WO 2005/006184 A2 || 000 000 0 000 O 0 A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Burcau

(43) International Publication Date

AT O OO

(10) International Publication Number

20 January 2005 (20.01.2005) PCT WO 2005/006184 A2
(51) International Patent Classification’: GOGF 9/38 (74) Agent: ELEVELD, Koop, J.; Prof. Holstlaan 6, NL-5656
AA Eindhoven (NL).

(21) International Application Number:
PCT/IB2004/051121 (81) Designated States (unless otherwise indicated, for every
. . kind of national protection available): AE, AG, AL, AM,
(22) International Filing Date: 5 July 2004 (05.07.2004) AT, AU, AZ BA, BB, BG, BR, BW, BY, BZ, CA, CIL, CN,
(25) Filing Language: English CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, H,
o) GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
(26) Publication Language: English KG, KP, KR, KZ, L.C, LK, LR, LS, LT, LU, LV, MA, MD,
(30) Priority Data: MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
03102064.7 9 July 2003 (09.07.2003) EP PH, PL, PT, RO, RU, SC, SD, SE, 5G, SK, SL, Y, TJ, ™,

(71) Applicant (for all designated States except US): KONIN-
KLIJKE PHILIPS ELECTRONICS N.V. [NL/NL];
Groenewoudseweg 1, NL-5621 BA Eindhoven (NL).

(72) Inventor; and

(75) Inventor/Applicant (for US only): PESSOLANO,
Francesco [IT/NL]; c/o Prof. Holstlaan 6, NL-5656 AA
Eindhoven (NL).

(84)

TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI,

[Continued on next page]

(54) Title: METHOD AND SYSTEM FOR BRANCH PREDICTION

100 — Instruction

fetch

no

102 w»

Branch ?

yes

105
N Conditional ?

106 no

\

R
Retrieve activity

yes

(57) Abstract: A system and method for
predicting the outcome of a conditional
branch within a computer system, the
method comprising the steps of identifying
(105) the occurrence of a conditional
branch, obtaining (106) data relating to
system activity since a previous branch,
comparing (110) said data with data
relating to previous system activity, and
predicting (108) the branch outcome based
on such comparison. An activity monitor
(Figure 3 - 20) may be used to provide the
data relating to system activity.

Execution*
Compare with 110 ,
activity history | \
104
* once the condition is known
Predictbanch | 10 the activity history is updated
outcome

WO 2005/006184 A2 I} H10 Y N0VOH0 AT 0O 00 000 AR

SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ,
GW, ML, MR, NE, SN, TD, TG). BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE,
BG, CH, CY, CZ, DE, DK, EE, ES, Fl, FR, GB, GR, HU, IE,
IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI patent
(BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE,
SN, TD, TG)

Declaration under Rule 4.17:

— as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(ii)) for the following designations AE,
AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ,
CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, Published:
EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, ~— Wwithout international search report and to be republished
JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, upon receipt of that report
MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM,
PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, For two-letter codes and other abbreviations, refer to the "Guid-
T™, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM, ance Notes on Codes and Abbreviations" appearing at the begin-
ZW, ARIPO patent (BW, GH, GM, KE, LS, MW, MZ, NA, ning of each regular issue of the PCT Gazette.

WO 2005/006184 PCT/IB2004/051121

10

15

20

25

Method and system for branch prediction

This invention relates to a method and system for branch prediction, which is
particularly well suited for use in processors executing sequential programs for

programmable integrated circuits.

Branches are points in a program where sequential execution is broken. If a
branch is unconditional, its outcome is always the same, i.e. the branch is always taken.
When the branch is conditional, however, its outcome is only known when the condition is
known. In other words, a conditional branch instruction conditionally causes a transfer of
control, based on testing some piece of data. Along with a specification of a target address,
such an instruction contains a condition to be tested. This condition is typically one of a
small set of algebraic properties of a number. If the condition is met, the branch is taken.
Otherwise, it is not taken.

Performance of pipelined processors is severely limited by the time required to
execute conditional branches. Such performance degradation caused by conditional branches
in pipelined computers arises when the branch is fetched before the algebraic conditions of
the data to be tested have been determined. This phenomenon is worst in those computers in
which the branch instruction itself specifies the location of the data to be tested. Evaluating
the algebraic conditions is done only after several stages of the pipeline have been traversed.
Since this cannot start until the branch instruction is fetched, the conditions to be tested are
not known until several clock cycles after the branch is fetched. Since the location of the
next instruction to be fetched cannot be determined for certain until the data has been tested,
no instructions can be fetched for several clock cycles.

