
(19) United States
US 20070074187A1

(12) Patent Application Publication (10) Pub. No.: US 2007/0074187 A1
O’Brien (43) Pub. Date: Mar. 29, 2007

(54) METHOD AND APPARATUS FOR (52) U.S. Cl. .. 717/140
INSERTING CODE FIXES INTO
APPLICATIONS AT RUNTIME

(57) ABSTRACT
(76) Inventor: Thomas Edward O’Brien, Round

Rock, TX (US)

Correspondence Address:
IBM CORP (YA)
CFO YEE & ASSOCATES PC
P.O. BOX 802.333
DALLAS, TX 75380 (US)

(21) Appl. No.: 11/239,502

(22) Filed: Sep. 29, 2005

Publication Classification

(51) Int. Cl.
G06F 9/45 (2006.01)

106

C
O' s

104

D is

SERVER

SERVER

C 1 Oc
STORAGE

108

A method, an apparatus, and computer instructions are
provided for inserting code fixes into applications at runt
ime. One aspect of the present invention leverages capability
of a just-in-time-instrumentation monitoring component to
receive a code fix during execution of applications and insert
code fixes into applications. Another aspect of the present
invention allows users to create a custom class loader that
loads a custom class at runtime. The custom class loader

then inserts the custom class in the applications. With the
aspects of the present invention, code fixes and patches may
be applied to applications without taking the applications
down.

100

102 o

-11.
CLIENT

Patent Application Publication Mar. 29, 2007 Sheet 1 of 5 US 2007/0074187 A1

104

FIG. I. STORAGE
114

108 CLIENT

UNIT M1
210 202 208 26 236

GRAPHICS MAIN AUDIO Ekenschke, Gy
2 240 238

BUS BUS

c - i.
HDD CD-ROM LAN (SEAN PC/PCle kEAD MODEM

ors DEVICES MOUSE ADAPTER

226 230 212 232 234 220 222 224

Patent Application Publication Mar. 29, 2007 Sheet 2 of 5

5 ;

US 2007/0074187 A1

F R F FH Z EEE EA

s
S.

2

If : CD

O
N
cy)

O- E. H HAHAHC
I-4-N

O
cy
cy

N

Patent Application Publication Mar. 29, 2007 Sheet 3 of 5 US 2007/0074187 A1

400

PERFORMANCE MONITORING ENVIRONMENT

APPLICATION SERVER

MANAGEMENT
AGENT

APP SERVER C C.
APPLICATION INTERNAL

DATABASE

406

MONITORING
COMPONENT

MONTORING MASMNT
ENGINE

APPLICATION

408

CUSTOM CLASS
LOADER ARM ENGINE

FIG. 4

Patent Application Publication Mar. 29, 2007 Sheet 4 of 5 US 2007/0074187 A1

FIG. 5A
START

RECEIVE USER DEFINED
CODE FIXES AND

ERROR CONDITIONS

500

502 SEND UPDATE TO
MONITORING ENGINE FIG. 5B

START
RECEIVE NOTIFICATION

FROMMONITORING ENGINE
504 TO INSERT CODE FIXES 508 RECEIVEDUPDATED CODE FIXES

AND ERROR CONDITIONS FROM
MONITORNG COMPONENT

509 RECEIVE ERROR OR FAILURE
FROM ARM ENGINE

MATCHES ERROR CONDITION
FROMAPPLICATION AGAINST

510 USER DEFINEDERROR
CONDITIONS

NSERTS CODE FIXES INTO
APPLICATION WITHOUT

506 TAKING TDOWN

ARE
CODE FIXES
NECESSARY

?

