Office de la Propriete Canadian CA 2457693 A1 2003/02/27

Intellectuelle Intellectual Property
du Canada Office (21) 2 457 693
v organisime An agency of 12 DEMANDE DE BREVET CANADIEN
d'Industrie Canada Industry Canada
CANADIAN PATENT APPLICATION
(13) A1
(86) Date de depot PCT/PCT Filing Date: 2002/08/14 (51) CLInt."/Int.CI." GOBF 17/30, GO6F 17/27
(87) Date publication PCT/PCT Publication Date: 2003/02/27 | (71) Demandeur/Applicant:
(85) Entree phase nationale/National Entry: 2004/02/13 INSIGHTFUL CORPORATION, US

o ST . (72) Inventeurs/Inventors:
(86) N° demande PCT/PCT Application No.: US 2002/025756 MARCHISIO. GIOVANNI B. US:

(87) N° publication PCT/PCT Publication No.: 2003/017143 KOPERSKI, KRZYSZTOF, US:
(30) Priorités/Priorities: 2001/08/14 (60/312,385) US; LIANG, JISHENG, US;
2001/11/08 (10/007,299) US MURUA, ALEJANDRO, US;

NGUYEN, THIEN, US
(74) Agent: GOWLING LAFLEUR HENDERSON LLP

(54) Titre : PROCEDE ET SYSTEME PERMETTANT D'EFFECTUER UNE RECHERCHE AMELIOREE DES DONNEES
(54) Title: METHOD AND SYSTEM FOR ENHANCED DATA SEARCHING

1601
, L |
Syntactic Query Engine 3 1602

L Nata Set

Query | Data Sef
Preprocessor | Preprocessor

Natural Language
Query

|
I
[
F
!
;
i
E
g °
3 7 1/ | -
5 Enhanced Natural |
1613~ __%i Language Parser
s
I l
1572\ _ % 5 7677 /7607
! !
Natural Language '. ‘. Query Dato Se’r . DoLo Set |
Query Results ! ! Builder A Repository Indexer |
R 1608 ——

(57) Abrége/Abstract:

Methods and systems for syntactically indexing and searching data sets to achieve more accurate search results are provided.
Example embodiments provide a Syntactic Query Engine ("SQE") that parses, indexes, and stores a data set, as well as
processes hatural language queries subsequently submitted against the data set. The SQE comprises a Query Preprocessor, a
Data Set Preprocessor, a Query Builder, a Data Set Indexer, an Enhanced Natural Language Parser ('"ENLP"), a data set
repository, and, In some embodiments, a user interface. After preprocessing the data set, the SQE parses the data set and
determines the syntactic and grammatical roles of each term to generate enhanced data representations for each object in the
data set. The SQE Indexes and stores these enhanced data representations In the data set repository. Upon subsequently
receiving a query, the SQE parses the query similarly and searches the indexed stored data set to locate data that contains

similar terms used In similar grammatical roles. In this manner, the SQE Is able to achieve more contextually accurate search
results more frequently than using traditional search engines.

e

T N §.
.l.!.\‘\-c.c..--.
. T

3 '_{,-.T'l'.
o~

C an a d a http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC

OPIC - CIPO 191

WO 03/017143 A3

CA 02457693 2004-02-13

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date

(10) International Publication Number

27 February 2003 (27.02.2003) PCT WO 03/017143 A3
(51) International Patent Classification’: GO6F 17/30, Avenue Southeast, Bellevue, WA 98006 (US). MURUA,
17/27 Alejandro [CL/US]; Apt. 302, 1310 East Thomas Street,
Seattle, WA 98102 (US). NGUYEN, Thien [US/US];
(21) International Application Number: PCT/US02/25756 22220 98th Avenue West, Edmonds, WA 98020 (US).

(22) International Filing Date: 14 August 2002 (14.08.2002)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:
60/312,385

10/007,299

US
US

14 August 2001 (14.08.2001)
8 November 2001 (08.11.2001)

(71) Applicant (for all designated States except US): IN-
SIGHTFUL CORPORATION [US/US]; Suite 500, 1700
Westlake Avenue North, Seattle, WA 98109-3044 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): MARCHISIO,
Giovanni, B. [US/US]; Unit 303, 9815 NE 130th Place,
Kirkland, WA 98034 (US). KOPERSKI, Krzysztof
[CA/US]; Apt. D, 2311 Yale Avenue East, Seattle, WA
98102 (US). LIANG, Jisheng [CN/US]; 6343 114th

(74) Agents: BIERMAN, Ellen, M. et al.; Seed Intellectual
Property Law Group PLLC, Suite 6300, 701 Fifth Avenue,

Seattle, WA 98104-7092 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ,

VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (Al, BE, BG, CH, CY, CZ, DE, DK, EL,
ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK,
TR), OAPI patent (BEF, BJ, CE, CG, CI, CM, GA, GN, GQ,

GW, ML, MR, NE, SN, TD, TG).

[Continued on next page/

(54) Title: METHOD AND SYSTEM FOR ENHANCED DATA SEARCHING

/IGOI
7509\ o ygm\ Syntactic Query Engine /.;503 /-7602 ot Set
) | ata Se
Natural Language f f o Query Oata Set | I_
Query E i Preprocessor Preprocessor
] T
'} c': 1604
| g 1 1 /
|2 Enhanced Natural
1613~ §= Language Parser
3]
I |
| |
1612 | 1611
Naéural Lngz;tuge - jl i Query Data Set Data Set
uery Results | | Builder Repository Indexer
N 1608
- - —t

(§7) Abstract: Methods and systems for syntactically indexing and searching data sets to achieve more accurate search results are
provided. Example embodiments provide a Syntactic Query Engine ("SQE") that parses, indexes, and stores a data set, as well as
processes natural language queries subsequently submitted against the data set. The SQE comprises a Query Preprocessor, a Data
Set Preprocessor, a Query Builder, a Data Set Indexer, an Enhanced Natural Language Parser ("ENLP"), a data set repository, and,
in some embodiments, a user interface. After preprocessing the data set, the SQE parses the data set and determines the syntactic
and grammatical roles of each term to generate enhanced data representations for each object in the data set. The SQE indexes and
stores these enhanced data representations in the data set repository. Upon subsequently receiving a query, the SQE parses the query
similarly and searches the indexed stored data set to locate data that contains similar terms used in similar grammatical roles. In this
manner, the SQE is able to achieve more contextually accurate search results more frequently than using traditional search engines.

CA 02457693 2004-02-13

WO 03/017143 A3 N0 DA IR 10 0 AR R AR

Published: For two-letter codes and other abbreviations, refer to the "Guid-
— with international search report ance Notes on Codes and Abbreviations" appearing at the begin-

(88) Date of publication of the international search report: ning of each regular issue of the PCT Gazette.

30 October 2003

10

15

20

29

30

CA 02457693 2004-02-13
WO 03/017143 PCT/US02/25756

METHOD AND SYSTEM FOR ENHANCED DATA SEARCHING

BACKGROUND OF THE INVENTION

Field of the Invention

The present invention relates to a method and system for
searching for information in a data set, and, in particular, to methods and
systems for syntactically indexing and searching data sets to achieve greater
search result accuracy.

Description of the Related Art
Often times it is desirable to search large sets of data, such as

collections of millions of documents, only some of which may pertain to the
information being sought. In such instances it is difficult to either identify a
subset of data to search or to search all data yet return only meaningful results.
Several search techniques have been used to support searching large sets of
data, none of which have been able to attain a high degree of accuracy of
search results due to their inherent limitations.

One common technique is that implemented by traditional
keyword search engines. Data is searched and results are generated based on

“matching one or more words or terms designated as a query. The resulis are

returned because they contain a word or term that matches all or a portion of
one or more keywords that were submitted to the search engine as the query.
Some keyword search engines additionally support the use of modifiers,
operators, or a control language that specifies how the keywords should be
combined in a search. For example, a query might specify a date filter to be
used to filter the returned results. In many traditional keyword search engines,
the results are returned ordered, based on the number of matches found within
the data. For example, a keyword search against Internet websites typically
returns a list of sites that contain one or more of the submitted keywords, with
the sites with the most matches appearing at the top of the list. Accuracy of
search results in these systems is thus presumed to be associated with
frequency of occurrence.

One drawback to traditional search engines is that they don't
return data that doesn’t match the submitted keywords, even though it may be
relevant. For example, if a user is searching for information on what products a

10

15

20

29

30

35

CA 02457693 2004-02-13
WO 03/017143 PCT/US02/25756

particular country imports, data that refers to the country as a “customer”
instead of using the term “import” would be missed if the submitted query
specifies “import” as one of the keywords, but doesn’t specify the term
“‘customer.” (E.g., The sentence “Argentina is a customer of the Acme
Company” would be missed.) Ideally, a user would be able to submit a query in
the form of a question and receive back a set of results that were accurate
based on the meaning of the query — not just on the specific terms used to
phrase the question.

Natural language parsing provides technology that attempts to
understand and identify the syntactical structure of a language. Natural
language parsers have been used to identify the parts of speech of each term in
a submitted sentence to support the use of sentences as natural language
qgueries. They have been used also to identify text sentences in a document
that follow a particular part of speech pattern; however, these techniques fall
short of being able to produce meaningful results when the documents do not
follow such patterns. The probability of a sentence falling into a class of
predefined sentence templates or the probability of a phrase occurring literally
is too low to provide meaningful results. Failure to account for semantic and
syntactic variations across a data set, especially heterogeneous data sets, has
led to disappointing results.

BRIEF SUMMARY OF THE INVENTION

Embodiments of the present invention provide methods and
systems for syntactically indexing and searching data sets to achieve more
accurate search results. Example embodiments provide a Syntactic Query
Engine ("SQE") that parses, indexes, and stores a data set, as well as
processes queries subsequently submitted against the data set. The SQE
parses each object in the data set and transforms it into a canonical form that
can be searched efficiently using techniques of the present invention. To
perform this transformation, the SQE determines the syntactic structure of the
data by parsing (or decomposing) each data object into syntactic units,
determines the grammatical roles and relationships of the syntactic units, and
represents these relationships in a normalized data structure. A set of
heuristics is used to determine which relationships among the syntactic units
are important for yielding greater accuracy in the results subsequently returned
in response to queries. The normalized data structures are then stored and

10

15

20

25

30

30

CA 02457693 2004-02-13
WO 03/017143 PCT/US02/25756

indexed. The SQE processes queries in a similar fashion by parsing them and
transforming them into the same canonical form, which is then used to generate
and execute queries against the data set.

In one embodiment, the parsing of each data object into syntactic
units is performed by a natural language parser, which generates a hierarchical
data structure (e.g., a tree) of syntactic units. In other embodiments, the parser
is a module that generates a syntactic structure (or lexical structure) that relates
specifically to the objects of the data set. In yet another embodiment, the
parser is an existing, off-the-shelf parser, that is modified to perform the SQE
transformations of the data set or of queries.

In some embodiments, the canonical form is an enhanced data
representation, such as an enhanced sentence representation. In one
embodiment, the canonical form comprises a set of tables, which represent
grammatical roles of and / or relationships between various syntactic units. In
some embodiments, tables are created for the subject, object, preposition,
subject/object, noun/noun modifier roles and / or relationships of the syntactic
units.

In one embodiment, use of the normalized data structure allows
data that appears in multiple and different languages and in different forms to
be processed in a similar manner and at the same time. For example, a single
query can be submitted against a corpus of documents written in different
languages without first translating all of the documents to one language. In
another embodiment, the data set may include parts that themselves contain
multiple language elements. For example, a single document, like a tutorial on
a foreign language, may be written in several languages. I[n another
embodiment, the data set may include objects containing computer language.
In yet another embodiment, the data set may include graphical images, with or
without surrounding text, bitmaps, film, or other visual data. In yet another
embodiment, the data set may include audio data such as music. In summary,
the data set may include any data that can be represented in syntactical units
and follows a grammar that associates roles to the syntactical units when they
appear in a specified manner, even if the data may not traditionally be thought
of in that fashion.

