UK Patent Application . GB 2416872 .. A

(12)
(43) Date of A Publication 08.02.2006
(21) Application No: 0417101.3 (61) INTCL:
GO6F 9/46 (2006.01)
(22) Date of Filing: 30.07.2004
(52) UK CL (Edition X):
G4A AFN
(71) Applicant(s):
Canon Kabushiki Kaisha (56) Documents Cited:
(Incorporated in Japan) EP 1276047 A2 EP 1262869 A1
30-2 3-Chome Shimomaruko, Ohta-ku, WO 2004/027610 A2 WO 2000/077618 A2
Tokyo, Japan JP 2004199300 A US 6549932 B1
US 5655081 B
(72) Inventor(s):
Peter Michael AIIday (58) Field of Search:
Georgios Vasilopoulos UK CL (Edition W) G4A
Wilson Sien Chun Chiu Other: EPODOC, JAPIO, WPL.
(74) Agent and/or Address for Service:
Beresford & Co
16 High Holborn, LONDON, WC1V 6BX,
United Kingdom
(54) Abstract Title: System for managing tasks on a network by using a service discover, a task manager and a

service publisher

(57)

Network apparatus that controls the execution of a task is disclosed. The apparatus consists of a service
discoverer to find the types of and locations of the services available on the network, a task manager to
control the carrying the task by the services, an operation manager to control the operations related to the
services and a service publisher which makes the services discoverable by the other devices on the
network. The operations controller may receive requests to run a service, determine whether the service
is a local to the apparatus and thus can be run by the controller or pass the request onto the location
found by the service discoverer. The service publisher may store a list of service descriptions defining the
functions of the discovered services. The task manager may select a service using a set of criteria, such as
the location, a required processing time, a current status or service cost.

31

20

20
A

31
31

) gé‘\jgg SERVICE(S)
© SERVIGE(S)
SERVICE(S) CLIENT B i
DEVICE) 1 20
10
30 |<—+
I) ’SERV\CE(S) CONTROLLER H CONTROLLER CLENT

SERVICE(S)

SERVICE(S)

CONTROLLER

NETWORK

31
SERVICE(S)

CLIENT
DEVICE

' SERVICE(S) '——

30\J

s) SERVICE(S)
12
SERVICE DISCOVERER,
i 11 13 20
OPERATIONS »| CLIENT

‘ CONTROLLER Q SERVICE PUBLISHER ’ DEVICE

14 3
TASK MANAGER SERVICE(S) FIG 1
CONTROLLER '

VY ¢[89l¥ ¢ 99

Original Printed on Recycled Paper

19

1 Ol4

\. (S)3oIny3S

LE

0¢

30I1A3Q
ﬁ IN3ND

25

Y

\ (S)30IAY3S

J0IN3A

<

H3TT0HLINOD

14"

HIOVYNVYIN MSYL

p

A
A 4

H3IHSIgGNd 30ING3S

A'll

HITTIOHINCD
SNOILYY3dO

(

€l

Zl

bl

!

\mmmm>oom_n_ IDINYIS [«

\/om

(8)30INY3S

“ IN3I70
\. (S)30IANIS

h 4

AHOMLIN

YITIOYLINOD

(8)301n43S

(8)301A¥3S

\ AOVAY fe—»] u31108INOD [e—>] ¥ITIONINGD (8)30I1A¥3S
0z A m m
* eol (0] y
(S)30IA43S 0¢
J| 30IA3a
0 (S)301N838 > 1235

Le

\

LE

\
0c

A
Y

(

0¢

30IN3A
IN3170

4— (S)3DINY3S

A

0c

(

2

2/9

¢ Ol

OPJ

YITIOHLNOD
P A 4
l
N YIOVNVW MSVL
Y3IHSITENd IDIAYIS - H
LS SIOINNIS I .Nm._._oEzoo SNOILYY3IdO
gL _|
—
JHOVD SIDIAYIS
6l 19V NOWWOD
yy
)
ol ¥INIAODISIA IDIANYIS
N
YIOVYNYIN ANIAODSIA IDIANIS
ol H e./H I~ H
N-ond] [NFon1a] [NIFonTd
W01 INIP gam
* A A
v
A ey v v
51 NOWWOD
d
oe 3DINY3S

