A reverse firewall for removing undesirable traffic from a computing network, such as a virtual private network (VPN), is disclosed. The reverse firewall uses firewall rules that may be determined and maintained within the enterprise network to control
(57) Abstract (continued):

communication sent between computers in the computing network. The reverse firewall rules may be used to identify the communications between computers in the network that are undesirable and/or intrusive. For example, a computer in a network that is infected with a worm or that is surreptitiously hosting a denial-of-service attack may be identified by the reverse firewall and quarantined. The reverse firewall may be implemented in hardware and/or software.
ABSTRACT

A reverse firewall for removing undesirable traffic from a computing network, such as a virtual private network (VPN), is disclosed. The reverse firewall uses firewall rules that may be determined and maintained within the enterprise network to control communication sent between computers in the computing network. The reverse firewall rules may be used to identify the communications between computers in the network that are undesirable and/or intrusive. For example, a computer in a network that is infected with a worm or that is surreptitiously hosting a denial-of-service attack may be identified by the reverse firewall and quarantined. The reverse firewall may be implemented in hardware and/or software.
DETERMINING FIREWALL RULES FOR REVERSE FIREWALLS

TECHNICAL FIELD

[02] Aspects of the invention relate to a method and/or device for improving the protection of hosts in an internal network. More specifically, aspects of the invention relate to techniques for generating, maintaining, and enforcing a communications management policy in a network.

BACKGROUND

[03] The outbreak of the worms taking advantage of vulnerabilities in commercial desktop security software has highlighted the need for multi-faceted security measures. Perimeter defense (e.g., conventional firewalls) are only marginally effective in suppression of worms because of the difficulty of defining and implementing these types of systems. Enterprise networks, in particular, are at risk from a deficiency in security against worms. For example, once a worm is in a company’s internal network, it can spread to other internal computers even if they are completely isolated from the Internet. Furthermore, worms may be introduced into a company’s internal network by laptops that are used both outside and within the enterprise.

[04] Therefore, there is a need in the art for a method and/or device for protecting against worms and other security threats within enterprise networks, and generally, data networks. There is also a need in the art for a method or device for protecting a host in an internal network from other hosts in that same network in a brownfield and greenfield environment.
SUMMARY

[05] Certain exemplary embodiments can provide a method for securing a network using a reverse firewall, the reverse firewall accessing a profile of a host in the network, the method comprising: at the reverse firewall, receiving a network communication from the host in the network; maintaining a profile of the host in the reverse firewall, the profile including at least one communication protocol name for network communications received from the host; determining whether a protocol name of the network communication is in the profile of the host; if the protocol name of the network communication is in the profile of the host, allowing the network communication from the host; and if the protocol name of the network communication from the host is not in the profile of the host, incrementing a counter corresponding to a number of out-of-profile network communications in the profile; determining whether the counter has exceeded a threshold level; if the number of out-of-profile communication has not exceeded the threshold level, allowing the network communication from the host; if the number of out-of-profile communication has exceeded the threshold level, blocking the network communication from the host.

[05a] Certain exemplary embodiments can provide a network device for controlling a network communication sent from a host in a network, the network device configured to enforce a profile of the host and a throttling discipline, the device comprising: a memory unit storing at least one communication protocol name for communications received from the host; the memory unit storing a set of rules corresponding to the profile of the host in the network, the network device accessing the memory unit to identify the set of rules corresponding to the profile of the host in the network; and an out-of-profile counter for use by the network device to enforce the throttling discipline, wherein if the protocol name of the network communication is in the profile of the host, allowing the network communication from the host, and wherein if the protocol name of the network communication from the host is not in the profile of the host, the counter increments the number of out-of-profile communications sent from the host, and upon determining that the number of out-of-profile communication has not exceeded a determined threshold level, allowing the network communication from
the host, and upon determining that the number of out-of-profile communication has exceeded a determined threshold level, blocking the network communication from the host.