In one embodiment, the processed queries are natural language
queries. In other embodiments, the queries are specific representations with
form and / or meaning that is specifically related to the objects of the data set.

10

15

20

29

30

39

CA 02457693 2004-02-13
WO 03/017143 PCT/US02/25756

~ In one embodiment, the SQE comprises a Query Preprocessor, a
Data Set Preprocessor, a Query Builder, a Data Set Indexer, an Enhanced
Natural Language Parser (“ENLP”), a data set repository, and, in some
embodiments, a user interface. After preprocessing the data set, the SQE
parses the data set and determines the syntactic and grammatical roles of each
term to generate enhanced data representations for each object (e.g,
sentence) in the data set. The SQE indexes and stores these enhanced data
representations in the data set repository. Upon subsequently receiving a
query, such as a natural language query, the SQE parses the query similarly
and searches the stored indexed data set to locate data that contains similar
terms used in similar grammatical roles.

In some embodiments, the SQE provides search operators based
upon the grammatical roles and relationships of syntactic units of objects of
data. For example, some embodiments provide a search that allows
designation of the grammatical role of a unit of the query. For example, a term
may be designated as a subject or an object of a sentence before it is used to
search the data set for similar terms used in similar grammatical roles. In one
embodiment, the SQE returns a list of related units (terms) based upon a
grammatical role. For example, in response to a query that designates a term
as a “subject” of a textual phrase, the SQE returns a list of verbs that appear In
phrases that contain the term used as the subject of those phrases. Other
embodiments return different parts of speech or terms that appear in particular
grammatical roles.

In yet other embodiments, the SQE provides an ability to search
for similar sentences in a data set of documents or similar objects, where
similar means that the matching sentence contains similar words used in similar
grammatical roles or syntactic relationships. In some embodiments, this ability
is invoked by selection of a sentence in data that is returned as a result of
another query. In yet other embodiments, the SQE provides an ability to search
for similar paragraphs and similar documents. In other embodiments, the SQE
provides an ability to search for similar objects.

In some embodiments, the SQE returns results 10 a query in an
order that indicates responsiveness to the query. In some embodiments, the
order is based upon the polysemy of terms in the query. In other embodiments,
the order is based upon the inverse document frequency of terms in the query.
In yet other embodiments, the ordering of results is based upon weightings of

10

19

20

29

30

39

CA 02457693 2004-02-13
WO 03/017143 PCT/US02/25756

the matched results from the data set. In some of these embodiments, the
weightings are based upon the degree of matching of a particular part of
speech. For example, the weighting may be based upon whether matching
sentences contain identical verbs, entailed verbs, or verbs that are defined as
close by some other metric, such as frequency or distribution in the data set.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

Figure 1 shows a natural language query and the resulis returned
by an example embodiment of a Syntactic Query Engine.

Figure 2 is an example block diagram of a Syntactic Query
Engine.

Figure 3 is an example flow diagram of the steps performed by a
Syntactic Query Engine to process data sets and natural language queries.

Figure 4 is an example screen display illustrating general search
functionality of an example Syntactic Query Engine user interface.

Figure 5A is an example screen display illustrating a portion of a
data set from which a natural language query result was extracted.

Figure 5B is an example screen display illustrating a search
similar sentence operation.

Figure 5C is an example screen display illustrating resuits that
correspond to the search similar sentence operation initiated in Figure 9B.

Figure 6 is an example screen display illustrating Syntactic Query
Engine results from a natural language query that requests a map.

Figure 7 is an example screen display illustrating a map that
corresponds to the query result selected in Figure 6.

Figure 8 is an example screen display illustrating Syntactic Query
Engine results from a natural language query that requests a chart.

Figure 9 is an example screen display illustrating a chart that

~ corresponds to the query result selected in Figure 8.

‘Figure 10 is an example screen display of an advanced search
using a natural language query that contains a subject.

Figure 11 is an example screen display illustrating advanced
search results from a query that contains a subject.

Figure 12 is an example screen display illustrating a portion of
resulting sentences returned by a Syntactic Query Engine when a particular
verb is selected from the verb list.

10

15

20

25

30

35

CA 02457693 2004-02-13
WO 03/017143 PCT/US02/25756

Figure 13 is an example screen display of advanced search
functionality using a natural language query that contains a subject and an
object.

Figure 14 is an example screen display illustrating advanced
search results from a query that contains a subject and an object.

Figure 15 is an example screen display illustrating the designation
of programmable attributes in a Syntactic Query Engine.

Figure 16 is a block diagram of the components of an example
embodiment of a Syntactic Query Engine.

Figure 17 is a block diagram of the components of an Enhanced
Natural Language Parser of an example embodiment of a Syntactic Query

- Engine.

Figure 18 is a block diagram of the processing performed by an
example Enhanced Natural Language Parser.

Figure 19 is a block diagram illustrating a graphical representation
of an example syntactic structure generated by the natural language parser
component of an Enhanced Natural Language Parser.

Figure 20 is a table illustrating an example enhanced data
representation generated by the postprocessor component of an Enhanced
Natural Language Parser.

Figure 21 is an example block diagram of data set processing
performed by a Syntactic Query Engine.

| Figure 22 is an example block diagram of natural language query
processing performed by a Syntactic Query Engine.

Figure 23 is an example block diagram of a general purpose
computer system for practicing embodiments of a Syntactic Query Engine.

Figure 24 is an example flow diagram of the steps performed by a
build file routine within the Data Set Preprocessor component of a Syntactic
Query Engine.

Figure 25 illustrates an example format of a tagged file built by the
build_file routine of the Data Set Preprocessor component of a Syntactic Query
Engine.

Figure 26 is an example flow diagram of the steps performed by
the dissect file routine of the Data Set Preprocessor component of a Syntactic
Query Engine.

10

15

20

25

30

35

CA 02457693 2004-02-13
WO 03/017143 PCT/US02/25756

Figure 27 is an example flow diagram of the steps performed by a
Syntactic Query Engine to process a natural language query.

Figure 28 is an example flow diagram of the steps performed by a
preprocess natural_language_query routine of the Query Preprocessor
component of a Syntactic Query Engine.

Figure 29 is an example block diagram showing the structure of
an example Data Set Repository of a Syntactic Query Engine.

Figure 30 is an example flow diagram of the steps performed by a
parse_sentence routine of the Enhanced Natural Language Parser component
of a Syntactic Query Engine.

Figure 31 is an example flow diagram of the steps performed by a
determine grammatical_roles subroutine within the parse_sentence routine of
the Enhanced Natural Language Parser.

Figure 32 is an example flow diagram of the steps performed by a
generate subject_structure subroutine of the determine_grammatical_roles
routine.

Figure 33 is an example flow diagram of the steps performed by a
generate object_structure subroutine of the determine_grammatical_roles
routine.

Figure 34 is an example flow diagram of the steps performed by a
generate subject modifier subroutine of the determine_grammatical_roles
routine.

Figure 35 is an example flow diagram of the steps performed by a
generate generalized subject _object subroutine of the
determine_grammatical_roles routine.

Figure 36A is a graphical representation of an example parse tree
generated by a natural language parser component of an Enhanced Natural
. anguage Parser.

Figure 36B is an illustration of an enhanced data representation of
an example natural language query generated by an Enhanced Natural
Language Parser.

Figure 37 is an example flow diagram of the steps performed by a
construct_output_string routine of the Enhanced Natural Language Parser.

Figure 38 is an example flow diagram of the steps performed by
an index data routine of the Data Indexer component of a Syntactic Query
Engine.

10

15

20

25

30

39

CA 02457693 2004-02-13
WO 03/017143 PCT/US02/25756

Figures 39A and 39B are example flow diagrams of the steps
performed by a build_query routine within the Query Builder component of a
Syntactic Query Engine.

DETAILED DESCRIPTION OF THE INVENTION

Embodiments of the present invention provide methods and
systems for syntactically indexing and searching data sets to achieve more
accurate search results. Example embodiments provide a Syntactic Query
Engine (“SQE”) that parses, indexes, and stores a data set, as well as
processes queries subsequently submitted against the data set. The SQE
parses each object in the data set and transforms it into a canonical form that
can be searched efficiently using techniques of the present invention. To
perform this transformation, the SQE determines the syntactic structure of the
data by parsing (or decomposing) each data object Into syntactic units,
determines the grammatical roles and relationships of the syntactic units, and
represents these relationships in a normalized data structure. A set of
heuristics is used to determine which relationships among the syntactic units
are important for yielding greater accuracy in the results subsequently returned
in response to queries. The normalized data structures are then stored and
indexed. The SQE processes queries in a similar fashion by parsing them and
transforming them into the same canonical form, which is then used to generate
and execute queries against the data set..

In one embodiment, the SQE includes, among other components,
a data set repository and an Enhanced Natural Language Parser ("ENLP).
The ENLP parses the initial data set and the natural language queries and
determines the syntactic and grammatical roles of terms in the data set / query.
Then, instead of matching terms found in the query with identical terms found in
the data set (as done in typical keyword search engines), the SQE locates
terms in the data set.that have similar grammatical roles to the grammatical
roles of similar terms in the original query. In this manner, the SQE Is able to
achieve more contextually accurate search results more frequently than using
traditional search engines.

One skilled in the art will recognize that, although the techniques
are described primarily with reference to text-based languages and collections
of documents, the same techniques may be applied to any collection of terms,
phrases, units, images, or other objects that can be represented in syntactical

10

15

20

25

30

35

CA 02457693 2004-02-13
WO 03/017143 PCT/US02/25756

units and that follow a grammar that defines and assigns roles to the syntactical
units, even if the data object may not traditionally be thought of in that fashion.
Examples include written or spoken languages, for example, English or French,
computer programming languages, graphical images, bitmaps, music, video
data, and audio data. Sentences that comprise multiple words are only one .
example of a phrase or collection of terms that can be analyzed, indexed, and
searched using the techniques described herein.

In addition, the term "natural language query" is used to
differentiate the initial query from subsequent data queries created by an SQE
in the process of transforming the initial query into a set of data-set-specific
queries (e.g., database queries) that are executed against the indexed data set.
One skilled in the art will recognize, however, that the form and content of the
initial query will relate to and depend upon the form of objects in the data set—
i.e., the language of the data set.

The Syntactic Query Engine is useful in a multitude of scenarios
that require indexing, storage, and/or searching of, especially large, data sets,
because it yields results to data set queries that are more contextually accurate
than other search engines. In a text-based, document environment, the SQE
identifies the syntax of a submitted natural language query or sentence within a
data set (e.g., which terms are nouns, adjectives, verbs, and other parts of
speech, and the relationships between the terms), determines which terms are
less likely to produce meaningful results (e.g., words like “the”, "a’, and “who”),
and ignores these terms. For example, given the natural language query,

What types of scientific research does the Department of
Defense fund?

the SQE identifies “scientific’ as an adjective, “research” as a noun,
“Department of Defense” as a noun phrase, and “fund” as a verb.. The other
terms in the sentence are ignored as being less meaningful. Based on the
identified syntax, the SQE determines the grammatical role of each meaningful
term (e.g., whether the term is a subject, object, or governing verb). Based
upon a set of heuristics, the SQE uses the determined roles to generate one or
more data queries from the natural language query to execute against the data
set. which has been indexed and stored previously using a similar set of
heuristics. For example, in the query above, “Department of Defense” is
determined to be a subject of the sentence, “fund” is determined to be the
governing verb of the sentence, and “scientific’ and “research” are both

10

15

20

29

30

35

CA 02457693 2004-02-13
WO 03/017143 PCT/US02/25756

determined to be objects of the sentence. Based on the determined
grammatical roles, the SQE is able to generate an enhanced data
representation and, hence, data queries that tend to return more contextually
accurate results because the data set has been transformed to a similar
enhanced data representation. Specifically, rather than identifying data in the
data set that matches terms or parts of terms in the query (like traditional
keyword search engines), the SQE executes the data queries to return data that
contains similar terms used in similar grammatical roles to those terms and
grammatical roles in the submitted natural language query. In summary, the
SQE uses its determination of the grammatical roles of terms to transform a
syntactic representation of data in the data set and in queries submitted against
the data to a canonical representation that can be efficiently compared.