3/9

SERVICE

ROUTE INFORMATION

SERVICE NAME

1D

TYPE

CLASSIFICATION

INPUTS

OUTPUTS

PARAMETERS

CAPABILITIES

FIG.2a

4/9

C14

(8)321A3AQ 30V443LNI ¥3SN

¥IMYI4SAno | |aINOHdoHOIN QYYOgAIN 301A3d ONIINIOd AVIdSIQ YILININd
Z Z Z ya Va 7
Pog 00G \ Q98 H eds 295 398
0%
(8)8321A30
S > snoivainnnnos ¢ 7
71 Wy WNIGIN [P B\ S
s <> (S)30V4YILNI O/ Al.w{
3OVHOLS 7
| sswn A.Ilv\ 85 S
005
AHOWII
31NAON 3INAON
wm®<z<_>§m§ | ¥3HSINENd I0IANTS
ol
\ pLS ITNAON
05 | NFONTd ITNAOW ¥IDYNYW
alg /] A¥3n00s1a 301AN3S
\ 3INAON | e,g
mwmu_n_ /| NIFonTdg
IS qaig — \u._aoozmm._._omkzoo
SNOILYYIdO
£m\. NIONTd | o;c

5/9

START

DETERMINE FROM AVAILABLE SERVICES, $1
CLIENT DEVICE AND USER WHICH TASKS }—~
ARE AVAILABLE

l .

PRESENT LIST OF TASKS/OPTIONS TO USER /

I 5

USER SELECTS TASK -/

S4

IDENTIFY SERVICE REQUIRED BY TASK AND, IF MORE

THAN ONE SERVICE IS IDENTIFIED, SELECT ONE OF /

THOSE SERVICES IN ACCORDANCE WITH
PREDETERMINED CRITERIA

S6

/

PRESENT USER
INTERFACE TO USER AND
GET USER INPUT

USER INPUT
REQUIRED?

S7
RUN SERVICE —

S8
NO

TASK

COMPLETED?

FIG.4

END

6/9

START

UPON DISCOVERY OF SERVICE, RECEIVE SERVICE| S11
DESCRIPTION, ADD ONE TO HOP COUNT /
SPECIFYING THE CONTROLLER NETWORK
ADDRESS AND PASS TO SERVICE PUBLISHER TO
STORE IN SERVICES LIST.

l S12

ADD SERVICE DESCRIPTION TO SERVICE CACHE /

(> FIG.5

719

START

l 8/20

RECEIVE REQUEST FOR SERVICE

A

S21

v /

REQUEST SERVICE TO RUN

S22

NO SERVICE S24
REQUEST /
FAILS? SELECT NEXT

ROUTE

ANOTHER YES

ROUTE?

NO
ANOTHER

SERVICE?

S26

SELECT NEXT /

SERVICE

END FIG.6

8/9

START

S30
SERVICE DISCOVERY REQUEST /

SECURITY RATING OK?

ADVISE REQUESTER
SERVICE NOT /

AVAILABLE S33

REPUBLISHED ~~_YES

SERVICE?

S35

/

PASS THE REQUEST FOR
SERVICE ONTO THE
CONTROLLER FROM WHICH THE
SERVICE WAS DISCOVERED

RUN SERVICE

END

FIG.7

9/9

START

REQUEST OPERATIONS CONTROLLER TO

SERVICE LOG HAVING A DESCRIPTIONTHAT
MATCHES THE PROCEDURE REQUIREMENTS

IDENTIFY THE SERVICE OR SERVICES IN THE /

S40

SERVICE(S)
IDENTIFIED?