NOTIFIES MONTORING
COMPONENT TO

514 INSERT CODE FIXES

Patent Application Publication Mar. 29, 2007 Sheet 5 of 5 US 2007/0074187 A1

FIG. 5C
START

APPLICATION RUNS

GATHERS OPERATIONAL
INFORMATION FROM

APPLICATION

516

518

DETECTS ERROR
OR FAILURE FROM

520 APPLICATION

NOTIFIES
522 MONITORING ENGINE

FIG. 64
START FIG. 6B

LOADS CUSTOM CLASS FOR
THE ERROR CONDITION

INSERTS CUSTOM CLASSIN
PLACE OF BROKEN CLASS

RECEIVE NOTIFICATION
FROMMONTORING
ENGINE TOEXECUTE

CUSTOM CLASS LOADER

600
604

EXECUTES CUSTOM
CLASS LOADER 606 602

US 2007/00741.87 A1

METHOD AND APPARATUS FOR INSERTING
CODE FIXES INTO APPLICATIONS AT RUNTIME

BACKGROUND OF THE INVENTION

0001) 1. Field of the Invention
0002 The present invention relates generally to an
improved data processing system. In particular, the present
invention relates to applications in a data processing system.
Still more particular, the present invention relates to a
computer implemented method, apparatus, and computer
usable program code for inserting code fixes into applica
tions in a data processing system at runtime.
0003 2. Description of the Related Art
0004 Currently, maintenance to applications, such as
critical applications, requires that the applications to be
taken down before fixes or patches may be applied. “Critical
applications are applications that are needed by an organi
Zation to perform functions deemed critical to their business.
An organization, may be, for example an Internet-based
business. Examples of critical applications include Web
based applications of a service provider, database manage
ment applications, and legacy applications.
0005 If the critical application is a service-oriented
application, Such as, a Web-based application, the require
ment of application down time in order to apply fixes and
patches creates a problem for both the service consumers
and the service providers. This problem not only affects
convenience of the consumers who want to acquire the
service, but also affects the revenue possibly generated by
the service providers.
0006. No mechanism currently exists that allows main
tenance fixes and patches to be applied without taking down
the applications. In addition, no mechanism currently exists
that automatically detects the need for fixes and patches and
applies the needed fixes and patches at runtime without
taking down the applications.

SUMMARY OF THE INVENTION

0007. The aspects of the present invention provide a
method, an apparatus, and computer instructions for insert
ing code fixes into applications at runtime. A monitoring
engine receives a code fix for an application during execu
tion of the application. A monitoring component inserts the
code fix into the application without stopping execution of
the application.

BRIEF DESCRIPTION OF THE DRAWINGS

0008. The novel features believed characteristic of the
invention are set forth in the appended claims. The invention
itself, however, as well as a preferred mode of use, further
objectives and advantages thereof, will best be understood
by reference to the following detailed description of an
illustrative embodiment when read in conjunction with the
accompanying drawings, wherein:
0009 FIG. 1 depicts a pictorial representation of a net
work of data processing systems in which aspects of the
present invention may be implemented;
0010 FIG. 2 is a block diagram of a data processing
system in accordance with an illustrative embodiment of the
present invention;

Mar. 29, 2007

0011 FIG. 3 is an exemplary diagram of an electronic
business system with a performance monitoring architec
ture, in accordance with an illustrative embodiment of the
present invention;
0012 FIG. 4 is a diagram illustrating interactions
between components for inserting code fixes into applica
tions at runtime, in accordance with an illustrative embodi
ment of the present invention;
0013 FIG. 5A is a flowchart of an exemplary process for
inserting code fixes into applications at runtime from the
perspective of a JITI or J2EE monitoring component, in
accordance with an illustrative embodiment of the present
invention;
0014 FIG. 5B is a flowchart of an exemplary process for
determining if code fixes are necessary at runtime from the
perspective of the monitoring engine, in accordance with an
illustrative embodiment of the present invention;
0.015 FIG.5C is a flowchart of an exemplary process for
gathering operational information at runtime from the per
spective of the ARM engine, in accordance with an illus
trative embodiment of the present invention;
0016 FIG. 6A is a flowchart of an exemplary process for
executing a custom class loader from the perspective of a
monitoring component, in accordance with an illustrative
embodiment of the present invention; and
0017 FIG. 6B is a flowchart of an exemplary process for
inserting a custom class in place of a broken class from the
perspective of a custom class loader, in accordance with an
illustrative embodiment of the present invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

0018 With reference now to the figures and in particular
with reference to FIGS. 1-2, exemplary diagrams of data
processing environments are provided in which embodi
ments of the present invention may be implemented. It
should be appreciated that FIGS. 1-2 are only exemplary and
are not intended to assert or imply any limitation with regard
to the environments in which aspects or embodiments of the
present invention may be implemented. Many modifications
to the depicted environments may be made without depart
ing from the spirit and scope of the present invention.
0019. With reference now to the figures, FIG. 1 depicts a
pictorial representation of a network of data processing
systems in which aspects of the present invention may be
implemented. Network data processing system 100 is a
network of computers in which embodiments of the present
invention may be implemented. Network data processing
system 100 contains network 102, which is the medium used
to provide communications links between various devices
and computers connected together within network data
processing system 100. Network 102 may include connec
tions, such as wire, wireless communication links, or fiber
optic cables.
0020. In the depicted example, server 104 and server 106
connect to network 102 along with storage unit 108. In
addition, clients 110, 112, and 114 connect to network 102.
These clients 110, 112, and 114 may be, for example,
personal computers or network computers. In the depicted
example, server 104 provides data, such as boot files,

US 2007/00741.87 A1

operating system images, and applications to clients 110.
112, and 114. Clients 110, 112, and 114 are clients to server
104 in this example. Network data processing system 100
may include additional servers, clients, and other devices not
shown.

