

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
20 August 2009 (20.08.2009)

(10) International Publication Number
WO 2009/101495 A1

(51) International Patent Classification:
H01L 21/18 (2006.01) H01L 21/762 (2006.01)

(74) Agent: **SOITEC - SERVICE PROPRIETE INTELLECTUELLE**; Attn. Emmanuel Huyghe, Chemin des Franques, Parc Technologique des Fontaines, Bernin, F-38926 Crolles Cedex (FR).

(21) International Application Number:
PCT/IB2009/000142

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(22) International Filing Date:
23 January 2009 (23.01.2009)

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

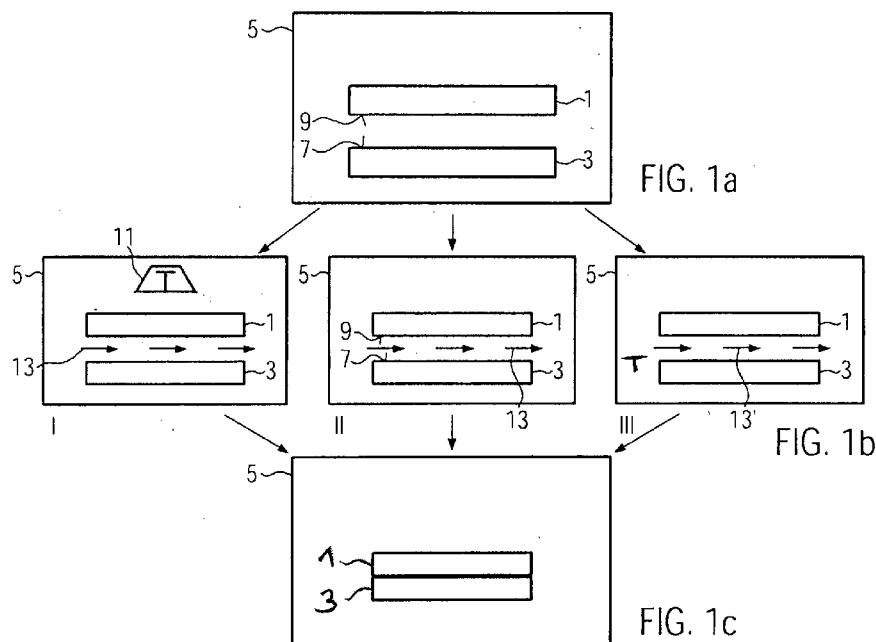
(25) Filing Language:
English

(26) Publication Language:
English

(30) Priority Data:
08290150.5 15 February 2008 (15.02.2008) EP

(71) Applicant (for all designated States except US):
S.O.I.TEC SILICON ON INSULATOR TECHNOLOGIES [FR/FR]; Chemin des Franques, Parc Technologique des Fontaines, F-38190 Bernin (FR).

(72) Inventors; and


(75) Inventors/Applicants (for US only): **GAUDIN, Gweltaz** [FR/FR]; 28 rue Alphonse Terray, F-38000 Grenoble (FR). **LALLEMENT, Fabrice** [FR/FR]; 8, Rue Davat, F-73100 Aix-les-Bains (FR). **COLNAT, Cyrille** [FR/FR]; 3, bis rue Bellonte, F-38400 St. Martin d'Hères (FR). **GIARD, Pascale** [FR/FR]; 84, Avenue Ambroize Croizat, F-38400 St. Martin d'Hères (FR).

Declarations under Rule 4.17:

— of inventorship (Rule 4.17(iv))

[Continued on next page]

(54) Title: PROCESSING FOR BONDING TWO SUBSTRATES

(57) Abstract: The invention relates to a method for bonding two substrates, in particular two semiconductor substrates which, in order to be able to improve the reliability of the process, provides the step of providing a gaseous flow over the bonding surfaces of the substrates. The invention also relates to a corresponding bonding equipment.

