S U O M I - F I N L A N D

(FL)

Patentti- ja rekisterihallitus
Patent- och registerstyrelsen

(21) Patentthakemus - Patentansöknings
(22) Hakemispäivä - Ansökningsdag
(23) Aikupäivä - Giltighetsdag
(41) Tullut julkiseksi - Blivit offentlig
(44) Nähtäväksipanono ja kuulululkaisun pvm. -
 Ansokan utlagd och utl.skriften publicerad
(86) Kv. hakemus - Int. ansökan

Patentthakemus 811680
Hakemispäivä 01.06.81
Aikupäivä 01.06.81
Tullut julkiseksi 03.12.81
Nähtäväksipanono ja kuulululkaisun pvm. 31.05.88

(71) American Cyanamid Company, Wayne, New Jersey, USA
(72) Marinus Los, Pennington, New Jersey, USA
(74) Oy Kolster Ab

(54) 2-(2-imidatolsin-2-yli)pyridienejä ja -kinoliineja, menetelmä niiden
 valmistamiseksi ja niiden käytöön herbisideinä - 2-(2-imidazolin-2-yli)-
 pyridiner och -kinolinor, förfarande för deras framställning och deras
 användning som herbicider

(57) Tiivistelmä

Keksintö koskee uusia kaavoja a-f mukaisia 2-(2-imidatsolins)-2-yllipyridiini- ja
kinoliniyhdisteitä.

\[\text{Diagram with chemical structures} \]

Joissa kaavoissa \(R_1 \) on alkyyli; \(R_2 \) on alkyyli tai syklaalkyyli
tai \(R_1 \) ja \(R_2 \) tarkoittavat yhdessä syklaalkyyliä: A on COOR, CONHR, CH, CH₂, CH₂OH,
COCH₃, COOH₂, CO₃H₂, CH₂, CH₃, CH₄, CONH₂, CH₂CH₂COOH, CH₂OH,
CONHOH, CH₂CH₂COON, CH₂CH₃, CH₂COOH, COOCH₃.
R₃ on vety, dialkyllyli-imino, alkylyli, alkenyli, sykolalkyllyli, alkynylyli tai kation; R₆ on vety, hydroksylyli, alkenyli, alkylyli tai alkyllyli; B on H, COR₃ tai SO₂R₃; R₄ on alkyllyli, kloorimetylyli tai fenyllyli; R₅ on alkyllyli tai fenyllyli; W on O tai S; R₈ on alkyllyli tai fenyllyli; X on vety, halogeni, hydroksylyli tai metylyli, tai Y ja Z tarkoittavat yhdessä C₅₋₆-ringasta. Nämä uudet yhdistetut ovat tehokkaita herbisidejä erilaisia yksi- ja monivuotuisia kasvilaajeja vastaan. Keksintö koskee myös menetelmiä näiden yhdisteiden valmistamiseksi ja menetelmissä käytettyjä väli- tuotteita.

(57) Sammandrag
Uppfinningen avser nya 2-(2-imidazolin-2-yl)pyridin- och kinolföreningar med formeln a-f.

![Diagram](image)

vari R₃ är alkyl; R₂ är alkyl eller cykloalkyl; eller R₁ och R₂ betecknar tillsammans cykloalkyl; A är COOR₃, CONHR₃, CHO, CH₃OH, COCH₃, COC₆H₅, CN, CH₃, CH₃NOH, CH₂COOH, CONHOH, CH₂CH₂COOH, CH₃COOH, COOH

![Diagram](image)

R₃ är väte, dialkylimino; alkyl, alk enyli; cykloalkyl, alkynyl eller en kation, R₆ är väte, hydroxylyli, alkenyli, alkynyl eller alkyl; B är H, OR₃ eller SO₂R₃; R₄ är alkyl, klorimetyli eller fenyl; R₅ är alkyl eller fenyl; W är O eller S; R₈ är alkyl eller fenyl; X är väte, halogen, hydroxylyli eller metyli, eller Y och Z betecknar tillsammans en C₅₋₆-ring. Dessa nya föreningar är effektiva herbisider mot olika en- och flefråriga växter. Uppfinningen avser även förfaranden för framställning av dessa föreningar och vid förfarandena användbara mellanprodukter.
2-(2-imidatsolin-2-yyli)pyriidiinejä ja -kinoliinejä, menetelmä niiden valmistamiseksi ja niiden käyttö herbisideinä

Keksinnön kohteena ovat uudet 2-(2-imidatsolin-2-yyli)pyriidiini- ja -kinoliinijohdannaiset, menetelmä niiden valmistamiseksi, menetelmä ei-toivottujen yksija monivuotisten kasvilajien torjumiseksi niiden avulla sekä niitä sisältävää herbisididäin valmiste.

Lähemmin määriteltyä keksinnön kohteena ovat 2-(2-imidatsolin-2-yyli)pyriidiini- ja -kinoliinijohdannaiset, joilla on kaava

\[
\text{I}
\]

jossa \(R_1 \) on \(C_1-C_4 \)-alkyyli; \(R_2 \) on \(C_1-C_4 \)-alkyyli tai \(C_3-C_6 \)-sykloalkyyli, tai \(R_4 \) ja \(R_5 \) merkitsevät yhdestä \(C_3-C_6 \)-sykloalkyyliä, joka on mahdollisesti substituoitu metyylilä; \(A \) on \(\text{COOR}_3 \), \(\text{CONHR}_5 \), \(\text{CHO} \), \(\text{CH}_2\text{OH} \), \(\text{COCH}_3 \), \(\text{COC}_6\text{H}_5 \), \(\text{CN} \), \(\text{CH}_3 \), \(\text{CH}-\text{NOH} \), \(\text{CH}_2\text{COOH} \), \(\text{CONHCH}_2\text{COOH} \), \(\text{CH}_2\text{CH}_2\text{COOH} \), \(\text{CHR}_8\text{OH} \), \(\text{COCH} \)

\[
\text{P(OCH}_3\text{)}_2
\]

tai

\[
\text{COOCH}_3
\]

\(R_3 \) on vety, dialempialkyyli-imino, \(C_1-C_{12} \)-alkyyli, joka on mahdollisesti substituoitu yhdellä halogeenilla tai \(C_1-C_3 \)-alkoxi-, hydroksi-, \(C_3-C_6 \)-sykloalkyyli-, bentsylioksi-, furyyli-, fenyyli-, halogeenifenyli-, alempialkyyli-, alempialkoksifenyyli-, nitrofenyyli-, karboksyyli, alempialkoksikarbonyyli-, syaani- tai trialempialkyyliammoniumryhmällä, \(C_3-C_{12} \)-alkenyyli, joka
on mahdollisesti substituoitu yhdellä halogeenilla tai C₁-C₃-alkoksi-, fenyyl- tai alemplalkoksikarbonyylliryhmällä tai kahdella C₁-C₃-alkoksiryhmällä tai kahdella halogeenilla, C₃-C₆-sykloalkyyli, joka on mahdollisesti substituoitu yhdellä tai kahdella C₁-C₃-alkyyllä, C₃-C₁₀-alknyyli, joka on mahdollisesti substituoitu yhdellä tai kahdella C₁-C₃-alkyylyryhmällä; tai R₃ on kationi, joka on alkalimetalli, maa-alkalimetalli, kupari, rauta, sinkki, kobollti, hopea, nikkel, ammonium tai orgaaninen ammonium; R₅ on vety, hydroksyyli, C₃-alkenyli, C₃-alknyyli tai C₁-C₄-alkyyli, joka on mahdollisesti substituoitu yhdellä hydroksylyryhmällä tai yhdellä kloorilla; B on H, COR₄ tai SO₂R₅, jolloin B:n ollessa COR₄ tai SO₂R₅ A on COOR₃, jossa R₃ on muu kuin vety, suolan muodostava kationi, CH₃ tai CN; W on 0; ja Y ja Z eivät merkitse alkylyliamino-, hydroksyli- tai hydroksialempalkkylyryhmä; R₄ on C₁-C₁₁-alkyyl, kloorimetyyli tai fenyyli, joka on mahdollisesti substituoitu yhdellä kloorilla, yhdellä nitro- tai yhdellä metoksiryhmällä; R₅ on C₁-C₄-alkyyli tai fenyyli, joka on mahdollisesti substituoitu yhdellä metylylyryhmällä; W on 0 tai S; R₈ on C₁-C₄-alkyyli tai fenyyli; X on vety, halogeeni, hydroksyli tai metyyl, edellyttäen, että silloin kun Y ja Z muodostavat yhdessä renkaan tarkoittaen ryhmää -(CH₂)ₙ-, jossa n on 3 tai 4, X on vety; Y ja Z ovat kumpikin erikseen vety, halogeeni, C₁-C₆-alkyyl, C₁-C₄-hydroksialkyyl, C₁-C₆-alkoksi, C₁-C₄-alkylitio, fenoksi, C₁-C₄-halogeenaalkyyl, nitro, syaani, C₁-C₄-alkyylamino, dialemplalkkylyamino, C₁-C₄-alkylisulfonyyli tai fenyyli, joka on mahdollisesti substituoitu yhdellä C₁-C₄-alkyyl- tai C₁-C₄-alkoksiryhmällä tai halogeenilla, tai Y ja Z yhdessä muodostavat renkaan tarkoittaen ryhmää -(CH₂)ₙ-, jossa n on 3 tai 4, edellyttäen, että X on vety; tai Y ja Z yhdessä muodostavat renkaan tarkoittaen ryhmää \[\text{L M O R}_7 \]
\[\text{-C=C-C=C-} \]
jossa L, M, Q ja R₇ merkitsevät kuitenkin vetyä, halogeenia,
C₁₋₄-alkyli-, C₁₋₄-alkoksi-, C₁₋₄-alkyylitio-, C₁₋₄-
alkylylisulfonyli-, C₁₋₄-halogeenialkyyli-, NO₂-, CN-,
fenyyli-, fenoksi-, amino-, C₁₋₄-alkylylamino-, dialem-
piaalkylylamino-, kloorifenyli-, metyylifenylyliryhmää
tai fenoksiiryhmää, joka on substituoitu yhdellä Cl-,
CF₃-, NO₂- tai CH₃-ryhmällä, jolloin ainoastaan yksi sym-
boleista L, M, Q ja R₇ merkitsee muuta kuin vetyä, haloge-
enia, C₁₋₄-alkyliä tai C₁₋₄-alkoksia; ja kun W on O
ja A on CN, CH₃ tai COOR₃, niin R₃ ei voi olla alkenyyli-
eikä alkynyliryhmää eivätkä Y ja Z voi olla alkylamino-,
dialkylylamino- tai alkyllytioryhmää, ja niiden N-oksidit;
ja kun R₁ ja R₂ eivät ole samoja, kaavan I mukaisten yh-
disteiden optiset isomeerit, ja kun R₃ ei ole suolaa muo-
dostava kationi, kaavan I mukaisten yhdisteiden happo-
ditiosuolat.

Edullisia kaavan I mukaisia 2-(2-imidatsolin-2-
yli)pyridiinejä ovat sellaiset, joissa R₃ on metyyli,
R₂ on metyyli, etyyli, isopropyli tai syklopropyyli, W
on happi, B on vety, CO-alkyli-C₁₋₆ tai CO-fenyyli,
joka on mahdollisesti substituoitu kloorilla, nitrolla
tai metoksilla, A on COOR₃, CH₂OH tai CHO, jossa R₃ mer-
kitsee kaavan I yhteydessä määriteltyä, X on vety, Y ja
Z merkitsevät kumpikin erikseen vetyä, C₁₋₆-alkyli-,
C₁₋₆-alkoksi-, halogeeni-, fenyyli-, nitro-, syaani-,
trifluorimetyyli- tai metyylilisulfonylyliryhmää, ja kun Y
jä Z ovat yhdessä YZ, niin YZ on -(CH₂)₄-.

Vielä edullisempia kaavan I mukaisia 2-(2-imid-
atsolin-2-yyli)pyridiinejä ovat yhdisteet, joilla on
kaava Ia
jossa B on vety, CO-alkyyli-C_1-C_6 tai CO-fenyyli, A on COOR₃, jossa R₃ merkitsee kaavan I yhteydessä määriteltyä, X on vety, ja Y ja Z merkitsevät kumpikin erikseen vetyä, C_1-C_6-alkyyli-, C_1-C_6-alkoksi-, halogeeni-, C_1-C_4-halogeenialkyyli- tai fenyyliryhmä, tai Y ja Z ovat yhdessä YZ, joka on -(CH₂)₄-.

Edullisimpia kaavan Ia mukaisia 2-(2-imidatsolin-2-yyli)pyridiinejä ovat yhdisteet, joissa B, X, Y ja Z ovat vetyjä, A on COR₃, ja R₃ merkitsee samaa kuin edellä kaavassa I.

2-(2-imidatsolin-2-yyli)kinoliineja voidaan esittää kaavalla II

![Diagram](image)

jossa R₁, R₂, W, B, A, X, L, M, Q ja R₇ merkitsevät kaavan I yhteydessä määriteltyä.

Edullisista herbisidisää aineista ovat sellaiset 2-(2-imidatsolin-2-yyli)kinoliinit, joissa R₁ on metyyli, R₂ on metyyli, etyyli, isopropyylit tai syklopropyyli, W on happi, B on vety, CO-alkyyli-C₁-C₆, CO-fenyyli, joka on mahdollisesti substituointu yhdenä kloori-, nitro- tai metoksiryhmällä, A on COR₃, CH₂OH tai CHO, R₃ merkitsee kaavan I yhteydessä määriteltyä, X on vety, ja L, M, Q ja R₇ ovat vety, halogenei, metoksi, nitro, alkyyli-C₁-C₄, CF₃, CN, N(CH₃)₂, NH₂, SCH₃ tai SO₂CH₃, jolloin symboleista L, M, Q ja R₇ vain yksi voi olla nitro, CF₃, CN, N(CH₃)₂, NH₂, SCH₃ tai SO₂CH₃.
Edullisempia kaavan II mukaisia 2-((2-imidatsolin-2-yyli)kinoliineja ovat sellaiset, joissa X, L ja R ovat vetyjä, R_1 on metyyli, R_2 on metyyli, etyyli, isopropyylit tai syklopropyylit, B on vety tai COCH$_3$, A on C00R$_3$, CH$_2$OH tai CHO, ja R_3 merkitsee kaavan I yh- teydessä määritlelyä, W on happi, ja M ja Q merkitse- vät vetyä, halogeenia, metyyli-, metoksi-, nitro-, CF$_3$-, CN-, N(CH$_3$)$_2$, NH$_2$-, S0$_2$CH$_3$- tai S0$_2$CH$_3$-ryhmää, jolloin toinen symboleista M ja Q on vety, halogeeni, metyyli tai metksi.

Vielä edullisempia kaavan II mukaisia 2-((2-imidatso- lin-2-yyli)kinoliineja ovat sellaiset, joissa R_1 on metyyli, R_2 on isopropyylit, W on happi, B, X, L, M, Q ja R_7 ovat vetyjä, A on C00R$_3$, jossa R_3 on C$_4$-C$_8$-alkyyli, vety, C$_3$-C$_8$-alknyylit, C$_3$-C$_6$-sykloalkyyli tai jokin se- raavista kationeista: alkalimetallit, maa-alkalimetallit, kupari, rauta, sinkki, koboltti, hopea, nikkel, ammonium ja alifaattinen ammonium.

Vaikka monet seuraavassa kuvatuista menetelmävaiheista keksinnön mukaisten pyradiini- että kinoliinijohdannaisten valmistamiseksi ovat yhteisö menetelmävaiheita, niin käsittelään seuraavassa erikseen kinioliinijohdannaisten valmistuksen menetelmävaiheita ja senjälkeen pyradiinijohdannaisten valmistuksen menetelmävaiheita.

Keksinnön mukaisella menetelmällä sellaisia kaavan I mukaisia 2-(2-imidatsolin-2-yylı)pyradiiniestereitä, joissa A on COOR₁, ja R₂ on muu kuin vety tai suolan muodostava kationi, ja R₁, R₂, X, Y ja Z merkitsevät samaa kuin edellä, voidaan valmistaa saatamalla seuraavassa esitetyllä kaavan III imidatsopyradiinidion reagoimanaan sopivan alkoholin ja vastaavan alalimetallialkoholësidin kanssa noin 20 - noin 50°C:ssa.

Tässä reaktiossa alkoholi voi olla sekä reaktanttina että liuottimenä, joten toista liuotinta ei välttämättä tarvita. Kuitenkin, kun reaktiossa käytetty alkoholi on kallista, reaktioseokseen voidaan lisätä halvemmin, toista liuotinta, kuten dioksania, tetrahydrofurania tai muuta aproottista liuotinta. Lisätyn aproottisen liuottimen määrä voi vaihdella laajoissa rajoissa.
Reaktiota voidaan kuvata seuraavalla kaavioilla:

\[
\begin{align*}
5 & \quad X \quad \text{O} \quad R_1 \quad R_2 \\
5 & \quad Y \quad \text{N} \quad \text{N} \quad \text{N} \quad \text{N} \quad \text{N} \quad \text{N} \\
5 & \quad Z \\
\end{align*}
\]

\[+ \quad R_3 \text{O}^{-} \text{M}^{+} \]

III

\[
\begin{align*}
10 & \quad X \\
15 & \quad \text{COOR}_3 \\
15 & \quad Y \\
15 & \quad Z \\
15 & \quad \text{HN} \\
15 & \quad \text{R}_1 \\
15 & \quad \text{R}_2 \\
15 & \quad \text{O} \\
\end{align*}
\]

Ib

jossa \(M_1\) on alkalimetalli ja \(X, Y, Z, R_1, R_2\) ja \(R_3\) merkitsevät samaa kuin edellä.

Kaavan Ib mukaisia 2-(2-imidatsolin-2-yli)pyridiiniestereitä voidaan valmistaa myös seuraavassa esitetyssä kaavan IV mukaisesti dioksopyrrolopyridiiniasetamidista, jossa kaavassa \(R_1, R_2, X, Y\) ja \(Z\) merkitsevät samaa kuin edellä, syklisoinnilla vahan emäksen avulla, kuten 1,5-atsabisyklo\(5,4,0\)undek-5-eenin (DBU) avulla inertissä orgaanisessa liuottimessa, kuten ksyleenissä tai tolueenissa, jolloin saadaan epäpuhdasta kaavan III mukaista imidatsopyrrolopyridiiniä. Reaktio suoritetaan kuumentamalla reaktioseosta 100-150°C:ssa ja pois-tamalla samalla vettä reaktioseoksesta sopivalla tavalla, esimerkiksi käyttäen Dean-Stark-loukkua. Reaktioseoksen lisätään vähintään yksi ekvivalenti kaavan \(R_3\text{OH} \ (V)\) mukaista alkoholia, jossa \(R_3\) merkitsee samaa kuin edellä, muttei vetyä tai suolan muodostavaa kationia, ja \(R_1, R_2, X, Y\) ja \(Z\) merkitsevät samaa kuin
edellä, ja reaktioseosta kuumennetaan palautusjäähdytäen 100–150°C:ssa, jolloin saadaan kaavan Ib mukainen 2-(2-imidatsolin-2-yli)pyridiiniesteri.

Reaktiota voidaan kuvata seuraavalla kaaviolla:

\[
\begin{align*}
\text{X} & \quad \text{N} \\
\text{Y} & \quad \text{Z} \\
\text{R}_1 & \quad \text{CONH}_2 \\
\text{R}_2 & \quad \text{DBU} \\
\text{ksyleeni} & \quad \rightarrow \\
\text{X} & \quad \text{N} \\
\text{Y} & \quad \text{Z} \\
\text{R}_1 & \quad \text{R}_2 \\
\end{align*}
\]

(IV)

(III)

\[
\begin{align*}
\text{X} & \quad \text{COOR}_3 \\
\text{Y} & \quad \\
\text{Z} & \quad \text{HN} \\
\text{R}_1 & \quad \text{R}_2 \\
\rightarrow \\
\text{R}_3 & \quad \text{OH} \\
\text{(V)} & \quad \\
\end{align*}
\]

(Ib)

jossa X, Y, Z, R₁, R₂ ja R₃ merkitsevät samaa kuin edellä.

Eräissä menetelmissä kaavan Ib mukaisten 2-(2-imidatsolin-2-yli)pyridiiniesterien valmistamiseksi kaavan VI mukainen karbamoyylinikotiinihappoesteri sykläisoidaan fosforipentakloridin avulla korotetussa lämpötilassa noin 60–100°C:ssa. Reaktio suoritetaan edullisesti inertissä liuottimessa, kuten tolueniissä tai benseniissä. Reaktiossa saadaan hyvällä saannollaa halutun kaavan Ib mukaisen esterin hydrokloridisuoja. Hydrokloridisuoja voidaan helposti muuttaa kaavan Ib mukaiseksi esteriksi liuottomalla se veteen ja neutraloimalla liuos emäksellä, kuten natrium- tai kaliumkarbonaatilla. Reaktiota voidaan kuvata seuraavalla kaaviolla:
(VI)

\[
P\text{Cl}_5 \text{tolueni} \rightarrow \text{emäs}
\]

(Ib)
jossa A on COOR₃, ja R₃ on substituentti, joka ei ole vety tai suolan muodostava kationi, ja R₁, X, Y ja Z merkitsevät samaa kuin edellä.

Eräässä menetelmässä kaavan Ib mukaisten 2-(2-imidatsolin-2-yyli)pyridiiniesterien valmistamiseksi kaavan VI mukainen karbamoylylinikotiinihippoesteri syklisoidaan fosforipentakloridin ja fosforioksikloridin avulla. Reaktioseosta sekoitetaan huoneen lämpötilassa 4-8 tuntia, ja sitten POCl₃ poistetaan vakuumissa. Jäännös dispergoidaan orgaaniseen liuottimeen, kuten toluenin. Liuotin poistetaan ja jäännös dispergoidaan veteen, ja dispersiota kuumennetaan 80 - 100°C:ssa. Seoksen jäähdyttyä sen pH säädetään natriumbikarbonaatilla arvoon 5-6, ja tuote uutetaan metyleenikloridilla, jolloin saadaan haluttu kaavan Ib mukainen 2-(2-imidatsolin-2-yyli)pyridiiniesteri. Reaktiota voidaan kuvata seuraavalla kaaviolla:
jossa A on COOR₃, ja R₃ on substituentti, joka ei ole vety tai suolan muodostava kationi, ja R₁, R₂, X, Y ja Z merkitsevät samaa kuin edellä.

\[
\begin{align*}
&\text{(Ib)} \\
&+ \text{NH}_3 \rightarrow \\
&+ \text{NH}_2\text{OH} \rightarrow \\
&\text{CONOH}
\end{align*}
\]

Käsittelemällä näin saatua primäärisää amidia titaanitetrakloridilla ja trietyyliamiinilla, edullisesti inertissä apropottisessa liuottimessa, kuten tet-
rahydrofuraanissa, saadaan vastaava nitrili. Reaktio suoritetaan tavallisesti inertissä kaasukehässä, kuten typpi-kaasussa noin 0 - 10°C:ssa.

Reaktiota voidaan kuvata seuraavalla kaaviolla:

\[
\text{CONH}_2 \quad \xrightarrow{\text{TiCl}_4, \text{N(C}_2\text{H}_5)_3} \quad \text{CN}
\]

jossa \(X, Y, Z, R_1\) ja \(R_2\) tarkoittavat samaa kuin edellä.

Seuraavassa esitetyn kaavan VIII mukaisia N-subsituitujaa imidatsolinonijohdannaisia, jossa kaavassa \(B\) on \(\text{COR}_4\) tai \(\text{SO}_2\text{R}_5\), \(A\) on \(\text{CH}_3\), \(\text{CN}\) tai \(\text{COOR}_3\), \(W\) on \(0\), ja \(R_1\), \(R_2\), \(R_3\), \(X\), \(Y\) ja \(Z\) merkitsevät samaa kuin edellä, paitsi että \(Y\) ja \(Z\) eivät voi olla alkyyliamino, hydroksi tai hydroksialempialkyyli, voidaan valmistaa saattamalla sopivasti substituoitu kaavan I mukainen 2-(2-imidatsolin-2-yl)-pyridiini reagoimaan happohalogendidin, happoanhydridin tai sulfonyylihalogendidin kanssa joko sellaisenaan tai käyttäen liuotinta, kuten pyridiiniä tai tolueenia, korotetussa lämpötilassa, 50 - 125°C:ssa.

Reaktiota voidaan kuvata seuraavalla kaaviolla:
jossa A on CH₃, CN, tai C00R₃, R₁, R₂, R₃, R₄, R₅, X, Y ja Z merkitsevät samaa kuin edellä, jolloin Y ja/tai Z ei kuitenkaan voi olla alkyyliamino, hydroksyli tai hydroksylyliamempialkyli.

Saattamalla kaavan I mukainen 2-(2-imidatsolin-2-yli)pyrimidiini tai välttämästi edellä kuvattu kaavan VIII mukainen N-substituoitu imidatsolinonĳoh-dannainen, (jossa A on CH₃, CN tai C00R₃, ja R₃ merkitsee samaa kuin edellä, jolloin se ei kuitenkaan voi olla tyydytämätön hiilivetyhyhmä, B on R₄C0 tai R₅SO₂, ja Y tai Z ei voi olla alkyyliamino, alkyyli- tio tai dialkyyliamino) reagoimaan ylimäärin käytetyn m-klooriperbentsoehapon kanssa inertissä liuottimessa, kuten metyleenikloridissa, palautusjähdytyslämpötilassa, saadaan vastaava lähtöaineena käytetyn pyridiinijoh-dannaisen N-oksidi. Reaktiota voidaan kuvata seuraavalla kaaviolla:
jossa A on CH₃, CN tai COOR₃, kuten edellä mainit- tiin, jolloin R₃ ei voi olla tyydyttymätön hiilivetyryhmä, B on COR₄ tai S0₂R₅, R₁, R₂, R₄, R₅, X, Y ja Z merkitsevät samaa kuin edellä paitsi, että Y ja Z eivät voi olla alkyllyamino, alkyllytio tai dialkyllyamino.

Hydrolysoimalla näin saatu N-oksidi vahvalla emäksellä, kuten natriumhydroksidilla alemmassa alkoholiassa saadaan vastaava N-oksidi, jossa B on H.

Sellaisia kaavan I mukaisia estereitä, joissa B on vety, W on happi ja A on COOR₃, jossa R₃ on C₁₋C₁₂ alkyyli, C₃₋C₆-sykloalkyyli tai bentsyyli, voidaan edullisesti valmistaa saattamalla vastaava happo, so. yhdiste, jossa A on COOH, reagoimaan 50-100°C:ssa sopivan alkoholin kanssa käyttäen katalysaattorina vahvaa mine- raalihappoa, kuten kloorivetyhappoa, rikihappoa tms. Reaktiota voidaan esittää seuraavalla kaaviolla:
jossa R_3 on C$_1$-C$_{12}$-alkyyli, C$_3$-C$_6$-sykloalkyyli tai bentsyyli, ja R_1, R_2, X, Y ja Z merkitsevät samaa kuin edellä.

Kaavan I mukainen yhdiste, jossa A on COOH, B on vety, W on happi ja R_1, R_2, X, Y ja Z merkitsevät samaa kuin edellä, voidaan helposti muuttaa vastaavaksi metyyliesteriksi reaktiossa diatomsotaanin kanssa 0° - 25°C:ssa. Saatu metyyliesteri voidaan sitten saatuttaa reagoimaan alkali metallialkoksidiin kanssa, esim. natrium- tai kaliumalkoksidiin (R_3ONa) kanssa ja sopivan alkoholin (R_3OH) kanssa, joissa kaavoissa R_3 on C$_1$-C$_{12}$-alkyyli, joka on mahdollisesti substituoinu yhdellä C$_1$-C$_3$-alkoksi-, C$_3$-C$_6$-sykloalkyyli-, bentsyylioksi-, furyyli-, fenyyli-, halogeenefenyli-, alempiakyli-fenyli-, alempialkoksifenyli-, nitrofenyli tai syaani-ryhmällä; C$_3$-C$_{12}$-alkenyylil, joka on mahdollisesti substituoinu yhdellä tai kahdella C$_1$-C$_3$-alkoksi-, fenyyli- tai halogeenerhymällä; C$_3$-C$_6$-sykloalkyyli, joka on mahdollisesti substituoinu yhdellä tai kahdella C$_1$-C$_3$-alkyylyhymällä tai C$_3$-C$_{10}$-alkynylhymällä, joka on mahdollisesti substituoinu yhdellä tai kahdella C$_3$-C$_{10}$-alkyylyhymällä. Näitä reaktioita voidaan kuvata seuraavalla kaavilla:
jossa R_1, R_2, R_3, X, Y ja Z merkitsevät edellä määriteltyä.

Kaavan I mukaisten estrien muuttaminen vastavin ksi happoadditiosuolloiksi voidaan suorittaa käsittelemällä estereitä vahvoilla hapolilla, varsinkin vahvalla mineraalihapolilla, kuten kloorivetyhapolilla, rikkihapolla tai bromivetyhapolilla.

Haluttaessa valmistaa halogeenivyhetiston happoadditiosuola sellainen kaavan I mukainen esteri, jossa A on $COOR_3$, eikä R_3 ole vety eikä suolaa muodostavia kationit, ja R_1, R_2, Y ja Z merkitsevät samaa kuin edellä, liuotetaan organiseen liuottimeen, kuten metyleenikloridiin, kloroformiin, etteriin tms. Liuokseen lisätään vähintään yksi ekvivalentti hoppoa, jolloin saadaan haluttu happoadditiosuola. Reaktiota voidaan kuvata seuraavalla kaaviolla:
Haluttaessa valmistaa esterin rikkihapposuola
kaavan I mukainen esteri liiotetaan yleensä alempana
alifaattiseen alkoholiin, kuten metanoliin, etanoliin,
isopropanoliin tai tällaisen alkoholin ja veden seok-
seen. Liuokseen lisätään sitten vähintään yksi ekvi-
valenti rikkihappoa, jolloin saadaan kaavan I mukaisen
esterin rikkihapposuola.

Keksinnön eräässä toteutusmuodossa sellaisia kaav-
van I mukaisia yhdisteitä, joissa A on COOR₃, ja R₃ ei
ole vety, ja R₁, R₂, X, Y ja Z merkitsevät samaa kuin
edellä paitsi, ettei X, Y ja Z voi olla NO₂ tai halogee-
ni, voidaan valmistaa hydraamalla kaavan XV mukainen
imidatsolinylylipyridiinin bentsyliesteri (kaavassa
XV R₁, R₂, X, Y ja Z merkitsevät samaa kuin edellä) palla-
dium- tai platinakatalysaattorin läsnäollessa. Tässä
reaktiossasi kaavan XV mukainen bentsylyisteri liuotteetan tai dispergoidaan orgaaniseen liuottimeen, kuten alempaan alkoholiin, etteriin, kuten dioksaniem, tetrahydrofuraaniin tsm., tai toluenin tai kysleeniin. Seokseen lisättään katalysaattori, edullisesti Pd/C-katalysaattori, ja seos kuumennetaan 20–50°C:seen. Kuumennettään seokseen johdetaan sitten vetyä, jolloin saadaan haluttu happo. Reaktiota voidaan kuvata seuraavalla kaaviolla:

![Chemical Structure](image)

Vaihtoehtoisesti kaavan I mukaisia happoja (A = COOH) voidaan valmistaa kaavan I mukaisista estereistä vahvan emäksen avulla. Tällöin kaavan I mukaista esteriä käsitellään yhdellä ekvivalentilla emästä vesiliuoksessa kuumentamalla seosta 20–50°C:ssa. Seos jäähytetään, sen pH säätetään vahvalla mineraalihapolla arvoon 6,5–7,5, edullisesti pH 7:ksi, jolloin saadaan haluttu happo. Reaktiota voidaan kuvata seuraavalla kaaviolla:
jossa R_3 on muu substituentti kuin vety, tai suolan muodostava kationi, ja R_1, R_2, X, Y ja Z merkitsevät kaavassa I määriteltyä.

Sellaisia kaavan I mukaisia happoja, joissa A on COOH, B on vety, W on happy, ja X, Y, Z, R_1 ja R_2 merkitsevät samaa kuin edellä, voidaan valmistaa saatamalla sopivasti substituoitu kaavan XVIII mukainen imidatsolinoni reagoimaan typpikehässä noin -70 - -80°C:ssä alkyyllilitiumin kanssa, edullisesti inertissä liuottomessa, kuten tetrahydrofuraanissa. Saatua seosta käsittelään sitten heksametyylylifosforamidilla ja hiili-dioksidilla, edullisesti inertissä liuottomessa, kuten tetrahydrofuraanissa, jolloin saadaan haluttu tuote. Haluttaessa valmistaa sellaisia kaavan I mukaisia pyridiinijohdannaisia, joissa A on CH$_3$ ja X, Y, Z, R_1 ja R_2 merkitsevät samaa kuin edellä, kaavan XVIII mukais-
ta imidatsolinia käsitellään samoin kuin edellä kuvattiin hapon valmistuksen yhteydessä käyttäen kuitenkin hiilidioksidin sijasta metylyljididia. Jos dimetyylliformamidi korvataan metylyljididilla, saadaan vastaava formylyljidihannainen. Näitä reaktioita voidaan kuvaata seuraavilla kaavioilla:

Kaavan I mukainen happo voidaan helposti muuttaa kaavan VII mukaiseksi 5H-imidatso[1',2':1,2]pyrrolo[3,4-b]-pyriidiini-3(2H),5-dioniksi reaktiossa disykloheksylimidin (DCC) kanssa. Reaktio suoritetaan edullisesti kloorattuun hiilivetyliuottimessa noin 20 - 32°C:ssa käyttäen ekvivalenttista määrrää karbodi-imidä. Reaktiota voidaan kuvata seuraavalla kaavioilla:

Käytännössä on havaittu, että kaavan VII mukaiset 3(2H),5-dionit voidaan saattaa reagoimaan vähintään yhden ekvivalentin kanssa sopivaa kaavan V mukaista alkoholia (R₃OH) trietyyliamiini-katalysaattorin läsnäollessa, jolloin saadaan käytettyä alkoholia vastaava kaavan I mukainen pyridiiniesteri. Reaktio suoritetaan edullisesti 20-50°C:ssa inertissä aproottissä liuottimessa, kuten tetrahydrofuraanissa, dioksaanissa tms. Reaktiota voidaan kuvata seuraavalla kaaviolla:
jossa R_3 on sama kuin edellä, paitsi vety tai suolan muodostava kationi, ja R_1, R_2, X, Y ja Z merkitsevät samaa kuin edellä.

Kaavan VII mukaiset 3(2H),5-dionit muutetaan helposti kaavan Ib mukaisiksi 2-(2-imidatsolin-2-yli)-pyridiinijohdannaisiksi, joissa R_1, R_2, X, Y ja Z merkitsevät samaa kuin edellä, W on happi, B on vety, ja A on asetyylili, bentsoyyli, trimetyylifosfonoasetaatti tai hydroksimetyylili, reaktiossa vastaavasti metyylimagnesiumbromidin, fenylililitiumin, natriumtrimetyylifosfonoasetaatin tai natriumboorihydridin kanssa. Reaktiot metyylimagnesiumbromidin, fenylililitiumin ja natriumtrimetyylifosfonoasetaatin kanssa suoritetaan edullisesti noin -50 - -80°C:ssa inertissä liuottimessa, kuten tetrahydrofuraanissa tai dioksaanissa, inertissä suojaakaussa, esimerkiksi typiikehässä. Kaavan VII mukaisen dionin reaktio natriumboorihydridin kanssa voidaan suorittaa ilman inerttiä suojaakaussa lämpötilavälillisä -10° - $+15^\circ$C.

Kaavan VII mukaisen dionin reaktiossa ekvivalenttisen määrän kanssa asetonioksiimia saadaan kaavan I mukaisen 2-(2-imidatsolin-2-yli)pyridiinin asetonioksiimisteri, so. kaavan I mukainen yhdiste, jossa A on $\text{COON}=\text{C(CH}_3\text{)}_2$, B on vety, ja R_1, R_2, X, Y ja Z merkitsevät samaa kuin edellä kaavan I yhteydessä määriteltiin. Tämä reaktio suoritetaan tavallisesti inertissä orgaanisessa liuottimessa, kuten tolueneissa, bentseenissä, ksy-leenissä, noin 40-80$^\circ$C:ssa.

Edellä olevia reaktioita voidaan kuvata seuraavasti:
Reaktantit
1. CH₃MgBr
2. Fenyylilitium
3. Natriumtrimetyylifosfono-asettaatti
4. NaBH₄
5. HON=C(CH₃)

A kaavassa I
1. COCH₃
2. COC₆H₅
3. COCH−COOCH₃
4. CH₂OH
5. COON=C(CH₃)₂

joissa kaavoissa R₁, R₂, X, Y ja Z merkitsevät samaa
kuin edellä.

Sellaisia kaavan I mukaisia yhdisteitä, joissa
A on COOR₃ ja R₃ on suolan muodostava kationi, kuten
alkalimetalli, maa-alkalimetalli, ammonium tai alifaat-
tinen ammonium, ja R₁, R₂, X, Y ja Z merkitsevät samaa
kuin edellä, voidaan valmistaa liuottamalla kaavan I mu-
kainen 2-(2-imidatsolin-2-yli)pyridiinihappo sopivaan
liuottomeen ja käsittelemällä hapon liuosta yhdellä ek-
vivalentilla suolan muodostavaa kationia. Sellaisten
yhdisteiden valmistamiseksi, joissa suolan muodostava
kationi on epäorganinen kationi, kuten natrium, kalium,
kalsium tai barium, kaavan I mukainen happo voidaan liuottaa tai dispergoida veteen tai alempana alkoholiin
tai niiden seokseen. Kaavan I mukaisen hapon liuk-
seen lisätään sitten suolan muodostavaa kationia taval-
lisesti hydroksidin, karbonaatin, bikarbonaatin tms.
muodossa, edullisesti hydroksidina. Joidenkin minuutti-
en kuluttua kaavan I mukainen yhdiste, jossa \(\text{R}_3 \) on
epäorgaaninen suolan muodostava kationi, yleensä saostuu
ja voidaan ottaa talteen joko suodattamalla tai atseot-
rooppisesti tislaamalla orgaanisen liuottimen kanssa,
kuten dioksaainin kanssa.

Sellaisen kaavan I mukaisen yhdisteen valmista-
miseksi, jossa A on \(\text{COOR}_3 \), ja \(\text{R}_3 \) on ammonium tai orgaa-
ninen ammonium, kaavan I mukainen happo liuotetaan
tai dispergoidaan orgaaniseen liuottimeen, kuten diok-
saaniin, tetrahydrofuraaniin tms., ja seosta käsitet-
lään ekvivalenttisella määrällä ammoniakkia tai amiinia
 tai tetra-alkyliammoniumhydroksidia. Edellä olevassa
reaktiossa käytettävksi sopivia amiineja ovat esim.

metyyliamiini, etyyliamiini, n-propyyliamiini, isopro-
pyyliamiini, n-butylyamiini, isobutylyamiini, sekbu-
tylyamiini, n-amyyliamiini, isoamyyliamiini, heksyyli-
amiini, heptylyamiini, oktylyamiini, nonylyamiini,
dekyyliamiini, undekyyliamiini, dodekyyliamiini, tride-
kyyliamiini, tetradekyyliamiini, pentadekyyliamiini,
heksadekyyliamiini, heptadekyyliamiini, oktadekyyli-
amiini, metyylietyyliamiini, metyyli-isopropyliamiini,
metyyliheksyyliamiini, metyylinonylyamiini, metyyli-pen-
tadekyyliamiini, metyylioktadekyyliamiini, etyylibutyly-
amiini, etyyliheptylyamiini, etyylioktylyamiini, hek-
syyliheptylyamiini, heksyylioktylyamiini, dimetylyli-
amiini, dietylyamiini, di-n-propyyliamiini, di-isoprop-
pyyliamiini, di-n-amyyliamiini, di-isoamyyliamiini, di-
heksyyliamiini, diheptylyamiini, dioktylyamiini, tri-
metyyliamiini, trietyyliamiini, tri-n-propyyliamiini,
tri-isopropyliamiini, tri-n-butyliamiini, tri-iso-
butyliamiini, tri-sek-butyliamiini, tri-n-amylamiini,
etanolamiini, n-propanolamiini, isopropanolamiini,
dietanolamiini, N,N-dietyylitetanolamiini, N-etyyl-
propanolamiini, N-butyylitetanolamiini, allyyliamiini,
n-butenyli-2-amiini, n-pentenyli-2-amiini, 2,3-di-
dimetyylibutenyli-2-amiini, dibutenyli-2-amiini, n-
heksenyli-2-amiini, propyleenidiamiini, taliamiini,
syklopentylyliamiini, sykloheksylyliamiini, disykloheksy-
liamiini, piperidiini, morfoliini ja pyrrolidiini.
Sopivia tetra-alkyyliammoniumprodukteja ovat mettyyli-,
tetaetyyl-, trimetyylibentsyylammoniumproduktille.
Ammonium- tai organinen ammoniumsuola saostuu tavalli-
sesti joidenkin minuuttien kulueessa ja voidaan erottaa
liuoksesta tavanomaisella tavalla, kuten suodattamalla
 tai linkoamalla. Reaktioseos voidaan myös haiduttaa ja
loput liuottimesta haiduttaa heksaanin kanssa, jolloin
kuivaamalla jäännös saadaan kaavan I mukainen ammoni-
tai orgaaninen ammoniumsuola. Edellä olevia reaktioita
voidaan kuvata seuraavalla kaavilla:
jossa R_1, R_2, Y ja Z merkitsevät samaa kuin edellä, ja b on suolan muodostava kationi.

Kun R_1 ja R_2 ovat erilaisia substituentteja, niin hiiliatomi, johon ne ovat liittyneet on asymmetriakeskus, ja tuotteet (sekä niiden välitutotteet) voivat esiintyä d- ja l- sekä dl-muodoissa.

Kaavalla I esitetty sellaiset 2-(2-imidatsolin-2-yyli)pyridiinit ja -kinoliinit, joissa $B = H$, voivat esiintyä tautomeereina, jolloin niiden kaava kuitenkin mukavuussystä piirretään käyttäen yhtä ainoata rakennekaavaa (I). Tautomeeriset muodot ovat seuraavat:

\[(I) \]

![Diagram](image)

tai

Erässä yleisessä menetelmässä kaavan I mukais-ten yhdisteiden valmistamiseksi kaavan XVI mukainen kinoliinihappoanhydridi saatetaan reagoimaan sopivasti substitoihun \(\alpha \)-aminokarbontrilliin kanssa (kaava AVII), jolloin saadaan kaavojen IX ja X mukais-ten kinoliinihappomonoamidien seosta.

Tämä reaktio suoritetaan noin 20-70\(^{\circ}\)C:ssa, edullisesti noin 35-40\(^{\circ}\)C:ssa inertissä liuottimessa, kuten tetrahydrofuraanissa, metyleenikloridissa, etterissä, kloroformissa, toluenissa tms. Muodostuneet hapot syklistoidaan sitten kaavan XI mukaiseksi vastaavaksi pyrrolopyriidiiniasetonitriiliksi kuumentamalla reaktioseosta ylimäärin käytetyn etikkahappoanhydridin kanssa natriumasetaatin tai kaliumasetaatin läsnäollessa katalysaattorina.

Edellä oleva reaktio suoritetaan yleensä käsittelemällä reaktioseosta etikkahappoanhydridillä, asetyylikloridilla, tionyylikloridilla tms. kuumentamalla noin 20-100\(^{\circ}\)C:ssa. Hydratoimalla saatu kaavan XI mukainen pyrrolopyriidiiniasetonitriili vahvalla hapolla, kuten rikkihapolla, saadaan kaavan XII mukainen pyrrolopyri-diiniasetamidi. Vaikka edellä kuvatun reaktion suorittamisen kannalta ei olekaan olennaista, että siinä käytettyä veden kanssa sekoittumatonta liuotinta, kuten metyleenikloridia, kloroformia tms., niin sellaisen liuottimen käyttö on yleensä edullista. Reaktio suoritetaan tavallisesti noin 10-70\(^{\circ}\)C:ssa.

Syklistoimallakaavan XII mukainen pyrrolopyriidiiniasetamidi saadaan trisyklinen kaavan III mukainen imidatsopyrrolopyriidiinidioni, joka on välituote valmistettaessa edellä kaavalla Ib esitettyjä imidatsolinyylilappoja ja -estereitä.

Tässä reaktiossa saadaan pääasiassa (85 \%) hajuttua imidatsopyrrolopyriidiinidionia kaavan IIIa mukaisen isomeerin ohella. Nämä kahden isomeerin tässä
suhteessa olevasta seoksesta saadaan yleensä olennaisena puhtaana isomerina nikotinaattiyhdistettä.

Syklisointi suoritetaan edullisesti 80-150°C:ssa emäksen, kuten natrium- tai kaliumhydridin läsnäollessa, tai hapon, kuten aromaattisen sulfonihapon läsnäollessa, liuottimessa, joka muodostaa atseotrooppisen seoksen veden kanssa, jolloin vesi saadaan poistettua reaktioseoksesta käytännöllisesti katsoen heti sen muodostuttua. Sopivia liuottimia ovat esimerkiksi tolueni, bentseeni, ksyleenit ja sykloheksaani. Sopivia emäksiä ovat esimerkiksi alkalimetallihydroksidit, alkalimetallihiydridit, alkalimetallioksidit, tertiääriset amiinit, kuten di-isopropylleetyliamiini, 1,5-diatsabisyklo[3,4,0]neoneeni-5,1,5-diatsabisyklo[5,4,0]undekeeni-5,1,4-diatsabisyklo[2,2,0]oktaani, tetrametyli-guanidiini, kaliumfluoridi ja kvaternääriset ammoniumhydroksidit, kuten trimetyylibentsyliammoniumhydroksidi, sekä vahvasti emäksiset ioninvaihtohartsit.

Sopivia happamia reagensseja käytettäviksi ovat esimerkiksi aromaattiset sulfonihapot, kuten p-tolueenisulfonihappo, β-naftaleenisulfonihappo, naftaleenidi-sulfonihappo ym.

Kaavojen III ja IIIa mukaisten yhdisteiden seos muutetaan sitten kaavan Ib mukaiseksi yhdisteeksi, kuten edellä kuvattiin käsittelemällä alkalimetallialkoksidilla ja alkoholilla.

Edellä selostettuja reaktioita on kuvattu seuraavassa reaktiokaaviiossa I, jossa X, Y, Z, R₁ ja R₃ merkitsevät samaa kuin edellä.
Reaktiokaavio I

\[
\text{(XVI)} + \text{(XVII)} \rightarrow \text{(IX)} + \text{(X)}
\]

\[
\text{(IX)} + \text{(X)} + (\text{CH}_3\text{CO})_2\text{O} \rightarrow \text{(XI)}
\]

\[
\text{(XI)} + \text{H}_2\text{SO}_4 \rightarrow \text{(XII)}
\]
Reaktiokaavio I (jatkoa)

(XII)

(III)

(IIIa)
Reaktiokaavio I (jatkoa)

\[\text{R}_3\text{OH} \]
\[\text{R}_3\text{O} \text{-- alkalimetalli} \]

\[\text{COOR}_3 \]

(Ib)

Kaavan IV mukainen asetamidi saatetaan reagoi- maan 1,8-diatsabisylko\(\underline{5},\underline{4},\underline{1}\)udek-7-eenin kanssa inertissä orgaanisessa liuottimessa, kuten tolueneissä tai ksyleenissä, korotetussa lämpötilassa noin 80-125°C:ssa, jolloin saadaan kaavan III mukainen imidatsopyrrollo- pyridininioni, jota voidaan kuumentaa morfoliinin tai sopivan kaavan \(\text{NH}_2\text{R}_6 \) mukaisen amiinin kanssa, jolloin saadaan 2-(2-imidatsolin-2-yyli)nikotinamidi. Näitä reaktijoita on esitetty seuraavassa reaktiokaaviossa II.
Reaktiokaavio II (jatkoa)

\[\text{SOC}_1 \longrightarrow \]

(XXIII)

\[\text{NH}_3 \longrightarrow \]

(IV)

5

10

15

20

25

30
Reaktiokaavio II (jatkoa)

DBU

+ isomeeri

(III)

morfoliini

NH₂R₆

25
Vielä eräässä yleisessä menetelmässä kaavan I mukaisia 2-((2-imidatsolin-2-yyli)happoja ja estereitä voidaan valmistaa saattamalla kaavan XIV mukainen 2-karbalkoksinkotinoyylikloridi, edullisesti metyliesterin muodossa ja edullisesti hydrokloridisuoliina, reagoimaan sopivan, kaavalla XIII esitetyn aminokarboksamidin kanssa. Reaktiossa saadaan karbamoyylipikolinaattia (XV); reaktio suoritetaan edullisesti inertissä suo-jakaasussa, kuten typpikaasussa. Reaktion ajan reaktioseos pidetään yleensä alle 30°C:n lämpötilassa.

Imidatsolinylylinikotinaattiesterien muuttaminen vastaaviksi hapoiksi tai happoadditiosuoloiksi voidaan helposti suorittaa aikaisemmin kuvatuilla menetelmillä. Samoin imidatsolinylylinikotiinihapot voidaan muuttaa vastaaviksi alkalimetalli-, ammonium- tai orgaanisiksi ammoniumsuoloiksi edellä kuvatuilla menetelmillä. Kaavan I mukaisten hapojen ja esterien valmistusta edellä kuvatuilla tavalla esitetään seuraavassa reaktiokaaviossa III.
Reaktiokaavio III

(XIV) \(COC_1 \cdot HCl \) + \(R_1 NH_2 \) \(CO_2 \) \(CONH_2 \)

(XIII) \(\)

(XV) \(CONH-CO_2 \) \(CONH_2 \)

\(\)

DBU \(k s y l e e n i \) \(\Delta \)

(III) \(CO_2 \)
Reaktiokaavio III (jatkoa)

\[(\text{IIIa})\]

\[\begin{align*}
&5 \\
&10 \quad \text{R}_3\text{OH} \\
&\quad \text{R}_3\text{ONa} \\
&15 \\
&20 \quad \text{nikotinaatti} \\
&\quad (\text{Ib}) \\
&25 \\
&30 \quad \text{pikolinaatti} \\
&35
\end{align*}\]

\[
\text{XXXVI} \quad \text{XXXVII}
\]

jossa M on alkalimetalli, X on vety, halogeeni, hydroksyyli tai metyyli, sillä edellytyksellä, että kun yksi substituentistä L, M, Q tai R₇ on muu substituentti kuin vety, halogeeni, C₁-C₆-alkyyli tai C₁-C₄-aloкси, niin X on vety; L, M, Q ja R₇ ovat kuitenkin erikseen vety, halogeeni, C₁-C₄-alkyyli, C₁-C₄-aloкси, C₁-C₄-alkyylitiio, C₁-C₄-alkyylisulfonyli, C₁-C₄-halogeenialkyyli,
N\textsubscript{2}, CN, fenyyli, fenoksi, amino, C\textsubscript{1}-C\textsubscript{4}-alkyliamino, dialempialkylamino, kloorifenyli, metylifenyli tai fenoksi, joka on substituoitu jollakin seuraavista: Cl, CF\textsubscript{3}, N\textsubscript{2} tai CH\textsubscript{3}, sillä edellytyksellä, että vain yksi substituentista L, M, Q ja R\textsubscript{7} voi olla muu substituentti kuin vety, halogeeni, C\textsubscript{1}-C\textsubscript{4}-alkyyli tai C\textsubscript{1}-C\textsubscript{4}-alkoksi, ja R\textsubscript{1}, R\textsubscript{2} ja R\textsubscript{3} merkitsevät samaa kuin edellä. Kaavan XXXVI mukaisia 2-(2-imidatsoli-2-yyli)-kinoliinikarboksylaattiestereitä voidaan myös valmistaa kaavan XXXVIII mukaisesta dioksopyrrolokinoliiniasettamista, jossa kaavassa R\textsubscript{1}, R\textsubscript{2}, X, L, M, Q ja R\textsubscript{7} merkitsevät samaa kuin edellä, syklisoimalla vahvan emäksen avulla, kuten 1,5-diatsabisykl[5,4,0]unde-5-eenin (DBU) avulla inertissä orgaanisessa liuottimessa, kuten ksyleenissä tai toluenissä, jolloin saadaan raakatuotteen imidatsopyrrolokinoliinidionia (XXXVII). Reaktioseosta kuumennetaan 100-150°C:ssa, ja reaktiossa syntynyt vesi poistetaan käyttäen Dean-Stark-loukkua. Reaktioseoksen lisätään vähintään yksi ekvivalentti kaavan R\textsubscript{3}OH mukaista alkoholia (V), jossa R\textsubscript{3} on edellä mainittu substituentti, ei kuitenkaan vety tai suolan muodostava kationi, ja saatua reaktioseosta kuumennetaan palautusjäljitysten 100-150°C:ssa, jolloin saadaan kaavan XXXVI mukainen esteri. Reaktiotä voidaan kuvata seuraavalla kaaviolla:
jossa R₁, R₂, R₃, X, L, M, Q ja R₇ merkitsevät samaa kuin edellä.

Kaavan XXXVI mukaisia 2-(2-imidatsolin-2-yyli)-kinoliinikarboksylaatti-estereitä voidaan myös valmistaa syklisomalla kaavan XXXIX mukainen karbamoyylikolinii-

narkarboksylaattiesteri fosforipentakloridin avulla noin 60-100°C:ssa. Reaktio suoritetaan yleensä inertissä organonisessa liuottimessa, kuten tolueenissa tai bent-

seenissä, ja siinä saadaan kaavan XXXVI mukaisen 2-(2-
imidatsolin-2-yyli)kinoliinikarboksylaattiesterin hydroloridisuola. Edellä olevassa reaktiossa käytetyl-

lä karbamoyylikoliniiikarboksylaattiesterillä (XXXIX) on seuraava kaava:
jossa R_3 on edellä esitetty substituentti, ei kuitenkaan vety tai suolan muodostava kation, ja R_1, R_2, L, M, Q ja R_7 merkitsevät samaa kuin edellä.

Kaavan (XXXVI), mukaisia 2-((2-imidatsolin-2-yyli)kinoliinikarboksylaattiesteritä voidaan myös valmistaa syklisoimalla kaavan XXXIX mukaisista kini-
liinikarboksylaattiesteristä, joilla on seuraava rakenne:

(jossa R_3 on edellä esitetty substituentti, ei kuitenkaan vety tai suolan muodostava kation, ja R_1, R_2, X, L, M, Q ja R_7 merkitsevät samaa kuin edellä. Karbamo-
yylikinoliinikarboksylaattiesterin syklisointi suorite-
taan reaktiossa fosforipentakloridin ja fosforioaksi-
klorida seoksen kanssa. Reaktioseosta sekoitetaan usei-
den tuntien ajan noin 15–35°C:ssa ja POCl₃ poistetaan
sitten vakuumissa. Jäänños dispergoidaan organiseen liuottimeen, kuten tolueeni, liuotin poistetaan saadusta seoksesta, ja jäänños dispergoidaan 80-100°C:seen veteen. Dispersion jäähdyttyy sen pH säädetään natrium-tai kaliumbikarbonaatilla arvoon 5-6, ja tuote uutetaan metyleenikloridiin, jolloin saadaan kaavan XXXVI mukainen 2-(2-imidatsolin-2-yyli)kinoliinikarboksylaattiyliesteri.

Kaavan XXXVI mukainen kinoliiniesteri, jossa kaavassa R_3 merkitsee samaa kuin edellä, ei kuitenkaan vetyä tai suolan muodostavaa kationia, ja R_1, R_2, X, L, M, Q ja R_7 merkitsevät samaa kuin edellä, voidaan helposti muuttaa vastaavaksi happoadditiosuolaksi reaktiossa vähintään yhden ekvivalentin kanssa vahvaa happoa.

Voimaa käyttää vahvoja mineraalihappoja, kuten kloorivetyhappoa, rikkihappoa tai bromivetyhappoa sekä myös organiseis happoja. Reaktio voidaan edullisesti suoritaa käyttäen inerttiä organista liuotinta, kuten etteriä, kloroformia, metyleenikloridia tai näiden seoksia.

Rikkihapposuolotoja valmistetaan yleensä tällä menetelmällä käyttäen kuitenkin liuottimena alempaa alifaattista alkoholia edellä mainittujen sijasta.

Sellaisia kaavan II mukaisia 2-(2-imidatsolin-2-yyli)kinoliinijohdannaisia, joissa A on COOH, B on vety, W on happi, ja R₁, R₂, X, L, M, Q ja R₇ merkitsevät samalla kaavan XXXVI mukainen esteri, jossa R₃ on edellä mainittu substituentti, ei kuitenkaan vety tai suolan muodostava kationi, ja R₁, R₂, X, L, M, Q ja R₇ merkitsevät samaa kuin edellä, reagoimaan vähintään ekvivalenttisesti määriän kanssa vahvaa emästä (vesiliuoksena) kuten natriumhydroksidia, noin 20–50°C:ssa. Se osaa jähdytää, sen pH säätöä vahvalla mineraalihapolla arvoon 6,5–7,5, jolloin saadaan haluttu hoppo.

Sellaisia kaavan II mukaisia 2-(2-imidatsolin-2-yyli)kinoliinijohdannaisia, joissa A on COOR₃, R₃ on suolan muodostava kationi, B on vety, W on happi ja R₁, R₂, L, M, Q ja R₇ merkitsevät samaa kuin edellä, voidaan valmistaa liuottamalla kaavan II mukainen hoppo, jossa A on COOH, B on vety, W on happi, ja R₁, R₂, L, M, Q ja R₇ merkitsevät samaa kuin edellä, sopivaan liuottimeen, ja käsittelemällä seosta vähintään yhdelää ekvivalentilla suolan muodostavaa kationia. Reaktio suoritetaan olennaisesti samalla tavalla kuin edellä kuvattu sellaisen kaavan I mukaisen pyridiinin valmistus, jossa A on COOR₃ ja R₃ on suolan muodostava kationi.

Kaavalla II esitetyt sellaiset imidatsolinyyli-kinoliinikarboksyylihapot ja esterit, joissa B on H, esiintyvät tautomeereina.

On myös huomattava, että R₁:n ja R₂:n merkitessä erilaisia substituentteja kaavan II mukaisissa 2-(2-imidatsolin-2-yyli)kinoliinijohdannaisissa ja kaavan XXXVII mukaisissa imidatsopyrrolokinoliinidioneissa, hiili, johon R₁ ja R₂ ovat liittyneet, on asymmetria-keskus, ja tuotteet (sekä myös niiden välttömät) voivat esiintyä d- ja l-muodossa sekä dl-muodossa.
Syklisoimalla kaavan XXXVIII imidatsopyrrolokinoliiniasetamidi saadaan nelirenkaiset kaavojen XXXVII ja XXXVIIa mukaiset imidatsopyrrolokinoliinidionit, jotka ovat välituotteita kaavan II mukaisten 2-(2-imidatso-lin-2-yyli)kinoliinikarboksyylihappojen ja esterien valmistuksessa.