In order to reduce such performance degradation, branch prediction techniques
may be used. Branch prediction uses the history of the same branch or other branches to
predict the current branch outcome. The branch can therefore be executed based on this
prediction, in an attempt avoid wasting performance. Of course, every time the predicted
outcome proves to be incorrect, the system has to go back to the branching point, the effects

of execution of all of the instructions fetched after the incorrectly-predicted branch point

WO 2005/006184 PCT/1B2004/051121

10

15

20

25

30

2

must be reversed, and the system must then continue execution via the correct branch
outcome. Thus, since all instructions fetched after a bad branch must be discarded, they
represent wasted effort, and it is therefore evident that the performance of the machine is
directly related to the accuracy of branch predictions.

Various conventional ideas exist for use in branch prediction. Branch
prediction schemes can be either static or dynamic. In a static scheme, the branch instruction
itself contains the prediction; this is typically supplied by the compiler that produced the
program, based on the compiler having executed the program on a typical data set. Static
predictidn is possible only if the instruction set of the computer has been designed with that
in mind. Most commercially successful instruction sets do not provide facilities that allow
static branch prediction.

Dynamic branch prediction uses information about the branch that is gathered
by the hardware during program execution. The program can only "know" about past
execution patterns of a given branch instruction and so must base its dynamic prediction on
such information. Since conditional branches are quite frequent, the amount of history that
can be stored for each tends not to be very large so as to avoid the need for a very large
memory capacity. Typically branch prediction information is kept on only a small, but
varying, subset of the branches in a program.

Another idea is known as "bimodal” branch prediction and involves the use of
a two-bit saturating counter as a prediction indicator to indicate whether a branch should be
taken. A two-bit saturating counter makes use of the assumption that branches should be
taken in groups, such that whether a branch or group of branches should be taken may be
predicted by reference to whether the last branch or group of branches were taken.

Various known methods of branch prediction are described in for example,
International Patent Application No. WO 98/36350, US Patent No. 5,896,529, US Patent No.
6,438,656 B1, and US Patent No. 5,948,100.

Thus, in summary, in the prior art, branch prediction tends to be primarily
based on a combination of the following two ideas:

- prediction of a branch outcome based on its history. In this case, a table is
generally used to store the outcome of the last, say, 2 or 4 times the branch was executed.
Based on the most frequent outcome, a prediction is made. It should be evident, however,
that prediction confidence will vary. For example, if the branch outcome has always been the
same, then the confidence will be 100%. However, if the branch outcome changes every

time, confidence will be 0%.

WO 2005/006184 PCT/1B2004/051121

10

15

20

25

30

3

- prediction of a branch outcome based on the outcome of the previous »
branches. The actions and implementation are similar to the aforementioned concept, but the
information on which prediction is based is obviously different. Once again, prediction
confidence will vary greatly.

When branch prediction confidence is not very high, the prediction is likely to
fail.

We have now devised an improved arrangement.

In accordance with the present invention, there is provided apparatus for
predicting the outcome of a conditional branch within a computer system, the apparatus
comprising means for identifying the occurrence of a conditional branch, means for obtaining
data relating to system activity since a previous branch, means for comparing said data with
data relating to previous system activity, and means for predicting the branch outcome based
on such comparison.

Also in accordance with the present invention, there is provided a method for
predicting the outcome of a conditional branch within a computer system, the method
comprising the steps of identifying the occurrence of a conditional branch, obtaining data
relating to system activity since a previous branch, comparing said data with data relating to
previous system activity, and predicting the branch outcome based on such comparison.

In a preferred embodiment, the data relating to system activity comprises
average system activity. An activity history table is preferably provided in which is stored
data relating to previous system activity and the branch outcome to which such activity
corresponded. Thus, in a preferred embodiment, when a conditional branch is encountered,
data relating the system activity between the current and previous branches is retrieved
(preferably from an activity monitor), this data is compared with the data contained in the
activity history table, and the branch outcome is selected which has associated therewith
activity data which most closely resembles the current retrieved activity data. The activity
history table is then preferably updated accordingly with the latest activity data and the
selected branch outcome.

In a preferred embodiment, the apparatus also includes means for predicting
the outcome of a conditional branch using the outcome history of that and/or previous

branches. Beneficially, the data relating to the activity of the system is only used for branch

WO 2005/006184 PCT/1B2004/051121

10

15

20

25

30

4

outcome prediction if the confidence of accuracy of branch outcome prediction using branch
history is relatively low, perhaps below a predetermined threshold value.

In the prior art, branch prediction takes into account branch history but not the
system activity which leads to this history. The present invention proposes the use of another
parameter for branch prediction, namely the activity of the system between the last predicted
branch and the current branch, activity related to how much computation has been done.

