June 10, 1941.

W. R. KOCH

RADIO REMOTE CONTROL SYSTEM

Filed Nov. 15, 1938

Fig. 1

Fig. 2

Fig. 3

Inventor

Winfield R. Koch

Attorney
RADIO REMOTE CONTROL SYSTEM

Winfield R. Koch, Haddonfield, N. J., assignor to
Radio Corporation of America, a corporation of
Delaware

Application November 15, 1938, Serial No. 240,461

4 Claims. (Cl. 250—17)

The present invention relates to radio remote control systems whereby a plurality of functions are remotely controllable without the intermediary of cable or wire circuit connections. It has for its primary object to provide an improved remote control system of the character referred to including simplified means for generating a modulating a radio signal wave and means for utilizing said modulated wave for controlling a plurality of functions in a controlled radio apparatus at a remote point.

A control system embodying the invention is particularly adapted to provide remote control of tuning, signal level or volume, power supply, wave band change and like functions in a radio receiving system, and has for its further object to provide means for the remote control of a plurality of such functions without wire connections to the remote control device and at the same time without causing interference with radio signal reception or undesired accidental operation of other tuning or remote control systems, whereby radio waves may be utilized in a practical way for transmitting the control action.

In providing signal waves for remote control, to eliminate wire connections involving cables between the remote control point and the controlled apparatus, and contrary to the usual practice in radio wave controlled remote control systems, the present system utilizes modulated waves instead of interrupted waves or impulses and transmits a single micro-wave signal as compared with long wave signals employed in the operation of present remote control systems of the wireless type.

It is also a further object of the present invention to provide a remote control system for radio signaling apparatus free of all external wire connections including the usual power supply connection with the commercial light or power supply circuit, and to provide an improved form of signal wave generating means in such a system that it is adapted for economical operation from a small battery power supply source as a compact, portable control unit for the system.

It is important that operation of the remote control system does not interfere with other similar control systems and with radio reception and, accordingly, it is also an object of the present invention to provide an improved remote control system embodying radio wave transmitting and receiving devices which is adapted for economical operation with small battery power while providing energy sufficient to operate oscillatory tube circuits capable of signal transmission over relatively short distances with a signal strength sufficient to ensure effective and dependable control.

It is also an object of the present invention to provide an improved signal generating and transmitting means in a remote control system which may provide an ultra high frequency signal, modulated selectively at any one of a plurality of differing control frequencies and involve an electric discharge tube oscillator, with a single battery source which may comprise a single cell, thereby permitting the remote control element to be simplified and reduced in size to facilitate portability and operation as a portable control unit.

The invention will, however, be better understood from the following description when considered in connection with the accompanying drawing, and its scope will be pointed out in the appended claims.

In the drawing:

Figure 1 is a schematic circuit diagram of the receiving portion and Figure 2 is a schematic circuit diagram of a transmitting portion of a remote control system embodying the invention, as applied to a radio receiver; and

Figure 3 is a similar schematic circuit diagram showing a modification of the circuit of Fig. 1 and the adaptation of the system for control of other functions in addition to that provided by the circuit of Fig. 1.

Referring to Fig. 1, for the continuous control of tuning and volume or any similar two functions in a radio receiver or receiving system, such as that indicated at 5 in the drawing, the tuning control shaft 6 and the volume control shaft 7 are connected to reversible electric motor means 8 and 9, respectively, energized through connections 10 from the radio receiver and controllable in direction of operation through a reversing circuit comprising a ground connection 11 and circuit leads 12 and 13.

As any suitable motor means may be provided which is reversible and controllable by a suitable control circuit, further description is believed to be unnecessary. The system is adapted for controlling the motor means through any suitable reversing control circuits, such as those indicated at 12 and 13, by energizing suitable relays 14, 15, 16 and 17. The latter are provided with contacts 18 for connecting the control leads 12 and 13 to ground, thereby causing operation of the motor means 8 and 9 in either direction as the relays 14 and 15 and the relays 16 and 17 are selectively energized by suitable means.

The relays 14—17 are preferably sensitive to
rectified signal currents and are each connected with a tuned rectifier circuit from which signal currents are derived thus rectifier means. The number of tuned circuits correspond to the number of relays and functions to be controlled which, in the present example, are four, requiring four tuned circuits indicated at 24, 21, 22 and 25 for the relays 14, 15, 16 and 17, respectively. One of each tuned circuit and each of the relay coils are connected to ground at one terminal, while the opposite terminals are connected through suitable rectifiers, indicated at 25, 26, 27 and 28.

The circuits 20–23, inclusive, each include an audio or modulation frequency inductance 30 provided with an adjustable shunt tuning capacitor 31, whereby the circuits are tuned to different modulation or audio frequencies which are to be utilized as the control frequencies for the system. In the present example, the control frequencies, which may be referred to as 1l, 12, 13, 14, may be considered to be in the 1,000 cycles and to be spaced substantially 100 cycles apart.

Signals at the desired control frequencies of the present example are supplied by vibrators 33, 34, 35 and 36 (Fig. 2) located in a portable remote control unit 41 and are conveyed to the receiving system and to the tuned rectifier circuits 20–23 on a carrier wave generated by an oscillator 38 in the remote control unit and demodulated at the receiver by a demodulator 39.