Tässä reaktiossa saadaan pääasiassa haluttua imidatsopyrrolokinoliinidionia ja jonkin verran kaavan XXXVIIa mukaista isomeeria. Kun isomeeriseosta käsitellään alkimetallialkoksidilla, saadaan olen-naisesti puhtaana isomeerina kinoliinikarboksylaatti-yhdistettä.

Syklisointi suoritetaan edullisesti 80-150°C:ssa emäksen, kuten natrium- tai kaliumhydridin läsnäöllesa, tai hapon, kuten aromaattisen sulfonihapon läsnäollessa liuottimessa, joka muodostaa atseotrooppisen seoksen veden kanssa, jolloin vesi saadaan käytännöllisesti katsoen täydellisesti poistettua sitä myötä kuin sitä reaktiossa syntyy. Sopivia liuottimia ovat esim. tolueni, bentseeni, ksqleenit ja sykloheksaani. Sopivia emäksiä ovat alkimetallihydroksidit, alkimetalli-hydridit, alkimetallioksidit, tertiääriset amiinit, kuten di-isopropylietyylimaliini, 1,5-diatsabisyko\(\text{3,5}\text{-noneeni-5,1,5-diatsabisyko}\(\text{5,4,9}\text{-undekeeni-5,1,4-diatsabisyko}\(\text{2,2,9}\text{-otkaani, tetrarmetyyliguanidiini, kalium-fluoridi ja kvaternäriset ammoniumhydroksidit, kuten trimetyylibentsyyliammoniumhydroksidi, ja vahvasti emä-kisiiset ioninvaihtohartsit.}

Sopivia hoppoja käytettäviksi ovat esim. aromaat-tiset sulfonihapot, kuten p-toluenisulfonihappo, \(\text{P}\text{-naftaleenisulfonihappo, naftaleenidisulfonihappo ym.}

Reaktioita voidaan esittää seuraavalla reaktio-kaaviolla IV.
Reaktiokaavio IV

(XXXVIII)

emäss tai happo

(XXXVII)

+

(XXXVIIa)
Reaktiokaavio IV (jatkoa)

\[R_3O \text{- alkalimetalli} \]

\[(XXXVI)\]
Reaktiokaavio V

(XXXX)

H₂SO₄

(XXXVIII)
Reaktiokaavio V (jatkoa)

5

(XXXI) + (XXXII)

10

\[
\begin{array}{c}
\text{CHO} \\
\text{N}\text{H} \\
\text{N}\text{H} \\
\text{O} \\
\text{N}\text{H} \\
\text{N}\text{H} \\
\end{array}
\]

15

(XXXIII)

20

\[
\text{CH}_3
\]

25

(XXXVIII)

30

35
Riippuen substituenttien L, M, O ja R₇ luontees-
ta voidaan kaavan XXXX mukaisten pyrrolokinoliini-
asetonitriilien valmistus suorittaa eri tavoin.

Kaavan XXXX mukaisia pyrrolokinoliiniiasetoniti-
riilejä voidaan valmistaa saattamalla sopivasti subs-
tituoitu anhydridi (XXXXIV) reagoimaan sopivasti subs-
tituidun α-aminokarbonitriilin (XVII) kanssa, jolloin
saadaan kaavan XXXXVa mukaisten monoamidien ja kaavan
XXXXb mukaisten hapojen seos.

Tämä reaktio suoritetaan 20-70°C:ssa, edullises-
ti noin 35-40°C:ssa, inertissä liuottomessa, kuten tetra-
hydrofuraanissa, metyleenikloridissa, eetterissä, klo-
roformissa, toluenissa ym. Saatu happo syklisoidaan
sitten vastaavaksi pyrrolokinoliiniiasetonitriiliksi,
joka on esitetty kaavalla XXXX. Syklisointi suoritetaan
kuumentamalla reaktioseosta noin 75-150°C:ssa ylimää-
rin käytetyn etikkahappoaanhydridin kanssa ja natrium-
asetaatti- tai kaliumasetaattikatalysaattorin läsnäolles-
sa.

Yleensä edellä mainittu reaktio suoritetaan
käsittelemällä reaktioseosta etikkahappoaanhydridillä,
asetylikloridilla, tioniylchloridilla tms. kuumenta-
malla noin 20-100°C:ssa. Edellä olevia reaktioita kuva-
taan seuraavassa reaktiokaavioissa VI, jossa R₁, R₂, X,
L, M, Q ja R₇ merkitsevät samaa kuin edellä.
Reaktiokaavio VI

5

(XXXXIV) + (XVII)

10

15

(XXXXVa)

(XXXXVb)

20

(CH₃CO)₂O

25

30

(XXXX)

35

Jos reaktio suoritetaan aproottisessa liuottimessa, kuten o-diklooribentseenissä, ja reaktioseosta kuumennetaan 140-200°C:ssa, niin saadaan kaavan XXXX mukainen pyrrolokino-liiniasetonitrili. Reaktiota voidaan kuva- ta seuraavalla reaktiokaaviolla VII.
Reaktiokaavio VII

(XXXI) + (XXXVI) → (XXXVII) → (XXXIII)
Reaktiokaavio VII (jatkoa)

Edellä kuvattu reaktiosarja sopii varsinkin, kun L, M, Q ja R₁ ovat elektronegatiivisia ryhmiä, kuten halogeeneja, nitro-, CF₃-, SO₂CH₃- ja CN-ryhmiä.

Tämän menetelmän eräässä muunnelmassa kaavan XXXXVIII mukainen o-aminoasettaali saatetaan reagoimaan kaavan XXXX mukaisen sopivasti substituoidun maleinimi-din kanssa tai dioksopyrroliiniasetamidin kanssa aproot-tisessa liuottimessa, kuten ksyleenissä tai tolueenissä noin 50–130°C:ssa. Näitä reaktioita voidaan kuvata seuraavalla kaaviolla.
Sellaisia kaavan XXXX mukaisia yhdisteitä, joissa L, M, Q ja R₇ ovat elektroneja luovuttavia substituentteja, kuten alkyl-, alkoki-, alkylitio-, dialkylamino- ja hydroksiyhyidiä tai halogeeni (yksi), voidaan valmistaa saattamalla kaavan XXXXIII mukainen sopivasti substituointa o-aminobentsyylialkoholi tai kaavan XXXXIV mukainen antraniilihappo reagoimaan kaavan XXXXX mukaisen bromi- tai kloorimaleinimidin kanssa.

Tämä reaktio suoritetaan proottiessa liuottimessa, kuten isopropyli- tai tert-butyylialkoholisssa 0-30°C:ssa, jolloin saadaan vastaavasti kaavan XXXXXV mukainen hydroksimetyylialominomaleinimiä tai kaavan XXXXXVI mukainen dioksypyrrolinylyliantriili-
happo. Näissä reaktioissa voidaan käyttää erilaisia hap-
poa sitovia aineita, kuten maa-alkalimeetallihihdroksideja, kuten Ba(OH)₂, BaO tai natriumasetaatia. Reaktio voidaan kuitenkin usein suorittaa tyhdyttävästi myös ilman happoa sitovaa ainetta.

Kaavan XXXXV mukaisen alkoholin hapetus kaavan XXXXIII mukaiseksi aldehyokia voidaan suorittaa erilaisilla hapatimilla, joista esimerkkeinä mainittakoon pyridiniumkloorikromaa metyleenikloridissa ja aktivoitu mangaanidioksidina tert-butanolissa. Kaavan XXXXIII mukainen aldehydi voidaan syklisoida kaavan XXXXIII mukaiseksi pyrolokinoliiniiasetonitriliiksi jollakin edellä kuvatuista menetelmistä, esimerkiksi kuumentamalla aldehydia 140-200°C:ssä aproottisessa liuottimessa.

Kaavan XXXXVI mukainen o-anilinokarboksylilahde voidaan syklisoida kaavan XXXXVII mukaiseksi asetoksikinoliiniksi etikkahappoanhydridin, trietylamiinin ja 4-dimetyylilaminopiridiinin avulla huoneen lämpötilassa. Pelkistämällä lievissä olosuhteissa saadaan kaavan XXXX mukainen pyrolokinoliiniiasetonitrili.

Hydrolysoimalla lämpimässä vesipitoisessa etikkahappossa saadaan kaavan XXXX mukainen yhdiste, jossa X = OH, ja reaktiossa fosforioksikloridin ja pyridiinin kanssa saadaan yhdiste, jossa X on kloori. Nämä reaktioita kuvataan seuraavassa reaktiokaaviossa VIII.

Reaktiokaavio VIII

\[
\begin{align*}
\text{Reaktiokaavio VIII} & \\
\text{XXXVIII} & \quad \text{XXXIV} \\
\downarrow & \quad \downarrow \\
\text{XXX} & \quad \text{XXX}
\end{align*}
\]
Reaktiokaavio VIII (jatkoa)

5

\[\text{(XXXXXV)} \quad \text{(XXXXXVI)} \]

15

hapetus

20

\[\text{(XXXXXIII)} \quad \text{(XXXXXVII)} \]

25

Pelkistys

30

\[(X = H) \quad \text{(XXXX)} \]

35
Eräässä menetelmässä kaavan II mukaisten 2-(2-imidatsolin-2-yyli)kinoliinien valmistamiseksi, joka
menetelmä sopii erityisesti syntetisoitaessa analogeja, joissa ryhmä A vaihtelee, käytetään kaavan XXXXXIX
mukaista 2-(2-imidatsolin-2-yyli)kinoliinia. Tämä väli-
tuote valmistetaan kaavan XXXXXVIII mukaisesta kinoliin-
nikarboksyylihipoastea, joka muutetaan happokloridiksi
tai happaanhidridiksi ja saatetaan sitten reagoimaan
kaavan XVII mukaiseen sopivasti substituoidun \(\text{-}\)ami-
nokarbonitriilin kanssa kaavan XXXXXII mukaiseksi nit-
riiliksi tai kaavan XXXXXI mukaisen aminoami-
din kanssa kaavan XXXXXXII mukaiseksi karboksamido-
amiidiksi. Karboksamidoaminin syklisointi suoritetaan
edellä esitettyllä menetelmällä; edullinen menetelmä
on kuitenkin syklisointi natriumhidridin avulla ksy-
leenissä. Erilaisia A-ryhmiä voidaan liittää käsitte-
lemällä kaavan XXXXIX mukaista 2-(2-imidatsolin-2-
yyli)kinoliinia metallireagensseilla. Useimmilla orga-
nisilla metalliyhdisteillä saadaan, kun niitä käytetään
kaksi moolia, dianioni, jolloin saanto ja reaktion tu-
los ovat riippuvaisia kulloinkin käytetystä organisesta
metalliylhdisteestä, liuottimesta, reaktiolämpötilasta
ja elektrofilista, jota käytetään reaktion keskeyttä-
miseen. Käytännössä edullisia organisista metallireagens-
seja ovat alkyllyliitiumit, ja anioninmuodostukseen voi-
daan käyttää esim. metyyli-, n-butyli-, sek-butyli- ja
tert-butyliyliitiumia. Voidaan myös käyttää fenyllyliitiumia
ja litiumdi-isopropyliamidia. Liuottimen on oltava
aprottinen, edullinen liuotin on dietyylieetteri. Di-
anionin muodostamisessa reaktiolämpötila on \(-78\) - \(0^\circ\text{C}\),
edullisesti \(-30\) - \(-10^\circ\text{C}\). Elektrofiilisen yhdisteen li-
isääminen reaktiosekoiseen tapahtuu tavallisesti \(-78\) -
\(+20^\circ\text{C}\):ssa. Tarvittaessa tämän jälkeen lisätään happoa.
Kaikki reaktiot suoritetaan inertissä kaasukehässä.
Esimerkkejä elektrofiileista ovat \(\text{CO}_2\), \(\text{ClCO}_2\text{CH}_3\),
(CH₃)₂NCHO, CH₃HCO, C₆H₅CHO ja CH₃I. Vastaavat A:n merkitykset kaavassa Iia ovat COOH, COOCH₃, CHO, CH(OH)CH₃, CH(OH)C₆H₅ ja CH₃. Elektrofiilin lisäämisen jälkeen tuote voidaan edelleen modifoida. Esimerkiksi aldehydi (A = CHO), joka on saatu DMF:ssä, reagoi hydroksyylamiinin kanssa muodostaen oksiimin. Tätä reaktiota voidaan käyttää myös yhdisteen valmistamiseen, jossa A = COOH, käsittelemällä dianionia hiilidioksidilla.

15 Edellä kuvattuja reaktioita esitetään seuraavassa reaktiokaaviossa IX.

Kinoliinin N-hapetus voidaan suorittaa suojamaalla ensin imidatsoloni-renkaan N-atomi esim. COCH₃-ryhmällä; N-hapetus voidaan suorittaa peretikkahapolla tai trifluoriperetikkahapolla tarvittaessa korotetussa lämpötilassa.

Kaavan I mukaiset 2-(2-imidatsolin-2-yyli)pyrindiinit ja kaavan II mukaiset 2-(2-imidatsolin-2-yyli)-kinoliinit, kaavan III mukaiset imidatsopyrrolopyrindiinidioni ja kaavan XXXVII mukaiset imidatsopyrrolokinoliinidionit ovat erittäin tehokkaita herbisidejä, joita voidaan käyttää laajalti monien erilaisten ruoahomaisten ja puumaisten, yksivuotisten ja monimuotisten, yksisirk-
kaisten ja kaksisirkkaisten kasvien torjuntaan. Lisäksi
nämä yhdisteet ovat tehokkaita herbisidejä sekä ku-
valla maalla että määllä maalla kasvavia rikkakasveja
vastaan. Ne ovat myös tehokkaita vesikasvien herbisii-
dejä. Ne ovat ainutlaatuisen tehokkaita käyttöäri-
nä 0,016-4,0 kg/ha edullisesti 0,032-2,0 kg/ha
mainittujen kasvien torjunnassa käytettyinä sekä kasvien
lehdillä että maaperässä tai vedessä, joka sisältää näi-
den kasvien siemeniä tai muita lisääntymiselimiä, kuten
mukuloita, juurakkoja tai juurivesojia.

On selvää, että myös tason 4,0 kg/ha ylittäviä
määriä voidaan käyttää el-toivottujen kasvilajien tu-
hoamiseen; kasvien tappamiseen tarvittavan tason ylittä-
viä myrkkyainemääriä tulisi kuitenkin välttää, koska

ne aiheuttavat turhia kustannuksia ja ovat ympäristöl-
le hyödyttömiä.

Kasveja, joita keksinnön mukaisilla yhdisteillä
voidaan torjua, ovat esimerkiksi seuraavat: Elatine triandra,
Sagittaria pygmaea, Scirpus hotarui, Cyperus serotinus,
Eclipta alba, Cyperus difformis, Rotala indica, Lindernia
pyridoria, Echinochloa crus-galli, Digitaria sanguinalis,
Setaria viridis, Cyperus rotundus, Convolvulus arvensis,
Agropyron repens, Datura stramonium, Alopecurus
myosuroides, Ipomoea spp., Sida spinosa, Ambrosia
artemisiifolia, Eichhornia crassipes, Xanthium pensyl-
vanicum, Sesbania exaltata, Avena fatua, Abutilon
theophrasti, Bromus tectorum, Sorghum halepense, Lolium
spp., Panicum dichotomiflorum, Matricaria spp., Amaranthus
retroflexus, Cirsium arvense, ja Rumex japonicus.
Yllättäen on havaittu, että jotkut keksinnön mukaista kaavojen I ja II mukaisista yhdisteistä ovat sektiivisiä herbisidejä käytettyinä kasvien lehdillä tai näiden kasvien siemeniä sisältävässä maaperässä suhteellisen alhaisina pitoisuksina, so. noin 0,016-2,0 kg/ha riippuen käytetystä yhdisteestä ja käsitellystä kasvista.

On havaittu, että useat kaavojen I ja II 2-(2-imidatsolin-2-yyli)pyriddieneistä ja 2-(2-imidatsolin-2-yyli)kinoliineista ovat tehokkaita puuvillan lehtien poistoaineita käyttömäärillä noin 0,016-4,0 kg/ha. Käyttömäärillä noin 0,01 kg/ha on myös havaittu joidenkin kaavojen I ja II mukaisista pyriddieneistä ja kinoliineista vaikuttavan hernekasvien haaroittumiseen ja sadon aikaiseen tulentumiseen.

Kaavan XI mukaiset pyrrolopyriddiiniasetonitrilk, kaavan IV mukaiset pyrrolopyriddiiniasetamidit, kaavan XXX mukaiset pyrrolokinoliiniasetonitrilit ja kaavan XXXVIII mukaiset pyrrolokinoliiniasetamidit ovat
käyttökelpoisia välituyotteita edellä mainittujen kaavojen I ja II mukaisten herbisidisten 2-(2-imidatsolin-2-yyli)pyridiiniä ja -kinoliiniä valmistuksessa.

Koska sellaiset kaavojen I ja II mukaiset imidatsolinyylipyridiini- ja -kinoliinijohdannaiset, joissa R_3 on suolan muodostava kationi, ovat vesiliukoisia, näitä yhdisteet voidaan yksinkertaisesti dispergooida veteen ja käyttää laimeina vesisuihkeina kasvien lehdille tai maahan, joka sisältää kasvien lisääntymiselimiä. Näitä suojoja voidaan käyttää myös nestemäisten konsertraat- 5
ten valmistukseen.

Kaavojen I ja II mukaiset 2-(2-imidatsolin-2-yyli)pyridinejä ja -kinoliineja voidaan myös valmistaa kostutettaviksi jauheiksi, nestekonsentraateiksi, emulgoituviksi konsentraateiksi, rakeiksi jne.

Tyypillinen nestemäinen valmiste saadaan sekoit tamalla yhteen noin 40 paino-% aktiivainetta, noin 2 20 paino-% geeliyttämisainetta, kuten bentoniittiä, 3 paino-% dispergointiainetta, kuten antriumlignosulfonaattia, 1 paino-% polyetyleeniglykolia ja 54 paino-% vettä.

Kun keksinnön mukaisia yhdisteitä käytetään
herbisideinä käsittelemällä maaperää, niin yhdisteet
voidaan levittää rakesina tuotteina. Rakesina tuotemuotoja
valmistetaan liuottamalla aktiiviaine liuottimeen,
kuten metyleenikloridiin, N-metyylipyrrolidiinä tms.,
ja suihkuttamalla saatu liuos rakeselle kantajalle,
kuten maissinkolvijauheelle, hiekalle, attapulgilille,
kaoliinille ym.

Valmistettu raeutote sisältää yleensä noin 3-20
painon% aktiiviaiennetta ja noin 97-80 painon% rakeista
kantajaa.

Keksinnön ymmärtämiseksi esitetään seuraavat
sen tiettyjä erityispiireitä valaisevat esimerkit. Keksin-
nön ei voida katsoa rajoittuvan niissä esitettyyn, vaan
keksinnön suojapiiri on patenttivaatimuksissa määritel-
ty. Jollei muuta ilmoiteta, niin kaikki osat ovat paino-
osia.

Esimerkki 1

5,7 dihydro-α-isopropyli-α-metyyl-5,7 dioks-
6H-pyrrolo[3,4-b]pyridiini-6-asetonitriiliin
valmistus

Liuokseen, joka sisältää 212 g kinoliinihappo-
anhydridiä 950 ml:ssä metyleenikloridia, lisättiin se-
koittaen kohtuullisella nopeudella 167 g 2-amino-2,3-di-
metyylisobutyronitriiliä. Seos alkoi kiehua, kun noin 1/4
aminonitriilistä oli lisätty, ja lisäysnopeus säädettiin
sellaiseksi, että tämä lämpötila säilyi. Lisäyksen pää-
tyttyy liuosta kuumennettiin palautusjäähdytäsen 4 tun-
tia. Liuos jäähdytettiin, suodatettiin ja haihdutett-
tiin paksuksi öljyksi. Öljy liuotettiin 950 ml:aan etik-
kahappoanhydridiä, liuokseen lisättiin 6 g vedetöntä
natriumasetaatia, ja seoksesta tislattiin pois ainet-
ta, kunnes höyryn lämpötila oli 118°C, jolloin kuumen-
nusta jatkettiin palautusjäähdytäsen 3 tuntia. Seos hai-
hdutettiin vakuumissa, jäännös liuotettiin 500 ml:aan
tolueenia, ja liuos haihdutettiin. Tämä toistettiin.
Jäänöös lietettiin etteri/heksaaniseokseen, ja saadut raakatuotteen kiteet (349 g) koottiin. Raakatuote liuotettiin 700 ml:aan metyleenikloridia, liuos suodatettiin silikageeliä (700 g) sisältävän kolonnin lävitse, tuote eluoihtiin metyleenikloridilla. Hahduttamalla eluentti saatiin 258 g haluttua tuotetta. Analyyttisen puhdas näyte saatiin kityttämällä etteri/metyleenikloridi-seoksesta, sp. 95-96°C.

Käyttämällä edellä kuvattussa menetelmässä sopivaa aminonitriiliä ja kinoliinihapoanhdridiä valmistettiin seuraavat pyrolopyridiinit:

\[
\begin{array}{c|c|c|c|c|c|c}
\text{R}_1 & \text{R}_2 & X & Y & Z & \text{Sp. °C} \\
\hline
\text{CH}_3 & \text{CH}_3 & H & H & H & 119 - 123 \\
\text{CH}_3 & \text{C}_2\text{H}_5 & H & H & H & 95 - 97 \\
\text{CH}_3 & \Delta & H & H & H & 69 - 73 \\
\text{CH}_3 & \text{CH}_2\text{CH}(_3)_2 & H & H & H & \text{öljy} \\
\text{-(CH}_2)_5- & \text{H} & \text{H} & \text{H} & 85 - 87 \\
\text{C}_2\text{H}_5 & \text{C}_2\text{H}_5 & \text{H} & \text{H} & \text{H} & 71 - 72.5 \\
\text{CH}_3 & \text{CH}(_3)_2 & \text{CH}_3 & \text{H} & \text{H} & 129,5 - 131,3 \\
\text{CH}_3 & \text{CH}(_3)_2 & \text{H} & \text{H} & \text{OCH}_3 & 108 - 110 \\
\text{CH}_3 & \text{CH}(_3)_2 & \text{H} & \text{H} & \text{Cl} & 94 - 96 \\
\end{array}
\]
Esimerkki 2
5,7-dihydro-L-isopropyli-metyyli-5,7-diokso-
6H-pyrrolo[3,4-D]pyridiini-6-asetamidin valmistus
330 ml:aan väkevä rikkihappoa lisättiin annoksit-
tain koko ajan sekoittaen 298 g hienojakoista nitriiliä
siten, ettei lämpötila kohonut yli noin 72°C. Lisäyksen
päätyttyä lämpötila säädettiin 60-65°C:seen ja pidet-
tiin siinä 1,5 tuntia. Seos jähdytettiin, kaadettiin
jälle ja laimennettiin lopuksi noin 4 litraksi. Sitten
lisättiin 454 g natriumasettaattia, seosta pidettiin 0°C:ssa
2 tuntia, ja sitten se suodatettiin. Kiinteä aine koot-
tiin ja pestiin kaiken rikkihapon poistamiseksi 2 ker-
taa 500 ml:lla natriumasettaattipitoista vettä, ja sit-
ten vedellä. Saatu kiinteä aine kuivattiin, saatiin 289 g,
sp. 176-178°C. Vastaavalla tavalla valmistetun analyy-
sinäytteen sp. oli 188-190°C.

Käytämällä edellä kuvattua menetelmää sopi-
vaan pyrrolopyridiiniasetonitriliä valmistettuiin se-
raavat pyrrolopyridiiniasetamidot:

\[
\begin{align*}
&\text{R}_1 &\text{R}_2 &\text{X} &\text{Y} &\text{Z} &\text{Sp.}^\circ\text{C} \\
&\text{CH}_3 &\text{CH}_3 &\text{H} &\text{H} &\text{H} &203 - 5 \\
&\text{CH}_3 &\text{C}_2\text{H}_5 &\text{H} &\text{H} &\text{H} &158 - 161 \\
&\text{CH}_3 &\triangle &\text{H} &\text{H} &\text{H} &195 - 198
\end{align*}
\]
Esimerkki 3
3-isopropyl-3'-metyyl-5H-imidatsol2,1'-pyrrolo3,4,b pyridiini-2-(3H),5-dionin valmistus
Amidin (50 g) ja toluenin (450 ml) seosta
5 kuumennettiin käyttäen Dean-Stark-loukkua vedenpoistoon.
Jäähdytetyyn seoksen lisättiin 10,1 g natriumhydridin 50-%:ista mineraaliöljy suspensiota, ja seosta kuumennettiin palautusjäähdytäen 23 tuntia. Kuuma liuos suodatettiin ja konsentroitiin vakuumissa, jolloin sii
tä erottui kiteitä. Mineraaliöljy dekantoitiin, ja
kiinteä aine pestiin heksaani ja kuivattiin vakuumissa, jolloin saatiin 45,5 g tuotetta, joka NMR-analyysi
sin mukaan sisälsi noin 90 % haluttua isomeeria II ja
noin 10 % ei-toivotta isomeeria IIa.
15 Puhdas isomeeri II saatiin kiteyttämällä raaka-
tuote heksaani/metylenikloridiseoksesta, sp. 107-115°C.
Syklisointi voidaan suorittaa joko emäksisellä
reagensilla, kuten natrium- tai kaliumhydroksidilla,
tai happamella reagensilla, kuten p-tolueenisulfoni-
hapolla tolueniluottimessa. Tällöin saadaan edellä
olevia kaavoja II ja IIa vastaavien tuotteiden seos,
jota ei yleensä puhdisteta, vaan käytetään suoraan ni-
kotiinihappoesterien valmistukseen.
Käytettämällä sopivaa pyrrolopyridiinikarboksami-
dia, valmistettiin seuraavat imidatsopyrrolopyridiinit:

\[
\begin{array}{cccccc}
R_1 & R_2 & X & Y & Z & \text{Sp.}^\circ \text{C} \\
\text{CH}_3 & \text{CH}_3 & \text{H} & \text{H} & \text{H} & \\
\text{CH}_3 & \text{C}_2\text{H}_5 & \text{H} & \text{H} & \text{H} & \\
\text{CH}_3 & \text{H} & \text{H} & \text{H} & \\
\text{CH}_3 & \text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2 & \text{H} & \text{H} & \text{H} & \text{H} & \text{H} & 125 - 130 \\
\text{CH}_3 & \text{CH}(\text{CH}_3)_2 & \text{H} & \text{H} & \text{OCH}_3 & 147 - 147,5 \\
\end{array}
\]
Esimerkki 4
3-isopropyli-5H-imidatso[2',2':1,2]pyrrolo[3,4-b]-pyridiini-2(3H)dionin valmistus
3-[(1-karbamoyyli-1,2-dimetyylipropyyli)piko-
olinaattia (52 g), 1,5-diatsabisyyklo[5,4,0]undek-5-
eniä (DBU) ja ksyleeniä (400 ml) sisältävää seosta kuumemettiin 2 tuntia palautusjäähdyttäen ja käyttäen
Dean-Stark-loukkua vedenerottimena. Seos konsentro-
tiin vakuumissa, ja jäännös kromatografoitiin emäksi-
sellä alumiinioksidilla (400 g). Tuote eluoitiin metyleenikloridilla, ja sitä käytettiin puhdistamatta seu-
raavassa vaiheessa.

Esimerkki 5
Metyyli-2-(isopropyyli-5-metyyli-4-okso-2-
imidatsolin-2-yyli)nikotinaatin valmistus
Natriumhydridin (10 mg) annettiin reagoida 20
ml:ssa kuivaa metanolia, ja seokseen lisättiin sit-
ten 2,0 g imidatsopyrrolopyridiinien seosta. 16 tunnin
sekoittamisen jälkeen lisättiin 0,03 g jäädetikkaa emäk-
sen neutraloimiseksi, liuos konsentroitiin vakuumissa
ja jäännös kromatografoitiin silikageelillä käyttäen
etteriä. Nopeimmin liikkua materiaali, joka saatiin
useampana fraktiona, sisälsi halutun esterin, se kon-
sentroitiin ja imidatsolinyylinikotinaatti kitetytettiin
asetonitriiilikää, sp. 121-123,5°C. Analyysinäyte saa-
tiin kitetyttämällä metyleenikloridi/heksaaniseoksesta,
sp. 121-122°C.

Esimerkki 6
Metyyli-2-(5-isopropyyli-5-metyyli-4-okso-2-
imidatsolin-2-yyli)nikotinaatin valmistus
Tässä menetelmässä muodostetaan esimerkiksen 3
ja 4 trisykliset yhdisteet ja niistä suoraan eristämät-
tä nikotiinihappoesteri:
Amidin (25 g) ja 1,5-diatsabisyklo[5,4,0]undek-5-eenin (DBU) seosta ksyleenissä (500 ml) kuumennettiin palautusjäähdytäen tunnin ajan käyttäen Dean-Stark-loukkua. Seosta jäähdytettiin jonkin verran, vedenerotin poistettiin, seokseen lisättiin 100 ml vedetöntä metanolia, ja seosta kuumennettiin palautusjäähdytäen tunnin ajan. Liuottimet poistettiin vakuumissa, ja tuote eristettiin kromatografoimalla esimerkissä 5 kvatulla tavalla, jolloin saatiin 13,65 g tuotetta (sp. 120-122°C), joka oli identtinen esimerkissä 5 valmistetun kanssa.

Esimerkki 7
Metyyli-2-(5-isopropyli-5-metyli-4-okso-2-imidatsolin-2-yyli)nikotinaatin valmistus

Menetelmä A (reaktiokaavio sivulla 10)
Nikotinaatin (13,65 g) ja fosforipentakloridin (9,69 g) seosta kuivassa tolueneissä (110 ml) sekoitettiin ja kuumennettiin 80°C:ssa. 1,5 tunnin kuluttua paksu seos jääähdytettiin, suodatettiin ja sakka pes-
tiin etterillä ja kuivattiin, jolloin saatiin halutun tuotteen hydrokloridisuola.

Hydrokloridisuola liuotettiin 60 ml:aan vettä, liuos neutraloitiin natriumbikarboxonaatilla, saatu sakka suodatettiin, pestiin vedellä ja ilmakuivattiin, jolloin saatiin tuote, joka oli identtinen esimerkissä 5 valmistetun kanssa.

Menetelmä B

Nikotinaatin (5,0 g) ja fosforipentakloridin (7,1 g) seosta fosforioksikloridissa (40 ml) sekoitettiin huoneen lämpötilassa yön yli. Fosforioksikloridi hahdutettiin vakuumissa, jäännös suspendoitiin 40 ml:aan toluenia, suspensio konsentroitiin. Tämä toistettiin. Jäännökseen lisattiin vettä (40 ml), ja seosta kuumennettiin palautusjäähdyttäen tunnin ajan. Seos jäähdytettiin ja uutettiin metyleenikloridilla, uute kuivattiin ja hahdutettiin, jolloin saatiin 1,05 g haluttua tuotetta. Metyleenikloridiuutossa saadun vesifaasin pH säädettiin arvoon 5-6 natriumbikarboxanaattiliuoksella, ja seos uutettiin jälleen metyleenikloridilla. Uute kuivattiin ja hahdutettiin, jolloin saatiin kiteisenä jäännökseenä vielä 2,65 g haluttua tuotetta, joka oli identtistä esimerkissä 5 valmistetun kanssa.
Edellä kuvatuilla menetelmillä valmistettiin seuraavat nikotiinihappoesterit:
<table>
<thead>
<tr>
<th>R<sub>3</sub></th>
<th>R<sub>1</sub></th>
<th>R<sub>2</sub></th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>Sp. °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH<sub>3</sub></td>
<td>CH<sub>3</sub></td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>126.5 - 128.5</td>
</tr>
<tr>
<td>CH<sub>2</sub>≡CH</td>
<td>CH<sub>3</sub></td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>104 - 106</td>
</tr>
<tr>
<td>CH<sub>3</sub></td>
<td>-CH-(CH<sub>2</sub>)<sub>4</sub>-</td>
<td>-CH-(CH<sub>2</sub>)<sub>4</sub>-</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>151 - 155.3</td>
</tr>
<tr>
<td>CH<sub>2</sub>C≡CH</td>
<td>-CH-(CH<sub>2</sub>)<sub>4</sub>-</td>
<td>-CH-(CH<sub>2</sub>)<sub>4</sub>-</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>117 - 120</td>
</tr>
<tr>
<td>CH<sub>2</sub>C<sub>6</sub>H<sub>5</sub></td>
<td>-CH-(CH<sub>2</sub>)<sub>4</sub>-</td>
<td>-CH-(CH<sub>2</sub>)<sub>4</sub>-</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>148.5 - 151.3</td>
</tr>
<tr>
<td>CH<sub>2</sub>C≡CH</td>
<td>CH<sub>3</sub></td>
<td>CH<sub>3</sub></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>171 - 173</td>
</tr>
<tr>
<td>CH<sub>3</sub></td>
<td>CH<sub>3</sub></td>
<td>CH<sub>3</sub></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>148 - 150</td>
</tr>
<tr>
<td>CH<sub>2</sub>C<sub>6</sub>H<sub>5</sub></td>
<td>CH<sub>3</sub></td>
<td>CH<sub>3</sub></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>142 - 144</td>
</tr>
<tr>
<td>CH<sub>2</sub>C<sub>6</sub>H<sub>5</sub></td>
<td>CH<sub>3</sub></td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>118 - 120</td>
</tr>
<tr>
<td>CH<sub>2</sub>C≡CH</td>
<td>CH<sub>3</sub></td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>138 - 140</td>
</tr>
<tr>
<td>R<sub>3</sub></td>
<td>R<sub>1</sub></td>
<td>R<sub>2</sub></td>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td>S<sub>p</sub>.°C</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>-----------</td>
</tr>
<tr>
<td>-C(CH<sub>3</sub>)<sub>3</sub></td>
<td>CH<sub>3</sub></td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>124 - 126</td>
</tr>
<tr>
<td>C<sub>18</sub>H<sub>37</sub>-n</td>
<td>CH<sub>3</sub></td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>95.5 - 98</td>
</tr>
<tr>
<td>CH<sub>2</sub>C<sub>6</sub>H<sub>5</sub></td>
<td>CH<sub>3</sub></td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>77.3 - 79.2</td>
</tr>
<tr>
<td>CH<sub>2</sub>C<sub>6</sub>H<sub>5</sub>-n</td>
<td>CH<sub>3</sub></td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>116.5 - 119</td>
</tr>
<tr>
<td>CH<sub>3</sub></td>
<td>CH<sub>3</sub></td>
<td>CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>76 - 78.5</td>
</tr>
<tr>
<td>-C<sub>4</sub>H<sub>9</sub>-n</td>
<td>CH<sub>3</sub></td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>92 - 94</td>
</tr>
<tr>
<td>CH<sub>2</sub>C≡CH</td>
<td>CH<sub>3</sub></td>
<td>CHCH(CH<sub>3</sub>)<sub>2</sub></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>54 - 57</td>
</tr>
<tr>
<td>CH<sub>3</sub></td>
<td>CH<sub>3</sub></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
<td>128.5 - 131</td>
</tr>
<tr>
<td>CH<sub>2</sub>C<sub>6</sub>H<sub>5</sub></td>
<td>CH<sub>3</sub></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
<td>111 - 113</td>
</tr>
<tr>
<td>CH<sub>3</sub></td>
<td>CH<sub>3</sub></td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>H</td>
<td>H</td>
<td>OCH<sub>3</sub></td>
<td>154 - 155</td>
</tr>
<tr>
<td>CH<sub>2</sub>-CH=CH-<sub>C</sub>H<sub>15</sub>-n</td>
<td>CH<sub>3</sub></td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>81-84</td>
</tr>
<tr>
<td>R_3</td>
<td>R_1</td>
<td>R_2</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td>$\text{Sp. } ^\circ C$</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------</td>
<td>-------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----------------</td>
</tr>
<tr>
<td>CH$_2$-C(Cl)=CH$_2$</td>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>73 - 77</td>
</tr>
<tr>
<td>C6H${13}$-n</td>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Öliy</td>
</tr>
<tr>
<td>CH(CH$_3$)CH=CH-CH$_3$</td>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Öliy</td>
</tr>
<tr>
<td>CH$_3$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td>146 - 148</td>
</tr>
<tr>
<td>CH$_2$CH= (CH$_3$)$_2$</td>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>77,5 - 79</td>
</tr>
<tr>
<td>CH$_2$C$_6$H$_5$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td>117 - 122</td>
</tr>
<tr>
<td>CH$_2$C$_6$H$_5$</td>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>kumi</td>
</tr>
<tr>
<td>C(CH$_3$)C≡CH</td>
<td>C$_2$H$_5$</td>
<td>C$_2$H$_5$</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>114,5 - 118</td>
</tr>
<tr>
<td>CH$_2$CH$_2$N(CH$_3$)$_3$</td>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>128 - 132</td>
</tr>
<tr>
<td>CH$_3$</td>
<td>C$_2$H$_5$</td>
<td>C$_2$H$_5$</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>165 - 175</td>
</tr>
<tr>
<td>C(CH$_3$)$_2$C≡CH</td>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>132,5 - 135,5</td>
</tr>
<tr>
<td>CH$_2$C≡CH</td>
<td>CH$_3$</td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>104 - 106</td>
</tr>
<tr>
<td>CH$_2$C≡CH</td>
<td></td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>122 - 124</td>
</tr>
<tr>
<td>CH$_3$</td>
<td></td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>164,5 - 166,5</td>
</tr>
<tr>
<td>CH$_2$C≡CH</td>
<td></td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>114 - 115,5</td>
</tr>
<tr>
<td>CH$_2$C≡CH</td>
<td>C$_2$H$_5$</td>
<td>C$_2$H$_5$</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>135,5 - 137</td>
</tr>
<tr>
<td>Y</td>
<td>Z</td>
<td>(R_1)</td>
<td>(R_2)</td>
<td>(R_3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>CH(_3)</td>
<td>CH(_3(CH_3)_2)</td>
<td>(\text{CH}_2=\text{CH-COOH}_3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>CH(_3)</td>
<td>(\text{CH}_2=\text{CH-COOH}_3)</td>
<td>(\text{CH}_2\text{CH}2\text{CH}2\text{COOCH}_3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>(\text{CH}_2\text{CH}2\text{CH}2\text{COOCH}_3)</td>
<td>(\text{CH}_2\text{CH}2\text{CH}2\text{COOCH}_3)</td>
<td>(\text{CH}_2\text{CH}2\text{CH}2\text{COOCH}_3)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sp. \(\text{C} \)

111 - 113
136 - 138
131.5 - 133
104 - 108
95 - 97
133 - 135
122.5 - 126
108 - 111
<table>
<thead>
<tr>
<th>R₃</th>
<th>R₁</th>
<th>R₂</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>Sdp, °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₂CH₂CH₂</td>
<td>CH₃</td>
<td>CH(CH₃)₂</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>107 - 109</td>
</tr>
<tr>
<td></td>
<td>CH₃</td>
<td>CH(CH₃)₂</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>130 - 132</td>
</tr>
<tr>
<td>CH₂CH=CH</td>
<td>CH₃</td>
<td>CH(CH₃)₂</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>113 - 115</td>
</tr>
<tr>
<td>CH₂CH=CH(C(CH₃)₂)</td>
<td>CH₃</td>
<td>CH(CH₃)₂</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>113 - 115</td>
</tr>
<tr>
<td>CH₂CH(OH)CH₂OH</td>
<td>CH₃</td>
<td>CH(CH₃)₂</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>113 - 115</td>
</tr>
<tr>
<td>(CH₂)₃C≡CH</td>
<td>CH₃</td>
<td>CH(CH₃)₂</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>113 - 115</td>
</tr>
<tr>
<td>CH₂CH₂CH₂</td>
<td>CH₃</td>
<td>CH(CH₃)₂</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>113 - 115</td>
</tr>
<tr>
<td>CH(CH₃)C₆H₅COOCH₃</td>
<td>CH₃</td>
<td>CH(CH₃)₂</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>113 - 115</td>
</tr>
<tr>
<td>CH₂CH₂-C(C(CH₃)=CH₂</td>
<td>CH₃</td>
<td>CH(CH₃)₂</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>113 - 115</td>
</tr>
<tr>
<td>(CH₂)₉CH=CH₂</td>
<td>CH₃</td>
<td>CH(CH₃)₂</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>113 - 115</td>
</tr>
<tr>
<td>CH(CH₃)C₆H₅</td>
<td>CH₃</td>
<td>CH(CH₃)₂</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>113 - 115</td>
</tr>
<tr>
<td>R₃</td>
<td>R₁</td>
<td>R₂</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td>Sp. °C</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>-----------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>CH₃</td>
<td>CH(CH₂)₄</td>
<td>-H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>122 - 124</td>
</tr>
<tr>
<td>CH₂</td>
<td>CH(CH₂)₄</td>
<td>-H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>123 - 125</td>
</tr>
<tr>
<td>CH₂C≡CH</td>
<td>CH(CH₂)₄</td>
<td>-H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>132 - 134.5</td>
</tr>
<tr>
<td>CH₃</td>
<td>CH₃</td>
<td>CH(CH₃)₂</td>
<td>H</td>
<td>H</td>
<td>Cl</td>
<td>102.5 - 104.5</td>
</tr>
<tr>
<td>CH₂COOCH₂CH₃</td>
<td>CH₃</td>
<td>CH(CH₃)₂</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>86 - 90</td>
</tr>
<tr>
<td>CH₂COOH</td>
<td>CH₃</td>
<td>CH(CH₃)₂</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>187 - 189</td>
</tr>
<tr>
<td>CH₂COOCH₂C₆H₅</td>
<td>CH₃</td>
<td>CH(CH₃)₂</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>121.5 - 123</td>
</tr>
<tr>
<td>CH₂COOH</td>
<td>CH₃</td>
<td>CH(CH₃)₂</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>106 - 110</td>
</tr>
<tr>
<td>CH₃</td>
<td>CH₃</td>
<td>CH(CH₃)₂</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>110 - 112</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[a]D = +27.4 ¹⁰</td>
</tr>
<tr>
<td>CH₃</td>
<td>CH₃</td>
<td>CH(CH₃)₂</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>110.5 - 114</td>
</tr>
<tr>
<td>CH₂C₆H₅</td>
<td>CH₃</td>
<td>CH(CH₃)₂</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>102 - 105</td>
</tr>
<tr>
<td>CH₂C₆H₅</td>
<td>CH₃</td>
<td>CH(CH₃)₂</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>104 - 107</td>
</tr>
<tr>
<td>CH₃</td>
<td>CH₃</td>
<td>CH(CH₃)₂</td>
<td>H</td>
<td>H</td>
<td>N(CH₃)₂</td>
<td>184.5 - 185.5</td>
</tr>
</tbody>
</table>
Esimerkki 8
Metyyli-2-(5-isopropyli-5-metyyli-4-okso-2-imidatsolin-2-yyli)nikotinaatin hydrokloridisuolan valmistus

Esimerkissä 5 valmistetun esterin (3,0 g) suspensioon 40 ml:ssa etteriä lisättiin sekoittaen metyleen nikloridia, kunnes saatiin liuos. Liukseen johdettiin kuivaa HCl-kaasua noin 20 minuuttia. Tunnin kuluttua seos suodatettiin, tuote pestiin etterillä ja kuivattiin, jolloin saatiin 1,90 g analyyttisen puhdasta hydrokloridisuolaa, sp. 195-196°C.

Esimerkki 9
2-(5-isopropyli-5-metyyli-4-okso-2-imidatsolin-2-yyli)nikotiinihapon valmistus

Esimerkin 5 esterin (22,63 g) ja veden (100 ml) seokseen lisättiin natriumhydroksidin (3,29 g) liuos vedessä (25 ml), ja seosta kuumennettiin palautusjäähdytäen ja sekoittaen 1,5 tuntia. Seos sai seistä yön yli huoneen lämpötilassa, sitten siihen lisättiin 6,8 ml vääkevä kloorivetyhappoa, jolloin muodostui raskas sakska. Se suodatettiin, pestiin vedellä (20 ml), sitten etterillä (30 ml) ja kuivattiin, jolloin saatiin 19,27 g happoa, sp. 168-170°C. Se liuotettiin 350 ml:aan metyleenikloridia, liuos suodatettiin (isomeerisen 2-hapon poistamiseksi) ja konsentroitiin, jolloin saatiin 17,91 g puhdasta happoa, sp. 170-172°C. Analyysinäyte saatiin kiteyttämällä uudelleen asetoni/heksaaniseoksesta, sp. 170-172,5°C.

Esimerkki 10
2-(5-isopropyli-5-metyyli-4-okso-2-imidatsolin-2-yyli)nikotiinihapon valmistus
Bentsyliesterin (1,0 g) liuokseen etanolissa (20 ml) lisättiin 50 mg 5-%:ista Pd/C-katalysaattoria ja seosta ravisteltiin vetykehässä, kunnes 1 ekvivalentti vetyä oli sitoutunut. Katalysaattori poistettiin suo-
dattamalla, liuotin haihdutettiin vakuumissa ja jäännössä kiteytettiin asetoni/heksaaniseoksesta, jolloin saatiin sama happo kuin esimerkissä 9.

Edellä kuvatuilla menetelmillä valmistettiin seuraavat hapot:

\[
\begin{array}{c|c|c}
 R_1 & R_2 & \text{Sp. } ^\circ \text{C} \\
\hline
 CH_3 & C_2H_5 & 124 - 126 \\
 \text{-CH-}(CH_2)_4- & CH & 180 - 183 \\
 CH_3 & CH_3 & 204 - 205,5 \\
 CH_3 & \Delta & 198 - 200 \\
\end{array}
\]

Esimerkki 11

Kalsium-2-(5-isopropyli-5-metyyli-4-okso-2-imidatsolin-2-yyli)nikotinaatin valmistus

Esimerkin 9 happoon (0,98 g), joka oli osittain liuennut veteen (10 ml), lisättiin sekoittaan 0,18 g kalsiumkarbonaattia. 10 minuutin kuluttua liuos suodatettiin, suodos haihdutettiin, jäännöstä käsiteltiin eetterillä, jolloin saatiin kiehtoaine tuote, joka kuivattiin 40°C:ssa 25 mm Hg vakuumissa, jolloin saatiin 0,88 g kalsiumsuolaa, sp. 265°C.

Natrium-, di-isopropyliammonium- ja trietyyliammoniumsuolat valmistetaan samalla tavalla.

Seuraavat suolat voidaan valmistaa edellä olevailla menetelmillä käytännöllä sopivaa happoa ja valittuun metalliin, alkali metalliin, maa-alkalimetallin, ammoniakkin tai alifaattisen amiinin oksidia, karbonaattia, bikarbonaattia tai hydroksidia.
<table>
<thead>
<tr>
<th>Chemical</th>
<th>Sp. °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH₃CH(CH₃)C₆H₅</td>
<td>kumi</td>
</tr>
<tr>
<td>NH₄</td>
<td>sublimi >168</td>
</tr>
<tr>
<td>Ba/2</td>
<td>> 225</td>
</tr>
<tr>
<td>Cu/2</td>
<td>> 225</td>
</tr>
<tr>
<td>K</td>
<td>> 225</td>
</tr>
<tr>
<td>Li</td>
<td>> 225</td>
</tr>
<tr>
<td>Mg/2</td>
<td>> 225</td>
</tr>
<tr>
<td>H₂N-(CH₂)₆NH₃</td>
<td>ölgy</td>
</tr>
<tr>
<td>C₁₈H₃₅</td>
<td>vaha</td>
</tr>
<tr>
<td>n-C₁₂H₂₅NH₃</td>
<td>150 - 153</td>
</tr>
<tr>
<td>(CH₃)₃CCH₂C(CH₃)₂NH₃</td>
<td>-</td>
</tr>
<tr>
<td>(n-C₄H₉)₂NH₂</td>
<td>-</td>
</tr>
<tr>
<td>HOCH₂CH₂NH₂CH₃</td>
<td>-</td>
</tr>
<tr>
<td>NHCH₃</td>
<td>-</td>
</tr>
<tr>
<td>n-C₈H₁₇NH₃</td>
<td>-</td>
</tr>
<tr>
<td>-CH₂NH₃</td>
<td>-</td>
</tr>
</tbody>
</table>
Esimerkki 12
Metyyli-2-(karbamoyyli-1,2-dimetyyliliproppyli)-karbamoyyli
nikotinaatin valmistus

\[
\text{CH}_3\text{OH} \xrightarrow{\text{CH}_3\text{ONa}} \text{COOCH}_3
\]

Natriumhydridi (0,47 g 50-%:ista mineraaliöljy-
suspensiota) saatettiin reagoimaan kuivan metanolin
(500 ml) kanssa. Seolsoon lisättiin 51,4 g esimerkin 2
amidia, ja seosta sekoittettuun huoneen lämpötilassa yli
yön. Seos haihdutettiin, jäännös liuotettiin metyleen-
kloridiin, ja liuos pestiin vedellä (150 ml) ja sitten
suolaliuoksella (150 ml). Liuos kuivattiin (Na\textsubscript{2}SO\textsubscript{4}),
haihdutettiin, ja jäännös kiteytettiin etteristä, jolloin
saatiin 47,85 g analyysipuhdasta tuotetta, sp. 108 –
145°C (hajoaa).

Esimerkki 13
Metyyli-3-(1-karbamoyyli-1,2-dimetyyliliproppyli)-
karbamoyyli
pikolinaatin valmistus

\[
\begin{align*}
\text{COCl} & \quad \text{CH}_3 \\
\text{N} & \quad \text{CONH}_2 \\
\text{COOCH}_3 & \quad \text{CH}(\text{CH}_3)_2 \\
\text{N} & \quad \text{CONH}_2 \\
\text{COOCH}_3 & \quad \text{CH}(\text{CH}_3)_2 \\
\end{align*}
\]

(XIV) (XIII) (XV)

Happokloridin (25,5 g) (Helv. Chem. Acta, 34, 488 (1951)) ja trietyyliamiinin (29,7 ml) seolsoon met-
tyleenikloridissa (200 ml) lisättiin sekoittuen typpi-
kehässä tippoittain aminoamidin (13,93 g) (US-patent-
tijulkaisun 4 017 510 mukainen yhdiste) liuos sellai-
sella nopeudella, että seoksen lämpötila pysyi alle 30°C.
Tunnin kuluttua seos suodatettiin, kiinteä aine pestiin metyleenikloridilla ja kuivattiin, jolloin saatiin 19,8 g tuotetta, sp. 176-177°C (hajoaa). Uudelleenkietyttämällä nitrometaanista saatiin puhdas analyysinäyte, sp. 196-196,5°C (hajoaa).

Esimerkki 14

5,7-dihydro-2-isopropyli-4-metyyli-5,7-diokso-6H-pyrrolo[3,4-b]pyridiini-6-etikkahapon

(-)-isomeerin valmistus

Anhydridin (18,4 g) suspensioon kuivassa asetonissa (760 ml) lisättiin sekoittaen typpikehässä 16,2 g (+)-metyylivaliinia. Sekoitusta jatkettiin huoneen lämpötilassa 48 tuntia, sitten seos suodatettiin, ja suodos haihdutettiin, jolloin saatiin haihdutusjäännöksenä raaka välituote. Se liuotettiin 500 ml:an etikkahappoanhydridiä, liukseen lisättiin katalyyttien määrä natriumasettaattia, ja seosta sekoitettiin huoneen lämpötilassa 5 tuntia. Sitten seosta kuuminnettiin palautusjäähdyttäen 1,5 tuntia, ja seos haihdutettiin kuivin. Jäännös liuotettiin etyyliasettaattiin, liuos pestiin vedellä. Uute kuivattiin ja haihdutettiin tummaksi siirapiksi. Siitä otettu näyte liuotettiin etyyliasettaattiin, liuosta käsiteltiin hiilellä, hiili suo-
datettiin, ja suodos haindutettiin. Jäännös kiteytettiin metyleenikloridista, jolloin saatiin tuote. sp. 122-125°C, $\langle \alpha \rangle_D^{25} = -7,73^\circ$ (c = 0,100, THF). Olennaisesti samalla menetelmällä käytämällä sopivaa kinoliinihappoanhydridiä ja aminohappoa valmisteettiin seuraavat amidit:

\[R_1 \quad R_2 \quad \text{Sp.}^\circ C \]

\begin{align*}
\text{CH}_3 & \quad \text{CH} & \quad 126 - 127 \\
\text{CH}_3 & \quad \text{CH}_2\text{CH} & \quad 174 - 176 \\
\text{CH}_3 & \quad \text{CH} & \quad 196,5 - 198,5 \\
\text{CH}_3 & \quad \text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2 & \quad 183 - 185 \\
\end{align*}

Esimerkki 15

5,7-dihydro-α-isopropyyli-α-metyyli-5,7-diokso-6H-6H-pyrrolo[3,4-\text{b}]pyridiini-6-asetamidin valmistus

\[\text{CH}_3 \quad \text{CH} \quad \text{SOCl}_2 \quad \text{N-}\text{COCl} \quad \text{NH}_3 \]

35
(-)-hapon (32 g) ja toluenin (375 ml) seokseen lisättiin 2 ml dimetyylyliformamidia ja sitten 13 ml tionyylikloridia. Seosta kuumennettiin palautusjähdyttäen 1,25 tuntia, sitten seos haihdutettiin vakuumissa. Jäännös liuotettiin tetrahydrofuraaniin (350 ml), liuos jähdytettiin 0°C:seen ja siihen johdettiin lievä ylimäärä NH₃-kaasua. Liuotin haihdutettiin vakuumissa, kiinteä jäännös pestiin vedellä ja ilmauivattiin. Siitä otettu näyte kiteytettiin kahdesti etyliasetaatista (hiilikäsittely), jolloin saatiin haluttu tuote vaaleana, kiteisenä aineena, sp. 188-189°C, \([\alpha]_D^{25} = -3,59^\circ \) (c = 0,0791, DMSO).

Olennaisesti samalla menetelmällä käytäen sopivaa happoa valmistettiin seuraavat amidi:

![Chemical structure](image)

R₁ R₂ Sp. °C

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₃</td>
<td>CH(CH₃)₂</td>
<td>189,5</td>
<td>192</td>
</tr>
<tr>
<td></td>
<td></td>
<td>([\alpha]_D = -3,02)</td>
<td>(c = 0,0744; DMSO)</td>
</tr>
<tr>
<td>CH₃</td>
<td>CH₂CH(CH₃)₂</td>
<td>176 - 178</td>
<td></td>
</tr>
<tr>
<td>-CHCH₂CH₂CH₂CH₂-</td>
<td></td>
<td>186 - 188</td>
<td></td>
</tr>
</tbody>
</table>
Esimerkki 16
5,7-dihydro-4-isopropyli-4-metyyli-5,7-diokso-6H-pyrrolo[3,4-d]pyridiini-6-asematidin valmistus

\[
\begin{align*}
\text{n-C}_4\text{H}_9 & \quad \text{COOH} \quad \text{NH}_2 \quad \text{CONH}_2 \quad \text{n-C}_4\text{H}_9 \\
& \quad \text{CH}_3 \quad \text{CH(CH}_3)_2 \quad \text{CONH} \quad \text{CONH}_2 \quad \text{CH}_3 \quad \text{CH(CH}_3)_2
\end{align*}
\]

(−)-hapon (32 g) ja toluenin (375 ml) seokseen lisättiin 2 ml dimetyyliformamidia ja sitten 13 ml tiomyylikloridia. Seosta kuumennettiin palautusjäädytteenä 1,25 tuntia, sitten seos haihdutettiin vakuumissa. Jään- nös liuotettiin tetrahydrofurauaniin (350 ml), liuos jäähdytettiin 0°C:seen ja siihen johdettiin lievä ylimäärä NH₃-kaasua. Liuotin haihdutettiin vakuumissa, kiinteä jään- nös pestiin vedellä ja ilmakuivattiin. Siitä otettu näyte kiteytettiin kahdesti etyylisetaatista (hiilikäsittely), jolloin saatiin haluttu tuote vaaleana, kiteisenä aineena, sp. 188-189°C, \(\langle \phi \rangle_D^{25} = +3,59^\circ\) (c = 0,0791, DMSO).

Olennaisten samalla menetelmällä käyttäen sopivaa happoa valmistettiin seuraavat amidit:

\[
\begin{align*}
\text{sp.} \quad ^\circ\text{C} \\
\text{H} & \quad \text{CH}_3 & \quad \text{H} & \quad 126 - 127,5^\circ \\
\text{H} & \quad \text{H} & \quad \text{CH}_3 \\
\text{H} & \quad \text{C}_6\text{H}_5 & \quad \text{H} \\
\text{H} & \quad \text{NO}_2 & \quad \text{H}
\end{align*}
\]
Esimerkki 16
5-butyyl-N-(1-karbamoyyli-1,2-dimetyylipropyli)pikolinamidin valmistus

Hapon (20 g) suspensioon 200 ml:ssa kuivaa tetrahydrofuraania lisättiin sekoittaen 10,7 ml etyyliklooriformiaattia. Seos jäähtyttiin -10°C:seen, ja siihen lisättiin tiiopittain 17,1 ml trietyyliaminiinia siten, että lämpötila kohonnut yli 0°C. 10 minuutin kuluttua
lisättiin tiiopittain 0°C:ssa sekoittaen aminoamidin
(14,3 g) liuos 150 ml:ssa kuivaa tetrahydrofuraania. Seos sai lämmetä huoneen lämpötilaan, ja 2 tunnin kuluttua siihen lisättiin riittävästi vettä liuoksen

Olennaisesti edellä kuvatulla menetelmällä valmistettiin seuraavat pikoliinihapot:
2-(5-butylyl-2-pyridyl)-5-isopropylyl-5-metyllyl-2-imidatsolin-4-onin valmistus

Natriumhydridin (2,4 g) suspensiota 250 ml:ssa kuivaa toluenia sekoitettiin ja kuumennettiin palautusjäähdyttäen käyttäen Dean-Stark-loukkua veden erottamiseen. Seokseen lisättiin hitaasti 26,52 g diaminia, ja kuumennusta jatkettiin lisäyksen päättynyt vielä 1,5 tuntia. Seosta seisotettiin yön yli, sitten seos kaadettiin veteen, pH säädettiin kloorivetyhapolla arvoon 5 ja faasit erotettiin. Vesifaasi uutettiin vielä 2 kertaa etyylisetaatilla, orgaaniset uutteet yhdistettiin, pestiin suolaliuoksella, kuivattiin ja haihdutettiin.
Jäännös kiteytettiin heksaanista, jolloin saatiin puhdas tuote, sp. 60-62°C.

