

(19) United States

(12) Patent Application Publication (10) Pub. No.: US 2016/0343604 A1 Costa et al.

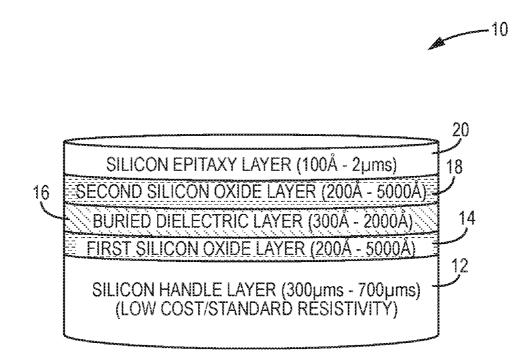
Nov. 24, 2016 (43) Pub. Date:

(54) SUBSTRATE STRUCTURE WITH EMBEDDED LAYER FOR POST-PROCESSING SILICON HANDLE **ELIMINATION**

- (71) Applicant: RF Micro Devices, Inc., Greensboro, NC (US)
- (72) Inventors: Julio C. Costa, Oak Ridge, NC (US); Jan Edward Vandemeer, Kernersville,
- (21) Appl. No.: 15/085,185
- (22) Filed: Mar. 30, 2016

Related U.S. Application Data

(60) Provisional application No. 62/165,446, filed on May 22, 2015.


Publication Classification

(51) Int. Cl. H01L 21/687 (2006.01)H01L 29/16 (2006.01)(2006.01)H01L 29/06

(52) U.S. Cl. CPC H01L 21/68785 (2013.01); H01L 29/0649 (2013.01); H01L 29/16 (2013.01); H01L **29/0692** (2013.01)

(57)**ABSTRACT**

The present disclosure relates to a substrate structure with a buried dielectric layer for post-processing silicon handle elimination. The substrate structure includes a silicon handle layer, a first silicon oxide layer over the silicon handle layer, a buried dielectric layer over the first silicon oxide layer, where the buried dielectric layer is not formed from silicon oxide, a second silicon oxide layer over the buried dielectric layer, and a silicon epitaxy layer over the second silicon oxide layer. The buried dielectric layer provides extremely selective etch stop characteristics with respect to etching chemistries for silicon and silicon oxide.

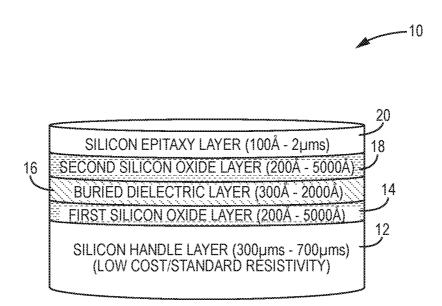


FIG. 1

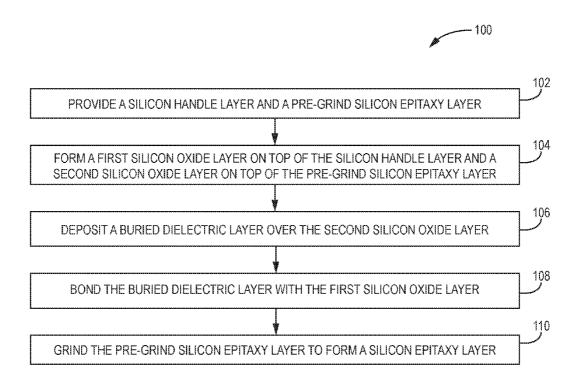
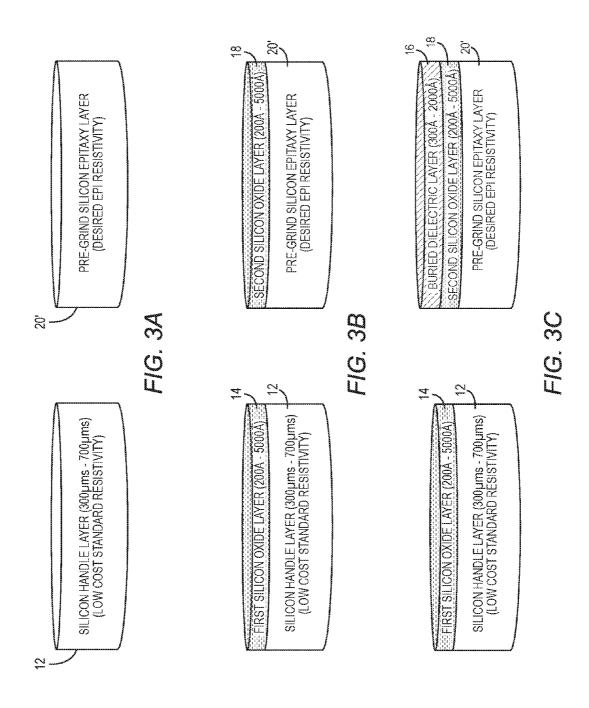
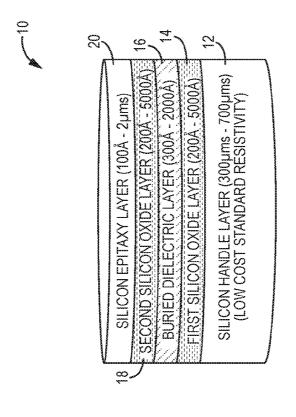
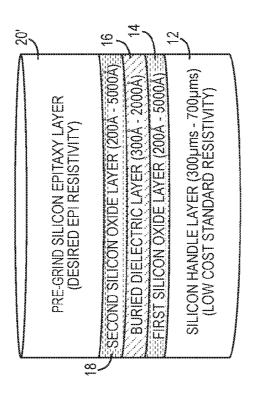