REQUEST
OPERATIONS

CONTROLLER TO
INSTRUCT SERVICE
DISCOVERER TO
LOCATE SERVICE(S)

IN THE EVENT THAT MORE THAN ONE SERVICE IS
IDENTIFIED SELECT ONE OF THE SERVICES ON
THE BASIS OF PREDETERMINED CRITERIA

S43

/

YES

ANOTHER

PROCEDURE?
NO

»

Y

S45

DETERMINE NEXT ACTION REQUIRED BY TASK AND REQUEST /
OPERATIONS CONTROLLER TO COMMUNICATE WITH CLIENT
TO OBTAIN DATA OR REQUEST OPERATIONS CONTROLLER

TO CAUSE SERVICE TO BE RUN

S46

NO

TASK

COMPLETED?

END

S42

FIG.3

10

15

20

25

2416872

1
APPARATUS FOR AND A METHOD OF

FACILITATING THE CARRYING OUT OF A TASK

This invention relates to apparatus for and a method
of facilitating the carrying out of a task. In
particular, this invention relates to apparatus for
and a method of facilitating the carrying out of a
task by a processor-controlled machine in a
distributed system or network in which a number of
processor-controlled machines such as personal
computers, servers, digital cameras, photocopiers and
the like have or have access to services that may be

required for the carrying out of a task.

In order to complete a complex task on a network, a
user may have to make use of several different
applications to perform different operations. Thus,
for example, if a user wishes to email a copy of a
paper document so that the recipient can subsequently
edit the document using a word processing application,
then, generally, the user will need to use a scanner
application to <convert the paper document into
electronic form, then wuse an optical character
recognition application to convert the electronic data

into electronic character data and then use an

(@2l

10

15

20

25

2
emailing application to email the final electronic

document to the desired recipient.

A task-based approach to such complex operations
simplifies the number of individual operations that a
user has to perform. In a task-based approach, a
controller forming part of the network (for example a
server with which the wuser’s processor-controlled
machine can communicate or the user’s processor-
controlled machine itself) identifies the task to be
carried out from data provided by the user and then
either selects a predefined task consisting of the
required services or assembles a new task consisting
of the required services. Thereafter, the user simply
needs to provide user input data when prompted by the

controller to enable the carrying out of the task.

Thus, in the example given above, where the wuser
advises the controller that he wishes to email a hard
copy document in editable form, then the controller
will either access a predetermined task for carrying
out that sequence of steps or will assemble a new task
to carry out that predetermined sequence of steps. 1In
either case, the task in this example will consist of

a set of services including a scanning service, an

10

15

20

25

3
optical character recognition service and an emailing

service.

The number of tasks that can be carried out is limited
by the services that the controller can access and,
although a controller may be able to access services
remotely over the network, it is difficult if not
impossible for a controller to access services that

are only coupled to the network via other controllers.

In one aspect, the present invention provides a
controller or apparatus for enabling the carrying out
of task, wherein the apparatus is connectable to a
network and comprises a service discover operable to
discover services over the network, a task manager
operable to control the carrying out of tasks using
services accessible by the apparatus and a service
publisher for publishing descriptions of services
accessible to or discovered by the apparatus so that
other controllers coupled to the network can see the
services published by the controller even though at
least some of those services may be connected to the

network only via the controller.

In one aspect, the present invention provides a

10

15

20

25

4
controller for facilitating a carrying out of a task,
wherein the controller is connectable to a network and
looks to other controllers 1like a service thereby
allowing other controllers to discover and access the

services via that controller.

This enables a controller to access services that it
may not be able to see directly and as a result allows

more or more flexible tasks to be offered to the user.

In an embodiment, a controller is configured to enable
the list of services that are passed on to another
controller to be subject to security restrictions.
For example, the controller may be configured to
restrict the list of services that are passed on to
another controller on the basis of the identity of the
user that is trying to access them and/or on security
restrictions that are placed on the service by the at
least one controller in the route from the location of

actual service to the requesting controller.

A controller may be configured to provide different
security restrictions dependent upon whether the user
is local to the controller or whether a service is

being requested by a remote controller.