0021. In the depicted example, network data processing
system 100 is the Internet with network 102 representing a
worldwide collection of networks and gateways that use the
Transmission Control Protocol/Internet Protocol (TCP/IP)
Suite of protocols to communicate with one another. At the
heart of the Internet is a backbone of high-speed data
communication lines between major nodes or host comput
ers, consisting of thousands of commercial, governmental,
educational and other computer systems that route data and
messages. Of course, network data processing system 100
also may be implemented as a number of different types of
networks. Such as for example, an intranet, a local area
network (LAN), or a wide area network (WAN). FIG. 1 is
intended as an example, and not as an architectural limita
tion for different embodiments of the present invention.
0022 With reference now to FIG. 2, a block diagram of
a data processing system is shown in which aspects of the
present invention may be implemented. Data processing
system 200 is an example of a computer, such as server 104
or client 110 in FIG. 1, in which computer usable code or
instructions implementing the processes for embodiments of
the present invention may be located.
0023. In the depicted example, data processing system
200 employs a hub architecture including north bridge and
memory controller hub (NB/MCH) 202 and south bridge
and input/output (I/O) controller hub (SB/ICH) 204. Pro
cessing unit 206, main memory 208, and graphics processor
210 are connected to NB/MCH202. Graphics processor 210
may be connected to NB/MCH 202 through an accelerated
graphics port (AGP).

0024. In the depicted example, local area network (LAN)
adapter 212 connects to SB/ICH 204. Audio adapter 216,
keyboard and mouse adapter 220, modem 222, read only
memory (ROM) 224, hard disk drive (HDD) 226, CD-ROM
drive 230, universal serial bus (USB) ports and other com
munication ports 232, and PCI/PCIe devices 234 connect to
SB/ICH204 through bus 238 and bus 240. PCI/PCIe devices
may include, for example, Ethernet adapters, add-in cards,
and PC cards for notebook computers. PCI uses a card bus
controller, while PCIe does not. ROM 224 may be, for
example, a flash binary input/output system (BIOS).

0025 HDD 226 and CD-ROM drive 230 connect to
SB/ICH204 through bus 240. HDD 226 and CD-ROM drive
230 may use, for example, an integrated drive electronics
(IDE) or serial advanced technology attachment (SATA)
interface. Super I/O (SIO) device 236 may be connected to
SBFICH2O4.

0026. An operating system runs on processing unit 206
and coordinates and provides control of various components
within data processing system 200 in FIG. 2. As a client, the
operating system may be a commercially available operating
system such as Microsoft(R) Windows(R XP (Microsoft and
Windows are trademarks of Microsoft Corporation in the
United States, other countries, or both). An object-oriented
programming system, such as the JavaTM programming
system, may run in conjunction with the operating system