[05b] Other embodiments provide a method for securing a network using a reverse firewall that accesses a profile of an internal host. The reverse firewall may receive communication from an internal host, and may, if the communication from the host is in-profile, allow the communication to pass. Else, if the communication from the host is out-of-profile, the reverse firewall may enforce a throttling discipline on the communication to determine whether to allow or block the communication. Some examples of throttling disciplines in accordance with the invention include, but are not limited to, n-r-relaxed, n-r-strict, and n-r-open.

[06] In addition, other embodiments provide a method for determining a communications management policy for a reverse firewall in a network. In one embodiment, a profile may be generated and updated for an internal host. The reverse firewall may set a throttling discipline designated for out-of-profile communication from the host. The profile of an internal host may comprise an initial set of rules based on an analysis of communication between a plurality of hosts during a learning period.

[07] Furthermore, other embodiments provide a reverse firewall for controlling communication sent from an internal host. The reverse firewall may be implemented in a network device configured to enforce a profile and a throttling discipline, and comprising a memory unit and an out-of-profile counter.

BRIEF DESCRIPTION OF THE DRAWINGS

[08] One or more embodiments of aspects of the invention are illustrated by way of example and not limited in the accompanying figures in which like reference numerals indicate similar elements and in which:

[09] Figure 1 shows an illustrative operating environment for various aspects of the invention;
Figure 2 depicts a flowchart of a method for securing a network using a reverse firewall in accordance with various embodiments of the invention;

Figure 3 illustrates a flowchart of a method for determining a policy for a reverse firewall in accordance with various embodiments of the invention; and

Figure 4 illustrates a memory unit in a reverse firewall in accordance with various embodiments of the invention.

DETAILED DESCRIPTION

A reverse firewall in accordance with aspects of the invention may improve the protection of the hosts within a network against worms and similar security threats. The reverse firewall may generate, maintain/update, and enforce a profile of a host in the network to protect other internal hosts from that host. In addition, a reverse firewall may enforce a throttling discipline (TD) to determine whether to allow or block network communication from a host. These and other aspects of the invention will become apparent to one skilled in the art after review of the entire disclosure and any disclosures incorporate by reference herein.

Figure 1 illustrates an example of a suitable network architecture in which aspects of the invention may be implemented. The network architecture is only one example of a suitable network layout and is not intended to suggest any limitation as to the scope of use or functionality of the invention. Other well known computing systems, environments, and/or configurations that may be suitable for use with the invention include, but are not limited to, personal computers, server computers, hand-held or laptop devices, multiprocessor systems, microprocessor-based systems, programmable consumer electronics, networked PCs, minicomputers, mainframe computers, distributed computing environments that include any of the above systems or devices, and the like.
A reverse firewall in accordance with aspects of the invention may be used to secure a network 102 of hosts 114, 116, 118, 120. The reverse firewall may be embodied in any network device connected to the network 102. For example, a router 112, hub 110, switch 108, and/or conventional firewall 104 may be configured to act as (or work in combination with another device to act as) a reverse firewall. In addition, one of more network devices (e.g., host 118) may be connected to the network 102 through wireless communication, such as IEEE 802.11, Wi-fi, radio frequency (RF), and bluetooth. One skilled in the art will understand that a network device need not be directly connected to a network 102 to be considered connected in accordance with aspects of the invention. The term, connected, shall not require a device to be directly connected. Furthermore, an external host 106 may be connected to a conventional firewall 104 of the network 102. The external host 106 may receive communication from and send communication to internal hosts 114, 116, 118, 120.

In one illustrative embodiment of aspects of the invention, a router 112 may be a programmable router comprising a memory unit, and configured as a reverse firewall. In another example, a reverse firewall may be implemented in a computing machine (e.g., host 120) comprising a computer-readable medium storing computer-executable instructions. One skilled in the art will appreciate that aspects of the invention may be described in the general context of computer-executable instructions, such as program modules, executed by one or more computers or other network devices. Generally, program modules may include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types. Typically the functionality of the program modules may be combined or distributed as desired in various embodiments. Suitable network architecture may include at least some form of computer readable media. Computer readable media can be any available media that can be accessed by computers or other devices.