FIG. 2

S O L

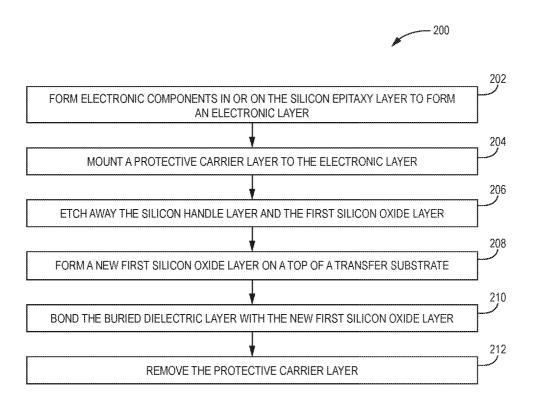


FIG. 4

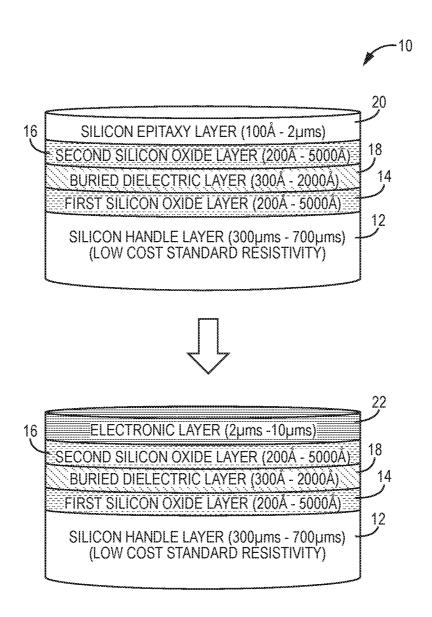


FIG. 5A

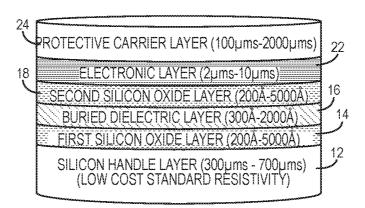
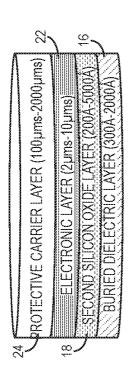



FIG. 5B

9

BURIED DIELECTRIC LAYER (300A-2000A)

ROTECTIVE CARRIER LAYER (100µms-2000µms)

ELECTRONIC LAYER (2µms-10µms)

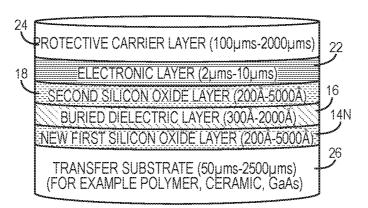


FIG. 5E

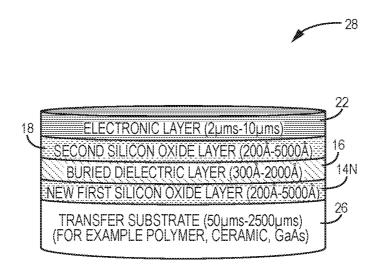


FIG. 5F

SUBSTRATE STRUCTURE WITH EMBEDDED LAYER FOR POST-PROCESSING SILICON HANDLE ELIMINATION

RELATED APPLICATIONS

[0001] This application claims the benefit of U.S. provisional patent application No. 62/165,446, filed May 22, 2015, the disclosure of which is incorporated herein by reference in its entirety.