Mar. 29, 2007

and provides calls to the operating system from JavaTM
programs or applications executing on data processing sys
tem 200 (JavaTM is a trademark of Sun Microsystems, Inc.
in the United States, other countries, or both).
0027. As a server, data processing system 200 may be, for
example, an IBM eServer'TM pSeries(R) computer system,
running the Advanced Interactive Executive (AIX(R) oper
ating system or the LINUX operating system (eServer,
pSeries and AIX are trademarks of International Business
Machines Corporation in the United States, other countries,
or both while LINUX is a trademark of Linus Torvalds in the
United States, other countries, or both). Data processing
system 200 may be a symmetric multiprocessor (SMP)
system including a plurality of processors in processing unit
206. Alternatively, a single processor System may be
employed.
0028. Instructions for the operating system, the object
oriented programming system, and applications or programs
are located on storage devices, such as HDD 226, and may
be loaded into main memory 208 for execution by process
ing unit 206. The processes for embodiments of the present
invention are performed by processing unit 206 using com
puter usable program code, which may be located in a
memory such as, for example, main memory 208, ROM 224,
or in one or more peripheral devices 226 and 230.
0029. Those of ordinary skill in the art will appreciate
that the hardware in FIGS. 1-2 may vary depending on the
implementation. Other internal hardware or peripheral
devices, such as flash memory, equivalent non-volatile
memory, or optical disk drives and the like, may be used in
addition to or in place of the hardware depicted in FIGS. 1-2.
Also, the processes of the present invention may be applied
to a multiprocessor data processing system.
0030. In some illustrative examples, data processing sys
tem 200 may be a personal digital assistant (PDA), which is
configured with flash memory to provide non-volatile
memory for storing operating system files and/or user
generated data.
0031. A bus system may be comprised of one or more
buses, such as bus 238 or bus 240 as shown in FIG. 2. Of
course, the bus system may be implemented using any type
of communication fabric or architecture that provides for a
transfer of data between different components or devices
attached to the fabric or architecture. A communication unit
may include one or more devices used to transmit and
receive data, such as modem 222 or network adapter 212 of
FIG. 2. A memory may be, for example, main memory 208,
ROM 224, or a cache such as found in NB/MCH 202 in FIG.
2. The depicted examples in FIGS. 1-2 and above-described
examples are not meant to imply architectural limitations.
For example, data processing system 200 also may be a
tablet computer, laptop computer, or telephone device in
addition to taking the form of a PDA.
0032 Turning now to FIG. 3, an exemplary diagram of an
electronic business system with a performance monitoring
architecture is shown in accordance with an illustrative
embodiment of the present invention. Client devices 320
350 may communicate with Web server 310 in order to
obtain access to services provided by the back-end enter
prise computing system resources 360. Performance moni
toring system 370 is provided for monitoring the processing
of requests by the Web server 310 and enterprise computing
system resources 360.

US 2007/00741.87 A1

0033 Web server 310, enterprise computing system
resources 360 and performance monitoring system 370 are
part of an enterprise system. Client devices 320-350 may
submit requests to the enterprise system via Web server 310,
causing requests to be created. The requests are processed by
Web server 310 and enterprise computing system resources
360. Performance monitoring system 370 monitors the per
formance of Web server 310 and enterprise computing
system resources 360 as they process the requests.

0034. This performance monitoring involves collecting
and storing data regarding performance parameters of the
various components of Web server 310 and enterprise com
puting system resources 360. For example, monitoring of
performance may involve collecting and storing information
regarding the amount of time a particular component spends
processing a request, a SQL query, component information
including class name and instance ID in the JAVA Virtual
Machine (JVM), memory usage statistics, any properties of
the state of the JVM, properties of the components of the
JVM, and/or properties of the system in general.

0035) The components of Web server 310 and enterprise
computing system resources 360 may include both hardware
and Software components. For example, the components
may include host systems, JAVA Server Pages, servlets,
entity beans, Enterprise Java Beans, data connections, and
the like. Each component may have its own set of perfor
mance characteristics, which may be collected and stored by
performance monitoring system 370 in order, to obtain an
indication as to how the enterprise system is handling
requests.

0036) The aspects of the present invention provide a
method, an apparatus, and computer instructions for insert
ing code fixes into applications at runtime. Instead of
monitoring performance of requests that are processed by
Web servers and enterprise computing system resources, the
aspects of the present invention extend capabilities of com
ponents in a performance monitoring system, such as per
formance monitoring system 370 in FIG. 3, to insert main
tenance fixes or patches into applications while the
applications continue to execute. The aspects of the present
invention insert these code fixes in a manner that does not
require stopping or terminating execution of the applica
tions. In particular, the illustrative embodiments place a
“fixed' class that is defined by a vendor who provided the
monitored application or an in house developer who devel
oped the in house application in place of an existing broken
class during run time. Applications may be enterprise appli
cations that are executed on Web servers, such as Web server
310, or on enterprise computing system resources, such as
enterprise computing system resources 360.

0037. In one example implementation, aspects of the
present invention may be implemented using prior art tech
niques, such as a JITI or a J2EE monitoring component, to
insert code fixes in place of a broken code segment in the
application at runtime. Examples of a broken code segment
include a broken method of a class, a runtime environment
different from an environment required by the class, or other
failed aspects of the class. In addition to using aspect
oriented programming techniques, such as the JITI or the
J2EE monitoring component, other prior art instrumentation
techniques may be used without departing the spirit and
Scope of the present invention.

