(12) PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 199671890 B2
(10) Patent No. 704659

(54) Title
Method of transposing data

(51)¢ International Patent Classification(s)
GO6F o7/14 G06T oo03/40

(21) Application No: 199671890

(30) Priority Data

(31 Number (32) Date
08/562695 1995 11 .27
(43) Publication Date : 1997 06 05
(43) Publication Journal Date © 1997 06 05
(44) Accepted Journal Date : 1999 04 29

71 Applicant(s)
Sun Microsystems, Inc.

(72) Inventor(s)

Daniel S. Rice

(74) Agent/Atterney
DAVIES COLLISON CAVE,1 Little Collins

(56) Related Art
us 4837845
EP 200282

(22) Application Date: 1996 11 20

(33) Country
us

Street,MELBOURNE vIC 3000

=3

AT A

AU9671890

(12) PATENT ABSTRACT (11) pocument no. AU-A-71890/96
(19) AUSTRALIAN PATENT OFFICE

(54)

(61)°
2n
(30)
(31)

(43)
(71)

(72)
(74)

(57

buffer

buffer.

Title
METHOD OF TRANSPOSING DATA

International Patent Classification(s)

GO6F 007/14 GO6T 003/40

Application No. : 71890/96 (22) Application Date : 20/11/96
Pricrity Data

Number (32) Date (33) Country

562695 27/11/95 US UNITED STATES OF AMERICA

Publication Dats : 05/06/97

Applicant(s)
SUN MICRCSYSTEMS, INC.

Inventor(s)
DANIEL S, RICE

Attorney or Agent
DAVIES COLLISON CAVE , 1 Little Collins Straet, MELBOURNE VIC 3000

A method of transposing data. Either eight bit or sixteen bit data is placed in a
Each buffer is defined to contain one or more sub-buffers. Rows of the sub-

are selectively interleaved with the results of the selective interleaving being

again interleaved in a specific order. Successive interleavings create the transpose of

the original sub-buffer.

ABSTRACT

A method of transposing data. Either eight bit or sixteen bit data is placed in a
buffer. Each buffer is defined to contain one or more sub-buffers. Rows of the sub-
buffer are selectively interleaved with the results of the selective interleaving being
again interleaved in a specific order. Successive interleavings create the transpose of

the original sub-buffer.

AUSTRALIA
PATENTS ACT 1990
COMPLETE SPECIFICATION

NAME OF APPLICANT(S):

Sun Microsystems, Inc.

ADDRESS FOR SERVICE:
DAVIES COLLISON CAVE

Patent Attorneys
1 Little Collinsg Street, Melbourne, 3000.

INVENTION TITLE:

Method of transposing data

The following statement is a full description of this invention, including the best method
of performing it known to me/us:—

BACKGROUND OF THE INVENTION

The invention relates to transposing data stored in a nemory of a computer.
5 More specifically, the invention relates to a method for performing transposition of

arbitrary buffered’data using an efficient interleaving technique.

Resizing graphical data is generally well-known in the art. Two commonly
used approaches are forward mapping and backward mapping. In a forward map,
10 the algorithm asks: for each source pixel, where does it land in the destination

«..tmage? Conversely, for a backward map: the question is for each destination pixel,

. sWhere does it come from in the source image? A forward map requires arbitration

«.* Batween pixels landing in the same destination, while a backward ™map requires a

..

+““Cértain amount of work for each pixel to determine which source image pixel or

15 .‘pfxels it came from, and then it is never necessary to revisit that pixel again.

In a backward mapping scheme, once it has been established for each
. :::dgsﬁnation pixel, where it comes from in the source or sources, it is necessary to
'::Hetermine for each source pixel contributing to the destination pixel, a co-efficient of
,++ tontribution of that source pixel. Typically, for cases where there is more than one
20 . s'o'urce pixel contributing, either two or four pixels are deemed to provide the

. Lontribution. This corresponds to bi-linear, and bi-cubic filtering, respectively. The
::::'cazlculation of these coefficients is generally well-known in the art and while

' c.c:mputationally intensive, it need be done only once for each row and once for each

column of pixels in the source image. The calculated coefficients are then stored in

25 anarray to be accessed during subsequent processing. The above-described scheme

10

15

Y se
[

cesa

LTS

w
LY

‘::;"E 25

.
beoane
. .

LI

.
caen
L X
LI

will allow one to do either pure horizontal or pure vertical resizing, However, in
the event that it were desirable to do both vertical and horizontal resizing at the
same time, it would, of course, be necessary to choose some sa%uare of source pixels
and weight them all with appropriate coefficients. This would require a pixel-by-
pixel coefficient calculation and manipulation. By choosing the filter coefficients
correctly, it is possible to do stretching in a separable way, i.e. first horizontal
stretching and then vertical, or vice versa. Such techniques are well-known in the

art.