10

15

20

25

5
A controller may be configured to increment a hop
count each time a description of a service is passed
to that controller so that, for example, where a
controller receives the same service description more
than once, the controller can determine the most

direct route to the actual location of that service.

A controller may be configured to add descriptions of
services that have been discovered more than once to a
cache so that, if a route to a particular service
fails, then that same service may be tried again via a

different route.

In an embodiment, the services available for the
carrying out of a task will generally include input
services, output services, and processing services.
In addition, the available services may include user
interface services. This avoids the possibility of
the services available to a user being restricted by
the user interface of the device via which the user
accesses the controller. Rather, by providing the
user interfaces as services, then the user interface
required by a task or indeed user interfaces required
by different services within a task can be loaded on

to the wuser’s device as and when required so that

10

15

20

25

6

dedicated user interfaces <can be provided for
different services within a task. This has the
advantage that the user interface presented to the
user 1is not cluttered with information which is
particularly important where the size of the display
on the wuser’s device 1is relatively small. In
addition, providing the wuser interfaces as services
enables user interfaces for existing services and

tasks to be updated as and when required.

Different protocols may be required for discovering
different services. In an embodiment, the services
use a common API (application programming interface)
and the service discoverer is configured with a plug-
in architecture so that the service discoverer has one
or more plug-in service discovery modules, each of
which 1is designed to discover services that use a
particular protocol or protocols. For example, one
service discovery plug-in module may be designed to
discover Web services, another service discovery plug-
in module may be designed to discover JINI services
and another service discovery plug-in module may be
designed to discover local services, that is services
directly connected to the controller. The use of a

plug-in architecture means that a controller can be

10

15

20

25

7
upgraded or updated when new protocols come into use
simply by adding a plug-in configured to operate with
that protocol. Thus, when a new protocol becomes
popular, it can easily be supported and deployed
without changing the rest of the controller. In
addition, controllers of smaller devices (such as
digital cameras) can just use the plug-in or plug-ins
that they require. The use of such plug-ins and a
common API for services means that a service which
uses a protocol for which a plug-in has already been
developed can be wused straight away without any
further adaptation and, if a new protocol is developed
or used, then only one plug-in needs to be developed

to handle services using that protocol.

In a task based system, some services may require
certain parameters to be set by a user. However, a
user may not always know the best value for a
parameter. Therefore, it is often desirable for a

default parameter to be set.

In an embodiment, default parameters are provided on
different levels. Thus, a service may itself have a
default parameter and this default parameter may be

overridden by a default task parameter, so that when a

10

15

20

25

8
particular service is running in a particular task,
the default parameter is appropriate to that task.
Thus, for example, a scanning service may have its own
default scanning resolution parameter which, for
example, represents an average resolution while a task
to scan and email a photograph may have a different
resolution default parameter that overrides the
service default parameter so that, when scanning a
photograph for emailing, the scanner scans at a
relatively low resolution to reduce the size of the
image file while where the scanning services is used
in a task in which a document is to be subject to
optical character recognition, for example the above
task to scan and email in editable form a hard copy
document, then the task may define a high resolution
default scanning parameter to enable accurate optical
character recognition. In addition, a user interface
service may enable a user to change or customize the
service level default parameter or the task level
default parameter in accordance with their

requirements.

The device at which a user commences a task may not
necessarily be the best device to enable completion of

the entire task. Thus, for example, in the case of

10

15

20

25

9

the above task to scan and email in editable form a
hard copy document, the user may wish to use a
networked photocopier to perform the scanning but then
move to a personal computer to enable access to a
keyboard to enter information. In addition, some
services may require more processing power than other
services and it may speed up completion of a task if a
high processing power service is completed by a device
having a lot of processing capacity, for example it
may be more efficient for a particular service to be
carried out by a networked personal computer rather

than a networked digital camera.