Olennaisesti samalla menetelmällä valmistettiin seuraavat imidatsolinonit:

![Chemical structure](image)

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>Sp.°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>C₆H₅</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>CH₃</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>CH₃</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>NO₂</td>
<td>H</td>
<td></td>
</tr>
</tbody>
</table>

Esimerkki 18
5-butyli-2-(5-isopropyli-5-metyyli-4-okso-2-imidatsolin-2-yyli)-nikotiinihapon valmistus

Imidatsolinonin (10,0 g) liuokseen 100 ml:ssa kuivaa tetrahydrofuraania lisättiin sekoittaa tipeittain -76°C:ssa typpikehässa 47,3 ml 1,7-m metyylilitumin etteriliuosta. Seos muuttui erittäin paksuksi, siihen lisättiin 2 ml heksametyylyfosforamidia ja noin 150 ml tetrahydrofuraania. Seos sai lämmetä -10°C:seen, jossa lämpötilassa sitä pidettiin 45 minuuttia. Seos jäähdyttiin -70°C:seen ja se lisättiin hiilidioksidin ja tetrahydrofuraanin seokseen. 0,5 tunnin sekoittamisen jälkeen seokseen lisättiin vettä, pH säädettiin 2:ksi laimealla rikkihapolla, ja tuote uutettiin metyleeni-
Kloridilla. Uute pestiin suolaliuoksella, kuivattiin ja haihutettiin, jolloin saatiin tuote keltaisena kiinteänä aineena. Kiteyttämällä metyleenikloridi/heksaaniseoksesta saatiin analyysinäyte, sp. 152–154°C.

Olennaisesti samalla menetelmällä käytetään sopivaa imidatsolinonia 2-(5-butili-2-pyridyli)-5-isopropyyli-5-metyyli-2-imidatsolinonin sijaan ja käytetään elektrofilleina dimetyyliformamidia ja metyyljodidia sekä myös hiilidioksidia valmistettiin seuraavat imidatsolinonit:

\[
\begin{align*}
Y & \quad X \\
\text{CH}_3 & \quad \text{CH}_2\text{O-Si-CH}_3 & \quad \text{C}_2\text{H}_5 \\
Z & \quad Z & \quad Z \\
\end{align*}
\]

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>COOH</td>
<td>Cl</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>184</td>
</tr>
<tr>
<td>COOH</td>
<td>H</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>203,5</td>
</tr>
<tr>
<td>COOH</td>
<td>H</td>
<td>C₆H₅</td>
<td>H</td>
<td>H</td>
<td>150</td>
</tr>
<tr>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>93</td>
</tr>
<tr>
<td>CHO</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>223</td>
</tr>
<tr>
<td>COOH</td>
<td>H</td>
<td>H</td>
<td>C₆H₅</td>
<td>H</td>
<td>252</td>
</tr>
<tr>
<td>COOH</td>
<td>H</td>
<td>CH₂O-Si-CH₃</td>
<td>H</td>
<td></td>
<td>82</td>
</tr>
<tr>
<td>COOH</td>
<td>H</td>
<td>C₂H₅</td>
<td>H</td>
<td></td>
<td>172</td>
</tr>
</tbody>
</table>
Esimerkki 19
2-(5-isopropylyli-5-metyyli-4-okso-2-imidatsolin-2-yyli)-3-pyridiinietikkahapon valmistus

Olennaisesti samalla menetelmällä kuin esimerkissä 18, mutta käyttämällä 5-isopropylyli-5-metyyli-2-(3-metyyli-2-pyridyyli)-2-imidatsolin-4-onia 5-isopropylyli-5-metyyli-2-(5-n-butyylili-2-pyridyyli)-2-imidatsolin-4-onin sijasta, saatiin haluttu pyridiinietikkahoppo, sp. 173°C (hajoaa).

Esimerkki 20
Metyyli-2-(5-isopropylyli-5-metyyli-4-okso-2-imidatsolin-2-yyli)-6-fenoksinitokinaatin valmistus

Hapon etteriliuosta käsiteltiin ylimäärin käytettävään diatsometaanilla. Joidenkin minuuttien kuluttua diatsometaani poistettiin kuumentamalla. Liuotin hahduttettiin, ja jäännoi kiteitettiin etteri/heksaaniseoksesta, jolloin saatiin haluttu esteri, sp. 128-131°C.

Olennaisesti samalla menetelmällä valmistettiin seuraavat metyyliesterit vastaavista hapiaista:
\[
\begin{array}{|c|c|c|c|}
\hline
5 & X & Y & Z \\
\hline
H & H & -OC_6H_5 & 128 - 131 \\
H & -C_4H_9-n & H & 69 - 71,5 \\
Cl & H & H & 110 - 113 \\
H & H & OCH_2C_6H_5 & 187 - 188 \\
10 & H & H & OC_2H_5 & 126 - 129 \\
OC_6H_5 & H & H & 175 - 177 \\
H & CH_3 & H & 129 - 130,5 \\
H & C_6H_5 & H & 162 - 164 \\
15 & OCH_2C_6H_5 & H & H & 164 - 171 \\
H & C_2H_5 & H & 96 - 99 \\
H & CH_2OH & H & 146 - 147 \\
\hline
\end{array}
\]

Esimerkki 21

\[4-(2-(5-isopropyli-5-metyli-4-okso-2-imidatso-lin-2-yli)nikotinovyl) morfoliinin valmistus\]
Amidi (7,83 g) syklisoiitiiin kuumentamalla sitä
tolueenin (150 ml) ja 1,8-diatsabisyklo[5,4,0]undek-
7-eenin (0,45 ml) seoksessa 2 tuntia esimerkissä 4
kuvatulla tavalla käyttäen Dean-Stark-loukkua. Veden-
erotin poistettiin, seoksen lisättiin 4 ml morfoliin-
ia ja kuumennusta jatkettiin 3 tuntia. Seos haihdutet-
tiin, jäänños kromatografoitiinsilikageelllä ja elu-
oitiin etyylisetaatilla. Tuote eluoitui ensimmäisenä,
se kiteytettiin eetteri/heksaaniseoksesta, jolloin saa-
tiin puhdas amidi, sp. 143-145,5°C.

Käytämmällä morfoliinin sijasta sopivaa amiinia
valmistettiin seuraavat amidit:

\[
\text{RONH}_2 \quad \text{CH(CH}_3)_2
\]

\[
\begin{array}{l}
\text{R} \quad \text{Sp.}^\circ\text{C} \\
\text{-CH}_2\text{CH} = \text{CH} \quad 171 - 173,5 \\
\text{-Cl} \quad 227,5 - 228,5 \\
\text{-CH}_2\text{CH}_2\text{OH} \quad 174,5 - 175,5
\end{array}
\]
Esimerkki 22
N-(2-kloorietyyli)-2-(5-isopropyyli-5-metyyli-
4-okso-2-imidatsolin-2-yyli)nikotinamidin valmistus

Hydroksietyyliamidin (4,04 g), tioniyyliklori-
din (8,2 ml) ja metyleenikloridin (250 ml) seosta
kuumennettiin palautusjäähdytäen 3,5 tuntia. Seos
jäähdytettiin, kaadettiin veteen ja vesifasi tehtiin
emäksiseksi natriumkarbonaatilla. Seosta ravisteltiin,
orgaaninen faasi erotettiin, pestiin vedellä, kuivat-
tiin ja haihdutettiin. Saatu valkea kiinteä jäännös
kiteytettiin tolueenista, jolloin saatiin haluttu
kloorietyyliamidi valkeina kineina, jotka sulivat
osaksi 128,5°C:ssa ja täydellisesti 157°C:ssa.

Esimerkki 23
2-(5-isopropyyli-5-metyyli-4-okso-2-imidatsolin-
2-yyli)nikotinamidin valmistus
Esterin (10,0 g) liuosta 50 ml:ssa tetrahydروفانیa lisättiin lasipommissa olevaan nestemäiseen ammoniakkiin (100 ml). Pommi suljettiin, ja sitä kuumennettiin 100°C:ssa 16 tuntia. Pommi jähdytettiin, ammoniakki haihdutettiin ja jäännös konsentroitiin. Saatu tuote-erä ja vastaavalla tavalla lähtien 5 g:sta ja 7 g:sta esteriä valmistetut tuote-erät yhdistettiin ja kiteytettiin etyyliaisetaatista, jolloin saatiin 5 g tuotetta. Suodosta käsiteltiin hiilellä, hiili suodattettiin, ja suodos haihdutettiin, jolloin saatiin vielä 15,7 g tuotetta.

Tuotteesta otettu näyte kiteytettiin 2 kertaa etyyliaisetaatista, jolloin saatiin puhdas nikotinamidi valkeina kiteinä, sp. 178-182°C.

Esimerkki 24
2-(5-isopropyl-5-metyyli-4-okso-2-imidatsolin-2-yyl)nikotinonitriilin valmistus

![Chemical structure](image)

Jääillä jähdytettyyn tetrahydروفانیaan (75 ml) lisättiin sekoittaaan typikehäässä 12 ml titaanitetra- kloridia 20 ml:ssa hiilitetetrakloridia sellaisella nopeudella, että lämpötila pysyi alle 5°C. Sitten lisättiin 5,2 g amidia 75 ml:ssa tetrahydروفانیa pitäen lämpötilan jälleen alle 5°C. Lopuksi lisättiin 17 ml trietyylilaminia 5 ml:ssa tetrahydrofu- raania samoissa olosuhteissa. Seosta sekoitettiin 1,5 tuntia 5°C:ssa ja sitten yön yli huoneen lämpötilassa.
Seokseen lisättiin varovasti (0°C) 100 ml vettä, ylempi orgaaninen kerros erotettiin ja vesifaasi uutettiin metyleenikloridilla (4 x 100 ml). Yhdistetyt uutteet pестиin suolaliuosella, kuivattiin ja haidutettiin. Kiinteä jäänös kiteytettiin heksaani/metyleenikloridiseoksesta, jolloin saatiin nikotinonitriili nahanruskeana kiinteänä aineena, sp. 144–148°C. Analyysinäytteen, sp. 148–150°C.

Esimerkki 25

\[
2-\left(5-\text{(hydroksimetyyli)}-2-\text{pyridylyli}\right)-5-\text{isopro-pyyli}-5-\text{metyyli}-2-\text{imidatsolin-4-onin valmistus}
\]

Litiumaluminiumhydridin (23 g) suspensioon 250 ml:ssa tetrahydrofuraania lisättiin sekoittaen typpikehäs-sä -70°C:ssa tippoittain 46,8 g esteriä 350 ml:ssa tetrahydrofuraania. Seos lämmitettiin huoneen lämpötilaan, siihen lisättiin varovasti samalla voimakkaasti sekoittaen 73 ml kyllästettyä ammoniumkloridiliuos-ta, seos suodattettiin ja sakka pestiin tetrahydrofuraanilla. Suodos haidutettiin. Saatu kumimainen jäänös kromatografoitiin silikakeelillä, tuote eluoitiin etyyliasetaatilla, sp. 101-104°C.
Esimerkki 26

2-\((\text{tert-butylylidimetyylisiloksi})\text{metyyli-2-pyridyyli/5-isopropyli-5-metyyli-2-imidatso-}
\text{lin-4-onin valmistus}

\[\text{HOCH}_2 \text{N} - \text{N} - \text{CH} - \text{CH}_3 \] + \[\text{CH}_3 \text{Si} - \text{Cl} \]

\[\text{C(CH}_3)_3 \]

\[\text{CH}_3 \text{Si-CH}_3 \]

\[\text{O-CH}_2 \text{N} - \text{N} - \text{CH} - \text{CH}_3 \]

Alkoholin (2,03 g) liukseen dimetyyliformamidi-
dissa (3,5 ml) lisättiin typpikehäässä 0,68 g imidatso-
lia ja sitten 3,1 g tert-butylylidimetyylisilyyliklo-
ridia. Seos sai seistä 35°C:ssa 10 tuntia ja sitten
huoneen lämpötilassa 10 tuntia. Seokseen lisättiin nat-
riumsulfaattia, ja vesipitoisen seos uutettiin eet-
terillä. Uute pestiin suolaliuoksella, kuivattiin ja
haihdutettiin. Puhdas tuote saatiin kumiaisena kro-
matografoimalla raakatuote silikageelillä ja eluoimala
metyleenikloridilla ja sen jälkeen eetterillä.
Esimerkki 27
5-(hydroksimetyyli-2-(5-isopropyli-5-metyyli-4-okso-2-imidsolin-2-yli)nikotiinihapon valmistus

Silyylylieetterin (0,29 g) liuosta 80-%:isessa vesipitoisessa etikkahapossa (10 ml) kuumennettiin höyryhauteella 0,5 tuntia. Seos haihutettiin, ja jäänneksen vuoksi kuivattiin atseotrooppisesti toleenin kanssa. Saattu kumimainen jäänneksen kiteytettiin metyleenikloridi/heksaaniseoksesta. Puhtaan tuotteen sp. 170-171,5°C.

Esimerkki 28
Metyyli-2-(1-asetyyli-4-isopropyli-4-metyyli-5-okso-2-imidsolin-2-yli)nikotinaatin valmistus
Metyyli-2-(5-isopropylyli-5-metyyli-4-okso-2-imidatsolin-2-yyli)-nikotinaatin (10 g) liuosta etikka-
happoanhydridissä (100 ml) kuumennettiin palautusjäähdyttäen 16 tuntia. Seos haihdutettiin, ja jäännös kiti-
teytettiin eetteri/heksaaniseoksesta, jolloin saatiin N-asettyylilohdannainen, sp. 88-90°C, (analyysinäytteen sp.).

Olennaisesti samalla menetelmällä valmistettiin seuraavat N-substituoidut imidatsolinonit saattamaalla sopiva imidatsolinyylinikotinaatti reagoimaan sopivan happoanhydridin, sulfonyylhalogenidin, alkyylhalogenidin tai -sulfaatin kanssa joko sellaisenaan tai liuotimessa, kuten pyridiinissä tai tolueenissa.

![Chemical Structure](image)
<table>
<thead>
<tr>
<th>R_3</th>
<th>B</th>
<th>$\text{Sp. } ^\circ\text{C}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH$_3$</td>
<td>CO-\text{Cl}</td>
<td>122 - 125</td>
</tr>
<tr>
<td>5</td>
<td>CH$_3$</td>
<td>CO-\text{OCH$_3$}</td>
</tr>
<tr>
<td>10</td>
<td>CH$_3$</td>
<td>CO-\text{NO$_2$}</td>
</tr>
</tbody>
</table>

Esimerkki 29

Metyyli-2-(1-asetyyli-4-isopropyli-4-metyyli-5-okso-2-imidatsolin-2-yyli)nikotinaatti-1-oksidin valmistus

\[
\begin{align*}
\text{COOCH}_3 & + \text{CO$_2$H} \\
\text{COCH}_3 & \rightarrow \\
\text{COOCH}_3 & \\
\text{COCH}_3 & \\
\end{align*}
\]

Nikotinaatin (40 g, 126 mmol) liuoksen 500 ml:ssa metyleenikloridia lisättiin 30 g 80-90-%:ista (139 mmol laskettuna 80 %:n puhtausasteen perusteella) m-klooriperbentsohappoa. Seosta kuumennettiin palautusjäähdytävä yön yli, ylimääräinen perhappo hajotettiin lisäämällä ylimäärin 1-hekseeniä. Liuos pestiin kyllästetyllä natriumbikarbonaatiliuoksella, kuivattiin ja haihdutettiin. Jäännös kitetyttiin metyleenikloridi/heksaani/etteriseoksesta, jolloin saatiin 18,3 g haluttua N-oksidia, sp. 92-100°C. Puhtaan analyysinäytteen sp. 95-99°C.
<table>
<thead>
<tr>
<th>R_3</th>
<th>B</th>
<th>$\text{Sp. } ^\circ \text{C}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH$_3$</td>
<td>CH$_3$</td>
<td>81/87</td>
</tr>
<tr>
<td>CH$_3$</td>
<td>COC(CH$_3$)$_3$</td>
<td>85 - 87</td>
</tr>
<tr>
<td>CH$_3$</td>
<td>COC${11}$H${23}$-n</td>
<td>81/87</td>
</tr>
<tr>
<td>CH$_3$</td>
<td>COC$_6$H$_5$</td>
<td>104 - 107</td>
</tr>
<tr>
<td>CH$_3$</td>
<td>COC$_2$H$_5$</td>
<td>90 - 92.5</td>
</tr>
<tr>
<td>CH$_3$</td>
<td>COCH$_2$Cl</td>
<td>98 - 100</td>
</tr>
<tr>
<td>CH$_2$C$_6$H$_5$</td>
<td>COC$_2$H$_5$</td>
<td>81/87</td>
</tr>
<tr>
<td>CH$_2$C$_6$H$_5$</td>
<td>COC(CH$_3$)$_3$</td>
<td>81/87</td>
</tr>
<tr>
<td>CH$_2$C$_6$H$_5$</td>
<td>COCH$_2$Cl</td>
<td>81/87</td>
</tr>
<tr>
<td>CH$_3$</td>
<td>SO$_2$CH$_3$</td>
<td>115 - 118</td>
</tr>
<tr>
<td>CH$_2$=CH</td>
<td>COCH$_3$</td>
<td>125 - 127</td>
</tr>
<tr>
<td>CH$_2$=CH</td>
<td>COCH$_2$Cl</td>
<td>118 - 122</td>
</tr>
<tr>
<td>CH$_2$=CH</td>
<td>COC$_6$H$_5$</td>
<td>118 - 120</td>
</tr>
<tr>
<td>CH$_2$=CH</td>
<td>COC(CH$_3$)$_3$</td>
<td>101 - 104</td>
</tr>
<tr>
<td>CH$_3$</td>
<td>COOC$_2$H$_5$</td>
<td>81/87</td>
</tr>
<tr>
<td>CH$_3$</td>
<td>SO$_2$-</td>
<td>114 - 118</td>
</tr>
<tr>
<td>CH$_2$C$_6$H$_5$</td>
<td>COC$_6$H$_5$</td>
<td>117 - 125</td>
</tr>
<tr>
<td>CH$_2$=CH</td>
<td>COC$_2$H$_5$</td>
<td>85 - 88</td>
</tr>
</tbody>
</table>
Esimerkki 30
Metyyli-2-(5-isopropylyli-5-metyyli-4-okso-2-imidatsolin-2-yyli)nikotinaatti-1-oksidin valmistus

\[
\begin{align*}
\text{COOCH}_3
\end{align*}
\]

N-asetyylyihdisteen (30 g) liuokseen metanolisaa (200 ml) lisättiin noin 0,5 g natriummetoksidia. 2 tunnin sekoittamisen jälkeen tuote suodatettiin ja ilmakuivattiin, sp. 197–201°C. Analyysinäyte saatiin kiteyttämällä asetoni/heksaaniseoksesta, sp. 200–201°C.

Esimerkki 31
Metyyli-6-kloori-2-(5-isopropylyli-5-metyyli-4-okso-2-imidatsolin-2-yyli)nikotinaatin valmistus

\[
\begin{align*}
\text{COOCH}_3
\end{align*}
\]

N-oksidin (22,0 g) liuosta fosforioksikloridisaa (135 ml) kuumennettiin palautusjäähdyttäen 4 tuntia.
Seos sai seistä huoneen lämpötilassa yön yli, ylimää

räänen fosforioksidikloridi poistettiin vakuumissa ja jäännöstä käsiteltiin kysyteenillä, sitten seos haidhuttei

tiin. Jäännös liutettiin metyleenikloridiin, liuokseen lisättiin vettä, pH säädettiin natriumkarbonaa-
tilla arvoon 5, ja seokseen lisättiin etteriä, jol

loin orgaaninen kerros saatiin pääliimmäiseksi ker-

rokseksi. Kerrokset erotettiin, ja vesifaasi uutet

tiin uudelleen kaksi kertaa etterillä. Yhdistetyt

orgaaniset uutteet pestiin suolaliuoksella, kuivat

tiin ja haidhutettiin. Jäännös kromatografoiitii sil

kageellillä (250 g) etteri/heksaaniseoksella, jolloin saatiin 10,6 g haluttua tuotetta. Se kiteytet

tiin uudelleen etteri/heksaaniseoksesta, jolloin saa

tiin 8,95 g 6-kloori-johdannaista, sp. 104-106°C.

Analysinäytteen sp. 102,5-104,5°C.

Esimerkki 32

6-kloori-2-(5-isopropyyli-5-metyylili-4-okso-2-
imidatsolin-2-ylili)nikotiinihapon valmistus

Esterin (3,0 g) suspensiota 2-n NaOH-liuoksen

(5,8 ml), veden (5 ml) ja metanolin (3 ml) seoksessa kuumennettiin 35°C:ssa kirkkaan liuoksen saamiseksi. Liuosta sekoitettiin 3 tuntia, se jäähytettiin ja uutettiin etterillä, orgaaninen faasi hyljättiin. Ve

sifaasin pH säädettiin 6-n kloorivetyhapolla 2:ksi, sitten lisättiin natriumbikarbonaatiliuosta pH:n säättämiseksi arvoon 4. Vesifaasi uutettiin 2 kertaa
metyleenikloridillä, vesifaasin pH säädettiin 2:ksi ja vesifaasi uutettiin jälleen 2 kertaa metyleenikloridilla. Orgaaniset uutteet yhdistettiin, kuivattiin ja haihdutettiin, ja jäätunnös kiteytettiin metyleeni/heksaaniseoksesta, jolloin saatiin analyysipuhdas happo, sp. 154-157°C.

Noudattamalla edellä kuvattua valmistusmenetelmää, mutta käyttämällä 5-bromisteriä 6-klooristerin sijasta, saatiin 5-bromi-2-(5-isopropyli-5-metyyli-4-okso-2-imidatsolin-2-yyli)nikotiinihappo, sp. 211-213°C.

Esimerkki 33

6-(bentsyylioksi)-2-(5-isopropyli-5-metyyli-4-okso-2-imidatsolin-2-yyli)nikotiinihapon valmistus

Natriumhydridin (0,34 g, 50-%:ista natriumhydridin 0,1jysuspensiota) ja N-metyylipyrrolidonin (2 ml) seokseen lisättiin sekoitteen typpikehässä 2 ml bentsyylialkoholia. Alkoksidin muodostuttua seokseen lisättiin 0,6 g kloorisubstituotua happoa, ja seosta kuumennettiin 165-175°C:ssa 5 tuntia.

Seos jäähdytettiin, laimennettiin vedellä, sen pH säädettiin 1-n kloorivetyhapolla arvoon 1 ja sitten jälleen kyllästetyllä natriumbikarbonaatiliuosella arvoon 8. Seos uutettiin 2 kertaa etterillä, uutteet hylättiin. Vesifaasin pH säädettiin arvoon 5, ja vesifaasi uutettiin useita kertoja metyleenikloridilla. Uutteet yhdistettiin, kuivattiin ja haihdutettiin. Ki-
teytämällä etteri/heksaaniseoksesta saatiin 6-bent-syylioksijohdannainen, sp. 205-207°C.

Olennaisesti samalla menetelmällä käytämällä sopivaa 4- tai 6-kloori-2-(5-isopropyli-5-metyyli-4-okso-2-imidatsoli-2-yyli)nikotiinihappoa ja sopivaa natriumalkoksidia, -fenoksidia tai -tioalkoksidia valmistettiin seuraavat imidatsolinylinikotiinihapot:

\[
\begin{align*}
\text{X} & \quad \text{Z} & \quad \text{Sp.}^\circ\text{C} \\
\text{H} & \quad \text{OCH}_3 & \quad 190 \quad 191,5 \\
\text{OC}_6\text{H}_5 & \quad \text{H} & \quad 196 \quad 198 \\
\text{H} & \quad \text{OC}_6\text{H}_5 & \quad 182,5 \quad 185,5 \\
\text{H} & \quad \text{OC}_2\text{H}_5 & \quad 190 \quad 191,5 \\
\text{H} & \quad \text{SCH}_3 & \quad 188,5 \quad 190 \\
\text{OCH}_2\text{C}_6\text{H}_5 & \quad \text{H} & \quad 172 \quad 174 \\
\text{H} & \quad \text{OCH}_2\text{C}_6\text{H}_5 & \quad 205 \quad 207
\end{align*}
\]
Esimerkki 34
4-hydroksii-2-(5-isopropyli-5-metyyli-4-okso-2-imidatsolin-2-yyli)nikotiinihapon valmistus

Väkevän rikkipappoon (5 ml) lisättiin hitaasti samalla sekoittaen 1,55 g bentsyliioksi-johdannaista. 15 tunnin seisottamisen jälkeen huoneen lämpötilassa seos kaadettiin jälle, pH säädettiin laimealla NaOH-liuoksella arvoon 4 ja seos uutettiin etylyisetaatilla. Uute kuivattiin ja haihduitettiin, kiinteä nahanruskea aine kietettiin metyleenikloridi/eetteriseoksesta. Sp. 210-210°C.

Esimerkki 35
2-isopropyli-2-metyyli-5H-imidatso[1',2':1,2]-pyrrolo[3,4-ß]pyridini-3(2H),5-dionin valmistus

Disykloheksylylikarbodi-imidin (50,9 g) liuokseen 600 ml:ssa kuivaa metyleenikloridia lisättiin sekoittaen 60 g hoppaa sellaisella nopeudella, ettei lämpötila kohonnut yli 32°C. Seosta sekoitettiin huoneen
lämpötilassa 2,5 tuntia, sitten seos suodatettiin, suodos haihdutettiin ja saatu valkea jäännös kiteytettiin metyleenikloridista, jolloin saatiin 57,4 g diona, sp. 125-128,5°C. Analyysinäytteen sp. 132-134°C.

Esimerkki 36
2-(5-isopropyl-5-metyyl-4-okso-2-imidatsolin-2-yyli)nikotiinihapon asetonioksiimiisterin valmistus

\[
\begin{align*}
\text{N} & \quad \text{N} \\
\text{CH} & \quad \text{CH} \\
\text{CH} & \quad \text{CH} \\
\end{align*}
\]

3,5-dionin (2,0 g) liukseen 15 ml:ssa tolueenia lisättiin 0,6 g asetonioksiimia. Seosta kuumennettiin 50-60°C:ssa 2,75 tuntia ja sitten huoneen lämpötilassa yön yli. Liuotin haihdutettiin, ja jäännös kromatografoitiin silikageelillä käyttäen eluenttina asetonitrilli/metyleenikloridiseosta (10:90) ja sitten asetonitrilli/metyleenikloridiseosta (30:70). Tuotetusta sisältävät fraktiot haihdutettiin, ja jäännös kiteytettiin metyleenikloridista, jolloin saatiin analyysitisen puhdas oksiimiisteri, sp. 117-119,5°C. 2,2,2-triklorietanolin esteri (sp. 114-116°C) valmistettiin olennaisesti samalla tavalla.
Esimerkki 37

2-(3-asetyylili-2-pyridylli)-5-isopropyylili-5-metyylli-2-imidatsolin-4-onin valmistus

Dionin (10,0 g) liuokseen kuivassa tetrahydrofuraanissa (100 ml) lisätiin tipoittain sekoittaen typpikehässä -78°C:ssa 15,1 ml 3-metyylimagnesiumbromidiin etteriliuosta. Lisäyksen aikana lämpötila ei saanut kohota yli -60°C. Lisäyksen päättymälä sekoittamista jatkettiin -78°C:ssa, sitten seos sai hitaasti lämmetä huoneen lämpötilaan. Seos laimennettiin yhtä suurella vesimäärällä, pH säätettiin 4:ksi jätetikalla, ja seos uutettiin 3 kertaa metyleenikloridilla. Yhdistetyt uuteet kuivattiin ja haihudutettiin. Jäännös kromatografoitiin silikageelillä ja eluoitiin etterimällä. Haihuttamalla sopivat fraktiot saatiin 6,1 g koteistä tuotetta, sp. 104-108°C. Analyysinäytteen sp. 103-105°C.

Olennaisesti samalla menetelmällä käytämällä metyylimagnesiumbromidin sijasta fenylilitiitiumia tai natriumtrimetyyllifosfonasetaattia, valmistettiin seuraavat imidatsolinonit:

\[
\begin{align*}
\text{A} & \quad \text{Sp.}^\circ \text{C} \\
\text{COC}_6\text{H}_5 & \quad 138 - 140,5 \\
\text{CO} & \quad \text{C}_3\text{H}_7\text{COOCH}_3 & \quad 131,5 - 134
\end{align*}
\]
Esimerkki 38
2-\(\overset{-3}{\text{hydroksimetyyli}}\)-2-pyridyyli-5-isopropyli-5-metyyli-2-imidatsolin-4-onin valmistus

\[
\begin{align*}
\text{Natriumboorihydr idin (0,32 g) liuokseen abso-luuttisessa etanolissa (25 ml) lisättiin sekoitta-en 0\,^\circ\text{C}:ssa dionin (2,0 g) liuos 25 ml:ssa kuivaa tetra-
\text{hydrofuraania. Seosta sekoitettiin vielä 3 tuntia huo-neen lämpötilassa, sitten seos kaadettiin 200 ml:aan}
\text{jäävettä, uutettiin metyleenikloridilla, uutteet kuivattiin ja haihdutettiin. Jäännös kita tettiin metyleenikloridi/heksaaniseoksesta. Analyysinäytteen sp. oli 145-149\,^\circ\text{C}.}
\end{align*}
\]

Esimerkki 39
1,3-dihydro-\(\overset{-3}{\text{isopropyli}}\)-metyyli-1,3-dioksopyrrolo\(\overset{3,4-\text{d}}{-3,4-\text{kinoliini}-2-asetonitriilin valmistus

Menetelmä A

Antraniiliä (59,6 g, 0,5 mol) lisättiin tippoit-tain sekoittaen typpikehässä 45 minuutin kulueessa
\(\overset{-3}{\text{isopropyli}}\)-metyyli-2,5-dioksopyrroliini-1-asetonitriilin palautusjäähdyttäen keitettyyn liuokseen o-
diklooribentseenissä (450 ml). 18 tunnin kuluttua seos
jäähdytettiin, ja siihen lisättiin metyleenikloridia. Liuos viettiin 7,5 cm:n silikageelikoloon ja eluoitiin metyleenikloridilla. Eluaatti haihdutettiin 500 ml:ksi, sitten siihen lisättiin heksaania. Muodostunut sakka suo- datettiin ja ilmakuvattiin, jolloin saatiin 110,6 g (75 %) vaaleanruskeata tuotetta. Se kiteytettiin etylyisetaatti/heksaaniseoksesta, jolloin saatiin vaaleankeltaisia kiteitä, sp. 195-196°C.

Analyysi, laskettu kaavalle C₁₇H₁₅N₃O₂:

C 69,61 H 5,15 N 14,33

Saatu: C 69,37 H 5,15 N 14,43.

Muita samankaltaisissa olosuhteissa valmistetut ja yhdisteitä on koottu taulukkoon I.

Menetelmä B

o-formyylilinomaleinimidien syklisointi

\[
\text{CHO}
\text{CH}_3
\text{CH(CH}_3)_2
\rightarrow
\text{N}
\text{N}
\text{CH}_3
\text{CH(CH}_3)_2
\]

N-(1-syaani-1,2-dimetyylylpropyli)-2-(o-formyylilinomaleinimido) (7,19 g, 0,023 mol) liuosta kysyleenissä (300 ml), joka sisälsi p-toluenisulfonihappoa (0,3 g, 0,0016 mol) kuumennettiin 4 tuntia palautusjäähdyttäen ja käyttäen Dean-Stark-loukkua veden poistoon. Reaktioseos jäähdytettiin, haihdutettiin alennetussa paineessa ja liuotettiin kuumaan etyyliasetaattiin ja liuos laskettiin 7,5 cm:n silikageelikoloonin lävitse. Etyyliasetaattifraktiot yhdistettiin ja haihdutettiin, jolloin saatiin 5,51 g (81 %) 1,3-dihydro-2-isopropyli-4-metyyli-1,3-diosokso-2H-pyrrolo[3,4-b]-kinoliini-2-asetonitriilia, sp. 195-195,5°C. Muita sa-
malla menetelmällä valmistettuja yhdisteitä on lueteltu taulukossa I.

Esimerkki 40

1,3-dihydro-\(\alpha\)-isopropyli-\(\alpha\)-metyyli-1,3-dioksopyrrolo\(3,4-b\)-4-asetoksikinoliini-2-asetonitriilin valmistus

\[
\begin{align*}
\text{CH}_3 & \quad \text{CO}_2 \text{H} \\
\text{NH} & \quad \text{N} \quad \text{CH}_3 \\
\text{CH} & \quad \text{CN} \\
\text{CH(CH}_3\text{)}_2 & \quad \text{Ac}_2 \text{O} \\
\text{N} & \quad \text{OAc} \\
\text{CH} & \quad \text{CN} \\
\text{CH(CH}_3\text{)}_2 & \\
\end{align*}
\]

N-(1-(1-syaani-1,2-dimetyylipropyyli)-2,5-dioksopyrrolin-3-yyliantraniilihiapon (3,27 g, 0,01 mol) liuokseen etikkahappoaanhidridissä (20 ml) lisättiin yhtenä annoksena trietyylaminiin (10 ml) ja dimetyylaminoptyridiiniä (0,122 g, 0,001 mol). Seosta sekoitettiin typpikehässä 25\(^\circ\)C:ssa tunnin ajan, sitten seos kaadettiin jääveteen. Tuote puhdistettiin suspendoimalla etteriin, suodattamalla ja kuivaamalla.

Saanto 2,54 (72 %), sp. 145-151\(^\circ\)C, \(\frac{m+1}{e} = 352\).
Taulukko I

<table>
<thead>
<tr>
<th>(R_1)</th>
<th>(R_2)</th>
<th>(X)</th>
<th>(L)</th>
<th>(M)</th>
<th>(O)</th>
<th>(R_7)</th>
<th>Menetelmä</th>
<th>Sp.(^{°}C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{CH}_3)</td>
<td>(\text{CH}(\text{CH}_3)_2)</td>
<td>H</td>
<td>H</td>
<td>(\text{NO}_2)</td>
<td>H</td>
<td>H</td>
<td>A</td>
<td>230-232</td>
</tr>
<tr>
<td>(\text{CH}_3)</td>
<td>(\text{CH}(\text{CH}_3)_2)</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>(\text{NO}_2)</td>
<td>H</td>
<td>A</td>
<td>260-261</td>
</tr>
<tr>
<td>(\text{CH}_3)</td>
<td>(\text{CH}(\text{CH}_3)_2)</td>
<td>H</td>
<td>(\text{NO}_2)</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{CH}_3)</td>
<td>(\text{CH}(\text{CH}_3)_2)</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>(\text{NO}_2)</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>(\text{CH}_3)</td>
<td>(\text{CH}(\text{CH}_3)_2)</td>
<td>H</td>
<td>Br</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>(\text{CH}_3)</td>
<td>(\text{CH}(\text{CH}_3)_2)</td>
<td>H</td>
<td>Cl</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>A, B</td>
<td>139.5-142</td>
</tr>
<tr>
<td>(\text{CH}_3)</td>
<td>(\text{CH}(\text{CH}_3)_2)</td>
<td>H</td>
<td>H</td>
<td>(\text{CF}_3)</td>
<td>H</td>
<td>H</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>(\text{CH}_3)</td>
<td>(\text{CH}(\text{CH}_3)_2)</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>(\text{Cl})</td>
<td>H</td>
<td>B</td>
<td>188</td>
</tr>
<tr>
<td>R₁</td>
<td>R₂</td>
<td>X</td>
<td>L</td>
<td>M</td>
<td>O</td>
<td>R₇</td>
<td>Menetelmä</td>
<td>Sp.°C</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>----</td>
<td>-----------</td>
<td>-------</td>
</tr>
<tr>
<td>CH₃</td>
<td>CH(CH₃)₂</td>
<td>H</td>
<td>H</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>CH₃</td>
<td>CH(CH₃)₂</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CH₃</td>
<td>H</td>
<td>B 186-190</td>
<td></td>
</tr>
<tr>
<td>CH₃</td>
<td>CH(CH₃)₂</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CH₃</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>CH₃</td>
<td>CH(CH₃)₂</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>H</td>
<td>H</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>CH₃</td>
<td>CH(CH₃)₂</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CH₃</td>
<td>CH₃</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>CH₃</td>
<td>CH(CH₃)₂</td>
<td>H</td>
<td>H</td>
<td>CH₃</td>
<td>H</td>
<td>CH₃</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>CH₃</td>
<td>CH(CH₃)₂</td>
<td>H</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>CH₃</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>CH₃</td>
<td>CH(CH₃)₂</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CH₃</td>
<td>Cl</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>CH₃</td>
<td>CH(CH₃)₂</td>
<td>H</td>
<td>Cl</td>
<td>H</td>
<td>H</td>
<td>CH₃</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>CH₃</td>
<td>CH(CH₃)₂</td>
<td>H</td>
<td>H</td>
<td>Cl</td>
<td>H</td>
<td>CH₃</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>CH₃</td>
<td>CH(CH₃)₂</td>
<td>H</td>
<td>Cl</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>CH₃</td>
<td>C₃H₇</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>CH₃</td>
<td>C₂H₅</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>R_1</td>
<td>R_2</td>
<td>X</td>
<td>L</td>
<td>M</td>
<td>Q</td>
<td>R_7</td>
<td>Menetelmä</td>
<td>$Sp. , ^{\circ}C$</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-------</td>
<td>------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>CH$_3$</td>
<td>n-C$_4$H$_9$</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>CH$_3$</td>
<td>s-C$_4$H$_9$</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>CH$_3$</td>
<td>i-C$_4$H$_9$</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>CH$_3$</td>
<td>t-C$_4$H$_9$</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>CH$_3$</td>
<td>syklopropyyli</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>CH$_3$</td>
<td>CH$_2$CH=CH$_2$</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>CH$_3$</td>
<td>sykloheksyyli</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(CH$_2$)$_5$</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>Cl</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>CH$_3$</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>F</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>OCH$_3$</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH$_3$</td>
<td>CH$_2$CH$_3$</td>
<td>Cl</td>
<td>H</td>
<td>H</td>
<td>Cl</td>
<td>H</td>
<td>A</td>
<td>202.5 – 203.5</td>
</tr>
</tbody>
</table>

118
Esimerkki 41
1,3-dihydro-L-isopropyli-L-metyyli-1,3-diokso-2H-pyrrolo(3,4-b)kinoliini-2-asetamidin
valmistus

1,3-dihydro-L-isopropyli-L-metyyli-1,3-diokso-2H-pyrrolo(3,4-b)kinoliini-2-asetonitriiliä (0,44 g, 0,0015 mol) liuotettiin väkevään rikkihappeen (5 ml) huo-
neen lämpötilassa, ja liuosta sekoitettiin yön yli. Reak-
tioseos kaadettiin jäätymurkalle (50 ml), muodostunut
valkea sakka suodatettiin, pestiin vedellä, natriumbi-
karbonaatin vesiliuoksella ja vedellä ja kuivattiin
vakuumissa. Saatiin 0,34 g (74 %) tuotetta, sp. 237-239°C
(hajaan).
Analyyysi laskettu kaavalle C_{17}H_{17}N_{3}O_{3}:
C 65,58 H 5,50 N 13,50
Saanto: C 65,03 H 5,63 N 13,19.
Seuraavat yhdisteet valmistettiin samalla
tavalla:
Taulukko II

<table>
<thead>
<tr>
<th>R_1</th>
<th>R_2</th>
<th>X</th>
<th>L</th>
<th>M</th>
<th>O</th>
<th>R_7</th>
<th>$\text{Sp.}^\circ\text{C}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>NO$_2$</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>NO$_2$</td>
<td>H</td>
</tr>
<tr>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>H</td>
<td>NO$_2$</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>H</td>
<td>Br</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>H</td>
<td>H</td>
<td>Cl</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>H</td>
<td>H</td>
<td>CF$_3$</td>
<td>H</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CF$_3$</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Cl</td>
<td>H</td>
<td>232-234</td>
</tr>
<tr>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Cl</td>
<td></td>
</tr>
<tr>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>H</td>
<td>H</td>
<td>CH$_3$</td>
<td>H</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CH$_3$</td>
<td>H</td>
<td>223-227 (haj.)</td>
</tr>
<tr>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CH$_3$</td>
<td></td>
</tr>
<tr>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>H</td>
<td>H</td>
<td>OCH$_3$</td>
<td>H</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CH$_3$</td>
<td>CH$_3$</td>
<td></td>
</tr>
<tr>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>H</td>
<td>H</td>
<td>CH$_3$</td>
<td>H</td>
<td>CH$_3$</td>
<td></td>
</tr>
</tbody>
</table>
Taulukko II (jatkoa)

<table>
<thead>
<tr>
<th>R_1</th>
<th>R_2</th>
<th>X</th>
<th>L</th>
<th>M</th>
<th>Q</th>
<th>R_7</th>
<th>SP. $^\circ$C</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>H</td>
<td>CH$_3$</td>
<td>H</td>
<td>H</td>
<td>CH$_3$</td>
<td></td>
</tr>
<tr>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Cl</td>
<td>CH$_3$</td>
<td></td>
</tr>
<tr>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>H</td>
<td>Cl</td>
<td>H</td>
<td>H</td>
<td>CH$_3$</td>
<td></td>
</tr>
<tr>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>H</td>
<td>H</td>
<td>Cl</td>
<td>H</td>
<td>CH$_3$</td>
<td></td>
</tr>
<tr>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>H</td>
<td>Cl</td>
<td>H</td>
<td>H</td>
<td>OCH$_3$</td>
<td></td>
</tr>
<tr>
<td>CH$_3$</td>
<td>C$_3$H$_7$</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>CH$_3$</td>
<td>C$_2$H$_5$</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>CH$_3$</td>
<td>C$_4$H$_9$</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>CH$_3$</td>
<td>c-C_4H$_9$</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>CH$_3$</td>
<td>i-C_4H$_9$</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>CH$_3$</td>
<td>t-C_4H$_9$</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>CH$_3$</td>
<td>CH_2CH=CH$_2$</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>CH$_3$</td>
<td>CH_2CH=CH$_2$</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>(CH$_2$)$_5$</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>Cl</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>CH$_3$</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>F</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>OCH$_3$</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>OAc</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>H</td>
<td>Cl</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>198-199 (haj.)</td>
</tr>
</tbody>
</table>
Esimerkki 42
2-(5-isopropyli-5-metyli-4-okso-2-imidatsolin-2-yyl)-3-kinoliinikarboksyylihapon valmistus

Menetelmä A

\[
\begin{align*}
\text{CH}_3 & \quad \text{CONH}_2 \\
\text{CH}(\text{CH}_3)_2 & \quad \text{COOH} \\
\text{CH}_3 & \quad \text{N} \\
\text{N} & \quad \text{CH}(\text{CH}_3)_2
\end{align*}
\]

1,3-dihydro-α-isopropyli-α-metyli-1,3-dikso-2H-pyrrolo[3,4-β]kinoliiniasetamidin (5,76 g, 0,0185 mol) suspensioon kuivassa ksyleenissä (600 ml) lisättiin 50-% natriumhydridin öljydispersiota (1,33 g, 0,0278 mol), ja seosta kuumennettiin palautuskäädyttäen, jolloin reaktioseos muuttui homogeeniseksi. 3 tunnin kuumennuksen jälkeen reaktioseoksen annettiin jäähtyä huoneen lämpötilaan yön aikana, sitten seokseen lisättiin hitaasti metanolia (15 ml), joka sisälsi natriummetoksidia (0,1 g), ja seosta kuumennettiin palautuskäädyttäen tunnin ajan. Seos suodattiin kuumana, orgaaniset liuottimet haihdutettiin, jolloin jäljelle jäi öljy ja kiinteä aine. Niitä ravisteltiin metyleenikloridi/vesiseoksessa, kunnes ne liukenivat. Vesikerros (200 ml) erotettiin ja tehtiin hitaasti happameksi etikkahapolla (5 ml). Tuote saostui, se suodattiin. Saanto 3,91 g (72 %), sp. 219 – 224°C. Kiteytettynä heksaani/etyyliasetaaatista sen sp. oli 219-222°C (hajoaa).

Analyysi laskettu kaavalle C₁₇H₁₇N₃O₃

C 65,58 H 5,50 N 13,50

Saatu: C 65,09 H 5,50 N 13,59.

<table>
<thead>
<tr>
<th>(R)</th>
<th>(R)</th>
<th>(X)</th>
<th>(L)</th>
<th>(M)</th>
<th>(O)</th>
<th>(R)</th>
<th>Menetelmä</th>
<th>(Sp. \quad \circ C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{CH}_3)</td>
<td>(\text{CH} (\text{CH}_3)_2)</td>
<td>(\text{H})</td>
<td>(\text{H})</td>
<td>(\text{H})</td>
<td>(\text{NO}_2)</td>
<td>(\text{H})</td>
<td>(A)</td>
<td>247-251</td>
</tr>
<tr>
<td>(\text{CH}_3)</td>
<td>(\text{CH} (\text{CH}_3)_2)</td>
<td>(\text{H})</td>
<td>(\text{H})</td>
<td>(\text{H})</td>
<td>(\text{NO}_2)</td>
<td>(\text{H})</td>
<td>(A)</td>
<td>241.5-242</td>
</tr>
<tr>
<td>(\text{CH}_3)</td>
<td>(\text{CH} (\text{CH}_3)_2)</td>
<td>(\text{H})</td>
<td>(\text{NO}_2)</td>
<td>(\text{H})</td>
<td>(\text{H})</td>
<td>(\text{H})</td>
<td>(A)</td>
<td></td>
</tr>
<tr>
<td>(\text{CH}_3)</td>
<td>(\text{CH} (\text{CH}_3)_2)</td>
<td>(\text{H})</td>
<td>(\text{H})</td>
<td>(\text{H})</td>
<td>(\text{NO}_2)</td>
<td>(\text{H})</td>
<td>(A)</td>
<td>255-257 (hajoaa)</td>
</tr>
<tr>
<td>(\text{CH}_3)</td>
<td>(\text{CH} (\text{CH}_3)_2)</td>
<td>(\text{H})</td>
<td>(\text{Br})</td>
<td>(\text{H})</td>
<td>(\text{H})</td>
<td>(\text{H})</td>
<td>(A)</td>
<td>263-264</td>
</tr>
<tr>
<td>(\text{CH}_3)</td>
<td>(\text{CH} (\text{CH}_3)_2)</td>
<td>(\text{H})</td>
<td>(\text{H})</td>
<td>(\text{Cl})</td>
<td>(\text{H})</td>
<td>(\text{H})</td>
<td>(A)</td>
<td>225-226</td>
</tr>
<tr>
<td>(\text{CH}_3)</td>
<td>(\text{CH} (\text{CH}_3)_2)</td>
<td>(\text{H})</td>
<td>(\text{H})</td>
<td>(\text{H})</td>
<td>(\text{Cl})</td>
<td>(\text{H})</td>
<td>(A)</td>
<td>238-240</td>
</tr>
<tr>
<td>(\text{CH}_3)</td>
<td>(\text{CH} (\text{CH}_3)_2)</td>
<td>(\text{H})</td>
<td>(\text{H})</td>
<td>(\text{H})</td>
<td>(\text{Cl})</td>
<td>(\text{H})</td>
<td>(A)</td>
<td>241-245</td>
</tr>
<tr>
<td>(\text{CH}_3)</td>
<td>(\text{CH} (\text{CH}_3)_2)</td>
<td>(\text{Cl})</td>
<td>(\text{H})</td>
<td>(\text{H})</td>
<td>(\text{H})</td>
<td>(\text{H})</td>
<td>(A)</td>
<td>223-224</td>
</tr>
<tr>
<td>R</td>
<td>R</td>
<td>X</td>
<td>L</td>
<td>M</td>
<td>O</td>
<td>R</td>
<td>Menetelmä</td>
<td>Sp.°C</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>CH₃</td>
<td>CH(CH₃)₂</td>
<td>H</td>
<td>Cl</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>A</td>
<td>255-256 (haj.)</td>
</tr>
<tr>
<td>CH₃</td>
<td>CH(CH₃)₂</td>
<td>H</td>
<td>H</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>A</td>
<td>215-218</td>
</tr>
<tr>
<td>CH₃</td>
<td>CH(CH₃)₂</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CF₃</td>
<td>H</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>CH₃</td>
<td>CH(CH₃)₂</td>
<td>H</td>
<td>H</td>
<td>F</td>
<td>H</td>
<td>H</td>
<td>A</td>
<td>244-246</td>
</tr>
<tr>
<td>CH₃</td>
<td>CH(CH₃)₂</td>
<td>H</td>
<td>H</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>A</td>
<td>218-225</td>
</tr>
<tr>
<td>CH₃</td>
<td>CH(CH₃)₂</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CH₃</td>
<td>H</td>
<td>A</td>
<td>265-270 (haj.)</td>
</tr>
<tr>
<td>CH₃</td>
<td>CH(CH₃)₂</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CH₃</td>
<td></td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>CH₃</td>
<td>CH(CH₃)₂</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>A</td>
<td>236-238</td>
</tr>
<tr>
<td>CH₃</td>
<td>CH(CH₃)₂</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>H</td>
<td>H</td>
<td>A</td>
<td>203-5-205</td>
</tr>
<tr>
<td>CH₃</td>
<td>CH(CH₃)₂</td>
<td>H</td>
<td>H</td>
<td>SCH₃</td>
<td>H</td>
<td>H</td>
<td>A</td>
<td>264,5-265</td>
</tr>
<tr>
<td>CH₃</td>
<td>CH(CH₃)₂</td>
<td>H</td>
<td>H</td>
<td>SO₂CH₃</td>
<td>H</td>
<td>H</td>
<td>(edellä olevan perhappo-kääsittely)</td>
<td>254-255</td>
</tr>
<tr>
<td>CH₃</td>
<td>CH(CH₃)₂</td>
<td>F</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>CH₃</td>
<td>CH(CH₃)₂</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CH₃</td>
<td>CH₃</td>
<td>A</td>
<td>278-282</td>
</tr>
<tr>
<td>R</td>
<td>X</td>
<td>L</td>
<td>M</td>
<td>O</td>
<td>R</td>
<td>Menetelmä</td>
<td>Sp.°C</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-----------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>CH₃</td>
<td>CH(CH₃)₂</td>
<td>H</td>
<td>H</td>
<td>CH₃</td>
<td>H</td>
<td>CH₃</td>
<td>A</td>
<td>258-260</td>
</tr>
<tr>
<td>CH₃</td>
<td>CH(CH₃)₂</td>
<td>H</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>CH₃</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>CH₃</td>
<td>CH(CH₃)₂</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Cl</td>
<td>CH₃</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>CH₃</td>
<td>CH(CH₃)₂</td>
<td>H</td>
<td>Cl</td>
<td>H</td>
<td>H</td>
<td>CH₃</td>
<td>A</td>
<td>188-190</td>
</tr>
<tr>
<td>CH₃</td>
<td>CH(CH₃)₂</td>
<td>OCH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>CH₃</td>
<td>CH(CH₃)₂</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>CH₃</td>
<td>CH(CH₃)₂</td>
<td>OAc</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>A</td>
<td>188-190</td>
</tr>
<tr>
<td>CH₃</td>
<td>CH(CH₃)₂</td>
<td>H</td>
<td>H</td>
<td>Cl</td>
<td>H</td>
<td>CH₃</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>CH₃</td>
<td>CH(CH₃)₂</td>
<td>H</td>
<td>Cl</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>CH₃</td>
<td>C₃H₇-n</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>CH₃</td>
<td>C₂H₅</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>A</td>
<td>248-253</td>
</tr>
<tr>
<td>CH₃</td>
<td>C₄H₉-n</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>CH₃</td>
<td>C₄H₉-sec</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>A</td>
<td></td>
</tr>
</tbody>
</table>
Taulukko III (jatkoa)

<table>
<thead>
<tr>
<th>R</th>
<th>R</th>
<th>X</th>
<th>L</th>
<th>M</th>
<th>Q</th>
<th>R</th>
<th>Menetelmä</th>
<th>Sp. °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₃</td>
<td>C₄H₉-<i>iso</i></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>A</td>
</tr>
<tr>
<td>CH₃</td>
<td>C₄H₉-<i>tert</i></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>A</td>
</tr>
<tr>
<td>CH₃</td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>A</td>
</tr>
<tr>
<td>CH₃</td>
<td>CHCH=CH₂</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>A</td>
</tr>
<tr>
<td>CH₃</td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>(CH₂)₅</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>A</td>
</tr>
<tr>
<td>CH₃</td>
<td>CH(CH₃)₂</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>F</td>
<td>H</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>CH₃</td>
<td>CH(CH₃)₂</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CN</td>
<td>H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₃</td>
<td>CH(CH₃)₂</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>N(CH₃)₂</td>
<td>H</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>CH₃</td>
<td>CH(CH₃)₂</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>NH₂</td>
<td>H</td>
<td>(pelkistys Q = NO₂)</td>
<td></td>
</tr>
<tr>
<td>CH₃</td>
<td>CH(CH₃)₂</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>I</td>
<td>H</td>
<td>A</td>
<td></td>
</tr>
</tbody>
</table>
Esimerkki 43

Ethyli-2-(5-isopropyl-5-metyli-4-okso-2-imidatsolin-2-yli)-3-kinoliinikarboksyylihapon valmistus

Menetelmä A

2-isopropyl-2-metyli-5H-imidatsolo(1',2':1,2)-pyratsolo(3,4-b)kinoliini-3H(2H),5-dionin (2 g, 0,0068 mol) jääillä jäähdyettyyn liuokseen absoluuttisessa etanolisessa (40 ml) lisättiin typpikehässä 50-%:ista natriumhydrididispersiota (0,34 g, 0,00716 mol). Tapahtui kaasunkehitystä. 10 minuutin kuluttua reaktioseos neutraloitui ja jäännös jaettiin veden ja etyylisetaatin kesken. Organinen kerros erotettiin, kuivattiin vedettömällä magnesiumsulfaatilla, suodattiin ja haihdutettiin. Jäännös kiteytettiin etyylisetaatti/heksaaniseoksesta, jolloin saatiin 1,38 g (60 %) valkea kiinteätä ainetta, sp. 146-147,5°C.

Samalla tavalla valmistettuja (menetelmä A) muita estereitä on esitetty taulukossa IV.
Esimerkki 44

Metyyli-2-(5-isopropyli-5-metyyli-4-okso-2-imidatsolin-2-yyli)-3-kinoliinikarboksyyli-hapon valmistus

Menetelmä B

50-%:iseen natriumhydridin öljydispersioon (1,4 g, 0,0292 mol) lisättiin typpikehässä atseotrooppsesti kuivattua 1,3-dihydro-1-isopropyli-1-metyyli-1,3-diokso-2H-pyrrolo(3,4-b)kinoliini-2-asetamidia (6 g, 0,0193 mol). Seosta kuumennettiin palautusjäähdytäen ja sekoittamalla 6 tuntia, se jäähdytettiin ja kaadettiin hitaasti natriummetoksidin (0,1 g) liuokseen metanolissa (20 ml). Seosta kuumennettiin 60°C:ssa 3 tuntia, sitten seos suodatettiin, suodos haihdutettiin ja saatu valkea jäännös liuotettiin metyleenikloridi/vesiseokseen. Orgaaninen kerros erotettiin ja haihdutettiin, jolloin saattiin 0,48 g kiinteätä ainetta, joka puhdistettiin silikageelikerrossella (liuottimena etyyliaesetaatti). Liuotin haihdutettiin, kiinteä jäännös kiteytettiin etyyliaesetaatti/heksaanista, jolloin saatiiin 0,4 g esteridä valkeina neulassa, sp. 145–154°C.

Analyysi, laskettu kaavalle C_18H_19N_3O_3:

C 66,44 H 5,89 N 12,92

Saatu: C 66,35 H 5,93 N 12,83.
<table>
<thead>
<tr>
<th>R₃</th>
<th>R₁</th>
<th>R₂</th>
<th>X</th>
<th>L</th>
<th>M</th>
<th>Q</th>
<th>R</th>
<th>Sp.°C</th>
<th>Menetelmä</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₃</td>
<td>CH₃</td>
<td>C₂H₅</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>CH₂</td>
<td>CH₃</td>
<td>C₂H₅</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>A</td>
</tr>
<tr>
<td>CH₃</td>
<td>CH₃</td>
<td>CH(CH₃)₂</td>
<td>H</td>
<td>H</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>CH₃</td>
<td>CH₃</td>
<td>CH(CH₃)₂</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Cl</td>
<td>H</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>CH₃</td>
<td>CH₃</td>
<td>CH(CH₃)₂</td>
<td>H</td>
<td>H</td>
<td>N(CH₃)₂</td>
<td>H</td>
<td>H</td>
<td>63-66</td>
<td></td>
</tr>
<tr>
<td>C₄H₉</td>
<td>CH₃</td>
<td>CH(CH₃)₂</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>133,5-134,5 A</td>
</tr>
<tr>
<td>CH₃</td>
<td>CH₃</td>
<td>C₂H₅</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>CH₃</td>
<td>CH₃</td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>CH₃</td>
<td>CH₃</td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>CH₃</td>
<td>CH₃</td>
<td>sek-C₄H₉</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>CH₃</td>
<td></td>
<td>(CH₂)₅</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
</tr>
</tbody>
</table>
Esimerkki 45

Kinoliinikarboksyylihappoesterien happosuoloja:
Metyyli-2-(5-isopropyli-5-metyyli-4-okso-2-
imidatsolin-2-yyli)-3-kinoliinikarboksylaatin
hydrokloridisuolan valmistus

Esteri liuotettiin etteri/metyleenikloridiseok-
seen, ja liuokseen johdettiin kuivaa kloorivetykaasua,
kunnes hydrokloridisuolan saostuminen oli täydellinen.
Suola suodatettiin, pestiin etterillä ja kuivattiin
vakuumissa. Sp. 226-270°C.