Coefficients are selected by choosing a geometrical point that is the center of
the destination pixe] and establishing the function that maps points in the source to
the destination, thereby generating a scaled translation where the destination is a
linear function in x and y. The inverse of the function yields the point in the source
from which the data comes. If the selected point is not the center of the source pixel,
it is necessary to interpolate the source data to determine the relative distances
between various source pixel centers and weight them accordingly. Thus, the filter
coefficients are a function of subpixel position of a backward mapped destination

point.

In "Resampling Algorithms for Image Resizing and Rotation" Proc. SPIE
Digital Image Processing Applications, vol. 1075, Pp- 260 - 269, 1989, Joseph Ward and
David R. Cok provide an algorithm for quantizing the subpixel positions down to
e.g. 1/32nd or 1/256th of a pixel and providing ready-made tables of filters which
apply for a pixel in that area. Each area is known as a bin. Thus, for each bin, a

different filter coefficient is established.

Graphical data is commonly stored in band interleaved format where, for

example, three successive bytes in memory represent red, green, and blue

-

10

15

20

25

FAOPERVCMI71890-96. KES - 23/2/99

-3-

components of a single pixel. This complicaies the issue where it is desired fo multiply the
adjacent pixel in memory by a filter, since for an arbitrary section of image data, it is not clear

whether four bytes represent four pixels or 1-1/3 pixels.

Tt is relatively straight forward to write a program in C or a C variant to read individual
source pixels from a source image and resize them individually. Unfortunately, there is no
straightforward way to opetate on multiple adjacent pixels of source data. Operating on multiple
pixels of adjacent source data is further complicated by the fact that the data may well be stored
inunknown formats as described above. Transposition of arbitrary data in a buffer has numerous
applications. Transposition of data in a buffer is generally computationally intensive because
cach output row depends on every input row. Unfortunately, this makes transposition too slow

to be useful in many cases.

Therefore, it would be desirable to able to operate on multiple bytes simultaneously in
conncction with image resizing. Moreover, it is desirable to develop an efficient transposition

regime in which mulliple bytes of data can be operated on simultaneously.

In accordance with the present invention there is provided a method of transposing data
i a buffer comprising the steps of:

a) loading data into a buffer having a plurality of rows;

b) selectively merging pairs of rows to produce a plurality of intermediate merge
results wherein cach merge operation interleaves two operands of cqual length to yield an output

twice the length of each operand;

c) selectively merging pairs within said plurality of intermediate merge resulis to
produce a new plurality of intermediate merge results;

d) repeating step ¢) until transposed rows are generated: and

e) storing the transpose rows in one of the buffer or a second buffer, thereby

producing a transposed buffer,

10

e 15

20

25

30

POPERYCMV1850-06.RES - 2302/99

4.

The present invention also provides a method of transposing a buffer of data in sixteen
bit representation comprising the steps of*

a) interleaving a plurality of high order bytes of a buffer row with a plurality of high
order bytes in a buffer row two rows distant;

b) interleaving a plurality of low order bytes of a buffer row with a plurality of low
order bytes in a buffer two rows distant;

c) repeatedly interleaving results of the interleaving steps in a predetermined
manner to yield transposed rows, wherein the interleaving steps separate constituent bytes of
each sixteen bit datum of the rows being interleaved and subsequent interleavings reassemble
the 106-bit data; and

d) storing a plurality of transposed rows in one of the buffer or a second buffer.

The present invention further provides a computer program product which includes a
computer usable medium having a computer usable code embodied therein for causing
transposition of data in a buffer in a computer system having a processer coupled to a2 memory
by a bus, the computer program product comprising;

corpuier readable program cede device configured to load data into a buffer having a
plurality of rows;

computer readable program code device configured to selectively merge pairs of rows
to produce a plurality or intermediate merge results, each merge interleaving two operands of
a sizc to yield a result equal in size to a sum of the operand sizes;

computer readable program code device configured to selectively merge pairs within
said plurality of intermediate merge results to produce a new plurality of intermediate merge
results;

computer readable program code device configured to tepeat the selective merging of
intermediate merge results until transposed rows are generated; and

computer readable program code device configured to store the transposed rows in one

of a buffer or a second buffer, thereby producing a transposed buffer.

The invention is deseribed in greater detail hereinafter, by way of example only, through

10

15

20

25

30

FADPERVCMITIRS0-96. RES - 23/2/99

-5

several embodiments thereof and with reference to the accompanying drawings, in which:

Figure 1 is a block diagram of a computer system employing the invention,

Figure 2a is a block diagram of the buffering scheme in one embodiment of the
invention:

Figure 2b is a diagram showing the way buffers are filled in an embodiment of the
invention;

Figure 2¢ is a diagram shown the way buflers arc {illed in an alternate embodiment;

Figure 3ais a sample sub-buffer of the invention and its transpose in accordance with
the invention;

Figure 3b is a diagram of sub-buffer transposition in parts in accordance with one
embodiment of the invention;

Figure 3¢ 15 a transposition tree for half a sub-buffer in one embodiment of the
invention;

Figure 3d is a sample sub-buffer and its transpose in 16-bit representations; and

Figurc 3eis a sample sub-buffer in an afternate embodiment.