Mar. 29, 2007

0038 JITI is an aspect-oriented programming technique
that weaves response time and other measurement opera
tions into applications for monitoring performance. JITI
provides the ability to manipulate the byte code of a moni
tored Java application at runtime in a manner similar to Byte
Code Engineering Library (BCEL). BCEL allows develop
ers to implement desired features on a high level of abstrac
tion without handling all the internal details of the Java class
file format. JITI adds new byte codes to the application
classes to provide hooks, such that the application may run
in a manner similar to aspect-oriented programming tools,
Such as Aspect.J.
0039. One aspect of the present invention leverages the
capability of JITI or J2EE monitoring component to detect
a broken code segment in applications and insert code fixes
into the applications in place of the broken code segment.
Alternatively, without a detection of an error or a broken
code segment, one or the JITI or J2EE monitoring compo
nent may receive one or more code fixes and insert into the
applications without disrupting operations of the applica
tions. Instead of gathering performance measurement infor
mation, such as, the response time and other measurement
data, the aspect of the present invention extends the capa
bility of the Application Responsive Measurement (ARM)
engine to gather operational information, Such as failures or
errors that are generated by the applications, and the capa
bility of the monitoring engine to determine if code fixes are
necessary.

0040 ARM is a standard for measuring response time
measurements and status of requests. ARM employs an
ARM engine, which records response time measurements of
the requests. For example, in order to measure a response
time, an application invokes a start method using ARM,
which creates a transaction instance to capture and save a
timestamp. After the transaction ends, the application
invokes a stop method using ARM to capture a stop time.
The difference between a start and a stop time is the response
time of the transaction. More information regarding the
manner by which transaction monitoring systems collect
performance data, stores it, and uses it to generate reports
and transaction graph data structures may be obtained from
the ARM Specification, version 4.0, which is hereby incor
porated by reference.
0041. The aspect of the present invention extends the
ARM standard to gather operational information in the ARM
engine, such that failures and errors that are generated by the
applications may be collected. Operational information is
information that is collected from the applications at runt
ime, for example, errors, failures, and other alerts that are
generated by the applications. If the aspect of the present
invention in the monitoring engine determines that code
fixes are necessary based on the collected operational infor
mation, without disrupting the operation of the application,
the aspect of the present invention in the monitoring com
ponent inserts code fixes into the application at runtime by
replacing the detected broken code segment with code fixes
that are necessary to correct the error or failure. In an
illustrative embodiment, the aspect of the present invention
in the monitoring engine monitors for faults through the use
of the ARM engine. Where a fault is recognized by the ARM
engine and can be isolated to a particular code segment, the
JITI or J2EE monitoring component patch tool may search
a library of code fixes for code fixes or a patch for the broken

US 2007/00741.87 A1

code segment. In this way, the error or failure may be
corrected by applying code fixes without taking down the
application.
0.042 Alternatively, a vendor or an in-house application
developer may proactively provide a code fix to the appli
cations prior to a known error being detected. In this case,
the aspect of the present invention in the monitoring com
ponent inserts the code fix into the application without
stopping execution of the application.
0.043 Turning now to FIG. 4, a diagram illustrating
interactions between components for inserting code fixes
into applications at runtime is depicted in accordance with
an illustrative embodiment of the present invention. As
depicted in FIG. 4, in this example implementation, within
performance monitoring environment 400, application 401
resides on application server 402. Application server 402
may be implemented using an application server application
403, such as a WebSphere Application Server or a Microsoft
.NET platform, a product available from Microsoft Corpo
ration.

0044) When the user configures application 401 to be
monitored, the user deploys a monitoring component 406,
such as the JITI or the J2EE monitoring component. In an
illustrative embodiment, monitoring component 406 is
deployed in application server application 403 to dynami
cally configure application 401 if an error or failure is
encountered. Monitoring component 406 may be imple
mented using various aspect-oriented programming tech
niques, such as JITI, which is a specific implementation
within performance monitoring application, Such as perfor
mance monitoring system 370 in FIG. 3.
0045. In addition, the user defines necessary code fixes
and error conditions in monitoring component 406. Alter
natively, a vendor who provides the application being moni
tored or an in house developer who developed an in house
application may define necessary code fixes and error con
ditions in monitoring component 406. Next, an update of the
necessary code fixes and error conditions as defined by the
user, the vendor, or the in house developer is sent to
monitoring engine 404 from management server 412. Asso
ciations between code fixes and error conditions may be
stored in an internal database, such as internal database 405,
within management agent 414 by monitoring engine 404. In
an illustrative embodiment, monitoring engine 404 and
ARM engine 410 are implemented as part of management
agent 414. Management agent 414 is a mechanism distrib
uted among different components of performance monitor
ing environment 400, such as application server 402. Man
agement agent 414 may also reside on other components as
described in FIG. 4, except management server 412. When
monitoring engine 404 receives the updated code fixes and
error conditions, monitoring engine 404 in turn notifies
ARM engine 410.
0046. At runtime, application 401 runs and ARM engine
410 gathers operational information, including error condi
tions that are generated by application 401, by intercepting
the call and invoking an ARM start method on ARM
engine 410. ARM engine 410 then collects any error of
failure that is generated by application 401. Upon detecting
an error or failure, ARM engine 410 notifies monitoring
engine 404, which then matches error condition that is
generated by application 401 against defined error condi