Figure 1 shows a natural language query and the results returned
by an example embodiment of a Syntactic Query Engine. The example natural
language query,

Does Argentina import or export gas?

shown In query box 102, when executed against a previously indexed data set,
returns results Iin results area 103 that relate to Argentina’s importation and
exportation of gas, even though the terms “import” and “export” do not appear in
all of the records of the results. Thus, the SQE is able to make what one would
consider greater contextual associations between the designated natural
language query and the data set than a traditional keyword search would
provide. This capability is due to the SQE’s ability to index data sets and
perform syntactical searches based on determined grammatical roles of and
relationships between terms in the query and terms within sentences in the data
set, as opposed to keyword searches, yielding a more effective search tool.
The SQE is thus able to “recognize” that certain terms in a data set may be
relevant in relation to a submitted query simply because of their grammatical
roles in the sentence. For example, the first sentence returned 104 refers to
Argentina as a “customer” as opposed to an “importer.” This sentence may not
have been returned as a result of the shown natural language query had a
traditional keyword search been performed instead, because “customer” is not
identical or a part of the term “importer.”

Figure 2 Is an example block diagram of a Syntactic Query
Engine. A document administrator 202 adds and removes data sets (for
example, sets of documents), which are indexed and stored within a data set

10

10

15

20

25

30

39

CA 02457693 2004-02-13
WO 03/017143 PCT/US02/25756

repository 204 of the SQE 201. A subscriber 203 to a document service
submits natural language queries to the SQE 201, typically using a visual
interface. The queries are then processed by the SQE 201 against the data
sets stored in the data set repository 204. The query results are then returned
to the subscriber 203. In this example, the SQE 201 is shown implemented as
part of a subscription document service, although one skilled in the art will
recognize that the SQE may be made available in many other forms, including
as a separate application/tool, integrated into other software or hardware, for
example, cell phones, personal digital assistants (“‘PDA”), or handheld
computers, or associated with other types of services. Additionally, although
the example embodiment is shown and described as processing data sets and
natural language queries that are in the English language, as discussed earlier,
one skilled in the art will recognize that the SQE can be implemented to
process data sets and queries of any language, or any combination of
languages.

Figure 3 is an example flow diagram of the steps performed by a
Syntactic Query Engine to process data sets and natural language queries. In
step 301, the SQE receives a data set, for example, a set of documents. In
step 302, the SQE preprocesses the data set to ensure a consistent data
format. In step 303, the SQE parses the data set, identifying the syntax and
grammatical roles of terms within the data set and transforming the data to a
normalized data structure. In step 304, the SQE stores the parsed and
transformed data set in a data set repository. After a data set is stored, the
SQE can process natural language queries against the data set. In step 305,
the SQE receives a natural language query, for example, through a user
interface. In step 306, the SQE preprocesses the received natural language
query, formatting the query as appropriate to be parsed. In step 307, the SQE
parses the formatted query, identifying the syntactic and grammatical roles of
terms in the query and transforming the query into a normalized data structure.
Using the parsed query, in step 308, the SQE generates and submits data
queries (e.g., SQL statements) against the data set stored in the data set
repository. Finally, in step 309, the SQE returns the results of the natural
language query, for example, by displaying them through a user interface.

Figures 4 through 15 are example screen displays of an example
Syntactic Query Engine user interface for submitting natural language queries
and viewing query results. Figure 4 is an example screen display illustrating

11

10

15

20

25

30

35

CA 02457693 2004-02-13
WO 03/017143 PCT/US02/25756

general search functionality of an example Syntactic Query Engine user
interface. The general search functionality allows a user, for example, to submit
a natural language query in the form of a sentence, which may be a statement
or a question. The user enters a query in query box 401 and, using the search
button 403, submits the query to the SQE, for example, the SQE of Figure 2.
The SQE displays the query results in results area 405. Each result that Is
returned by the SQE after performing a general search is a sentence extracted
from the data set. Depending on the data set, other information may also be
displayed with each result. For example, additional information displayed with
the results shown in Figure 4 include the document title (e.g., “Foreign reserves
& the exchange rate”), the name of the country the document relates fo (e.g.,
“Somalia”), the date associated with the document (e.g., “[28-DEC-1997T"), and
the location (e.g., directory) where the original source document is stored. One
skilled in the art will recognize that depending on the type of data that
comprises the data set, different types of related information may be displayed
as part of a result in a result set. Each displayed result is also a link that, when
selected, causes the SQE user interface to display a larger portion of the data
set from which the selected result was extracted. For example, if the sentence
406 shown as,

The now defunct Central Bank of Somalia suffered a setback
after the fall of Mr. Siad Barre in 1991 when a reported $70m

in foreign exchange disappeared,

is selected, the SQE will display a portion of the source document 407, labeled,

Foreign reserves & the exchange rate,

from which that sentence was retrieved. Although this example refers {o a
“user” submitting natural language queries, one skilled in the art will recognize
that natural language queries may be submitted to an SQE through means
other than user input. For example, an SQE may receive input from another
program executing on the same computer or, for example, across a network or -
from a wireless PDA device.

Figure 5A is an example screen display illustrating a portion of a
data set from which a natural language query result was extracted. The portion
displayed in text area 5A05 typically reflects the selected sentence that resulted
from the query as well as a number of surrounding sentences in the document.
Additional options are also available while viewing portions of the data set. For
example, the user may select a sentence in text area 5SA05 and select option

12

10

15

20

25

30

35

CA 02457693 2004-02-13
WO 03/017143 PCT/US02/25756

“Sentences” 5A01 from the Search Similar Menu 5A04, causing the SQE to
perform a syntactic search (using the search and indexing techniques described
herein) against the data set using the selected sentence as a new natural
language query. The search similar sentence functionality is described in detall
with reference to Figures 5B and 5C. Alternatively, a user may select an entire
paragraph and select option “Paragraphs” 5A02 from the Search Similar Menu
5A04. Selecting the Search Similar Paragraphs option causes the SQE to
perform a search against the data set to return other paragraphs within the data
set that contain content similar to the selected paragraph. The user may also
select option “Documents” 5A03 from the Search Similar Menu 5A04, causing
the SQE to perform a search against the data set to return other documents
within the data set that contain content similar to the selected document. In an
exemplary embodiment of an SQE, the paragraph and document similarity
searches are preferably performed using latent semantic regression techniques
as described in U.S. Patent Application No. , filed on September
25. 2001 and entitled “An Inverse Inference Engine for High Performance Web
Search,” which is a continuation-in-part of U.S. Application No. 09/532,605 filed
March 22, 2000, and claims priority from U.S. Provisional Application No.
60/235,255, filed on September 25, 2000. One skilled in the art will recognize
that other types of searches, including syntactic searches as described herein,
may be implemented for the “Sentences,” “Documents,” and “Paragraphs”
options. For example, a keyword search or one or more syntactic searches
may be used.

Figure 5B is an example screen display illustrating a search
similar sentence operation. In Figure 5B, a sentence is selected within a
portion of a data set from which a natural language query result was extracted.
Selecting the sentence 5B06 and then selecting option “Sentences” 5B01 from
the Search Similar Menu 5B04 causes the SQE to perform a syntactic search
against the data set, returning results that are similar to the selected sentence
5B06. Figure 5C is an example screen display illustrating results that
correspond to the search similar sentence operation initiated in Figure 5B.
From the results displayed, one can see that the resulting sentences relate in a
manner that goes beyond word or pattern matching.

Although discussed herein primarily with respect to documents,
the SQE supports data sets comprising a variety of objects and data formats
and is not limited to textual documents. For example, a data set may comprise

13

10

15

20

29

30

35

CA 02457693 2004-02-13
WO 03/017143 PCT/US02/25756

text documents of various formats, with or without embedded non-textual
entities (e.qg., images, charts, graphs, maps, etc.), as well as documents that
are in and of themselves non-textual entities. Figures 6 through 9 illustrate
support of natural language queries that request specific non-textual data. One
skilled in the art will recognize that support for other format combinations of
stored and requested data are contemplated.

Figure 6 is an example screen display illustrating Syntactic Query
Engine results from a natural language query that requests a map. When the
user selects one of the returned results, for example, the “Angola [icon]” 608,
the requested map is displayed. Figure 7 is an example screen display
illhstrating a map that corresponds to the query result selected in Figure 6.

Figure 8 is an example screen display illustrating Syntactic Query
Engine results from a natural language query that requests a chart. When the
user selects one of the returned results, for example, the “China [icon] " 808,
the requested chart is displayed. Figure 9 is an example screen display
illustrating a chart that corresponds to the query result selected in Figure 8.

In addition to queries that are formulated as one or more
sentences, the SQE supports searching based upon designated syntactic
and/or grammatical roles. The SQE advanced search functionality supports
natural language queries that specify one or more terms, each associated with
a grammatical role or part of speech.

Figure 10 is an example screen display of an advanced search
using a natural language query that contains a subject. From this screen
display, a user may enter a word or phrase as a subject 1001 and/or as an
object 1002, the “subject” and “object” each being a grammatical role.
Selecting the Search button 1003 submits the query to the SQE. In the
example shown, a user enters "Bill Clinton™ as the subject. When the user
selects the Search button 1003, the SQE performs a syntactic search, returning
a list of verbs from sentences within the data set which contain “Bill Clinton” as
a subject.

Figure 11 is an example screen display illustrating advanced
search results from a query that contains a subject. The results are displayed
as a list of the verbs found in sentences within the stored data set in which the
designated subject occurs as an identified subject of the sentence. The number
in brackets after each listed verb indicates the number of times the designated
subject and listed verb are found together in a sentence within the stored data

14

10

15

20

25

30

35

CA 02457693 2004-02-13
WO 03/017143 PCT/US02/25756

set. For example, the top entry of the middle column 1101 of the verb list
indicates that the SQE identified 16 sentences within the data set which contain
“Bill Clinton” as a subject and “visit” (or some form of the verb “visit") as the
verb. The SQE determines the order in which the verb list is displayed. As
illustrated in Figure 11, the verb list may be displayed according to decreasing
frequency of occurrence of the designated subject and/or object in the data set.
In an alternate embodiment, the verbs may be displayed in alphabetical order.
In another embodiment, the verbs may be grouped and/or ordered based on
the similarity of meanings among the displayed verbs. The similarity of
meanings among multiple verbs can be determined using an electronic
dictionary, for example, WordNet. The WordNet dictionary is described in detalil
in Christiane Fellbaum (Editor) and George Miller (Preface), WordNet
(Language, Speech, and Communication), MIT Press, May 15, 1998.

When the user selects a verb from the returned list, the SQE
returns a set of resulting sentences with the designated subject and selected
verb. Figure 12 is an example screen display illustrating a portion of resulting
sentences returned by a Syntactic Query Engine when a particular verb Is
selected from the verb list. In the example shown, the verb “visit” has been
selected from the verb list shown in Figure 11, causing the SQE to display the
16 sentences within the data set where “Bill Clinton” is found as a subject and
«isit’ is found as the verb. The SQE identifies verbs without regard to specific
tense, which enhances the contextual accuracy of the search. For example, if
the user selects “visit” as the verb, the SQE returns sentences that contain the
verb “visited” (e.g., results 1-4 and 6), and sentences that contain the verb "may
visit” (e.g., result 5). The results displayed in the results area 1205 are
displayed in the same format as the results displayed in the results area 405 of
Figure 4. Accordingly, selecting one of the displayed results causes the SQE to
display a larger portion of the data set from which the selected result was
extracted, as described with reference to Figure SA.