Seuraavat suolat valmistettiin samalla tavalla
käyttäen sopivaa happoa HX. Jotkut suoloista ovat hygros-
koopisia öljyjä, ja joissakin tapauksissa happosuolojen
liuottimena käytettiin edullisemmin etyyliasetaattia.
Taulukko V

![Chemical structure diagram](image)

<table>
<thead>
<tr>
<th>R_1</th>
<th>R_2</th>
<th>T</th>
<th>A</th>
<th>L</th>
<th>M</th>
<th>Q</th>
<th>R_7</th>
<th>H happy</th>
<th>$\text{Sp.} \degree \text{C}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>O</td>
<td>CO$_2$CH$_3$</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>HCl</td>
<td></td>
</tr>
<tr>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>O</td>
<td>CO$_2$CH$_3$</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>HCl</td>
<td></td>
</tr>
<tr>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>S</td>
<td>CO$_2$CH$_3$</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>HBr</td>
<td></td>
</tr>
<tr>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>O</td>
<td>CO$_2$CH$_3$</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>HNO$_3$</td>
<td></td>
</tr>
<tr>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>O</td>
<td>CO$_2$CH$_3$</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H$_2$SO$_4$</td>
<td></td>
</tr>
<tr>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>O</td>
<td>CO$_2$H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>HCl</td>
<td>266-270</td>
</tr>
<tr>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>O</td>
<td>CHO</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>HCl</td>
<td></td>
</tr>
<tr>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>O</td>
<td>CH$_2$OH</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>HCl</td>
<td></td>
</tr>
<tr>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>O</td>
<td>CO$_2$CH$_3$</td>
<td>H</td>
<td>H</td>
<td>Cl</td>
<td>H</td>
<td>HCl</td>
<td></td>
</tr>
<tr>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>O</td>
<td>CO$_2$CH$_3$</td>
<td>H</td>
<td>H</td>
<td>CH$_3$</td>
<td>H</td>
<td>HCl</td>
<td></td>
</tr>
<tr>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>O</td>
<td>CO$_2$CH$_3$</td>
<td>H</td>
<td>CH$_3$</td>
<td>H</td>
<td>H</td>
<td>HCl</td>
<td></td>
</tr>
</tbody>
</table>
Esimerkki 46
Natrium-2-(5-isopropyyli-5-metyyli-4-okso-2-imidatsolin-2-yyli)-3-kinoliinikarboksylaatin valmistus

\[
\begin{align*}
\text{CH}_3 & \quad \text{CO}_2 \quad \text{H} \\
\text{N} & \quad \text{CH(CH}_3_2) \\
\text{H} & \quad \text{O}
\end{align*}
\]

2-(5-isopropyyli-5-metyyli-4-okso-2-imidatsolin-2-yyli)-3-kinoliinikarboksyliahapon (2,33 g, 0,0075 mol), veden (22 ml) ja natriumhydroksidin (0,3 g, 0,0075 mol) liuosta sekoitettiin huoneen lämpötilassa yön yli, siten liuos pestiin metyleenikloridilla, vesikerros erotettiin ja haidutettiin, saatu oranssinvärisenä kiinteän aine pestiin etterillä ja ilmakuivattiin. Tuotteen dihydraatti saatiin kermanvärisenä kiinteänä aineena, sp. 235-250°C (hajoaa).

Analyysi, laskettu kaavalle C\textsubscript{17}H\textsubscript{16}N\textsubscript{3}O\textsubscript{3}Na + 2 H\textsubscript{2}O:

\[
\begin{align*}
\text{C} & \quad 55,27 \\
\text{H} & \quad 5,45 \\
\text{N} & \quad 11,37 \\
\text{Na} & \quad 6,22
\end{align*}
\]

Saatu:

\[
\begin{align*}
\text{C} & \quad 55,56 \\
\text{H} & \quad 5,31 \\
\text{N} & \quad 11,35 \\
\text{Na} & \quad 6,30
\end{align*}
\]

Seuraavat taulukkoon VI kootut suolat valmistettiin samalla tavalla käyttäen natriumhydroksidin sijasta muuta emästä.
<table>
<thead>
<tr>
<th>R₁</th>
<th>R₂</th>
<th>X</th>
<th>L</th>
<th>M</th>
<th>Q</th>
<th>R₇</th>
<th>M'</th>
<th>Sp. °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₃</td>
<td>(CH₃)₂CH</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>NH₃C₆H₅</td>
<td></td>
</tr>
<tr>
<td>CH₃</td>
<td>(CH₃)₂CH</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>NH₃C₈H₁₇</td>
<td>76</td>
</tr>
<tr>
<td>CH₃</td>
<td>(CH₃)₂CH</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>NH₃C₁₈H₃₇</td>
<td>111-113</td>
</tr>
<tr>
<td>CH₃</td>
<td>(CH₃)₂CH</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>NH₃C₃H₇- i</td>
<td>133-134</td>
</tr>
<tr>
<td>CH₃</td>
<td>(CH₃)₂CH</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>NH₃-CH₂-O</td>
<td></td>
</tr>
<tr>
<td>CH₃</td>
<td>(CH₃)₂CH</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Ca</td>
<td>270-290</td>
</tr>
<tr>
<td>CH₃</td>
<td>(CH₃)₂CH</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Cl</td>
<td>H</td>
<td>Ca</td>
<td></td>
</tr>
<tr>
<td>CH₃</td>
<td>(CH₃)₂CH</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CH₃</td>
<td>H</td>
<td>NH₂(C₃H₇-i)₂</td>
<td></td>
</tr>
<tr>
<td>CH₃</td>
<td>C₂H₅</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>NH₃C₈H₁₇</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(CH₂)₅</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>NH₃C₁₈H₃₇</td>
<td></td>
</tr>
</tbody>
</table>
Esimerkki 47
2-isopropyl-2-metyyli-5H-imidatsolisyansol\(1',2':1,2\)-pyratsolo\(3',4-b\)kinoliini-3(2H)-5-dionin
valmistus

Menetelmä A

2-(5-isopropyli-5-metyyli-4-okso-2-imidatsolin-2-yyli)-3-kinoliinikarboksyylihapon (5,24 g, 0,0168 mooli) metyleenikloridisuspensioon lisättiin typpikehäs-
sä sekoittaen huoneen lämpötilassa disykloheksyylikarboxi-
di-imidin (3,47 g, 0,0168 mol) metyleenikloridiliuos, ja seosta sekoitettiin yön yli. Koska reaktio oli epä-
täydellinen, seokseen lisättiin vielä 0,3 g disykloheks-
syylikarbodi-imidia ja sekoittamista jatkettiin 48 tun-
tia. Reaktioseos hahdutettiin, ja saatu keltainen
kiinteä jäänös puhdistettiin kromatografoimalla sili-
nageelikolonniissa. Tuote eluoittii asetonitrilli/mety-
leenikloridiseoksella. Se kiteytettiin toluenista val-
keina kiteinä, sp. 225-227°C.
Analyysi, laskettu kaavalle \(C_{17}H_{15}N_{3}O_{2}\):
 C 69,61 H 5,15 N 14,33
Saatu: C 69,76 H 5,31 N 14,13.
Esimerkki 48
Cis- ja trans-1,11b-dihydro-11b-hydroksi-3-isoppyli-3-metyyli-5H-imidatsol1',2':1,2-pyrrollo-
3,4-b'kinoliini-2(3H),5-dionin valmistus

1,3-dihydro-<isoppyli->-metyyli-1,3-diokso-
2H-pyrrolo<3,4-b>kinoliini-2-asetamidin (0,5 g, 0,0016
mol) ksyleeniliuosta kuumennettiin palautusjäädyttä-
en 23 tuntia. Liuoksen jäädytetyä siitä erkani valkea
sakka (0,17 g), joka suodatettiin sp. 191-192°C. Lai-
mennetäessä suodos heksaanilla saatii toinen tuote-
erä (0,1 g), sp. 187-189°C.

Analyysi, laskettu kaavalle C_{17}H_{17}N_3O_3:

C 65,58 H 5,50 N 13,50

Saatu: C 66,08 H 5,65 N 13,00.

Muita menetelmillä A ja B valmistettuja yhdis-
teitä on esitettä seuraavassa taulukossa:
Esimerkkejä yhdisteistä:

\[
\begin{align*}
Q &= \text{CH}_3 \\
X, L, M, R_7 &= \text{H} \\
R_1 &= \text{CH}_3 \\
R_2 &= \text{CH(CH}_3\text{)}_2 \\

Q &= \text{Cl} \\
X, L, M, R_7 &= \text{H} \\
R_1 &= \text{CH}_3 \\
R_2 &= \text{CH(CH}_3\text{)}_2 \\

M &= \text{CH}_3 \\
X, L, Q, R_7 &= \text{H} \\
R_1 &= \text{CH}_3 \\
R_2 &= \text{CH(CH}_3\text{)}_2 \\

M &= \text{Cl} \\
X, L, Q, R_7 &= \text{H} \\
R_1 &= \text{CH}_3 \\
R_2 &= \text{CH(CH}_3\text{)}_2 \\

Q &= \text{CF}_3 \\
X, L, M, R_7 &= \text{H} \\
R_1 &= \text{CH}_3 \\
R_2 &= \text{CH(CH}_3\text{)}_2 \\

M &= \text{N(CH}_3\text{)}_2 \\
X, L, Q, R_7 &= \text{H} \\
R_1 &= \text{CH}_3 \\
R_2 &= \text{CH(CH}_3\text{)}_2 \\

M &= \text{OCH}_3 \\
X, L, Q, R_7 &= \text{H} \\
R_1 &= \text{CH}_3 \\
R_2 &= \text{CH(CH}_3\text{)}_2 \\

X &= \text{OH} \\
L, M, Q, R_7 &= \text{H} \\
R_1 &= \text{CH}_3 \\
R_2 &= \text{CH(CH}_3\text{)}_2 \\

\end{align*}
\]
Esimerkki 49
N-(1-syaani-1,2-dimetyylipropyyli-2-(o-formyyli-anilino)maleinimidin valmistus

Menetelmä A

Antranilin (3,55 g, 0,0298 mol) ja \(\alpha \)-isopropyyli-\(\alpha \)-methyli-2,5-diokso-3-pyrroloini-1-asetonitriliin (5,73 g, 0,0298 mol) liuosta kypsyneenä (20 ml) kuumennettiin palautusjäähdyttäen typpikehässä 39 tunnilla. Liuoksesta erottui sen jäähyessä keltainen sakka, joka suodatettiin. Saatiin 2,78 g tuotetta, sp. 191-192°C.

Analyysi, laskettu kaavalle \(C_{17}H_{17}N_{3}O_{3} \):

C 65,58 H 5,50 N 13,50

Saatu: C 65,33 H 5,44 N 1,336.
Esimerkki 50
Menetelmä B
N-(1-syaani-1,2-dimetyylipropyyli)-2-(2-formyyli-5-kloorianilino)maleinimidin valmistus

N-(1-syaani-1,2-dimetyylipropyyli)-2-(5-kloori-2-hydroksimetyylianilino)maleinimidin (4,75 g, 0,0136 mol) liukseen metyleenikloridissa (20 ml) lisättiin nopeasti pyridiniumkloorikromaatin (4,4 g, 0,0204 mol) liuos metyleenikloridissa (20 ml). 2 tunnin kuluttua tumma reaktioseos laimennettiin etterillä (20 ml), ja muodostunut keltainen sakka suodatettiin. Se liuotettiin etyylisetaatti/metyyleenikloridiseokseen (1:1) ja laskettiin silikageelikolonnin lävitse, jolloin saatiin 4,31 g (92 %) keltaista kiinteää tuotetta, sp. 80°C (hajoaa).

Seuraavat taulukossa VII olevat aldehydit valmistettiin edellä kuvatuilla menetelmillä A ja B.
Taulukko VII

<table>
<thead>
<tr>
<th>R_1</th>
<th>R_2</th>
<th>L</th>
<th>M</th>
<th>Q</th>
<th>R</th>
<th>MeNnetelmä</th>
<th>Sp. °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>Cl</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>50Γ</td>
<td></td>
</tr>
<tr>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>H</td>
<td>Cl</td>
<td>H</td>
<td>H</td>
<td>49Α</td>
<td>80</td>
</tr>
<tr>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>H</td>
<td>H</td>
<td>Cl</td>
<td>H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Cl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>H</td>
<td>CH$_3$</td>
<td>H</td>
<td>H</td>
<td>50Β</td>
<td></td>
</tr>
<tr>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>H</td>
<td>H</td>
<td>CH$_3$</td>
<td>H</td>
<td>50Β</td>
<td>205-212</td>
</tr>
<tr>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OCH$_3$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>H</td>
<td>H</td>
<td>Cl</td>
<td>CH$_3$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>Cl</td>
<td>H</td>
<td>H</td>
<td>CH$_3$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>H</td>
<td>Cl</td>
<td>H</td>
<td>CH$_3$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>Cl</td>
<td>H</td>
<td>H</td>
<td>OCH$_3$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>CH$_3$</td>
<td>H</td>
<td>H</td>
<td>CH$_3$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>H</td>
<td>CH$_3$</td>
<td>H</td>
<td>CH$_3$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>H</td>
<td>H</td>
<td>CH$_3$</td>
<td>CH$_3$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>H</td>
<td>CF$_3$</td>
<td>H</td>
<td>H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>H</td>
<td>H</td>
<td>CF$_3$</td>
<td>H</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(CH$_2$)$_5$</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Esimerkki 51

N-(1-syaani-1,2-dimetyylpropyli)-2-(2-hydroksimetyyliaaniilino)maleinimidin valmistus

\[
\begin{align*}
\text{CH}_2\text{OH} & \quad \text{CH}_3 \\
\text{NH}_2 & \quad \text{Br} \\
\text{CH(CH}_3\text{)}_2 & \quad \text{CH}_3
\end{align*}
\]

O-aminobentsyylialkoholin (2 g, 0,0125 mol) ja 3-bromi-4-isopropyli-3-metyli-2,5-diooks-3-pyrroliini-l-asetonitriliin (2,7 g, 0,01 mol) seoksen lisättiin 3 A-molekyliliseuloja (3 g) absoluuttisessa alkoholissa (100 ml). Seosta sekoitettiin huoneen lämpötilassa 20 tuntia. Liuotin haihduitettiin ja jäännös puhdistettiin käyttäen kuivaa silikageelikolonnia ja eluomalla etteri/heksaaniseoksella (2:1). Aluksi elu- oitui lähtöaine bromimaleinimidin, sitten kirkkaankeltainen tuote, 1,89 g (60 %), sp. 39-45°C.

Analyysi, laskettu kaavalle \(\text{C}_{17}\text{H}_{19}\text{N}_3\text{O}_3 \):

\[
\begin{align*}
\text{C} & \quad 65,16 \\
\text{H} & \quad 6,11 \\
\text{N} & \quad 13,41
\end{align*}
\]

Saatu: \(\text{C} 65,94 \quad \text{H} 6,21 \quad \text{N} 12,87 \).

Taulukko VIII

<table>
<thead>
<tr>
<th>(R_1)</th>
<th>(R_2)</th>
<th>(L)</th>
<th>(M)</th>
<th>(Q)</th>
<th>(R)</th>
<th>(\text{Sp.}^\circ \text{C})</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH<sub>3</sub></td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>CH<sub>3</sub></td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>H</td>
<td>H</td>
<td>CH<sub>3</sub></td>
<td>H</td>
<td>kumi</td>
</tr>
<tr>
<td>CH<sub>3</sub></td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>H</td>
<td>CH<sub>3</sub></td>
<td>H</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>CH<sub>3</sub></td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>CH<sub>3</sub></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>CH<sub>3</sub></td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Cl</td>
<td></td>
</tr>
<tr>
<td>CH<sub>3</sub></td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>H</td>
<td>H</td>
<td>Cl</td>
<td>H</td>
<td>98-100</td>
</tr>
<tr>
<td>CH<sub>3</sub></td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>H</td>
<td>Cl</td>
<td>H</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>CH<sub>3</sub></td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>Cl</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>CH<sub>3</sub></td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OCH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>CH<sub>3</sub></td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>H</td>
<td>H</td>
<td>Cl</td>
<td>CH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>CH<sub>3</sub></td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>H</td>
<td>Cl</td>
<td>H</td>
<td>CH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>CH<sub>3</sub></td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>Cl</td>
<td>H</td>
<td>H</td>
<td>OCH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>CH<sub>3</sub></td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>CH<sub>3</sub></td>
<td>H</td>
<td>H</td>
<td>CH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>CH<sub>3</sub></td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>H</td>
<td>CH<sub>3</sub></td>
<td>H</td>
<td>CH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>CH<sub>3</sub></td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>H</td>
<td>H</td>
<td>CH<sub>3</sub></td>
<td>CH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>CH<sub>3</sub></td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>H</td>
<td>H</td>
<td>CF<sub>3</sub></td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>CH<sub>3</sub></td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>H</td>
<td>CF<sub>3</sub></td>
<td>H</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>((CH_2)_5)</td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
</tr>
</tbody>
</table>
Esimerkki 52
3-bromi-α-isopropylji-α-metyli-2,5-dioikso-3-pyrroliini-1-asetonitrilin valmistus

α-isopropylji-α-metyli-2,5-dioikso-3-pyrroliini-1-asetonitrilin (50 g, 0,25 mol) liuokseen etikka-
apossa (500 ml) lisättiin tippoittain ja sekoittaaen 75°C:ssa bromiin (40,76 g, 0,255 mol) liuos etikkaahapossa (80 ml).
Reaktioseos sai seistä yön yli 85°C:ssa, sitten se haih-
dutettiin siirapiksi, joka liuotettiin metyleeniklori-
diin (300 ml). Liuos jäähdytettiin 5°C:seen, ja siihen
lisättiin trietyyliamiinia (34,78 ml). 2 tunnin sekoit-
tamisen jälkeen ruskea liuos laimennettiin eetteril-
lä, jolloin saatiin valkea sakka. Se uutettiin vedel-
lä (400 ml), orgaaninen kerros kuivattiin vedettömällä
magnesiumsulfaatilla ja laskettiin sitten 5 cm silika-
geelikerroksen lävitse, eluointi metyleenikloridilla.
Eluaatista saatiin tummanruskea öljy.
Analyysi, laskettu kaavalle C_{10}H_{10}N_2Br:

C 44,29 H 4,09 N 10,33

Saatu: C 43,37 H 4,05 N 10,07.

Seuraavat bromimaleinimidit valmistettiin samal-
la tavalla:
Esimerkki 53

(*-isopropyl-*metyli-2,5-dioskso-3-pyrroliini-1-asetonitraalin valmistus

```
\[
\begin{align*}
R_1 & \quad R_2 \\
CH_3 & \quad C_2H_5 \\
CH_3 & \quad C_4H_9 \\
CH_3 & \quad C_4H_9-iso \\
CH_3 & \quad C_4H_9-sek. \\
CH_3 & \quad C_4H_9-tert. \\
(CH_2)_5 & \\
CH_3 & \quad CH_2CH=CH_2 \\
CH_3 & \\
\end{align*}
\]
```

\[
\begin{align*}
N-(1-syaani-1,2-dimetyylipropyyli)maleaamihappon (595 g, 2,83 mol) liuosta etikkahappoanhydrydis-sä (3,96 l), joka sisälsi natriumsetaattia (13,72, 0,167 mol), kuumennettiin palautusjäädyttäen tunnin ajan, liuos jäädytettiin ja liuotin haidutettiin vakuumi-
\]
sa. Tuote tislattiin 120-130°C:ssa/0,1 mm Hg (tislausastian lämpötila ei saa kohota yli 200°C), jolloin saatiin 337 g (63 %) tuotetta.

Analyysi, laskettu kaavalla C_{10}H_{12}N_{2}O_{2}:
- C 62,49 H 6,29 N 14,57
- Saatu: C 62,32 H 6,36 N 14,59.

Samalla tavalla valmistettiin seuraavat yhdisteet:

<table>
<thead>
<tr>
<th>R_1</th>
<th>R_2</th>
<th>Sp.°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH_3</td>
<td>CH(CH_3)_2</td>
<td></td>
</tr>
<tr>
<td>CH_3</td>
<td>C_2H_5</td>
<td></td>
</tr>
<tr>
<td>CH_3</td>
<td>C_3H_7</td>
<td></td>
</tr>
<tr>
<td>CH_3</td>
<td>C_4H_9</td>
<td></td>
</tr>
<tr>
<td>CH_3</td>
<td>C_4H_9-iso</td>
<td></td>
</tr>
<tr>
<td>CH_3</td>
<td>C_4H_9-seq</td>
<td></td>
</tr>
<tr>
<td>CH_3</td>
<td>C_4H_9-tert</td>
<td></td>
</tr>
<tr>
<td>CH_3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH_3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(CH_2)_5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH_3</td>
<td>CH_2CH=CH_2</td>
<td></td>
</tr>
</tbody>
</table>
Esimerkki 54

N-(1-(1-syaani-1,2-dimetyylylipopyli)-2,5-dioikso-3-pyrrolin-3-yylyl)entranililihapon valmistus

Antranililihapon (13,7 g, 0,1 mol), 3-bromi-\(-\alpha\)-isopropyyli-\(-\alpha\)-metyyli-2,5-dioikso-3-pyrroliniini-1-asetonitriilin (27 g, 0,1 mol), isopropanolin (200 ml) ja natriumasetaatin (8,2 g) seosta sekoitettiin huoneen lämpötilassa 3 vrk, sitten seosta keitettiin palautus-jäädyttäen tunnin ajan. Seoksen jäädyttäyä siihen lisättiin etteriä, jolloin saatiin keltainen sakka. Saanto 31,6 g (97,7 %). Sp. (kiteytyys etikkakahaposta) 262-266°C.

Analyyysi, laskettu kaavalle \(\text{C}_{17}\text{H}_{17}\text{N}_{3}\text{O}_{4}\):

C 62,37 H 5,24 N 12,84
Saatu: C 62,24 H 5,19 N 12,70.

Samalla tavalla valmistettiin seuraavat maleinimi-dit.
Esimerkki 55

N-(1-karbamoyyl-1,2-dimetyyliproppyli)kinaldami-
din valmistus

Kinaldiinihapon (20 g, 0,116 mol) -9°C:seen
jäähytetyyn liuokseen tetrahydrofuraanissa (500 ml)
lisättiin metyyliklooriformiaattia (8,92 ml, 0,116 mol)
ja sitten trietyylialamiinia (18,4 ml, 0,139 mol). 20 mi-
nuutin kuluttua lisättiin \(\text{L}-\text{isopropyli-L-metyyli-3-}
pyrroliini}-1\text{-asetamidia (15,1 g, 0,116 mol)}, ja seosta
sekoitettiin huoneen lämpötilassa yön yli. Seokseen
lisättiin vettä, sitten seos konsentroitiin kiertohaih-
duttimessa. Erottunut valkea sakka suodatettiin pestiin
vedellä ja kuivattiin. Kiteyttämällä absoluuttisesta
etanolista saatiin 26,86 g (87 %) haluttua tuotetta,
sp. 179-180°C.

Analyyysi, laskettu kaavalle \(C_{16} H_{19} N_3 O_2 \):

C 67,34 H 6,73 N 14,72

Saatu: C 67,14 H 6,17 N 14,72.

Samalla tavalla valmistettiin seuraavat kine-
liinikarboksamidit.
<table>
<thead>
<tr>
<th>R_1</th>
<th>R_2</th>
<th>X</th>
<th>L</th>
<th>M</th>
<th>Q</th>
<th>R_7</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>OCH$_3$</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>CH$_3$</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>Cl</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Cl</td>
</tr>
<tr>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>NO$_2$</td>
</tr>
<tr>
<td>CH$_3$</td>
<td>C$_2$H$_5$</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>CH$_3$</td>
<td>C$_4$H$_9$-sek</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td>(CH$_2$)$_5$</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Br</td>
</tr>
</tbody>
</table>
Esimerkki 56

α-isopropyl-\(\alpha\)-metyyli-2,5-dioks-3-pyrroliini-1-asetamidin valmistus

\[\begin{array}{c}
\alpha\text{-isopropyl-}\alpha\text{-metyyli-2,5-dioks-3-pyrroliini-1-asetonitriilin (2,0 g, 0,104 mol) liuosta metyleenikloridissa (30 ml) lisättiin hitaasti väkevään rikkipappoon huoneen lämpötilassa. 16 tunnin sekoittamisen jälkeen huoneen lämpötilassa seos kaadettiin jääden, natriumkloridin ja etyylisetaatin seokseen. Orgaaninen kerros pestiin natriumbikarbonnaatin vesiliuoksella, suolaliuoksella ja kuivattiin. Haiduttamalla kuviin eetteri/pentaaniseoksen kanssa saatiin tuotetta 72 %-n saannolla, sp. 138,5–140°C.}
\end{array} \]

Analyyti, laskettu kaavalle \(C_{10}H_{14}N_2O_3\):

\[C \, 57,13 \, H \, 6,71 \, N \, 13,33 \]

Saatu: \(C \, 56,89 \, H \, 6,64 \, N \, 13,16 \).

Samalla tavalla voidaan valmistaa seuraavat imidiamidit:
\[
\begin{array}{c|c}
R_1 & R_2 \\
\text{CH}_3 & \text{C}_2\text{H}_5 \\
\text{CH}_3 & \text{C}_3\text{H}_7 \\
\text{CH}_3 & \text{C}_4\text{H}_9-n \\
\text{CH}_3 & \text{C}_4\text{H}_9-\text{iso} \\
\text{CH}_3 & \text{C}_4\text{H}_9-\text{sek.} \\
\text{CH}_3 & \text{C}_4\text{H}_9-\text{tert} \\
\text{CH}_3 & \\
\text{CH}_3 & \text{CH}_2\text{CH}=\text{CH}_2 \\
\text{CH}_3 & \\
 \hline
\text{(CH}_2)_5 \\
\end{array}
\]
Esimerkki 57
5-isopropyli-5-metyyli-2-(2-kinolyyli)-2-imidatsolin-4-onin valmistus

N-(1-karbamooyli-1,2-dimetyylylpropyyli)-2-kinoliinikarboksamidin (16,04 g, 0,0562 mol) suspensioon ksyleenissä (610 ml) lisättiin 20°C:ssa typpikehässä natriumhydridin 50-%:inen öljydispersio (2,7 g, 0,056 mol). Reaktioseosta keitettiin palautusjäähdytteen 2 tuntia, seos jäähdytettiin ja siihen lisättiin vettä (50 ml). Vesikerros uutettiin metyleenikloridilla, orgaaniset kerrokset yhdistettiin ja haidutettiin, jolloin saatiin 17 g keltaista öljyä. Se puhdistettiin kromatografoimalla silikageelikolonnissa käyttäen eluointia heksaani/etyyliasetaattiseosta. Saatiin vaaleankeltainen kiinteä aine, josta kiteytettämällä ettyliasetaattista saatiin 11,77 g (78 %) valkeata tuotetta, sp. 112-117°C.

Analyysi, laskettu kaavalle C_{16}H_{17}N_{3}O:

C 71,88 H 6,41 N 15,72
Saatu: C 71,91 H 6,47 N 15,70.

Samalla tavalla voidaan valmistaa seuraavat taulukkoon IX kootut yhdisteet.
<table>
<thead>
<tr>
<th>R_1</th>
<th>R_2</th>
<th>X</th>
<th>L</th>
<th>M</th>
<th>Q</th>
<th>R_7</th>
<th>Sp. $^\circ$C</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>OCH$_3$</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>157-161</td>
</tr>
<tr>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>CH$_3$</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>Cl</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>176-178</td>
</tr>
<tr>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Cl</td>
<td></td>
</tr>
<tr>
<td>CH$_3$</td>
<td>CH(CH$_3$)$_2$</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>NO$_2$</td>
<td></td>
</tr>
<tr>
<td>CH$_3$</td>
<td>C$_2$H$_5$</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>CH$_3$</td>
<td>C$_3$H$_7$</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>CH$_3$</td>
<td>C$_4$H$_9$-$\text{\textbar{\textbar}}$</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>CH$_3$</td>
<td>C$_4$H$_9$-$\text{\textbar{\textbar}}$</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>CH$_3$</td>
<td>C$_4$H$_9$-$\text{\textbar{\textbar}}$-sek.</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>CH$_3$</td>
<td>C$_4$H$_9$-$\text{\textbar{\textbar}}$-tet</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>CH$_3$</td>
<td>syklopropyyli</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>CH$_3$</td>
<td>CH$_2$CH=CH$_2$</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>CH$_3$</td>
<td>sykloheksyyli</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>(CH$_2$)$_5$</td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
</tr>
</tbody>
</table>
Esimerkki 58

2-(5-isopropylyl-5-metyyli-4-okso-2-imidatsolin-2-yyli)-3-kinoliinikarboksaldehydin valmistus

5-isopropylyl-5-metyyli-2-(2-kinolyyli)-2-imidatsolin-4-onin (3 g, 0,0112 mol) ja etterinin (150 ml) seokseen lisättiin tetrametyyllietyleenidamiinia (3,4 g, 0,00225 mol). Reaktioseos jäähdytettiin -63°C:seen, ja siihen lisättiin tippoittain n-butyylilitiumia (17 ml, 0,27 mol) heksaanissa. Reaktioseos muuttui kirkkaanpunaiseksi. Lisäyksen päätyttyä seosta pidettiin 2,5 tuntia -10 - -20°C:ssa. Seokseen lisättiin -10°C:ssa kuivaa dimetyylliformamidia (5 ml) ja seosta sekoitettiin yön yli ja sen annettiin lämmetä huoneen lämpötilaan. Seos laimennettiin vedellä (75 ml) ja neutraloitiin etikkahapolla. Saatiin vaaleankeltainen kiinteä aine (2,57 g, 78 %), jolla oli sp. 226-227°C kiteytetynä 95-%:isesta etanolista.

Analyysi, laskettu kaavalle C_{17}H_{17}N_{3}O_{2}:

C 69,13; H 5,80; N 14,23
Saatu C 68,98; H 5,88; N 14,25.

Tämän aldehydin oksiimilla, joka on valmistettu tavanomaiseen tapaan, on sulamispiste 255-257°C. Kun yllä mainitut 95-prosenttinen etanol i laimennettiin 5-10 ml:lla vettä, saatiin toinen kiinteä aine, joka suodatettiin ja pestiin 95-prosenttisella etanolilla. Nään puhdistettu tuote oli värittön, sen sp. oli 168-169°C. m + 1 = vahvistaa trisyklisen rakenteen olevan A tai B.
Samalla tavalla valmistettiin muita A-ryhmiä:

\[
\begin{align*}
&\text{A} \\
&\text{COOH} \\
&\text{CH}_2\text{CH}_2\text{OH} \\
&\text{CH}_3 \\
&\text{CH}_2\text{CO}_2\text{CH}_3 \\
&\text{CH}_3\text{CHOH} \\
&\text{C}_6\text{H}_5\text{CHOH} \\
&\text{(CH}_3\text{)}_2\text{COH} \quad 181-184 \\
&\text{C}_6\text{H}_5\text{COH} \\
&\text{C}_6\text{H}_5\text{COH} \quad 135-199 \text{ diastereomeerien seos}
\end{align*}
\]
Esimerkki 59
2-(3-(hydroksimetyyli)-2-kinolyli)-5-isopropyyli-5-metyyli-2-imidatsolin-4-onin valmistus

\[
\begin{align*}
\text{CHO} & \quad \text{CH}_3 \\
\text{CH}_3 & \quad \text{CH(CH}_3)_2 \\
\text{N} & \quad \text{N} \\
\text{H}_2 & \quad \text{H}_2 \\
\end{align*}
\]

2-(5-isopropyyli-5-metyyli-4-okso-2-imidatsolin-2-yyl)-3-kinoliinikarboksaldehydin (0,78 g, 0,00264 mol) suspensioon etanolissa (150 ml) lisättiin typpikehässä jauhemaista natriumboorihydridia (0,5 g, 0,013 mol). Saatiin keltainen liuos. 20 minuutin reaktioajan jälkeen liuos konsentroitiin 40 ml:ksi ja laimennettiin sitten vedellä (75 ml). Uuttamalla metyleenikloridilla ja haihduittamalla uute sekä kiteyttämällä haihduus-jännös heksaani/etyylisetaattiseoksesta saatiin vaaleankeltaisia kiteitä, sp. 138-149°C, M/e 298.

Muita yhdisteitä voidaan valmistaa samalla menetelmällä käytettämällä sopivasti substituoituja kinionilinikarboksaldehydejä; niitä on esitetty taulukkossa X.
Taulukko X

\[\begin{align*}
X &= \text{Cl}, \text{ Me} & L, M, Q, R_7 &= \text{H} \\
L &= \text{Me}, \text{ Cl} & X, M, Q, R_7 &= \text{H} \\
M &= \text{Me}, \text{ Cl} & X, L, Q, R_7 &= \text{H} \\
Q &= \text{Me}, \text{ Cl} & X, L, M, R_7 &= \text{H} \\
R_7 &= \text{Me}, \text{ Cl} & X, L, M, Q &= \text{H}
\end{align*} \]

Esimerkki 60

Koeyhdisteiden herbisidisen vaikutuksen arviointi orastuksen-jälkeen

Yhdisteiden herbisidinen aktiviteetti orastuksen-jälkeen osoitettiin seuraavilla kokeilla, joissa useita erilaisia yksisirkkaisia ja kaksisirkkaisia kasveja käsiteltiin koeyhdisteiden dispersioilla asetoni/vesiseoksessa. Näissä kokeissa taimia kasvatettiin "jiffy"-kasvualustalla noin 2 viikkoa. Koeyhdiste dispergoitiin asetoni/vesiseokseen (50:50), joka sisälsi 0,5% pinta-aktiivista ainetta "Tween 20" (polyoksietyleenisorbitaanimonolauratti, valmistaja: Atlas Chemical Industries), jolloin koeyhdisteen määrä oli sellainen, että seosta suihkutettaessa kasveille suihkutussuuttimen kautta paineella 276 kPa tietyn ajan saatiin aktiiviaineen määräksi 0,016 – 10 kg/ha. Suihkutuksen jälkeen kasvit siirrettiin kasvihuoneeseen, jossa niitä hoidettiin tavallisella tavalla noudattaen kasvihuoneviljelyssä normaalisti käytettyjä menetelmiä. 4-5 viikon kuluttua käsittelystä taimia tarkastettiin, ja niiden tila arvioitiin alla esite-
tyllä arvioointisysteemillä. Tulokset on esitetty tau-
lukossa XI.

<table>
<thead>
<tr>
<th>Arvioointisysteemi</th>
<th>Ero (%) kontrollikasvin kasvuun verrattuna ¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - ei vaikutusta</td>
<td>0</td>
</tr>
<tr>
<td>1 - mahdollista vaikutusta</td>
<td>1-10</td>
</tr>
<tr>
<td>2 - lievää vaikutus</td>
<td>11-25</td>
</tr>
<tr>
<td>3 - kohtalainen vaikutus</td>
<td>26-40</td>
</tr>
<tr>
<td>5 - selvästi vaarioitunut</td>
<td>41-60</td>
</tr>
<tr>
<td>6 - herbisidinen vaikutus</td>
<td>61-75</td>
</tr>
<tr>
<td>7 - vahva herbisidinen vaikutus</td>
<td>76-90</td>
</tr>
<tr>
<td>8 - lähes kuollut</td>
<td>91-99</td>
</tr>
<tr>
<td>9 - täysin kuollut</td>
<td>100</td>
</tr>
<tr>
<td>4 - abnormi kasvutapa, so. selvästi fysiologisesti epämudostunut, jolloin kuitenkin kokonaisvaikutus</td>
<td></td>
</tr>
</tbody>
</table>

15 *) Useimmissa tapauksissa tulokset on saatu yhdestä kokeesta, mutta monissa tapauksissa ne ovat useamman kokeen keskiarvoja.

Käytetyt kasvilajit

20 1. Kananhirssi (Echinochloa crussgallii)
2. Vihreä pantakeinä (Setaria viridis)
3. Purppura pähkinässä (Cyperus rotundus L.)
4. Hukkanakura (Avena Fatus)
5. Juolavehna (Agropyron repens)
25 6. Peltokierto (Convolvulus arvensis L.)
7. Sappiruoho (Xanthium pensylvanicum)
8. Päivänsini (Ipomoea purpurea)
9. Tuoksukki (Ambrosia artemisiifolia)
10. Samettilehti (Abutilon Theophrasti)
30 11. Ohra (Hordeum vulgare)
12. Maissi (Zea mays)
13. Riisi (Oryza Sativa)
14. Soijapapu (Glycine max)
15. Auringonkukka (Helianthus annus)
35 16. Vehnä (Triticum aestivum)
17. Puuvilla (Gossypium sp.)

Taulukoissa XI - XII kasvilajeista on käytetty numerotunnukseja 1-17.
<table>
<thead>
<tr>
<th>Yhdisteet</th>
<th>1.</th>
<th>2.</th>
<th>3.</th>
<th>4.</th>
<th>5.</th>
<th>6.</th>
<th>7.</th>
<th>8.</th>
<th>9.</th>
<th>10.</th>
<th>11.</th>
<th>12.</th>
<th>13.</th>
<th>14.</th>
<th>15.</th>
<th>16.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trietiyliammonium-2-(5-isopropyllyli-5-metylyli-4-okso-2-imidatsolin-2-ylyli)nikotinaatti</td>
<td>1.000</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>063</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>032</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>5.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>8.0</td>
</tr>
<tr>
<td>Natrium-2-(5-isopropyllyli-5-metylyli-4-okso-2-imidatsolin-2-ylyli)nikotinaatti</td>
<td>1.000</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>063</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>032</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
</tr>
<tr>
<td>Metylyli-2-(5-isopropyllyli-5-metylyli-4-okso-2-imidatsolin-2-ylyli)nikotinaatti</td>
<td>10.000</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>2.000</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>1.000</td>
<td>9.0</td>
<td>9.0</td>
<td>8.9</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.6</td>
<td>9.0</td>
<td>8.8</td>
<td>8.8</td>
<td>8.8</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>9.0</td>
<td>9.0</td>
<td>8.2</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.9</td>
<td>8.9</td>
<td>9.0</td>
<td>8.7</td>
<td>6.9</td>
<td>7.8</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>8.8</td>
<td>9.0</td>
<td>7.6</td>
<td>8.9</td>
<td>8.9</td>
<td>8.5</td>
<td>9.0</td>
<td>8.4</td>
<td>8.5</td>
<td>7.1</td>
<td>9.0</td>
<td>8.5</td>
<td>8.6</td>
<td>7.5</td>
<td>8.7</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>6.9</td>
<td>8.8</td>
<td>5.2</td>
<td>8.9</td>
<td>8.3</td>
<td>8.6</td>
<td>7.4</td>
<td>8.2</td>
<td>5.7</td>
<td>8.8</td>
<td>8.0</td>
<td>8.4</td>
<td>6.8</td>
<td>8.3</td>
<td>8.7</td>
</tr>
<tr>
<td></td>
<td>063</td>
<td>4.4</td>
<td>8.0</td>
<td>3.3</td>
<td>8.0</td>
<td>5.5</td>
<td>7.8</td>
<td>6.2</td>
<td>7.6</td>
<td>2.8</td>
<td>8.8</td>
<td>6.7</td>
<td>8.1</td>
<td>4.3</td>
<td>7.6</td>
<td>7.5</td>
</tr>
<tr>
<td></td>
<td>032</td>
<td>2.3</td>
<td>7.4</td>
<td>1.9</td>
<td>5.6</td>
<td>4.0</td>
<td>6.6</td>
<td>6.5</td>
<td>7.1</td>
<td>6.7</td>
<td>7.7</td>
<td>6.1</td>
<td>6.7</td>
<td>2.8</td>
<td>7.2</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td>016</td>
<td></td>
</tr>
<tr>
<td>2-(5-isopropyllyli-5-metylyli-4-okso-2-imidatsolin-2-ylyli)nikotiinihappo</td>
<td>10.000</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>2.000</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>1.000</td>
<td>9.0</td>
<td>9.0</td>
<td>8.7</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.7</td>
<td>9.0</td>
<td>9.0</td>
<td>8.7</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>8.7</td>
<td>9.0</td>
<td>8.3</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.7</td>
<td>9.0</td>
<td>9.0</td>
<td>8.7</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>8.7</td>
<td>9.0</td>
<td>8.3</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.7</td>
<td>9.0</td>
<td>9.0</td>
<td>8.7</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>9.0</td>
<td>9.0</td>
<td>7.7</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.7</td>
<td>9.0</td>
<td>9.0</td>
<td>8.3</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>063</td>
<td>9.0</td>
<td>9.0</td>
<td>7.3</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.7</td>
<td>7.3</td>
<td>8.7</td>
<td>8.5</td>
<td>9.0</td>
<td>8.0</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>032</td>
<td>8.3</td>
<td>9.0</td>
<td>5.7</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.5</td>
<td>8.7</td>
<td>5.7</td>
<td>8.7</td>
<td>8.5</td>
<td>9.0</td>
<td>7.3</td>
<td>7.5</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>016</td>
<td>5.0</td>
<td>9.0</td>
<td>0.0</td>
<td>9.0</td>
<td>6.0</td>
<td>0.0</td>
<td>6.0</td>
<td>9.0</td>
<td>8.0</td>
<td>8.0</td>
<td>9.0</td>
<td>8.0</td>
<td>8.0</td>
<td>9.0</td>
<td>8.0</td>
</tr>
<tr>
<td>Yhdisteet</td>
<td>Käyttömäärä</td>
<td>1.</td>
<td>2.</td>
<td>3.</td>
<td>4.</td>
<td>5.</td>
<td>6.</td>
<td>7.</td>
<td>8.</td>
<td>9.</td>
<td>10.</td>
<td>11.</td>
<td>12.</td>
<td>13.</td>
<td>14.</td>
<td>15.</td>
</tr>
<tr>
<td>--</td>
<td>-------------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Metyyli-2-(5-etyyli-5-metyyli-4-okso-2-imidatsolin-2-yyli)-nikotinaatti</td>
<td>1.000</td>
<td>3.0</td>
<td>9.0</td>
<td>0.0</td>
<td>7.0</td>
<td></td>
<td></td>
<td></td>
<td>8.0</td>
<td>4.0</td>
<td>9.0</td>
<td>1.0</td>
<td>7.0</td>
<td>7.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>3.0</td>
<td>8.0</td>
<td>2.0</td>
<td>6.0</td>
<td></td>
<td></td>
<td></td>
<td>8.0</td>
<td>3.0</td>
<td>9.0</td>
<td>1.0</td>
<td>4.8</td>
<td>6.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>1.0</td>
<td>7.0</td>
<td>0.0</td>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
<td>8.0</td>
<td>0.0</td>
<td>9.0</td>
<td>0.0</td>
<td>4.0</td>
<td>6.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>1.0</td>
<td>7.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td>7.0</td>
<td>0.0</td>
<td>9.0</td>
<td>0.0</td>
<td>2.0</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>063</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td>4.0</td>
<td>0.0</td>
<td>9.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-propynyylili-2-(5-isopropynylyl-4-okso-2-imidatsolin-2-yyli)-nikotinaatti</td>
<td>1.000</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>063</td>
<td>8.0</td>
<td>9.0</td>
<td>7.6</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>032</td>
<td>4.0</td>
<td>9.0</td>
<td>4.0</td>
<td>9.0</td>
<td>5.0</td>
<td>9.0</td>
<td>2.0</td>
<td>9.0</td>
<td>4.0</td>
<td>9.0</td>
<td>9.0</td>
<td>6.0</td>
<td>4.0</td>
<td>9.0</td>
<td>8.0</td>
</tr>
<tr>
<td>2-propyylili-2-(5,5-dimetyylili-4-okso-2-imidatsolin-2-yyli)-nikotinaatti</td>
<td>1.000</td>
<td>5.0</td>
<td>9.0</td>
<td>0.0</td>
<td>1.0</td>
<td>8.0</td>
<td>8.0</td>
<td>4.0</td>
<td>8.0</td>
<td>1.0</td>
<td>8.0</td>
<td>5.0</td>
<td>1.0</td>
<td>8.0</td>
<td>4.0</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>1.0</td>
<td>8.0</td>
<td>0.0</td>
<td>0.0</td>
<td>6.0</td>
<td>6.0</td>
<td>0.0</td>
<td>6.0</td>
<td>0.0</td>
<td>6.0</td>
<td>1.0</td>
<td>0.0</td>
<td>7.0</td>
<td>2.0</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>0.0</td>
<td>8.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2.0</td>
<td>4.0</td>
<td>0.0</td>
<td>4.0</td>
<td>0.0</td>
<td>8.0</td>
<td>0.0</td>
<td>0.0</td>
<td>4.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>0.0</td>
<td>6.8</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>4.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>063</td>
<td>0.0</td>
<td>4.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>032</td>
<td>0.0</td>
<td>2.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Tert.-butyylili-2-(5-isopropynylyl-5-metyylili-4-okso-2-imidatsolin-2-yyli)-nikotinaatti</td>
<td>1.000</td>
<td>7.8</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>7.8</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>8.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>6.0</td>
<td>3.0</td>
<td>8.0</td>
<td>9.0</td>
<td>7.0</td>
<td>7.0</td>
<td>1.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>4.0</td>
<td>7.0</td>
<td>9.0</td>
<td>8.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>3.0</td>
<td>3.0</td>
<td>7.0</td>
<td>8.0</td>
<td>3.0</td>
<td>6.0</td>
<td>0.0</td>
<td>8.0</td>
<td>8.0</td>
<td>7.0</td>
<td>3.0</td>
<td>7.0</td>
<td>8.0</td>
<td>7.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>063</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>3.0</td>
<td>0.0</td>
<td>6.0</td>
<td>2.0</td>
<td>0.0</td>
<td>1.0</td>
<td>4.0</td>
<td>4.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>032</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2.0</td>
<td>0.0</td>
<td>2.0</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yhdisteet</td>
<td>Käyttö- määrä</td>
<td>1.</td>
<td>2.</td>
<td>3.</td>
<td>4.</td>
<td>5.</td>
<td>6.</td>
<td>7.</td>
<td>8.</td>
<td>9.</td>
<td>10.</td>
<td>11.</td>
<td>12.</td>
<td>13.</td>
<td>14.</td>
<td>15.</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------</td>
<td>----</td>
</tr>
<tr>
<td>Sykloheksyli-2-(5-isopropyli-5-metyyli-4-okso-2-imidatsolin-2-yyli)-nikotinaatti</td>
<td>1.000</td>
<td>6.0</td>
<td>0.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>8.0</td>
<td>1.0</td>
<td>8.0</td>
<td>7.0</td>
<td>1.0</td>
<td>4.0</td>
<td>6.0</td>
<td>8.0</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>2.0</td>
<td>0.0</td>
<td>6.0</td>
<td>7.0</td>
<td>3.0</td>
<td>7.0</td>
<td>0.0</td>
<td>8.0</td>
<td>4.0</td>
<td>0.0</td>
<td>3.0</td>
<td>2.0</td>
<td>6.0</td>
<td>7.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>2.0</td>
<td>0.0</td>
<td>3.0</td>
<td>0.0</td>
<td>6.0</td>
<td>2.0</td>
<td>0.0</td>
<td>2.0</td>
<td>0.0</td>
<td>2.0</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>3.0</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>063</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>032</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Metyyli-2-(5,5-dimetyyli-4-okso-2-imidatsolin-2-yyli)-nikotinaatti</td>
<td>1.000</td>
<td>2.0</td>
<td>9.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2.0</td>
<td>8.0</td>
<td>4.0</td>
<td>7.0</td>
<td>2.0</td>
<td>9.0</td>
<td>0.0</td>
<td>0.0</td>
<td>7.0</td>
<td>2.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>1.0</td>
<td>8.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>8.0</td>
<td>2.0</td>
<td>7.0</td>
<td>3.0</td>
<td>8.0</td>
<td>0.0</td>
<td>0.0</td>
<td>7.0</td>
<td>2.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>0.0</td>
<td>8.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>7.0</td>
<td>0.0</td>
<td>8.0</td>
<td>0.0</td>
<td>8.0</td>
<td>0.0</td>
<td>0.0</td>
<td>6.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>0.0</td>
<td>8.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>4.0</td>
<td>0.0</td>
<td>6.0</td>
<td>0.0</td>
<td>3.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>063</td>
<td>0.0</td>
<td>4.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>2.0</td>
<td>0.0</td>
<td>2.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>032</td>
<td>0.0</td>
<td>2.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Bentsyyli-2-(5,5-dimetyyli-4-okso-2-imidatsolin-2-yyli)-nikotinaatti</td>
<td>1.000</td>
<td>1.0</td>
<td>8.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>9.0</td>
<td>2.0</td>
<td>6.0</td>
<td>0.0</td>
<td>7.0</td>
<td>1.0</td>
<td>0.0</td>
<td>2.0</td>
<td>3.0</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>1.0</td>
<td>8.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>6.0</td>
<td>0.0</td>
<td>6.0</td>
<td>0.0</td>
<td>7.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
<td>2.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>0.0</td>
<td>7.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2.0</td>
<td>0.0</td>
<td>4.0</td>
<td>0.0</td>
<td>3.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>0.0</td>
<td>2.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>4.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>063</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>032</td>
<td>0.0</td>
</tr>
<tr>
<td>Kalsium-2-(5-isopropyli-5-metyyli-4-okso-2-imidatsolin-2-yyli)-nikotinaatti</td>
<td>1.000</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>063</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>032</td>
<td>8.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>6.0</td>
<td>9.0</td>
<td>6.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>Yhdisteet</td>
<td>Käyttömäärä</td>
<td>1.</td>
<td>2.</td>
<td>3.</td>
<td>4.</td>
<td>5.</td>
<td>6.</td>
<td>7.</td>
<td>8.</td>
<td>9.</td>
<td>10.</td>
<td>11.</td>
<td>12.</td>
<td>13.</td>
<td>14.</td>
<td>15.</td>
</tr>
<tr>
<td>--</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>Bentsyyli-2-(5-entyli-5-metyylli-4-okso-2-imidatsolin-2-yylli)-nikotinaatti</td>
<td>1.000</td>
<td>7.0</td>
<td>9.0</td>
<td>3.0</td>
<td>8.0</td>
<td>6.0</td>
<td>8.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>8.0</td>
<td>8.0</td>
<td>7.0</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>2.0</td>
<td>9.0</td>
<td>2.0</td>
<td>7.0</td>
<td>5.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>3.0</td>
<td>9.0</td>
<td>6.0</td>
<td>8.0</td>
<td>4.0</td>
<td>9.0</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>1.0</td>
<td>9.0</td>
<td>1.0</td>
<td>4.0</td>
<td>7.0</td>
<td>1.10</td>
<td>9.0</td>
<td>1.0</td>
<td>9.0</td>
<td>3.0</td>
<td>8.0</td>
<td>3.0</td>
<td>9.0</td>
<td>0.0</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>0.0</td>
<td>7.0</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>7.0</td>
<td>0.0</td>
<td>8.0</td>
<td>0.0</td>
<td>7.0</td>
<td>0.0</td>
<td>1.0</td>
<td>1.0</td>
<td>3.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>063</td>
<td>0.0</td>
<td>2.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>5.0</td>
<td>0.0</td>
<td>7.0</td>
<td>0.0</td>
<td>7.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>032</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>4.0</td>
<td>0.0</td>
<td>4.0</td>
<td>0.0</td>
<td>4.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>7-propyyli-2-(5-entyli-5-metyylli-4-okso-2-imidatsolin-2-yylli)-nikotinaatti</td>
<td>1.000</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>7.0</td>
<td>9.0</td>
<td>6.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>3.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>6.0</td>
<td>9.0</td>
<td>2.0</td>
<td>9.0</td>
<td>6.0</td>
<td>9.0</td>
<td>5.0</td>
<td>9.0</td>
<td>3.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>5.0</td>
<td>9.0</td>
<td>1.0</td>
<td>6.0</td>
<td>2.0</td>
<td>9.0</td>
<td>8.0</td>
<td>8.0</td>
<td>0.0</td>
<td>9.0</td>
<td>7.0</td>
<td>4.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td>063</td>
<td>1.0</td>
<td>9.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>8.0</td>
<td>1.0</td>
<td>7.0</td>
<td>0.0</td>
<td>8.0</td>
<td>1.0</td>
<td>0.0</td>
<td>4.0</td>
<td>5.0</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>032</td>
<td>0.0</td>
<td>6.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>5.0</td>
<td>0.0</td>
<td>6.0</td>
<td>0.0</td>
<td>5.0</td>
<td>0.0</td>
<td>1.0</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2-(5-entyli-5-metyylli-4-okso-2-imidatsolin-2-yylli)-nikotiinihappo</td>
<td>1.000</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>9.0</td>
<td>9.0</td>
<td>4.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>3.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>063</td>
<td>8.0</td>
<td>9.0</td>
<td>1.0</td>
<td>8.0</td>
<td>4.0</td>
<td>8.0</td>
<td>7.0</td>
<td>9.0</td>
<td>0.0</td>
<td>9.0</td>
<td>8.0</td>
<td>7.0</td>
<td>7.0</td>
<td>9.0</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td>032</td>
<td>3.0</td>
<td>7.0</td>
<td>1.0</td>
<td>1.0</td>
<td>2.0</td>
<td>8.0</td>
<td>2.0</td>
<td>8.0</td>
<td>0.0</td>
<td>9.0</td>
<td>1.0</td>
<td>0.0</td>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
</tr>
<tr>
<td>Di-isopropyliammonium-2-(5-isoperopyli-5-metyylli-4-okso-2-imidatsolin-2-yylli)-nikotinaatti</td>
<td>1.000</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>063</td>
<td>8.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>6.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>032</td>
<td>8.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>5.0</td>
<td>8.0</td>
<td>5.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
</tbody>
</table>
Taulukko XI (jatkoa..)