Mar. 29, 2007

tions in internal database 405 to see if code fixes are
necessary for the error condition encountered. An example
of error condition may be a wrong runtime environment
setup. If the code fixes are necessary for the error condition
encountered, monitoring engine 404 notifies monitoring
component 406, which inserts code fixes in place of the
broken code segment in application 401 at runtime. In this
way, the error condition encountered may be corrected
without taking down application 401. For example, code
fixes may be inserted to set the correct runtime environment
at runtime.

0047. In cases where the vendor or developer wants to
insert a code fix into application 401 in anticipation of an
error condition that is not yet detected by monitoring engine
404, monitoring engine 404 may perform a lookup of code
fixes defined in internal database 405 and notify monitoring
component 406 to insert the code fixes into application 401
at runtime.

0048. By inserting code fixes into applications using JITI
or J2EE monitoring component, a piece of the broken code
may be replaced by code fixes that corrects a specific error
or failure. However, errors and failures in the applications
may occur due to more than one piece of broken or defective
code. For example, multiple methods of a class may be
defective. In that case, changes made to fix the broken class
is so extensive that it will make more sense to Swap out the
entire class at runtime instead of inserting individual code
fixes.

0049. In order to alleviate this problem, another aspect of
the present invention allows users to create a custom class
loader, which may be executed at runtime. In addition, the
user may define one or more custom classes, which include
code fixes that handle different error conditions. If errors or
failures are encountered in a class at runtime, instead of
inserting code fixes to fix the specific piece of broken code
within a broken class, the custom class loader loads a custom
class that the user has defined for the errors or failures
encountered and inserts the custom class in place of the
broken class. In other words, the broken class is Swapped out
and replaced with the custom class. By Swapping out the
broken class and replacing it with a custom class, not only
a method within the broken class may be fixed, other errors
or failures that are encountered within the broken class may
also be fixed.

0050 Turning back to FIG. 4, if a determination is made
that code fixes are necessary for the error conditions encoun
tered, instead of inserting the code fixes into the application
using the JITI or the J2EE monitoring component, custom
class loader 408 is executed. In turn, custom class loader 408
Swaps out the broken class with a user-defined custom class
that handles the error conditions encountered.

0051 Turning now to FIG. 5A, a flowchart of an exem
plary process for inserting code fixes into applications at
runtime from the perspective of a JITI or J2EE monitoring
component is depicted in accordance with an illustrative
embodiment of the present invention. This exemplary pro
cess may be implemented in a JITI or J2EE monitoring
component, such as monitoring component 406 in FIG. 4. As
shown in FIG. 5A, the process begins when a user definition
of necessary code fixes and error conditions that may be
generated by the application is received (step 500).
0052 Once a user definition of necessary code fixes and
error conditions is received, an update of necessary code

US 2007/00741.87 A1

fixes and error conditions are sent to the monitoring engine
(step 502). Next, a notification is received from the moni
toring engine to insert code fixes (step 504). In turn, the
process inserts the necessary code fixes into the application
without taking the application down (step 506). Thus, the
process terminates thereafter.

0053 Turning next to FIG. 5B, a flowchart of an exem
plary process for determining if code fixes are necessary at
runtime from the perspective of the monitoring engine is
depicted in accordance with an illustrative embodiment of
the present invention. This exemplary process may be imple
mented in a monitoring engine. Such as monitoring engine
404 in FIG. 4. As shown in FIG. 5B, the process begins when
an update of necessary code fixes and error conditions is
received from the monitoring component (step 508).

0054) Next, an error or failure is received from the ARM
engine (step 522). This error or failure from the ARM engine
is an error or failure generated by the application. The error
or failure is then matched against the user defined error
conditions received in step 508 (step 510). A determination
is made as to whether code fixes are necessary for the error
or failure (step 512). If code fixes are necessary, the process
notifies the monitoring component to insert the code fixes
(step 514). Thus, the process terminates thereafter. However,
if it is determined that code fixes are not necessary, the
process returns to step 510 until another error or failure is
received from the ARM engine.