As described, with reference to Figure 10, a user may designate a
subject and/or an object when using the advanced search functionality. Figure
13 is an example screen display of advanced search functionality using a
natural language query that contains a subject and an object. In Figure 13, the
user designates “US” as a subject in subject field 1301 and "Mexico™ as an
object in object field 1302. When the user selects the Search button 1303, the
SQE performs a syntactic search against the data set for sentences in which

15

10

15

20

25

30

35

CA 02457693 2004-02-13
WO 03/017143 PCT/US02/25756

“US” appears as an identified subject and “Mexico” appears as an Iidentified
object.

Figure 14 is an example screen display Illustrating advanced
search results from a query that contains a subject and an object. The top half
1406 of results area 1405 lists verbs returned where the designated subject
appears as a subject of the sentence and the designated object appears as an
object of the sentence. The lower half 1407 of results area 1405 lists verbs
returned where the designated object appears as a subject of the sentence and
the designated subject appears as an object of the sentence. Thus, the lower
half 1407 displays results of a query using the inverse relationship between the
subject and object. In this specific example, the top half 1406 of results area
1405 lists verbs found in sentences which contain “US” as a subject and
“Mexico” as an object. The bottom half 1406 of results area 1408 lists verbs
found in sentences which contain “Mexico” as a subject and "US” as an object.
Returning results related to the inverse relationship can be useful because
sentences within the data set that are contextually accurate results to the
natural language query may be overlooked if the inverse relationship Is not
examined. As similarly described with reference to Figures 11 and 12, when the
user selects a verb from the returned list, the SQE returns a set of resulting
sentences with the designated subject, designated object, and selected verb.
The resulting sentences are displayed in the same format as the results
displayed in the results area 405 of Figure 4 and the results displayed in the
results area 1205 of Figure 12. Accordingly, selecting one of the displayed
sentences causes the SQE to display a larger portion of the data set from which
the selected sentence was extracted, as described with reference to Figure SA.

Although Figures 10-14 illustrate advanced search functionality
with reference to natural language queries that specify a subject and/or an
object, one skilled in the art will recognize that a multitude of syntactic and
grammatical roles, and combinations of syntactic and grammatical roles may be
supported. For example, some of the combinations contemplated for support

by-the advanced search functionality of the SQE are:
subject/object;
subject/verb/object;
subject/verb;
verb/object;
preposition/verb modifier/object;
verb/verb modifier/object;
verb/preposition/object;

16

10

15

20

25

30

35

CA 02457693 2004-02-13
WO 03/017143 PCT/US02/25756

verb/preposition/verb modifier/object;
subject/preposition/verb modifier;
subject/preposition/verb modifier/object;
subject/verb/verb modifier/object;
subject/verb/preposition;
subject/verb/preposition/object;
subject/verb/preposition/verb modifier;

subject/ verb/preposition/verb modifier/object; and
noun/noun modifier.

Such support includes locating sentences in which the designated terms appear
in the associated designated syntactic or grammatical role, as well as locating,
when contextually appropriate, sentences in which the designated terms appear
but where the designated roles are interchanged. For example, as described
above, it is contextually appropriate to interchange the grammatical roles of a
designated subject and a designated object.

In addition to indexing and searching based on grammatical roles,
the Syntactic Query Engine may be implemented to recognize any number of
programmable attributes in natural language queries and data sets (described
in detail as “preferences” with reference to Figure 15). In one embodiment,
these attributes are used to filter the results of a syntactic search. Example
attributes include the names of countries, states, or regions, dates, and
document sections. One skilled in the art will recognize that an unlimited
number of afttributes may be defined and may véry across multiple data sets.
For example, one data set may consist of text from a set of encyclopedias. For
such a data set, a “volume” attribute may be defined, where there is one volume
for each letter of the alphabet. A second data set may be a single book with
multiple chapters. A “chapter’ attribute may be defined, for the data set,
allowing a user to search specific chapters.

Figure 15 is an example screen display illustrating the designation
of programmable attributes in a Syntactic Query Engine. A user designates
various attributes on the preferences window 1501. The SQE stores these
attributes (preferences) when the user selects the Set Preferences button 1502.
The attribute values are used by the SQE as filters when performing
subsequent queries. For example, the user may select a speciiic country as
country attribute 1503. When the SQE performs a subsequent natural
language query, the results returned are only those sentences found In
documents within the data set that relate to the country value specified as
country attribute 1503.

17

10

15

20

25

30

35

CA 02457693 2004-02-13
WO 03/017143 PCT/US02/25756

A more detailed description of an example SQE illustrating
additional user interface screens and example natural language queries and
results is included in Appendix A.

An SQE as described may perform multiple functions (e.g., data
set parsing, data set storage, natural language query parsing, and data query
processing) and typically comprises a plurality of components. Figure 16 IS a
block diagram of the components of an example embodiment of a Syntactic
Query Engine. A Syntactic Query Engine comprises a Query Preprocessor, a
Data Set Preprocessor, a Query Builder, a Data Set Indexer, an Enhanced
Natural Language Parser (“ENLP”), a data set repository, and, in some
embodiments, a user interface. The Data Set Preprocessor 1603 converis
received data sets to a format that the Enhanced Natural Language Parser
1604 recognizes. The Query Preprocessor 1610 converts received natural
language queries to a format that the Enhanced Natural Language Parser 1604
recoghizes. The Enhanced Natural Language Parser ("ENLP") 1604, parses
sentences, identifying the syntax and grammatical role of each meaningful term
in the sentence and the ways in which the terms are related to one another and
transforming the sentences into a canonical form—an enhanced data
representation. The Data Set Indexer 1607 indexes the parsed data set and
stores it in the data set repository 1608. The Query Builder 1611 generates and
executes formatted queries (e.g., SQL statements) against the data set indexed
and stored in the data set repository 1608.

In operation, the SQE 1601 receives as input a data set 1602 to
be indexed and stored. The Data Set Preprocessor 1603 prepares the data set
for parsing by assigning a Document ID to each document that is part of the
received data set, performing OCR processing on any non-textual entities that
are part of the received data set, and formatting each sentence according to the
ENLP format requirements. The Enhanced Natural Language Parser ("ENLP”)
1604 parses the data set, identifying for each senience, a set of terms, each
term’s part of speech and associated grammatical role and transforming this
data into an enhanced data representation. The Data Set Indexer 1607 formats
the output from the ENLP and sends it to the data set repository 1608 to be
indexed and stored. After a data set is indexed, a natural language query 1609
may be submitted to the SQE 1601 for processing. The Query Preprocessor
1610 prepares the natural language query for parsing. The preprocessing may
include, for example, spell checking, verifying that there is only one space

18

10

15

20

25

30

35

CA 02457693 2004-02-13
WO 03/017143 PCT/US02/25756

between each word in the query, and identifying the individual sentences if the
query is made up of more than one sentence. One skilled in the art will
recognize that the steps performed by the Data Set Preprocessor or the Query
Preprocessor may be modified based on the requirements of the natural
language parser. Any preprocessing steps necessary to prepare a data set or a
natural language query to be parsed are contemplated for use with techniques
of the present invention. The ENLP 1604 then parses the preprocessed natural
language query transforming the query into the canonical form and sends its
output to the Query Builder. The Query Builder 1611 uses the ENLP 1604
output to generate one or more data queries. Data queries differ from naturai
language queries in that they are in a format specified by the data set
repository, for example, SQL. The Query Builder 1611 may generate one or
more data queries associated with a single natural language query. The Query
Builder 1611 executes the generated data queries against the data set
repository 1608 using well-known database query techniques and returns the
data query results as Natural Language Query Results 1612. Note that when
the SQE is used within a system that interfaces with a user, the SQE also
typically contains a user interfface component 1613. The user Interface
component 1613 interfaces to a user in a manner similar to that shown in the
display screens of Figures 4-15.

Figure 17 is a block diagram of the components of an Enhanced
Natural Language Parser of an example embodiment of a Syntactic Query
Engine. The Enhanced Natural Language Parser (“ENLP") 1701 comprises a
natural language parser 1702 and a postprocessor 1703. The natural language
parser 1702 identifies, for each sentence it receives as input, the part of speech
for each term in the sentence and syntactic relationships between the terms
within the sentence. An SQE may be implemented by integrating a proprietary
natural language parser into the ENLP, or by integrating an existing off-the-shelf
natural language parser, for example, Minipar, available from Nalante, Inc., 245
Falconer End, Edmonton, Alberta, T6R 2V6. The postprocessor 1703
examines the natural language parser 1702 output and, from the identified parts
of speech and syntactic relationships, determines the grammatical role played
by each term in the sentence and the grammatical relationships between those
terms. The postprocessor 1703 then generates an enhanced data
representation from the determined grammatical roles and syntactic and
grammatical relationships.

19

10

15

20

29

30

35

CA 02457693 2004-02-13
WO 03/017143 PCT/US02/25756

Figure 18 is a block diagram of the processing performed by an
example Enhanced Natural Language Parser. The natural language parser
1801 receives a sentence 1803 as input, and generates a syntactic structure,
such as parse tree 1804. The generated parse tree identifies the part of speech
for each term in the sentence and describes the relative positions of the terms
within the sentence. The postprocessor 1802 receives the generated parse
tree 1804 as input and determines the grammatical role of each term in the
sentence and relationships between terms in the sentence, generating an
enhanced data representation, such as enhanced sentence representation
1805.

Figure 19 is a block diagram illustrating a graphical representation
of an example syntactic structure generated by the natural language parser
component of an Enhanced Natural Language Parser. The parse tree shown is
one example of a representation that may be generated by a natural language
parser. The techniques of the methods and systems of the present invention,
implemented in this example in the postprocessor component of the ENLP,
enhance the representation generated by the natural language processor by
determining the grammatical role of each meaningful term, associating these
terms with their determined roles and determining relationships between terms.
In Figure 19, the top node 1901 represents the entire sentence, “YPF of
Argentina exports natural gas” Nodes 1902 and 1903 identify the noun phrase
of the sentence, “YPF of Argentina,” and the verb phrase of the sentence,
“exports natural gas,” respectively. The branches of nodes or leaves in the
parse tree represent the parts of the sentence further divided until, at the leaf
level, each term is singled out and associated with a part of speech. A
configurable list of words are ignored by the parser as “stopwords.” The
stopword list comprises words that are deemed not indicative of the information
being sought. Example stopwords are “a,” “the,” “and,” “or,” and "but.” In one
embodiment, question words (e.g., “who,” “what,” “where,” “when,” “why,” “how,”
and “does”) are also ignored by the parser. In this example, nodes 1904 and
1905 identify the noun phrase 1902 as a noun, “YPF” and a prepositional
phrase, “of Argentina.” Nodes 1908 and 1909 divide the prepositional phrase
1905 into a preposition, “of,” and a noun, “Argentina.” Nodes 1906 and 1907
divide the verb phrase 1903 into a verb, “exports;” and a noun phrase, “natural
gas.” Nodes 1910 and 1911 divide the noun phrase 1907 into an adjective,
“natural,” and a noun, “gas.”

20

10

15

20

25

30

35

CA 02457693 2004-02-13

WO 03/017143 PCT/US02/25756

Figure 20 is a table illustrating an example enhanced data
representation generated by the postprocessor component of an Enhanced
Natural Language Parser. This example enhanced data representation
comprises nine different ways of relating terms within the sentence that was
illustrated in the parse tree of Figure 19. The ways chosen and the number of
ways used is based upon a set of heuristics, which may change as more
knowledge is acquired regarding syntactic searching. In addition, one skilled in
the art will recognize that the selected roles and relationships to be stored may
be programmatically determined. In the example shown, row 2001 represents
the relationship between “Argentina” as the subject of the sentence and “YPF”
as a modifier of that subject. The SQE determines this relationship based on
the location of the preposition, “of’ between the two related terms In the
sentence. Rows 2002 and 2003 represent the relationship between "YPF" as
the subject of the sentence and “natural gas” and “gas,” respectively, as objects
of the sentence. Similarly, rows 2004 and 2005 represent the relationship
between “Argentina” as the subject of the sentence and "natural gas” and “gas,”
respectively, as objects of the sentence. Rows 2006 and 2007, respectively,
represent the relationship between the two nouns, “YPF” and “Argentina,” each
used as a subject and the verb “export.” Rows 2008 and 2009 represent the
relationship between the verb, “export” and the noun phrase, “natural gas” and
the noun, “gas,” each used as an object, respeciively.