WO 2009/101495 A1

Published:

— *with international search report (Art. 21(3))*

Processing for Bonding Two Substrates

The invention relates to the technical field of bonding by molecular adhesion of two substrates to one another.

Bonding is one way to attach two substrates to each other, which finds application e.g. in the silicon-on-insulator fabrication technology called Smart Cut™. Bonding by molecular adhesion is a technique during which two substrates are brought in close contact to each other and wherein the surfaces properties of the substrates are such that they stick to one another, without the application of further adhesives. The process of bonding is specifically started by applying pressure locally to the two substrates which are placed in close contact, from where a bonding front then spreads out over the entire interface of the two substrates.

WO 2007/060145 discloses such a process for bonding by molecular adhesion. The bonding method described therein comprises, prior to bonding, a step consisting of modifying the surface state of one and/or the other of the substrates to be able to regulate the propagation speed of the bonding front. The surface state is modified by locally or uniformly heating the surface of one and/or the other of the substrates to be bonded. The heating serves to dissolve water from the surface of the substrates before bonding, which allows minimizing of bonding defects. Bonding defects are for example so called edge void defects which result from the presence of water at the interface. In the Smart Cut™ process this kind of defect can lead to the presence of non-transferred zones in the final product, e.g. a SOI wafer.

Nevertheless, even using the process of WO2007/060145, it has been observed that, in a fabrication line, the number of defects rises with the number of substrates bonded inside the bonding tool.

It is therefore the object of the present invention to provide a method with which the increase of bonding defects can be reduced.

This object is achieved with the method according to claim 1. Surprisingly, by providing, prior to bonding, a gaseous flow over the bonding surfaces of the substrate, the formerly observed increase of bonding defects could be stopped or at least reduced.

According to a preferred embodiment of the invention, the gaseous flow can be provided between the two substrates. In this case, a flushing of the surfaces can be carried out just until the substrates come into contact. By doing so, the beneficial effect of the gaseous flow can be even enhanced.

Preferably, the gaseous flow can be a laminar flow. It is believed that, by providing the gaseous flow, water which otherwise might saturate the atmosphere of a tool used for bonding, can be removed from the bonding surfaces. By providing the laminar flow, a possible re-entry of water due to turbulences can be prevented.

Advantageously, the flow can be essentially parallel to the bonding surfaces of the substrates. With this feature, the beneficial effect of water removal is further enhanced.

According to an advantageous embodiment, the gaseous flow can be provided during a heat treatment of the two substrates. By doing so, the water removal effect and as a consequence the bonding is improved.

Preferably, the gaseous flow can be heated such that the heat treatment is at least partially carried out using the heated gaseous flow. Thus, in addition to heating the substrates via radiation or conduction means, an additional convective heating can be provided.

According to a preferred variant, the heat treatment can be completely carried using the heated gaseous flow. In this case, the equipment necessary to carry out the heat treatment and/or the bonding do not need additional heating devices.

According to a preferred embodiment, the gaseous flow is stopped prior to the contacting of the two substrates. In other words, the gaseous flow is provided as long as the two substrates are not yet in contact so that the advantageous effects are achieved just until the bonding. Once the substrates are bonded, the gaseous flow is no longer necessary and is stopped to carry out the process in an economical way.

Preferably, the gas of the gaseous flow can have a thermal conductivity of better than 10×10^3 W/m.K. The higher the thermal conductivity, the easier the gas can be heated up and

furthermore, the heat transferred to the substrates which further improves the overall process.