0055 Turning next to FIG. 5C, a flowchart of an exem
plary process for gathering operational information at runt
ime from the perspective of the ARM engine is depicted in
accordance with an illustrative embodiment of the present
invention. This exemplary process may be implemented in
an ARM engine, such as ARM engine 410 in FIG. 4. As
shown in FIG. 5C, the process begins when the application
runs (step 516) and operational information, including errors
and failures generated by the application, is gathered (step
518). Next, an error or failure is detected from the applica
tion (step 520) and a notification of the error or failure is sent
to the monitoring engine (step 522). Thus, the process
terminates thereafter.

0056 Turning next to FIG. 6A, a flowchart of an exem
plary process for executing a custom class loader from the
perspective of a monitoring component is depicted in accor
dance with an illustrative embodiment of the present inven
tion. This exemplary process may be implemented in a
monitoring component, Such as monitoring component 406
in FIG. 4. As shown in FIG. 6A, the process begins when a
notification from the monitoring engine is received to
execute a custom class loader (step 600). The notification is
received from the monitoring engine when the monitoring
engine determines that code fixes are necessary. Next, the
custom class loader, such as custom class loader 408 in FIG.
4, is executed (step 602).

0057 Turning next to FIG. 6B, a flowchart of an exem
plary process for inserting a custom class in place of a
broken class from the perspective of a custom class loader
is depicted in accordance with an illustrative embodiment of
the present invention. This exemplary process may be imple
mented in a custom class loader, Such as custom class loader
408 in FIG. 4. As shown in FIG. 6B, the process begins when
a custom class for the error condition encountered is loaded

Mar. 29, 2007

(step 604). Finally, the custom class is inserted in place of
the broken class (step 606) and the process terminates
thereafter.

0058. In summary, the aspects of the present invention
leverage the capability of a JITI or a J2EE monitoring
component to detect a broken code segment in an applica
tion and insert code fixes into the application to fix the
broken code segment. In this way, applications may continue
to operate even when error or failures are encountered. In
addition, the aspects of the present invention allow users to
define a custom class loader, which may be executed at
runtime to load a custom class that fixes errors or failures
encountered in a class. As a result, the broken class may be
Swapped out and Substituted with a class without taking the
application down for maintenance.
0059. The invention can take the form of an entirely
hardware embodiment, an entirely software embodiment, or
an embodiment containing both hardware and software
elements. In a preferred embodiment, the invention is imple
mented in software, which includes but is not limited to
firmware, resident Software, microcode, etc.
0060) Furthermore, the invention can take the form of a
computer program product accessible from a computer
usable or computer-readable medium providing program
code for use by or in connection with a computer or any
instruction execution system. For the purposes of this
description, a computer-usable or computer readable
medium can be any apparatus that can contain, Store, com
municate, propagate, or transport the program for use by or
in connection with the instruction execution system, appa
ratus, or device.
0061 The medium can be an electronic, magnetic, opti
cal, electromagnetic, infrared, or semiconductor System (or
apparatus or device), or a propagation medium. Examples of
a computer-readable medium include a semiconductor or
Solid state memory, magnetic tape, a removable computer
diskette, a random access memory (RAM), a read-only
memory (ROM), a rigid magnetic disk and an optical disk.
Current examples of optical disks include compact disk-read
only memory (CD-ROM), compact disk-read/write (CD-R/
W) and digital video disc (DVD).
0062) A data processing system is suitable for storing
and/or executing program code will include at least one
processor coupled directly or indirectly to memory elements
through a system bus. The memory elements can include
local memory employed during actual execution of the
program code, bulk storage, and cache memories which
provide temporary storage of at least Some program code in
order to reduce the number of times code must be retrieved
from bulk storage during execution.
0063. Input/output or I/O devices (including but not
limited to keyboards, displays, pointing devices, etc.) can be
coupled to the system either directly or through intervening
I/O controllers.

0064 Network adapters may also be coupled to the
system to enable the data processing system to become
coupled to other data processing systems or remote printers
or storage devices through intervening private or public
networks. Modems, cable modems, and Ethernet cards are
just a few of the currently available types of network
adapters.

US 2007/00741.87 A1

0065. The description of the present invention has been
presented for purposes of illustration and description, and is
not intended to be exhaustive or limited to the invention in
the form disclosed. Many modifications and variations will
be apparent to those of ordinary skill in the art. The
embodiment was chosen and described in order to best
explain the principles of the invention, the practical appli
cation, and to enable others of ordinary skill in the art to
understand the invention for various embodiments with
various modifications as are Suited to the particular use
contemplated.