A method for resizing images in a computer system is disclosed. A plurality of buffers
is dynamically created in the memory of the computer system. Among the created buffers arc
a horizontal sampling buffer and two vertical sampling buffers. The horizontal sampling buffer
is filled with data from a plurality of rows from the source image. Such filling can be performed

several bytes at a timc.

The horizontal sampling buffer is typically cight bytes wide and as long as the width of
a source image row. Basically, a first source image row is placed in the horizontal sampling
buffer cight bytes in row 0, then skip seven rows and put the next sight bytes in the buffer row
8, etc. until the entire source row is in the horjzontal sampling buffer. The process is repeated
for each suecessive source image row with an offset of one from its predecessor row until eight
source rows are in the horizontal sampling buffer, cg the second source row is placed in buffer
rows 1, 9, 17, etc. Thus, the vertical neghbors in the source image are vertical neighbors in the

horizontal sampling buffer. The horizontal sampling buffers are composed of sub-buffers, each

10

i5

20

25

30

PROPERVCMYZIBY0-96. RES - 2342190

-G-

source constituting eight bytes of eight adjacent source image rows. Each sub-buffer is bytewise
transposed to provide easy access to different channels of the image data. The transposition
exposes the bands of a band interleaved format for easy processing. A sixteen-bit representation
transposition scheme buffers four rows at a time and transposes 4x8 sub-buffers with high and

low order bytes of each pixel ending in the correct relation,

Once the data is transposed, a filter is then applied to the transposed data with the result
being stored in another buffer, either an intermediate buffer or vertical sampling buffer.
However, if the data is placed directly into the vertical sampling buffer, then transposition in
place will be required. Thus, transposition is simplified by employing an intermediate buffer.
The filtered data is then retransposed to assume its original configuration. The retransposed data
is stored in a vertical sampling buffer previously created. The foregoing steps arc repeated to
fill a second vertical sampling buffer. Subsequently, throughout the processing of the source
image, two vertical sampling buffers remain continuously filled to allow vertical filtering at
high speed. By ping-ponging between the buflers, valid data for the vertical filtering is assured.
When data is no longer needed in one of the vertical sampling buffers for the ongoing filtering,
it can be refilled with new data corresponding to the next group of vertical neighbors. The
filtered data may need to be converted from sixteen bit values to e ght bit values clamped at the
extremes. Once the conversion is complete, the resized image can be output to the screen or

stored in memory for latter processing,

The ULTRASPARC® of Sun Microsystems visual instruction set supports several
instructions which facilitate processing using the method described, Using the visual instruction
set ("VIS"), eight bytes are read or written simultancously. Similarly, VIS allows operations
with four byte operands. Certain instructions such as the fpmerge instruction allow simplified
transposition over prior methods. By aligning the data in buffers, alignment edge condition
issues can be addressed early in the resizing scheme to allow more efficient use of processing
resources by eliminating checks and branches in inner loops. Similarly, whilc the system must
know the format of the source and destination data, all format specific issues can be handled in

an external loop. Since horizontal and vertical processing can be done separately, multi-

10

15

20

25

PADPERCMTIRO0-96, RTS - 2342799

-7

threading in a multi-processor environment is easily accomplished.

In the following description, for purposes of explanation, specific applications, numbers,
materials, and configurations are sct forth in order to provide full understanding of the present
invention, However, it would be apparent to one skilled in the art that the present invention may
be practiced without the specific details. Tn other instances, well known systems are shown in
diagrammatical or block diagram form in order not to obscure the present invention

unnecessarily.

Figure 1 shows a block diagram of a computer system for use in connection with the
invention. CPTJ 10 is coupled by bus 12 to main memory 11 and cache memory 13. Main
memory 11 is composed of cachcable memory 15 and uncacheable memory 14. Sampling
buffers 16 of the instant invention reside in cacheable memory 15. Filter co-efficiant arrays 17
also reside in cacheable memory 15. Tt is desirable that sampling buffers 16 be dynamically
allocatable to increase flexibility of the system. In one exemplary embodiment the CPU 10 is
the ULTRASPARC® processor of Sun Microsystems which employs the visual instruction set
("VIS"). The ULTRASPARC® processor and VIS are discussed more fully in United States
Patent 5,734,874 entitled A CENTRAL PROCESSING UNIT WITH INTEGRATED
GRAPHIC FUNCTIONS, the disclosure of which is incorporated herein by reference.