Advantageously, the gaseous flow can comprise nitrogen and/or an inert gas, in particular argon. In particular, the gaseous flow is constituted to at least 10% of one or more of these elements. Furthermore, Nitrogen has a sufficient high thermal conductivity of $24 \cdot 10^{-3}$ W/m.K and Argon has a thermal conductivity of $T_c(Ar) = 16 \cdot 10^{-3}$ W/m.K. In addition, depending on the mixture of the gas, e.g. H₂/Ar, Cl₂/Ar or F₂/Ar, also hydrophobic surfaces can be bonded with reduced defects. Hydrophobic Si surface should be terminated by Si- dangling bonds and/or Si-H (low polar bonds), but also in case of Ar/F₂ (10%F₂) gases, by a small portion of Si-F or $= Si_{-F}^{+H}$ bonds. Those bonds, though very polar, allow a bonding without water by $= Si_{-H}^{-F} \cdots F - Si$, $= Si - F \cdots H - Si$ or $= Si_{-H}^{-F \cdots H - F \cdots H - F \cdots H - F} \cdots H - Si$ Bridging.

According to a preferred variant, the gaseous flow treatment can be carried out over a time period starting from seconds up to several minutes. In case an additional heat source is provided, a gaseous flow of just a couple of seconds is sufficient to achieve the desired results. Thus, the process can be run in a fast and reliable manner. On the other hand, the advantages of the process can also be achieved without an additional heat source by applying the process for a sufficient long time, typically of the order of minutes.

Preferably, the gaseous flow can have a temperature in a range from room temperature, thus typically 19 – 24°C, up to 100°C. With a gaseous flow in this temperature range, best results have been achieved over time.

Advantageously the gaseous flow can be provided in an oxidizing atmosphere, in particular Air or 20%O₂ in N₂, and/or a dry atmosphere with a low humidity rate.

The object of the invention is also achieved with the equipment for bonding two substrates to one another according to claim 14. The inventive equipment for bonding two substrates comprises the means to provide a gaseous flow, so that the same advantages as already described above for claim 1 can be achieved.

Preferably, the means to provide a gaseous flow can comprise a ventilation system and/or an aspiration system and/or one or more gas inlets. With such systems, the necessary gaseous flow can be provided in a simple and reliable manner.

Preferably, the means to provide a gaseous flow can be configured to provide a laminar gaseous flow. By doing so, like mentioned above, turbulences are prevented which could eventually lead to a re-entry of unwanted water molecules in the region of the substrates bonding surfaces.

According to an advantageous embodiment, the means to provide a gaseous flow can be configured to provide the gaseous flow essentially parallel to the substrate surfaces. In this configuration, optimized results can be achieved.

Preferably, the means to provide a gaseous flow further comprise a means to heat the gaseous flow, particularly to temperatures up to 100°C. By doing so, even more water can be removed from the bonding surfaces.

Advantageous embodiments of the invention will now be described in detail with respect to the following Figures:

Figures 1A – 1C illustrate the process step of a first embodiment according to the invention,

Figure 2 is a 3D schematic view illustrating the concept of the invention, and

Figure 3 illustrates a bonding equipment according to the invention.

Figures 1A – 1C illustrate three embodiments of the inventive process for bonding two substrates. The first step illustrated in Figure 1A consists in providing two substrates 1 and 3 within a bonding chamber 5. In this embodiment, substrates 1 and 3 are semiconductor wafers, in particular silicon wafers with or without additional layers provided thereon. They have either a semiconductor or insulating surface, like native oxide.

The two substrates 1 and 3 have been treated to have the necessary surface properties to be able to carry out bonding prior to entering the bonding chamber 5. In the chamber 5, the

two substrates 1 and 3 face each other with their respective bonding surfaces 7 and 9. They are held at a certain distance in parallel to each other. To be able to bond them, the bonding chamber 5 comprises a means (not shown) to move the two substrates 1 and 3 with respect to each other, so that they can be brought into contact with each other.

The next step of the inventive method is illustrated in Figure 1B. Part I of Figure 1B illustrates a first embodiment, Part II of Figure 1B, a second embodiment and Fig. III of Figure 1B a third embodiment.