In an embodiment, a task is designed so that it can be
stored in an incomplete form and transfer to another,
for example more powerful, controller to enable
completion of the next portion of the task. In an
embodiment, the current state of a task and the data
associated with it is stored in a data structure known
as a context, for example an XML based context, which
can be passed between controllers allowing a user to
access the task from different client devices. This
means that a user can commence a task at one client
device and move to another that may be more suitable

for continuation of the task with, in each case, the

10

15

20

25

10
controller controlling the coordination and processing
of the task so as to enable the task state to be
stored for later retrieval or passed to another

controller for continued processing.

Embodiments of the present invention will now be
described, by way of example, with reference to the

accompanying drawings, in which:

Figure 1 shows a functional block diagram of a network
system including a controller embodying the present

invention for facilitating the carrying out of a task;

Figure 2 shows a more detailed functional block
diagram of a controller embodying the present

invention;

Figure 2a shows a very diagrammatic representation of

a service description;
Figure 3 shows a functional block diagram of one
example of computing apparatus configured to provide

the controller shown in Figures 1 and 2;

Figure 4 shows a flowchart for illustrating one way in

10

15

20

25

11
which a task manager of the controller shown in

Figures 1 and 2 can manage the carrying out of a task;

Figure 5 shows a flowchart for illustrating operation

of the controller to discover a new service;

Figure 6 shows a flowchart for illustrating operation

of the controller to access a service;

Figure 7 shows a flowchart for illustrating operation
of the controller in response to a request for a

service; and

Figure 8 shows a flowchart illustrating another way in
which the task manager can manage the carrying out of

a task.

Referring now to the drawings, Figure 1 shows a
functional block diagram of a network system 1

embodying the invention.

The network system 1 comprises a number of controllers
10 in the form of personal computers, servers, other
processor device or the like each connected to one or

more client devices 20 by which a user can input

10

15

20

25

12
instructions and/or data for instructing the
controller to carry out a task wusing services
accessible by the controller. As shown in Figure 1, a
controller 10 may have local services 30. In
addition, services 32 may be directly connected to the
network N and services 31 may be directly connected to

a client device 20.

The controllers 10 may be directly coupled to the
network N or via one or more other controllers 10. 1In
the example shown in Figure 1, three controllers 10
are directly coupled to the network and a further
controller 10a is indirectly coupled to the network
via another one of the controllers. It will, of
course, be appreciated that the actual network
configuration will depend upon the particular
circumstances and that, for example, fewer or more
than three controllers may be directly coupled to the
network. Also, the network may comprise further
controllers 1l0a that are only coupled to the network
indirectly via another controller. In addition, the
network system may also include further controllers
that are coupled to the network via two or more other

controllers.

10

15

20

25

13
Although not shown in Figure 1, each client device 20
may incorporate or be integrated with a controller 10.
In addition, a client device 20 may communicate with a

controller 10 via the network N.

The client devices 20 are processor-controlled
machines provided with network connectivity and each
having at least one user interface device for enabling
a user to interface with the client device. Examples
of client devices are networkable devices such as
personal computers, photocopiers, facsimile machines,
digital cameras, scanners and other items of office
equipment where the network is intended for use in an

office environment.

It will, of course, be appreciated that the network
may be intended for use in other than an office
environment. Thus, for example, where the network is
in a home environment, then the client devices may
include personal computers and other networkable
processor-controlled machines such as, for example,
televisions, video recorders, DVD players, and other
processor-controlled machines or items of equipment
that may be found within the home. Similarly, the

network system may be wused in an industrial

10

15

20

25

14
environment where one or more of the client devices
may comprise processor-controlled manufacturing plant

or machine tools.

The network N may comprise one or more different types
of network. For example, the network N may comprise
at least one of a local area network 11 (LAN), a wide

area network (WAN), an intranet and the Internet.

Figure 1 illustrates the main functional components of
one of the controllers 10. It will be appreciated
that each of the other controllers 10 and 10a has the

same main functional components.

As shown in Figure 1, a controller 10 has an
operations controller 11 that controls overall
operation of the controller and a task manager or task
resolution module 14 for controlling or managing the
carrying out of tasks. In addition, each controller
10 has a service discoverer 12 for discovering both
local services 30 and services on the network N and a
service publisher 13 that, as will be described below,
is configured to make services discovered by the
controller 10 discoverable by other controllers 10.