Figure 2a shows the buffering scheme of the exemplary embodiment of the invention.
A horizontal sampling buffer 20, 8 bytes wide and N rows long, is uscd to aceept eight rows of
imagc data from the source image. Thus, N is equal to the byte length of a source image row,
which may be greater than or equal to the pixel length of the source image row. Alignment

issues and edge conditions are dealt

4

10

15

aamy
. .
LTy
“nay

20

caay

.
‘s

sasn
L)
LY

‘:"'525

.
teoenna
. .

with as the data is moved from memory into the horizontal sampling buffer,
Accommodation of edge conditions and alignment issues is explained more fully
below. The data in the horizontal sampling buffer js transpose(ld and placed to
expose bands for processing. The transposition will aiso be explained more fully
below. A horizontal filter 25 is applied to the transposed data in the horizontal
sampling buffer with the result of the filtering being placed in an intermediate
buffer 23, 8 bytes wide and M rows long. M is equal to the length of a row in the
destination image. The data in the intermediate buffer is retransposed into either a
first vertical sampling buffer 21 or a second vertica] sampling buffer 22. Controller
24 dictates which buffer receives the current data from intermediate buffer 23, A
vertical filter 26 is applied to the data in the vertical sampling buffers 21,22. In one
exemplary embodiment, application of the vertica] filter involves taking eight bytes
from each relevant row in the vertical sampling buffer. Relevant rows are dictated
by the filter width, e.g- a filter width of four results in four relevant rows.

Parallel multiplications and additions are performed on this data to yield
vertically sampled data, which may need to be converted as explained below. VIS
provides fmul8x16 and fpadd1é instructions ideal for use in the parallel
multiplication and addition of this vertical filtering scheme. The fpadd16
instruction accepts two arguments, each containing four 16-bit quantities resulting
In four 16-bit quantities. Al] quantities are considered signed. The fmul8x16
instruction accepts two arguments, the first argument is four 8-bjt values, the second
is either a single or four 16-bit values and produce four 16-bit results, Each byte of
the first argument is multiplied by either the single or the corresponding second
argument. The single second argument is derived from the top or bottom half of a
32-bit word. The effect of the multiply instruction is (x*y+128)/256. Two other
variants of fmul are used to approximate a 16x16-bit multiply. These variants

fmulBsux16 and fmulBulx1s both take two arguments each consisting of signed 16-

—

some
-
sens
snas
-
‘e .
. s
LR)

10

15

et 20

.
..
= saes
'S

*
(YY)

.
oy a

sgreet 25

.
“ramus
. .

bit data. The fmul8sux16 instruction multiplies its second argument by the top 8 bits
of its first argument to produce a 24-bit intermediate result which is rounded and
truncated to 16 bits. The fmul8ulx16 instruction does the sar;xe, only using the
lower half of each partition of its first argument and implicitly shifting its result
right by an additional 8 bits to match the significance of the first product,

The backwards mapping scheme is such that as processing proceeds
downward in the source image, it also proceeds strictly downward in the source
image. Therefore, once the vertical filter 26 needs data beyond the second vertical
sampling buffer 22, the data in the first sampling buffer 21 will never be revisited.
Therefore, the first sampling buffer can be immediately refilled with new data. This
assumes that the filter width is less than or equal to the number of destination rows
in the buffer, in this example, eight. As the vertical filter 26 transitions through the
second vertical sampling buffer 22, it re-enters the first vertical sampling buffer to
process the new data. Once the vertical filter 26 has made the transition from the
second sampling buffer back to the first vertical sampling buffer 21, the second
vertical sampling buffer 22 can be refilled. Thus, controller 24 toggles the data
directed from first to second sampling buffer 22 responsive to the transition of the
vertical filter 26 from one buffer to the next. The controller 24 then ping-pongs
between the vertical sampling buffers as needed data is no longer available. It will
be understood by one of ordinary skill in the art that additional buffers could be used
without departing from the scope or contemplation of the invention, The
maximum vertical filter width in this ping-ponging arrangement is dictated by the
number of buffered horizontally sampled rows in the vertical sampling buffer.
Accordingly, in an embodiment having 8-bit representations with 8 source rows
buffered at a time, the maximum filter width is eight, while in a 16-bit embodiment,
only 4 rows are buffered in each buffer, and the maximum filter width is four. It

will be understood by one of ordinary skill in the art that additional vertical

10

15

sampling buffers could be introduced to allow for greater filter width, and such is
within the scope and contemplation of the invention. A

Since an application of the filter may not yield an eightr bit value, converter 27
converts sixteen bit outputs of the vertical filter 26 to an eight bit entry for the M
byte output row 28. Moreover, converter 27 clamps the extremes at 0 and 255.