According to the first embodiment, after the step of providing the two substrates (Figure 1A), the substrates are heated, e.g. using a lamp 11 or any other suitable heating means, like for example, providing inside the substrate holder (not shown). According to this embodiment of the invention, a gaseous flow 13, indicated by arrows, is provided between the two substrates 1, 3 and sweeps over the respective surfaces 7 and 9. Figure 2 illustrates this situation schematically in a three dimensional way. Figure 2 shows the two substrates 1 and 3 facing each other with the bonding surfaces 7 and 9. In between, the gaseous flow 13 is provided such that a non-confined atmosphere is created between the two substrates.

The provision of a non-confined atmosphere has the advantage that desorbed water from the surfaces 7 and 9 is trapped by the gaseous flow 13 and transported away from the substrates. This prevents a saturation of the atmosphere inside the bonding chamber 5 due to accumulation of water molecules from wafer to wafer. Therefore, the bonding quality can be kept constant as, from wafer to wafer, the necessary removal of water molecules from the surfaces 7 and 9 can be achieved. Typically, the gaseous flow is provided for a couple of seconds to achieve the desired effect.

In this embodiment, the gaseous flow is a laminar flow which prevents turbulences which could re-introduce water which has already been transported away. To further optimize the inventive process, the flow is provided parallel to surfaces 7 and 9 of substrates 1 and 3 like illustrated in Figure 2. The gaseous flow according to the embodiment consists of argon, nitrogen and/or any other inert gas or mixture thereof. In this embodiment, the temperature of the gaseous flow is about room temperature, which is typically in a range of 19°C - 24°C.

To provide a hydrophobic bonding a H₂/Ar, Cl₂/Ar or F₂/Ar mixture in a pressure and temperature controlled chamber can be used.

Part II of Figure 1B illustrates a second embodiment of the invention. Elements with the same reference numeral as in Part I are not described in detail again, their description is incorporated herewith by reference.

The difference between the first and second embodiments is that, in the second embodiment, the bonding chamber 5 does not comprise a heating means 11 anymore. In this case, the gaseous flow 13, still at room temperature, is applied for a longer time, in particular for several minutes, to be able to eliminate about the same water quantity from the surfaces 7 and 9 of the wafers 1 and 3 as in the first embodiment. Thus in this embodiment, a simplified bonding chamber 5, not needing an additional heating device, can be used.

Part III of Figure 1B illustrates a third embodiment of the inventive method. Again, features having the same reference numerals as previously used are not explained in detail but their description is enclosed herewith by reference.

The difference of the third embodiment compared to the second embodiment is that, instead of using a gaseous flow 13 at room temperature, the gaseous flow 13' in this embodiment has a temperature higher than room temperature, in particular of up to 100°C. By doing so, it is again possible to remove the water from the surfaces 7 and 9 of substrates 1 and 3 while applying the gaseous flow 13' for a shorter time compared to the second embodiment and, at the same time, no additional heating device like in the first embodiment is needed.

For best results, the gaseous flow shall consist (at least to a percentage of 10%) of an inert gas or mixture thereof having a high thermal conductivity, such that the necessary heat transfer from the gas to the substrates 1, 3 can be optimized. Beside that, the features of the gaseous flow 13' correspond to the one of gaseous flow 13, in particular the gaseous flow shall be a laminar flow parallel to the surfaces 7 and 9.

Of course, embodiments 1 – 3 can be freely combined, for example, a gaseous flow 13' with a temperature higher than room temperature can be used in combination with a further

heating means 11, such that part of the heat treatment prior to bonding is provided by the gaseous flow and the remaining part by the heating means 11.

Figure 1C illustrates the third step of the inventive method which consists in bringing the two substrates 1 and 3 into close contact with each other to thereby start bonding. Bonding is typically initiated by local application of a light pressure followed by a bonding front which spreads out over the entire interface.

Just prior to the situation when the substrates 1, 3 touch each other, the gaseous flow between the substrates 1, 3 can be stopped.