Either rectifier circuit and transformer arrangement, a combination of both types, may be utilized in certain control systems, the circuit of Fig. 3 having the advantage, in addition to that hereinafore noted, that it is slightly more sensitive, that the use of a single rectifier of the double anode type simplifies and renders more convenient, for example, of the copper oxide type, to be used, thus obviating the necessity for connection with the receiving system for supplying cathode heating current.

The carrier frequency utilized is such that it does not interfere with radio reception and, therefore, may be of an order such that it falls outside the audio frequency, radio frequency and intermediate frequency ranges normally employed in receiving systems. For example, it may be of the order of 20 kh. However, preferably it may include ultra high frequency waves of the order of 300 megacycles, or 1 meter, or even higher in frequency, in order that the carrier wave may not penetrate to any distance and may be about the same in this respect as acoustic waves, whereby permitting operation of this type of remote control system to be practical for ordinary houses, apartments and the like, where interference must be maintained at a minimum. The use of the higher frequency carrier has the further advantage that the antenna 41 may be small and may consist of a short rod and all of the receiving and transmitting circuits may include inductances which require very little space. Furthermore, the tubes used, such as the tube 42, and any transmitting tubes in the remote control unit 37 may be of the so-called “acorn” type, although the consideration of space is not of such great importance in the receiver.

According to the present invention an oscillator 38 comprises an oscillator tube 50, which may be of the “acorn” type having an anode 61 coupled through a coil 62 with a tuned high frequency circuit 63, which is connected between ground or chassis 64 and an antenna 65. The circuit 63 is also coupled to the control grid 66 and through the ground connections 64, and a battery 67 is connected to the cathode 68. The oscillator is provided with the usual grid capacitor and grid leak 69.

Each of the vibrators 35–36 are provided with a tuned circuit for operating winding 70 across which is connected a shorted capacitor 71 for tuning said winding to a predetermined audio frequency, the various vibrator tuned circuits differing one from the other in
2,245,347

The vibrations are energized from the battery 61, one lead 72 being connected to the battery and to the coils 76 in parallel while the remainder of the battery circuit for each coil is completed through ground 74 and a push-button switch to the vibrator contact. In the present example, one switch is provided for each vibrator as indicated at 73, 74, 75 and 76 having contacts 77 connected with the vibrator contacts 78. The vibrator armatures are indicated at 79 and are connected with their respective coils.

The switches are also provided with an additional contact 80 through which the filament 88 is energized to cause simultaneous operation of the oscillator with a selected vibrator.

The circuit is so arranged that the anode current for the oscillator is derived from the tuned circuits of the vibrators by the connection of the oscillator filament and the low potential ends of the vibrator coils to ground through the battery 61, while the vibrator armatures are provided with contacts 82 connected in parallel with a supply circuit 83 for the oscillator anode which is connected through a high frequency choke coil 84 with the oscillator anode circuit 85. The anode circuit is provided with a suitable by-pass capacitor 82 to ground.

The contacts 82 are arranged to be engaged by the vibrator armature contacts when moved in the forward position under the impulse of the exciting current from the battery and serve to connect the coil circuit for the vibrator then in operation with the anode circuit, to apply the voltage across the circuit to the anode circuit thus eliminating the necessity for providing a separate plate supply battery in the remote control unit and permitting the said unit to be made relatively small in size.

With the new low filament voltage tubes available, the battery 61 may comprise a single dry cell of small size since the vibrator and oscillator are placed in operation only when tuning and the power requirements are low.

I claim as my invention:

1. In a radio remote control system, a control unit, for said system including an oscillator tube having coupled anode and grid circuits, one of said circuits being tuned for generating said carrier wave, a plurality of electrical vibrator devices each having an inductive winding tuned to one of a plurality of modulation frequencies, said oscillator tube having a cathode and having the anode circuit energized from voltage developed in the inductive windings of said vibrator devices, and means for selectively energizing and operating said vibrator devices including a single battery element for energizing said cathode and vibrator devices in said control unit, whereby said unit may be of relatively small size and readily portable and said oscillator may be modulated by the energy derived from said devices.

2. In a radio remote control system, the combination of a control unit comprising a tunable oscillator, means for radiating a carrier wave from said oscillator at a predetermined high frequency, an anode circuit and a cathode circuit for said oscillator, a plurality of vibrator devices each comprising an inductive winding, means for tuning said windings to differing audio frequencies, and means for directly energizing the oscillator anode circuit selectively from each of said vibrator windings as sources of operating and modulating energy for the oscillator, thereby to modulate said carrier wave at any one of said audio frequencies.

3. In a radio remote control system, the combination as defined in claim 5, further characterized by the fact that each vibrator device is provided with a vibratory armature having a contact through which the vibrator winding is energized and a second contact associated therewith through which the anode circuit of the oscillator is energized from said winding, and said selective energizing means having contacts and connections with the cathode circuit and with each vibrator device whereby said cathode circuit and a selected vibrator device may conjointly and simultaneously be energized.

4. In a radio remote control system, the combination of a control unit comprising a tunable oscillator, means for radiating a carrier wave from said oscillator at a predetermined high frequency, an anode circuit and a cathode circuit for said oscillator, a plurality of vibrator devices each comprising an inductive winding, means for tuning said windings to differing audio frequencies, means providing a common source of low operating voltage for said oscillator devices and said cathode circuit, and means for energizing the anode circuit of said oscillator from each of said vibrator windings, whereby said windings provide the only source of operating potential for said circuit and the modulation component of the carrier wave.

WINFIELD R. KOCH.