When the invention is used with the ULTRASPARC® visual instruction set
("VIS"), the fpack instruction fulfills this converting function,

Significantly, because the horizontal sampling and vertical sampling are
independent of each other, additional horizontal sampling can be performed
simultaneously with the vertical sampling of previously horizontally sampled data.
It is also within the scope and contemplation of this invention to provide additional
intermediate buffers 23 so as not to create a bottleneck at the intermediate buffer 23.
This arrangement is ideal for multi-threading as the workload can readily be
distributed amongst multiple processors. Thus, as soon as the horizontal sampling
buffer has been wholly sampled into the intermediate buffer, it can be refilled, and
processing can begin again.

Figure 2b shows an example source image 30 having eight rows, each of
twenty-four bytes. Horizontal sampling buffer 20 is filled with, for example, the first
eight bytes of row 31 going into row 0 of the horizontal sampling buffer 20, bytes 9 -
16 of row 31 going to row 8 of the horizontal sampling buffer 20, and bytes 17 - 24
going to row 16 of the horizontal sampling buffer 20. Similarly, row 32, bytes 1- 8 go
to row 1 of the 20, bytes 9 - 16 going to row 9, and bytes 17 - 24 go to row 17 horizontal
sampling buffer. One of ordinary skill in the art will recognize that rows maybe
horizontal or vertical however, because references to horizontally adjacent memory
locations are efficiently supported by most computer system rows in this application
are generally regarded to be horizontal. However, in system supporting efficient

vertically adjacent accesses, the invention would work equally on vertical rows.

e

10

LYY

The remaining source rows follow the same pattern. If the source image 30 were
composed of additional rows, they would be processed on a subsequent filling of the
horizontal sampling buffer 20. If the sample image 30 had rowsﬁ of greater length,
the length of the horizontal sampling buffer would be increased proportionally.
Significantly, the length of the horizontal sampling buffer is equal to the next
multiple of 8 greater than or equal to the length of a source image line. For
example, a source image having lines between 25 and 32 bytes would each result in a
horizontal sampling buffer of 32 line length. Each iteration of processing of the
horizontal sampling buffer processes 8 complete lines of the spurce image. An
exception exists for the last iteration. If fewer than eight lines of valid data remain,
only the valid data is processed.

In the case where the pixels are in a 16-bit representation, a variation on the
above-described buffering is required. Figure 2c shows an alternate embodiment in
which the source image is twenty-four bytes wide, and the pixels are in a 16-bit
representation, i.e. 1 and 1' are the high and low order bytes of a channel of a single
pixel. In this case, each sub-buffer of the harizontal sampling buffer is four rows
long. This implies that four rows of the source image are processed on each
iteration. The four by eight buffer can be transposed while maintaining the correct
relation of the high and low order bits of each pixel represented. The transposition
of 16-bit data is discussed below in connection with Figures 3d and 3e.

Edge conditions are a well known concern in sizing algorithms. Basically
stated, the problem is if you need a pixel to the left of the left most pixel, what do
you do? By padding of the horizontal sampling buffers, edge conditions can be
easily satisfied. For example, if we need two edge pixels, begin by placing the data at
the third position of each row in the horizontal sampling buffer. Then entries in
the first and second byte can be synthesized either with copies of the first data

entered in the third byte or, for example, zero. Alignment is another issue that can

be addressed early in the buffering scheme. Basically, there is no guarantee a source
image row will begin aligned with a memory word. Thus, where the system
retrieves multiple bytes, e.g. 8, simultaneously, there is no ass.‘!.rlrance that the source
row will begin at an even multiple of eight. Thus, the first retrieval may include
data not within the source image which the user does not want to buffer. VIS
provides the instructions faligndata and alignaddr which used in conjunction allow
the data to be taken from memory and easily aligned in the horizontal sampling
buffer through use of an internal register, the graphics status register ("gsr"). For
example, if a group of eight bytes r has five bytes of junk foliowed by three bytes of
valid image data and another group s contains eight valid bytes, alignaddr (0,5) sets
the gsr align bits to five. Subsequent use of the faligndata instruction on r and s will
yleld eight bytes of valid data. Thus, where t contains the next valid group of eight
bytes of image data, faligndata (r, s} and faligndata (s, t) will yield r5.7 50.4 and

857 t1-4, Tespectively. An analogous issue exists in writing the results of a vertical
pass into a possibly unaligned destination. The faligndata instruction can be used to
resolve destination alignment issues as with the source data,