FIELD OF THE DISCLOSURE

[0002] The present disclosure relates to a substrate structure used in semiconductor manufacturing, and more particularly to a substrate structure with a buried dielectric layer for post-processing silicon handle elimination.

BACKGROUND

[0003] The wide utilization of cellular and wireless devices drives the rapid development of radio frequency (RF) technologies. The substrates on which RF devices are fabricated play an important role in achieving high level performance in the RF technologies. RF complementary metal-oxide semiconductor (CMOS) and RF micro-electromechanical system (MEMS) technologies fabricated on silicon on insulator (SOI) substrates have attracted extensive attention in recent years. Fabrications of these RF technologies on SOI substrates may benefit from low cost of silicon materials, a large scale capacity of wafer production, well-established semiconductor design tools, and well-established semiconductor manufacturing techniques.

[0004] Despite the benefits of using SOI substrates and conventional semiconductor manufacturing techniques for RFCMOS and RFMEMS fabrications, it is well known in the industry that a silicon handle layer in the SOI substrate has two undesirable properties that limit the SOI's usage in critical, RF large signal applications: harmonic generations and low resistivity values. By using SOI substrates in RF fabrications, an interface between the silicon handle layer and an adjacent insulator layer will generate significant harmonic signals. RF signals of power levels employed in cellular and other wireless applications are RF signals coupled to this interface and therefore experience significant deterioration with the creation of unwanted harmonic and intermodulation products. Such spectrum degradation causes a number of significant system issues such as unwanted generation of signals in other RF bands which the system is attempting to avoid. In addition, unlike gallium arsenide (GaAs), the silicon handle layer does not have high resistivity values. The relatively low resistivity encountered in the silicon handle layer also limits the performance and quality factor of passive components, such as inductors, transmission lines, and couplers, by the generation of unwanted RF current loss in the silicon handle layer.

[0005] Accordingly, there remains a need for improved substrate designs to benefit from high fabrication yields and low cost of silicon manufacturing without bearing deleterious harmonic generations. In addition, there is also a need to enhance the resistivity values of the substrates in final RF products.

SUMMARY

[0006] The present disclosure relates to a substrate structure with a buried dielectric layer for post-processing silicon handle elimination. The substrate structure includes a silicon handle layer, a first silicon oxide layer over the silicon oxide layer, a buried dielectric layer over the first silicon oxide layer, where the buried dielectric layer is not formed from silicon oxide, a second silicon oxide layer over the buried dielectric layer, and a silicon epitaxy layer over the second silicon oxide layer. The buried dielectric layer may be formed from silicon nitride, which provides selective etch stop characteristics with respect to etching chemistries for silicon and silicon oxide.

[0007] Those skilled in the art will appreciate the scope of the disclosure and realize additional aspects thereof after reading the following detailed description in association with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] The accompanying drawings incorporated in and forming a part of this specification illustrate several aspects of the disclosure, and together with the description serve to explain the principles of the disclosure.

[0009] FIG. 1 shows an exemplary substrate structure with a buried dielectric layer according to one embodiment of the present disclosure.

[0010] FIG. 2 provides a flow diagram that illustrates an exemplary process to fabricate the exemplary substrate structure shown in FIG. 1.

[0011] FIGS. 3A-3E illustrate the steps associated with the exemplary process provided in FIG. 2.

[0012] FIG. 4 provides a flow diagram that illustrates an exemplary process to fabricate a device using the substrate structure shown in FIG. 1.

[0013] FIGS. 5A-5F illustrate the steps associated with the exemplary process provided in FIG. 4.

[0014] It will be understood that for clear illustrations, FIGS. 1-5 may not be drawn to scale.