Figure 3 depicts a flowchart of a method for determining a communications management policy for a reverse firewall in a network. The communications
management policy determines, among other things, when to drop or pass packets sent from an internal host in the network. In one example, the reverse firewall may use a profile comprising a set of rules to implement aspects of the communications management policy. The set of rules may be used to determine when to drop or pass packets sent from an internal host in the network.

[18] The profile for an internal host 114 in the network may be generated (in step 302) and used by a reverse firewall to determine whether to allow or block network communication from an internal host 114. In one embodiment, a profile for an internal host 114 may be generated at a network device (e.g., router 112) that is being used as a reverse firewall in accordance with aspects of the invention. In an alternative embodiment, a computing machine 120 on the network may be configured to, among other things, collect and/or analyze desirable information for use in generating a profile of an internal host 114. The computing machine 120 may monitor communication (i.e., traffic) on a network 102 during a predetermined length of time (i.e., a learning period) to generate a profile of internal hosts.

[19] The interaction between the internal hosts on the network 102 may define a community of interest. For example, the computing machine 120 may analyze flow records of the network 102 to extract information about internal host communication (e.g., source IP address, destination IP address, destination port number, communication protocol, etc.) and generate an initial set of rules corresponding to the network communication between a plurality of hosts in the network. These initial set of rules may be used to generate a profile of a host 114 on the network 102. The profile of a host 114 may be comprised of PCSPP rules (i.e., a 3-tuple rule defined by protocol, client, server port, and server profile), PCSP rules (i.e., a 3-tuple rule defined by protocol, client, and server profile), and/or PSP rules (i.e., a 3-tuple rule defined by protocol and server profile).

[20] In accordance with aspects of the invention, it may be desirable to identify a core community of interest (i.e., core COI) for each relevant internal host. The core COI
may be of a popularity community of interest (i.e., popularity COI) type, frequency community of interest (i.e., frequency COI) type, and/or a combination thereof. It will be apparent to one skilled in the art after review of the entirety disclosed herein, including any disclosure incorporated by reference, that the analysis of network communication in a community of interest contributes to the generation of an initial set of rules for internal hosts on a network.

In one example, in step 302, an initial set of rules corresponding to communication originating from a host may be generated based on an analysis of the network communication between a plurality of hosts in the network during a learning period. During the learning period, the traffic on the network 102 may be monitored to generate an set of initial rules. The analysis may begin with a two-dimensional clustering model, where the number of connections per port may be shown on one axis, while the number of destination hosts using that port may be shown on another axis. Then, using a k-means statistical clustering technique known in the art, those ports with substantially more traffic may be partitioned from other ports on the network 102 in an iterative process. The k-means technique may use randomly selected centroid locations, therefore, in one example, the k-means technique may be repeated multiple (e.g., one hundred) times with different centroid locations to determine the solution with the lowest value for the sum of within-cluster point-to-centroid distances. The k-means technique may result in two distinct clusters: the first cluster corresponding to points clustered around low values of number of connection and number of destination hosts, and the second cluster comprised of points that have high values along these dimensions. Thus, the points of the second cluster may be selected as ports for the transport protocol (e.g., TCP, UDP, etc.) being considered. This information may be used in generating PCSPP rules, PCSP rules, and/or PSP rules. Moreover, one skilled in the art will appreciate that log transformation (i.e., transforming the data value for each variable to a logarithmic scale to reduce the effect of outliers at the high end of the value range) and scale standardization (e.g., z-score normalization where variables are normalized on a common scale to avoid one
variable from dominating the other in the cluster) may be used in addition to k-means techniques.