Transposition is performed within the horizontal sampling buffer 20 in eight
row blocks, e.g. rows 0 - 7 are transposed, rows 8 - 15 are transposed, rows 16 - 23 are
transposed in the example of Figure 2b. Figure 3a shows such a tfransposition. Such
bytewise transposition exposes data band by band every time. For example, if in
Figure 3a, RGB band interleaved format were present, 0, 3, and 6 would correspond
to the red band; 1, 4, and 7 to the green band; and 2 and 5 would correspond to the
blue band. Generally, transposition is inefficient because every row of the output
depends on every row of the input. Serendipitously, VIS includes a functionality
via the fpmerge instruction where two 4-byte words can be merged to form a group
of 8 {double word) bytes. The fpmerge instruction applied to ag a; ap a3 and eg ey ep

e3 yields agep a1 e; ag e a3 es. Figure 3c shows a transposition tree using the merge

10

15

25

functionality to effect the transposition. As shown in Figure 3¢, within an 8 x 8
segment, each word is merged with a word four rows distant. This is the effect of
transposing an 8 x 8 block as two 4 x 8 blocks as shown in Figﬁré 3b. The horizontal
sampling buffer can be transposed in place using this method or the data can be
initially placed in a pre-buffer and transposed into the horizontal sampling buffer
20. Itis anticipated that future computer systems will support the functionality of
the fpmerge in.StI'l:ld'iOﬂ of tﬁe VIS. Accordingly, this method of transposition and
image sizing is not intended to be limited to the ULTRASPARC® system.

Figure 3d shows transposition of a sub-buffer when the data is in a sixteen bit
representation. Figure 3e shows the transposition tree of a sixteen-bit representation
embodiment. Significantly, the fpmerge instruction allows reference to high (hi)
and low (lo) order bytes of an eight byte string independently. By exploiting this
feature in each initial buffer row P0-p3 and with respect to each intermediate merge
result, the transpose of the 4x8 buffer is easily available. Initially, the high and low
order bytes of each row of a sub-buffer are merged with the corresponding bytes of a
row two rows distant, e.g. row 0 hi is merged with row 2 hi and row 0 lo is merged
with row 2 lo. By continuing, as shown, appropriate merging of hi and lo portions
of the intermediate merge results; the four branches of the tree will yield the four
rows of the original sub-buffer's transpose with high and low order bytes of each
pixel correctly aligned.

Significantly, it is essential that the data be appropriately aligned prior to
conducting the transposition. Thus, transposing the data in memory incurs a
performance penaity because (1) care must be taken to avoid overwriting the source
image data, and (2) because in memory, there is no assurance of proper alignment,
e.g. the first word of a source row may begin at an arbitrary point in a memory word,

and there is no assurance that successive source rows will be aligned the same

13

seme
- .
LT Y]
dhen
. v
e o
. ne

. an
"
eanas
. s

Ll
» mavy

k)
‘s

sene

.
crreey
. .

15

20

25

relative to a memory word. The above-described buffering scheme appropriately
aligns the data so that each 8 x 8 block is aligned for transposition.

Once the data has been transposed and horizontally sz;tmpled into the
intermediate buffer 23, it is then retransposed using the same transposition scheme
into one of the vertical sampling buffers 21,22, It will be recognized by one of
ordinary skill in the art that it is possible to transpose the data in place within the
intermediate buffer 23. Accordingly, it would be passible to eliminate the
intermediate buffer 23 entirely and transpose the data in place in one of the vertical
sampling buffers 21,22,

If it is the desire to expand fewer than all the bands in the source image, it is
possible to do so by stepping through the transposed data appropriately. For
example, if the data is in red, green, blue format, and one only wishes to expand the
blue band, the filtering would begin with row 2 and step by 3 to fill the intermediate
buffer. This results in an intermediate buffer having valid blue data and junk in the
red and green data locations. A bit mask may be maintained for channel selection to
prevent the junk from being written to the vertical sampling buffer. The mask
should be at least eight bits long and an even multiple of the number of output
channels. After each application, the mask is rotated by eight and applied to the next
eight colurns in the intermediate buffer.

Sometimes it is desirable to put the output into a different format than the
source format. For example, the frame buffer employed to output the image to the
monitor may be of the format xbgr, while the source is in an rgb format. In such
case, as the bands are processed horizontally, they are placed in the intermediate
buffer such that the Tetransposition into the vertical sampling buffer will result in
the desired ordering, For example, red data will be moved from the first entry in the
horizontal sampling buffer to the entry of the intermediate buffer which will be in

the fourth slot of the vertical sampling buffer. A mask is used to mask out, e.g. the

14

10

FPAOPERUCMA7IRO0-96. RES - 23/2149

-15-

Xrows of the vertical sampling buffer, which do not represent valid data from the source image.
The VIS supports partial stores and edge instruction which are used in an exemplary
embodiment to effect desired output formatting.

In the foregoing specification, the invention has been described with reference to specific
embodiments thereof. It will however be evident that various modifications and changes can be
made thereto without departing from the broader spirit and scope of the invention as set forth
in the appended claims. The specification and drawings are, accordingly, to be regarded in an
illustrative rather than a restrictive sense, Thereforc, the scope of the invention should be limited
only by the appended claims.