The inventive method has the advantage that, it allows the removal of water absorbed on the surfaces of the substrates to be bonded in a reliable and repeatable manner compared to the prior art. Due to the reduced amount of water in the bonding interface, fewer bonding defects occur which in turn render the bonded substrate better in quality. The inventive process is of particular interest in the so called Smart CutTM type process used to e.g. form silicon-on-insulator substrates for the electronics industry and which consists in transferring a layer from a donor substrate onto a handle substrate, wherein attachment between the donor substrate and the handle substrate is achieved by bonding.

In the above described embodiments one to three, the gaseous flow 13, 13' was provided inside the bonding chamber 5 between the two substrates 1 and 3 facing each other. According to a variant of the invention (not illustrated), the flushing of the bonding surfaces 7, 9 with the gaseous flow could also be carried out outside the bonding chamber 5 just before entering the substrates 1 and 3 into the chamber 5. In this configuration, it is also possible to sweep the surfaces 7, 9 individually, in parallel or one after the other. Furthermore, a non-confined atmosphere could also be achieved by moving the two substrates through an inert gas.

Figure 3 illustrates one embodiment of an inventive equipment for bonding two substrates. The bonding equipment 21 illustrated can serve as bonding chamber 5 like described above with respect to embodiments 1 – 3.

The bonding equipment 21 comprises a chamber 23. Inside the chamber, a substrate holder 25 is provided to hold the substrates 1 and 3 such that the bonding surfaces 7 and 9 face each other.

According to the invention, the bonding equipment 21 comprises a means 25a and 25b to provide a gaseous flow between the two substrates 1 and 3. In this embodiment, the means to provide a gaseous flow comprises a ventilation system 25a which provides the gaseous flow 13 which is then aspirated by an aspiration system 25b to remove the flow comprising water molecules desorbed from the surfaces of substrates 1 and 3.

As an alternative, instead of using a ventilation system 25a, one or more gas inlets could also be provided which are in connection with a corresponding gas supply. It is important to mention that the means to provide the gaseous flow is preferably arranged and configured such that the gaseous flow 13 is a laminar flow, the advantages of which are described above. Furthermore, the means to provide the gaseous flow are preferably configured such that the flow 13 is parallel to the substrate surfaces. According to a variant, the ventilation system 25a could also be designed to have two or more gaseous flows coming from several directions.

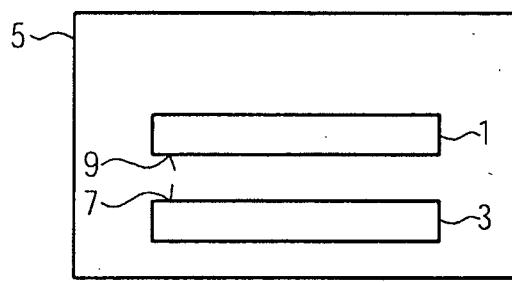
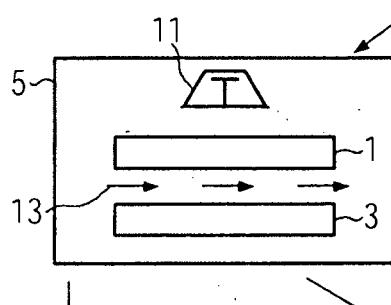
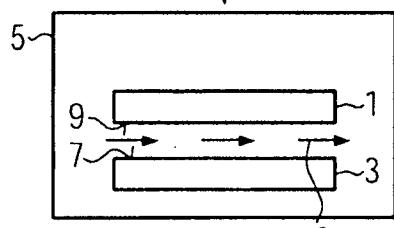
Depending on the process carried out (see part I of figure 1B), the bonding equipment can furthermore comprise heating means 27, e.g. a lamp which could be located upon the center or the edge of the wafer to heat locally or totally the surfaces of the wafer to be bonded.