[22] In another example, in step 302, a set of rules for a profile may also be generated based on data analyzed during a learning period to identify those destination-port pairs that have substantial amounts of traffic on the network 102. For any source hosts communicating with the destination-port pair (i.e., the port on the destination host) a rule may be added to the profile of the source host. In yet another example, a rule may be added to a source host's profile to allow all communication from a source host to all ports on a destination host (e.g., by designating the port as a wildcard in the rule).

[23] Once the initial set of rules have been generated, then in step 304 these rules may be updated. The set of rules may be automatically updated to accommodate for known undesirable network communication. For example, it may be desirable to remove any rules in a profile corresponding to TCP communication between two internal hosts that consists of less than three packets in each direction. In another example, it may be desirable to remove any rules in a profile corresponding to UDP communication between two internal hosts that consists of less than two packets in either direction. In yet another example, it may be desirable to not remove any rules corresponding to ICMP data communication. One skilled in the art will appreciate that other updates to the profile of internal hosts are envisioned in accordance with aspects of the invention.

[24] In various embodiments of the invention, it may be desirable for the communications management policy for a reverse firewall to be comprised of a profile of the internal hosts and/or a throttling discipline (TD). As described earlier, a reverse firewall may set (in step 306) a TD for out-of-profile network communication from an internal host. In one example, the TD may be used to describe the tolerable rate of out-of-profile communication from an internal host and the action to take when the rate is exceeded. After review of the entirety disclosed herein, one skilled in the art will
appreciate that various throttling disciplines are available for use with a reverse firewall.

[25] In accordance with aspects of the invention, Figure 2 depicts a flowchart of a method for securing a network from a host using a reverse firewall. In the illustrative embodiment depicted by Figure 2, the reverse firewall may be embodied in a network device such as router 112 located on the network 102 and storing a profile of a host 114. The profile of a host 114 is comprised of a set of rules defining the internal exchange of network packets between that host 114 and other hosts (116, 118, and 120) in the network 102. The profile of a host 114 is discussed in greater detail in relation to the description of Figure 4 below.

[26] In step 202, the reverse firewall receives network communication from an internal host 114 (i.e., a host on the internal network 102). The network communication may be the result of an application (e.g., a web browser, instant messenger, etc.) running on the internal host 114. One skilled in the art will recognize that network communication may include any communication between devices on a network. For example, an internal host 114 may be running a telnet program that is exchanging information with another internal host 116 on port 23 using transmission control protocol (TCP). The network communication may also occur using protocols, such as user datagram protocol (UDP), Internet control message protocol (ICMP), dynamic host configuration protocol (DHCP) and other protocols apparent to those skilled in the art. In some embodiments, the reverse firewall may be configured to allow or block network communication based on at least the protocol being used. For example, a reverse firewall may be configured to not block any DHCP traffic from internal hosts. These and other embodiments of aspects of the invention will become apparent to one skilled in the art after review of the entire disclosure.

[27] In step 204, the reverse firewall accesses the profile corresponding to the internal host 114 that is the source of the network communication (i.e., internal source host) to determine if the parameters of the network communication (e.g., destination address,
destination port, and/or communication protocol) are present in the profile of the internal source host 114. Parameters of network communication include, but are not limited to, destination address, destination port, and communication protocol. If the destination host (i.e., the host corresponding to the destination address) parameter is included in the profile of the internal source host 114, then the network communication from the internal source host 114 to the destination host may be allowed to pass. In addition, if the profile of the internal source host 114 includes information about a port or range of ports on the destination host, then the reverse firewall may also consider the destination port parameter of the network communication in allowing (or blocking) the network communication. Moreover, if the profile of the internal source host 114 includes information about communication protocol, then the reverse firewall may also consider the protocol parameter of the network communication in allowing (or blocking) the network communication. In one embodiment, network communication from a host is in the profile of that host if the destination address (e.g., IP address of the destination host) parameter, destination port (e.g., port 23) parameter, and communication protocol (e.g., UDP) parameter are present in the profile of the host. One skilled in the art will appreciate that numerous variations and/or combinations of the exemplary items (e.g., address, port, protocol, allow/block status, etc.) that may appear in a rule of a profile are envisioned in accordance with aspects of the invention.