Throughout this specification and the claims which follow, unless the context requires
otherwise, the word "comprise", and variations such as "comprises" and "comprising", will be
understood to imply the inclusion of a stated integer or step or group of integers or steps but not

the exclusion of any other integer or step or group of integers or steps.

B

i0

15

20

25

30

PHOPERJUMYTIBHI-96. RES - 23/2/9%

-16 -

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

L. A method of transposing data in a buffer comprising the steps of;
a} loading data into a buffer having a plurality of rows;
b} selectively merging pairs of rows to produce a plurality of intermediate merge

results wherein each merge operation interleaves two operands of equal length to yield an output
twice the length of each operand,;

c) selectively merging pairs within said plurality of intermediate merge resulis to
produce a new plurality of intermediate merge results;

d) topeating step c) until transposed rows are generated; and

e) storing the transpose rows in one of the buffer or a second buffer, therchy

producing a transposed buffer.

2, The method of claim 1 wherein the data is in an 8-hit representation,

3. The method of claim 2 wherein for each & buffer rows, the step of selectively merging
comprises the steps of:

merging a first row with a fifth row;

moerging a second row with a sixth row;

merging a third row with a seventh row; and

merging a fourth row with an eighth row.

4. The method of claim 3 wherein the step of selectively merging is performed in parts
such that a first portion of each respective row is merged independently of a second portion of

the respective row.

5. The method of claim 1 wherein the data is in a 16-bit representation wherein a first and
a second constiluent byte of each 16-bit datum are separated during selective merging and

reassembled by subsequent merges such that the transposed buffer is a transpose of 16-bit data,

(L 2]
a
[1 X1
L2117
[N]
e
. ce
LI
* #>

.
LEX 1T 1Y

wie

10

15

20

25

30

PAOPERVCMYTIBY0-96.RES - 23/2/99

-17-

6. The methed of claim 5 wherein the step of sclectively merging is applied separately to

high and low order bytes of each buffer row.

7. The methed of claim 6 wherein for each four buffer rows, the step of selectively merging
comprises the steps of’

merging a plurality of high order bytes of a first row with a plurality of high order bytes
of a third row;

merging a plurality of high order bytes of a second row with a plurality of high order
bytes of a fourth row;

merging a plurality of low order bytes of a first row with a plurality of low order bytes
of a third row;

merging a plurality of low order bytes of a second row wiih a pluraiity of low order

bytes of a fourth row.

8. The method of claim 1 wherein each row contains & bytes.
9. A method of transposing a buffer of data in sixteen bit representation comprising the
steps of:

a) interleaving a plurality of high order bytes of buffer row with a plurality of high
order bytes in a buffer row two rows distant;

b) interleaving a plurality of low order bytes of a buffer row with a plurality of low
order bytes in a bufler two rows distant;

c) repeatedly interleaving results of the interleaving steps in a predetermined
manner to yield transposed rows, wherein the interleaving steps separate constituent bytes of
each sixteen bit datum of the rows being interleaved and subsequent interleavings reassemble
the 16-bit data; and

d) storing a plurality of transposcd rows in one of the buffer or a second buffer.

10. The method of claim 9 wherein the row is each of a first and a second row in a group of

four rows.

il

10

I5

20

25

30

PAOPRERUCMYTIBY-96.RES - 23/2:09

-18-

11, The method of claim 10 wherein cach row containg eight bytes.

12. A computer program product which includes a computer usable medivm having a
computer ysable code embodied therein for causing transposition of data in a buffer in a
computer system having a processor coupled to a memory by a bus, the computer program
product comprising:

computer readable program code device configured to load data into a buffer having a
plurality of rows;

computer readable program code device configured to selectively merge pairs of rows
to produce a plurality or intermediate merge results, each merge interleaving two operands of
a size to yield a result equal in size to a sum of the operand sizes;

computer readable program code device configured to selectively merge pairs within
said plurality of intermediate merge results to produce a new plurality of intermediate merge
results;

computer readable program code device configured to repeat the selective merging of
intermediate merge results until transposed rows are generated; and

computer readable program code device configured to store the transposcd rows in one

of a buffer or a second buffer, thereby producing a transposed buffer.

13. The computer program product of claim 12 wherein the data to be loaded into the buffer

is in an 8-bit representation.

14, The computer program product of claim 13 wherein for each ef ght buffer rows the
computer teadable program code device configured to selectively merge pairs of rows merges
a first row with a fifth row, & secend row with a sixth row, a third row with a seventh row, and

a fourth row with an eighth row.

15, The computer program product of claim 12 wherein the data is in a 16-bit representation.

10

20

PAOPERVUUMVTIEYIN-O6.RES - 23/2/9¢

-19.