Orastuksen-jälkeen koe, käyttömäärät kg/ha

<table>
<thead>
<tr>
<th>Yhdisteet</th>
<th>Käyttömäärä 1.</th>
<th>2.</th>
<th>3.</th>
<th>4.</th>
<th>5.</th>
<th>6.</th>
<th>7.</th>
<th>8.</th>
<th>9.</th>
<th>10.</th>
<th>11.</th>
<th>12.</th>
<th>13.</th>
<th>14.</th>
<th>15.</th>
<th>16.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dodekyyli-2-(5-isopropyli-4-okso-2-imidatsolin-2-yyli)-nikotinaatti</td>
<td>1.000</td>
<td>6,0</td>
<td>8,0</td>
<td>7,0</td>
<td>8,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>8,0</td>
<td>6,0</td>
<td>9,0</td>
<td>8,0</td>
<td>7,0</td>
<td>8,0</td>
<td>7,0</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>3,0</td>
<td>8,0</td>
<td>3,0</td>
<td>8,0</td>
<td>8,0</td>
<td>9,0</td>
<td>9,0</td>
<td>7,0</td>
<td>2,0</td>
<td>9,0</td>
<td>8,0</td>
<td>4,0</td>
<td>2,0</td>
<td>7,0</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>3,0</td>
<td>7,0</td>
<td>1,0</td>
<td>6,0</td>
<td>3,0</td>
<td>7,0</td>
<td>9,0</td>
<td>7,0</td>
<td>0,0</td>
<td>9,0</td>
<td>7,0</td>
<td>2,0</td>
<td>0,0</td>
<td>3,0</td>
<td>3,0</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>1,0</td>
<td>6,0</td>
<td>0,0</td>
<td>4,0</td>
<td>1,0</td>
<td>6,0</td>
<td>6,0</td>
<td>7,0</td>
<td>0,0</td>
<td>7,0</td>
<td>4,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>3,0</td>
</tr>
<tr>
<td></td>
<td>063</td>
<td>0,0</td>
<td>3,0</td>
<td>0,0</td>
<td>4,0</td>
<td>0,0</td>
<td>3,0</td>
<td>1,0</td>
<td>7,0</td>
<td>0,0</td>
<td>7,0</td>
<td>4,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>1,0</td>
</tr>
<tr>
<td>2-dekynyli-2-(5-isopropyyli-5-metyli-4-okso-2-imidatsolin-2-yyli)-nikotinaatti</td>
<td>1.000</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>9,0</td>
<td>7,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>9,0</td>
<td>7,0</td>
<td>9,0</td>
<td>9,0</td>
<td>8,0</td>
<td>8,0</td>
<td>6,0</td>
<td>9,0</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>9,0</td>
<td>6,0</td>
<td>9,0</td>
<td>9,0</td>
<td>6,0</td>
<td>8,0</td>
<td>6,0</td>
<td>8,0</td>
<td>8,0</td>
<td>7,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>063</td>
<td>7,0</td>
<td>2,0</td>
<td>9,0</td>
<td>9,0</td>
<td>3,0</td>
<td>7,0</td>
<td>2,0</td>
<td>8,0</td>
<td>8,0</td>
<td>7,0</td>
<td>4,0</td>
<td>9,0</td>
<td>8,0</td>
<td>8,0</td>
<td>8,0</td>
</tr>
<tr>
<td></td>
<td>032</td>
<td>1,0</td>
<td>7,0</td>
<td>8,0</td>
<td>8,0</td>
<td>1,0</td>
<td>6,0</td>
<td>0,0</td>
<td>6,0</td>
<td>7,0</td>
<td>6,0</td>
<td>2,0</td>
<td>9,0</td>
<td>2,0</td>
<td>7,0</td>
<td>7,0</td>
</tr>
<tr>
<td>2-metoksietyyli-2-(5-isopropyyli-5-metyli-4-okso-2-imidatsolin-2-yyli)-nikotinaatti</td>
<td>1.000</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
<td>8,0</td>
<td>3,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>4,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>9,0</td>
<td>2,0</td>
<td>9,0</td>
<td>8,0</td>
<td>2,0</td>
<td>8,0</td>
<td>6,0</td>
<td>8,0</td>
<td>9,0</td>
<td>7,0</td>
<td>9,0</td>
<td>9,0</td>
<td>4,0</td>
<td>9,0</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>063</td>
<td>2,0</td>
<td>0,0</td>
<td>9,0</td>
<td>7,0</td>
<td>0,0</td>
<td>7,0</td>
<td>1,0</td>
<td>8,0</td>
<td>8,0</td>
<td>7,0</td>
<td>2,0</td>
<td>8,0</td>
<td>4,0</td>
<td>8,0</td>
<td>8,0</td>
</tr>
<tr>
<td></td>
<td>032</td>
<td>1,0</td>
<td>0,0</td>
<td>4,0</td>
<td>3,0</td>
<td>0,0</td>
<td>6,0</td>
<td>0,0</td>
<td>6,0</td>
<td>7,0</td>
<td>0,0</td>
<td>1,0</td>
<td>7,0</td>
<td>3,0</td>
<td>4,0</td>
<td>4,0</td>
</tr>
<tr>
<td>Allyyyli-2-(5-isopropyyli-5-metyli-4-okso-2-imidatsolin-2-yyli)-nikotinaatti</td>
<td>1.000</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>9,0</td>
<td>2,0</td>
<td>9,0</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>8,0</td>
<td>1,0</td>
<td>9,0</td>
<td>9,0</td>
<td>4,0</td>
<td>9,0</td>
<td>7,0</td>
<td>9,0</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>063</td>
<td>7,0</td>
<td>0,0</td>
<td>9,0</td>
<td>8,0</td>
<td>1,0</td>
<td>8,0</td>
<td>4,0</td>
<td>8,0</td>
<td>8,0</td>
<td>7,0</td>
<td>6,0</td>
<td>8,0</td>
<td>8,0</td>
<td>8,0</td>
<td>8,0</td>
</tr>
<tr>
<td></td>
<td>032</td>
<td>2,0</td>
<td>0,0</td>
<td>7,0</td>
<td>7,0</td>
<td>0,0</td>
<td>7,0</td>
<td>1,0</td>
<td>6,0</td>
<td>7,0</td>
<td>0,0</td>
<td>3,0</td>
<td>7,0</td>
<td>7,0</td>
<td>7,0</td>
<td>7,0</td>
</tr>
<tr>
<td>1-metyyliallyyyli-2-(5-isopropyyli-5-metyli-4-okso-2-imidatsolin-2-yyli)-nikotinaatti</td>
<td>1.000</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>7,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>6,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>8,0</td>
<td>1,0</td>
<td>9,0</td>
<td>9,0</td>
<td>5,0</td>
<td>8,0</td>
<td>7,0</td>
<td>8,0</td>
<td>9,0</td>
<td>7,0</td>
<td>5,0</td>
<td>8,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>4,0</td>
<td>0,0</td>
<td>9,0</td>
<td>7,0</td>
<td>1,0</td>
<td>8,0</td>
<td>1,0</td>
<td>8,0</td>
<td>9,0</td>
<td>4,0</td>
<td>3,0</td>
<td>7,0</td>
<td>8,0</td>
<td>8,0</td>
<td>8,0</td>
</tr>
<tr>
<td></td>
<td>063</td>
<td>1,0</td>
<td>0,0</td>
<td>8,0</td>
<td>7,0</td>
<td>1,0</td>
<td>7,0</td>
<td>0,0</td>
<td>7,0</td>
<td>7,0</td>
<td>0,0</td>
<td>1,0</td>
<td>7,0</td>
<td>7,0</td>
<td>7,0</td>
<td>7,0</td>
</tr>
<tr>
<td></td>
<td>032</td>
<td>0,0</td>
<td>0,0</td>
<td>3,0</td>
<td>4,0</td>
<td>0,0</td>
<td>6,0</td>
<td>0,0</td>
<td>6,0</td>
<td>2,0</td>
<td>0,0</td>
<td>0,0</td>
<td>1,0</td>
<td>1,0</td>
<td>4,0</td>
<td>4,0</td>
</tr>
<tr>
<td>Yhdisteet</td>
<td>Käyttömäärä</td>
<td>1.</td>
<td>2.</td>
<td>3.</td>
<td>4.</td>
<td>5.</td>
<td>6.</td>
<td>7.</td>
<td>8.</td>
<td>9.</td>
<td>10.</td>
<td>11.</td>
<td>12.</td>
<td>13.</td>
<td>14.</td>
<td>15.</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>----</td>
</tr>
<tr>
<td>1-metyyli-2-propenyli-2-(5-isopropyli-5-metyyli-4-okso-2-imidatsolin-2-yli)-nikotinaatti</td>
<td>1.000</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
<td>9,0</td>
<td>7,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>9,0</td>
<td>7,0</td>
<td>9,0</td>
<td>9,0</td>
<td>4,0</td>
<td>9,0</td>
<td>6,0</td>
<td>8,0</td>
<td>9,0</td>
<td>9,0</td>
<td>7,0</td>
<td>7,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>063</td>
<td>7,0</td>
<td>5,0</td>
<td>9,0</td>
<td>8,0</td>
<td>4,0</td>
<td>8,0</td>
<td>4,0</td>
<td>7,0</td>
<td>9,0</td>
<td>7,0</td>
<td>7,0</td>
<td>6,0</td>
<td>4,0</td>
<td>8,0</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>032</td>
<td>4,0</td>
<td>2,0</td>
<td>7,0</td>
<td>8,0</td>
<td>1,0</td>
<td>7,0</td>
<td>1,0</td>
<td>7,0</td>
<td>7,0</td>
<td>7,0</td>
<td>7,0</td>
<td>5,0</td>
<td>7,0</td>
<td>7,0</td>
<td>7,0</td>
</tr>
<tr>
<td>Etyyli-2-(5-isopropyli-5-metyyli-4-okso-2-imidatsolin-2-yli)-nikotinaatti</td>
<td>1.000</td>
<td>8,0</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>7,0</td>
<td>9,0</td>
<td>7,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>3,0</td>
<td>9,0</td>
<td>7,0</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
<td>9,0</td>
<td>8,0</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>0,0</td>
<td>8,0</td>
<td>2,0</td>
<td>8,0</td>
<td>7,0</td>
<td>8,0</td>
<td>9,0</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
<td>3,0</td>
<td>0,0</td>
<td>2,0</td>
<td>6,0</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>063</td>
<td>0,0</td>
<td>6,0</td>
<td>0,0</td>
<td>2,0</td>
<td>3,0</td>
<td>8,0</td>
<td>8,0</td>
<td>7,0</td>
<td>4,0</td>
<td>8,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>1,0</td>
</tr>
<tr>
<td></td>
<td>032</td>
<td>0,0</td>
<td>3,0</td>
<td>0,0</td>
<td>1,0</td>
<td>1,0</td>
<td>7,0</td>
<td>8,0</td>
<td>3,0</td>
<td>0,0</td>
<td>8,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>2-(bentsyylioksietyyli)-5-isopropyli-5-metyyli-4-okso-2-imidatsolin-2-yli)-nikotinaatti</td>
<td>1.000</td>
<td>9,0</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
<td>8,0</td>
<td>8,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>8,0</td>
<td>8,0</td>
<td>1,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
<td>8,0</td>
<td>8,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>3,0</td>
<td>9,0</td>
<td>0,0</td>
<td>8,0</td>
<td>7,0</td>
<td>9,0</td>
<td>9,0</td>
<td>8,0</td>
<td>7,0</td>
<td>8,0</td>
<td>7,0</td>
<td>2,0</td>
<td>4,0</td>
<td>8,0</td>
<td>8,0</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>1,0</td>
<td>7,0</td>
<td>0,0</td>
<td>6,0</td>
<td>4,0</td>
<td>9,0</td>
<td>1,0</td>
<td>8,0</td>
<td>1,0</td>
<td>8,0</td>
<td>7,0</td>
<td>2,0</td>
<td>1,0</td>
<td>8,0</td>
<td>1,0</td>
</tr>
<tr>
<td></td>
<td>063</td>
<td>0,0</td>
<td>3,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>6,0</td>
<td>0,0</td>
<td>8,0</td>
<td>0,0</td>
<td>3,0</td>
<td>0,0</td>
<td>0,0</td>
<td>2,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td></td>
<td>032</td>
<td>0,0</td>
<td>2,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>1,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Metyyli-2-(5-isopropyli-5-metyyli-4-okso-2-imidatsolin-2-yli)-nikotinaatti-hydrokloridi</td>
<td>1.000</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>9,0</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
<td>8,0</td>
<td>8,0</td>
<td>7,0</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>063</td>
<td>4,0</td>
<td>9,0</td>
<td>7,0</td>
<td>7,0</td>
<td>4,0</td>
<td>8,0</td>
<td>9,0</td>
<td>8,0</td>
<td>6,0</td>
<td>8,0</td>
<td>8,0</td>
<td>9,0</td>
<td>7,0</td>
<td>9,0</td>
<td>6,0</td>
</tr>
<tr>
<td></td>
<td>032</td>
<td>2,0</td>
<td>6,0</td>
<td>6,0</td>
<td>6,0</td>
<td>4,0</td>
<td>8,0</td>
<td>8,0</td>
<td>4,0</td>
<td>7,0</td>
<td>8,0</td>
<td>4,0</td>
<td>9,0</td>
<td>4,0</td>
<td>8,0</td>
<td>4,0</td>
</tr>
<tr>
<td>Yhdisteet</td>
<td>Käyttömäärä</td>
<td>1.</td>
<td>2.</td>
<td>3.</td>
<td>4.</td>
<td>5.</td>
<td>6.</td>
<td>7.</td>
<td>8.</td>
<td>9.</td>
<td>10.</td>
<td>11.</td>
<td>12.</td>
<td>13.</td>
<td>14.</td>
<td>15.</td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
<td>--------</td>
</tr>
<tr>
<td>Furfuryli-2-(5-isopropyli-5-metyli-4-okso-2-imidatsolin-2-yylil)-nikotinaatti</td>
<td>1.000</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>9,0</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>063</td>
<td>8,0</td>
<td>8,0</td>
<td>7,0</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>8,0</td>
<td>8,0</td>
<td>8,0</td>
<td>8,0</td>
<td>8,0</td>
<td>8,0</td>
<td>7,0</td>
</tr>
<tr>
<td></td>
<td>032</td>
<td>7,0</td>
<td>7,0</td>
<td>3,0</td>
<td>9,0</td>
<td>6,0</td>
<td>9,0</td>
<td>4,0</td>
<td>9,0</td>
<td>3,0</td>
<td>7,0</td>
<td>8,0</td>
<td>9,0</td>
<td>7,0</td>
<td>7,0</td>
<td>9,0</td>
</tr>
<tr>
<td>Isopropyli-2-(5-isopropyli-5-metyli-4-okso-2-imidatsolin-2-yylil)-nikotinaatti</td>
<td>1.000</td>
<td>8,0</td>
<td>7,0</td>
<td>2,0</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>8,0</td>
<td>1,0</td>
<td>8,0</td>
<td>8,0</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>1,0</td>
<td>7,0</td>
<td>1,0</td>
<td>8,0</td>
<td>8,0</td>
<td>9,0</td>
<td>6,0</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
<td>7,0</td>
<td>1,0</td>
<td>2,0</td>
<td>8,0</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>1,0</td>
<td>3,0</td>
<td>0,0</td>
<td>6,0</td>
<td>1,0</td>
<td>8,0</td>
<td>6,0</td>
<td>8,0</td>
<td>6,0</td>
<td>9,0</td>
<td>3,0</td>
<td>0,0</td>
<td>2,0</td>
<td>7,0</td>
<td>4,0</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>1,0</td>
<td>8,0</td>
<td>0,0</td>
<td>2,0</td>
<td>0,0</td>
<td>6,0</td>
<td>8,0</td>
<td>9,0</td>
<td>6,0</td>
<td>7,0</td>
<td>2,0</td>
<td>0,0</td>
<td>0,0</td>
<td>7,0</td>
<td>1,0</td>
</tr>
<tr>
<td></td>
<td>063</td>
<td>0,0</td>
<td>2,0</td>
<td>0,0</td>
<td>1,0</td>
<td>0,0</td>
<td>3,0</td>
<td>4,0</td>
<td>1,0</td>
<td>6,0</td>
<td>3,0</td>
<td>0,0</td>
<td>0,0</td>
<td>3,0</td>
<td>1,0</td>
<td>0,0</td>
</tr>
<tr>
<td></td>
<td>032</td>
<td>0,0</td>
<td>2,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>2,0</td>
<td>0,0</td>
<td>4,0</td>
<td>0,0</td>
<td>6,0</td>
<td>1,0</td>
<td>0,0</td>
<td>0,0</td>
<td>1,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Bentsyyli-2-(5-isopropyli-5-metyli-4-okso-2-imidatsolin-2-yylil)-nikotinaatti</td>
<td>1.000</td>
<td>9,0</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>9,0</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>7,0</td>
<td>9,0</td>
<td>7,0</td>
<td>9,0</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
<td>9,0</td>
<td>6,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>6,0</td>
<td>9,0</td>
<td>6,0</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>1,0</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
<td>7,0</td>
<td>9,0</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>063</td>
<td>4,0</td>
<td>7,0</td>
<td>1,0</td>
<td>9,0</td>
<td>7,0</td>
<td>0,0</td>
<td>8,0</td>
<td>1,0</td>
<td>2,0</td>
<td>2,0</td>
<td>8,0</td>
<td>7,0</td>
<td>4,0</td>
<td>9,0</td>
<td>6,0</td>
</tr>
<tr>
<td></td>
<td>032</td>
<td>1,0</td>
<td>6,0</td>
<td>1,0</td>
<td>6,0</td>
<td>9,0</td>
<td>4,0</td>
<td>0,0</td>
<td>8,0</td>
<td>0,0</td>
<td>1,0</td>
<td>2,0</td>
<td>1,0</td>
<td>2,0</td>
<td>1,0</td>
<td>9,0</td>
</tr>
<tr>
<td>Yhdisteet</td>
<td>Käyttömäärä</td>
<td>1.</td>
<td>2.</td>
<td>3.</td>
<td>4.</td>
<td>5.</td>
<td>6.</td>
<td>8.</td>
<td>9.</td>
<td>10.</td>
<td>11.</td>
<td>12.</td>
<td>17.</td>
<td>13.</td>
<td>14.</td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-------------</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>2-metyylliala-2-(5-isopropyli-5-metyylifu-4-okso-2-imidatsolin-2-yyli-nikotinaatti</td>
<td>.100</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.500</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.250</td>
<td>8.0</td>
<td>8.0</td>
<td>7.0</td>
<td>8.0</td>
<td>6.0</td>
<td>9.0</td>
<td>6.0</td>
<td>8.0</td>
<td>6.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.125</td>
<td>3.0</td>
<td>8.0</td>
<td>6.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
<td>8.0</td>
<td>5.0</td>
<td>8.0</td>
<td>8.0</td>
<td>7.0</td>
<td>9.0</td>
<td>8.0</td>
<td>8.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.063</td>
<td>1.0</td>
<td>7.0</td>
<td>1.0</td>
<td>6.0</td>
<td>6.0</td>
<td>7.0</td>
<td>6.0</td>
<td>1.0</td>
<td>7.0</td>
<td>7.0</td>
<td>3.0</td>
<td>4.0</td>
<td>7.0</td>
<td>7.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.032</td>
<td>0.0</td>
<td>4.0</td>
<td>0.0</td>
<td>1.0</td>
<td>3.0</td>
<td>7.0</td>
<td>7.0</td>
<td>0.0</td>
<td>6.0</td>
<td>2.0</td>
<td>1.0</td>
<td>9.0</td>
<td>3.0</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>2-butenyli-2-(5-isopropyli-5-metyylifu-4-okso-2-imidatsolin-2-yyli)nikotinaatti</td>
<td>1.00</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.500</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>7.0</td>
<td>8.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.250</td>
<td>7.0</td>
<td>9.0</td>
<td>6.0</td>
<td>9.0</td>
<td>7.0</td>
<td>8.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>8.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.125</td>
<td>5.0</td>
<td>8.0</td>
<td>5.0</td>
<td>7.0</td>
<td>7.0</td>
<td>8.0</td>
<td>9.0</td>
<td>7.0</td>
<td>8.0</td>
<td>9.0</td>
<td>7.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.063</td>
<td>3.0</td>
<td>7.0</td>
<td>3.0</td>
<td>6.0</td>
<td>6.0</td>
<td>7.0</td>
<td>9.0</td>
<td>1.0</td>
<td>7.0</td>
<td>8.0</td>
<td>1.0</td>
<td>9.0</td>
<td>6.0</td>
<td>6.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.032</td>
<td>1.0</td>
<td>5.0</td>
<td>1.0</td>
<td>2.0</td>
<td>4.0</td>
<td>7.0</td>
<td>7.0</td>
<td>0.0</td>
<td>6.0</td>
<td>3.0</td>
<td>0.0</td>
<td>9.0</td>
<td>1.0</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>Oktadekyli-2-(5-isopropyli-5-metyylifu-4-okso-2-imidatsolin-2-yyli)nikotinaatti</td>
<td>8.00</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>6.0</td>
<td>0.0</td>
<td>3.0</td>
<td>9.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>0.0</td>
<td>0.0</td>
<td>4.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>3.0</td>
<td>2.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Propyyli-2-(5-isopropyli-5-metyylifu-4-imidatsolin-2-yyli)nikotinaatti</td>
<td>8.00</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.500</td>
<td>7.0</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.250</td>
<td>8.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.125</td>
<td>5.0</td>
<td>9.0</td>
<td>5.0</td>
<td>7.0</td>
<td>5.0</td>
<td>7.0</td>
<td>9.0</td>
<td>6.0</td>
<td>9.0</td>
<td>8.0</td>
<td>7.0</td>
<td>9.0</td>
<td>4.0</td>
<td>8.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.063</td>
<td>3.0</td>
<td>7.0</td>
<td>1.0</td>
<td>2.0</td>
<td>4.0</td>
<td>5.0</td>
<td>6.0</td>
<td>3.0</td>
<td>8.0</td>
<td>7.0</td>
<td>2.0</td>
<td>9.0</td>
<td>2.0</td>
<td>7.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.032</td>
<td>0.0</td>
<td>6.0</td>
<td>0.0</td>
<td>1.0</td>
<td>3.0</td>
<td>4.0</td>
<td>6.0</td>
<td>0.0</td>
<td>6.0</td>
<td>3.0</td>
<td>0.0</td>
<td>9.0</td>
<td>1.0</td>
<td>6.0</td>
<td></td>
</tr>
<tr>
<td>Butyyli-2-(5-isopropyli-5-metyylifu-4-okso-2-imidatsolin-2-yyli)nikotinaatti</td>
<td>8.00</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.500</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.250</td>
<td>6.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>6.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.125</td>
<td>2.0</td>
<td>8.0</td>
<td>2.0</td>
<td>7.0</td>
<td>5.0</td>
<td>7.0</td>
<td>4.0</td>
<td>3.0</td>
<td>9.0</td>
<td>9.0</td>
<td>6.0</td>
<td>9.0</td>
<td>7.0</td>
<td>7.0</td>
<td></td>
</tr>
<tr>
<td>Yhdisteet</td>
<td>Käyttömäärä</td>
<td>1.</td>
<td>2.</td>
<td>3.</td>
<td>4.</td>
<td>5.</td>
<td>6.</td>
<td>8.</td>
<td>9.</td>
<td>10.</td>
<td>11.</td>
<td>12.</td>
<td>13.</td>
<td>14.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metyli-2-(5-isopropyli-4-okso-2-imidatsolin-2-yli)-6-metoksinokotinaatti</td>
<td>8.000</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.000</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>8.0</td>
<td>8.0</td>
<td>2.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.500</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>7.0</td>
<td>8.0</td>
<td>2.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.250</td>
<td>7.0</td>
<td>9.0</td>
<td>7.0</td>
<td>6.0</td>
<td>1.0</td>
<td>2.0</td>
<td>7.0</td>
<td>7.0</td>
<td>8.0</td>
<td>6.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.125</td>
<td>7.0</td>
<td>9.0</td>
<td>7.0</td>
<td>6.0</td>
<td>0.0</td>
<td>2.0</td>
<td>7.0</td>
<td>8.0</td>
<td>8.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.063</td>
<td>6.0</td>
<td>7.0</td>
<td>6.0</td>
<td>4.0</td>
<td>2.0</td>
<td>1.0</td>
<td>7.0</td>
<td>7.0</td>
<td>8.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.032</td>
<td>7.0</td>
<td>6.0</td>
<td>6.0</td>
<td>4.0</td>
<td>2.0</td>
<td>1.0</td>
<td>7.0</td>
<td>7.0</td>
<td>8.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-dekenyyli-2-(5-isopropyl-4-okso-2-imidatsolin-2-yli)-nikotinaatti</td>
<td>1.000</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.500</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.250</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.125</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.063</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.032</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N,N-dietyli-2-(5-isopropyl-4-okso-2-imidatsolin-2-yli)-nikotinaatti</td>
<td>8.000</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>6.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-kloorialkyyli-2-(5-isopropyl-4-metyli-4-okso-2-imidatsolin-2-yli)-nikotinaatti</td>
<td>1.000</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.500</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.250</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.125</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.063</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.032</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metyli-2-(1-acetyli-4-isopropyl-5-metyli-5-okso-2-imidatsolin-2-yli)-nikotinaatti</td>
<td>1.000</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.500</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.250</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.125</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.063</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.032</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metyli-2-(5-syklopropyli-5-metyli-4-okso-2-imidatsolin-2-yli)-nikotinaatti</td>
<td>1.000</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.500</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.250</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.125</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.063</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.032</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taulukko XI (jatkuu..)</td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td></td>
</tr>
<tr>
<td>Yhdisteet</td>
<td>Käyttömäärä</td>
<td>1.</td>
<td>2.</td>
<td>3.</td>
<td>4.</td>
<td>5.</td>
<td>6.</td>
<td>8.</td>
<td>9.</td>
<td>10.</td>
<td>11.</td>
<td>12.</td>
<td>13.</td>
<td>14.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heksyyli-2-(5-isopropyl-</td>
<td>8.000</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pyylii-5-metyyli-4-okso-</td>
<td>6.000</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-imidatsolin-2-yyli)</td>
<td>4.000</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nikoninaatti</td>
<td>2.000</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-metyyli-2-butenyli-</td>
<td>1.000</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-(5-isopropyl-</td>
<td>8.000</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pyylii-5-</td>
<td>6.000</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>metyyli-4-okso-2-imidatsolin-2-yyli)nikotinaatti</td>
<td>4.000</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metyyli-2-(4-isopropylpyylii-1,4-dimetyyli-5-okso-2-imidatsolin-2-yyli)nikotinaatti</td>
<td>2.000</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metyyli-2-(4-isopropylpyylii-1-pivaloyyli-2-imidatsolin-2-yyli)nikotinaatti</td>
<td>1.000</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metyyli-2-(4-okso-1,3-diatsaspiro(4,5)-dekk-2-en-2-yyli)nikotinaatti</td>
<td>8.000</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yhdisteet</td>
<td>Käyttömäärä</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>17</td>
<td>13</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>3-metyli-2-butenyyli-2-</td>
<td>8.000</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(5-isopropyyli-5-metyli-4-okso-2-imidasolin-2-yli)nikotiinaatti</td>
<td>1.000</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.000</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bentsyyli-2-(4-okso-1,3-diatsaspirino[5,6,5]dekk-2-en-2-yli)nikotinaatti</td>
<td>8.000</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.000</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-(5-isopropyyli-5-metyli-4-okso-2-imidasolin-2-yli)nikotinaatti</td>
<td>8.000</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.000</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bentsyyli-2-(5-isopropyyli-5-metyli-4-okso-2-imidasolin-2-yli)nikotinaatti</td>
<td>8.000</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.000</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-metoki-2-(5-isopropyyli-5-metyli-4-okso-2-imidasolin-2-yli)nikotinaatti</td>
<td>8.000</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yhdisteet</td>
<td>Käyttömäärä</td>
<td>1.</td>
<td>2.</td>
<td>3.</td>
<td>4.</td>
<td>5.</td>
<td>6.</td>
<td>8.</td>
<td>9.</td>
<td>10.</td>
<td>11.</td>
<td>12.</td>
<td>13.</td>
<td>14.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>-------------</td>
<td>----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-(4-okso-1,3-diata-spiro/4,5/dek-2-en-2-yli)nikotiinihappo</td>
<td>1.000</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>4.0</td>
<td>6.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.500</td>
<td>6.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>3.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>8.0</td>
<td>4.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.250</td>
<td>6.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>1.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>7.0</td>
<td>6.0</td>
<td>7.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.125</td>
<td>6.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>1.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>7.0</td>
<td>6.0</td>
<td>7.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.063</td>
<td>1.0</td>
<td>4.0</td>
<td>1.0</td>
<td>1.0</td>
<td>3.0</td>
<td>4.0</td>
<td>1.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>7.0</td>
<td>6.0</td>
<td>7.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.032</td>
<td>1.0</td>
<td>4.0</td>
<td>1.0</td>
<td>1.0</td>
<td>3.0</td>
<td>4.0</td>
<td>1.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>7.0</td>
<td>6.0</td>
<td>7.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>α-metyylibentsyyliammonium-2-(5-isopropyllyli-5-metyyli-4-okso-2-imidatsolin-2-yyli)nikotiinihappo</td>
<td>1.000</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.500</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.250</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.125</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.063</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.032</td>
<td>9.0</td>
<td>8.0</td>
<td>7.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td>2-(5-syklopropyllyli-5-metyyli-4-okso-2-imidatsolin-2-yyli)nikotiinihappo</td>
<td>1.000</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.500</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.250</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.125</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.063</td>
<td>9.0</td>
<td>8.0</td>
<td>7.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>7.0</td>
<td>7.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.032</td>
<td>7.0</td>
<td>6.0</td>
<td>6.0</td>
<td>7.0</td>
<td>6.0</td>
<td>7.0</td>
<td>6.0</td>
<td>7.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>7.0</td>
<td>8.0</td>
<td>6.0</td>
<td></td>
</tr>
<tr>
<td>1,1-dimetyyli-2-propynyli-2-(5-isopropyllyli-2-(5-isopropyllyli-5-metyyli-4-okso-2-imidatsolin-2-yyli)nikotiinihappo</td>
<td>1.000</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.500</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.250</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.125</td>
<td>7.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.063</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.032</td>
<td>4.0</td>
<td>6.0</td>
<td></td>
</tr>
<tr>
<td>2-trimetyyliammoniumme-tyyli-2-(5-isopropyllyli-5-metyyli-4-okso-2-imidatsolin-2-yyli)nikotiinihappo</td>
<td>1.000</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.500</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.250</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.125</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.063</td>
<td>7.0</td>
<td>8.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.032</td>
<td>6.0</td>
<td>7.0</td>
<td>6.0</td>
<td>6.0</td>
<td>7.0</td>
<td>8.0</td>
<td>7.0</td>
<td>8.0</td>
<td>7.0</td>
<td>8.0</td>
<td>7.0</td>
<td>8.0</td>
<td>7.0</td>
<td>8.0</td>
<td></td>
</tr>
<tr>
<td>Yhdisteet</td>
<td>Käyttömäärä</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-(2-hydroksiettyli)-2-(5-isopropyli-5-metyyli-4-okso-2-imidatsolin-2-yli)nikutinaatti</td>
<td>8.000</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>0.0</td>
<td>7.0</td>
<td>6.0</td>
<td>7.0</td>
<td>0.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ammonium-2-(5-isopropyli-5-metyyli-4-okso-2-imidatsolin-2-yli)nikutinaatti</td>
<td>1.000</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.500</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.125</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.063</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>8.0</td>
<td>8.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metyyli-2-(4-isopropyli-1-lauroyli-4-metyyli-5-okso-2-imidatsolin-2-yli)nikutinaatti</td>
<td>8.000</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>3.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.000</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.500</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>3.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.125</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>3.0</td>
<td>8.0</td>
<td>7.0</td>
<td>9.0</td>
<td>6.0</td>
<td>1.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>7.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.063</td>
<td>4.0</td>
<td>9.0</td>
<td>9.0</td>
<td>0.0</td>
<td>6.0</td>
<td>4.0</td>
<td>7.0</td>
<td>6.0</td>
<td>0.0</td>
<td>6.0</td>
<td>3.0</td>
<td>8.0</td>
<td>7.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.032</td>
<td>0.0</td>
<td>6.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
<td>6.0</td>
<td>0.0</td>
<td>4.0</td>
<td>2.0</td>
<td>2.0</td>
<td>5.0</td>
<td>2.0</td>
<td>6.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-dimetyyliallyyyli-2-(5-isopropyli-5-metyyli-4-okso-2-imidatsolin-2-yli)nikutinaatti</td>
<td>8.000</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.000</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.500</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.125</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.063</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.032</td>
<td>0.0</td>
<td>6.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
<td>6.0</td>
<td>0.0</td>
<td>4.0</td>
<td>2.0</td>
<td>2.0</td>
<td>5.0</td>
<td>2.0</td>
<td>6.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-propynyli-2-(5-syklopropyli-5-metyyli-4-okso-2-imidatsolin-2-yli)nikutinaatti</td>
<td>8.000</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>2.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.000</td>
<td>9.0</td>
<td>8.0</td>
<td>7.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.500</td>
<td>8.0</td>
<td>8.0</td>
<td>7.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>8.0</td>
<td>6.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.250</td>
<td>6.0</td>
<td>7.0</td>
<td>4.0</td>
<td>9.0</td>
<td>6.0</td>
<td>9.0</td>
<td>9.0</td>
<td>6.0</td>
<td>5.0</td>
<td>9.0</td>
<td>8.0</td>
<td>7.0</td>
<td>5.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.125</td>
<td>1.0</td>
<td>7.0</td>
<td>1.0</td>
<td>9.0</td>
<td>5.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>5.0</td>
<td>9.0</td>
<td>7.0</td>
<td>7.0</td>
<td>4.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.063</td>
<td>1.0</td>
<td>3.0</td>
<td>0.0</td>
<td>4.0</td>
<td>4.0</td>
<td>6.0</td>
<td>4.0</td>
<td>3.0</td>
<td>3.0</td>
<td>7.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.032</td>
<td>0.0</td>
<td>3.0</td>
<td>0.0</td>
<td>4.0</td>
<td>1.0</td>
<td>4.0</td>
<td>2.0</td>
<td>3.0</td>
<td>2.0</td>
<td>7.0</td>
<td>1.0</td>
<td>7.0</td>
<td>4.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yhdisteet</td>
<td>Käyttö-</td>
<td>1.</td>
<td>2.</td>
<td>3.</td>
<td>4.</td>
<td>5.</td>
<td>6.</td>
<td>8.</td>
<td>9.</td>
<td>10.</td>
<td>11.</td>
<td>12.</td>
<td>17.</td>
<td>13.</td>
<td>14.</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----------</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>2-propynyltti-1-(1,3-diatsaspiro[4,5]-1,3-dek-2-en-2-ylil)nikotiinaatti</td>
<td>5.000</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>8.0</td>
<td>4.0</td>
<td>7.0</td>
<td>2.0</td>
<td>3.0</td>
<td>2.0</td>
<td>9.0</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.000</td>
<td>6.0</td>
<td>7.0</td>
<td>7.0</td>
<td>9.0</td>
<td>7.0</td>
<td>6.0</td>
<td>2.0</td>
<td>7.0</td>
<td>6.0</td>
<td>1.0</td>
<td>6.0</td>
<td>9.0</td>
<td>2.0</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.500</td>
<td>6.0</td>
<td>6.0</td>
<td>2.0</td>
<td>9.0</td>
<td>3.0</td>
<td>9.0</td>
<td>1.0</td>
<td>2.0</td>
<td>6.0</td>
<td>9.0</td>
<td>1.0</td>
<td>6.0</td>
<td>9.0</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.250</td>
<td>2.0</td>
<td>5.0</td>
<td>0.0</td>
<td>9.0</td>
<td>1.0</td>
<td>9.0</td>
<td>1.0</td>
<td>0.0</td>
<td>3.0</td>
<td>6.0</td>
<td>1.0</td>
<td>6.0</td>
<td>8.0</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.125</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>7.0</td>
<td>1.0</td>
<td>7.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
<td>8.0</td>
<td>1.0</td>
<td>4.0</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>N-(2-klooriyylli)-2-(5-isopropyl-5-metyylli-4-oks-2-imidsolin-2-ylil)nikotinamidi</td>
<td>8.000</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>3.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.000</td>
<td>6.0</td>
<td>7.0</td>
<td>8.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>8.0</td>
<td>7.0</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.500</td>
<td>6.0</td>
<td>6.0</td>
<td>7.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>7.0</td>
<td>7.0</td>
<td>6.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.250</td>
<td>4.0</td>
<td>5.0</td>
<td>0.0</td>
<td>7.0</td>
<td>7.0</td>
<td>8.0</td>
<td>7.0</td>
<td>6.0</td>
<td>8.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.125</td>
<td>1.0</td>
<td>3.0</td>
<td>4.0</td>
<td>6.0</td>
<td>4.0</td>
<td>7.0</td>
<td>7.0</td>
<td>6.0</td>
<td>7.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.063</td>
<td>1.0</td>
<td>3.0</td>
<td>2.0</td>
<td>6.0</td>
<td>6.0</td>
<td>4.0</td>
<td>4.0</td>
<td>1.0</td>
<td>6.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.032</td>
<td>0.0</td>
<td>2.0</td>
<td>1.0</td>
<td>5.0</td>
<td>4.0</td>
<td>6.0</td>
<td>3.0</td>
<td>1.0</td>
<td>6.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-metoksibentsyylli-2-(5-isopropyl-5-metyylli-4-oks-2-imidsolin-2-ylil)nikotinaatti</td>
<td>8.000</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>6.0</td>
<td>8.0</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.000</td>
<td>6.0</td>
<td>7.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.500</td>
<td>6.0</td>
<td>6.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.250</td>
<td>7.0</td>
<td>0.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.125</td>
<td>6.0</td>
<td>6.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.063</td>
<td>4.0</td>
<td>9.0</td>
<td>5.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>6.0</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.032</td>
<td>2.0</td>
<td>7.0</td>
<td>2.0</td>
<td>7.0</td>
<td>9.0</td>
<td>7.0</td>
<td>7.0</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barium-2-(5-isopropyl-5-metyylli-4-oks-2-imidsolin-2-ylil)nikotinaatti</td>
<td>1.000</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.500</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.250</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.125</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.063</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.032</td>
<td>8.0</td>
<td>8.0</td>
<td>7.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>8.0</td>
<td>8.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kupari-2-(5-isopropyl-5-metyylli-4-oks-2-imidsolin-2-ylil)nikotinaatti</td>
<td>1.000</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.500</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.250</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.125</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.063</td>
<td>9.0</td>
<td>9.0</td>
<td>6.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>8.0</td>
<td>7.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.032</td>
<td>9.0</td>
<td>9.0</td>
<td>5.0</td>
<td>9.0</td>
<td>7.0</td>
<td>8.0</td>
<td>8.0</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kalium-2-(5-isopropyl-5-metyylli-4-oks-2-imidsolin-2-ylil)nikotinaatti</td>
<td>1.000</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.500</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.250</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.125</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.063</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>8.0</td>
<td>8.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.032</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>6.0</td>
<td>9.0</td>
<td>8.0</td>
<td>7.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yhdisteet</td>
<td>1.</td>
<td>2.</td>
<td>3.</td>
<td>4.</td>
<td>5.</td>
<td>6.</td>
<td>8.</td>
<td>9.</td>
<td>10.</td>
<td>11.</td>
<td>12.</td>
<td>13.</td>
<td>14.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Litium-2-(5-isopropylpyli-5-metyli-4-okso-2-imidatsolinn-2-yli)-thorinaatti</td>
<td>1.000</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.500</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.250</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.125</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.063</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>6.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.032</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>5.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Magnesium-2-(5-isopropylpyli-5-metyli-5-metyli-4-okso-2-imidatsolinn-2-yli)-nikotinaatti</td>
<td>1.000</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.500</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.250</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.125</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.063</td>
<td>9.0</td>
<td>8.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.032</td>
<td>9.0</td>
<td>8.0</td>
<td>8.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Piperidinium-2-(5-isopropylpyli-5-metyli-4-okso-2-imidatsolinn-2-yli)-nikotinaatti</td>
<td>1.000</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.500</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.250</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.125</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.063</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.032</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>p-Klooribentsyyli-2-(5-isopropylpyli-5-metyli-4-okso-2-imidatsolinn-2-yli)-nikotinaatti</td>
<td>8.000</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>6.0</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.000</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>6.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.500</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
<td>9.0</td>
<td>7.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>8.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.250</td>
<td>5.0</td>
<td>7.0</td>
<td>4.0</td>
<td>9.0</td>
<td>6.0</td>
<td>8.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>7.0</td>
<td>7.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.125</td>
<td>4.0</td>
<td>6.0</td>
<td>3.0</td>
<td>8.0</td>
<td>6.0</td>
<td>8.0</td>
<td>7.0</td>
<td>4.0</td>
<td>7.0</td>
<td>8.0</td>
<td>6.0</td>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.063</td>
<td>1.0</td>
<td>6.0</td>
<td>2.0</td>
<td>4.0</td>
<td>3.0</td>
<td>7.0</td>
<td>4.0</td>
<td>0.0</td>
<td>6.0</td>
<td>7.0</td>
<td>5.0</td>
<td>4.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.032</td>
<td>0.0</td>
<td>3.0</td>
<td>0.0</td>
<td>4.0</td>
<td>1.0</td>
<td>4.0</td>
<td>3.0</td>
<td>0.0</td>
<td>5.0</td>
<td>6.0</td>
<td>4.0</td>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>p-Nitrobentsyyli-2-(5-isopropylpyli-5-metyli-5-metyli-4-okso-2-imidatsolinn-2-yli)-nikotinaatti</td>
<td>8.000</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.000</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.500</td>
<td>9.0</td>
<td>8.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.250</td>
<td>9.0</td>
<td>8.0</td>
<td>7.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.125</td>
<td>9.0</td>
<td>8.0</td>
<td>4.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.063</td>
<td>7.0</td>
<td>7.0</td>
<td>4.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>8.0</td>
<td>8.0</td>
<td>9.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.032</td>
<td>5.0</td>
<td>7.0</td>
<td>3.0</td>
<td>7.0</td>
<td>4.0</td>
<td>8.0</td>
<td>8.0</td>
<td>1.0</td>
<td>7.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yhdisteet</td>
<td>Käyttö- määrä</td>
<td>1.</td>
<td>2.</td>
<td>3.</td>
<td>4.</td>
<td>5.</td>
<td>6.</td>
<td>8.</td>
<td>9.</td>
<td>10.</td>
<td>11.</td>
<td>12.</td>
<td>13.</td>
<td>14.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bentsyyli-trimetyyli-ammonium-2-(5-iso-propyyli-5-metyyli-4-okso-2-imidasolin-2-yyli)nikotinaatti</td>
<td>1.000</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.500</td>
<td>3.0</td>
<td>9.0</td>
<td>9.0</td>
<td>6.0</td>
<td>8.0</td>
<td>9.0</td>
<td>8.0</td>
<td>2.0</td>
<td>7.0</td>
<td>9.0</td>
<td>8.0</td>
<td>8.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.250</td>
<td>3.0</td>
<td>8.0</td>
<td>1.0</td>
<td>7.0</td>
<td>4.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
<td>5.0</td>
<td>9.0</td>
<td>7.0</td>
<td>7.0</td>
<td>4.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.125</td>
<td>7.0</td>
<td>0.0</td>
<td>5.0</td>
<td>1.0</td>
<td>7.0</td>
<td>3.0</td>
<td>1.0</td>
<td>3.0</td>
<td>5.0</td>
<td>8.0</td>
<td>7.0</td>
<td>6.0</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.063</td>
<td>2.0</td>
<td>7.0</td>
<td>8.0</td>
<td>5.0</td>
<td>1.0</td>
<td>6.0</td>
<td>3.0</td>
<td>3.0</td>
<td>5.0</td>
<td>5.0</td>
<td>7.0</td>
<td>6.0</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ω-aminoheksyli-ammonium-2-(5-isopropyli-5-metyyli-4-okso-2-imidasolin-2-yyli)nikotinaatti</td>
<td>1.000</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.500</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.250</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.125</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.063</td>
<td>9.0</td>
<td>8.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.032</td>
<td>8.0</td>
<td>8.0</td>
<td>1.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>6.0</td>
<td>3.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>7.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taliammonium-2-(5-isopropyli-4-metyyli-4-okso-2-imidasolin-2-yyli)nikotinaatti</td>
<td>1.000</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.500</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.250</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.125</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.063</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.032</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karbometoksi-metyyli-2-(5-isopropyli-5-metyyli-4-okso-2-imidasolin-2-yyli)nikotinaatti</td>
<td>1.000</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.500</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.250</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.125</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>3.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.063</td>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>1.0</td>
<td>7.0</td>
<td>7.0</td>
<td>8.0</td>
<td>7.0</td>
<td>7.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.032</td>
<td>4.0</td>
<td>6.0</td>
<td>3.0</td>
<td>7.0</td>
<td>8.0</td>
<td>8.0</td>
<td>0.0</td>
<td>7.0</td>
<td>7.0</td>
<td>8.0</td>
<td>7.0</td>
<td>7.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dodekyli-ammonium-2-(5-isopropyli-5-metyyli-4-okso-2-imidasolin-2-yyli)nikotinaatti</td>
<td>1.000</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.500</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.250</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.125</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.063</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.032</td>
<td>6.0</td>
<td>8.0</td>
<td>6.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>1.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yhdisteet</td>
<td>Käyttö- määrä</td>
<td>1.</td>
<td>2.</td>
<td>3.</td>
<td>4.</td>
<td>5.</td>
<td>6.</td>
<td>8.</td>
<td>9.</td>
<td>10.</td>
<td>11.</td>
<td>12.</td>
<td>13.</td>
<td>14.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---------------</td>
<td>-----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,3,3-tetrametyll-</td>
<td>8.000</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>1.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>butyylimmonium-2-(5-</td>
<td>1.000</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>1.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>isopropyli-5-metyll-</td>
<td>5.000</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>8.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-okso-2-imidatsolin-</td>
<td>125</td>
<td>2.0</td>
<td>2.0</td>
<td>3.0</td>
<td>7.0</td>
<td>9.0</td>
<td>6.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>8.0</td>
<td>7.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-yyllnikotinaatti</td>
<td>063</td>
<td>1.0</td>
<td>1.0</td>
<td>7.0</td>
<td>0.0</td>
<td>4.0</td>
<td>2.0</td>
<td>4.0</td>
<td>3.0</td>
<td>0.0</td>
<td>3.0</td>
<td>3.0</td>
<td>7.0</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>032</td>
<td>1.0</td>
<td>4.0</td>
<td>0.0</td>
<td>4.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2.0</td>
<td>4.0</td>
<td>5.0</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibutyylimmonium-2-</td>
<td>8.000</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>6.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(5-isopropyli-5-metyll-</td>
<td>1.000</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>1.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>li-4-okso-2-imidatsolin-</td>
<td>5.000</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-yyllnikotinaatti</td>
<td>125</td>
<td>2.0</td>
<td>2.0</td>
<td>3.0</td>
<td>7.0</td>
<td>9.0</td>
<td>6.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>063</td>
<td>1.0</td>
<td>1.0</td>
<td>7.0</td>
<td>0.0</td>
<td>4.0</td>
<td>2.0</td>
<td>4.0</td>
<td>3.0</td>
<td>0.0</td>
<td>3.0</td>
<td>3.0</td>
<td>7.0</td>
<td>6.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>032</td>
<td>1.0</td>
<td>4.0</td>
<td>0.0</td>
<td>4.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2.0</td>
<td>4.0</td>
<td>4.0</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-(metyllamino)etyylli-</td>
<td>8.000</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-(5-isopropyli-5-metyll-</td>
<td>1.000</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tyylli-4-okso-2-imidatsolin-</td>
<td>5.000</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-yyllnikotinaatti</td>
<td>125</td>
<td>2.0</td>
<td>2.0</td>
<td>3.0</td>
<td>7.0</td>
<td>9.0</td>
<td>6.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>063</td>
<td>1.0</td>
<td>1.0</td>
<td>7.0</td>
<td>0.0</td>
<td>4.0</td>
<td>2.0</td>
<td>4.0</td>
<td>3.0</td>
<td>0.0</td>
<td>3.0</td>
<td>3.0</td>
<td>7.0</td>
<td>6.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>032</td>
<td>1.0</td>
<td>4.0</td>
<td>0.0</td>
<td>4.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2.0</td>
<td>4.0</td>
<td>4.0</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-metyllpyryolidinium-</td>
<td>8.000</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-(5-isopropyli-5-metyll-</td>
<td>1.000</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tyylli-4-okso-2-imidatsolin-</td>
<td>5.000</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-yyllnikotinaatti</td>
<td>125</td>
<td>2.0</td>
<td>2.0</td>
<td>3.0</td>
<td>7.0</td>
<td>9.0</td>
<td>6.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>063</td>
<td>1.0</td>
<td>1.0</td>
<td>7.0</td>
<td>0.0</td>
<td>4.0</td>
<td>2.0</td>
<td>4.0</td>
<td>3.0</td>
<td>0.0</td>
<td>3.0</td>
<td>3.0</td>
<td>7.0</td>
<td>6.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>032</td>
<td>1.0</td>
<td>4.0</td>
<td>0.0</td>
<td>4.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2.0</td>
<td>4.0</td>
<td>4.0</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oktetylimmonium-2-(5-</td>
<td>8.000</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>isopropyli-5-metyll-</td>
<td>1.000</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-okso-2-imidatsolin-</td>
<td>5.000</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-yyllnikotinaatti</td>
<td>125</td>
<td>2.0</td>
<td>2.0</td>
<td>3.0</td>
<td>7.0</td>
<td>9.0</td>
<td>6.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>063</td>
<td>1.0</td>
<td>1.0</td>
<td>7.0</td>
<td>0.0</td>
<td>4.0</td>
<td>2.0</td>
<td>4.0</td>
<td>3.0</td>
<td>0.0</td>
<td>3.0</td>
<td>3.0</td>
<td>7.0</td>
<td>6.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>032</td>
<td>1.0</td>
<td>4.0</td>
<td>0.0</td>
<td>4.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2.0</td>
<td>4.0</td>
<td>4.0</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yhdisteet</td>
<td>Käyttömäärä</td>
<td>1.</td>
<td>2.</td>
<td>3.</td>
<td>4.</td>
<td>5.</td>
<td>6.</td>
<td>8.</td>
<td>9.</td>
<td>10.</td>
<td>11.</td>
<td>12.</td>
<td>13.</td>
<td>14.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pentasyliammonium-2-((5-isopropyyli-5-metyyl-</td>
<td>8.000</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-okso-2-imidatsolin-2-yyli)nikotinaatti</td>
<td>1.000</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.500</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.250</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.125</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.062</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sykloheksyliammonium-2-((5-isopropyyli-5-metyyl-</td>
<td>1.000</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-okso-2-imidatsolin-2-yyli)nikotinaatti</td>
<td>.500</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.250</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.125</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.062</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morfolinum-2-((5-isopropyyli-5-metyyl-4-</td>
<td>1.000</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>okso-2-imidatsolin-2-yyli)nikotinaatti</td>
<td>.500</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.250</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.125</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.062</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-fenylibutyliammonium-2-((5-isopropyyli-</td>
<td>.600</td>
<td>9.0</td>
<td>8.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-metyyl-4-okso-2-</td>
<td>.1000</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>imidatsolin-2-yyli)nikotinaatti</td>
<td>.500</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.250</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.125</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.062</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fenetyliammonium-2-((5-isopropyyli-5-metyyl-</td>
<td>.1000</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-okso-2-imidatsolin-2-yyli)nikotinaatti</td>
<td>.500</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.370</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.250</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.125</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.062</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Taulukko XI (jatkuvu..)

Orastuksen-jälkeen koe, käytömmäärät kg/ha

<table>
<thead>
<tr>
<th>Yhdisteet</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>17</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimetoksimetylyliammonium-2-(5-isopropyl-5-metylyli-4-okso-2-imidatsolin-2-yyli)nikotinaatti</td>
<td>.000</td>
<td>9.0</td>
</tr>
<tr>
<td>2,2'-dietoksiidetylyliammonium-2-(5-isopropyl-5-metylyli-4-okso-2-imidatsolin-2-yyli)nikotinaatti</td>
<td>.000</td>
<td>9.0</td>
</tr>
<tr>
<td>3-metoksiksiopropylammonium-2-(5-isopropyl-5-metylyli-4-okso-2-imidatsolin-2-yyli)nikotinaatti</td>
<td>.000</td>
<td>9.0</td>
</tr>
<tr>
<td>2-(5-isopropyl-5-metylyli-4-okso-2-imidatsolin-2-yyli)nikotinaatti</td>
<td>.000</td>
<td>9.0</td>
</tr>
<tr>
<td>1-karboetoksitylyli-2-(5-isopropyl-5-metylyli-4-okso-2-imidatsolin-2-yyli)nikotinaatti</td>
<td>.000</td>
<td>9.0</td>
</tr>
</tbody>
</table>

Näyttökäytömmäärät

<p>| | 1 | 2 | 3 | 4 | 5 | 6 | 8 | 9 | 10 | 11 | 12 | 17 | 13 | 14 |
| | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
| Dimetoksimetylyliammonium-2-(5-isopropyl-5-metylyli-4-okso-2-imidatsolin-2-yyli)nikotinaatti | .000 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 |
| 2,2'-dietoksiidetylyliammonium-2-(5-isopropyl-5-metylyli-4-okso-2-imidatsolin-2-yyli)nikotinaatti | .000 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 |
| 3-metoksiksiopropylammonium-2-(5-isopropyl-5-metylyli-4-okso-2-imidatsolin-2-yyli)nikotinaatti | .000 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 |
| 2-(5-isopropyl-5-metylyli-4-okso-2-imidatsolin-2-yyli)nikotinaatti | .000 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 |
| 1-karboetoksitylyli-2-(5-isopropyl-5-metylyli-4-okso-2-imidatsolin-2-yyli)nikotinaatti | .000 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 |</p>
<table>
<thead>
<tr>
<th>Yhdisteet</th>
<th>Käyttö-</th>
<th>1.</th>
<th>2.</th>
<th>3.</th>
<th>4.</th>
<th>5.</th>
<th>6.</th>
<th>8.</th>
<th>9.</th>
<th>10.</th>
<th>11.</th>
<th>12.</th>
<th>17.</th>
<th>13.</th>
<th>14.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metyli-5-bromi-2-(5-isopropyli-5-</td>
<td>1.000</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>5.0</td>
<td>8.0</td>
<td>7.0</td>
<td>7.0</td>
<td>8.0</td>
<td>6.0</td>
<td>5.0</td>
</tr>
<tr>
<td>isopropyli-5-metyli-4-okso-2-imidatsol-</td>
<td>8.000</td>
<td>4.0</td>
<td>5.0</td>
<td>7.0</td>
<td>8.0</td>
<td>5.0</td>
<td>3.0</td>
<td>4.0</td>
<td>6.0</td>
<td>8.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>2-yli)niikotinaatti</td>
<td></td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
</tr>
<tr>
<td>3-karboetoksi-2-propenyli-2-(5-isopropyli-5-metyli-4-okso-2-imidatsolin-2-yli)niikotinaatti</td>
<td>8.000</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>3-butenyli-2-(5-isopropyl-5-metyli-4-okso-2-imidatsolin-2-yli)niikotinaatti</td>
<td>8.000</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
</tr>
<tr>
<td>4-karbometoksibutyli-2-(5-isopropyl-5-metyli-4-okso-2-imidatsolin-2-yli)niikotinaatti</td>
<td>8.000</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9.0</td>
</tr>
<tr>
<td>Ferro-2-(5-isopropyl-5-metyli-4-okso-2-imidatsolin-2-yli)niikotinaatti</td>
<td>8.000</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9.0</td>
</tr>
<tr>
<td>Yhdisteet</td>
<td>Käyttömäärä</td>
<td>1.</td>
<td>2.</td>
<td>3.</td>
<td>4.</td>
<td>5.</td>
<td>6.</td>
<td>8.</td>
<td>9.</td>
<td>10.</td>
<td>11.</td>
<td>12.</td>
<td>13.</td>
<td>14.</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>Ferri-2-(5-isopropyli-5-metyyli-4-okso-2-imidatsolin-2-yli)nikotinaatti</td>
<td>1.000</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.500</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.250</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.125</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.053</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.032</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td>Dietanoliammonium-2-(5-isopropyli-5-metyyli-4-okso-2-imidatsolin-2-yli)nikotinaatti</td>
<td>0.000</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.000</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.500</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.250</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.125</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.053</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.032</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td>p-tert-butylibentsyyli-2-(5-isopropyli-5-metyyli-4-okso-2-imidatsolin-2-yli)nikotinaatti</td>
<td>0.000</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>6.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.000</td>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.500</td>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
<td>4.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>5.0</td>
<td>9.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.250</td>
<td>4.0</td>
<td>6.0</td>
<td>2.0</td>
<td>8.0</td>
<td>6.0</td>
<td>7.0</td>
<td>6.0</td>
<td>5.0</td>
<td>7.0</td>
<td>7.0</td>
<td>8.0</td>
<td>6.0</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.125</td>
<td>3.0</td>
<td>7.0</td>
<td>2.0</td>
<td>7.0</td>
<td>6.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
<td>5.0</td>
<td>5.0</td>
<td>3.0</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.053</td>
<td>1.0</td>
<td>3.0</td>
<td>2.0</td>
<td>7.0</td>
<td>6.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
<td>5.0</td>
<td>5.0</td>
<td>3.0</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.032</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>5.0</td>
<td>5.0</td>
<td>4.0</td>
<td>3.0</td>
<td>3.0</td>
<td>5.0</td>
<td>4.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>Fenetyyli-2-(5-isopropyli-5-metyyli-4-okso-2-imidatsolin-2-yli)nikotinaatti</td>
<td>0.000</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.000</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.500</td>
<td>9.0</td>
<td>8.0</td>
<td>7.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.250</td>
<td>9.0</td>
<td>7.0</td>
<td>7.0</td>
<td>9.0</td>
<td>6.0</td>
<td>7.0</td>
<td>6.0</td>
<td>6.0</td>
<td>7.0</td>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.125</td>
<td>3.0</td>
<td>7.0</td>
<td>2.0</td>
<td>7.0</td>
<td>6.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
<td>5.0</td>
<td>5.0</td>
<td>3.0</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.053</td>
<td>1.0</td>
<td>3.0</td>
<td>2.0</td>
<td>7.0</td>
<td>6.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
<td>5.0</td>
<td>5.0</td>
<td>3.0</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.032</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>5.0</td>
<td>5.0</td>
<td>4.0</td>
<td>3.0</td>
<td>3.0</td>
<td>5.0</td>
<td>4.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>Kinnamyyli-2-(5-isopropyyli-5-metyyli-4-okso-2-imidatsolin-2-yli)nikotinaatti</td>
<td>0.000</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>3.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.000</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.500</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.250</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.125</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.053</td>
<td>8.0</td>
<td>7.0</td>
<td>5.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.032</td>
<td>7.0</td>
<td>6.0</td>
<td>4.0</td>
<td>7.0</td>
<td>7.0</td>
<td>9.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
<td>8.0</td>
<td>9.0</td>
<td>7.0</td>
<td>7.0</td>
<td></td>
</tr>
</tbody>
</table>
Taulukko XI (jatkuu..)

Orastuksen-jälkeen koe, käyttömäärät kg/ha

<table>
<thead>
<tr>
<th>Yhdisteet</th>
<th>Käyttömäärä</th>
<th>1.</th>
<th>2.</th>
<th>3.</th>
<th>4.</th>
<th>5.</th>
<th>6.</th>
<th>8.</th>
<th>9.</th>
<th>10.</th>
<th>11.</th>
<th>12.</th>
<th>17.</th>
<th>13.</th>
<th>14.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-isopropyl-i-5-metyylili-2-(3-metyyl-i-2-pyrindiyli)-2-imidatsolin-4-oni</td>
<td>6.000</td>
<td>0.00</td>
<td>7.00</td>
<td>9.00</td>
<td>9.00</td>
<td>9.00</td>
<td>5.00</td>
<td>8.00</td>
<td>7.00</td>
<td>8.00</td>
<td>8.00</td>
<td>8.00</td>
<td>8.00</td>
<td>8.00</td>
<td>8.00</td>
</tr>
<tr>
<td>1.000</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>6.00</td>
<td>4.00</td>
<td>2.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>.500</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>3.00</td>
<td>2.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>.250</td>
<td>0.00</td>
</tr>
<tr>
<td>.125</td>
<td>0.00</td>
</tr>
<tr>
<td>.075</td>
<td>0.00</td>
</tr>
</tbody>
</table>
| 3,7-dimetyyl-i-2,6-okta
dienyli-2-(5-isopropyl-i-5-metyyl-i-4-okso
-2-imidatsolin-2-yyli)-nikotinaatti | 6.000 | 9.00 | 9.00 | 9.00 | 9.00 | 9.00 | 9.00 | 9.00 | 9.00 | 9.00 | 9.00 | 9.00 | 9.00 |
| 1.000 | 9.00 | 9.00 | 9.00 | 9.00 | 9.00 | 9.00 | 9.00 | 9.00 | 9.00 | 9.00 | 9.00 | 9.00 |
| .500 | 9.00 | 9.00 | 9.00 | 9.00 | 9.00 | 9.00 | 9.00 | 9.00 | 9.00 | 9.00 | 9.00 | 9.00 |
| .250 | 9.00 | 9.00 | 9.00 | 9.00 | 9.00 | 9.00 | 9.00 | 9.00 | 9.00 | 9.00 | 9.00 | 9.00 |
| .125 | 9.00 | 9.00 | 9.00 | 9.00 | 9.00 | 9.00 | 9.00 | 9.00 | 9.00 | 9.00 | 9.00 | 9.00 |
| .063 | 8.00 | 8.00 | 8.00 | 8.00 | 8.00 | 8.00 | 8.00 | 8.00 | 8.00 | 8.00 | 8.00 | 8.00 |
| .032 | 2.00 | 4.00 | 7.00 | 7.00 | 6.00 | 6.00 | 6.00 | 6.00 | 6.00 | 6.00 | 6.00 | 6.00 |
| 2,3-dihydroksipro
-pylyli-(5-isopropyl-i-5-metyyl-i-4-okso
-2-imidatsolin-2-yyli)-nikotinaatti | 6.000 | 6.00 | 5.00 | 2.00 | 9.00 | 5.00 | 8.00 | 0.00 |
| 1.000 | 6.00 | 5.00 | 2.00 | 9.00 | 5.00 | 8.00 | 0.00 | | | | | |
| .500 | 5.00 | 4.00 | 3.00 | 7.00 | 5.00 | 7.00 | 5.00 |
| .250 | 4.00 | 3.00 | 2.00 | 7.00 | 5.00 | 7.00 | 5.00 |
| .125 | 3.00 | 2.00 | 1.00 | 7.00 | 5.00 | 7.00 | 5.00 |
| .063 | 2.00 | 1.00 | 0.00 | 7.00 | 5.00 | 7.00 | 5.00 |
| 4-pentynyli-2-(5-isopropyl-i-5-metyyl-i-4-okso-2-imidatsolin-2-yyli)-nikotinaatti | 1.000 | 9.00 | 9.00 | 9.00 | 9.00 | 9.00 | 9.00 | 9.00 | 9.00 | 9.00 | 9.00 | 9.00 |
| .500 | 8.00 | 8.00 | 8.00 | 8.00 | 8.00 | 8.00 | 8.00 | 8.00 | 8.00 | 8.00 | 8.00 |
| .250 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 |
| .125 | 6.00 | 6.00 | 6.00 | 6.00 | 6.00 | 6.00 | 6.00 | 6.00 | 6.00 | 6.00 | 6.00 |
| .063 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 |
| .032 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 |
| 2-(5-isopropyl-i-5-metyyl-i-4-okso-2-imidatsolin-2-yyli)-3-kino
linikarbonsyyli-happo | 1.000 | 9.00 | 9.00 | 9.00 | 9.00 | 9.00 | 9.00 | 9.00 |
<p>| .500 | 8.00 | 8.00 | 8.00 | 8.00 | 8.00 | 8.00 | 8.00 |
| .250 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 |
| .125 | 6.00 | 6.00 | 6.00 | 6.00 | 6.00 | 6.00 | 6.00 |
| .063 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 |
| .032 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 |</p>
<table>
<thead>
<tr>
<th>Yhdisteet</th>
<th>Käyttömaara</th>
<th>1.</th>
<th>2.</th>
<th>3.</th>
<th>4.</th>
<th>5.</th>
<th>6.</th>
<th>8.</th>
<th>9.</th>
<th>10.</th>
<th>11.</th>
<th>12.</th>
<th>17.</th>
<th>13.</th>
<th>14.</th>
</tr>
</thead>
<tbody>
<tr>
<td>6,6-dimetyli-2-</td>
<td>1.000</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>norpineenii-2-styli-</td>
<td>0.500</td>
<td>9.0</td>
<td>8.0</td>
<td>8.0</td>
</tr>
<tr>
<td>2-(5-isopropyli-5-</td>
<td>0.250</td>
<td>9.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
</tr>
<tr>
<td>metyli-4-okso-2-imi-</td>
<td>0.125</td>
<td>9.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
</tr>
<tr>
<td>datsonin-2-yli-nikotineatti</td>
<td>0.063</td>
<td>7.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><-karbometokniibentsyli-</td>
<td>0.032</td>
<td>7.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-(5-isopropyli-5-metyli-5-</td>
<td>0.000</td>
<td>9.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
</tr>
<tr>
<td>okso-2-imidatsolin-2-yli-</td>
<td>0.125</td>
<td>8.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
</tr>
<tr>
<td>nikotineatti</td>
<td>0.063</td>
<td>9.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
</tr>
<tr>
<td>Metyli-2-(1-asetyli-4-</td>
<td>0.032</td>
<td>8.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>isopropyli-4-metyli-5-</td>
<td>0.000</td>
<td>9.0</td>
</tr>
<tr>
<td>okso-2-imidatsolin-2-yli-</td>
<td>0.125</td>
<td>7.0</td>
</tr>
<tr>
<td>nikotineatti</td>
<td>0.063</td>
<td>7.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-metyli-3-butenyli-2-</td>
<td>0.032</td>
<td>9.0</td>
</tr>
<tr>
<td>(5-isopropyli-5-metyli-4-</td>
<td>0.000</td>
<td>9.0</td>
</tr>
<tr>
<td>okso-2-imidatsolin-2-yli-</td>
<td>0.125</td>
<td>8.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
</tr>
<tr>
<td>nikotineatti</td>
<td>0.063</td>
<td>9.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
</tr>
<tr>
<td>10-undekenyli-2-</td>
<td>0.032</td>
<td>9.0</td>
</tr>
<tr>
<td>(5-isopropyli-5-metyli-4-</td>
<td>0.000</td>
<td>9.0</td>
</tr>
<tr>
<td>okso-2-imidatsolin-2-yli-</td>
<td>0.125</td>
<td>8.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
</tr>
<tr>
<td>nikotineatti</td>
<td>0.063</td>
<td>7.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yhdisteet</td>
<td>Käyttömäärä</td>
<td>1.</td>
<td>2.</td>
<td>3.</td>
<td>4.</td>
<td>5.</td>
<td>6.</td>
<td>8.</td>
<td>9.</td>
<td>10.</td>
<td>11.</td>
<td>12.</td>
<td>17.</td>
<td>13.</td>
<td>14.</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>5-bromi-2-(5-isopropyyli-5-metyyli-4-okso-2-imidatsolin-2-yyli)-nokotiinihappo</td>
<td>1.000</td>
<td>9.0</td>
<td>7.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.500</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.250</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.125</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.063</td>
<td>8.0</td>
<td>9.0</td>
<td>7.0</td>
<td>3.0</td>
<td>7.0</td>
<td>7.0</td>
<td>6.0</td>
<td>8.0</td>
<td>7.0</td>
<td>8.5</td>
<td>8.0</td>
<td>9.0</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.032</td>
<td>5.0</td>
<td>9.0</td>
<td>6.0</td>
<td>2.0</td>
<td>7.0</td>
<td>6.0</td>
<td>6.0</td>
<td>7.0</td>
<td>6.0</td>
<td>7.0</td>
<td>9.0</td>
<td>6.0</td>
<td>8.0</td>
<td>3.0</td>
</tr>
<tr>
<td>"-metyylibentsyylili-2-(5-isopropyli-5-metyyli-4-okso-2-imidatsolin-2-yyli)nokotiinaatti</td>
<td>8.000</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.000</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.500</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.250</td>
<td>8.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.125</td>
<td>8.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.063</td>
<td>8.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.032</td>
<td>8.0</td>
<td>8.0</td>
<td>7.0</td>
<td>7.0</td>
<td>8.0</td>
<td>7.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>6.0</td>
<td>9.0</td>
<td>6.0</td>
<td>6.0</td>
<td></td>
</tr>
<tr>
<td>Metyyli-2-(5-isopropyli-5-metyyli-4-okso-2-imidatsolin-2-yyli)nokotiinaatti</td>
<td>8.000</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>6.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.000</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>6.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.500</td>
<td>8.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>3.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.250</td>
<td>7.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>1.0</td>
<td>9.0</td>
<td>6.0</td>
<td>8.0</td>
<td></td>
</tr>
<tr>
<td>Metyyli-6-kloori-2-(5-isopropyli-5-metyyli-4-okso-2-imidatsolin-2-yyli)nokotiinaatti</td>
<td>8.000</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.000</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.500</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>3.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.125</td>
<td>7.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>6.0</td>
<td>6.0</td>
<td>4.5</td>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.063</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>6.5</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.032</td>
<td>6.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>8.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>4.5</td>
<td>2.5</td>
<td>3.0</td>
<td>8.0</td>
<td></td>
</tr>
<tr>
<td>2-(3-(hydroksimetyyli)-2-pyridyli)-5-isopropyli-5-metyyli-2-imidatsol-4-oni</td>
<td>1.000</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.500</td>
<td>8.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.250</td>
<td>7.0</td>
<td>8.0</td>
<td>8.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>7.0</td>
<td>8.0</td>
<td>7.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.125</td>
<td>6.0</td>
<td>8.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.063</td>
<td>6.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.032</td>
<td>5.0</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td>Karboetoksimetyyli-2-(5-isopropyli-4-okso-2-imidatsolin-2-yyli)nokotinaatti</td>
<td>1.000</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.500</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.250</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.125</td>
<td>7.0</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.063</td>
<td>8.0</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.032</td>
<td>7.0</td>
<td>8.0</td>
<td>7.0</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td>Yhdisteet</td>
<td>Käyttömäärä</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>17</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------------</td>
<td>-----</td>
</tr>
<tr>
<td>Karbobentsyylioksimeetyli-2-(5-isopropyli-5-metyyli-4-okso-2-imidatsolin-2-yylinikotinaatti</td>
<td>1.000</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.500</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.250</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.125</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>0.063</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>0.032</td>
<td>5.0</td>
</tr>
<tr>
<td>Karbobismetsyyli-2-(5-isopropyli-5-metyyli-4-okso-2-imidatsolin-2-yylinikotinaatti</td>
<td>1.000</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.500</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.250</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.125</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>0.063</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>0.032</td>
<td>4.0</td>
</tr>
<tr>
<td>Syaanimetsyyli-2-(5-isopropyli-5-metyyli-4-okso-2-imidatsolin-2-yylinikotinaatti</td>
<td>1.000</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.500</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.250</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.125</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>0.063</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>0.032</td>
<td>5.0</td>
</tr>
<tr>
<td>Metyyli-(-)-2-(5-isopropyli-5-metyyli-4-okso-2-imidatsolin-2-yylinikotinaatti</td>
<td>1.000</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.500</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.250</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td>0.125</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td>0.063</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td>0.032</td>
<td>6.0</td>
</tr>
<tr>
<td>Metyyli-(+)-2-(5-isopropyli-5-metyyli-4-okso-2-imidatsolin-2-yylinikotinaatti</td>
<td>1.000</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.500</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.250</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.125</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td>0.063</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td>0.032</td>
<td>6.0</td>
</tr>
<tr>
<td>Yhdisteet</td>
<td>1.</td>
<td>2.</td>
<td>3.</td>
<td>4.</td>
<td>5.</td>
<td>6.</td>
<td>8.</td>
<td>9.</td>
<td>10.</td>
<td>11.</td>
<td>12.</td>
<td>13.</td>
<td>14.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>-----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bentsyyli-(+)-2-(5-isopropyl)-5-metyyl-</td>
<td>1.000</td>
<td>9.0</td>
<td>9.0</td>
<td>4.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ld-4-okso-2-imidatsolin-2-yli(nikotiinaatti)</td>
<td>.500</td>
<td>8.0</td>
<td>9.0</td>
<td>4.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>naatti</td>
<td>.250</td>
<td>6.0</td>
<td>9.0</td>
<td>3.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.125</td>
<td>2.0</td>
<td>7.0</td>
<td>1.0</td>
<td>7.0</td>
<td>7.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>8.0</td>
<td>7.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.063</td>
<td>2.0</td>
<td>8.0</td>
<td>1.0</td>
<td>6.0</td>
<td>9.0</td>
<td>7.0</td>
<td>8.0</td>
<td>6.0</td>
<td>8.0</td>
<td>7.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bentsyyli-(+-)-2-(5-isopropyl)-5-metyyl-4-</td>
<td>1.000</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>okso-2-imidatsolin-2-yli(nikotiinaatti)</td>
<td>.500</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.250</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.125</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.063</td>
<td>9.0</td>
<td>9.0</td>
<td>6.0</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.032</td>
<td>8.0</td>
<td>9.0</td>
<td>3.0</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(-)-2-(5-isopropyl)-5-metyyl-4-okso-2-imidatsolin-2-yli(nikotiinihappo)</td>
<td>1.000</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.500</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.250</td>
<td>9.0</td>
<td>9.0</td>
<td>6.0</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.125</td>
<td>9.0</td>
<td>9.0</td>
<td>5.0</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.063</td>
<td>6.0</td>
<td>9.0</td>
<td>2.0</td>
<td>6.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.032</td>
<td>6.0</td>
<td>9.0</td>
<td>2.0</td>
<td>6.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(+)-2-(5-isopropyl)-5-metyyl-4-okso-2-imidatsolin-2-yli(nikotiinihappo)</td>
<td>1.000</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.500</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.250</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.125</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.063</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.032</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-(5-isopropyl)-5-metyyl-4-okso-2-imidatsolin-2-yli(nikotiinihappo)</td>
<td>8.000</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.500</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.250</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.125</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.063</td>
<td>6.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.032</td>
<td>1.0</td>
<td>0.0</td>
<td>2.0</td>
<td>7.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metyyli-2-(1-bentsyyli)-4-isopropyl-4-metyyl-5-okso-2-imidatsolin-2-yli(nikotinaatti)</td>
<td>8.000</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.500</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.250</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.125</td>
<td>8.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.063</td>
<td>6.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.032</td>
<td>1.0</td>
<td>0.0</td>
<td>2.0</td>
<td>7.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yhdisteet</td>
<td>Käyttämäärä</td>
<td>1.</td>
<td>2.</td>
<td>3.</td>
<td>4.</td>
<td>5.</td>
<td>6.</td>
<td>8.</td>
<td>9.</td>
<td>10.</td>
<td>11.</td>
<td>12.</td>
<td>13.</td>
<td>14.</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>Metyyli-6-dimetyyliamino-2-(5-isopropyli-5-metyyl-4-oxo-2-imidatsolin-2-yli)nikotinaatti</td>
<td>1.000</td>
<td>9.0</td>
<td>6.0</td>
<td>0.0</td>
<td>6.0</td>
<td>3.0</td>
<td>0.0</td>
<td>9.0</td>
<td>0.0</td>
<td>2.0</td>
<td>6.0</td>
<td>9.0</td>
<td>5.0</td>
<td>6.0</td>
<td>3.0</td>
</tr>
<tr>
<td>0.500</td>
<td>9.0</td>
<td>5.0</td>
<td>0.0</td>
<td>3.0</td>
<td>2.0</td>
<td>0.0</td>
<td>9.0</td>
<td>0.0</td>
<td>2.0</td>
<td>4.0</td>
<td>9.0</td>
<td>5.0</td>
<td>5.0</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>0.250</td>
<td>9.0</td>
<td>4.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>9.0</td>
<td>0.0</td>
<td>2.0</td>
<td>2.0</td>
<td>9.0</td>
<td>2.0</td>
<td>5.0</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>0.125</td>
<td>6.0</td>
<td>3.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>7.0</td>
<td>0.0</td>
<td>2.0</td>
<td>2.0</td>
<td>9.0</td>
<td>2.0</td>
<td>5.0</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>0.063</td>
<td>2.0</td>
<td>3.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>7.0</td>
<td>0.0</td>
<td>2.0</td>
<td>2.0</td>
<td>9.0</td>
<td>2.0</td>
<td>5.0</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>0.032</td>
<td>0.0</td>
<td>3.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>7.0</td>
<td>0.0</td>
<td>2.0</td>
<td>2.0</td>
<td>9.0</td>
<td>2.0</td>
<td>5.0</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>Metyyli-2-(1-kloor-riisetyyl-4-isopropylyli-4-metyyl-5-okso-2-imidatsolin-2-yli)nikotinaatti</td>
<td>1.000</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td>0.500</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.250</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>8.0</td>
<td>8.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.125</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>9.0</td>
<td>8.0</td>
<td>8.0</td>
<td>9.0</td>
<td>6.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.063</td>
<td>7.0</td>
<td>8.0</td>
<td>3.0</td>
<td>9.0</td>
<td>7.0</td>
<td>8.0</td>
<td>4.0</td>
<td>3.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>3.0</td>
<td>8.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.032</td>
<td>4.0</td>
<td>8.0</td>
<td>1.0</td>
<td>7.0</td>
<td>6.0</td>
<td>7.0</td>
<td>4.0</td>
<td>1.0</td>
<td>6.0</td>
<td>8.0</td>
<td>9.0</td>
<td>7.0</td>
<td>6.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metyyli-2-(4-isopropylyli-4-metyyl-5-okso-1-propionylyli-2-imidatsolin-2-yli)nikotinaatti</td>
<td>1.000</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.500</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.250</td>
<td>9.0</td>
<td>9.0</td>
<td>6.0</td>
<td>9.0</td>
<td>6.0</td>
<td>9.0</td>
<td>6.0</td>
<td>9.0</td>
<td>6.0</td>
<td>9.0</td>
<td>6.0</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.125</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.063</td>
<td>9.0</td>
<td>9.0</td>
<td>6.0</td>
<td>9.0</td>
<td>7.0</td>
<td>6.0</td>
<td>3.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>8.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.032</td>
<td>7.0</td>
<td>9.0</td>
<td>4.0</td>
<td>7.0</td>
<td>7.0</td>
<td>9.0</td>
<td>7.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>7.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-2-(5-isopropylyli-5-metyyl-4-okso-2-imidatsolin-2-yli)nikotinojyl/asetonioksiimi</td>
<td>1.000</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.500</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.250</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.125</td>
<td>9.0</td>
<td>9.0</td>
<td>6.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.063</td>
<td>9.0</td>
<td>9.0</td>
<td>6.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.032</td>
<td>7.0</td>
<td>9.0</td>
<td>4.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-(3-asetyyl-2-pyridyli-5-isopropylyli-5-metyyl-2-imidatsolin-4-oni</td>
<td>1.000</td>
<td>4.0</td>
<td>8.0</td>
<td>0.0</td>
<td>9.0</td>
<td>7.0</td>
<td>8.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>8.0</td>
<td>8.0</td>
<td></td>
</tr>
<tr>
<td>0.500</td>
<td>2.0</td>
<td>8.0</td>
<td>0.0</td>
<td>7.0</td>
<td>6.0</td>
<td>8.0</td>
<td>9.0</td>
<td>4.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>8.0</td>
<td>7.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.250</td>
<td>2.0</td>
<td>6.0</td>
<td>1.0</td>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
<td>9.0</td>
<td>0.0</td>
<td>4.0</td>
<td>7.0</td>
<td>9.0</td>
<td>7.0</td>
<td>6.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.125</td>
<td>0.0</td>
<td>5.0</td>
<td>0.0</td>
<td>4.0</td>
<td>2.0</td>
<td>2.0</td>
<td>7.0</td>
<td>0.0</td>
<td>1.0</td>
<td>6.0</td>
<td>7.0</td>
<td>6.0</td>
<td>5.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.063</td>
<td>0.0</td>
<td>5.0</td>
<td>0.0</td>
<td>4.0</td>
<td>2.0</td>
<td>2.0</td>
<td>7.0</td>
<td>0.0</td>
<td>1.0</td>
<td>6.0</td>
<td>7.0</td>
<td>6.0</td>
<td>5.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.032</td>
<td>0.0</td>
<td>5.0</td>
<td>0.0</td>
<td>4.0</td>
<td>2.0</td>
<td>2.0</td>
<td>7.0</td>
<td>0.0</td>
<td>1.0</td>
<td>6.0</td>
<td>7.0</td>
<td>6.0</td>
<td>5.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yhdisteet</td>
<td>1.</td>
<td>2.</td>
<td>3.</td>
<td>4.</td>
<td>5.</td>
<td>6.</td>
<td>8.</td>
<td>9.</td>
<td>10.</td>
<td>11.</td>
<td>12.</td>
<td>13.</td>
<td>14.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>-----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bentysyli-2-(4-isopropyli-4-metyyli-5-</td>
<td>1.000</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>okso-1-propionyli-2-imidatsolin-2-yli-</td>
<td>0.500</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nikotinaatti</td>
<td>0.250</td>
<td>9.0</td>
<td>9.0</td>
<td>5.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bentysyli-2-(4-isopropyli-4-metyyli-5-</td>
<td>0.125</td>
<td>9.0</td>
<td>9.0</td>
<td>5.0</td>
<td>9.0</td>
<td>6.0</td>
<td>9.0</td>
<td>9.0</td>
<td>6.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>okso-1-pivaloyyli-2-imidatsolin-2-yli-</td>
<td>0.063</td>
<td>9.0</td>
<td>7.0</td>
<td>1.0</td>
<td>9.0</td>
<td>3.0</td>
<td>9.0</td>
<td>9.0</td>
<td>1.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nikotinaatti</td>
<td>0.032</td>
<td>1.0</td>
<td>6.0</td>
<td>0.0</td>
<td>7.0</td>
<td>0.0</td>
<td>9.0</td>
<td>9.0</td>
<td>0.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>6.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trimetyyli-2-(5-isopropyli-4-metyyli-4-</td>
<td>1.000</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>okso-2-imidatsolin-2-yli-2-</td>
<td>0.500</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-okso-2-fosfino-3pyridinipropionihippo</td>
<td>0.250</td>
<td>9.0</td>
<td>9.0</td>
<td>5.0</td>
<td>9.0</td>
<td>6.0</td>
<td>9.0</td>
<td>6.0</td>
<td>4.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metyyli-2-(4-isopropyli-4-metyyli-1-metyylisulfoniyyli-5-okso-2-imida-</td>
<td>0.125</td>
<td>9.0</td>
<td>9.0</td>
<td>5.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>8.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tsolin-2-yli)nikotinaatti</td>
<td>0.063</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>6.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-etanoli ammonium-2-</td>
<td>0.032</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>4.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(5-isopropyli-5-metyyli-4-okso-2-imida-</td>
<td>1.000</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tsolin-2-yli)nikotinaatti</td>
<td>0.500</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.500</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.125</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.063</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.032</td>
<td>9.0</td>
<td>9.0</td>
<td>5.0</td>
<td>9.0</td>
<td>9.0</td>
<td>1.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Taulukko XI (jatkuu..)

Orastuksen-jälkeen koe, käyttömäärät kg/ha
<table>
<thead>
<tr>
<th>Yhdisteet</th>
<th>Käyttömäärä</th>
<th>1.</th>
<th>2.</th>
<th>3.</th>
<th>4.</th>
<th>5.</th>
<th>6.</th>
<th>8.</th>
<th>9.</th>
<th>10.</th>
<th>11.</th>
<th>12.</th>
<th>17.</th>
<th>13.</th>
<th>14.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dietyyliammonium-2-(5-isopropyli-5-metyyli-4-okso-2-imidatsolin-2-yli)nikotinaatti</td>
<td>1.000</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.500</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.250</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.125</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.063</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.032</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
</tr>
<tr>
<td>Isopropyliammonium-2-(5-isopropyli-5-metyyli-4-okso-2-imidatsolin-2-yli)-nikotinaatti</td>
<td>1.000</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.500</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.250</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.125</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.063</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.032</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
</tr>
<tr>
<td>2-metyyliallyliammonium-2-(5-isopropyli-5-metyyli-4-okso-2-imidatsolin-2-yli)-nikotinaatti</td>
<td>1.000</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.500</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.250</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.125</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.063</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.032</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
</tr>
<tr>
<td>Isobutyliammonium-2-(5-isopropyli-5-metyyli-4-okso-2-imidatsolin-2-yli)nikotinaatti</td>
<td>1.000</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.500</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.250</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.125</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.063</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.032</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>2-metoksi-1-metyyliammonium-2-(5-isopropyli-5-metyyli-4-okso-2-imidatsolin-2-yli)nikotinaatti</td>
<td>1.000</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.500</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.250</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.125</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.063</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.032</td>
<td>9.0</td>
</tr>
<tr>
<td>Yhdisteet</td>
<td>Käyttö-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>määrä</td>
<td>1.</td>
<td>2.</td>
<td>3.</td>
<td>4.</td>
<td>5.</td>
<td>6.</td>
<td>8.</td>
<td>9.</td>
<td>10.</td>
<td>11.</td>
<td>12.</td>
<td>17.</td>
<td>13.</td>
<td>14.</td>
</tr>
<tr>
<td>tert-butylammmonium</td>
<td>1.000</td>
<td>9.0</td>
</tr>
<tr>
<td>2-(5-isopropyl-5-metyli-4-okso-2-imidatolin-2-yli)nikotinaatti</td>
<td>.500</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.250</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.125</td>
<td>9.0</td>
<td>9.0</td>
<td>6.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.063</td>
<td>9.0</td>
<td>9.0</td>
<td>5.0</td>
<td>9.0</td>
<td>9.0</td>
<td>1.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>2,2,2-triklooriettyli-2-(5-isopropyl-5-metyli-4-okso-2-imidatolin-2-yli)nikotinaatti</td>
<td>.032</td>
<td>9.0</td>
<td>9.0</td>
<td>6.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>2.0</td>
<td>6.0</td>
<td>9.0</td>
<td>9.0</td>
<td>6.0</td>
<td>8.0</td>
<td>8.0</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>.063</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>6.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>.250</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>7.0</td>
<td>8.0</td>
<td>7.0</td>
</tr>
<tr>
<td>6-kloori-2-(5-isopropyli-5-metyli-4-okso-2-imidatolin-2-yli)nikotinaatti</td>
<td>1.000</td>
<td>9.0</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td>.500</td>
<td>9.0</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>.250</td>
<td>9.0</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>.125</td>
<td>9.0</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>.063</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
<td>5.0</td>
<td>6.0</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>.032</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
<td>6.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>1-etylymettetyli-2-(1-karboksli-4-isopropyli-4-metyli-5-okso-2-imidatolin-2-yli)nikotinaatti</td>
<td>1.000</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.500</td>
<td>9.0</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>.250</td>
<td>9.0</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>.125</td>
<td>9.0</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>.063</td>
<td>9.0</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>.032</td>
<td>9.0</td>
<td>7.0</td>
<td>7.0</td>
<td>5.0</td>
<td>7.0</td>
<td>7.0</td>
<td>6.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>7.0</td>
<td>1.0</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>4-etyly-2-4-isopropyli-4-metyli-4-okso-1-ctpolystyli-sulfonyyli-2-imidatolin-2-yli)nikotinaatti</td>
<td>1.000</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>7.0</td>
<td>6.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>7.0</td>
<td>6.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.500</td>
<td>9.0</td>
<td>6.0</td>
<td>6.0</td>
<td>4.0</td>
<td>4.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
<td>6.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.250</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>7.0</td>
<td>3.0</td>
<td>0.0</td>
<td>3.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>.125</td>
<td>9.0</td>
<td>6.0</td>
<td>6.0</td>
<td>0.0</td>
<td>0.0</td>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
<td>1.0</td>
<td>0.0</td>
<td>5.0</td>
<td>9.0</td>
<td>3.0</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>.063</td>
<td>9.0</td>
<td>5.0</td>
<td>5.0</td>
<td>0.0</td>
<td>0.0</td>
<td>5.0</td>
<td>5.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2.0</td>
<td>9.0</td>
<td>3.0</td>
<td>2.0</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>.032</td>
<td>9.0</td>
<td>3.0</td>
<td>3.0</td>
<td>0.0</td>
<td>0.0</td>
<td>4.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2.0</td>
<td>6.0</td>
<td>3.0</td>
<td>1.0</td>
<td>4.0</td>
</tr>
</tbody>
</table>
Esimerkki 61
Koeyhdisteiden herbisidisen vaikutuksen arvioinnit ennen-orastusta

Yhdisteiden herbisidinen aktiviteetti ennen-orastusta osoitettiin seuraavilla kokeilla, joissa

useiden erilaisten yksisirkkaisten ja kaksisirkkaisten kasvien siemenä sekoitettiin kutakin lajia erikseen istutusmullan kanssa ja levitettiin erillisissä 0,5 l kylvöästioissa olevan mullan (noin 2,5 cm pak-su kerros) päälle. Kylvön jälkeen astiat suihkutettiin

valittujen koeyhdisteiden vesi/asetoni-liuoksilla, jotka sisälivät koeyhdistettä sellaisen määrän, jolla

kylvöästioihin saatiin konsentraatio noin 0,016-10 kg/ha. Astiat siirrettiin sitten kasvihuoneeseen, jossa

niitä hoidettiin tavallisella tavalla noudattaen kasvihuoneviljelyssä normaalisti käytettyjä menetelmiä. 4-5 viikon kuluttua käsittelystä kokeet lopetettiin ja jokaista astiaa tarkasteltiin ja taimien tila arvioitiin edellä esitetyillä arviointisysteemiä käyttäen.

Keksinnön mukaisten aktiiviaineiden herbisidinen vaikutus ilmenee selvästi seuraavan taulukkoon XII kootuisen koetulosista. Jos kokeita tehtiin useampi kuin yksi, niin on esitetty koetulosten keskiarvo.
<p>| Yhdisteet | 1. | 2. | 3. | 4. | 5. | 6. | 7. | 8. | 9. | 10. | 11. | 12. | 13. | 14. | 15. | 16. |
|-----------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| Trietyylilammonium-2-((5-isopropylil-5-metyylil-4-okso-2-imidatsolin-2-yyli)-nikotinaatti | 500 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 |
| 250 | 8,0 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 |
| 125 | 7,0 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 | 8,0 | 9,0 | 9,0 | 9,0 | 9,0 |
| 063 | 6,0 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 | 8,0 | 9,0 | 9,0 | 6,0 | 9,0 | 9,0 | 9,0 | 8,0 |
| 032 | 3,0 | 8,0 | 8,0 | 8,0 | 8,0 | 8,0 | 9,0 | 8,0 | 9,0 | 1,0 | 9,0 | 8,0 | 7,0 | 7,0 | 8,0 |
| 016 | 1,0 | 6,0 | 7,0 | 6,0 | 7,0 | 9,0 | 5,0 | 9,0 | 1,0 | 9,0 | 8,0 | 5,0 | 4,0 | 8,0 | 8,0 |
| Natrium-2-(5-isopropylil-5-metyylil-4-okso-2-imidatsolin-2-yyli)-nikotinaatti | 500 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 |
| 250 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 | 8,0 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 |
| 125 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 | 5,0 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 |
| 063 | 7,0 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 | 5,0 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 |
| 032 | 6,0 | 8,0 | 9,0 | 8,0 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 | 2,0 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 |
| 016 | 2,0 | 8,0 | 8,0 | 8,0 | 7,0 | 9,0 | 8,0 | 8,0 | 8,0 | 1,0 | 9,0 | 9,0 | 7,0 | 8,0 | 8,0 |
| Metyylil-2-(5-isopropylil-5-metyylil-4-okso-2-imidatsolin-2-yyli)-nikotinaatti | 10000 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 | 8,0 | 8,0 | 8,0 | 8,0 | 8,0 | 8,0 | 8,0 | 8,0 | 8,0 | 8,0 |
| 2000 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 | 8,0 | 8,0 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 |
| 1000 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 | 8,0 | 8,0 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 |
| 500 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 | 8,0 | 8,0 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 |
| 250 | 8,7 | 8,9 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 | 8,6 | 8,0 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 |
| 125 | 7,9 | 8,9 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 | 8,4 | 7,1 | 9,0 | 8,7 | 9,0 | 8,8 | 9,0 | 8,8 |
| 063 | 6,7 | 7,9 | 8,5 | 8,8 | 8,0 | 9,0 | 8,7 | 8,0 | 4,6 | 8,8 | 8,7 | 8,3 | 7,9 | 7,6 | 8,1 |
| 032 | 4,0 | 6,9 | 6,7 | 8,8 | 5,3 | 9,0 | 6,6 | 8,1 | 1,0 | 8,7 | 7,7 | 6,0 | 7,0 | 6,5 | 6,7 |
| 016 | 2,4 | 5,6 | 4,8 | 6,3 | 4,3 | 9,0 | 4,4 | 6,6 | 0,2 | 7,6 | 6,6 | 2,2 | 5,8 | 4,7 | 3,3 |
| Metyylil-2-(5-etyylil-5-metyylil-4-okso-2-imidatsolin-2-yyli)-nikotinaatti | 10000 | 8,0 | 9,0 | 9,0 | 9,0 | 8,0 | 8,0 | 8,0 | 8,0 | 8,0 | 8,0 | 9,0 | 9,0 | 9,0 | 9,0 | 9,0 |
| 1000 | 9,0 | 8,0 | 9,0 | 9,0 | 9,0 | 8,0 | 8,0 | 9,0 | 0,0 | 9,0 | 9,0 | 8,0 | 8,0 | 9,0 | 8,0 |
| 500 | 8,0 | 6,0 | 9,0 | 9,0 | 9,0 | 5,0 | 8,0 | 0,0 | 8,0 | 8,0 | 8,0 | 5,0 | 5,0 | 7,0 | 8,0 |
| 250 | 5,0 | 5,0 | 6,0 | 1,0 | 3,0 | 8,0 | 0,0 | 8,0 | 5,0 | 5,0 | 7,0 | 5,0 | 5,0 | 7,0 | 8,0 |
| 125 | 0,0 | 0,0 | 0,0 | 0,0 | 0,0 | 8,0 | 0,0 | 8,0 | 3,0 | 3,0 | 5,0 | 3,0 | 3,0 | 5,0 | 7,0 |
| 063 | 0,0 | 0,0 | 0,0 | 0,0 | 0,0 | 5,0 | 0,0 | 7,0 | 0,0 | 0,0 | 1,0 | 0,0 | 0,0 | 1,0 | 2,0 |
| 032 | 0,0 | 0,0 | 0,0 | 0,0 | 0,0 | 3,0 | 0,0 | 0,0 | 0,0 | 0,0 | 0,0 | 0,0 | 0,0 | 0,0 | 0,0 |</p>
<table>
<thead>
<tr>
<th>Yhdisteet</th>
<th>Käyttö-</th>
<th>1.</th>
<th>2.</th>
<th>3.</th>
<th>4.</th>
<th>5.</th>
<th>6.</th>
<th>7.</th>
<th>8.</th>
<th>9.</th>
<th>10.</th>
<th>11.</th>
<th>12.</th>
<th>13.</th>
<th>14.</th>
<th>15.</th>
<th>16.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-propyli-2-(5-isopropyli-5-metylyli-4-okso-2-imidatsolin-2-yyli)-nikotinaatti</td>
<td>500</td>
<td>9,0</td>
</tr>
<tr>
<td>250</td>
<td>9,0</td>
</tr>
<tr>
<td>125</td>
<td>9,0</td>
</tr>
<tr>
<td>063</td>
<td>7,0</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
<td>9,0</td>
</tr>
<tr>
<td>032</td>
<td>3,0</td>
<td>8,0</td>
<td>8,0</td>
<td>8,0</td>
<td>9,0</td>
<td>9,0</td>
<td>8,0</td>
<td>8,0</td>
<td>2,0</td>
<td>9,0</td>
<td>9,0</td>
<td>3,0</td>
<td>8,0</td>
<td>6,0</td>
<td>8,0</td>
<td>8,0</td>
<td></td>
</tr>
<tr>
<td>016</td>
<td>2,0</td>
<td>7,0</td>
<td>8,0</td>
<td>8,0</td>
<td>9,0</td>
<td>9,0</td>
<td>8,0</td>
<td>8,0</td>
<td>1,0</td>
<td>9,0</td>
<td>8,0</td>
<td>2,0</td>
<td>7,0</td>
<td>5,0</td>
<td>8,0</td>
<td>7,0</td>
<td>0,0</td>
</tr>
<tr>
<td>500</td>
<td>9,0</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>8,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>8,0</td>
<td>9,0</td>
<td></td>
</tr>
<tr>
<td>063</td>
<td>7,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
<td></td>
</tr>
<tr>
<td>032</td>
<td>5,0</td>
<td>7,0</td>
<td>8,0</td>
<td>8,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
<td>9,0</td>
<td>8,0</td>
<td>8,0</td>
<td></td>
</tr>
<tr>
<td>016</td>
<td>3,0</td>
<td>5,0</td>
<td>8,0</td>
<td>7,0</td>
<td>9,0</td>
<td>9,0</td>
<td>7,0</td>
<td>7,0</td>
<td>1,0</td>
<td>9,0</td>
<td>8,0</td>
<td>3,0</td>
<td>8,0</td>
<td>9,0</td>
<td>7,0</td>
<td>8,0</td>
<td>8,0</td>
</tr>
<tr>
<td>500</td>
<td>7,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>4,0</td>
<td>9,0</td>
<td>5,0</td>
<td>9,0</td>
<td>0,0</td>
<td>9,0</td>
<td>4,0</td>
<td>5,0</td>
<td>9,0</td>
<td>1,0</td>
<td>1,0</td>
<td>5,0</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>6,0</td>
<td>8,0</td>
<td>5,0</td>
<td>2,0</td>
<td>9,0</td>
<td>0,0</td>
<td>8,0</td>
<td>9,0</td>
<td>0,0</td>
<td>0,0</td>
<td>2,0</td>
<td>8,0</td>
<td>0,0</td>
<td>0,0</td>
<td>2,0</td>
<td>0,0</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>1,0</td>
<td>6,0</td>
<td>2,0</td>
<td>0,0</td>
<td>9,0</td>
<td>0,0</td>
<td>7,0</td>
<td>0,0</td>
<td>8,0</td>
<td>0,0</td>
<td>0,0</td>
<td>4,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
</tr>
<tr>
<td>063</td>
<td>0,0</td>
<td>3,0</td>
<td>0,0</td>
<td>0,0</td>
<td>9,0</td>
<td>0,0</td>
<td>1,0</td>
<td>0,0</td>
<td>5,0</td>
<td>0,0</td>
<td>0,0</td>
<td>2,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
</tr>
<tr>
<td>032</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>9,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>1,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>016</td>
<td>0,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>9,0</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>8,0</td>
<td>9,0</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>8,0</td>
<td>9,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>063</td>
<td>7,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>032</td>
<td>3,0</td>
<td>7,0</td>
<td>8,0</td>
<td>8,0</td>
<td>9,0</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
<td>2,0</td>
<td>9,0</td>
<td>8,0</td>
<td>3,0</td>
<td>9,0</td>
<td>8,0</td>
<td>8,0</td>
<td>8,0</td>
<td></td>
</tr>
<tr>
<td>016</td>
<td>0,0</td>
<td>4,0</td>
<td>2,0</td>
<td>0,0</td>
<td>7,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>1,0</td>
<td>2,0</td>
<td>2,0</td>
<td>5,0</td>
<td>1,0</td>
<td>0,0</td>
<td>1,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Yhdisteet</td>
<td>Käyttömaara</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>------------</td>
<td>----</td>
</tr>
<tr>
<td>Ettyli-2-isopropyli-5-</td>
<td>500</td>
<td>9.0</td>
</tr>
<tr>
<td>metyyli-4-okso-2-imidatsolin-2-yyli)-nikotinaatti</td>
<td>250</td>
<td>8.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>8.0</td>
<td>9.0</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td>0.063</td>
<td>5.0</td>
<td>7.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>6.0</td>
<td>8.0</td>
<td>6.0</td>
<td>8.0</td>
<td>9.0</td>
<td>6.0</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>0.032</td>
<td>2.0</td>
<td>6.0</td>
<td>5.0</td>
<td>6.0</td>
<td>9.0</td>
<td>2.0</td>
<td>5.0</td>
<td>3.0</td>
<td>7.0</td>
<td>6.0</td>
<td>3.0</td>
<td>5.0</td>
<td>8.0</td>
<td>3.0</td>
<td>8.0</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>0.016</td>
<td>0.0</td>
<td>6.0</td>
<td>2.0</td>
<td>1.0</td>
<td>9.0</td>
<td>0.0</td>
<td>3.0</td>
<td>0.0</td>
<td>4.0</td>
<td>4.0</td>
<td>1.0</td>
<td>4.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2-bentsyliokssi-etyyli-</td>
<td>500</td>
<td>7.0</td>
<td>9.0</td>
</tr>
<tr>
<td>2-(5-isopropyl-5-metyyli-4-okso-2-imidatsolin-2-yyli)-nikotinaatti</td>
<td>250</td>
<td>8.0</td>
<td>9.0</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>5.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>7.0</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>0.063</td>
<td>4.0</td>
<td>9.0</td>
<td>8.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>3.0</td>
<td>9.0</td>
<td>0.0</td>
<td>9.0</td>
<td>7.0</td>
<td>7.0</td>
<td>8.0</td>
<td>7.0</td>
<td>7.0</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td>0.032</td>
<td>2.0</td>
<td>2.0</td>
<td>8.0</td>
<td>4.0</td>
<td>9.0</td>
<td>9.0</td>
<td>2.0</td>
<td>3.0</td>
<td>0.0</td>
<td>8.0</td>
<td>4.0</td>
<td>2.0</td>
<td>3.0</td>
<td>3.0</td>
<td>1.0</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>0.016</td>
<td>0.0</td>
<td>1.0</td>
<td>7.0</td>
<td>3.0</td>
<td>9.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>0.0</td>
<td>7.0</td>
<td>3.0</td>
<td>1.0</td>
<td>2.0</td>
<td>3.0</td>
<td>0.0</td>
<td>4.0</td>
</tr>
<tr>
<td>2-(5-isopropyl-5-metyyli-4-okso-2-imidatsolin-2-yyli)-nikotiinihappo</td>
<td>10,000</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td>2,000</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>1,000</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.5</td>
<td>8.5</td>
<td>8.5</td>
<td>8.5</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.5</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.9</td>
<td>8.5</td>
<td>8.5</td>
<td>8.5</td>
<td>8.5</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.5</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.9</td>
<td>8.5</td>
<td>8.5</td>
<td>8.5</td>
<td>8.5</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.5</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.063</td>
<td>7.5</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.5</td>
<td>8.5</td>
<td>7.5</td>
<td>8.5</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.1</td>
</tr>
<tr>
<td></td>
<td>0.032</td>
<td>7.0</td>
<td>8.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.5</td>
<td>8.5</td>
<td>8.5</td>
<td>8.5</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.5</td>
<td>9.0</td>
<td>9.1</td>
</tr>
<tr>
<td></td>
<td>0.016</td>
<td>3.0</td>
<td>6.0</td>
<td>8.5</td>
<td>8.0</td>
<td>8.0</td>
<td>9.0</td>
<td>8.5</td>
<td>6.5</td>
<td>5.0</td>
<td>5.0</td>
<td>8.0</td>
<td>8.0</td>
<td>6.5</td>
<td>8.5</td>
<td>6.0</td>
<td>9.0</td>
</tr>
<tr>
<td>2-propynyyli-2+(etyyli-5-metyyli-4-okso-2-imidatsolin-2-yyli)-nikotinaatti</td>
<td>500</td>
<td>8.0</td>
<td>9.0</td>
<td>8.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>2.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>4.0</td>
<td>9.0</td>
<td>9.0</td>
<td>6.0</td>
<td>7.0</td>
<td>9.0</td>
<td>7.0</td>
<td>8.0</td>
<td>1.0</td>
<td>9.0</td>
<td>8.0</td>
<td>6.0</td>
<td>8.0</td>
<td>9.0</td>
<td>7.0</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>2.0</td>
<td>4.0</td>
<td>1.0</td>
<td>1.0</td>
<td>2.0</td>
<td>9.0</td>
<td>3.0</td>
<td>4.0</td>
<td>1.0</td>
<td>8.0</td>
<td>7.0</td>
<td>1.0</td>
<td>8.0</td>
<td>2.0</td>
<td>2.0</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>0.063</td>
<td>1.0</td>
<td>2.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
<td>9.0</td>
<td>1.0</td>
<td>1.0</td>
<td>0.0</td>
<td>7.0</td>
<td>3.0</td>
<td>0.0</td>
<td>4.0</td>
<td>1.0</td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>0.032</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>3.0</td>
<td>1.0</td>
<td>0.0</td>
<td>2.0</td>
<td>0.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>0.016</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Yhdisteet</td>
<td>Käyttö- määrä</td>
<td>1.</td>
<td>2.</td>
<td>3.</td>
<td>4.</td>
<td>5.</td>
<td>6.</td>
<td>7.</td>
<td>8.</td>
<td>9.</td>
<td>10.</td>
<td>11.</td>
<td>12.</td>
<td>13.</td>
<td>14.</td>
<td>15.</td>
<td>16.</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>----</td>
</tr>
<tr>
<td>2-((5-etyylti-5-metyylti-4-okso-2-imidatsolin-2-yyli)-nikotiinihappo</td>
<td>500</td>
<td>8,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>6,0</td>
<td>8,0</td>
<td>3,0</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>3,0</td>
<td>9,0</td>
<td>7,0</td>
<td>8,0</td>
<td>9,0</td>
<td>1,0</td>
<td>8,0</td>
<td>0,0</td>
<td>9,0</td>
<td>7,0</td>
<td>6,0</td>
<td>9,0</td>
<td>8,0</td>
<td>8,0</td>
<td>9,0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>3,0</td>
<td>8,0</td>
<td>9,0</td>
<td>6,0</td>
<td>9,0</td>
<td>0,0</td>
<td>7,0</td>
<td>0,0</td>
<td>9,0</td>
<td>6,0</td>
<td>5,0</td>
<td>8,0</td>
<td>0,0</td>
<td>7,0</td>
<td>0,0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>063</td>
<td>2,0</td>
<td>5,0</td>
<td>3,0</td>
<td>1,0</td>
<td>9,0</td>
<td>0,0</td>
<td>6,0</td>
<td>0,0</td>
<td>8,0</td>
<td>2,0</td>
<td>0,0</td>
<td>8,0</td>
<td>1,0</td>
<td>0,0</td>
<td>3,0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>032</td>
<td>0,0</td>
<td>4,0</td>
<td>0,0</td>
<td>0,0</td>
<td>9,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>7,0</td>
<td>0,0</td>
<td>0,0</td>
<td>5,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>016</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>8,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>5,0</td>
<td>0,0</td>
<td>0,0</td>
<td>3,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
</tr>
<tr>
<td>Mettyylti-2-((5-isopropyyli-5-metyylti-4-okso-2-imidatsolin-2-yyli)-nikotiinaatti-hydrokloridi</td>
<td>500</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>8,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>063</td>
<td>6,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>6,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>032</td>
<td>6,0</td>
<td>9,0</td>
<td>7,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>1,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>8,0</td>
<td>8,0</td>
<td>8,0</td>
<td>9,0</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>016</td>
<td>2,0</td>
<td>7,0</td>
<td>7,0</td>
<td>7,0</td>
<td>9,0</td>
<td>9,0</td>
<td>4,0</td>
<td>9,0</td>
<td>0,0</td>
<td>9,0</td>
<td>9,0</td>
<td>7,0</td>
<td>8,0</td>
<td>8,0</td>
<td>7,0</td>
<td>9,0</td>
</tr>
<tr>
<td>1-metyylti-2-propyylyti-2-(5-isopropyyli-5-metyylti-4-okso-2-imidatsolin-2-yyli)-nikotinaatti</td>
<td>500</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>063</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>7,0</td>
<td>9,0</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>032</td>
<td>7,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
<td>9,0</td>
<td>2,0</td>
<td>9,0</td>
<td>9,0</td>
<td>7,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>016</td>
<td>3,0</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
<td>2,0</td>
<td>9,0</td>
<td>9,0</td>
<td>1,0</td>
<td>9,0</td>
<td>8,0</td>
<td>3,0</td>
<td>7,0</td>
<td>4,0</td>
<td>8,0</td>
<td>9,0</td>
<td></td>
</tr>
<tr>
<td>tert.-butyylti-2-(5-isopropyyli-5-metyylti-4-okso-2-imidatsolin-2-yyli)-nikotinaatti</td>
<td>500</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>4,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>7,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>7,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>063</td>
<td>4,0</td>
<td>8,0</td>
<td>9,0</td>
<td>9,0</td>
<td>6,0</td>
<td>9,0</td>
<td>9,0</td>
<td>8,0</td>
<td>2,0</td>
<td>9,0</td>
<td>9,0</td>
<td>3,0</td>
<td>7,0</td>
<td>2,0</td>
<td>9,0</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>032</td>
<td>1,0</td>
<td>6,0</td>
<td>6,0</td>
<td>7,0</td>
<td>9,0</td>
<td>9,0</td>
<td>2,0</td>
<td>2,0</td>
<td>1,0</td>
<td>8,0</td>
<td>8,0</td>
<td>1,0</td>
<td>4,0</td>
<td>1,0</td>
<td>8,0</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>016</td>
<td>0,0</td>
<td>2,0</td>
<td>2,0</td>
<td>3,0</td>
<td>2,0</td>
<td>9,0</td>
<td>0,0</td>
<td>0,0</td>
<td>2,0</td>
<td>8,0</td>
<td>1,0</td>
<td>2,0</td>
<td>0,0</td>
<td>4,0</td>
<td>9,0</td>
<td>9,0</td>
</tr>
<tr>
<td>Yhdisteet</td>
<td>Käyttömäärä</td>
<td>1.</td>
<td>2.</td>
<td>3.</td>
<td>4.</td>
<td>5.</td>
<td>6.</td>
<td>7.</td>
<td>8.</td>
<td>9.</td>
<td>10.</td>
<td>11.</td>
<td>12.</td>
<td>13.</td>
<td>14.</td>
<td>15.</td>
<td>16.</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>-----</td>
</tr>
<tr>
<td>Furfuryli-2-(5-isopropyli-5-metyyli-4-okso-2-imidatsolin-2-yyli)-nikotinaatti</td>
<td>500</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>063</td>
<td>8,0</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>032</td>
<td>7,0</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>016</td>
<td>3,0</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>4,0</td>
<td>8,0</td>
<td>0,0</td>
<td>8,0</td>
<td>8,0</td>
<td>8,0</td>
<td>7,0</td>
<td>8,0</td>
<td>6,0</td>
<td>9,0</td>
</tr>
<tr>
<td>Isopropyli-2-(5-isopropyli-5-metyyli-4-okso-2-imidatsolin-2-yyli)-nikotinaatti</td>
<td>500</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>8,0</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>7,0</td>
<td>9,0</td>
<td>6,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>1,0</td>
<td>8,0</td>
<td>7,0</td>
<td>8,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>0,0</td>
<td>9,0</td>
<td>8,0</td>
<td>7,0</td>
<td>8,0</td>
<td>6,0</td>
<td>4,0</td>
<td>7,0</td>
<td>6,0</td>
</tr>
<tr>
<td></td>
<td>063</td>
<td>0,0</td>
<td>7,0</td>
<td>4,0</td>
<td>7,0</td>
<td>8,0</td>
<td>9,0</td>
<td>3,0</td>
<td>9,0</td>
<td>0,0</td>
<td>9,0</td>
<td>6,0</td>
<td>4,0</td>
<td>7,0</td>
<td>6,0</td>
<td>3,0</td>
<td>7,0</td>
</tr>
<tr>
<td></td>
<td>032</td>
<td>0,0</td>
<td>3,0</td>
<td>0,0</td>
<td>2,0</td>
<td>8,0</td>
<td>9,0</td>
<td>8,0</td>
<td>0,0</td>
<td>7,0</td>
<td>6,0</td>
<td>2,0</td>
<td>1,0</td>
<td>3,0</td>
<td>0,0</td>
<td>4,0</td>
<td>1,0</td>
</tr>
<tr>
<td></td>
<td>016</td>
<td>0,0</td>
<td>1,0</td>
<td>0,0</td>
<td>0,0</td>
<td>9,0</td>
<td>6,0</td>
<td>2,0</td>
<td>4,0</td>
<td>0,0</td>
<td>7,0</td>
<td>8,0</td>
<td>1,0</td>
<td>1,0</td>
<td>0,0</td>
<td>3,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Bentsyyli-2-(5-isopropyli-5-metyyli-4-okso-2-imidatsolin-2-yyli)-nikotinaatti</td>
<td>500</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>8,0</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>8,0</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>063</td>
<td>4,0</td>
<td>8,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>7,0</td>
<td>9,0</td>
<td>0,0</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
<td>8,0</td>
<td>8,0</td>
<td>7,0</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>032</td>
<td>1,0</td>
<td>8,0</td>
<td>6,0</td>
<td>2,0</td>
<td>9,0</td>
<td>9,0</td>
<td>2,0</td>
<td>9,0</td>
<td>0,0</td>
<td>9,0</td>
<td>3,0</td>
<td>3,0</td>
<td>2,0</td>
<td>6,0</td>
<td>3,0</td>
<td>7,0</td>
</tr>
<tr>
<td></td>
<td>016</td>
<td>0,0</td>
<td>1,0</td>
<td>1,0</td>
<td>0,0</td>
<td>9,0</td>
<td>1,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>1,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>2-dekynyli-2-(5-isopropyli-5-metyyli-4-okso-2-imidatsolin-2-yyli)-nikotinaatti</td>
<td>500</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>7,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>063</td>
<td>7,0</td>
<td>9,0</td>
<td>8,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>2,0</td>
<td>9,0</td>
<td>9,0</td>
<td>5,0</td>
<td>9,0</td>
<td>6,0</td>
<td>9,0</td>
<td>6,0</td>
</tr>
<tr>
<td></td>
<td>032</td>
<td>4,0</td>
<td>8,0</td>
<td>6,0</td>
<td>9,0</td>
<td>7,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>2,0</td>
<td>9,0</td>
<td>7,0</td>
<td>5,0</td>
<td>8,0</td>
<td>6,0</td>
<td>9,0</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>016</td>
<td>1,0</td>
<td>6,0</td>
<td>6,0</td>
<td>7,0</td>
<td>1,0</td>
<td>9,0</td>
<td>6,0</td>
<td>7,0</td>
<td>0,0</td>
<td>8,0</td>
<td>7,0</td>
<td>1,0</td>
<td>3,0</td>
<td>1,0</td>
<td>8,0</td>
<td>1,0</td>
</tr>
<tr>
<td>Yhdisteet</td>
<td>Käyttö- määrä</td>
<td>1.</td>
<td>2.</td>
<td>3.</td>
<td>4.</td>
<td>5.</td>
<td>6.</td>
<td>7.</td>
<td>8.</td>
<td>9.</td>
<td>10.</td>
<td>11.</td>
<td>12.</td>
<td>13.</td>
<td>14.</td>
<td>15.</td>
<td>16.</td>
</tr>
<tr>
<td>---</td>
<td>---------------</td>
<td>----</td>
</tr>
<tr>
<td>2-metoksimetyyli-2-(5-isopropylly-5-metyyli-4- okso-2-imidatsolin-2-ylyli)-nikotinaatti</td>
<td>500</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>063</td>
<td>7.0</td>
<td>9.0</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>032</td>
<td>6.0</td>
<td>8.0</td>
<td>8.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>1.0</td>
<td>9.0</td>
<td>8.0</td>
<td>8.0</td>
<td>9.0</td>
<td>6.0</td>
<td>8.0</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>016</td>
<td>1.0</td>
<td>7.0</td>
<td>7.0</td>
<td>4.0</td>
<td>3.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>0.0</td>
<td>9.0</td>
<td>8.0</td>
<td>1.0</td>
<td>8.0</td>
<td>1.0</td>
<td>8.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Allyyl-2-(5-isopropylly-5-metyyli-4-oxid-2-imidatsolin-2-ylyli)-nikotinaatti</td>
<td>500</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>063</td>
<td>8.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td>032</td>
<td>7.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>3.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>6.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>6.0</td>
<td>9.0</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>016</td>
<td>3.0</td>
<td>8.0</td>
<td>6.0</td>
<td>8.0</td>
<td>3.0</td>
<td>9.0</td>
<td>9.0</td>
<td>6.0</td>
<td>8.0</td>
<td>1.0</td>
<td>8.0</td>
<td>8.0</td>
<td>2.0</td>
<td>3.0</td>
<td>2.0</td>
<td>8.0</td>
</tr>
<tr>
<td>1-metyyliallylylyl-2-(5-isopropylly-5-metyyli-4- okso-2-imidatsolin-2-ylyli)-nikotinaatti</td>
<td>500</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>6.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>063</td>
<td>4.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>8.0</td>
<td>1.0</td>
<td>9.0</td>
<td>9.0</td>
<td>3.0</td>
<td>8.0</td>
<td>5.0</td>
<td>9.0</td>
<td>5.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>032</td>
<td>3.0</td>
<td>6.0</td>
<td>8.0</td>
<td>9.0</td>
<td>2.0</td>
<td>9.0</td>
<td>8.0</td>
<td>8.0</td>
<td>0.0</td>
<td>9.0</td>
<td>9.0</td>
<td>1.0</td>
<td>7.0</td>
<td>8.0</td>
<td>9.0</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td>016</td>
<td>1.0</td>
<td>3.0</td>
<td>7.0</td>
<td>3.0</td>
<td>0.0</td>
<td>9.0</td>
<td>2.0</td>
<td>8.0</td>
<td>0.0</td>
<td>9.0</td>
<td>7.0</td>
<td>0.0</td>
<td>4.0</td>
<td>2.0</td>
<td>8.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>
Taulukko XII (jatkuu.)