In an example in accordance with aspects of the invention, an internal source host 114 attempts to send network communication to port 23 of an internal destination host 116 using UDP. The reverse firewall may access the profile corresponding to the internal source host 114 to determine if UDP communication from the internal source host 114 to port 23 on the destination host 116 is allowed in the profile. In one example, assuming the profile contains a rule (or set of rules) allowing UDP communication from the source host 114 to port 23 on the destination host 116, the communication may be allowed (in step 206) to be sent to the destination host 116. In another example, assuming the profile contains a rule (or set of rules) allowing UDP
communication from the source host 114 to any port on the destination host 116 (e.g., the port is a wildcard, port is not an item in the profile, etc.), the network communication may be allowed (in step 206) to be sent to the destination host 116. One skilled in the art will appreciate that numerous variations and combinations of the above examples of profile rules (or set of rules) are envisioned in accordance with aspects of the invention.

[29] On the other hand, if the network communication from the source host 114 is not in the internal source host's profile (i.e., it is out-of-profile network communication), the reverse firewall may consider additional factors in determining whether to allow or block the network communication from the source host. For example, the reverse firewall may be configured to enforce a throttling discipline (TD) on the network communication (in step 208). A throttling discipline may be used, among other things, to control out-of-profile network communication from a host. Examples of throttling disciplines include, but are not limited to, a n-r-relaxed discipline, a n-r-strict discipline, a n-r-open discipline, combination and/or derivations of these disciplines, and/or other throttling disciplines that will be apparent to one skilled in the art after review of the entire disclosure herein.

[30] For example, a n-r-strict throttling discipline blocks all communication, both out-of-profile and in-profile, from an internal host after the number of out-of-profile communications from that internal source host exceed a threshold 'n' within a time period 'r'. Thus, out-of-profile communication is not necessarily always blocked. In one example in accordance with various aspects of the invention, a reverse firewall is enforcing a n-r-strict throttling discipline where the value of 'n' is zero. Therefore, all network communication from an internal source host is blocked when an out-of-profile network communication is attempted by the internal source host. A reverse firewall enforcing such a TD might not require a value for 'r'. A n-r-strict discipline with the value of 'n' as zero may result in a highly secure internal network 102 where no out-of-profile communication is allowed.
The number of out-of-profile communications may be measured by the number of out-of-profile packets or some other measurable unit that will be apparent to one skilled in the art. For example, flow records (e.g., records generated by some Cisco routers when 'netflow' is enabled) grouped into, e.g., 5-minute intervals, may be used to determine the number of out-of-profile communications. Similarly, the packet tracking feature on some routers may be used to measure the number of out-of-profile communications. Furthermore, an out-of-profile counter may be used to track the number of out-of-profile communications sent from an internal host during a time period ‘r’ (e.g., 10 minutes). In an illustrative embodiment, an out-of-profile counter in a reverse firewall may be provided for each host in the internal network 102. When the network communication from an internal host is not in the profile of that host, (in step 210) the out-of-profile counter may be updated, e.g., by incrementing a numeric counter in the out-of-profile counter. The out-of-profile counter is discussed in greater detail in relation to the description of Figure 4 below.

Another example of a throttling discipline includes a n-r-relaxed discipline that allows an internal host to send ‘n’ out-of-profile communications within a time period ‘r’. If the number of out-of-profile communications exceed a threshold ‘n’ within a time period ‘r’, all future communication (both in-profile and out-of-profile) from the internal source host is blocked. When the value of ‘n’ in an n-r-relaxed throttling discipline is zero, the throttling discipline behaves the same as a n-r-strict discipline with the value of ‘n’ as zero. In addition, an out-of-profile counter may be used with this TD similar to that discussed earlier.

Yet another example of a throttling discipline includes a n-r-open discipline that allows a threshold of ‘n’ out-of-profile communications within a time period ‘r’. Under this TD, once the threshold has been reached, the reverse firewall blocks all out-of-profile communications from the internal source host. The reverse firewall, however, does not block any of the communication that is in-profile in an n-r-open discipline. In addition, an out-of-profile counter may be used with this TD similar to
that discussed earlier. At least one benefit of an n-r-open discipline is the ability for an internal host to continue to function by communicating with other hosts in its profile even after the threshold has been reached. Thus, an internal host may still able to operate a reduced number of network applications.

[34] In some throttling disciplines, once a threshold has been reached, a network administrator or operator may be required to manually reset the out-of-profile counter corresponding to the internal host. In an alternative embodiment in accordance with aspects of the invention, a user of the internal source host may be presented with a pop-up dialog box on a visible display screen where the user may authorization the reset of the out-of-profile counter for that host. One skilled in the art will appreciate that in some industries, e.g., banking, that are required to enforce high standards of network security, a pop-up dialog box may be less desirable than a manual reset by an administrator. In another embodiment, the user may be able to use the pop-up dialog box to update the profile of the host to include a rule (or set or rules) for the network communication at issue.

[35] In another example in accordance with aspects of the invention, even if the profile contains a rule (or a set of rules) allowing the communication between a source host 114 and a destination host 116 (in step 204), the reverse firewall may still block the communication. The reverse firewall may enforce a throttling discipline (TD) to determine (in step 216) whether to allow or block the in-profile communication from the source host 114. For example, in a reverse firewall enforcing a TD of n-r-relaxed discipline, once the ‘n’ value has been exceeded within a time period ‘r’, all future communication, including both in-profile and out-of-profile communication, from the host is blocked (in step 214). In another example involving a reverse firewall enforcing a TD of n-r-open discipline, the in-profile communication from a network host 114 is allowed (in step 206) regardless of whether the threshold value ‘n’ has been met.
In step 212, a reverse firewall enforcing a throttling discipline on the network communication at issue may use, among other things, the out-of-profile counter to determine whether to block (or allow) the network communication. For example, a reverse firewall enforcing a n-r-relaxed discipline with a ‘n’ value of 10 and ‘r’ value of 60 seconds may block (in step 214) all future network communication, including both in-profile and out-of-profile communication, from an internal source host after the TD for that internal source host has been reached. In that example, even if the network communication is in the profile of the internal source host in step 204, the network communication may be blocked (i.e., step 214 may be performed instead of step 206). The out-of-profile counter in this example may contain a flag (e.g., boolean variable) for indicating a blocked state or allow state. In some embodiments, all network communication from an internal source host will continue to be blocked until a network administrator (or equivalent) resets the out-of-profile counter. In another embodiment, the out-of-profile counter may automatically reset after a predetermined amount of time (i.e., block time interval) has elapsed (e.g., 20 minutes). In yet another embodiment, the user of the blocked internal source host may be able to manually reset the out-of-profile counter. One skilled in the art will appreciate that there are various techniques for blocking (in step 214) network communication from an internal host. For example, a reverse firewall may simply refuse to forward (i.e., drop) certain packets to their destination. In another example, address resolution protocol (ARP) may be used to modify mappings stored in tables used by the internal source host to effectively block the appropriate communication from the internal source host.

Figure 4 illustrates a simplified diagram of a portion of a memory unit 400 in a reverse firewall located on a network 102 in accordance with various aspects of the invention. The memory unit 400 may comprise volatile and/or non-volatile memory. The memory unit 400 may store a set of rules 404, 406 corresponding to the profile of a host 114 in the network 102. The memory unit 400 may be part of a network device (e.g., router 112, conventional firewall 104, computing device 120) configured to
enforce a profile of a host 114 in a network 102. The same network device may also be configured to enforce a throttling discipline in accordance with various aspects of the invention. For example, the network device may be comprised of a programmable router (e.g., router 112) configured as a reverse firewall. One skilled in the art will appreciate that the memory unit 400 need not necessarily be physically located in a network device. Rather, in accordance with aspects of the invention, the network device may simply access the memory unit to identify the set of rules corresponding to the profile of the host in the network.

[38] In the illustrative embodiment in Figure 4, the profile 402 of an internal host may be comprised of PCSPP rules (i.e., a 3-tuple rule defined by protocol, client, server port, and server profile), PCSP rules (i.e., a 3-tuple rule defined by protocol, client, and server profile), and/or PSP rules (i.e., a 3-tuple rule defined by protocol and server profile). A reverse firewall (e.g., router 112) with a profile of a host 114 comprising a PCSPP rule 404 may use that rule 404 to control network communication sent from an internal source host 114 in the network 102. For example, a reverse firewall receiving network communication from a host 114 with an IP address of 1.1.182.1 may allow the communication if the internal destination host’s IP address is 1.1.182.2 and is occurring on port 80 using TCP because that network communication is in the profile of the source host 114. Similarly, a reverse firewall receiving network communication from a host 114 may allow the communication if the destination host’s IP address is 1.1.182.2 and is occurring using UDP because that rule 406 defines that network communication to be in the profile of the source host 114. In that example, the profile 402 of the host 114 contained a PCSP rule 406 where the destination port of the communication was not a factor in determining whether the communication was in-profile the host or out-of-profile. Meanwhile, a PSP rule 408 applies to the profile of all source hosts directed at a given destination host (e.g., host 118 with an IP address of 1.1.182.3).
A network device configured to enforce a throttling discipline may be coupled to an out-of-profile counter 410. The out-of-profile counter 410 may be used to enforce the throttling discipline. The out-of-profile counter 410 may be comprised of a number and a timer. In other words, the out-of-profile counter 410 may comprise memory for storing the number of out-of-profile communications sent from an internal host 114 and circuitry or computer-executable instructions for use as a clock timer. For example, in a network 102 comprising a reverse firewall (e.g., router 112) and two internal hosts 114, 116 connected to a network device 112, a memory unit 400 may stored an out-of-profile counter 410 may be provided for each of the hosts 114, 116. In enforcing a throttling discipline, the reverse firewall may use the out-of-profile counter to determine whether the threshold level has been reached. One skilled in the art will recognize that an out-of-profile counter in accordance with aspects of the invention may comprise other features, including, but not limited to, a second clock timer for determining when a block time interval, as described earlier, has elapsed.

After thorough review of the entire disclosure, it will become apparent to one skilled in the art that there are numerous practical applications for various aspects of the invention. For example, a computer-readable medium containing computer-executable instructions for performing the method diagrammed in the flowcharts of Figures 2 and 3 is contemplated by the aforementioned disclosure. The computer-executable instructions may be executed by a processing unit in a reverse firewall or any other device configured to behave accordingly. The usefulness of aspects of the invention in such a context is apparent to one skilled in the art.

The use of the term "connect" and similar referents in the context of describing aspects of the invention, especially in the context of the following claims, is to be construed to require that a physical connection or direct connection. Furthermore, the terms "comprising," "having," "including," and "containing" are to be construed as open-ended terms (meaning "including, but not limited to,") unless otherwise noted. The use of any and all examples or exemplary language herein (e.g., "such as") is
intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.

[42] Various aspects of the invention have been described in terms of exemplary or illustrative embodiments thereof. Numerous other embodiments, modifications and variations within the scope and spirit of the appended claims will occur to persons of ordinary skill in the art from a review of this disclosure and any disclosures incorporated by reference herein.
CLAIMS

1. A method for securing a network using a reverse firewall, the reverse firewall accessing a profile of a host in the network, the method comprising:
 at the reverse firewall, receiving a network communication from the host in the network;
 maintaining a profile of the host in the reverse firewall, the profile including at least one communication protocol name for network communications received from the host;
 determining whether a protocol name of the network communication is in the profile of the host;
 if the protocol name of the network communication is in the profile of the host, allowing the network communication from the host; and
 if the protocol name of the network communication from the host is not in the profile of the host, incrementing a counter corresponding to a number of out-of-profile network communications in the profile;
 determining whether the counter has exceeded a threshold level;
 if the number of out-of-profile communication has not exceeded the threshold level, allowing the network communication from the host;
 if the number of out-of-profile communication has exceeded the threshold level, blocking the network communication from the host.

2. The method of claim 1, the reverse firewall further comprising an out-of-profile counter for each host in the network, the method further comprising:
 updating the out-of-profile counter for the host, if parameters of the network communication from the host are not in the profile of the host.

3. The method of claim 2, further comprising enforcing a throttling discipline on the network communication wherein the throttling discipline is a n-r-relaxed discipline.

4. The method of claim 2, further comprising enforcing a throttling discipline on the network communication wherein the throttling discipline is a n-r-strict discipline.
5. The method of claim 2, further comprising enforcing a throttling discipline on the network communication wherein the throttling discipline is a n-r-open discipline for controlling out-of-profile network communication from the host.

6. The method of claim 4, the value of n being zero, and all network communication from the host being blocked when an out-of-profile network communication is attempted by the host.

7. The method of claim 1, wherein parameters of the network communication from the host are in the profile of the host if a destination address, destination port, and protocol of the network communication are present in the profile of the host.

8. The method of claim 1, wherein parameters of the network communication from the host are in the profile of the host if a destination address and a destination port of the network communication are present in the profile of the host.

9. The method of claim 1, wherein parameters of the network communication from the host are in the profile of the host if a destination address of the network communication is present in the profile of the host.

10. A network device for controlling a network communication sent from a host in a network, the network device configured to enforce a profile of the host and a throttling discipline, the device comprising:
 a memory unit storing at least one communication protocol name for communications received from the host;
 the memory unit storing a set of rules corresponding to the profile of the host in the network, the network device accessing the memory unit to identify the set of rules corresponding to the profile of the host in the network; and
 an out-of-profile counter for use by the network device to enforce the throttling discipline,
 wherein if the protocol name of the network communication is in the profile of the host, allowing the network communication from the host, and
wherein if the protocol name of the network communication from the host is not in the profile of the host, the counter increments the number of out-of-profile communications sent from the host, and upon determining that the number of out-of-profile communication has not exceeded a determined threshold level, allowing the network communication from the host, and upon determining that the number of out-of-profile communication has exceeded a determined threshold level, blocking the network communication from the host.

11. The device of claim 10, the network device comprising a programmable router configured as a reverse firewall, the host in the network being connected to the network device.

12. The device of claim 10 wherein the out-of-profile counter is provided for each host in the network, the profile being stored in the memory unit, and the out-of-profile counter comprising a number and a timer.
receive network communication from a host

is the network communication from the host in the profile of the host?

yes

enforce a TD on the network communication

no

update the out-of-profile counter for the host

block the network communication?

no

block the network communication from the host

yes

does a TD require blocking the network communication?

yes

allow the network communication from the host

no
generate a profile for a host in the network

update the profile of the host in the network

set a throttling discipline for out-of-profile network communication from the host

FIGURE 3
<table>
<thead>
<tr>
<th>Source</th>
<th>Destination</th>
<th>Port</th>
<th>Protocol</th>
<th>Block/Allow</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.182.1</td>
<td>1.1.182.2</td>
<td>80</td>
<td>tcp</td>
<td>Allow</td>
</tr>
<tr>
<td>1.1.182.1</td>
<td>1.1.182.2</td>
<td>*</td>
<td>udp</td>
<td>Allow</td>
</tr>
<tr>
<td>*</td>
<td>1.1.182.3</td>
<td>*</td>
<td>udp</td>
<td>Allow</td>
</tr>
<tr>
<td>1.1.182.2</td>
<td>1.1.182.3</td>
<td>80</td>
<td>tcp</td>
<td>Block</td>
</tr>
</tbody>
</table>

OUT-OF-PROFILE COUNTER

FIGURE 4