The enhanced data representation is indexed and stored io
support the syntactic search functionality of the SQE. The original sentence
“YPF of Argentina exports natural gas,” will be returned by the SQE as a query
result in response to any submitted query that can be similarly represented.
For example, “What countries export gas?,” “Does Argentina import gas?,” and
“Is Argentina an importer or exporter of gas?” will all cause the SQE to return to
the represented sentence as a resullt.

The Syntactic Query Engine performs two functions to accomplish
effective syntactic query processing. The first is the parsing, indexing, and
storage of a data set. The second is the parsing and subsequent execution of
natural language queries. These two functions are outlined below with
reference to Figures 21 and 22.

Figure 21 is an example block diagram of data set processing
performed by a Syntactic Query Engine. As an example, documents that make
up a data set 2101 are submitted to the Data Set Preprocessor 2102 (e.g.,

21

10

15

20

25

30

35

CA 02457693 2004-02-13
WO 03/017143 PCT/US02/25756

component 1603 in Figure 16). [f the data set comprises muliple files, as
shown in Figure 21, the Data Set Preprocessor 2102 creates one tagged file
containing the document set. The Data Set Preprocessor 2102 then dissects
that file into individual sentences and sends each sentence to the ENLP 2104
(e.g., component 1604 in Figure 16). After the ENLP 2104 parses each
received sentence, it sends the generated enhanced data representation of
each sentence to the Data Set Indexer 2105 (e.g., component 1607 in Figure
16). The Data Set Indexer 2105 processes and formats the ENLP output,
distributing the data to formatted text files. The text files are typically bulk
loaded into the data set repository 2107 (e.g., component 1608 in Figure 16).
One skilled in the art will recognize that other methods of data set
preprocessing, indexing, and storing may be implemented in place of the
methods described herein, and that such modifications are contemplated by the
methods and systems of the present invention. For example, the Data Set
Indexer may insert data directly into the data set repository instead of
generating text files to be bulk loaded.

After indexing and storing a data set, the SQE may perform its
second function, processing natural language queries against the stored data
set. Figure 22 is an example block diagram of natural language dquery
processing performed by a Syntactic Query Engine. As an example, a natural
language query 2201 is submitted to the Query Preprocessor 2202 of the SQE.
The Query Preprocessor 2202 (e.g., component 1610 in Figure 16) prepares
the natural language query for parsing. The preprocessing step may comprise
several functions, examples of which may be spell checking, text case
verification and/or alteration, and excessive white-space reduction. The speciiic
preprocessing steps performed by the Query Preprocessor 2202 are typically
based on the format requirements: of the natural language parser component of
the ENLP. The SQE sends the preprocessed query to the ENLP 2204 (e.g.,
component 1604 in Figure 16). The ENLP parses the query, generating an
enhanced data representation of the query 2205, which is sent to the Query
Builder 2206 (e.g., component 1611 in Figure 16). This enhanced data
representation identifies grammatical roles of and relationships between terms
in the query. Using the enhanced data representation 2209, the Query Builder
2206 generates one or more data queries 2207 and executes them against the
data set repository 2208. The data query results 2209 are returned to the

22

10

15

20

29

30

39

CA 02457693 2004-02-13
WO 03/017143 PCT/US02/25756

Query Builder to be returned to the user as natural language query results
2210.

Figure 23 is an example block diagram of a general purpose
computer system for practicing embodiments of a Syntactic Query Engine. The
computer system 2301 contains a central processing unit (CPU) 2302,
Input/Output devices 2303, a display device 2304, and a computer memory
(memory) 2305. The Syntactic Query Engine 2320 including the Query
Preprocessor 2306, Query Builder 2307, Data Set Preprocessor 2308, Data Set
Indexer 2311, Enhanced Natural Language Parser 2312, and data set
repository 2315, preferably resides in memory 2309, with the operating system
2309 and other programs 2310 and executes on CPU 2302. One skilled in the
art will recognize that the SQE may be implemented using various
configurations. For example, the data set repository may be implemented as
one or more data repositories stored on one or more local or remote data
storage devices. Furthermore, the various components comprising the SQE
may be distributed across one or more computer systems including handhela
devices, for example, cell phones or PDAs. Additionally, the components of the
SQE may be combined differently in one or more different modules. The SQE
may also be implemented across a network, for example, the Internet or may
be embedded in another device.

As described with reference to Figure 21, the Data Set
Preprocessor 2102 performs two overall functions — building one or more
tagged files from the received data set files and dissecting the data set into
individual objects, for example, sentences. These functions are described In
detail below with respect to Figures 24-26. Although Figures 24-26 present a
particular ordering of steps and are oriented to a data set of objects comprising
documents and queries comprising sentences, one skilled Iin the art will
recbgnize that these flow diagrams, as well as all others described herein, are
examples of one embodiment. Other sequences, orderings and groupings of
steps, and other steps that achieve similar functions, are equivalent to and
contemplated by the methods and systems of the present invention. These
include steps and ordering modifications oriented toward non-textual objects in
a data set, such as audio or video objects.

Figure 24 is an example flow diagram of the steps performed by a
build file routine within the Data Set Preprocessor component of a Syntactic
Query Engine. The build_file routine generates text for any non-textual entities

23

10

15

20

25

30

35

CA 02457693 2004-02-13
WO 03/017 143 PCT/US02/25756

within the dataset, identifies document structures (e.g., chapters or sections in a
book), and generates one or more tagged files for the data set. In one
embodiment, the build_file routine generates one tagged file containing the
entire data set. In alternate embodiments, multiple files may be generated, for
example, one file for each object (e.g., document) in the data set. In step 2401,
the build_file routine creates a text file. In step 2402, the build_file routine
determines the structure of the individual elements that make up the data set.
This structure can be previously determined, for ,example by a system
administrator and indicated within the data set using, for example, HTML tags.
For example, if the data set is a book, the defined structure may identify each
section or chapter of the book. In step 2403, the build_file routine tags the
beginning and end of each document (or section, as defined by the structure of
the data set). In step 2404, the routine performs OCR processing on any
images so that it can create searchable text (lexical units) associated with each
image. In step 2405, the build_file routine creates one or more sentences for
each chart, map, figure, table, or other non-textual entity. For example, for a
map of China, the routine may insert a sentence of the form,

This is a map of China.

In step 2406, the build file routine generates an object identifier (e.g., (a
Document ID) and inserts a tag with the generated identifier. In step 2407, the
build_file routine writes the processed document to the created text file. Steps
2402 through 2407 are repeated for each file that is submitted as part of the
data set. When there are no more files to process, the build_file routine returns.

Figure 25 illustrates an example format of a tagged file built by the
build_file routine of the Data Set Preprocessor component of a Syntactic Query
Engine. The beginning and end of each document in the file is marked,
respectively, with a <DOC> tag 2501 and a </DOC> tag 2502. The build_file
routine generates a Document ID for each document in the file. The Document
ID is marked by and between a <DOCNO> tag 2503 and a </DOCNO> tag
2504. Table section 2505 shows example sentences created by the build_file
routine to represent lexical units for a table embedded within the document.
The first sentence for Table 2505,

This table shows the Defense forces, 1996,

is generated from the title of the actual table in the document. The remaining
sentences shown in Table 2505, are generated from the rows in the actual table
in the document. Appendix B is a portion of a sample file created by the

24

10

15

20

25

30

35

CA 02457693 2004-02-13
WO 03/017143 PCT/US02/25756

build file routine. One skilled in the art will recognize that various processes
and techniques may be used to identify documents within the data set and to
identify entities (e.g., tables) within each document. The use of equivalent
and/or alternative processes and markup techniques and formats, including
HTML, XML, and SGML and non-tagged techniques are contemplated ana may
be incorporated in methods and systems of the present invention.

The second function performed by the Data Set Preprocessor
component of the SQE is dissecting the data set into individual objects (e.g.,
sentences) to be processed. Figure 26 is an example flow diagram of the steps
performed by the dissect_file routine of the Data Set Preprocessor component
of a Syntactic Query Engine. In step 2601, the routine extracts a sentence from
the tagged text file containing the data set. In step 2602, the dissect file routine
preprocesses the extracted sentence, preparing the sentence for parsing. The
preprocessing step may comprise any functions necessary to prepare a
sentence according to the requirements of the natural language parser
component of the ENLP. These functions may include, for example, spell
checking, removing excessive white space, removing extraneous punctuation,
and/or converting terms to lowercase, uppercase, or proper case. One skilled
in the art will recognize that any preprocessing performed to put a sentence into
a form that is acceptable to the natural language parser can be used with
techniques of the present invention. In step 2603, the routine sends the
preprocessed sentence to the ENLP. In step 2604, the routine receives as
output from the ENLP an enhanced data representation of the sentence. In
step 2605, the dissect file routine forwards the original sentence and the
enhanced data representation to the Data Set Indexer for further processing.
Steps 2601-2605 are repeated for each sentence in the file. When no more
sentences remain, the dissect_file routine returns.

The Data Set Indexer (e.g., component 2105 in Figure 21)
prepares the enhanced data representations generated from the data set (e.g.,
the enhanced sentence representation illustrated in Figure 20) to be stored In
the data set repository. In one example embodiment, the Data Set Indexer
initially stores the enhanced data representation data in generated text files
before loading the enhanced data representations into the data set repository,
for example, using a bulk loading function of the data set repository. One
skilled in the art will recognize that any of a wide variety of well-known
techniques may be implemented to load a data set (including the generated

25

10

15

20

29

30

35

CA 02457693 2004-02-13
WO 03/017143 .. PCT/US02/25756

enhanced data representations) into the data set repository. For example,
another technique for loading writes each record to the data set repository as It
is generated instead of writing the records to text files to be bulk loaded.

As described, the SQE uses the ENLP to parse data that is being
stored and indexed, as well as to parse queries (e.g., natural language queries)
that are submitted against a stored indexed data set. Similar to the
preprocessing performed before parsing a data set, the SQE performs
preprocessing on submitted queries.

Figure 27 is an example flow diagram of the steps performed by a
Syntactic Query Engine to process a natural language query. In step 2701, the
Query Preprocessor prepares the natural language query for the ENLP. In step
2702, the ENLP parses the preprocessed natural language query and
generates an enhanced data representation of the query. In step 2703, the
Query Builder, generates and executes data queries (e.g., SQL statements)
based on the ENLP output (the enhanced data representation).

Figure 28 is an example flow diagram of the steps performed by a
preprocess_natural_language_query routine of the Query Preprocessor
component of a Syntactic Query Engine. This routine preprocesses the query
according to the requirements of the ENLP. Although described with respect to
certain modifications to the query, one skilled in the art will recognize that many
other preprocessing steps are possible, yield equivalent results, and are
contemplated by the methods and systems of the present invention. In step
2801, the routine separates the query into multiple sentences if necessary,
based on punctuation (e.g., *;", ", “?”, “I", and “.”, where the “.” is not part of an
abbreviation). In step 2802, the routine removes spaces between any terms
that are separated by hyphens. For example, “seventeen — year — old” Is
converted to “seventeen-year-old”. In step 2803, the routine removes
extraneous spaces from the query, leaving the words separated by one space.
In step 2804, the routine spell-checks the routine. In one embodiment, the
routine automatically corrects any detected spelling errors. In another
embodiment, the routine requests an indication of whether and how each
spelling error is to be corrected.