Ennen-orastusta koe; käyttömäärät kg/ha

<table>
<thead>
<tr>
<th>Yhdisteet</th>
<th>Käyttö- määrä</th>
<th>1.</th>
<th>2.</th>
<th>3.</th>
<th>4.</th>
<th>5.</th>
<th>6.</th>
<th>8.</th>
<th>9.</th>
<th>10.</th>
<th>11.</th>
<th>12.</th>
<th>13.</th>
<th>14.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-metyylliallyli-2-</td>
<td>0.500</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>(5-isopropyli-5-</td>
<td>0.250</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>metyylli-4-okso-2-</td>
<td>0.125</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>imidatsolin-2-yyli-)</td>
<td>0.063</td>
<td>3.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>6.0</td>
<td>9.0</td>
<td>6.0</td>
<td>4.0</td>
<td>9.0</td>
<td>8.0</td>
<td>3.0</td>
<td>9.0</td>
<td>8.0</td>
</tr>
<tr>
<td>nikotinaatti</td>
<td>0.016</td>
<td>1.0</td>
<td>7.0</td>
<td>7.0</td>
<td>8.0</td>
<td>3.0</td>
<td>9.0</td>
<td>7.0</td>
<td>0.0</td>
<td>9.0</td>
<td>8.0</td>
<td>2.0</td>
<td>6.0</td>
<td>7.0</td>
</tr>
<tr>
<td>2-butyonyli-2-(5-isopropylli-</td>
<td>0.500</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>propylli-5-metyylli-</td>
<td>0.250</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>4-okso-2-imidatsolin-</td>
<td>0.125</td>
<td>6.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>6.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>2-yyli)nikotinaatti</td>
<td>0.063</td>
<td>4.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>5.0</td>
<td>9.0</td>
<td>9.0</td>
<td>3.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>Oktadekyli-2-(5-isopropylli-</td>
<td>0.000</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
</tr>
<tr>
<td>propylli-5-metyylli-4-</td>
<td>0.500</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>1.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>7.0</td>
</tr>
<tr>
<td>okso-2-imidatsolin-2-</td>
<td>0.250</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>yyli)nikotinaatti</td>
<td>0.125</td>
<td>6.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>Propylli-2-(5-isopropyli-5-</td>
<td>0.000</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>propylli-5-metyylli-4-imidatsolin-</td>
<td>0.500</td>
<td>9.0</td>
</tr>
<tr>
<td>2-yyli)nikotinaatti</td>
<td>0.250</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>Butyyli-2-(5-isopropyli-5-</td>
<td>0.000</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>propylli-5-metyylli-4-</td>
<td>0.500</td>
<td>9.0</td>
</tr>
<tr>
<td>imidatsolin-2-yyli)nikotinaatti</td>
<td>0.250</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>8.000</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>0.063</td>
<td>1.0</td>
<td>0.0</td>
<td>7.0</td>
<td>6.0</td>
<td>7.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>8.0</td>
<td>5.0</td>
<td>6.0</td>
<td>5.0</td>
<td>6.0</td>
<td>6.0</td>
</tr>
<tr>
<td>Yhdisteet</td>
<td>Käyttömäärä</td>
<td>1.</td>
<td>2.</td>
<td>3.</td>
<td>4.</td>
<td>5.</td>
<td>6.</td>
<td>8.</td>
<td>9.</td>
<td>10.</td>
<td>11.</td>
<td>12.</td>
<td>17.</td>
<td>13.</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Metyyli-2-(5-isopropyyli-5-metyyli-4-oksosa-2-imidatsolin-2-yyliliikotinaatti</td>
<td>8.000</td>
<td>0.00</td>
</tr>
<tr>
<td>2-dekenyli-2-(5-isopropyyli-5-metyyli-4-oksosa-2-imidatsolin-2-yyliliikotinaatti</td>
<td>5.000</td>
<td>9.00</td>
</tr>
<tr>
<td>N,N-dietyyli-2-(5-isopropyyli-5-metyyli-4-oksosa-2-imidatsolin-2-yyliliikotinaatti</td>
<td>8.000</td>
<td>7.00</td>
<td>7.00</td>
<td>8.00</td>
<td>9.00</td>
<td>9.00</td>
<td>9.00</td>
<td>8.00</td>
<td>5.00</td>
<td>8.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-kloorialyyli-2-(5-isopropyyli-5-metyyli-4-oksosa-2-imidatsolin-2-yyliliikotinaatti</td>
<td>0.500</td>
<td>9.00</td>
</tr>
<tr>
<td>2-syklopropyyli-5-metyyli-4-oksosa-2-imidatsolin-2-yyliliikotinaatti</td>
<td>5.000</td>
<td>7.00</td>
<td>9.00</td>
<td>6.00</td>
<td>9.00</td>
<td>9.00</td>
<td>6.00</td>
<td>8.00</td>
<td>5.00</td>
<td>8.00</td>
<td>9.00</td>
<td>9.00</td>
<td>9.00</td>
<td>9.00</td>
</tr>
<tr>
<td>Yhdisteet</td>
<td>Käyttö-</td>
<td>1.</td>
<td>2.</td>
<td>3.</td>
<td>4.</td>
<td>5.</td>
<td>6.</td>
<td>8.</td>
<td>9.</td>
<td>10.</td>
<td>11.</td>
<td>12.</td>
<td>13.</td>
<td>14.</td>
</tr>
<tr>
<td>--</td>
<td>---------</td>
<td>----</td>
</tr>
<tr>
<td>Heksylii-2-(5-isopropyli-5-metyyli-4-okso-2-imidatsolin-2-yli)pikotinaatti</td>
<td>8.000</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.500</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.125</td>
<td>7.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>6.0</td>
<td>9.0</td>
<td>9.0</td>
<td>3.9</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td>.063</td>
<td>2.6</td>
<td>9.0</td>
<td>7.0</td>
<td>6.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>6.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>.016</td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>1-metyyli-2-butenyli-2-(5-isopropyli-5-metyyli-4-okso-2-imidatsolin-2-yli)ninkotinaatti</td>
<td>8.000</td>
<td>8.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.500</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.125</td>
<td>7.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>6.0</td>
<td>9.0</td>
<td>9.0</td>
<td>3.9</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td>.063</td>
<td>4.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td>.032</td>
<td>5.0</td>
<td>9.0</td>
<td>7.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>2.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td>.016</td>
<td>1.0</td>
<td>8.0</td>
<td>3.0</td>
<td>4.0</td>
<td>6.0</td>
<td>9.0</td>
<td>9.0</td>
<td>3.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>Metyyli-2-(4-isopropyli-1,4-dimetyyli-5-okso-2-imidatsolin-2-yli)ninkotinaatti</td>
<td>5.000</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>2.0</td>
<td>4.0</td>
<td>9.0</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td>.500</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>4.0</td>
<td>7.0</td>
<td>2.0</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>.250</td>
<td>1.5</td>
<td>7.0</td>
<td>4.0</td>
<td>2.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>0.0</td>
<td>4.0</td>
<td>7.0</td>
<td>2.0</td>
<td>7.0</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td>.125</td>
<td>1.0</td>
<td>4.0</td>
<td>3.0</td>
<td>0.0</td>
<td>0.0</td>
<td>9.0</td>
<td>9.0</td>
<td>0.0</td>
<td>3.9</td>
<td>7.0</td>
<td>0.0</td>
<td>1.0</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>.063</td>
<td>0.0</td>
<td>1.0</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>8.0</td>
<td>9.0</td>
<td>0.0</td>
<td>2.0</td>
<td>7.0</td>
<td>0.0</td>
<td>1.0</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>.032</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>7.0</td>
<td>9.0</td>
<td>0.0</td>
<td>2.0</td>
<td>6.0</td>
<td>0.0</td>
<td>1.0</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>.016</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2.0</td>
<td>9.0</td>
<td>0.0</td>
<td>2.0</td>
<td>6.0</td>
<td>0.0</td>
<td>1.0</td>
<td>3.9</td>
</tr>
<tr>
<td>Metyyli-2-(4-isopropyli-4-metyyli-5-okso-1-pivaloyyli-2-imidatsolin-2-yli)ninkotinaatti</td>
<td>.500</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.250</td>
<td>8.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.125</td>
<td>8.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.063</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2.0</td>
<td>9.0</td>
<td>0.0</td>
<td>2.0</td>
<td>6.0</td>
<td>0.0</td>
<td>1.0</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td>.032</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2.0</td>
<td>9.0</td>
<td>0.0</td>
<td>2.0</td>
<td>6.0</td>
<td>0.0</td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>.016</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
<td>9.0</td>
<td>9.0</td>
<td>0.0</td>
<td>2.0</td>
<td>6.0</td>
<td>0.0</td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Metyyli-2-(4-okso-1,3-diatsaspiro(4,5)-dek-2-en-2-yli)ninkotinaatti</td>
<td>6.000</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.500</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.250</td>
<td>6.0</td>
<td>7.0</td>
<td>6.0</td>
<td>2.0</td>
<td>2.0</td>
<td>9.0</td>
<td>9.0</td>
<td>0.0</td>
<td>2.0</td>
<td>7.0</td>
<td>0.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>.125</td>
<td>2.0</td>
<td>4.0</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>6.0</td>
<td>6.0</td>
<td>0.0</td>
<td>1.0</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>.063</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2.0</td>
<td>9.0</td>
<td>0.0</td>
<td>2.0</td>
<td>6.0</td>
<td>0.0</td>
<td>1.0</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td>.032</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2.0</td>
<td>9.0</td>
<td>0.0</td>
<td>2.0</td>
<td>6.0</td>
<td>0.0</td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>.016</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
<td>9.0</td>
<td>0.0</td>
<td>2.0</td>
<td>6.0</td>
<td>0.0</td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Yhdisteet</td>
<td>Käyttömäärä</td>
<td>1.</td>
<td>2.</td>
<td>3.</td>
<td>4.</td>
<td>5.</td>
<td>6.</td>
<td>8.</td>
<td>9.</td>
<td>10.</td>
<td>11.</td>
<td>12.</td>
<td>17.</td>
<td>13.</td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>3-metyylii-2-butenyylii-2-(5-isopropylii-</td>
<td>8.000</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>5-metyylii-4-okso-2-imidatsolin-2-yylii-</td>
<td>0.500</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>nikotinaatti</td>
<td>0.125</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>Bentsyylii-2-(4-okso-1,3-diatsaspiro(4,5)-</td>
<td>8.000</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>dek-2-en-2-yylii)nikotinaatti</td>
<td>0.500</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>2-(5-isopropyliii-</td>
<td>8.000</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>5-metyylii-4-okso-2-imidatsolin-2-yylii-</td>
<td>0.500</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>nikotino-hydroksalmihappo</td>
<td>0.125</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>Bentsyylii-2-(5-isopropylii-5-metyyliii-</td>
<td>8.000</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>4-1,3-diatsaspiro(4,5)-dek-2-en-2-yylii)nikotinaatti</td>
<td>0.500</td>
<td>3.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>6.0</td>
<td>8.0</td>
</tr>
<tr>
<td>6-metoksi-2-(5-isopropylii-5-metyyliii-</td>
<td>5.000</td>
<td>9.0</td>
</tr>
<tr>
<td>4-okso-2-imidatsolin-2-yylii)nikotinihappo</td>
<td>0.500</td>
<td>6.0</td>
<td>8.0</td>
<td>8.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>6.0</td>
<td>8.0</td>
</tr>
<tr>
<td>2-(4-okso-1,3-diatsaspiro(4,5)-dek-2-en-2-yylii)nikotinihappo</td>
<td>0.500</td>
<td>1.0</td>
<td>7.0</td>
<td>2.0</td>
<td>3.0</td>
<td>1.0</td>
<td>9.0</td>
<td>3.0</td>
<td>9.0</td>
<td>5.0</td>
<td>1.5</td>
<td>7.5</td>
<td>8.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Yhdisteet</td>
<td>Käyttömäärä</td>
<td>1.</td>
<td>2.</td>
<td>3.</td>
<td>4.</td>
<td>5.</td>
<td>6.</td>
<td>8.</td>
<td>9.</td>
<td>10.</td>
<td>11.</td>
<td>12.</td>
<td>13.</td>
<td>14.</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-------------</td>
<td>----</td>
</tr>
<tr>
<td>2-metyylibentsyylammenium-2-(5-iso-</td>
<td>0.500</td>
<td>9.0</td>
</tr>
<tr>
<td>propyyl-5-metyyl-i-4-okso-2-imidatsolin-2-yyli nikotinaatti</td>
<td>0.250</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>6.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>2-(5-syklopropyyl-i-5-metyyl-i-4-okso-</td>
<td>0.125</td>
<td>9.0</td>
</tr>
<tr>
<td>2-imidatsolin-2-yyli nikotinaatti</td>
<td>0.063</td>
<td>9.0</td>
</tr>
<tr>
<td>1,1-dimetyyl-i-2-propynyyl-i-2-(5-isopropyyl-5-metyyl-i-4-okso-2-imidatsolin-2-yyli)-nikotinaatti</td>
<td>0.032</td>
<td>9.0</td>
</tr>
<tr>
<td>2-trimetyyliammoniimetyl-i-2-(5-isopropyyl-5-metyyl-i-4-okso-2-imidatsolin-2-yyli)-nikotinaatti-ja taidi</td>
<td>0.016</td>
<td>9.0</td>
</tr>
<tr>
<td>N-(2-hydroksietyyl-i-2-(6-isopropyyl-5-metyyl-i-4-okso-2-imidatsolin-2-yyli)-nikotinamiidi</td>
<td>0.016</td>
<td>9.0</td>
</tr>
</tbody>
</table>

Taulukko XII (jatkuu..)

Ennen-orastusta koe; käyttömäärät kg/ha
<table>
<thead>
<tr>
<th>Yhdisteet</th>
<th>Käyttömäärä</th>
<th>1.</th>
<th>2.</th>
<th>3.</th>
<th>4.</th>
<th>5.</th>
<th>6.</th>
<th>8.</th>
<th>9.</th>
<th>10.</th>
<th>11.</th>
<th>12.</th>
<th>13.</th>
<th>14.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammonium-2-(5-isopropyli-5-metyyli-4-okso-2-imidatsolin-2-yyli)-nikotinaatti</td>
<td>.500</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.250</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.125</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.063</td>
<td>9.0</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td>.032</td>
<td>4.0</td>
<td>9.0</td>
<td>7.0</td>
<td>8.0</td>
<td>9.0</td>
<td>7.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td>.016</td>
<td>0.0</td>
<td>9.0</td>
<td>2.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Metyyli-2-(4-isopropyli-1-lauroyyli-4-metyyli-5-okso-2-imidatsolin-2-yyli)-nikotinaatti</td>
<td>8.000</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.500</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.250</td>
<td>6.0</td>
<td>9.0</td>
<td>6.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.125</td>
<td>6.0</td>
<td>9.0</td>
<td>6.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.063</td>
<td>3.0</td>
<td>9.0</td>
<td>4.0</td>
<td>9.0</td>
<td>3.0</td>
<td>7.0</td>
<td>2.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.032</td>
<td>0.0</td>
<td>4.0</td>
<td>0.0</td>
<td>6.0</td>
<td>1.0</td>
<td>7.0</td>
<td>0.0</td>
<td>8.0</td>
<td>7.0</td>
<td>3.0</td>
<td>1.0</td>
<td>6.0</td>
<td>3.0</td>
</tr>
<tr>
<td>1,1-dimetyyliallyyyli-2-(5-isopropyli-5-me-tyyli-4-okso-2-imidatsolin-2-yyli)-nikotinaatti</td>
<td>6.000</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.500</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.250</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.125</td>
<td>6.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.063</td>
<td>2.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.032</td>
<td>2.0</td>
<td>7.0</td>
<td>8.0</td>
<td>8.0</td>
<td>3.0</td>
<td>7.0</td>
<td>1.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>7.0</td>
<td>7.0</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>.016</td>
<td>0.0</td>
<td>1.0</td>
<td>3.0</td>
<td>4.0</td>
<td>2.0</td>
<td>9.0</td>
<td>2.0</td>
<td>3.0</td>
<td>8.0</td>
<td>0.0</td>
<td>6.0</td>
<td>7.0</td>
<td>3.0</td>
</tr>
<tr>
<td>2-propynylii-2-(5-syklopropyli-5-metyyli-4-okso-2-imidatsolin-2-yyli)-nikotinaatti</td>
<td>.250</td>
<td>6.0</td>
<td>9.0</td>
<td>7.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>1.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.125</td>
<td>4.0</td>
<td>3.0</td>
<td>6.0</td>
<td>4.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>1.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.053</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>3.0</td>
<td>9.0</td>
<td>0.0</td>
<td>9.0</td>
<td>4.0</td>
<td>4.0</td>
<td>2.0</td>
<td>3.0</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>.032</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>3.0</td>
<td>3.0</td>
<td>1.0</td>
<td>9.0</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>.016</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2.0</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
</tr>
<tr>
<td>2-propynylii-2-(4-okso-1,3-diatsaspiro-/4,5/dek-2-en-2-yyli)-nikotinaatti</td>
<td>5.000</td>
<td>8.0</td>
<td>9.0</td>
<td>8.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td>.500</td>
<td>9.0</td>
<td>4.0</td>
<td>6.0</td>
<td>7.0</td>
<td>8.0</td>
<td>9.0</td>
<td>8.0</td>
<td>0.0</td>
<td>7.0</td>
<td>7.0</td>
<td>1.0</td>
<td>6.0</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>.250</td>
<td>1.0</td>
<td>2.0</td>
<td>3.0</td>
<td>7.0</td>
<td>2.0</td>
<td>9.0</td>
<td>9.0</td>
<td>0.0</td>
<td>6.0</td>
<td>2.0</td>
<td>0.0</td>
<td>1.0</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td>.032</td>
<td>0.0</td>
</tr>
<tr>
<td>Yhdisteet</td>
<td>Käyttömäärä</td>
<td>1.</td>
<td>2.</td>
<td>3.</td>
<td>4.</td>
<td>5.</td>
<td>6.</td>
<td>8.</td>
<td>9.</td>
<td>10.</td>
<td>11.</td>
<td>12.</td>
<td>13.</td>
<td>14.</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>----</td>
</tr>
<tr>
<td>N-(2-kloorietyyli)-2-(5-isopropylidyli)-metylli-4-okso-2-imidatsolin-2-yli)-niiotinamidi</td>
<td>.500</td>
<td>9.0</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td>.250</td>
<td>6.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>.125</td>
<td>4.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>.063</td>
<td>2.0</td>
<td>4.0</td>
<td>7.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>7.0</td>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td>.032</td>
<td>1.0</td>
<td>3.0</td>
<td>4.0</td>
<td>8.0</td>
<td>6.0</td>
<td>9.0</td>
<td>5.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td>.016</td>
<td>0.0</td>
<td>2.0</td>
<td>1.0</td>
<td>7.0</td>
<td>4.0</td>
<td>3.0</td>
<td>4.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>1.0</td>
</tr>
<tr>
<td>p-metoksibentsytyyli-2-(5-isopropylidyli)-metylli-4-okso-2-imidatsolin-2-yli)-niiotinamidi</td>
<td>8.000</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.500</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td>.250</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td>.125</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>.063</td>
<td>3.0</td>
<td>7.0</td>
<td>6.0</td>
<td>8.0</td>
<td>7.0</td>
<td>9.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td>.032</td>
<td>0.0</td>
<td>4.0</td>
<td>4.0</td>
<td>3.0</td>
<td>3.0</td>
<td>9.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>.016</td>
<td>0.0</td>
<td>2.0</td>
<td>1.0</td>
<td>1.0</td>
<td>8.0</td>
<td>9.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Parium-2-(5-isopropylidyli)-5-metyylli-4-okso-2-imidatsolin-2-yli)-niiotinamidi</td>
<td>.500</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.250</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.125</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.063</td>
<td>8.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.032</td>
<td>1.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.016</td>
<td>0.0</td>
<td>6.0</td>
<td>7.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
</tr>
<tr>
<td>Kupari-2-(5-isopropylidyli)-5-metyylli-4-okso-2-imidatsolin-2-yli)-niiotinamidi</td>
<td>.500</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.250</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.125</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.063</td>
<td>4.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.032</td>
<td>2.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.016</td>
<td>1.0</td>
<td>6.0</td>
<td>6.0</td>
<td>5.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>Kalium-2-(5-isopropylidyli)-5-metyylli-4-okso-2-imidatsolin-2-yli)-niiotinamidi</td>
<td>.500</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.250</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.125</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.063</td>
<td>6.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.032</td>
<td>2.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.016</td>
<td>1.0</td>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>Litium-2-(5-isopropylidyli)-5-metyylli-4-okso-2-imidatsolin-2-yli)-niiotinamidi</td>
<td>.500</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.250</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.125</td>
<td>9.0</td>
</tr>
<tr>
<td>Yhdisteet</td>
<td>Käyttömäärä</td>
<td>1.</td>
<td>2.</td>
<td>3.</td>
<td>4.</td>
<td>5.</td>
<td>6.</td>
<td>8.</td>
<td>9.</td>
<td>10.</td>
<td>11.</td>
<td>12.</td>
<td>17.</td>
<td>13.</td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
<td>-----</td>
</tr>
<tr>
<td>Magnesium-2-(5-isopropyl-3-metyyl-4-okso-2-imidatsolin-2-yil):ikotinaatti</td>
<td>.500</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.250</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.125</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.063</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>1.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.032</td>
<td>2.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>6.0</td>
<td>9.0</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>.016</td>
<td>0.0</td>
<td>9.0</td>
<td>3.0</td>
<td>6.0</td>
<td>6.0</td>
<td>9.0</td>
<td>4.0</td>
<td>0.0</td>
<td>7.0</td>
<td>7.0</td>
<td>5.0</td>
<td>6.0</td>
<td>4.0</td>
</tr>
<tr>
<td>Piperidinium-2-(5-isopropyl-3-metyyl-4-okso-2-imidatsolin-2-yil):nikotinaatti</td>
<td>.500</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.250</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.125</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.063</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.032</td>
<td>2.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.016</td>
<td>0.0</td>
<td>9.0</td>
<td>3.0</td>
<td>3.0</td>
<td>6.0</td>
<td>9.0</td>
<td>6.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>2.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>p-Klooribentsylyli-2-(5-isopropyl-3-metyyl-4-okso-2-imidatsolin-2-yil):nikotinaatti</td>
<td>6.000</td>
<td>0.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.500</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.250</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.125</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.063</td>
<td>1.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.032</td>
<td>2.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.016</td>
<td>0.0</td>
<td>9.0</td>
<td>3.0</td>
<td>3.0</td>
<td>6.0</td>
<td>9.0</td>
<td>6.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>2.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>p-Nitrobentsylyli-2-(5-isopropyl-3-metyyl-4-okso-2-imidatsolin-2-yil):nikotinaatti</td>
<td>6.000</td>
<td>0.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.500</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.250</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.125</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.063</td>
<td>1.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.032</td>
<td>2.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.016</td>
<td>0.0</td>
<td>9.0</td>
<td>3.0</td>
<td>3.0</td>
<td>6.0</td>
<td>9.0</td>
<td>6.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>2.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>Entsylitimetyylimmamonium-2-(5-isopropyl-3-metyyl-4-okso-2-imidatsolin-2-yil):nikotinaatti</td>
<td>6.000</td>
<td>0.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.500</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.250</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.125</td>
<td>7.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.063</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.032</td>
<td>2.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.016</td>
<td>0.0</td>
<td>9.0</td>
<td>3.0</td>
<td>3.0</td>
<td>6.0</td>
<td>9.0</td>
<td>6.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>2.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
</tbody>
</table>
Taulukko XII (jatkuu.)

<table>
<thead>
<tr>
<th>Yhdisteet</th>
<th>Käyttö-</th>
<th>1.</th>
<th>2.</th>
<th>3.</th>
<th>4.</th>
<th>5.</th>
<th>6.</th>
<th>8.</th>
<th>9.</th>
<th>10.</th>
<th>11.</th>
<th>12.</th>
<th>13.</th>
<th>14.</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-aminohexsyliammonium-2-(5-isopropyli-5-metyyli-4-okso-2-imidatsolin-2-yli)-nikotinaatti</td>
<td>8.000</td>
<td>9.0</td>
</tr>
<tr>
<td>Taliammonium-2-(5-isopropyli-5-metyyli-4-okso-2-imidatsolin-2-yli)nikotinaatti</td>
<td>5.500</td>
<td>8.0</td>
<td>9.0</td>
</tr>
<tr>
<td>Karbometoksimetyyli-2-(5-isopropyli-5-metyyli-4-okso-2-imidatsolin-2-yli)nikotinaatti</td>
<td>5.000</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>Dodehylammonium-2-(5-isopropyli-5-metyyli-4-okso-2-imidatsolin-2-yli)nikotinaatti</td>
<td>5.000</td>
<td>9.0</td>
</tr>
<tr>
<td>1,1,3,3-tetrametylibutyliammonium-2-(5-isopropyli-5-metyyli-4-okso-2-imidatsolin-2-yli)-nikotinaatti</td>
<td>6.000</td>
<td>9.0</td>
</tr>
</tbody>
</table>

Ennen-orastusta koe; käyttömäärät kg/ha
<table>
<thead>
<tr>
<th>Yhdisteet</th>
<th>1.</th>
<th>2.</th>
<th>3.</th>
<th>4.</th>
<th>5.</th>
<th>6.</th>
<th>8.</th>
<th>9.</th>
<th>10.</th>
<th>11.</th>
<th>12.</th>
<th>13.</th>
<th>14.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dibutylammonium-2-(5-isopropyli-5-metyll-4-okso-2-imidatsolin-2-ylil)nikotinaatti</td>
<td>8.000</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.500</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.250</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.125</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.063</td>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.032</td>
<td>0.0</td>
<td>3.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>0.016</td>
<td>0.0</td>
<td>1.0</td>
<td>1.0</td>
<td>4.0</td>
<td>9.0</td>
<td>9.0</td>
<td>4.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>1.0</td>
<td>4.0</td>
</tr>
<tr>
<td>2-(metylyliamino)etylyli-2-(5-isopropyli-5-metyll-4-okso-2-imidatsolin-2-ylil)nikotinaatti</td>
<td>0.500</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.250</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>1-metylylipyrrolidinium-2-(5-isopropyli-5-metyll-4-okso-2-imidatsolin-2-ylil)nikotinaatti</td>
<td>0.500</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.250</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.125</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.063</td>
<td>7.0</td>
<td>9.0</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>0.032</td>
<td>3.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>0.016</td>
<td>0.0</td>
<td>6.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>6.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
</tr>
<tr>
<td>Octylammonium-2-(5-isopropyli-5-metyll-4-okso-2-imidatsolin-2-ylil)nikotinaatti</td>
<td>0.500</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.250</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.125</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.063</td>
<td>8.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.032</td>
<td>2.0</td>
<td>6.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.016</td>
<td>0.0</td>
<td>6.0</td>
<td>9.0</td>
<td>9.0</td>
<td>6.0</td>
<td>9.0</td>
<td>6.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
</tr>
<tr>
<td>Bentsylammonium-2-(5-isopropyli-5-metyll-4-okso-2-imidatsolin-2-ylil)nikotinaatti</td>
<td>8.000</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.500</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.250</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.125</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.063</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.032</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.016</td>
<td>0.0</td>
<td>3.0</td>
<td>3.0</td>
<td>5.0</td>
<td>7.0</td>
<td>9.0</td>
<td>2.0</td>
<td>7.0</td>
<td>7.0</td>
<td>9.0</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Yhdisteet</td>
<td>Käyttömäärä</td>
<td>1.</td>
<td>2.</td>
<td>3.</td>
<td>4.</td>
<td>5.</td>
<td>6.</td>
<td>8.</td>
<td>9.</td>
<td>10.</td>
<td>11.</td>
<td>12.</td>
<td>17.</td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Sydämehoksyliaammonium-2-(5-isopropylli-5-metyyli-4-okso-2-imidatsolin-2-yyli)-nikotinaatti</td>
<td>0.500</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.250</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.125</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.063</td>
<td>8.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.032</td>
<td>8.0</td>
<td>9.0</td>
</tr>
<tr>
<td>Hordolinium-2-(5-isopropylli-5-metyyli-4-okso-2-imidatsolin-2-yyli)-nikotinaatti</td>
<td>0.500</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.250</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.125</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.063</td>
<td>8.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.032</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.016</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>4-fenylibutyliammonium-2-(5-isopropylli-5-metyyli-4-okso-2-imidatsolin-2-yyli)-nikotinaatti</td>
<td>8.000</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.500</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.250</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>4.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.125</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>4.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.063</td>
<td>4.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>3.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.032</td>
<td>4.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>3.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.016</td>
<td>4.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>3.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>Fenetyliammonium-2-(5-isopropylli-5-metyyli-4-okso-2-imidatsolin-2-yyli)-nikotinaatti</td>
<td>0.500</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.250</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.125</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>6.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.063</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>6.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.032</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>4.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.016</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>4.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>Dimetoksimetyliammonium-2-(5-isopropylli-5-metyyli-4-okso-2-imidatsolin-2-yyli)-nikotinaatti</td>
<td>0.500</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.250</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.125</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.063</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>Yhdisteet</td>
<td>Käyttömäärä</td>
<td>1.</td>
<td>2.</td>
<td>3.</td>
<td>4.</td>
<td>5.</td>
<td>6.</td>
<td>8.</td>
<td>9.</td>
<td>10.</td>
<td>11.</td>
<td>12.</td>
<td>17.</td>
</tr>
<tr>
<td>--</td>
<td>-------------</td>
<td>-----</td>
</tr>
<tr>
<td>2,2'-dietoksidieetyliammonium-5-isoproypyyli-4-oksio-2-imidasolin-2-yyli)nikotinaatti</td>
<td>8.000</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.500</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.125</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.063</td>
<td>7.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.032</td>
<td>4.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.016</td>
<td>1.0</td>
<td>7.0</td>
<td>8.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>1.0</td>
<td>7.0</td>
<td>8.0</td>
<td>7.0</td>
<td>3.0</td>
</tr>
<tr>
<td>3-metoksipropyyliammonium-um-2-(5-isopropylyli-5-metyli-4-oksio-2-imidasolin-2-yyli)nikotinaatti</td>
<td>0.500</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.250</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.125</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.063</td>
<td>6.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.032</td>
<td>5.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.016</td>
<td>0.0</td>
<td>0.0</td>
<td>7.0</td>
<td>6.0</td>
<td>9.0</td>
<td>9.0</td>
<td>4.0</td>
<td>3.0</td>
<td>7.0</td>
<td>4.0</td>
<td>4.0</td>
<td>7.0</td>
</tr>
<tr>
<td>3-karboetoksidieetyliammonium-2-(5-isopropylyli-5-metyli-4-oksio-2-imidasolin-2-yyli)nikotinaatti</td>
<td>8.000</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.500</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.250</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.125</td>
<td>6.0</td>
<td>6.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>2.0</td>
<td>9.0</td>
<td>6.0</td>
<td>6.0</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>0.063</td>
<td>2.0</td>
<td>2.0</td>
<td>4.0</td>
<td>2.0</td>
<td>4.0</td>
<td>2.0</td>
<td>4.0</td>
<td>2.0</td>
<td>8.0</td>
<td>2.0</td>
<td>8.0</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>0.032</td>
<td>1.0</td>
<td>2.0</td>
<td>3.0</td>
<td>3.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>2.0</td>
<td>8.0</td>
<td>3.0</td>
<td>3.0</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>0.016</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>4.0</td>
<td>9.0</td>
<td>9.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
<td>2.0</td>
<td>6.0</td>
</tr>
<tr>
<td>1-karboetoksidieetyliammonium-2-(5-isopropylyli-5-metyli-4-oksio-2-imidasolin-2-yyli)nikotinaatti</td>
<td>8.000</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.500</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.250</td>
<td>7.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.125</td>
<td>3.0</td>
<td>4.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>6.0</td>
<td>9.0</td>
<td>6.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.063</td>
<td>1.0</td>
<td>1.0</td>
<td>3.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>4.0</td>
<td>0.0</td>
<td>3.0</td>
<td>8.0</td>
<td>3.0</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>0.032</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>4.0</td>
<td>0.0</td>
<td>4.0</td>
<td>7.0</td>
</tr>
<tr>
<td>2-(5-isopropylyli-5-metyli-4-oksio-2-imidasolin-2-yyli)nikotinaatti</td>
<td>0.063</td>
<td>6.0</td>
<td>6.0</td>
<td>8.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.016</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>5.0</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Yhdisteet</td>
<td>Käyttömäärä</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>17</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------</td>
<td>-----</td>
</tr>
<tr>
<td>3-karboetoksi-2-propenyli-2-(5-isopropyyli-5-metyyli-4-okso-2-imidasolin-2-yli)-nikotinaatti</td>
<td>0.000</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>50.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>250.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>125.0</td>
<td>6.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>6.0</td>
<td>5.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.063</td>
<td>5.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>3.0</td>
<td>8.0</td>
<td>8.0</td>
<td>9.0</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td>0.032</td>
<td>4.0</td>
<td>6.0</td>
<td>9.0</td>
<td>6.0</td>
<td>7.0</td>
<td>9.0</td>
<td>7.0</td>
<td>1.0</td>
<td>8.0</td>
<td>8.0</td>
<td>4.0</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>0.016</td>
<td>2.0</td>
<td>2.0</td>
<td>3.0</td>
<td>3.0</td>
<td>4.0</td>
<td>9.0</td>
<td>0.0</td>
<td>1.0</td>
<td>3.0</td>
<td>7.0</td>
<td>3.0</td>
<td>2.0</td>
</tr>
<tr>
<td>3-butenyli-2-(5-isopropyyli-5-metyyli-4-okso-2-imidasolin-2-yli)-nikotinaatti</td>
<td>0.000</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>50.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>250.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>4.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>125.0</td>
<td>6.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>2.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.053</td>
<td>3.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>1.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>0.032</td>
<td>1.0</td>
<td>0.0</td>
<td>3.0</td>
<td>7.0</td>
<td>6.0</td>
<td>6.0</td>
<td>7.0</td>
<td>0.0</td>
<td>4.0</td>
<td>8.0</td>
<td>5.0</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>0.016</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
<td>4.0</td>
<td>3.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2.0</td>
<td>7.0</td>
<td>2.0</td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>4-karboetoksibutylyli-2-(5-isopropyli-5-metyyli-4-okso-2-imidasolin-2-yli)-nikotinaatti</td>
<td>0.000</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>50.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>250.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>125.0</td>
<td>9.0</td>
<td>6.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>6.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>7.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.063</td>
<td>8.0</td>
<td>4.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>5.0</td>
<td>7.0</td>
<td>8.0</td>
<td>7.0</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td>0.032</td>
<td>4.0</td>
<td>4.0</td>
<td>9.0</td>
<td>6.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>0.0</td>
<td>8.0</td>
<td>8.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>0.016</td>
<td>1.0</td>
<td>1.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>9.0</td>
<td>3.0</td>
<td>0.0</td>
<td>3.0</td>
<td>0.0</td>
<td>2.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Ferro-2-(5-isopropyli-5-metyyli-4-okso-2-imidasolin-2-yli)-nikotinaatti</td>
<td>50.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>250.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>125.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.032</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>0.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.016</td>
<td>9.0</td>
<td>6.0</td>
<td>8.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
</tr>
<tr>
<td>Ferri-2-(5-isopropyli-5-metyyli-4-okso-2-imidasolin-2-yli)-nikotinaatti</td>
<td>50.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>250.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>125.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.063</td>
<td>7.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.032</td>
<td>6.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>0.016</td>
<td>3.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>6.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
</tr>
<tr>
<td>Yhdisteet</td>
<td>Käyttömäärä</td>
<td>1.</td>
<td>2.</td>
<td>3.</td>
<td>4.</td>
<td>5.</td>
<td>6.</td>
<td>8.</td>
<td>9.</td>
<td>10.</td>
<td>11.</td>
<td>12.</td>
<td>13.</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-------------</td>
<td>----</td>
</tr>
<tr>
<td>Dietanoli ammonium-2-(5-isopropyli-</td>
<td>8.000</td>
<td>9.0</td>
</tr>
<tr>
<td>5-metyli-4-okso-2-imidatsolin-2-yli)-nikotinaatti</td>
<td>1.0</td>
<td>3.0</td>
<td>0.0</td>
</tr>
<tr>
<td>p-tert-butylibentsylyli-2-(5-isopropyli-</td>
<td>8.000</td>
<td>9.0</td>
</tr>
<tr>
<td>5-metyli-4-okso-2-imidatsolin-2-yli)-nikotinaatti</td>
<td>1.0</td>
<td>3.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Fenetyli-2-(5-isopropyli-5-metyli-4-okso-2-imidatsolin-2-yli)-nikotinaatti</td>
<td>8.000</td>
<td>9.0</td>
</tr>
<tr>
<td>Kinnamyli-2-(5-isopropyli-5-metyli-4-okso-2-imidatsolin-2-yli)-nikotinaatti</td>
<td>8.000</td>
<td>9.0</td>
</tr>
<tr>
<td>5-isopropyli-5-metyli-2-(3-metyli-3-pyridyli)-2-imidatsolin-4-oni</td>
<td>8.000</td>
<td>7.0</td>
<td>9.0</td>
</tr>
<tr>
<td>Yhdisteet</td>
<td>Käyttö-</td>
<td>1.</td>
<td>2.</td>
<td>3.</td>
<td>4.</td>
<td>5.</td>
<td>6.</td>
<td>8.</td>
<td>9.</td>
<td>10.</td>
<td>11.</td>
<td>12.</td>
<td>13.</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>3,7-dimetyyli-2,6-</td>
<td>8.000</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>oktadienyli-2-(5-</td>
<td>.500</td>
<td>9.0</td>
</tr>
<tr>
<td>isopropyyli-5-metyy-</td>
<td>.125</td>
<td>3.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>3.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>li-4-okso-2-imidatsolin-2-yyliniokotinaatti</td>
<td>.125</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>6.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>2,3-dihydroksipropyli-(5-isopropyy-</td>
<td>.250</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>li-5-metyyli-4-okso-</td>
<td>.063</td>
<td>2.0</td>
<td>7.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>2-imidatsolin-2-yyliniokotinaatti</td>
<td>.032</td>
<td>1.0</td>
<td>7.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>4-pentynyyl-2-(5-</td>
<td>.500</td>
<td>8.0</td>
<td>9.0</td>
</tr>
<tr>
<td>isopropyyli-5-metyy-</td>
<td>.250</td>
<td>7.0</td>
<td>9.0</td>
</tr>
<tr>
<td>li-4-okso-2-imidatsol-</td>
<td>.063</td>
<td>3.0</td>
<td>7.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>7-lynyliniokotinaatti</td>
<td>.032</td>
<td>2.0</td>
<td>4.0</td>
<td>4.0</td>
<td>9.0</td>
<td>8.0</td>
<td>8.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>2-(5-isopropyyli-5-</td>
<td>6.000</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>metyyli-4-okso-2-</td>
<td>1.000</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>imidatsolin-2-yyliniokotinaatti</td>
<td>.125</td>
<td>9.0</td>
<td>8.5</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>8.5</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>3-kinoilinikarbosyyli-</td>
<td>.063</td>
<td>6.0</td>
<td>7.0</td>
<td>7.5</td>
<td>8.5</td>
<td>8.5</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>8.5</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>lihappo</td>
<td>.032</td>
<td>2.0</td>
<td>5.0</td>
<td>7.5</td>
<td>7.5</td>
<td>7.0</td>
<td>9.0</td>
<td>1.0</td>
<td>3.5</td>
<td>4.5</td>
<td>8.5</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>6,6-dimetyyli-2-</td>
<td>.500</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
</tr>
<tr>
<td>norpinceni-2-etyy-</td>
<td>.250</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>1.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>li-2-(5-isopropyy-</td>
<td>.125</td>
<td>3.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>0.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
</tr>
<tr>
<td>li-5-metyyli-4-okso-</td>
<td>.063</td>
<td>1.0</td>
<td>6.0</td>
<td>8.0</td>
<td>9.0</td>
<td>7.0</td>
<td>8.0</td>
<td>4.0</td>
<td>8.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>4.0</td>
</tr>
<tr>
<td>2-imidatsolin-2-yyliniokotinaatti</td>
<td>.032</td>
<td>1.0</td>
<td>7.0</td>
<td>8.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>5.0</td>
</tr>
<tr>
<td>yyliniokotinaatti</td>
<td>.016</td>
<td>1.0</td>
<td>4.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>4.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Yhdisteet</td>
<td>Käyttömäärä</td>
<td>1.</td>
<td>2.</td>
<td>3.</td>
<td>4.</td>
<td>5.</td>
<td>6.</td>
<td>8.</td>
<td>9.</td>
<td>10.</td>
<td>11.</td>
<td>12.</td>
<td>17.</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>-------------</td>
<td>-----</td>
</tr>
<tr>
<td><-karbometoksibentsyyli</td>
<td>6.000</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>li-2-(5-isopropyli-</td>
<td>3.500</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>li-5-metyli-4-oksosyyli</td>
<td>3.250</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>2-imidatsolin-2-yylimetyli</td>
<td>3.125</td>
<td>4.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>7.0</td>
<td>9.0</td>
</tr>
<tr>
<td>nikotinaatti</td>
<td>0.063</td>
<td>3.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>Metyli-2-(1-asetylyli-</td>
<td>3.500</td>
<td>0.0</td>
<td>7.0</td>
<td>7.0</td>
<td>5.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
</tr>
<tr>
<td>li-4-isopropyli-4-</td>
<td>3.500</td>
<td>0.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
<td>8.0</td>
<td>9.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
</tr>
<tr>
<td>metyli-5-oksosyyli</td>
<td>3.125</td>
<td>0.0</td>
<td>6.0</td>
<td>3.0</td>
<td>4.0</td>
<td>6.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>8.0</td>
<td>5.0</td>
<td>6.0</td>
<td>4.0</td>
</tr>
<tr>
<td>datsolin-2-yylimetyli</td>
<td>0.032</td>
<td>3.0</td>
<td>3.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2.0</td>
<td>3.0</td>
<td>8.0</td>
<td>4.0</td>
<td>0.0</td>
<td>6.0</td>
<td>2.0</td>
<td>3.0</td>
</tr>
<tr>
<td>nikotinaatti-1-oksidi</td>
<td>0.016</td>
<td>0.0</td>
<td>2.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>3-metyli-3-butenyyli</td>
<td>3.500</td>
<td>9.0</td>
</tr>
<tr>
<td>li-2-(5-isopropyli-5-</td>
<td>2.500</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>metyli-4-oksosyyli</td>
<td>3.125</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>datsolin-2-yylimetyli</td>
<td>0.032</td>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>7.0</td>
</tr>
<tr>
<td>nikotinaatti</td>
<td>0.016</td>
<td>2.0</td>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
<td>9.0</td>
<td>9.0</td>
<td>4.0</td>
<td>0.0</td>
<td>8.0</td>
<td>9.0</td>
<td>7.0</td>
<td>7.0</td>
</tr>
<tr>
<td>10-undekenyli-2-</td>
<td>3.500</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>(5-isopropyli-5-</td>
<td>2.500</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>metyli-4-oksosyyli</td>
<td>3.125</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>datsolin-2-yylimetyli</td>
<td>0.032</td>
<td>3.0</td>
<td>8.0</td>
<td>7.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>7.0</td>
<td>7.0</td>
</tr>
<tr>
<td>nikotinaatti</td>
<td>0.016</td>
<td>1.0</td>
<td>7.0</td>
<td>3.0</td>
<td>5.0</td>
<td>5.0</td>
<td>3.0</td>
<td>1.0</td>
<td>0.0</td>
<td>5.0</td>
<td>7.0</td>
<td>7.0</td>
<td>10.0</td>
</tr>
<tr>
<td>5-broni-2-(5-isopropyli-5-</td>
<td>8.000</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>metyli-5-oksosyyli</td>
<td>3.500</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>8.0</td>
<td>9.0</td>
</tr>
<tr>
<td>4-oksos-2-imidatsolin-2-yylimetyli</td>
<td>3.125</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>8.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>8.0</td>
</tr>
<tr>
<td>nikotiinijarra</td>
<td>0.032</td>
<td>3.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>8.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>8.0</td>
</tr>
<tr>
<td>kampa</td>
<td>0.016</td>
<td>4.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>1.0</td>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Yhdisteet</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----</td>
</tr>
<tr>
<td>α-metyylibentsyli-β</td>
<td>8.000</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>7.0</td>
</tr>
<tr>
<td>2-(5-isopropyli-5-</td>
<td>6.500</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>6.0</td>
</tr>
<tr>
<td>metyyli-4-okso-2-</td>
<td>5.250</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>6.0</td>
</tr>
<tr>
<td>imidatsolin-2-</td>
<td>4.125</td>
<td>3.0</td>
<td>8.0</td>
<td>3.0</td>
<td>8.0</td>
<td>6.0</td>
<td>7.0</td>
<td>6.0</td>
<td>1.0</td>
<td>7.0</td>
<td>0.0</td>
<td>7.0</td>
<td>5.0</td>
</tr>
<tr>
<td>yylli(nikotinaatti</td>
<td>3.063</td>
<td>1.0</td>
<td>8.0</td>
<td>3.0</td>
<td>8.0</td>
<td>6.0</td>
<td>7.0</td>
<td>5.0</td>
<td>1.0</td>
<td>4.0</td>
<td>6.0</td>
<td>6.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Metyylili-2-(5-isopropyli-5-</td>
<td>2.063</td>
<td>0.0</td>
<td>7.0</td>
<td>1.0</td>
<td>3.0</td>
<td>3.0</td>
<td>2.0</td>
<td>4.0</td>
<td>0.0</td>
<td>2.0</td>
<td>4.0</td>
<td>3.0</td>
<td>1.0</td>
</tr>
<tr>
<td>metyyli-5-metyylili-4-</td>
<td>0.32</td>
<td>0.0</td>
<td>7.0</td>
<td>1.0</td>
<td>3.0</td>
<td>3.0</td>
<td>2.0</td>
<td>4.0</td>
<td>0.0</td>
<td>2.0</td>
<td>4.0</td>
<td>3.0</td>
<td>1.0</td>
</tr>
<tr>
<td>okso-2-imidatsolin-2-</td>
<td>0.16</td>
<td>0.0</td>
<td>7.0</td>
<td>1.0</td>
<td>3.0</td>
<td>3.0</td>
<td>2.0</td>
<td>4.0</td>
<td>0.0</td>
<td>2.0</td>
<td>4.0</td>
<td>3.0</td>
<td>1.0</td>
</tr>
<tr>
<td>yylli(nikotinaatti-1-</td>
<td>0.063</td>
<td>0.0</td>
<td>7.0</td>
<td>1.0</td>
<td>3.0</td>
<td>3.0</td>
<td>2.0</td>
<td>4.0</td>
<td>0.0</td>
<td>2.0</td>
<td>4.0</td>
<td>3.0</td>
<td>1.0</td>
</tr>
<tr>
<td>oksidi</td>
<td>0.032</td>
<td>0.0</td>
<td>7.0</td>
<td>1.0</td>
<td>3.0</td>
<td>3.0</td>
<td>2.0</td>
<td>4.0</td>
<td>0.0</td>
<td>2.0</td>
<td>4.0</td>
<td>3.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Metyylili-6-kloori-</td>
<td>0.016</td>
<td>0.0</td>
<td>7.0</td>
<td>1.0</td>
<td>3.0</td>
<td>3.0</td>
<td>2.0</td>
<td>4.0</td>
<td>0.0</td>
<td>2.0</td>
<td>4.0</td>
<td>3.0</td>
<td>1.0</td>
</tr>
<tr>
<td>2-(5-isopropyli-5-</td>
<td>0.016</td>
<td>0.0</td>
<td>7.0</td>
<td>1.0</td>
<td>3.0</td>
<td>3.0</td>
<td>2.0</td>
<td>4.0</td>
<td>0.0</td>
<td>2.0</td>
<td>4.0</td>
<td>3.0</td>
<td>1.0</td>
</tr>
<tr>
<td>5-metyylili-4-okso-2-</td>
<td>0.003</td>
<td>0.0</td>
<td>7.0</td>
<td>1.0</td>
<td>3.0</td>
<td>3.0</td>
<td>2.0</td>
<td>4.0</td>
<td>0.0</td>
<td>2.0</td>
<td>4.0</td>
<td>3.0</td>
<td>1.0</td>
</tr>
<tr>
<td>imidatsolin-2-yylli(</td>
<td>0.063</td>
<td>0.0</td>
<td>7.0</td>
<td>1.0</td>
<td>3.0</td>
<td>3.0</td>
<td>2.0</td>
<td>4.0</td>
<td>0.0</td>
<td>2.0</td>
<td>4.0</td>
<td>3.0</td>
<td>1.0</td>
</tr>
<tr>
<td>nikotinaatti</td>
<td>0.032</td>
<td>0.0</td>
<td>7.0</td>
<td>1.0</td>
<td>3.0</td>
<td>3.0</td>
<td>2.0</td>
<td>4.0</td>
<td>0.0</td>
<td>2.0</td>
<td>4.0</td>
<td>3.0</td>
<td>1.0</td>
</tr>
<tr>
<td>2-(3-(hydroksimetylili)-2-pyridylli-5-</td>
<td>0.016</td>
<td>0.0</td>
<td>7.0</td>
<td>1.0</td>
<td>3.0</td>
<td>3.0</td>
<td>2.0</td>
<td>4.0</td>
<td>0.0</td>
<td>2.0</td>
<td>4.0</td>
<td>3.0</td>
<td>1.0</td>
</tr>
<tr>
<td>isopropyli-5-metyylili-2-imidatsolin-4-onsi</td>
<td>0.003</td>
<td>0.0</td>
<td>7.0</td>
<td>1.0</td>
<td>3.0</td>
<td>3.0</td>
<td>2.0</td>
<td>4.0</td>
<td>0.0</td>
<td>2.0</td>
<td>4.0</td>
<td>3.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Karboetoksimeetyli-</td>
<td>0.016</td>
<td>0.0</td>
<td>7.0</td>
<td>1.0</td>
<td>3.0</td>
<td>3.0</td>
<td>2.0</td>
<td>4.0</td>
<td>0.0</td>
<td>2.0</td>
<td>4.0</td>
<td>3.0</td>
<td>1.0</td>
</tr>
<tr>
<td>2-(5-isopropyli-5-</td>
<td>0.016</td>
<td>0.0</td>
<td>7.0</td>
<td>1.0</td>
<td>3.0</td>
<td>3.0</td>
<td>2.0</td>
<td>4.0</td>
<td>0.0</td>
<td>2.0</td>
<td>4.0</td>
<td>3.0</td>
<td>1.0</td>
</tr>
<tr>
<td>metyyli-4-okso-2-</td>
<td>0.003</td>
<td>0.0</td>
<td>7.0</td>
<td>1.0</td>
<td>3.0</td>
<td>3.0</td>
<td>2.0</td>
<td>4.0</td>
<td>0.0</td>
<td>2.0</td>
<td>4.0</td>
<td>3.0</td>
<td>1.0</td>
</tr>
<tr>
<td>imidatsolin-2-yylli(nikotinaatti</td>
<td>0.032</td>
<td>0.0</td>
<td>7.0</td>
<td>1.0</td>
<td>3.0</td>
<td>3.0</td>
<td>2.0</td>
<td>4.0</td>
<td>0.0</td>
<td>2.0</td>
<td>4.0</td>
<td>3.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Yhdisteet</td>
<td>Käyttö- määrä</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.</td>
<td>2.</td>
<td>3.</td>
<td>4.</td>
<td>5.</td>
<td>6.</td>
<td>8.</td>
<td>9.</td>
<td>10.</td>
<td>11.</td>
<td>12.</td>
<td>17.</td>
<td>13.</td>
</tr>
<tr>
<td>Karbobentsyliioki-</td>
<td>.500</td>
<td>9.0</td>
</tr>
<tr>
<td>metyyli-2-(5-isopropyli-</td>
<td>.750</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>propyyli-5-metyyli-</td>
<td>4-oxso-2-imidisolin-</td>
<td>.063</td>
<td>7.0</td>
<td>8.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>datollin-2-yylli-</td>
<td>.016</td>
<td>1.0</td>
<td>4.0</td>
<td>1.0</td>
<td>4.0</td>
<td>7.0</td>
<td>9.0</td>
<td>3.0</td>
<td>0.0</td>
<td>8.0</td>
<td>9.0</td>
<td>6.0</td>
<td>8.0</td>
</tr>
<tr>
<td>nikonitinaatti</td>
<td>.016</td>
<td>1.0</td>
<td>4.0</td>
<td>1.0</td>
<td>4.0</td>
<td>7.0</td>
<td>9.0</td>
<td>3.0</td>
<td>0.0</td>
<td>8.0</td>
<td>9.0</td>
<td>6.0</td>
<td>8.0</td>
</tr>
<tr>
<td>Karbobimetyyli-2-(5-</td>
<td>.500</td>
<td>9.0</td>
</tr>
<tr>
<td>isopropyyli-5-metyyli-</td>
<td>.500</td>
<td>9.0</td>
</tr>
<tr>
<td>4-oxso-2-imidisolin-</td>
<td>.063</td>
<td>5.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>6.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>2-yylli-</td>
<td>.016</td>
<td>1.0</td>
<td>4.0</td>
<td>1.0</td>
<td>4.0</td>
<td>7.0</td>
<td>9.0</td>
<td>3.0</td>
<td>0.0</td>
<td>8.0</td>
<td>9.0</td>
<td>6.0</td>
<td>8.0</td>
</tr>
<tr>
<td>nikonitinaatti</td>
<td>.016</td>
<td>1.0</td>
<td>4.0</td>
<td>1.0</td>
<td>4.0</td>
<td>7.0</td>
<td>9.0</td>
<td>3.0</td>
<td>0.0</td>
<td>8.0</td>
<td>9.0</td>
<td>6.0</td>
<td>8.0</td>
</tr>
<tr>
<td>Syaanimetyyli-2-(5-</td>
<td>.500</td>
<td>9.0</td>
</tr>
<tr>
<td>isopropyyli-5-metyyli-</td>
<td>.500</td>
<td>9.0</td>
</tr>
<tr>
<td>li-4-oxso-2-imidisolin-</td>
<td>.063</td>
<td>6.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>6.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>2-yylli-</td>
<td>.016</td>
<td>1.0</td>
<td>4.0</td>
<td>1.0</td>
<td>4.0</td>
<td>7.0</td>
<td>9.0</td>
<td>3.0</td>
<td>0.0</td>
<td>8.0</td>
<td>9.0</td>
<td>6.0</td>
<td>8.0</td>
</tr>
<tr>
<td>nikonitinaatti</td>
<td>.016</td>
<td>1.0</td>
<td>4.0</td>
<td>1.0</td>
<td>4.0</td>
<td>7.0</td>
<td>9.0</td>
<td>3.0</td>
<td>0.0</td>
<td>8.0</td>
<td>9.0</td>
<td>6.0</td>
<td>8.0</td>
</tr>
<tr>
<td>Metyyli-(-)2-(5-isopropyli-</td>
<td>.500</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>ppyli-5-metyyli-4-oxso-2-imidisolin-</td>
<td>.063</td>
<td>1.0</td>
<td>2.0</td>
<td>4.0</td>
<td>1.0</td>
<td>5.0</td>
<td>9.0</td>
<td>8.0</td>
<td>0.0</td>
<td>8.0</td>
<td>6.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>nikonitinaatti</td>
<td>.016</td>
<td>1.0</td>
<td>4.0</td>
<td>1.0</td>
<td>4.0</td>
<td>7.0</td>
<td>9.0</td>
<td>3.0</td>
<td>0.0</td>
<td>8.0</td>
<td>9.0</td>
<td>6.0</td>
<td>8.0</td>
</tr>
<tr>
<td>Metyyli+(+)2-(5-</td>
<td>.125</td>
<td>9.0</td>
</tr>
<tr>
<td>isopropyyli-5-metyyli-</td>
<td>.125</td>
<td>3.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>6.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>li-4-oxso-2-imidisolin-</td>
<td>.016</td>
<td>1.0</td>
<td>4.0</td>
<td>1.0</td>
<td>4.0</td>
<td>7.0</td>
<td>9.0</td>
<td>3.0</td>
<td>0.0</td>
<td>8.0</td>
<td>9.0</td>
<td>6.0</td>
<td>8.0</td>
</tr>
<tr>
<td>2-yylli-</td>
<td>.016</td>
<td>1.0</td>
<td>4.0</td>
<td>1.0</td>
<td>4.0</td>
<td>7.0</td>
<td>9.0</td>
<td>3.0</td>
<td>0.0</td>
<td>8.0</td>
<td>9.0</td>
<td>6.0</td>
<td>8.0</td>
</tr>
<tr>
<td>nikonitinaatti</td>
<td>.016</td>
<td>1.0</td>
<td>4.0</td>
<td>1.0</td>
<td>4.0</td>
<td>7.0</td>
<td>9.0</td>
<td>3.0</td>
<td>0.0</td>
<td>8.0</td>
<td>9.0</td>
<td>6.0</td>
<td>8.0</td>
</tr>
<tr>
<td>Yhdisteet</td>
<td>Käyttömäärä</td>
<td>1.</td>
<td>2.</td>
<td>3.</td>
<td>4.</td>
<td>5.</td>
<td>6.</td>
<td>8.</td>
<td>9.</td>
<td>10.</td>
<td>11.</td>
<td>12.</td>
<td>17.</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-------------</td>
<td>-----</td>
</tr>
<tr>
<td>Bentsyli(-)-2-(5-isopropyl-5-metyyl-4-oxo-2-imidatsolin-2-yyll)nikotinaatti</td>
<td>.500</td>
<td>9.0</td>
<td>.9</td>
</tr>
<tr>
<td>(-)-2-(5-isopropyl-5-metyyl-4-oxo-2-imidatsolin-2-yyll)nikotiinihappo</td>
<td>.125</td>
<td>7.0</td>
<td>.7</td>
<td>.6</td>
<td>.6</td>
<td>.6</td>
<td>.6</td>
<td>.7</td>
<td>.7</td>
<td>.8</td>
<td>.8</td>
<td>.9</td>
<td>.9</td>
</tr>
<tr>
<td>(+)-2-(5-isopropyl-5-metyyl-4-oxo-2-imidatsolin-2-yyll)nikotiinihappo</td>
<td>.063</td>
<td>1.0</td>
<td>.6</td>
<td>.3</td>
<td>.9</td>
<td>.9</td>
<td>.9</td>
<td>.9</td>
<td>.9</td>
<td>.9</td>
<td>.9</td>
<td>.9</td>
<td>.9</td>
</tr>
<tr>
<td>2-(5-isopropyl-5-metyyl-4-oxo-2-imidatsolin-2-yyll)nikotiinihappo</td>
<td>.032</td>
<td>0.0</td>
<td>.5</td>
<td>.1</td>
<td>.9</td>
<td>.9</td>
<td>.9</td>
<td>.9</td>
<td>.9</td>
<td>.9</td>
<td>.9</td>
<td>.9</td>
<td>.9</td>
</tr>
<tr>
<td>2-(5-isopropyl-5-metyyl-4-oxo-2-imidatsolin-2-yyll)hydrokloridi</td>
<td>.016</td>
<td>0.0</td>
<td>1.0</td>
<td>.9</td>
</tr>
<tr>
<td>Metyyli-2-(1-bentsyli-5-metyyl-4-oxo-2-imidatsolin-2-yyll)nikotinaatti</td>
<td>.8000</td>
<td>9.0</td>
<td>.9</td>
</tr>
<tr>
<td>Metyyli-6-imetyyl-2-(5-isopropyl-5-metyyl-4-oxo-2-imidatsolin-2-yyll)nikotinaatti</td>
<td>.250</td>
<td>8.0</td>
<td>.9</td>
</tr>
<tr>
<td>Metyyli-2-(1-bentsyli-5-metyyl-4-oxo-2-imidatsolin-2-yyll)hydrokloridi</td>
<td>.016</td>
<td>2.0</td>
<td>.1</td>
<td>.5</td>
<td>.9</td>
<td>.9</td>
<td>.9</td>
<td>.9</td>
<td>.9</td>
<td>.9</td>
<td>.9</td>
<td>.9</td>
<td>.9</td>
</tr>
<tr>
<td>Yhdisteet</td>
<td>Käyttö- määrä</td>
<td>1.</td>
<td>2.</td>
<td>3.</td>
<td>4.</td>
<td>5.</td>
<td>6.</td>
<td>8.</td>
<td>9.</td>
<td>10.</td>
<td>11.</td>
<td>12.</td>
<td>13.</td>
</tr>
<tr>
<td>------------------------</td>
<td>---------------</td>
<td>-----</td>
</tr>
<tr>
<td>Metyyli-2-(1-kloor-riasetyyli-4-isos-</td>
<td>.500</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>Metyyli-4-metyyli-</td>
<td>.250</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>5-okso-2-imidatsolin-</td>
<td>.063</td>
<td>6.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>1.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
</tr>
<tr>
<td>2-yyli)nikotinaatti</td>
<td>.032</td>
<td>3.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>1.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>7.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.016</td>
<td>2.0</td>
<td>8.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
<td>0.0</td>
<td>8.0</td>
<td>8.0</td>
<td>6.0</td>
<td>7.0</td>
<td>7.0</td>
</tr>
<tr>
<td>Metyyli-2-(4-isopropyyli-4-metyyli-</td>
<td>.500</td>
<td>9.0</td>
</tr>
<tr>
<td>5-okso-1-propionyyli-</td>
<td>.125</td>
<td>8.0</td>
<td>9.0</td>
</tr>
<tr>
<td>2-imidatsolin-2-yyli)-nikotinaatti</td>
<td>.063</td>
<td>3.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>1.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>.032</td>
<td>3.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>.016</td>
<td>2.0</td>
<td>7.0</td>
<td>6.0</td>
<td>7.0</td>
<td>6.0</td>
<td>6.0</td>
<td>1.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
</tr>
<tr>
<td>0-(2-(5-isopropyyli-5-metyyli-4-okso-2-imidatsolin-2-yyli)-nikotinoyyli)asetonioksiimi</td>
<td>.500</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.250</td>
<td>8.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.125</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.063</td>
<td>6.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>6.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.032</td>
<td>4.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.016</td>
<td>2.0</td>
<td>6.0</td>
<td>7.0</td>
<td>7.0</td>
<td>6.0</td>
<td>6.0</td>
<td>0.0</td>
<td>6.0</td>
<td>5.0</td>
<td>4.0</td>
<td>8.0</td>
<td>6.0</td>
</tr>
<tr>
<td>2-(3-asetyyl-2-pyridyli)-5-isopropyyli-5-metyyli-2-imidatsolin-4-oni</td>
<td>.500</td>
<td>7.0</td>
<td>7.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>.250</td>
<td>1.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
<td>6.0</td>
<td>9.0</td>
<td>7.0</td>
<td>8.0</td>
<td>7.0</td>
<td>6.0</td>
<td>7.0</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>.125</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>4.0</td>
<td>9.0</td>
<td>9.0</td>
<td>5.0</td>
<td>6.0</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td>.063</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
<td>9.0</td>
<td>5.0</td>
<td>2.0</td>
<td>6.0</td>
<td>4.0</td>
</tr>
<tr>
<td>Pentyyli-2-(4-isopropyyli-4-metyyli-5-okso-1-propionyyli-2-yyli)nikotinaatti</td>
<td>.500</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.250</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.125</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.063</td>
<td>3.0</td>
<td>9.0</td>
<td>7.0</td>
<td>2.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>1.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td>.032</td>
<td>4.0</td>
<td>8.0</td>
<td>7.0</td>
<td>6.0</td>
<td>3.0</td>
<td>9.0</td>
<td>9.0</td>
<td>1.0</td>
<td>7.0</td>
<td>8.0</td>
<td>5.0</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>.016</td>
<td>2.0</td>
<td>6.0</td>
<td>6.0</td>
<td>3.0</td>
<td>3.0</td>
<td>9.0</td>
<td>5.0</td>
<td>0.0</td>
<td>7.0</td>
<td>7.0</td>
<td>4.0</td>
<td>6.0</td>
</tr>
<tr>
<td>Bentsyyli-2-(4-isopropyyli-4-metyyli-5-okso-1-pivaloyyli-2-imidatsolin-2-yyli)nikotinaatti</td>
<td>.500</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.250</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>5.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.125</td>
<td>7.0</td>
<td>9.0</td>
<td>8.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>.063</td>
<td>3.0</td>
<td>9.0</td>
<td>7.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>5.0</td>
<td>9.0</td>
<td>9.0</td>
<td>7.0</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td>.032</td>
<td>2.0</td>
<td>6.0</td>
<td>6.0</td>
<td>5.0</td>
<td>3.0</td>
<td>9.0</td>
<td>9.0</td>
<td>0.0</td>
<td>7.0</td>
<td>7.0</td>
<td>4.0</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>.016</td>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>0.0</td>
<td>1.0</td>
<td>5.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>Yhdisteet</td>
<td>Käyttömäärä</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>17</td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
<td>----</td>
</tr>
</tbody>
</table>
| Trimetyyli-2-(5-iso-propyyli-5-metyyli-4-oxso-2-imidatsolin-2-
 yli)-/a-oxso-4-fosfinoo-3-pyririinipropioni-
 happe | 0.500 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 |
| Metyyli-2-[4-isopro-
 pyyli-4-metyyli-1-(metyyliisulfonyyli)-5-
 okso-2-imidatsolin-2-
 yli]nikotinaatti | 0.500 | 2.0 | 4.0 | 8.0 | 7.0 | 7.0 | 9.0 | 6.0 | 0.0 | 4.0 | 7.0 | 7.0 | 6.0 | 6.0 |
| 2-propynyyli-2-(1-
 asetyyli-4-isopro-
 pyyli-4-metyyli-5-
 okso-2-imidatsolin-2-
 yli]nikotinaatti | 0.500 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 |
| 2-etanoliammonium-2-(5-isopropyyli-5-metyyli-4-oxso-2-imid-
 atson-2-yli]nikotinaatti | 0.500 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 |
| Pyrrolidinium-2-(5-
 isopropyyli-5-metyy-
 li-4-okso-2-imidatsol-
 lin-2-yli]nikotinaatti | 0.250 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 8.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 |
| | 0.125 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 8.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 |
| | 0.063 | 8.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 8.0 | 9.0 | 9.0 | 9.0 | 8.0 | 9.0 |
| | 0.032 | 6.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 7.0 | 4.0 | 9.0 | 8.0 | 6.0 | 9.0 | 6.0 |
| | 0.016 | 2.0 | 6.0 | 8.0 | 6.0 | 9.0 | 9.0 | 5.0 | 2.0 | 7.0 | 9.0 | 4.0 | 9.0 | 4.0 |

Taulukko XII (jatkuu..)