Activity monitoring is basically a measure of the difference between the
previous state of a system and the current one for the same system (or part of a system). The
larger the difference, the greater is the system activity. There are several ways to implement
an activity monitor and these will be apparent to a person skilled in the art. The simpler one
involves monitoring the supply current, which also gives the activity for the system. It is
normally possible to measure the average current with circuits well known in literature and
thus monitor the average activity. An exemplary activity monitor is described in more detail
later.

These and other features of the present invention are capable of being

elucidated by and from the accompanying exemplary drawings and description that follows.

An embodiment of the present invention will now be described by way of
example only and with reference to the accompanying drawings, in which:

Figure 1 is a schematic flow diagram illustrating a branch prediction method
according to an exemplary embodiment of the present invention;

Figure 2 is a schematic circuit diagram illustrating the basic principle of
operation of an activity monitor for use in an exemplary embodiment of the present
invention; and

Figure 3 illustrates a generic embodiment of an exemplary activity monitor.

Referring to Figure 1 of the drawings, there is illustrated a flow diagram
illustrating a method of branch prediction according to an exemplary embodiment of the
present invention,

At step 100, an instruction is fetched, and a determination is made (at step
102) as to whether or not it is a branch. If it is not a branch, the instruction is executed (step

104). Ifit is a branch, a determination is made (step 105) as to whether or not it is

WO 2005/006184 PCT/1B2004/051121

10

15

20

25

30

5

conditional. If not, the instruction is executed (step 104), otherwise data relating to the
activity of the system for the last basic block (i.e. the block of code between the last predicted
branch and the current branch) is retrieved at step 106. An activity history table is provided
in which data relating to average system activity is stored in association with respective
outcomes. The retrieved activity data is compared (at step110) and the branch outcome is
predicted (step 108) by selecting the outcome stored in the activity history table , which has
the most similar activity to the retrieved activity data. The branch is then executed
accordingly (step 104) and the table is updated to reflect the latest system activity data and
predicted branch outcome. Then, the next instruction is fetched and the process is carried out
again.

Thus, in summary, the use of system activity for branch prediction involves:

- storing the average activity for every branch outcome;
- comparing the activity of the last basic block with these values; and

- predicting the branch outcome based on which of the stored outcomes has the
most similar activity.

In a preferred embodiment, the comparison step involves comparing only
some of the most significant digits in the retrieved activity value.

Referring to Figure 2 of the drawings, a circuit diagram of an activity monitor
is shown which may be used to obtain the various activity values required to carry out the
method described above. However, it will be appreciated by a person skilled in the art that
there are numerous different types of system activity monitors known in the art, any of which
may be used in conjunction with the present invention.

The illustrated activity monitor 10 comprises a series of D-type latches,
sometimes referred to as flip-flops or sequential logic, 12a-12e and two combinational logic
blocks 14, 16.

It should be noted that for the purposes of describing this exemplary
embodiment of an activity monitor, D-type flip-flops have been described and illustrated.
However, the objects of this type of circuitry, as will be apparent to those skilled in the art,
can also be achieved by the use of other logic, sequential or otherwise, such as, for example,
J-K or S-R type flip-flops. Furthermore, the combinational logic blocks 14, 16 are intended
as non-exhaustive illustrations of, for example, a processing logic block and a data path logic
block.

In use, flip-flop 12a receives an input signal I1 and produces an appropriate

output signal O1, which acts as a first input signal to the first logic block 14. F lip-flop 12b

WO 2005/006184 PCT/1B2004/051121

10

15

20

25

30

6

receives an input signal I2, which is a first output signal from the first logic block 14, and
produces an appropriate output signal O2, which acts as a first input signal to the second
logic block 16. Flip-flop 12¢ receives an input signal I3, which is a first output signal from
the second logic block 16, and produces an appropriate output signal O3. FlipOfiop 12d
receives an input signal 14, which is a second output signal from the first logic block 14, and
produces an appropriate output signal O4, which acts as a second input signal to the first
logic block 14. Flip-flop 12e receives an input signal 15, which is a second output signal
from the second logic block 16, and produces an appropriate output signal O5, which acts as
a second input signal to the second logic block 16. Each of the flip-flops 12a-12e also
receives a clock signal CLK, which is used to operatively gate input and output signals.

If the data content of any of the flip-flops 12a-12e does not change, then there

are no logic state changes (i.e. no system activity). If, however, a state change does occur

- within one or more of the flip-flops 12a-12¢ and either one or both of the logic blocks 14, 16,

or a respective portion thereof, due to an appropriate stimulus, then this state change
propagates through the circuitry 10. Therefore, for a given clock cycle, the system activity is
proportional to the number of state changes that take place within the elements that comprise
the circuitry 10. Therefore, knowing the number of elements that change state in a given
clock cycle provides a direct correlation to the system activity for that particular clock cycle.
It should be noted that modern digital IC methodologies and tools allow designers to know
in advance, and with a great deal of circuitry, what state changes are taking place, in response
to input stimuli, and where such changes take place. Such advance knowledge is obviously
advantageous for the purposes of the present invention.