What is claimed is:
1. A computer implemented method for inserting code

fixes into applications at runtime, the computer implemented
method comprising:

receiving a code fix for an application during execution of
the application; and

inserting the code fix into the application without stopping
execution of the application.

2. The computer implemented method of claim 1, wherein
the receiving step comprises:

gathering operational information from the application;
monitoring the application for an error using the opera

tional information about the application; and
returning a code fix corresponding to the error.
3. The computer implemented method of claim 1, wherein

the code fix is a first class that replaces a second class in the
application, wherein the second class causes the error.

4. The computer implemented method of claim 1, wherein
the inserting step is performed by a monitoring component,
and wherein the monitoring component is a just-in-time
instrumentation monitoring component.

5. The computer implemented method of claim 2, wherein
the monitoring step is performed by an application response
measurement engine and wherein the returning step is
performed by a monitoring engine.

6. The computer implemented method of claim 2, wherein
the operational information includes errors and failures
generated by the application.

7. The computer implemented method of claim 2, wherein
the returning step comprises:

matching the error against a plurality of error conditions
and corresponding code fixes defined by a user, and

if the error matches one of the plurality of error condi
tions, returning a code fix in the corresponding code
fixes for the error.

8. The computer implemented method of claim 7, wherein
the inserting step comprises:

inserting the code fix in place of broken code segment that
generates the error during execution of the application.

9. The computer implemented method of claim 1, further
comprising:

executing a custom class loader;
loading a custom class from a plurality of custom classes;

and

inserting the custom class into the application without
stopping execution of the application.

Mar. 29, 2007

10. The computer implemented method of claim 9.
wherein the custom class loader and the plurality of custom
classes are defined by at least one of a user, a vendor, and an
in house developer.

11. A data processing system for inserting code fixes into
applications at runtime, the data processing system com
prising:

a bus,

a storage device, wherein the storage device contains
computer usable code;

a communications unit connected to the bus; and

a processing unit connected to the bus, wherein the
processing unit executes the computer usable code to
receive a code fix for an application during execution of
the application; and insert the code fix into the appli
cation without stopping execution of the application.

12. The data processing system of claim 11, wherein the
processing unit, in executing the computer usable code to
receive a code fix for an application during execution of the
application, executes the computer usable code to gather
operational information from the application; monitor the
application for an error using the operational information
about the application; and return a code fix corresponding to
the error.

13. The data processing system of claim 12, wherein the
processing unit, in executing the computer usable code to
return a code fix corresponding to the error, executes the
computer usable code to match the error against a plurality
of error conditions and corresponding code fixes defined by
a user, and returning a code fix in the corresponding code
fixes for the error if the error matches one of the plurality of
error conditions.

14. The data processing system of claim 13, wherein the
processing unit, in executing the computer usable code to
insert the code fix into the application without stopping
execution of the application, executes the computer usable
code to insert the code fix in place of broken code segment
that generates the error during execution of the application.

15. The data processing system of claim 11, wherein the
processing unit further executes the computer usable code to
execute a custom class loader; load a custom class from a
plurality of custom classes; and insert the custom class into
the application without stopping execution of the applica
tion.

16. A computer program product comprising:

a computer usable medium having computer usable pro
gram code for inserting code fixes into applications at
runtime, said computer program product including:

computer usable program code for receiving a code fix for
an application during execution of the application; and

computer usable program code for inserting the code fix
into the application without stopping execution of the
application.

17. The computer program product of claim 16, wherein
the computer usable program code for receiving a code fix
for an application during execution of the application com
prises:

US 2007/00741.87 A1

computer usable program code for gathering operational
information from the application;

computer usable program code for monitoring the appli
cation for an error using the operational information
about the application; and

computer usable program code for returning a code fix
corresponding to the error.

18. The computer program product of claim 17, wherein
the computer usable program code for returning a code fix
corresponding to the error comprises:

computer usable program code for matching the error
against a plurality of error conditions and correspond
ing code fixes defined by a user, and

computer usable program code for returning a code fix in
the corresponding code fixes for the error, if the error
matches one of the plurality of error conditions.

Mar. 29, 2007

19. The computer program product of claim 18, wherein
the computer usable program code for inserting the code fix
into the application without stopping execution of the appli
cation comprises:

computer usable program code for inserting the code fix
in place of broken code segment that generates the error
during execution of the application.

20. The computer program product of claim 16, further
comprising:

computer usable program code for executing a custom
class loader,

computer usable program code for loading a custom class
from a plurality of custom classes; and

computer usable program code for inserting the custom
class into the application without stopping execution of
the application.