DETAILED DESCRIPTION

[0015] The embodiments set forth below represent the necessary information to enable those skilled in the art to practice the disclosure and illustrate the best mode of practicing the disclosure. Upon reading the following description in light of the accompanying drawings, those skilled in the art will understand the concepts of the disclosure and will recognize applications of these concepts not particularly addressed herein. It should be understood that these concepts and applications fall within the scope of the disclosure and the accompanying claims.

[0016] It will be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and, similarly, a second element could be termed a first element, without departing from the scope of the present disclosure. As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items.

[0017] It will be understood that when an element such as a layer, region, or substrate is referred to as being "on" or extending "onto" another element, it can be directly on or

extend directly onto the other element or intervening elements may also be present. In contrast, when an element is referred to as being "directly on" or extending "directly onto" another element, there are no intervening elements present. Likewise, it will be understood that when an element such as a layer, region, or substrate is referred to as being "over" or extending "over" another element, it can be directly over or extend directly over the other element or intervening elements may also be present. In contrast, when an element is referred to as being "directly over" or extending "directly over" another element, there are no intervening elements present. It will also be understood that when an element is referred to as being "connected" or "coupled" to another element, it can be directly connected or coupled to the other element or intervening elements may be present. In contrast, when an element is referred to as being "directly connected" or "directly coupled" to another element, there are no intervening elements present.

[0018] Relative terms such as "below" or "above" or "upper" or "lower" or "horizontal" or "vertical" may be used herein to describe a relationship of one element, layer, or region to another element, layer, or region as illustrated in the Figures. It will be understood that these terms and those discussed above are intended to encompass different orientations of the device in addition to the orientation depicted in the Figures.

[0019] The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the disclosure. As used herein, the singular forms "a," "an," and "the" are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms "comprises," "comprising," "includes," and/or "including" when used herein specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.

[0020] Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. It will be further understood that terms used herein should be interpreted as having a meaning that is consistent with their meaning in the context of this specification and the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.

[0021] FIG. 1 provides a substrate structure 10 according to one embodiment of the present disclosure. In this embodiment, the substrate structure 10 includes a silicon handle layer 12, a first silicon oxide layer 14 over the silicon handle layer 12, a buried dielectric layer 16 over the first silicon oxide layer 14, a second silicon oxide layer 18 over the buried dielectric layer 16, and a silicon epitaxy layer 20 over the second silicon oxide layer 18. The silicon epitaxy layer 20 has a ground surface that is opposite the second silicon oxide layer 18.

[0022] In detail, the silicon handle layer 12 is formed by a low cost silicon material, which has no requirement for high resistivity or low harmonic generation. A thickness of the silicon handle layer 12 is thicker than 100 μms , where 300 μms -700 μms is a typical range. Both the first silicon oxide layer 14 and the second silicon oxide layer 18 have a thickness between 200 Angstrom (Å) and 5000 Å. In some

applications, the first silicon oxide layer 14 may not exist in the substrate structure 10. The buried dielectric layer 16 is sandwiched between the first silicon oxide layer 14 and the second silicon oxide layer 18.

[0023] The buried dielectric layer 16 provides highly selective etch stop characteristics with respect to etching chemistries for silicon and silicon oxide. Also, the buried dielectric layer 16 is smooth and thin enough so as to not create a significant increase in the thermal resistance of devices built with this technology. A thickness of the buried dielectric layer 16 is between 300 Å and 2000 Å. One possible material used to form the buried dielectric layer 16 is silicon nitride, which provides selective etch stop characteristics with respect to etching chemistries for silicon and silicon oxide. The silicon nitride used for the buried dielectric layer 16 also provides a barrier to moisture and other possible chemical contaminants, such as sodium and potassium ions, which may cause significant device reliability issues. Other materials, such as Aluminum Nitride (both piezoelectric and non-piezoelectric options), alumina (Al₂O₃), Beryllium Oxide (BeO), and other suitable compounds may also be used to form the buried dielectric layer

[0024] The silicon epitaxy layer 20 is formed from a device grade silicon material, which has desired silicon epitaxy characteristics to form electronic components. The silicon epitaxy layer 20 has higher resistivity than the silicon handle layer 12 and the silicon epitaxy layer 20 has lower harmonic generation than the silicon handle layer 12. In general, the resistivity of the silicon epitaxy layer 20 is between 1 ohm/cm and 50 ohm/cm depending on different fabrication processes. A thickness of the silicon epitaxy layer 20 is between 100 Å and 2 μ ms, where 500 Å-1 μ m is a typical range for radio frequency power applications. Those skilled in the art will recognize that the present disclosure may be practiced in a number of different substrate diameters. Typical implementations in today's industry would yield final substrate structure in a 200 mm or 300 mm diameter.

[0025] FIG. 2 provides a flow diagram that illustrates an exemplary process 100 to fabricate the substrate structure shown in FIG. 1. FIGS. 3A-3E illustrate the steps associated with the exemplary process 100 provided in FIG. 2. Although the exemplary process 100 is illustrated as a series of sequential steps, the exemplary process 100 is not necessarily order dependent. Some operations may be done in a different order than that presented. Further, processes within the scope of this disclosure may include fewer or more operations than those illustrated in FIG. 2.

[0026] Initially, the silicon handle layer 12 and a pre-grind silicon epitaxy layer 20' are provided as depicted in FIG. 3A (Step 102). Then, the first silicon oxide layer 14 is formed over the silicon handle layer 12 and the second silicon oxide layer 18 is formed over the pre-grind silicon epitaxy layer 20' as depicted in FIG. 3B (Step 104). The first silicon oxide layer 14 and the second silicon oxide layer 18 may be formed by thermally oxidizing the silicon handle layer 12 and the pre-grind silicon epitaxy layer 20' in a conventional oxidation furnace, respectively. Herein, the formation of the first silicon oxide layer 14 is optional.

[0027] The buried dielectric layer 16 is then deposited over the second silicon oxide layer 18 as depicted in FIG. 3C (Step 106). The depositing process may be implemented by a number of conventional dielectric deposition techniques

such as plasma enhanced chemical vapor deposition or low pressure chemical vapor deposition. In some applications, the buried dielectric layer 16 may be deposited over the first silicon oxide layer 14 instead.

[0028] Next, the buried dielectric layer 16 is bonded with the first silicon oxide layer 14, such that the buried dielectric layer 16 is sandwiched between the first silicon oxide layer 14 and the second silicon oxide layer 18 as depicted in FIG. 3D (Step 108). The bonding process may be implemented by a number of different wafer bonding techniques such as anodic bonding, fusion bonding, low temperature glass assisted bonding, or ionic bonding. Some of these bonding techniques may require the deposition of a third silicon oxide layer (not shown) over the buried dielectric layer 16 before bonding to the first silicon oxide layer 14. This third oxide layer may facilitate the bonding process since it provides similar materials to both surfaces which are to be bonded. In another embodiment, if there is no first silicon oxide layer 14 formed in Step 104, the buried dielectric layer 16 is directly bonded with the silicon handle layer 12. The parameters for the bonding process, such as temperature and pressure, have to be engineered to manage the mismatches in thermal expansion and stress levels of the different layers that are comprised in the substrate structure.

[0029] Finally, the pre-grind silicon epitaxy layer 20' is ground to form the silicon epitaxy layer 20 as depicted in FIG. 3E (Step 110). A thickness of the silicon epitaxy layer 20 is between 100 Å and 2 μms depending on different applications. For example, if the silicon epitaxy layer 20 is used to form radio frequency power electronics components, the thickness of the silicon epitaxy layer 20 is between 500 Å and 1 μm . In another example, the silicon epitaxy layer 20 may be completely absent from applications such as integrated passive devices (IPD) or micro electro mechanical system (MEMS) technologies. The grinding process may be implemented by a number of conventional chemical/mechanical polishing steps.

[0030] FIG. 4 provides a flow diagram that illustrates an exemplary process 200 to fabricate a device using the substrate structure 10 described above. FIGS. 5A-5F illustrate the steps associated with the exemplary process 200 provided in FIG. 4. Although the exemplary process 200 is illustrated as a series of sequential steps, the exemplary process 200 is not necessarily order dependent. Some operations may be done in a different order than that presented. Further, processes within the scope of this disclosure may include fewer or more operations than those illustrated in FIG. 4

[0031] After the substrate structure 10 is formed, electronic components may be integrated in or on the silicon epitaxy layer 20 to form an electronic layer 22 as depicted in FIG. 5A (Step 202). The formed electronic layer 22 may have a different thickness from the silicon epitaxy layer 20, between 2 μms and 10 μms . If the substrate structure 10 does not include the silicon epitaxy layer 20 for some applications, such as IPD or MEMS, a conventional method including an oxidation/deposition process is used to form the electronic layer 22.