The enhanced data representations describe one or more ways In
which the meaningful terms of an object (e.g., a sentence) may be related.
(See description with reference to Figure 20.) As described earier, enhanced

data representations of the data in the data set are stored in the data set

20

10

15

20

25

30

35

CA 02457693 2004-02-13
WO 03/017143 PCT/US02/25756

repository, and enhanced data representations are used to generate data
queries when the SQE processes a natural language query. The enhanced
data representations describe the relationships between meaningful terms
within each sentence, as determined by the ENLP. Each meaningful term may
be associated with one or more syntactic or grammatical roles. Redundancy is
not discouraged, because it may yield additional results. For example, a term
may be part of two described relationships that are associated with different
grammatical roles, e.g., a term may appear as both an “object” and a "noun
modifier.” The relationships that are selected and represented are heuristically
determined as those relationships that will tend to generate additional relevant
results. A current embodiment uses the specific relationships described In
Figure 20 and shown as stored in the data repository in Figure 29 and
described by Figures 31-36. However, one skilled in the art will recognize that
other relationships and grammatical roles may be described in the enhanced
data representation, and the determination of these roles and relationships
relates to the types of objects in the data set.

Figure 29 is an example block diagram showing the structure of
an example Data Set Repository of a Syntactic Query Engine. The set of
stored tables represent the roles and relationships between the determined
meaningful terms for each parsed sentence of each document in the data set,
as determined by the ENLP, and correspond to the enhanced data
representations generated. The Subject Table 2901 stores one record for each
determined subject/verb combination in each parsed sentence in each
document. The Object Table 2902 stores each determined object/verb
combination for each parsed sentence in each document. The Subject_Object
table stores each identified subject/verb/object combination for each parsed
sentence. In an alternate embodiment, the Subject_Object table is
implemented as a view that is a dynamically maintained join between the
subject and object tables, joined on the verb, Document ID, and Sentence ID
fields. The Preposition table 2903 stores each verb/preposition/verb modifier
combination for each parsed sentence in each document. The Noun_Modifier
table 2904 stores each noun/noun modifier combination in each parsed
sentence in each document. A noun modifier may be a noun, a noun phrase, or
an adjective. The Sentence table 2905 stores the actual text for each sentence
in each document. In addition, the Sentence table 2905 stores the Governing
Verb, Related Subject, and Related Object of each sentence, as identified by

27

10

195

20

29

30

35

CA 02457693 2004-02-13
WO 03/017143 PCT/US02/25756

the postprocessor component of the ENLP. The governing verb iIs the main
verb in a sentence. The related subject and related object are the subject and
object, respectively, related to the governing verb. For example, in the
sentence

The girl walks the dog.

“walks” is the governing verb, “girl” is the related subject, and “"dog” is the
related object. These fields may be left blank if the postprocessor is unable to
determine the governing verb, related subject, or related object. The Date,
Money Amount, Number, Location, Person, Corporate Name, and Organization
fields of the Sentence table 2905 store binary indicators of whether or not the
sentence contains a term that the SQE recognizes as an attribute of the
attribute type indicated by the field name. The Attributes table 2906 IS an
optional table that stores the values of specific data types found within each
document. As described above, attributes are settable parameters and may
include, for example, names of countries, states, or regions, document sections,
and dates. As described with respect to Figure 15, these attributes may be
used by the SQE to filter data query results. The optional Parent table 2907 is
used to indicate a hierarchical structure of objects in the data set. This allows a
section, subsection, chapter, or other document portion to be identified by the
Data Set Indexer component of a Syntactic Query Engine as a “document’,
while storing the relationships between multiple documents or document
portions in a hierarchical fashion.

Figure 30 is an example flow diagram of the steps performed by a
parse_sentence routine of the Enhanced Natural Language Parser component
of a Syntactic Query Engine. In summary, the routine parses the designated
sentence or phrase, identifies the grammatical roles of terms within the
sentence, generates an enhanced data representation of the sentence, and
constructs an output string. In step 3001, the natural language parser
component of the ENLP parses the preprocessed sentence. In step 3002, the
parse_sentence routine calls the determine_grammatical_roles subroutine
(discussed in detail with reference to Figure 31) to determine the grammatical
roles of and relationships between terms within the sentence. In step 3004, the
routine calls the construct output string routine (discussed in detail with
reference to Figure 37) to format the generated enhanced data representation
for further processing.

23

10

15

20

29

30

39

CA 02457693 2004-02-13

WO 03/017143 PCT/US02/25756

Figure 31 is an example flow diagram of the steps performed by a
determine grammatical_roles subroutine within the parse_sentence routine of
the Enhanced Natural Language Parser. In summary, the routine converts
terms, as appropriate, to a standard form (e.g., converting all verbs to active
voice), identifies attributes (e.g., names of countries) within the sentence,
determines the grammatical roles of meaningful terms in the sentence, and
initiates the generation of an enhanced data representation. In step 3101, the
routine converts each word that is identified as a subordinate term to an
associated governing term. Subordinate terms and governing terms are terms
that are related in some way, similar to multiple tenses of a verb. For example,
the governing term “Ireland” is associated with subordinate terms “Irish,” “irish,”
“Irishman,” “irishman,” “Irishwoman,” “irishwoman,” and “ireland.” Converting
subordinate terms to an associated governing term ensures that a standard set
of terms is used to represent data, for example relating multiple terms to a
country, as shown in the example above, thus increasing potential contextual
matches. Subordinate terms that are identified as occurring within a noun
phrase, for example, “Korean,” occurring with the noun phrase “Korean War,”
are not converted to the associated governing term to preserve the specific
meaning of the noun phrase. For example, “Korean War" has a specific
meaning that is not conveyed by the terms “Korea” and “war’ independently.
Appendix C is an example list of subordinate terms and their associated
governing terms for an example SQE. Typically, this information is stored by
the SQE as a configurable list that is related to the data set, preferably
initialized when the SQE is installed, for example by a system administrator.

In step 3102, the determine_grammatical_roles routine converts
the verbs within the sentence to active voice. This ensures that the SQE will
identify data within the data set in response to queries regardless of verb tense.
(See the example described with reference to Figure 1.) In step 3103, the
routine identifies attribute values, which can later be used to filter search
results.

Steps 3104-3111 are described with reference to an example
query,

Does Argentina import‘ or export natural gas from the south
of Patagonia?

29

(Q)

10

15

20

25

CA 02457693 2004-02-13
WO 03/017143 PCT/US02/25756

Figure 36A is a graphical representation of an example parse tree generated by
a natural language parser component of an Enhanced Natural Language
Parser. The example parse corresponds to this query. An enhanced data
representation of the example query is shown in Figure 36B.

In steps 3104-3111, the determine_grammatical_roles routine
builds the data structures that correspond to the enhanced data representation.
Specifically, in step 3104, the routine generates Subject data structures
identifying terms that may be the subject of the sentence (similar to the Subject
table described with reference to Figure 29). For example, given query Q
above, Table 1 shows the generated Subject structures.

Table 1
| Subject Verb
Argentina ~_import |
Argentina ~_export |

The steps performed in generating the Subject structures are described in detail
with reference to Figure 32. In step 3105, the routine generates Object data
structures identifying terms that may be the object of the sentence (similar to
the Object table described with reference to Figure 29). For example, given
query Q above, Table 2 shows the generated Object structures.

Table 2
Verb Object ﬂl
import gas
import | natural gas
~ export gas |
| export | natural gas

The steps performed in generating the Object structures are described in detall
with reference to Figure 33. In step 3106, the routine generates Preposition
structures that are similar to the structure of the Preposition table described with
reference to Figure 29. For example, given query Q above, Table 3 shows the
generated Preposition structures.

30

10

15

20

25

CA 02457693 2004-02-13

WO 03/017143 PCT/US02/25756
Table 3
“Verb | Preposition | Modifier
e ————e e — — EE— I B — . + -
~import ~ _from | south
| import | ~ from | Patagonia
| export - from ~_south |
- export | from | Patagonia |

In step 3107, the routine generates Subject/Object structures to represent the
ways in which terms that are identified as potential subjects and objects of a
sentence may be related. Each subject is paired with each object that IS
associated with the same verb. In addition, each subject is paired with each
modifier in the Preposition structure that is associated with the same verb. For
example, given query Q above, Table 4 shows the generated Subject/Object

structures.
Table 4
[Subject | Object
~Argentina_| gas
Argentina natural gas |
Argentina | south
| Argentina | Patagonia |

In step 3108, the routine generates Subject/Modifier structures 1o describe the
relationships between related nouns, noun phrases, and adjectives. The
generate_subject_modifier routine is described In detail with reference to
Figure 34.

In step 3109, the routine determines whether or not the sentence
being parsed is a query (as opposed to an object of a data set being parsed for
storing and indexing). If the designated sentence or phrase Is a query, the
routine continues in step 3110, else it returns. In steps 3110 and 3111, the
routine generates Generalized Subject/Object structures and Generalziea
Subject/Modifier structures. These structures may be used by the Query
Builder to generate additional data queries to return results that may be
contextually relevant to the submitted natural language query. The
generate_generalized_subject_object routine is described in detail with
reference to Figure 35. The Generalized Subject/Modifier structures are
generated from previously generated Subject/Object structures. The object is

31

10

15

20

25

30

39

CA 02457693 2004-02-13
WO 03/017143 PCT/US02/25756

designated as the subject in the new Generalized Subject/Modifier structure,
and the subject is designated as the modifier in the new Generalized
Subject/Modifier structure. |

Figure 32 is an example flow diagram of the steps performed by a
generate_subject_structure subroutine of the determine grammatical_roles
routine. This routine identifies, for each verb in the sentence, each noun, noun
phrase, or adjective that may be a subject associated with the designated verb
and stores it in a Subject structure. In step 3201, the routine searches for all
verbs in the syntactic data representation (e.g., a parse tree) generated by the
natural language parser. In step 3202, the routine sets the current node to an
identified verb. In steps 3203-3206, the routine loops searching for all terms
that are potentially subjects related to the identified verb. Specifically, in step
3203. the routine moves toward the beginning of the sentence (e.g., {0 the next
leaf to the left in the parse tree from the current node). In step 3204, the routine
examines the node and determines whether or not it is a noun, a noun phrase,
or an adjective. If the routine determines that the current node is a noun, a
noun phrase, or an adjective, then it is identified as a subject and the routine
continues in step 3205, else it continues in step 3206. In step 3205, the routine
creates a Subject structure identifying the current node as the subject and the
previously identified verb (the current verb) as the verb. Additionally, if the
current node is a noun phrase, the routine creates a Subject structure
identifying the tail of the noun phrase (e.g., “gas” of the noun phrase “natural
gas”) as a subject associated with the current verb. The routine then continues
searching for additional subjects related to the current verb by looping back to
step 3203. In step 3206, the routine examines the current node and determines
whether or not it is the left-most leaf or a verb from a different verb phrase. If
the current node is not the left-most leaf or a verb from a different verb phrase,
the routine continues searching for additional subjects related to the current
verb by returning to the beginning.of the loop, in step 3203, else it continues In
step 3207. In step 3207, the routine determines whether or not all of the
identified verbs have been processed. If there are more verbs to process, the
routine continues in step 3202 and begins another loop with the new verb as
the current node, otherwise it returns.

Figure 33 is an example flow diagram of the steps performed by a
generate_object_structure subroutine of the determine grammatical_roles
routine. This routine identifies, for each verb in the sentence, each noun, noun

32

10

15

20

25

30

35

CA 02457693 2004-02-13
WO 03/017143 PCT/US02/25756

phrase, or adjective that may be an object associated with the designated verb
and stores it in an Object structure. In step 3301, the routine searches for all
verbs in the syntactic data representation generated by the natural language
parser. In step 3302, the routine sets the current node to an identified verb. In
steps 3303-3306, the routine loops searching for all terms that are potentially
objects related to the identified verb. Specifically, in step 3303, the routine
moves toward the end of the sentenct (e.g., to the next leaf to the right in the
parse tree from the current node). In step 3304, the routine examines the node
and determines whether or not it is a noun, a noun phrase, or an adjective. If
the routine determines that the current node is a noun, a noun phrase, or an
adjective, then it is identified as an object and the routine continues in step
3305, else it continues in step 3306. In step 3305, the routine creates an
Object structure identifying the current node as the object and the previously
identified verb (the current verb) as the verb. Additionally, if the current node Is
a noun phrase, the routine creates an Object structure identifying the tail of the
noun phrase (e.g., “gas” of the noun phrase “natural gas’) as the object
associated with the current verb. The routine then continues searching for
additional objects related to the current verb by looping back to step 3303. In
step 3306, the routine examines the current node and determines whether or
not it is the right-most leaf, a verb from a different verb phrase, or a preposition
other than “of.” If the current node is not the right-most leaf, a verb from a
different verb phrase, or a preposition other than “of,” the routine continues
searching for additional objects related to the current verb by returning fo the
beginning of the loop in step 3303, else it continues In step 3307. In step 3307,
the routine determines whether or not all of the identified verbs have been
processed. If there are more verbs to process, then the routine continues In
step 3302, and begins another loop with the new verb as the current node,
otherwise It returns.