Ennen-orastusta koe; käyttömäärät kg/ha
<table>
<thead>
<tr>
<th>Yhdisteet</th>
<th>1.</th>
<th>2.</th>
<th>3.</th>
<th>4.</th>
<th>5.</th>
<th>6.</th>
<th>8.</th>
<th>9.</th>
<th>10.</th>
<th>11.</th>
<th>12.</th>
<th>13.</th>
<th>14.</th>
</tr>
</thead>
<tbody>
<tr>
<td>tert-butylylammonium-2-(5-isopropyl-4-oxy-2-imidatsolin-2-yli)-nikotinaatti</td>
<td>.500</td>
<td>9.0</td>
</tr>
<tr>
<td>2,2,2-trikloorietyli-2-(5-isopropyl-4-oxy-2-imidatsolin-2-yli)-nikotinaatti</td>
<td>.250</td>
<td>6.0</td>
<td>6.0</td>
<td>2.0</td>
<td>1.0</td>
<td>7.0</td>
<td>9.0</td>
<td>0.0</td>
<td>0.0</td>
<td>4.0</td>
<td>6.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>6-kloori-2-(5-isopropyl-4-oxy-2-imidatsolin-2-yli)-nikotiinihappo</td>
<td>.063</td>
<td>1.0</td>
<td>6.0</td>
<td>0.0</td>
<td>0.0</td>
<td>6.0</td>
<td>0.0</td>
<td>0.0</td>
<td>4.0</td>
<td>6.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>1-etyylimetyli-2-(1-oxoksi-4-isopropyl-4-nitro-2-imidatsolin-2-yli)-nikotinaatti</td>
<td>.250</td>
<td>6.0</td>
<td>9.0</td>
<td>0.0</td>
<td>0.0</td>
<td>9.0</td>
<td>0.0</td>
<td>0.0</td>
<td>9.0</td>
<td>0.0</td>
<td>9.0</td>
<td>0.0</td>
<td>9.0</td>
</tr>
<tr>
<td>Metlyli-2-(4-isopropyl-4-metyli-5-okso-2-yli)nikotiinaatti</td>
<td>.063</td>
<td>0.0</td>
<td>0.0</td>
<td>3.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>5-butyli-2-(5-isopropyl-4-metyli-4-okso-2-imidatsolin-2-yli)-nikotiinihappo</td>
<td>.063</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>4.0</td>
<td>0.0</td>
<td>2.0</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>7.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Taulukko XII (jatkuu..)

Ennen-orastusta koe; käyttömäärät kg/ha
Esimerkki 62
Keksinnön mukaisten yhdisteiden vaikutus puu-villan lehtienpoistoon

Seuraavissa kokeissa yhdiste liuotettiin tai dispergoitiin asetoni/vesiseokseen (1:1) loppukon-sentraatioksi, joka vastasi taulukossa XIII esitet-tyä käyttömäärää kg/ha. Liuokset sisälsivät myös 0,1 - 0,25 % (tilav./tilav.) kolloidista BIOFILM'ia (val-mistaja: Colloidal Products Corp.), joka on alkyyl-aryylipolyoksietanolin, vapaiden ja sidottujen rasva-happojen, glykolieetterien, dialkyylibentseenikarboksyliaatin ja 2-propanolin seos.

Koekasvina oli puuviiva (Gossypium hirsutum, var. Stoneville 213).

Kokeiltavan yhdisteen liuosta tai dispersiota suihkutettiin 40 ml kasvuastiaa kohti (joka astiassa yksi kasvi) kasvin lehdille. Kasvit olivat kokeen alus-sa 4-lehtivaiheessa olevia hyvin kasvun alkuun pääse-tä kylvötaimia.

<table>
<thead>
<tr>
<th>Yhdiste</th>
<th>Kontrolli</th>
<th>0,5</th>
<th>5,5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metyyli-2-(5-isopropyli-5-metyyli-4-okso-2-imidatsolin-2-yylli)-nikotinaatti</td>
<td>2,0</td>
<td>3,7</td>
<td>2,0</td>
</tr>
<tr>
<td></td>
<td>1,0</td>
<td>1,8</td>
<td>0,5</td>
</tr>
<tr>
<td></td>
<td>0,5</td>
<td>3,3</td>
<td>0,83</td>
</tr>
<tr>
<td>2-(5-isopropyli-5-metyyli-4-okso-2-imidatsolin-2-yylli)-nikotinaatti</td>
<td>2,0</td>
<td>3,53</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1,0</td>
<td>4,63</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0,5</td>
<td>2,13</td>
<td>0</td>
</tr>
<tr>
<td>Metyyli-2-(5-etyyli-5-metyyli-4-okso-2-imidatsolin-2-yylli)-nikotinaatti</td>
<td>2,0</td>
<td>5,33</td>
<td>2,6</td>
</tr>
<tr>
<td></td>
<td>1,0</td>
<td>5,33</td>
<td>3,0</td>
</tr>
<tr>
<td></td>
<td>0,5</td>
<td>3,79</td>
<td>4,3</td>
</tr>
<tr>
<td>2-(5-etyyli-5-metyyli-4-okso-2-imidatsolin-2-yylli)-nikotinaatti</td>
<td>2,0</td>
<td>1,0</td>
<td>5,0</td>
</tr>
<tr>
<td></td>
<td>1,0</td>
<td>3,3</td>
<td>3,5</td>
</tr>
<tr>
<td></td>
<td>0,5</td>
<td>2,5</td>
<td>4,8</td>
</tr>
<tr>
<td>2-propynyli-2-(5-isopropyli-5-metyyli-4-okso-2-imidatsolin-2-yylli)-nikotinaatti</td>
<td>2,0</td>
<td>5,2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1,0</td>
<td>3,3</td>
<td>0,33</td>
</tr>
<tr>
<td></td>
<td>0,5</td>
<td>2,5</td>
<td>0</td>
</tr>
<tr>
<td>2-(5,5-dimetyyli-4-okso-2-imidatsolin-2-yylli)-nikotinaatti</td>
<td>2,0</td>
<td>5,36</td>
<td>5,5</td>
</tr>
<tr>
<td></td>
<td>1,0</td>
<td>6,5</td>
<td>7,0</td>
</tr>
<tr>
<td></td>
<td>0,5</td>
<td>6,5</td>
<td>7,8</td>
</tr>
<tr>
<td>Kalsium-2-(5-isopropyli-5-metyyli-4-okso-2-imidatsolin-2-yylli)-nikotinaatti</td>
<td>4,0</td>
<td>5,0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2,0</td>
<td>4,0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1,0</td>
<td>3,1</td>
<td>1,2</td>
</tr>
<tr>
<td>Furfuryli-2-(5-isopropyli-5-metyyli-4-okso-2-imidatsolin-2-yylli)-nikotinaatti</td>
<td>4,0</td>
<td>4,0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2,0</td>
<td>4,5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1,0</td>
<td>2,83</td>
<td>0</td>
</tr>
<tr>
<td>Trityyliammonium-2-(5-isopropyli-5-metyyli-4-okso-2-imidatsolin-2-yylli)-nikotinaatti</td>
<td>4,0</td>
<td>4,3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2,0</td>
<td>5,0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1,0</td>
<td>3,2</td>
<td>0,5</td>
</tr>
</tbody>
</table>
Esimerkki 63
Yhdisteiden herbisidisen tehon arviointi vesi-
herbisidina käyttäen koekasvina vesihyasinttia
(Eichhornia crassipes)

Koelammikoissa oli hyvässä kasvussa oleva vesi-
hyasinttikasvusto, ja niihin kylvettiin 5 tilapiaa 11 kk
ennen koeyhDISTeillä suihkuttamista määränä 333 l/ha
käyttäen liuoksia, jotka sisälsivät 0,5 paino-% pinta-
aktiivivasta ainetta ja riittävästi koeyhdistettä, jot-
ta käyttömääräksi sahtaisiin 0,125-1,0 kg/ha,

44 vkr kasvien orastuksen-jälkeen-käsittelyn
jälkeen koelammikoita tarkasteltiin. Tulokset esite-
tään seuraavassa taulukossa.
Taulukko XIV

Yhdisteiden herbisidisen tehon arviointi vesiherbisinä käyttäen koekasvina vesihyasintia (*Eichhornia crassipes*).

<table>
<thead>
<tr>
<th>Yhdiste</th>
<th>Käyttömäärä kg/ha</th>
<th>Fytotoksisuusaste</th>
<th>Uudelleenkasvu, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-(5-isopropyli-5-metyylisyli-4-okso-2-imidatsolin-2-yyli)nikotii-nihappo</td>
<td>0,125</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0,25</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0,50</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1,0</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>Kalsium-2-(5-isopropyyli-5-metyylisyli-4-okso-2-imidatsolin-2-yyli)nikotinaatti</td>
<td>0,125</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0,25</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0,50</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1,0</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>Furfuryyli-2-(5-isopropyli-5-metyylisyli-4-okso-2-imidatsolin-2-yyli)nikotinaatti</td>
<td>0,125</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0,25</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0,50</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1,0</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>Käsittelemätön kontrolli</td>
<td>-</td>
<td>-</td>
<td>100</td>
</tr>
</tbody>
</table>

Fytotoksisuus-aste: (0:9)-0 = ei vaikutusta; 9 = kasvi täysin kuollut

Uusia kasveja kehittyvät jatkuvasti
1. 2-(2-imidatsolin-2-yyli)pyridiini- ja -kinoliinijohdannaiset, joilla on kaava I

\[
\begin{array}{c}
\text{A} \\
\text{X} \\
\text{Y} \\
\text{Z} \\
\text{N} \\
\text{R}_1 \\
\text{R}_2 \\
\text{W} \\
\end{array}
\]

jossa \(R_1 \) on \(C_1-C_4 \)-alkyyli; \(R_2 \) on \(C_1-C_4 \)-alkyyli tai \(C_3-C_6 \)-sykloalkyyli, tai \(R_1 \) ja \(R_2 \) merkitsevät yhdessä \(C_3-C_6 \)-sykloalkyyliä, joka on mahdollisesti substituotu metyylilä; \(A \) on \(\text{COOR}_3 \), \(\text{CONHR}_6 \), \(\text{CHO} \), \(\text{CH}_2\text{OH} \), \(\text{COCH}_3 \), \(\text{COC}_6\text{H}_5 \), \(\text{CN} \), \(\text{CH}_3 \), \(\text{NH}_2\text{OH} \), \(\text{CH}_2\text{COOH} \), \(\text{CONHOH} \), \(\text{CH}_2\text{CH}_2\text{COOH} \), \(\text{CHR}_8\text{OH} \),

\[
\begin{array}{c}
\text{N} \\
\text{O} \\
\text{COOCH}_3 \\
\text{P(OCCH}_3)_2
\end{array}
\]

tai

\[
\begin{array}{c}
\text{N} \\
\text{O} \\
\end{array}
\]

\(R_3 \) on vety, diaempialkyyli-imino, \(C_1-C_{12} \)-alkyyli, joka on mahdollisesti substituoitu yhdellä halogeenilla tai \(C_1-C_3 \)-alkoks-, hydroksi-, \(C_3-C_6 \)-sykloalkyyli-, bentsyl- liksi-, furyyli-, fenyyli-, halogeenifenyli-, alemppialkyylifenyyli-, alemppialkoksifenyyli-, nitrofenyyli-, k arboksyli-, alemppialkoksikarboyli-, syaani- tai tri- alemppialkyyliammoniumryhmällä, \(C_3-C_{12} \)-alkenyli, joka on mahdollisesti substituoitu yhdellä halogeenilla tai \(C_1-C_3 \)-alkoks-, fenyyli- tai alemppialkoksikarboyli ryhmällä tai kahdella \(C_1-C_3 \)-alkoksiryhmällä tai kahdella halogeenilla, \(C_3-C_6 \)-sykloalkyyli, joka on mahdollisesti substituotu yhdellä tai kahdella \(C_1-C_3 \)-alkyyllä, \(C_3-C_{10} \)-alkynyli, joka on mahdollisesti substituotu yhdellä tai kahdella \(C_1-C_3 \)-alkylyryhmällä; tai \(R_3 \) on ka tioni, joka on alkalimetalli, maa-alkalimetalli, kupari,
rauta, sinkki, koboltti, hopea, nikkeli, ammonium tai orgaaninen ammonium; R₆ on vety, hydroksyyli, C₃-alkenyli, C₃-alkynyyli tai C₁-C₄-alkyyli, joka on mahdollisesti substituoitu yhdellä hydroksyyliiryhmällä tai yhdellä kloorilla; B on H, COR₄ tai SO₂R₅, jolloin B:n ollessa COR₄ tai SO₂R₅ A on COOR₃, jossa R₃ on muu kuin vety, suolan muodostava kationi, CH₃ tai CN; W on O; ja Y ja Z eivät merkitse alkyyliamino-, hydroksyyli- tai hydroksialempialkyyliiryhmää; R₄ on C₁-C₁₁-alkyyli, klooririmetyli tai fenyyli, joka on mahdollisesti substituoitu yhdellä kloorilla, yhdellä nitro- tai yhdellä metoksiryhmällä; R₅ on C₁-C₄-alkyyli tai fenyyli, joka on mahdollisesti substituoitu yhdellä metyyliryhmällä; W on O tai S; R₈ on C₁-C₄-alkyyli tai fenyyli; X on vety, halogeeni, hydroksyyli tai metyyli, edellyttäen, että silloin kun Y ja Z muodostavat yhdessä renkaan tarkoittaen ryhmää -(CH₂)ₙ-, jossa n on 3 tai 4, X on vety; Y ja Z ovat kumpikin erikseen vety, halogeeni, C₁-C₆-alkyyli, C₁-C₄-hydroksialkyyli, C₁-C₆-alkoksi, C₁-C₄-alkyylitio, fenoksi, C₁-C₄-halogeenialkyyli, nitro, syaani, C₁-C₄-alkyyliamino, dialembialkyyliamino, C₁-C₄-alkyylisulfonyyli tai fenyyli, joka on mahdollisesti substituoitu yhdellä C₁-C₄-alkyyli- tai C₁-C₄-alkoksiryhmällä tai halogeenilla, tai Y ja Z yhdessä muodostavat renkaan tarkoittaen ryhmää -(CH₂)ₙ-, jossa n on 3 tai 4, edellyttäen, että X on vety; tai Y ja Z yhdessä muodostavat renkaan tarkoittaen ryhmää, jolla on kaava \[
\begin{array}{cccc}
L & M & Q & R₇ \\
\hline
\end{array}
\]
\[-C=C-C=C-
\]
joissa L, M, Q ja R₇ merkitsevät kukin vetyä, halogeenia, C₁-C₄-alkyyli-, C₁-C₄-alkoksi-, C₁-C₄-alkyylitio-, C₁-C₄-alkyylisulfonyyli-, C₁-C₄-halogeenialkyyli-, NO₂-, CN-, fenyyli-, fenoksi-, amino-, C₁-C₄-alkyylamino-, dialembialkyyliamino-, kloorifenyyli-, metyylifenyyliiryhmää tai fenoksiryhmää, joka on substituoitu yhdellä Cl-, CF₃-, NO₂- tai CH₃-ryhmällä, jolloin ainoastaan yksi symboleista L, M, Q ja R₇ merkitsee muuta kuin vetyä, halogeenia, C₁-C₄-alkyyliä tai C₁-C₄-alkoksia; ja kun W on O
ja A on CN, CH₃ tai COOR₃, niin R₃ ei voi olla alkenyli- eikä alkynyliryhmä eivätkä Y ja Z voi olla alkyyliamino-, dialkyyliamino- tai alkylitioryhmä, ja niiden N-oksidit; ja kun R₁ ja R₂ eivät ole samoja, kaavan I mukaisten yhdisteiden optiset isomeerit, ja kun R₃ ei ole suolaa muodostava kationi, kaavan I mukaisten yhdisteiden happoadditiosuolat.

2. Menetelmä yksisirkkaisten ja kaksisirkkaisten yksivuotisten ja monivuotisten kasvien sekä vesikasvien kasvun säätämiseksi, tunnettu siitä, että näiden kasvien lehdille tai maahan tai veteen, joka sisältää niiden siemeniä tai muita lisääntymiselimiä, levitetään herbisidisesti tehokas määrä yhdistettä, jolla on kaava I

![Chemical structure](image)

jossa R₁ on C₁-C₄-alkyyli; R₂ on C₁-C₄-alkyyli tai C₃-C₆-sykloalkyyli, tai R₁ ja R₂ merkitsevät yhdessä C₃-C₆-sykloalkyyliä, joka on mahdollisesti substituoitu metyylilä; A on COOR₃, CONHR₆, CHO, CH₂OH, COCH₃, COC₆H₅, CN, CH₃, CH=NOH, CH₂COOH, CONOH, CH₂CH₂COOH, CHR₈OH,

![Chemical structure](image)

tai

![Chemical structure](image)

R₃ on vety, dialempialkyli-imino, C₁-C₁₂-alkyyli, joka on mahdollisesti substituoitu yhdellä halogeenilla tai C₁-C₃-alkoksi-, hydroksi-, C₃-C₆-sykloalkyyli-, bentsyylioksi-, furyyli-, fenyyli-, halogeenifenyyli-, alempi-
alkylyifenyyli-, alembialkoksifenyyli-, nitrofenyyli-, karboksyli, alembialkoksikarbonsyyli-, syaani- tai tri-alembialkysälammoniumryhmällä, C\textsubscript{3}-C\textsubscript{12}-alkenyli, joka on mahdollisesti substituoitu yhdellä halogeenilla tai C\textsubscript{1}-C\textsubscript{3}-alkoksi-, fenyyli- tai alembialkoksikarbonsyyli-ryhmällä tai kahdella C\textsubscript{1}-C\textsubscript{3}-alkoksiryhmällä tai kahdella halogeenilla, C\textsubscript{3}-C\textsubscript{6}-sikloalkyyli, joka on mahdollisesti substituoitu yhdellä tai kahdella C\textsubscript{1}-C\textsubscript{3}-alkylillä, C\textsubscript{3}-C\textsubscript{10}-alknyyli, joka on mahdollisesti substituoitu yhdellä tai kahdella C\textsubscript{1}-C\textsubscript{3}-alkylyryhmällä; tai R\textsubscript{3} on kationi, joka on alkalimetalli, maa-alkalimetalli, kupari, rauta, sinkki, koboltti, hopea, nikkel, ammonium tai organinen ammonium; R\textsubscript{6} on vety, hydroksyli, C\textsubscript{3}-alkenyli, C\textsubscript{2}-alknyyli tai C\textsubscript{1}-C\textsubscript{4}-alkyyli, joka on mahdollisesti substituoitu yhdellä hydroksylyryhmällä tai yhdellä kloorilla; B on H, COR\textsubscript{4} tai SO\textsubscript{2}R\textsubscript{5}, jolloin B:n ollessa COR\textsubscript{4} tai SO\textsubscript{2}R\textsubscript{5} A on COCR\textsubscript{3}, jossa R\textsubscript{3} on muu kuin vety, suolan muodostava kationi, CH\textsubscript{3} tai CN; W on O; ja Y ja Z eivät merkitse alkyylyaminon-, hydroksyly- tai hydroksialkylalkylyryhmä; R\textsubscript{4} on C\textsubscript{1}-C\textsubscript{11}-alkylly, kloorimetyyli tai fenyyli, joka on mahdollisesti substituoitu yhdellä kloorilla, yhdellä nitro- tai yhdellä metoksi-ryhmällä; R\textsubscript{5} on C\textsubscript{1}-C\textsubscript{4}-alkylyli tai fenyyli, joka on mahdollisesti substituoitu yhdellä metylylyryhmällä; W on O tai S; R\textsubscript{8} on C\textsubscript{1}-C\textsubscript{4}-alkylyli tai fenyyli; X on vety, halogeeni, hydroksyli tai metylyli, edellyttäen, että silloin kun Y ja Z muodostavat yhdessä renkaan tarkoittaa ryhmää -(CH\textsubscript{2})\textsubscript{n}-, jossa n on 3 tai 4; X on vety; Y ja Z ovat kumpikin erikseen vety, halogeeni, C\textsubscript{1}-C\textsubscript{6}-alkylyli, C\textsubscript{1}-C\textsubscript{4}-hydroksialkyllyli, C\textsubscript{1}-C\textsubscript{6}-alkoksi, C\textsubscript{1}-C\textsubscript{4}-alkylyltilio, fenoksi, C\textsubscript{1}-C\textsubscript{4}-halogeenialkylyli, nitro, syaani, C\textsubscript{1}-C\textsubscript{4}-alkylylamino, dialembialkyllylamino, C\textsubscript{1}-C\textsubscript{4}-alkyllysulfonyyli tai fenyyli, joka on mahdollisesti substituoitu yhdellä C\textsubscript{1}-C\textsubscript{4}-alkyllyli- tai C\textsubscript{1}-C\textsubscript{4}-alkoksiryhmällä tai halogeenilla, tai Y ja Z yhdessä muodostavat renkaan tarkoittava ryhmää -(CH\textsubscript{2})\textsubscript{n}-, jossa n on 3 tai 4, edellyttäen, että X on vety; tai Y ja Z yhdessä muodostavat renkaan tarkoittavan ryhmän, jolla on kaava L M Q R\textsubscript{7} \\

\begin{align*}
\text{L} & \quad \text{M} \\
\text{Q} & \quad \text{R}^7 \\
\end{align*}

\text{C}=\text{C}-\text{C}=\text{C}-

3. Patenttivaatimuksen 2 mukainen menetelmä, tunteutta siitä, että yhdistettä levitetään mainittujen kasvien lehille tai maaperään tai veteen, joka sisältää näiden kasvien siemeniä tai muita lisääntymiselimiä, 0,016 - 4,0 kg/ha.

4. Herbisidinen valmiste, tunteutta siitä, että se sisältää inertiä kiinteätä tai nestemäästä laimennusainetta ja herbisidisesti vaikuttavan määrän yhdistettä, jolla on kaava I
jossa \(R_1 \) on \(C_1-C_4 \)-alkyyli; \(R_2 \) on \(C_1-C_4 \)-alkyyli tai \(C_3-C_6 \)-sykloalkyyli, tai \(R_1 \) ja \(R_2 \) merkitsevät yhdessä \(C_3-C_6 \)-sykloalkyyliä, joka on mahdollisesti substituutti metyylilä; \(A \) on \(COOR_3 \), \(CONHR_6 \), \(CHO \), \(CH_2OH \), \(COCH_3 \), \(COC_6H_5 \), \(CN \), \(CH_3 \), \(CH=NOH \), \(CH_2COOH \), \(CONHOH \), \(CH_2CH_2COOH \), \(CHR_8OH \),

\[
\begin{align*}
\text{N} & \quad \text{COOCH}_3 \\
0 & \quad \text{COCH} \quad \text{P(OCOCH}_3\text{)}_2
\end{align*}
\]

tai

\(R_3 \) on vety, dialempialkyyli-imino, \(C_1-C_{12} \)-alkyyli, joka on mahdollisesti substituointi yhdellä halogeenilla tai \(C_1-C_3 \)-alkoks-, hydroksi-, \(C_3-C_6 \)-sykloalkyyli-, bentsylioksi-, furyyli-, fenyyli-, halogeenifenyyli-, alemppialkyylienyyli-, alemppialkoksifenyyli-, nitrofenyyli-, karboksyyli, alemppialkoksikarbonsyyli-, syaani- tai triaalemppialkyyliammoniumryhmällä, \(C_3-C_{12} \)-alkenyyli, joka on mahdollisesti substituointi yhdellä halogeenilla tai \(C_1-C_3 \)-alkoks-, fenyyli- tai alemppialkoksikarbonsyyli-ryhmällä tai kahdella \(C_1-C_3 \)-alkoksiryhmällä tai kahdella halogeenilla, \(C_3-C_6 \)-sykloalkyyli, joka on mahdollisesti substituointi yhdellä tai kahdella \(C_1-C_3 \)-alkyyliillä, \(C_3-C_{10} \)-alkynyyli, joka on mahdollisesti substituointi yhdellä tai kahdella \(C_1-C_3 \)-alkykyliryhmällä; \(R_3 \) on kationi, joka on alkalimetalli, maa-alkalimetalli, kupari, rauta, sinkki, koboltti, hopea, nikkel, ammonium tai organinen ammonium; \(R_6 \) on vety, hydroksyyli, \(C_3 \)-alkenyyli, \(C_3 \)-alkynyyli tai \(C_1-C_4 \)-alkyyli, joka on mahdollisesti substituointi yhdellä hydroksyylyiryhmällä tai yhdellä kloorilla; \(B \) on \(H \), \(COR_4 \) tai \(SO_2R_5 \), jolloin \(B:n \) olnessa \(COR_4 \) tai \(SO_2R_5 \) \(A \) on \(COOR_3 \), jossa \(R_3 \) on muu kuin vety, suolan muodostava kationi, \(CH_3 \) tai \(CN \); \(W \) on \(O \); ja \(Y \) ja \(Z \) eivät merkitse alkylilämino-, hydroksyyli- tai hydroksialempialkyylyiryhmiä; \(R_4 \) on \(C_1-C_{11} \)-alkyyli, klooririmetyli tai fenyyli, joka on mahdollisesti substituointi yhdellä kloorilla, yhdellä nitro- tai yhdellä metoksi- ryhmällä; \(R_5 \) on \(C_1-C_4 \)-alkyyli tai fenyyli, joka on mah-
dollisestä substituoitua yhdellä metyyliryhmällä; W on O tai S; R₈ on C₁-C₄-alkyyli tai fenyyli; X on vety, halogeeni, hydroksyyli tai metyyli, edellyttäen, että silloin kun Y ja Z muodostavat yhdessä renkaan tarkoittaa ryhmä
-\{(CH₂)ₙ\}⁻, jossa n on 3 tai 4, X on vety; Y ja Z ovat kumpikin erikseen vety, halogeeni, C₁-C₆-alkyyli, C₁-C₄-hydroksialkyyli, C₁-C₆-alkoksi, C₁-C₄-alkyylitio, fenoksi, C₁-C₄-halogoeneialkyyli, nitro, syaani, C₁-C₄-alkyyli-aminoo, dialempialkyyliamino, C₁-C₄-alkylisulfonyyli tai fenyyli, joka on mahdollisesti substituoitua yhdellä C₁-C₄-alkyyli- tai C₁-C₄-alkoksiryhmällä tai halogeenilla, tai Y ja Z yhdessä muodostavat renkaan tarkoittaa ryhmä
-\{(CH₂)ₙ\}⁻, jossa n on 3 tai 4, edellyttäen, että X on vety; tai Y ja Z yhdessä muodostavat renkaan tarkoittaa ryhmä, jolla on kaava

\[\begin{align*}
\text{L M Q R}_7^- \\
\text{C=C-C=C-}
\end{align*} \]

jossa L, M, Q ja R₇ merkitsevät kuitenkin vetyä, halogeenia, C₁-C₄-alkyyli-, C₁-C₄-alkoksi-, C₁-C₄-alkyylitio-, C₁-C₄-alkylisulfonyyli-, C₁-C₄-halogoeneialkyyli-, NO₂-, CN-, fenyyli-, fenoksi-, amino-, C₁-C₄-alkyyliamino-, dialempialkyyliamino-, kloorifenyyli-, metyylifenyyliiryhmää tai fenoksiryhmää, joka on substituoitua yhdellä Cl⁻, CF₃⁻, NO₂⁻ tai CH₃-ryhmällä, jolloin ainoastaan yksi symbolista L, M, Q ja R₇ merkitsee muuta kuin vetyä, halogeenia, C₁-C₄-alkyyliä tai C₁-C₄-alkoksia; ja kun W on O ja A on CN, CH₃ tai COOR₃, niin R₃ ei voi olla alkennyli- eikä alkynyyliiryhmää eivätkä Y ja Z voi olla alkyyliaminoa-, dialkyyliaminoa- tai alkylitioirymä, ja niiden N-oksidia; ja kun R₁ ja R₂ eivät ole samoja, kaavan I mukaisten yhdisteiden optista isomeeria, ja kun R₃ ei ole suolaa muodostava kationi, kaavan I mukaisten yhdisteiden happoadditiosuolaa.
5. Menetelmä yhdisteen valmistamiseksi, jolla on kaava

\[
\begin{align*}
\text{X} & \quad \text{Y} \\
\text{Z} & \quad \text{A} \\
\text{B} & \quad \text{W}
\end{align*}
\]

jossa \(R_1 \) on \(C_1-C_4 \)-alkyyli; \(R_2 \) on \(C_1-C_4 \)-alkyyli tai \(C_3-C_6 \)-sykloalkyyli, tai \(R_1 \) ja \(R_2 \) merkitsevät yhdessä \(C_3-C_6 \)-sykloalkyyliä, joka on mahdollisesti substituoitu metyylilä; \(A \) on \(\text{COOR}_3 \), \(\text{CONHR}_6 \), \(\text{CH}_2\text{OH} \), \(\text{COCH}_3 \), \(\text{COC}_6\text{H}_5 \) tai

\[
\begin{align*}
\text{COOCH}_3 \\
\text{COCH} \\
\text{P(OCH}_3)_2
\end{align*}
\]

R₃ on vety, dialempialkyyli-imino, \(C_1-C_{12} \)-alkyyli, joka on mahdollisesti substituoitu yhdellä halogeennilla tai \(C_1-C_3 \)-alkoksi-, hydroksi-, \(C_3-C_6 \)-sykloalkyyli-, bentsyliksi-, furyli-, fenyli-, halogeennifenyli-, alempialkylifenyli-, alempialkoksifenyli-, nitrofenyli-, karboksyyli, alempialkoksikarbonyli-, syaani- tai trialempialkyyliammoniumryhmällä, \(C_3-C_{12} \)-alkenyli, joka on mahdollisesti substituoitu yhdellä halogeennilla tai

\[
\begin{align*}
\text{C}_1\text{C}_3\text{alkoksi-, fenyli- tai alempialkoksikarbonyli-}
\end{align*}
\]

ryhmällä tai kahdella \(C_1-C_3 \)-alkoksiryhmällä tai kahdella halogeennilla, \(C_3-C_6 \)-sykloalkyyli, joka on mahdollisesti substituoitu yhdellä tai kahdella \(C_1-C_3 \)-alkylillä, \(C_2-C_{10} \)-alkynyli, joka on mahdollisesti substituoitu yhdellä tai kahdella \(C_1-C_3 \)-alkyliryhmällä; tai \(R_3 \) on kationi, joka on alkalimetalli, maa-alkalimetalli, kupari,
rauta, sinkki, koboltti, hopea, nikkelvi, ammonium tai
organinen ammonium; R_5 on vety, hydroksyli, C_3-alkenyli, C_3-alknylyli tai C_1-C_4-alkylyli, joka on mahdollisesti substituoitu yhdellä hydroksyliryhmällä tai yhdellä kloorilla. B on H; W on O; X on vety, halogeneeni, hydroksyli tai metylyli, jolloin Y ja Z voivat muodostaa yhdessä renkaan tarkoittaa ryhmää $-(CH_2)_n-$, jossa n on 3 tai 4, edellyttäen, että X on vety; Y ja Z ovat kumpikin erikseen vety, halogeneeni, C_1-C_6-alkylyli, C_1-C_4-hydroidiosalkylyli, C_1-C_6-alkoksi, C_1-C_4-alkyllyli, fenoksi, C_1-C_4-halogeneenialkyllyli, nitro, syaani, C_1-C_4-alkylyliaminon, dialemppialkyllyliamino, C_1-C_4-alkylyphosforilisyli tai fenylyli, joka on mahdollisesti substituoitu yhdellä C_1-C_4-alkylyli- tai C_1-C_4-alkoksirhyhmällä tai halogeneenilla, tai Y ja Z muodostavat yhdessä renkaan tarkoittaan ryhmää $-(CH_2)_n-$, jossa n on 3 tai 4, edellyttäen, että X on vety; tai Y ja Z muodostavat yhdessä renkaan tarkoittaan ryhmää $L_MQ_{R_7}-C=C-C=C-$

kitsevät kukin vetyä, halogeneenia, C_1-C_4-alkylyli-., C_1-C_4-alkoksi-., C_1-C_4-alkyllyli-, C_1-C_4-alkyllyliitio-., C_1-C_4-alkylyliisulfonyli-, C_1-C_4-halogeneenialkyllyli-, NO$_2$-, CN-, fenylyli-, fenoksi-, amino-, C_1-C_4-alkylyliamino-, dialemppialkyllyliamino-, kloorifenylyli-, metyylifenylyliyhmällä tai fenoksiryhmällä, joka on substituoitu yhdellä Cl-, CF-, NO$_2$ tai CH$_3$-ryhmällä, jolloin ainoastaan yksi symboleista L, M, Q ja R_7 merkitsee muuta kuin vetyä, halogeneenia, C_1-C_4-alkylyliä tai C_1-C_4-alkoksia, tuntosiitä, että yhdiste, jolla on kaava

```
```

jossa R_1, R_2, X, Y ja Z merkitsevät samaa kuin edellä, saatetaan reagoimaan
a) vähintään ekvivalenttisen määrän kanssa kaavan $R_3\text{OH}$ mukaista alkoholia ja kaavan $R_3\text{O}^-\text{M}^+$ mukaista al칼иметalliakoksidia, joissa kaavoissa R_3, R_1, R_2, X, Y ja Z merkitsevät samaa kuin edellä, ja M on al칼имetti, ilman liuotinta tai aroupottiessa liuottimessa lämpötätilavälillä 20 - 50°C, jolloin saadaan sellainen tuote, jossa A on COOR$_3$ ja R_3, R_1, R_2, X, Y ja Z merkitsevät samaa kuin edellä,
b) vähintään ekvivalenttisen määrän kanssa kaavan $R_6\text{NH}_2$ mukaista amiinia, jossa kaavassa R_6 merkitsee samaa kuin edellä, alemmassa alkanolissa tai aroupottiessa liuottimessa lämpötätilavälillä noin 80 - 125°C, jolloin saadaan sellainen tuote, jossa A on CONHR$_6$ ja R_6, R_1, R_2, X, Y ja Z merkitsevät samaa kuin edellä,
c) vähintään ekvivalenttisen määrän kanssa metyylimagneesiumbromidia aroupottiessa liuottimessa lämpötätilavälillä -50 - -80°C inertissä kaasukehässä, jolloin saadaan sellainen tuote, jossa A on COCH$_3$ ja R_1, R_2, X, Y ja Z merkitsevät samaa kuin edellä,
d) vähintään ekvivalenttisen määrän kanssa fenyyllilitiumia aroupottiessa liuottimessa lämpötätilavälillä -50 - -80°C inertissä kaasukehässä, jolloin saadaan sellainen tuote, jossa A on COC$_6\text{H}_5$ ja R_1, R_2, X, Y ja Z merkitsevät samaa kuin edellä, tai
e) vähintään ekvivalenttisen määrän kanssa trimetyylifosfonoaatattia aroupottiessa liuottimessa -50 - -80°C:ssa inertissä kaasukehässä, jolloin saadaan sellainen tuote,

$$\text{COCH}_3$$

ja R_1, R_2, X, Y ja Z merkitsevät samaa kuin edellä, tai

f) vähintään ekvivalenttisen määrän kanssa natriumboori-hydridiä etanolissa lämpötätilavälillä -10 - +20°C, jolloin saadaan sellainen tuote, jossa A on CH$_2\text{OH}$.
6. Menetelmä yhdisteen valmistamiseksi, jolla on kaava

\[\text{COOH} \]
\[X \]
\[Y \]
\[Z \]
\[R_1 \]
\[R_2 \]
\[\text{HN} \]
\[\text{O} \]

jossa \(R_1 \) on \(C_1-C_4 \)-alkyyli; \(R_2 \) on \(C_1-C_4 \)-alkyylti tai \(C_3-C_6 \)-sykloalkyylti, tai \(R_1 \) ja \(R_2 \) merkitsevät yhdessä \(C_3-C_6 \)-sykloalkyylia, joka on mahdollisesti substituutiot metyylillä; \(X \) on vety, halogeeni, hydroksyli tai metyyli, jolloin, kun \(Y \) ja \(Z \) muodostavat renkaan tarkoittaa ryhmää \(-\text{(CH}_2\text{)}_n\)\(^-\), jossa \(n \) on 3 tai 4, niin \(X \) on vety; \(Y \) ja \(Z \) ovat kumpikin erikseen vety, halogeeni, \(C_1-C_6 \)-alkyylti, \(C_1-C_4 \)-hydroksialkyylti, \(C_1-C_6 \)-alkoksi, \(C_1-C_4 \)-alkylitio, fenoksi, \(C_1-C_4 \) halogeenialkyylti, nitro, syaani, \(C_1-C_4 \)-alkyliamino, dialempialkylyliamino, \(C_1-C_4 \) alkylisulfoniyli tai feniyli, joka on mahdollisesti substituutiot yhdellä \(C_1-C_4 \)-alkyyli- tai \(C_1-C_4 \)-alkoksiryhmällä tai halogeenillä, tai \(Y \) ja \(Z \) muodostavat yhdessä renkaan tarkoittaa ryhmää \(-\text{(CH}_2\text{)}_n\)\(^-\), jossa \(n \) on 3 tai 4, jolloin \(X \) on vety; tai ryhmää, jolla on kaava

\[L \quad M \quad Q \quad R_7 \]

\[1 \quad 1 \quad 1 \quad 1 \]

\[-\text{C} = \text{C} = \text{C} = \text{C} = \text{C} = \text{C} \]
Patentkrav

1. 2-(2-imidazolin-2-yl)pyridin- och -kinolinderivat med formeln I

\[
\begin{align*}
\text{I} & \quad \text{vari } R_1 \text{ är } C_1-C_4-\text{alkyl; } R_2 \text{ är } C_1-C_4-\text{alkyl eller } C_3-C_6-\text{cykloalkyl, eller } R_1 \text{ och } R_2 \text{ tillsammans betecknar } C_3-C_6-\text{cykloalkyl, som eventuellt substituerats med metyl; } A \text{ är } COOR_3, CONHR_6, CHO, CH_2OH, COCH_3, COC_6H_5, CN, CH_3, CH=NOH, CH_2COOH, CONHCOH, CH_2CH_2COOH, CHR_8OH, \\
\text{eller } COOH & \quad \text{COOCH}_3 \\
\end{align*}
\]

R_3 är väte, dilägrealkylimino, C_1-C_{12}-alkyl, som eventuellt substituerats med en halogen eller en C_1-C_3-alkoxi-, hydroxi-, C_3-C_6-cykloalkyl-, bensyloxi-, furyl-, fenyl-, halogenfenyl-, lägrealkylfenyl-, lägrealkoxifenyl-, nitrofenyl-, karboxyl-, lägrealkoxikarboxyl-, cyanoo- eller trilägrealkylammoniumgrupp, C_3-C_{12}-alkenyl, som eventuellt substituerats med en halogen eller en C_1-C_3-alkoxi- eller lägrealkoxikarboxyl- eller med två C_1-C_3-alkoxigrupper eller två halogener, C_3-C_6-cykloalkyl, som eventuellt substituerats med en eller två C_1-C_3-alkyler, C_3-C_{10}-alkynyl, som eventuellt substituerats med en eller två C_1-C_3-alkylgrupper, eller R_3 är en katjon som är alkalimetall, alkalisk jordmetall, koppar, järn, zink, kobolt, silver, nickel, ammonium eller organisk ammonium; R_6 är väte, hydroxyl, C_3-alkenyl, C_3-alky-
nyl eller \(C_1-C_4 \)-alkyl, som eventuellt substituerats med en hydroxylgrupp eller en klor; B är H, \(\text{COR}_4 \) eller \(\text{SO}_2 R_5 \), med villkor att då B är \(\text{COR}_4 \) eller \(\text{SO}_2 R_5 \) är A \(\text{COOR}_3 \), vari \(R_3 \) är annat än vätte, en saltbildande katjon, \(\text{CH}_3 \) eller \(\cdot \text{CN} \); W är 0; och Y och Z är ej alkylamino-, hydroxyl- eller hydroxylägrealkylgrupper; \(R_4 \) är \(C_1-C_{11} \)-alkyl, klormetyl eller fenyl, som eventuellt substituerats med en klor, en nitro- eller en metoxigrupp; \(R_5 \) är \(C_1-C_4 \)-alkyl eller fenyl, som eventuellt substituerats med en methylgrupp; W är 0 eller S; \(R_8 \) är \(C_1-C_4 \)-alkyl eller fenyl; X är vätte, halogen, hydroxyl eller metyl, med villkor, att då Y och Z tillsammans bildar en ring och betecknar gruppen \(- (\text{CH}_2)_n^+ \), vari \(n \) är 3 eller 4, är X vätte; Y och Z vardera är vätte, halogen, \(C_1-C_6 \)-alkyl,

\(C_1-C_4 \)-hydroxialkyl, \(C_1-C_6 \)-alkoxi, \(C_1-C_4 \)-alkyltio, fenoxi, \(C_1-C_4 \)-halogenalkyl, nitro, cyan, \(C_1-C_4 \)-alkylamin, diälgreakylamin eller \(C_1-C_4 \)-alkylsulfonyl eller fenyl, som eventuellt substituerats med en \(C_1-C_4 \)-alkyl- eller \(C_1-C_4 \)-alkoxigrupp eller halogen, eller Y och Z tillsammans bildar en ring och betecknar gruppen \(- (\text{CH}_2)_n^+ \), vari \(n \) är 3 eller 4, under förutsättning att X är vätte, eller Y och Z tillsammans bildar en ring och betecknar gruppen \(- \text{C=C-C=}- \), vari L, M, Q och \(R_7 \) var och en betecknar

\(-\text{C=C-C=}- \), vätte, halogen, \(C_1-C_4 \)-alkyl-, \(C_1-C_4 \)-alkoxi-, \(C_1-C_4 \)-alkyltio-, \(C_1-C_4 \)-alkylsulfonyl-, \(C_1-C_4 \)-halogenalkyl-, \(\text{NO}_2^- \), \(\text{CN}^- \), fenyl-, fenoxi-, amino-, \(C_1-C_4 \)-alkylamin-, dilägreakylamin-, klorfenyl-, methylfenyl- eller fenoxigrupp, som substituerats med en \(\text{CL}^- \), \(\text{CF}_3^- \), \(\text{NO}_2^- \) eller \(\text{CH}_3^- \)-grupp, med villkor att endast en av symbolerna L, M, Q eller \(R_7 \) kan beteckna annat än vätte, halogen, \(C_1-C_4 \)-alkyl eller \(C_1-C_3 \)-alkoxi; och då W är 0 och A är CN, \(\text{CH}_3 \) eller \(\text{COOR}_3 \), kan \(R_3 \) ej vara en alkenyl- eller alkynygrupp och Y och Z kan ej vara alkylamin-, dialkylamin- eller alkyltio-grupper, eller N-oxiderna därav; eller då \(R_1 \) och \(R_2 \) ej är lika, de optiska isomererna av en förening med formeln \(I \), eller då \(R_3 \) ej är en saltbildande katjon, syradditionssalterna av en förening med formeln \(I \).
2. Förfarande för reglering växten av enhjärtbladiga och tvåhjärtbladiga, ettåriga eller fleråriga växter och vattenväxter, kan nec kan därav, att man på bladverket av nämnda växter eller i jorden eller vattnet som innehåller deras frön eller andra förökningsorgan anbringar en herbicidalt effektiv mängd av en förening med formeln I

\[
\begin{align*}
\text{X} & \quad \text{Y} & \quad \text{A} & \quad \text{B} & \quad \text{W} \\
\text{Z} & \quad \text{N} & \quad \text{N} & \quad \text{R}_1 & \quad \text{R}_2 \\
\end{align*}
\]

vari \(R_1 \) är \(C_1-C_4 \)-alkyl; \(R_2 \) är \(C_1-C_4 \)-alkyl eller \(C_3-C_6 \)-cykloalkyl, eller \(R_1 \) och \(R_2 \) tillsammans betecknar \(C_3-C_6 \)-cykloalkyl, som eventuellt substituerats med metyl; \(A \) är COOR_3, CONHR_6, CHO, CH_2OH, COCH_3, COC_6H_5, CN, CH_3, CH=NOH, CH_2COOH, CONHOH, CH_2CH_2COOH, CHR_8OH,

\[
\begin{align*}
\text{COOH}_3 & \quad \text{COCH} & \quad \text{P(OC(OH)_3)}_2 \\
\end{align*}
\]

\(R_3 \) är väte, dilägrealkylimino, \(C_1-C_{12} \)-alkyl, som eventuellt substituerats med en halogen eller en \(C_1-C_3 \)-alkoxi-, hydroxi-, \(C_3-C_6 \)-cykloalkyl-, bensyloxi-, furyl-, fenyl-, halogenfenyl-, lägrealkylfenyl-, lägrealkoxifenyl-, nitrofenyl-, karboxyl-, lägrealkoxikarbonyl-, cyano- eller trilägrealkylammoniumgrupp, \(C_3-C_{12} \)-alkenyl, som eventuellt substituerats med en halogen eller en \(C_1-C_3 \)-alkoxi- eller lägrealkoxikarbonyl- eller med två
C\textsubscript{1}-C\textsubscript{3}-alkoxigrupper eller två halogener, C\textsubscript{3}-C\textsubscript{6}-cykloalkyl, som eventuellt substituerats med en eller två C\textsubscript{1}-C\textsubscript{3}-alkyler, C\textsubscript{3}-C\textsubscript{10}-alkynyl, som eventuellt substituerats med en eller två C\textsubscript{1}-C\textsubscript{3}-alkylgrupper, eller R\textsubscript{3} är en katjon som är alkaliemetall, alkalis jordmetall, koppar, järn, zink, kobolt, silver, nickel, ammonium eller organisk ammonium; R\textsubscript{6} är väte, hydroxyl, C\textsubscript{3}-alkenyl, C\textsubscript{3}-alkyl-nyl eller C\textsubscript{1}-C\textsubscript{4}-alkyl, som eventuellt substituerats med en hydroxylgrupp eller en klor; B är H, COR\textsubscript{4} eller SO\textsubscript{2}R\textsubscript{5}, med villkor att då B är COR\textsubscript{4} eller SO\textsubscript{2}R\textsubscript{5} är A COOR\textsubscript{3}, vari R\textsubscript{3} är annat än väte, en saltbildande katjon, CH\textsubscript{3} eller ·CN; W är O; och Y och Z är ej alkylamino-, hydroxyl- eller hydroxylägarealkylgrupper; R\textsubscript{4} är C\textsubscript{1}-C\textsubscript{11}-alkyl, klormetyl eller fenyl, som eventuellt substituerats med en klor, en nitro- eller en metoxigrupp; R\textsubscript{5} är C\textsubscript{1}-C\textsubscript{4}-alkyl eller fenyl, som eventuellt substituerats med en metylgrupp; W är O eller S; R\textsubscript{6} är C\textsubscript{1}-C\textsubscript{4}-alkyl eller fenyl; X är väte, halogen, hydroxyl eller metyl, med villkor, att då Y och Z tillsammans bildar en ring och betecknar gruppen -(CH\textsubscript{2})n-, vari n är 3 eller 4, är X väte; Y och Z vardera är väte, halogen, C\textsubscript{1}-C\textsubscript{6}-alkyl, C\textsubscript{1}-C\textsubscript{4}-hydroxialkyl, C\textsubscript{1}-C\textsubscript{6}-alkoxi, C\textsubscript{1}-C\textsubscript{4}-alkyltio, fenoxi, C\textsubscript{1}-C\textsubscript{4}-halogenalkyl, nitro, cyan, C\textsubscript{1}-C\textsubscript{4}-alkylamino, dilägarealkylamino eller C\textsubscript{1}-C\textsubscript{4}-alkylsulfonyl eller fenyl, som eventuellt substituerats med en C\textsubscript{1}-C\textsubscript{4}-alkyl- eller C\textsubscript{1}-C\textsubscript{4}-alkoxigrupp eller halogen, eller Y och Z tillsammans bildar en ring och betecknar gruppen -(CH\textsubscript{2})n-, vari n är 3 eller 4, under förutsättning att X är väte, eller Y och Z tillsammans bildar en ring och betecknar gruppen L M Q R\textsubscript{7}, vari L, M, Q och R\textsubscript{7} var och en betecknar -C-C-C=C- väte, halogen, C\textsubscript{1}-C\textsubscript{4}-alkyl-, C\textsubscript{1}-C\textsubscript{4}-alkoxi-, C\textsubscript{1}-C\textsubscript{4}-alkyltio-, C\textsubscript{1}-C\textsubscript{4}-alkylsulfonyl-, C\textsubscript{1}-C\textsubscript{4}-halogenalkyl-, NO\textsubscript{2}-, CN-, fenyl-, fenoxi-, amino-, C\textsubscript{1}-C\textsubscript{4}-alkylamino-, dilägarealkylamino-, klorfenyl-, metylfenyl- eller fenoxigrupp, som substituerats med en CL-, CF\textsubscript{3}-, NO\textsubscript{2}- eller CH\textsubscript{3}-grupp,
med villkor att endast en av symbolerna L, M, Q eller R_7
kan beteckna annat än väte, halogen, C_1-C_4-alkyl eller
C_1-C_4-alkoxi; och då W är 0 och A är CN, CH_3 eller COOR_3,
kan R_3 ej vara en alkenyl- eller alkynylgrupp och Y och
Z kan ej vara alkylamino-, dialkylamino- eller alkyltio-
grupper, eller en N-oxid därav, eller då R_1 och R_2 ej
är lika, en optisk isomer av en förening med formeln I,
el eller då R_3 ej är en saltbildande katjon, ett syraaddi-
tionssalt av en förening med formeln I.

3. Förfarande enligt patentkravet 1, kännetecknas därav, att föreningen anbrings på
bladverket av nämnda växter eller i jorden eller vattnet,
som innehåller från eller andra förökningssorgan av dessa
växter, i en mängd av 0,016 - 4,0 kg/ha.

4. Herbicidal komposition, kännetecknas därav, att den omfattar ett inert fast eller flyt-
tande utspädningsmedel och en herbicidalt effektiv mängd
av en förening med formeln I

![Diagram](image)

vari R_1 är C_1-C_4-alkyl; R_2 är C_1-C_4-alkyl eller C_3-C_6-
cykloalkyl, eller R_1 och R_2 tillsammans betecknar C_3-C_6-
cykloalkyl, som eventuellt substituerats med metyl; A är
COOR_3, CONHR_5, CHO, CH_2OH, COCH_3, COC_6H_5, CN, CH_3,
CH=NOH, CH_2COOH, CONHOH, CH_2CH_2COOH, CHR_8OH,
eller

\[
\begin{align*}
&\text{or} \\
&\text{or}
\end{align*}
\]
Y och Z tillsammans bildar en ring och betecknar gruppen \(L M Q R_7 \), vari L, M, Q och \(R_7 \) var och en betecknar
\[\text{C=C-C=}
\]
väte, halogen, \(C_1-C_4 \)-alkyl-, \(C_1-C_4 \)-alkoxi-, \(C_1-C_4 \)-alkyl- tio-, \(C_1-C_4 \)-alkylsulfonyl-, \(C_1-C_4 \)-halogenalkyl-, \(NO_2 \)-,
\(CN \)-, fenyl-, fenoxi-, amino-, \(C_1-C_4 \)-alkylamino-, dilågere-
alkylamino-, klorfenyl-, metylfenyl- eller fenoxigrupp,
som substituerats med en \(Cl \)-, \(CF_3 \)-, \(NO_2 \)- eller \(CH_3 \)-grupp,
med villkor att endast en av symbolerna L, M, Q eller \(R_7 \)
kan beteckna annat än väte, halogen, \(C_1-C_4 \)-alkyl eller
\(C_1-C_3 \)-alkoxi; och då \(W \) är O och A är CN, CH\(_3\) eller COOR\(_3\),
kunna \(R_3 \) ej vara en alkenyl- eller alkynylgrupp och Y och Z
kunna ej vara alkylamino-, dialkylamino- eller alkyltio-
grupper, eller en N-oxid därav, eller då \(R_1 \) och \(R_2 \) ej
är lika, en optisk isomer av en förening med formeln I,
ellikaså då \(R_3 \) ej är en saltbildande katjon, ett syraaddi-
tionssalt av en förening med formeln I.

5. Förfarande för framställning av en förening
med formeln

![Chemical structure diagram](attachment:image.png)

vari \(R_1 \) är \(C_1-C_4 \)-alkyl; \(R_2 \) är \(C_1-C_4 \)-alkyl eller \(C_3-C_6 \-
cykloalkyl, eller \(R_1 \) och \(R_2 \) tillsammans betecknar \(C_3-C_6 \-
cykloalkyl, som eventuellt substituerats med metyl; A är
COOR\(_3\), CONHR\(_6\), CH\(_2\)OH, COCH\(_3\), COC\(_5\)H\(_5\) eller

\[
\text{COCH} \quad \text{COOCH}_3 \\
\quad \text{P(OCH}_3)_2
\]

35
därför, att en förening med formeln

\[
\text{O} \quad \text{N} \\
\text{N} \quad \text{O} \\
\text{R}_1 \quad \text{R}_2
\]

vari \(R_1, R_2, X, Y \) och \(Z \) är samma som ovan angivits; om-
sätts

a) med åtminstone en ekvivalent av en alkohol med formeln
\(R_3 \, \text{OH} \) och en alkaliometallalkoxid med formeln \(R_3 \, \text{OM}^+ \), vari
\(R_3 \) är som ovan angivits, och \(M \) är en alkaliometall, utan
ett lösningsmedel eller i närvaro av ett approtiskt lös-
ningsmedel, vid en temperatur av 20 - 50°C, varvid en
produkt, vari \(A \) är \(\text{COOR}_3 \) och \(R_3, R_1, R_2, X, Y \) och \(Z \) är
som ovan angivits, erhålls; eller

b) med åtminstone en ekvivalent av en amin med formeln
\(R_6 \, \text{NH}_2 \), vari \(R_6 \) är som ovan angivits, i en lägrealkylalko-
hol eller i ett approtiskt lösningsmedel vid en temperatur
av 80 - 125°C, varvid en produkt, vari \(A \) är \(\text{CONHR}_6 \), och
\(R_6, R_1, R_2, X, Y \) och \(Z \) är som ovan angivits, erhålls;
eller

c) med åtminstone en ekvivalent av metylmagnesiumbromid
i ett approtiskt lösningsmedel vid en temperatur av
-50 - -80°C under ett täcke av inert gas, varvid en pro-
dukt, vari \(A \) är \(\text{COCH}_3 \), och \(R_1, R_2, X, Y \) och \(Z \) är som ovan
angivits, erhålls; eller

d) med åtminstone en ekvivalent av fenyllitium i ett app-
protiskt lösningsmedel vid en temperatur av -50 - -80°C
under ett täcke av inert gas, varvid en produkt, vari \(A \\
\text{COCH}_6\text{H}_5 \) och \(R_1, R_2, X, Y \) och \(Z \) är som ovan angivits,
 erhålls; eller
e) med åtminstone en ekvivalent av trimethylsulfonacetat i ett approtiskt lösningsmedel vid -50 - -80°C under ett täcke av inert gas, varvid en produkt, vari A är COCH₃, och R₁, R₂, X, Y och Z är som ovan angivits, erhålls; eller

f) med åtminstone en ekvivalent av natriumborhydrid i etanol vid en temperatur av -10 - +20°C, varvid en produkt, vari A är CH₂OH, erhålls.

6. Förfarande för framställning av en förening med formeln

![Chemical Structure](image)

Vari R₁ är C₁-C₄-alkyl; R₂ är C₁-C₄-alkyl eller C₃-C₆-cykloalkyl; eller R₁ och R₂ tillsammans betecknar C₃-C₆-cykloalkyl, som eventuellt substituerats med metyl; X är väte, halogen, hydroxyl eller metyl, med villkor att då Y och Z tillsammans bildar en ring och betecknar gruppen -(CH₂)ₙ-, vari n är 3 eller 4, är X väte; Y och Z vardera är väte, halogen, C₁-C₆-alkyl, C₁-C₄-hydroxi-alkyl, C₁-C₄-alkoxi, C₁-C₄-alkyltyo, fenoxi, C₁-C₄-halogenalkyl, nitro, cyan, C₁-C₄-alkylamin, dilägrealkylamin, C₁-C₄-alkylsulfonyl eller fenyl, som eventuellt substituerats med en C₁-C₄-alkyl- eller C₁-C₄-alkoxigrupp eller halogen; eller Y och Z tillsammans bildar en ring, och betecknar -(CH₂)ₙ-, vari n är 3 eller 4, under förutsättning att X är väte; eller gruppen --C=)--C=)--C=|--, vari L, M, Q och R₇ var och en betecknar väte, halogen, en

![Molecule Diagram]

Viitejulkaisuajan Anförda publikationer
Patenttijulkaisuajan Patentsskrifter: USA (US) 4 188 487 (C 07 D 233/04).