[0032] Next, a protective carrier layer 24 is mounted to the electronic layer 22 as depicted in FIG. 5B (Step 204). Normally, the protective carrier layer 24 has a thickness between 100 µms and 2000 µms. The mounting process may be implemented by simple conventional adhesive techniques or wafer bonding techniques.

[0033] After the protective carrier layer 24 is mounted to the electronic layer 22, the silicon handle layer 12 and the first silicon oxide layer 14 are removed as depicted in FIG. 5C (Step 206). The removal process may be implemented by wet/dry chemical etching techniques.

[0034] Well known etching chemistries used in wet/dry chemical etching techniques are potassium hydroxide/isopropyl alcohol (KOH/IPA), ethylenediamine pyrocatechol (EDP), and tetramethylammonium hydroxide (THAH). All of these etching chemistries etch silicon as well as silicon oxide, where the silicon is etched faster than the silicon oxide. However, none of these etching chemistries can etch silicon nitride at any appreciable rate. Notice that without the introduction of the buried dielectric layer 16, it would be extremely difficult to completely etch the thick silicon handle layer 12 and completely stop the etching process in a much thinner silicon oxide layer (the first silicon oxide layer 14 plus the second silicon oxide layer 18). Although these etching chemistries etch silicon at a much faster rate than silicon oxide—for example, KOH etches silicon at a rate 30-50 times faster than silicon oxide—, the silicon oxide layer (the first silicon oxide layer 14 plus the second silicon oxide layer 18) alone cannot offer the control to completely eliminate the silicon handle layer 12 without the risk of puncturing the electronic layer 22. The reason is the silicon oxide layer (the first silicon oxide layer 14 plus the second silicon oxide layer 18) is thousands of times thinner than the silicon handle layer 12 and only has an Angstrom level thickness. During the removal process, the silicon handle layer 12 must be eliminated completely, while a portion of the first buried oxide layer 14 is allowed to remain.

[0035] In the meantime, a new first silicon oxide layer 14N is formed on a top of a transfer substrate layer 26 as depicted in FIG. 5D (Step 208). The transfer substrate layer 26 does not include single crystal silicon and may be formed from polymer, ceramic, or gallium arsenide (GaAs) materials. A thickness of the transfer substrate layer 26 is between 50 μms and 2500 μms . A thickness of the new first silicon oxide layer 14N is between 200 Å and 5000 Å.

[0036] Next, the buried dielectric layer 16 is bonded with the new first silicon oxide layer 14N, such that the buried dielectric layer 16 is sandwiched between the new first silicon oxide layer 14N and the second silicon oxide layer 18 as depicted in FIG. 5E (Step 210). The bonding process may be implemented by anodic bonding, fusion bonding, low temperature glass assisted bonding, or ionic bonding. If there is a portion of the first silicon oxide layer 14 remaining in Step 206 (not shown in FIG. 5C), the bonding process is to bond the remaining portion of the first silicon oxide layer 14 with the new silicon oxide layer 14N. The buried dielectric layer 16 is still sandwiched between the two silicon oxide layers. In some applications, there is no silicon oxide layer required between the buried dielectric layer 16 and the transfer substrate layer 26. Consequently, Step 208 may be omitted. In Step 210, the transfer substrate layer 26 is directly bonded with the buried dielectric layer 16 or bonded with the remaining portion of the first silicon oxide layer 14 (not shown). Lastly, the protective carrier layer 24 is removed to form a device 28 as depicted in FIG. 5F (Step 212). In some applications, like wafer level fan out (WLFO), the transfer substrate layer 26 is not necessary. Thereby the process steps 208 and 210 shown in FIGS. 5D and 5E are optional.

[0037] According to one embodiment of the present disclosure, the final device 28 as shown in FIG. 5F includes the transfer substrate layer 26, which does not include silicon, the new silicon oxide layer 14N over the transfer substrate layer 26, the buried dielectric layer 16 over the new silicon oxide layer 14N, where the buried dielectric layer 16 is not formed from silicon oxide, the second silicon oxide layer 18 over the buried dielectric layer 16, and the electronic components layer 22 over the second silicon oxide layer 18. This unique combination of layers yields a low cost fabrication technology suitable for use in RF applications, which benefit from the removal of the silicon handle layer.

[0038] Those skilled in the art will recognize improvements and modifications to the embodiments of the present disclosure. All such improvements and modifications are considered within the scope of the concepts disclosed herein and the claims that follow.

What is claimed is:

- 1. An apparatus comprising:
- a silicon handle layer;
- a buried dielectric layer over the silicon handle layer, wherein the buried dielectric layer is not formed from silicon oxide;
- an upper silicon oxide layer over the buried dielectric layer; and
- a silicon epitaxy layer over the upper silicon oxide layer.
- 2. The apparatus of claim 1 further comprising a lower silicon oxide layer residing between the silicon handle layer and the buried dielectric layer.
- 3. The apparatus of claim 1 wherein the buried dielectric layer is formed from silicon nitride.
- **4**. The apparatus of claim **1** wherein the silicon epitaxy layer has a higher resistivity than the silicon handle layer and the silicon epitaxy layer has lower harmonic generation than the silicon handle layer.
 - 5. The apparatus of claim 1 wherein:
 - the silicon epitaxy layer has a higher resistivity than the silicon handle layer;
 - the silicon epitaxy layer has lower harmonic generation than the silicon handle layer; and
 - the buried dielectric layer is formed from silicon nitride.
- **6**. The apparatus of claim **1** wherein the resistivity of the silicon epitaxy layer is between 1 ohm/cm and 50 ohm/cm.
- 7. The apparatus of claim 1 wherein a thickness of the silicon epitaxy layer is between 100 Å and 2 μ ms.
- 8. The apparatus of claim 1 wherein a thickness of the silicon handle layer is thicker than 100 μ ms and a thickness of the silicon epitaxy layer is between 100 Å and 2 μ ms.

- **9**. The apparatus of claim **2** wherein a thickness of the lower silicon oxide layer is between 200 Å and 5000 Å, a thickness of the upper silicon oxide layer is between 200 Å and 5000 Å and a thickness of the buried dielectric layer is between 300 Å and 2000 Å.
- 10. The apparatus of claim 2 wherein a thickness of the silicon handle layer is thicker than 100 μms , a thickness of the silicon epitaxy layer is between 100 Å and 2 μms , a thickness of the lower silicon oxide layer is between 200 Å and 5000 Å, a thickness of the upper silicon oxide layer is between 200 Å and 5000 Å, and a thickness of the buried dielectric layer is between 300 Å and 2000 Å.
- 11. The apparatus of claim 1 wherein the silicon epitaxy layer has a ground surface that is opposite the upper silicon oxide layer.
 - 12. An apparatus comprising:
 - a buried dielectric layer over the transfer substrate layer, wherein the buried dielectric layer is not formed from silicon oxide;
 - an upper silicon oxide layer over the buried dielectric layer; and
 - an electronic layer over the second silicon oxide layer.
- 13. The apparatus of claim 12 further comprising a transfer substrate layer that does not comprise single crystal silicon.
- **14**. The apparatus of claim **13** wherein the transfer substrate layer is formed from one of a group consisting of polymer, ceramic, and gallium arsenide.
- 15. The apparatus of claim 13 wherein a thickness of the transfer substrate layer is between 50 μms and 2500 μms.
- 16. The apparatus of claim 13 further comprising a lower silicon oxide layer residing between the transfer substrate layer and the buried dielectric layer.
- 17. The apparatus of claim 12 wherein the buried dielectric layer is formed from silicon nitride.
- 18. The apparatus of claim 12 wherein a thickness of the electronic layer is between 2 μ ms and 10 μ ms.
- 19. The apparatus of claim 12 wherein a thickness of the upper silicon oxide layer is between 200 Å and 5000 Å, and a thickness of the buried dielectric layer is between 300 Å and 2000 Λ .
- 20. The apparatus of claim 16 wherein a thickness of the electronic layer is between 2 μms and 10 μms , a thickness of the upper silicon oxide layer is between 200 Å and 5000 Å, a thickness of the buried dielectric layer is between 300 Å and 2000 Å, a thickness of the lower silicon oxide layer is between 200 Å and 5000 Å, and a thickness of the transfer substrate layer is between 50 μms and 2500 μms .

* * * * *