16. The computer program product of claim 15 wherein for each four buffer rows the
computer readable program code device configured to selectively merge a plurality of rows
merges a plurality of high order bytes of a first row with a plurality of high order bytes of a third
row, merges a plurality of high order bytes of a second row with a plurality of high order bytes
of a fourth row, merges a plurality of low order bytes of a first row with a plurality of low order
bytes of a third row, and merges a plurality of low order bytes of a second row with a plurality

of low order bytes of a fourth row.

17. Amethod and/or computer program product substantially as hereinbefore described with

reference to the drawings and/or Examples.

DATED this 23rd day of February, 1999

SUN MICROSYSTEMS, INC.
By its Patent Attorneys
DAVIES COLLISON CAVE

CPU 10

1/9

CACHE 33

BUS

11

Figure 1

MAIN MEMORY

UNCACHEABLE
MEMORY- 14

CACHEABLE MEMORY

SAMPLING
BUFFERS

18

FILTER CO-
EFFICIENT
ARRAYS

17

5

2/9

_ Vg 2uNS1f
|
|
TG A | — — — T
IIIIIIIII "N
T Tasdang _
TONITIWYS [
~ IVOLLIHA _
“UNOOAS | | _
— 7 Y] | _
W A(Iis_-il | _
_ = Tuguana || THEHGHH] T “ygaangT]
[— MILVIQANW ONITINVS
187~ | — — HALNL 4% @H@o@m‘bﬁ
K T T
ﬂr\r — _ £0 Qaz

—_— e — —
HAaA40d

MOY LNALNO Zp TIVOLLUHA |
[n 0 1) |- -

BG L7

3/9

SAMPLE IMAGE

24

24

24

24

24

24

24

24

L 9-16

L 17-24

Figure 2b

9-16

16

17-24

Figure 2¢

4/3
SAMPLE IMAGE
Il = — = — — = - - - — - -~ 12 i1
] === = = = e 12 |12
L N ettt 12 12
| - = = = = = = = = = - — e 12 |12
1-4'
> 0
< 1-4
5-8 . 4
- 28
9-12 - 8
- 9-12

(=]

> A G B
9y 93 g
sy g8 g
Py #8 2!
EY g8 g
gy z3 @
Iy 18 U
oy o3 s

A

gs

PA
I°

ip
ap
gp
143
ep

TP
op

e
ao

o
£

12
0o

Dg AUNS1Y
12 Le LY
w 9e 13
9 ge 4
L T L3
e g Lp
(| (4 L2
1 Te 9
™ o® Le

ay
g3

g9
gp
92

ge

54
s

opP
Go

Ge

Py

4

10
P
12
Lo

o4

op
Qo

Qe

6/9
PO 00
e T | L
P1 01
It B S | ¢
L_.___:E__._JL______J L 02
l_u__P,.BF..__ILH.._..,._._IQ' 03
l_._Pi____.JL_______; L—__..__Oi_____
.. AT R Lo 05 _
Pe Lo _ Lo %
7
|—-----.----_——-._---JP7 b e I._____G____

7/9

Figure 3¢

PO P4 P2 Ps
20 al a2 a3, |e0 el e2 e3 60 el c2 €3, lg!igl g2 gSj
———Y ¥
a0 e0 al el (a2 e2 a3 e3 L0 g0 el gl = c2 g2 3 g3,
L 1
l’ ¥
I I 1
ad c0 e0 g0 al cl el gl a2 c2 e2 g2 a3 ¢3 e3 g3
| — J L t 1
) 04 (—-{ ’——)
I 1 i i
b0 d0 0 hO bl dl f1 h1 b2 d2f2h2 b3 d3i3h3
—_ —_
A A
; 1
! U 1 T 1T 1
b0 f0 b1 f1 b2 f2 b3 3 d0 h¢ d1 hl 42 h2 d3 h3
i 1] I
A l A
I 1 T 1
T LI — [1 T IR
b0 bl b2 b3 f0 f1 £2 13 d0 dl d2 d3 h0 hl h2 h3
P1 P5 P3 P7

Ju u Ny f 3 J
L w wr I T 9 9

pg a4ns1g

P

£

V)

.W‘:i

9/9
aa'eeii'mm bb' ffjjihh
—_
5 R S
r— PO
aeim a'e'im bfjh b'fi'h
e
y R W
I]
aia't hjb'j eme m' fnfn
L__'A_._l 1 y]
— S
[aa'bb | [Tifj5] [Teettr | [mman]
Q0 Q2 Q1 Q3
| ccdd] kKl | [gghbh | | oopp |

:'lll: / {

e 4 v

b gogo hph'p
J

S L ,
Y Ji
cgko ¢g'ko dhlp dh'l'p
L |
...... —_— —
ccggkk oo dd'hh'il'pyp

Figure 3e

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS