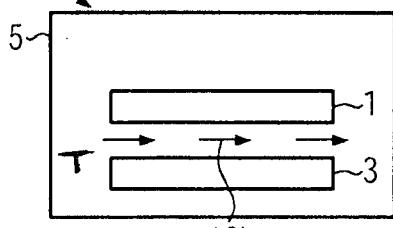
Claims

1. Method for bonding two substrates, in particular two semiconductor substrates, to one another, wherein prior to bonding a gaseous flow (13) is provided over the bonding surfaces (7, 9) of the substrates (1, 3), wherein the gaseous flow (13) is provided between the two substrates (1, 3), until the substrates come into contact.
2. Method according to claim 1, wherein the gaseous flow (13) is a laminar flow.
3. Method according to one of claims 1 or 2, wherein the flow (13) is essentially parallel to the surfaces (7, 9) of the substrates (1, 3).
4. Method according to one of claims 1 to 3, wherein the gaseous flow (13,13') has a temperature in a range from room temperature up to 100°C.
5. Method according to one of claims 1 to 3, wherein the gaseous flow (13, 13') is provided during a heat treatment of the two substrates (1, 3).
6. Method according to claim 5, wherein the gaseous flow (13') is heated such that the heat treatment is at least partially carried out using the heated gaseous flow (13').
7. Method according to claim 6, wherein the heat treatment is completely carried out using the heated gaseous flow (13').
8. Method according to one of claims 1 to 7, wherein the gas of the gaseous flow (13) has a thermal conductivity of $10*10^{-3}$ W/m.K
9. Method according to one of claims 1 to 8, wherein the gaseous flow (13) comprises nitrogen and/or an inert gas, in particular Argon.
10. Method according to one of claims 1 to 9, wherein the gaseous flow treatment is carried out over a time period starting from seconds up to several minutes.

11. Method according to one of claims 1 to 10, wherein the gaseous flow is provided in an oxidizing atmosphere, in particular Air or 20%O₂ in N₂, and/or a dry atmosphere with a low humidity rate.
12. Equipment for bonding two substrates (1, 3) to one another comprising a means (25a, 25b) to provide a gaseous flow (13) between the two substrates (1, 3), wherein the means (25a, 25b) to provide a gaseous flow is configured to provide a laminar gaseous flow.
13. Equipment according to claim 12, wherein the means to provide a gaseous flow comprises a ventilation system (25a) and/or an aspiration system (25b) and/or one or more gas inlets.
14. Equipment according to one of claims 12 to 13, wherein the means (25a, 25b) to provide a gaseous flow is configured to provide the gaseous flow (13) essentially parallel to the substrate surfaces (7, 9).
15. Equipment according to one of claims 12 to 14, wherein the means (25a, 25b) to provide a gaseous flow further comprises a means (27) to heat the gaseous flow, in particular up to 100°C.

1/2


FIG. 1a

I

II

III

FIG. 1c

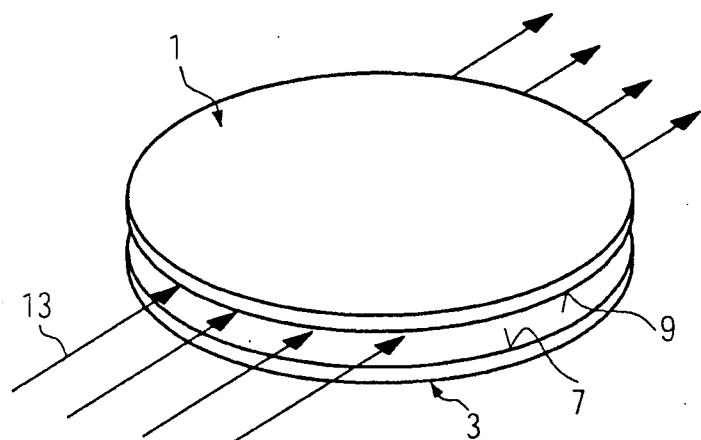
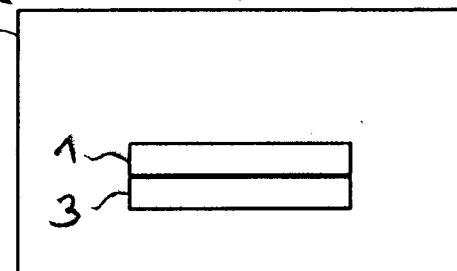



FIG. 2

2/2

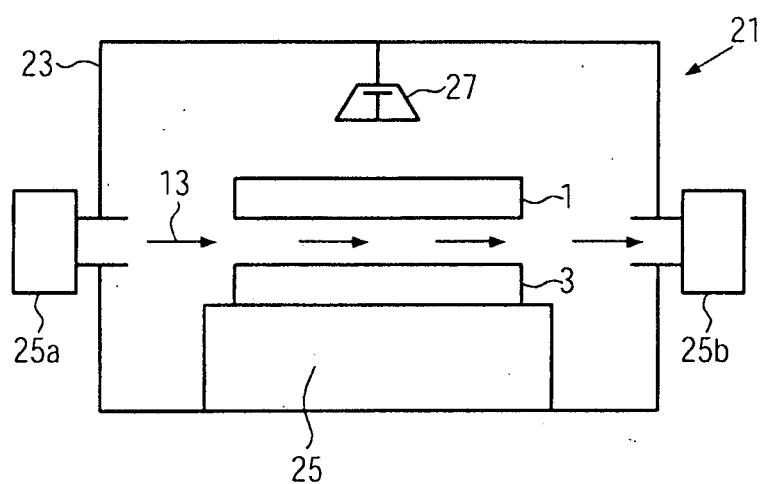


FIG. 3

INTERNATIONAL SEARCH REPORT

International application No
PCT/IB2009/000142

A. CLASSIFICATION OF SUBJECT MATTER
INV. H01L21/18 H01L21/762

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
H01L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, INSPEC

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 2005/064680 A1 (THALLNER ERICH [AT]) 24 March 2005 (2005-03-24) page 1, paragraph 1 – page 2, paragraph 46; figure 1	12-15
Y	-----	1-11
X	DE 100 48 374 A1 (MAX PLANCK GESELLSCHAFT [DE]) 12 April 2001 (2001-04-12) column 8, line 46 – column 12, line 64; figures 1-3	12-15
Y	-----	1-11
X	US 6 372 561 B1 (YU BIN [US]) 16 April 2002 (2002-04-16) column 5, line 28 – line 45; figure 10 ----- -/-	1-11

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

& document member of the same patent family

Date of the actual completion of the international search

23 April 2009

Date of mailing of the international search report

04/05/2009

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL – 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer

Lyons, Christopher

INTERNATIONAL SEARCH REPORT

International application No
PCT/IB2009/000142

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 2007/110917 A1 (OKADA MASUAKI [JP]) 17 May 2007 (2007-05-17) page 10, paragraph 178 – paragraph 185; figures 2A-2H -----	12-15
Y	-----	1-11
X	JP 2006 134900 A (TORAY ENG CO LTD) 25 May 2006 (2006-05-25) abstract; figure 1 -----	12-15

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No	
PCT/IB2009/000142	

Patent document cited in search report	Publication date	Patent family member(s)			Publication date
US 2005064680	A1 24-03-2005	DE 10344113 A1	JP 2005101617 A	KR 20050030138 A	04-05-2005 14-04-2005 29-03-2005
DE 10048374	A1 12-04-2001	NONE			
US 6372561	B1 16-04-2002	NONE			
US 2007110917	A1 17-05-2007	WO 2005055293 A1			16-06-2005
JP 2006134900	A 25-05-2006	AU 2003284474 A1	WO 2004049428 A1		18-06-2004 10-06-2004