Figure 34 is an example flow diagram of the steps performed by a
generate_subject_modifier subroutine of the determine grammatical_roles
routine. This routine identifies, for each noun in the sentence, each other noun
or adjective that may be related to the designated noun and stores it iIn a
Subject/Modifier structure. In step 3401, the routine searches for all nouns and
noun phrases in the syntactic data representation (e.g., a parse tree) generated
by the natural language parser. In step 3402, the routine sets the current node
to an identified noun or noun phrase. In steps 3403-3406, the routine loops

33

10

15

20

25

30

35

CA 02457693 2004-02-13
WO 03/017143 ” PCT/US02/25756

searching for all terms that may be related to the identified noun. Specifically, in
step 3403, the routine moves toward the beginning of the sentenct (e.g., t0 the
next leaf to the left in the parse tree from the current node). In step 3404, the
routine examines the node and determines whether or not it Is a noun, a noun
phrase, or an adjective. If the routine determines that the current node Is a
noun, a noun phrase, or an adjective, then it is identified as a modifier and the
routine continues in step 3405, else it continues in step 3406. In step 3405, the
routine creates a Subject/Modifier structure identifying the current node as the
modifier and the previously identified noun as the subject. Additionally, if the
current node is a noun phrase, the routine creates a Subject/Modifier structure
identifying the tail of the noun phrase (e.g., “gas” of the noun phrase ‘natural
gas”) as the modifier associated with the current noun. The routine then
continues searching for additional modifiers related to the current noun by
looping back to step 3403. In step 3406, the routine examines the current node
and determines whether or not it is the preposition, “of.” If the current node is
the preposition “of” the routine continues searching, by returning to the
beginning of the loop, in step 3403, else it continues in step 3407. In step
3407, the routine determines whether or not all of the identified nouns have
been processed. If there are more nouns to process, the routine continues in
step 3402 and begins another loop with the new noun as the current node,
otherwise it returns.

: As described with reference to Figure 31, the
determine _grammatical_roles routine calls the
generate_generalized_subject_object and
generate_generalized_subject_modifier subroutines (steps 3110 and 3111 of
Figure 31) when the sentence being parsed is a query instead of an object in a
data set being indexed for storage.

Figure 35 is an example flow diagram of the steps performed by a
generate_generalized_subject_object subroutine of the
determine grammatical_roles routine. This routine identifies, for each noun in
the sentence, each other noun or adjective that may be an object related to the
designated noun and stores it in a Subject/Object structure. In step 3501, the
routine searches for all nouns and noun phrases in the syntactic data
representation (e.g., a parse tree) generated by the natural language parser. In
step 3502, the routine sets the current node to an identified noun (or noun
phrase). In steps 3503-3509, the routine loops searching for all terms that may

34

10

15

20

25

30

35

CA 02457693 2004-02-13
WO 03/017143 PCT/US02/25756

be an object related to the identified noun. Specifically, in step 3503, the
routine moves toward the end of the sentence (e.g., to the next leaf to the right
in the parse tree from the current node). In step 3504, the routine examines the
node and determines whether or not it is a preposition other than “of.” If the
routine determines that the current node is a preposition other than “of,” then it
continues in step 3505, else it continues in step 3508. In step 3508, the routine
examines the node and determines whether or not it is a verb or the last node.
If the routine determines that the current node is a verb or the last node, then it
continues in step 3510, else it continues searching, by returning to the
beginning of the loop, in step 3503. In step 3505, the routine moves toward the
end of the sentence (e.g., to the next leaf to the right in the parse tree from the
current node). In step 3506, the routine examines the current node and
determines whether or not it is a noun, a noun phrase, or an adjective. If the
routine determines that the current node is a noun, a noun phrase, or an
adjective, then it is identified as an object and the routine continues in step
3507, else it continues in step 3509. In step 3507, the routine creates a
Generalized Subject/Object structure identifying the current node as the object
and the previously identified noun as the subject. Additionally, if the current
node is a noun phrase, the routine creates a Subject/Object siructure identifying
the tail of the noun phrase (e.g., “gas” of the noun phrase “natural gas”) as the
object associated with the current “subject” node. After creating one or more
Generalized Subject/Object structures, the routine continues looping In step
3505, looking for any other nouns, noun phrases, or adjectives to relate to the
identified “subject” noun. In step 3509, the routine determines whether or not
the current node is the preposition “of.” If the current node is the preposition
“of,” then the routine continues looping in step 3505, else it continues Iin step
3510. In step 3510, the routine determines whether or not all of the identified
nouns and noun phrases have been processed. If there are more nouns or
noun phrases to process, the routine continues in step 3502 and begins
another loop with the new noun as the current node, otherwise it returns.

Figure 36B is an illustration of an enhanced data representation of
an example natural language query generated by an Enhanced Natural
Language Parser. The natural language query,

Does Argentina import or export natural gas from the south
of Patagonia?

10

15

20

29

30

CA 02457693 2004-02-13
WO 03/017143 ' PCT/US02/25756

(query Q) is described by the roles and relationships shown in rows 1-28. Rows
1 and 2 are generated by the generate_subject_structure subroutine described
with reference to Figure 32. Rows 3-6 are generated by the
generate_object_structure subroutine described with reference to Figure 33.
Rows 7-10 are generated by the generate Preposition structures routine
described with reference to step 3106 of Figure 31. Rows 11-14 are generated
by the generate Subject/Object structures routine described with reference to
step 3107 of Figure 31. Row 15 is generated by the generate Subject/Modifier
structures routine described with reference to step 3108 of Figure 31. Rows
16-20 are generated by the generate_generalized_subject_object routine
described with reference to Figure 35. Specifically, rows 16-19 are generated in
step 3507 of Figure 35. Row 20 is generated in step 3511 of Figure 35. Rows
21-28 are generated by the generate Generalized Subject/Modifier structures
routine described with reference to step 3111 of Figure 31.

At this point, the ENLP has determined the syntax, grammatical
roles, and relationships between terms of the sentence. The ENLP has also
generated an enhanced data representation for the sentence with all of the
structures described with reference to Figure 31. The ENLP next constructs an
output string (step 3003 of Figure 30) that will be used by the Data Indexer to
index and store the enhanced data representation when the SQE is processing
an object of the data set, or by the Query Builder to generate data queries that
will be executed against the data set repository.

An output string generated by an example ENLP is of the form:

{Parameter String};{Parameter String};...;{Parameter
String}|{Attribute List};{Verb List};{Word List};{ Sentence}

Each {Parameter String} is a set of six single quoted parameters, separated by
semi-colons, of the form:

‘subject’;'verb’;’preposition’;'verb modifier’;'object’;’noun
modifier

where a wildcard character, for example “#” or “*” may be substituted for one or

more of the parameters.
The {Attribute List} is a list of <Attribute Name;Attribute Value> pairs, separated

by semi-colons, for example:

country;France;country;Japan

36

10

15

20

25

30

35

CA 02457693 2004-02-13
WO 03/017143 PCT/US02/25756

The {Verb List} is a list of all of the identified verbs in the sentence separated by
semi-colons. It includes even the verbs that appear in the {Parameter String}
parameters.

The {Word List} is a distinct list of all the words found in the Parameter Strings
that are not also Attribute Values in the Attribute List separated by semi-colons.
The {Sentence} is the sentence that the ENLP processes atter any
preprocessing that may include modifying the text case and correcting spelling.

Figure 37 is an example flow diagram of the steps performed by a
construct_output_string routine of the Enhanced Natural Language Parser.
This routine sorts the generated parameter sets that comprise the enhanced
data representation of the natural language query based on which sets are
most likely to generate data queries with contextually accurate results. The
routine then constructs an output string of the format described. In step 3701,
the routine generates parameter strings from the structures generated as
described with reference to steps 3104-3111 of Figure 31. In step 3702, the
routine sorts the generated parameter strings, preferably in order of increasing
ambiguity of terms, such that the parameter strings comprising terms with less
ambiguity (more apt to return contextually accurate results) rank higher than
those comprising terms with more ambiguity (less apt to return contextually
accurate results). Although any method or combination of methods may be
used to order/sort the generated parameter strings, two example sorting
methods assign a weight to each generated parameter string based on a
determination of term ambiguity.

Using the first method, the SQE assigns a weight to each
parameter string based on a, preferably previously stored, Inverse Document
Frequency (“IDF”) of each parameter. The IDF of a particular parameter Is
equal to the inverse of the number of times that particular term appears In the
data set. For example, a word that appears only one time in a data set has an
IDF value of 1.(1 divided by 1), while a word that appears 100 times in a data
set has an IDF value of 0.01 (1 divided by 100). In one embodiment, the weight
assigned to a parameter string is equal to the sum of the IDF values of each
parameter in the string. Terms that are not found in the data set are assigned
an IDF of —1. In this embodiment, the parameter strings comprising the terms
that appear least frequently in the data set are given a higher weight because
they are most apt to return results pertinent to the natural language query.

37

10

15

20

25

30

35

CA 02457693 2004-02-13
WO 03/017143 PCT/US02/25756

A second method may be employed by an example SQE to
weight the parameter strings according to the polysemy of each parameter.
The polysemy of a term is the number of meanings that the term has. The
weight assigned to each parameter string Is equal to the inverse of the sum of
the polysemy values for each parameter in the string. Polysemy values may be
obtained for example from a dictionary service, an example of which Is
WordNet. One skilled in the art will recognize that any such mechanism for
determining polysemy values may be used. According to convention, the
minimum polysemy value is 1 (indicating that a word has only one meaning). In
one embodiment of the SQE, if a polysemy value cannot be determined for a
word, the SQE assigns it a polysemy value of 0.5 (indicating that the word likely
has a context-specific meaning). In this embodiment, the parameter strings
comprising the terms with the least ambiguity of meaning (the lower polysemy
values) are given a higher weight because they are most apt {0 return pertinent
results to the natural language query.

In step 3703, the routine adds the ordered parameter strings to
the output string. When used to parse a query (not to index an object of the
data set) these parameter strings are subsequently used by the Query Builder
to generate data queries (e.g., SQL queries). In an alternate embodiment, in
order to limit the number of data queries that will be generated, a subset of the
ordered parameter strings are added to the output string. In one embodiment,
the first n parameter strings are added where n Is a configurable number. In
another embodiment, when a weight is assigned to each parameter string, a
percent value of the maximum assigned weight may be used to limit the
parameter strings that are included in the output string. For example, if the
highest weight assigned is 10, the SQE may use 70% as a limit, including in the
output string only those parameter strings that are assigned a weight of at least
7 (i.e., 70% of the maximum assigned weight). One skilled in the art will
recognize that any limiting technique may be used to restrict the number of
parameter strings included in the output string if it is desirable to limit the
number of data queries. In step 3704, the routine adds any identified attribute
values to the output string, according to the described output string format. The
identified attribute values may be used by the Query Builder to filter the data
query results. In step 3705, the routine adds a list of identified verbs to the
output string, according to the described output string format. In step 3706, the
routine adds to the output string a list of the words that are present in the

38

<

10

15

20

25

30

35

CA 02457693 2004-02-13
WO 03/017143 PCT/US02/25756

parameter strings and are not in the list of attribute values. In step 3707, the
routine adds the sentence to the output string. Steps 3705-3707 are performed
when processing a query to add additional data to the output string that may be
used by the Query Builder to generate additional data queries in the event that
the data queries generated based on the standard parameter sets do not yield a
sufficient number of results.

When the SQE is indexing a data set, the described ENLP output
is forwarded to the Data Indexer Component of the SQE to be stored in the data
set repdsitory. Figure 38 is an example flow diagram of the steps performed by
an index data routine of the Data Indexer component of a Syntactic Query
Engine. In step 3801, the routine creates one text file for each table in the data
set repository. In step 3802, the routine assigns a Sentence identifier (e.g.
Sentence ID) to the parsed sentence. In step 3803, the routine writes data, as
appropriate, to each text file based on the received ENLP output. The:
described output parameter strings are used to populate the text files that are
bulk loaded into the data repository. Steps 3802 and 3803 are repeated for
each enhanced data representation received from the ENLP. The specific
format of the text files is typically dictated by the bulk loading requirements of
the software used to implement the data set repository.

When the SQE is processing a query (as opposed to indexing a
data set), after parsing the query and forwarding the ENLP out to the Query
Builder, the Query Builder generates and executes data queries against the
data repository. Figures 39A and 39B are example flow diagrams of the steps
performed by a build_query routine within the Query Builder component of a
Syntactic Query Engine. The routine executes once for each designated
parameter string (output by the ENLP) and generates and executes one or
more data queries against the data set repository based on the values of the
parameters that make up the designated parameter string.

Specifically, in step 3901, the build_query routine examines the
designated parameters to make a preliminary determination regarding the
source of the natural language query. As described with reference to Figures 4
and 10, respectively, the SQE supports both general searches and advanced
searches. In the example embodiment, general searches return sentences;
advanced searches return a list of verbs or other designated parts of speech or
grammatical roles that can be further used to search for sentences. The steps
performed by the build_query routine differ depending on the source of the

39

10

15

20

25

30

39

CA 02457693 2004-02-13
WO 03/017143 PCT/US02/25756

natural language query. The advanced search functionality of the example
embodiment described allows natural language queries to be submitted that
designate a subject and/or an object and retrieve one or more verbs. The sieps
performed by the build_query routine in ailternate embodimenis may vary
depending on the syntactic and grammatical roles that can be designated within
the advanced search functionality. One skilled in the art will understand how to
modify the routine for a specific SQE implementation. It the designated
parameter string has parameters that are only a subject and/or an object (with
all of the other parameters wildcards), the routine continues in step 3904, else it
continues in step 3902 to build and execute a data query, having determined
that the natural language query originated from the general search functionality.
In step 3902, the build query routine builds and executes a single data query
based on the parameters in the designated parameter string and returns
resultant sentences from the data set repository. In step 3904, if the parameters
of the designated string are only a subject and/or an object, then the routine
builds and executes a data query, based on the subject and/or object
parameters, that returns a related verb list. The related verb list comprises
distinct verbs and includes a frequency count of the number of times each verb
appears in sentences within the data set. The routine temporarily stores the
related verb list for later use. In step 3905, the routine determines whether or
not the natural language query was submitted as an advanced search, and, If
so, continues in step 3906, else continues in step 3909. In step 3906, the
routine determines whether or not both a subject and an object are designated.
If both are designated, the routine continues in step 3907, else it returns the
related verb list (the results of the query executed in step 3904). In step 3907,
the routine builds and executes a data query, based on the designated subject
and object in reverse roles (i.e., the designated subject as the object and the
designated object as the subject), that returns a related verb list (as described
in step 3904), and returns the related -verb lists resulting from steps 3904 and
3907.

If, in step 3905 the routine determines that the natural language
query was not submitted through an advanced search, then In steps 3909-3917
the routine generates and executes a series of data queries that attempt 10
locate objects in the data set in a heuristic manner based upon the subject
and/or object of the designated parameter string and verbs that are similar to
the verbs specified in the natural language query. In particular, the routine

40

10

15

20

25

30

35

CA 02457693 2004-02-13
WO 03/017143 PCT/US02/25756

generates and executes data queries based upon the designated subject
and/or object in combination with (1) the requested verbs; (2) verbs that are
entailed from the requested verbs; and (3) verbs that are related to the
requested verbs, such as those produced in the related verb list resulting from
step 3904. If these queries do not generate sufficient results (which Is
preferably modifiable), then the routine executes the same set of data queries
with the subjebt and/or object appearing in inverse grammatical roles. In
addition, weights are associated with the resultant objects (e.g., sentences) {0
indicate from which data query they came, so that the overall result output can
be ordered in terms of what results are most likely to address the initial query.
These weights are preferably configurable, for example, by a system
administrator of the SQE.

Specifically, in step 3909, the routine builds and executes a data
query using the designated subject and/or object and any verb that appears In
the initial (natural language) query (a requested verb). Because a search was
already performed for verbs that correspond to the designated subject and/or
object in step 3904, the results of the step 3904 data query can be used to
streamline the data query of step 3909. In particular, a query is preferably
generated and executed using the verbs that appear in both the {Verb List} of
the output string generated by the ENLP and the related verb list returned by
the query in step 3904 (the intersection of these two lists). These comprise the
verbs that are in the initial query that have also been found to be present in the
data set in objects that contain a similar subject and/or object. (Since the verbs
in the {Verb List} include all of the verbs present in the natural language query,
any designated parameter string that also includes a verb as one of the
parameters will be accounted for also in the {Verb List}.) The routine
associates a default weight with the resulting sentences indicating that these
sentences came from a match of verbs present in the initial query.

In step 3910, the routine builds and executes a data query using
the designated subject and/or object and verbs that are entailed from the
requested verbs (verbs that appear in the initial query). As in step 3909, the
results of the data query of step 3904 can be used to streamline this data query.
In particular, a query is preferably generated and executed using the verbs that
entail each of the verbs that appear in both the {Verb List} of the output string
generated by the ENLP and the related verb list returned by the query in step
3904 (the intersection of these two lists). Entailed verbs are available through

41

10

15

20

25

30

35

CA 02457693 2004-02-13
WO 03/017143 | PCT/US02/25756

existing applications, for example, WordNet, and are verbs that, based on
meaning, are necessarily required prior to an action described by another verb.
For example, given the verb, “snore,” “sleep” is an entailed verb because
(typically) sleeping occurs prior to snoring. The routine associates a weight
referred to as an “entailed weight” with the resulting sentences indicating that
these sentences came from a match of verbs that entail from verbs present In
the initial query.

In step 3911, the routine builds and executes a data query using
the designated subject and/or object and verbs that are related to the requested
verbs (verbs that appears in the initial query). In one embodiment, the related
verbs are verbs that appear in the related verb list returned by the query in step
3904 that are not in the {\erb List} of the output string generated by the ENLP.
These are the verbs that are present in the data set in objects that contain a
similar subject and/or object and that are not also requested verbs. The
routine associates a weight referred to as a “verb similarity weight” with each of
the resulting sentences indicating that these sentences came from a match of

verb that is related to a verb present in the initial query. In one embodiment, the

verb similarity weight differs with each related verb and is a configurable
weighting of relative weights assigned by some external application. For
example, a dictionary such as WordNet can be used to associated a “similarity
measure” with all of the verbs present in a data set. These similarity measures
can be further weighted by a multiplier to generate weights that indicate that the
resulting sentences are less useful than those returned from data queries
involving requested verbs or entailed verbs. In an alternate embodiment, the
different weights for resulting sentences are determined by another application;
for example, WordNet.

In step 3912, the routine determines whether or not the number of
results returned by the data queries generated in steps 3909-3911 Is greater
than k, where k is preferably a configurable number. If the number of results Is
greater than k, the routine returns the results determined thus far, else it
continues in step 3914. In steps 3914-3917, the routine generates and
executes data queries that are the same as those of corresponding steps 3909-
3911, with the exception that the roles of the designated subject and designated
object are reversed. That is, the designated subject becomes the object and
the designated object becomes the subject in the generatea data query.
Weights are also assigned accordingly to the resulting sentences. As

42

10

15

20

29

30

39

CA 02457693 2004-02-13
WO 03/017143 PCT/US02/25756

discussed with reference to Figure 14, querying the data set using the inverse
subject/object relationship may return additional, contextually accurate, results
that may not be returned when using the original subject/object relationship.
After executing these queries, the resulting weighted sentences are returned.

In some embodiments, the results of the natural language query
are sorted when they are returned. One skilled in the art will recognize that any
sorting method may be used to sort the query results. In one embodiment, the
results are first sorted based on the weights (default, entailed, and verb
similarity weights) returned with the results as described with reference to
Figures 39A and 39B. Next, the results are sorted based on attribute values
designated, for example, by a user. For example, if a user specifies the name
of a country in a natural language query, resulting sentences that also contain
the specified country name are ranked higher than resulting sentences that do
not. Finally, the resulting sentences that are returned by data queries
generated from more than one parameter string are ranked higher than those
from a single data query. Other arrangements and combinations are
contemplated.

Although specific embodiments of, and examples for, methods
and systems of the present invention are described herein for illustrative
purposes, it is not intended that the invention be limited to these embodiments.
Equivalent methods, structures, processes, steps, and other modifications
within the spirit of the invention fall within the scope of the invention. The
various embodiments described above can be combined to provide further
embodiments. Aspects of the invention can be modified, if necessary, to
employ methods, systems and concepts of these various patents, applications
and publications to provide yet further embodiments of the invention. In
addition, those skilled in the art will understand how to make changes and
modifications to the methods and. systems described to meet their specific
requirements or conditions. For example, the methods and systems described
herein can be applied to any type of search tool or indexing of a data set, and
not just the SQE described. In addition, the techniques described may be
applied to other types of methods and systems where large data sefs must be
efficiently reviewed. For example, these techniques may be applied to Internet
search tools implemented on a PDA, web-enabled cellular phones, or
embedded in other devices. Furthermore, the data sets may comprise data in

43

CA 02457693 2004-02-13
WO 03/017143 PCT/US02/25756

any language or in any combination of languages. In addition, the user
interface components described may be implemented to effectively support
wireless and handheld devices, for example, PDAs, and other similar devices,
with limited screen real estate. These and other changes may be made to the
5 invention in light of the above-detailed description. Accordingly, the invention is

not limited by the disclosure.

44

CA 02457693 2004-02-13
WO 03/017143 PCT/US02/25756

ightful

intelligence from data

Description

A Syntactic Query Engine

June 13, 2000

Insightful Corporation

1700 Westlake Ave. N, Suite 500
Seattle, WA 98109.9891, USA
Tel: (206) 283-8802

FAX: (206)283-6310

CA 02457693 2004-02-13
WO 03/017143 PCT/US02/25756

INSIGHTFUL CONFIDENLIAL

TABLE OF CONTENTS
L A DSITACE cooviieisieseesaeeseeseeseessssasasassassesssasassessesessasasssnensasssetssessersessssasntassssesssessesntsesissssstssnasansssssetsbessensssrnents 3
2 Technical BaCKEIOUN.......c.oovueereeteereeseneetstiiincsitsasaseastes s s sae sttt s e bt sa eSS s st Z
2.1 Syntactic Indexing FrameWOTK.........ccoeormriesnrierenrmmnieimn st e
2.1.1 Parser TECHNOIOEY .. .ciivvireeeieieeereeere e e st sttt e s st s e 4
2.1.2 Smart SYNtACtic STUCLUIESoueireiiueriessresrcss sttt s s 5
2.1.3 Elementary Coreferencing RULIES......cvomrrreenreiennniit s e 6
2.14 SEOTALE ATIA ACCESS ..euvvereesesceuenessrsastssssrassastrsssseasissss st a et s bt s s e e e b LRSS b 10
2.2 Operations On Data SITUCKUTEScvesersememsissrransrss st e 10
2.2.1 Syntax Operators, Similarity Metrics and Robust COTeIerenCingocovviueeemenirinice<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>