Referring to Figure 3 of the drawings, the activity monitor 20 is the basic
building block used for the purpose of monitoring activity of the circuit described with
reference to Figure 2 of the drawings. The flip-flop or logic state 12 has, in this particular
example, an associated two input, one output activity monitor 20. A first input of the activity
monitor 20 is connected to the input D of the flip-flop 12 and a second input of the activity
monitor 20 is connected to the output Q of the flip-flop12. The activity monitor 20 produces
an output signal CS which is determined by the state of the input and output signals I, O on
the respective D and Q terminals of the flip-flop 12.

Thus, the implementation of the present invention can be much the same as it
is for conventional branch prediction with the addition of a structure for monitoring system
activity. The invention can be used on its own, but is preferably used in conjunction with the

conventional branch prediction scheme(s). Preferably, the scheme proposed by the present

WO 2005/006184 PCT/1B2004/051121

10

15

7

invention would only be used when the confidence of the other methods is very low. The
use of system activity monitoring in branch prediction improves prediction accuracy by
considering system/core activity.

It should be noted that the above-mentioned embodiment illustrates rather than
limits the invention, and that those skilled in the art will be capable of designing many
alternative embodiments without departing from the scope of the invention as defined by the
appended claims. In the claims, any reference signs placed in parentheses shall not be
construed as limiting the claims. The word "comprising" and "comprises”, and the like, does
not exclude the presence of elements or steps other than those listed in any claim or the
specification as a whole. The singular reference of an element does not exclude the plural
reference of such elements and vice-versa. The invention may be implemented by means of
hardware comprising several distinct elements, and by means of a suitably programmed
computer. In a device claim enumerating several means, several of these means may be
embodied by one and the same item of hardware. The mere fact that certain measures are
recited in mutually different dependent claims does not indicate that a combination of these

measures cannot be used to advantage.

WO 2005/006184 PCT/1B2004/051121

10

15

20

25

CLAIMS:

1. Apparatus for predicting the outcome of a conditional branch within a
computer system, the apparatus comprising means for identifying the occurrence of a
conditjonal branch, means (20) for obtaining data relating to system activity since a previous
branch, means for comparing said data with data relating to previous system activity, and

means for predicting the branch outcome based on such comparison.

2. Apparatus according to claim 1, wherein the data relating to system activity

comprises average system activity.

3. Apparatus according to claim 1 or claim 2, wherein an activity history table is

provided in which is stored data relating to previous system activity and the branch outcome

to which such activity corresponded.

4. Apparatus according to claim 3, comprising means for, when a conditional
branch is encountered, retrieving data relating the system activity between the current and
previous branches, and means for comparing this data with the data contained in the activity
history table, wherein said means for predicting the branch outcome selects the branch
outcome which has associated therewith activity data which most closely resembles the

current retrieved activity data.

5. Apparatus according to claim 4, wherein the activity history table updated

with the latest activity data and the selected branch outcome.

6. Apparatus according to any one of the preceding claims, including means for
predicting the outcome of a conditional branch using the outcome history of that and/or

previous branches.

WO 2005/006184 PCT/1B2004/051121

9

7. Apparatus according to claim 7, wherein data relating to the activity of the
system is only used for branch outcome prediction if the confidence of accuracy of branch

outcome prediction using branch history is relatively low.

5 8. A method for predicting the outcome of a conditional branch within a
computer system, the method comprising the steps of identifying (105) the occurrence of a
conditional branch, obtaining (106) data relating to system activity since a previous branch,
comparing (110) said data with data relating to previous system activity, and predicting (108)

the branch outcome based on such comparison.

WO 2005/006184

PCT/IB2004/051121

1/3
100 —_| Instruction
" fetch
102 no
IRNE Branch ?
yes
105
L Conditional ?
106 yes no
\
Retrieve activity
/ Execution*
Compare with 110
activity history 7 1
/
Predict branch 1_—108
outcome

FIG. 1

104

* once the condition is known
the activity history is updated

WO 2005/006184 PCT/IB2004/051121

2/3

=
mT A
(@]
3 (@]
= 4 <
™
L |
&
Lo ~—
—
o___| o !
o 2
7o)
(@]
N
o
(@ N |
8§ _|° < O]
(= L
o\
—
<
=
| [an]
(e} | <
<t
4 4 (@ \
ko]
— ~
o bl
&5__ (@]
— -
(&]

WO 2005/006184 PCT/IB2004/051121

3/3

CS

Y

FIG. 3

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

