6, wherein both of the ferroelectric measurement capacitors are electrically connected to ground.

8. The ferro-fuse cell of claim 6, wherein both of the ferroelectric measurement capacitors are electrically connected a second plate switched on to write back data to the measurement capacitors.

9. The ferro-fuse cell of claim 8, wherein the ferroelectric measurement capacitor is in a reverse state relative to the ferroelectric storage capacitor and the second ferroelectric measurement capacitor is in a reverse state relative to the second ferroelectric storage capacitor.
FIG 1
Prior Art

FIG 2
FIG 4

Timing

PL SAE F \(V = \frac{PL - F}{PL} \)

read "1"

\[
\begin{align*}
PL & \quad \rightarrow \quad V \\
C1 & \quad \text{(SW)} \quad \rightarrow \quad F \\
C2 & \quad \text{(nSW)} \quad \rightarrow \quad V_0 \\
& \quad \rightarrow \quad \text{GND}
\end{align*}
\]
A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 G11C11/22

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 G11C

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 6 141 237 A (ELIASON JARROD ET AL)</td>
<td>1-4, 6-9</td>
</tr>
<tr>
<td>A</td>
<td>31 October 2000 (2000-10-31)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>column 4, line 23 – column 7, line 35;</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>figures 5, 6</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>US 2003/156475 A1 (KANG HEE BOK)</td>
<td>1-3, 5-7</td>
</tr>
<tr>
<td></td>
<td>21 August 2003 (2003-08-21)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>paragraph ‘0121’ – paragraph ‘0351’;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>figures 12, 13, 21-23</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>US 2003/099125 A1 (KANG HEE BOK)</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>29 May 2003 (2003-05-29)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>paragraph ‘0111’; figures 26A, 26B</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>US 5 729 488 A (DRAB JOHN J ET AL)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>17 March 1998 (1998-03-17)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>column 6, line 47 – line 64; figure 5</td>
<td></td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C. Patent family members are listed in annex.

* Special categories of cited documents:

* A* document defining the general state of the art which is not considered to be of particular relevance.
* E* earlier document published on or after the international filing date.
* L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified).
* O* document referring to an oral disclosure, use, exhibition or other means.
* P* document published prior to the international filing date but later than the priority date claimed.

Date of actual completion of the international search: 9 November 2004

Date of mailing of the International search report: 16/11/2004

Name and mailing address of the ISA:
European Patent Office, P.B. 5016 Patentbaum 2
NL-2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl
Fax (+31-70) 340-3016

Authorized officer: Ramcke, T

Form PCT/ISA/210 (second sheet) (January 2004)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>JP 2001126469 A</td>
<td>11-05-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2003288793 A</td>
<td>10-10-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 8212788 A</td>
<td>20-08-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 218133 B1</td>
<td>01-09-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SG 33461 A1</td>
<td>18-10-1996</td>
</tr>
</tbody>
</table>