That is, the service publisher 13 is confiqured to

10

15

20

25

15
advertise or republish discovered services so that
they are accessible by other controllers 10 over the

network N.

The operations controller 11 is also configured to
communicate with the client device or devices 20
connected to the controller 10 and to communicate with
the services required during the carrying out of a
task and to coordinate the operation of the next step
in a task as requested by the task manager 14. In
addition the operations controller 11 is configured to
pass on calls made to services published by the
service publisher 13, that is services that are not

directly available to that controller 10.

The task manager 14 is configured to determine which
task(s) can be run using the currently available
client device(s) 20 and services and to determine the
next action required, for example whether data is
required from a user or whether a service should be

run.

The task manager 14 is, in this embodiment, configured
as a separate module so that it can be swapped in and

out easily so that a controller 10 has a task manager

10

15

20

25

16
that is appropriate to the client device 20, and to

enable easy modification of the system.

As mentioned above, each of the controllers 10 may
have access to a number of local services 30. In
addition, each of the client devices 20 may have
direct access to one or more services 31 and one or
more services 32 may be directly coupled to the
network N to enable access by all of the controllers

10.

The services 30, 31 and 32 are stored in appropriate
memory. The services 30 may be stored in a central
data storage of the network system 1 while the
services 30 and 31 may be stored in any appropriate
memory available at the controller 10 or client device
20, for example a mass storage device such as a hard
disc drive in the case of a computer, or on a memory
card in the case of a client device such as a digital

camera.

Generally speaking in this embodiment there are four

types of services:

1) input services that provide input data to a task,

10

15

20

25

17
an example being a scanning service;

2) output services that output data from a task such
as, for example, printing services and email
services;

3) processing services that perform a process on or
modify input data such as, for example, image
manipulation services, optical character
recognition services and so on; and

4) user interface services that provide user

interfaces for loading onto client devices.

A service may itself consist of a set of sub-services
so that, for example, an address book service may
consist of the sub-services “open address book” and
“save address book” plus also possibly an address book

user interface sub-service.

Each service uses the same common API (Application

Programming Interface) which implements four methods:

1. Get description

2. Get status

3. Run service

4. Get user interface(s)

10

15

20

25

18
The common API therefore enables a controller 10 to
discover services and to obtain their description and
status and, when the task manager 14 indicates that a
service 1is required, to get the associated user

interface or interfaces and to run the service.

Figure 2a shows a very diagrammatic representation 100

of a service description.

The service description includes the following

components:

1. Service name
2. ID

3. Type

4. Inputs

5. Outputs

6. Parameters
7. Capabilities

The service description optionally also includes a

classification component.

The service name is unique to the service so that if,
for example, there is more than one controller 10 or

client device 20 on the network N that runs the same

10

15

20

25

15
service, they will be allocated the same service name
while the ID is unique to the particular service and
controller or client device that actually runs that
service and may be in the form of a serial number or

other unique code.

The type component defines the type of service and is
descriptive of the operation or procedure that the
service performs such as scan, email, OCR, print,

image manipulation, and so on.

The optional classification component represents a
lower level description of the service and identifies
features available via that service. Thus, for
example, in a case of a service of the type “image
manipulation”, the classification will specify the
particular nature of the image manipulation provided
by the service, examples of possible classifications
for an image manipulation service are: re-size, red

eye removal, rotate, make panorama and so on.

The input component defines the type or types of data
that can be passed to the service and the format or
formats required for that data while the output

component defines the data type or types that the

10

15

20

25

20
service provides and the format or formats that that

output data has.

The parameter component comprises a value or values
that can be passed to the service and that affect (s)
what the service does with data. The service
description may contain a default value for one or
more parameters. An example of a parameter for a
print service would be, for example, a value for the

number of copies.

The capability component provides a description of
what the service is capable of. Thus, for example,
the capability component may define the maximum
resolution in dots per inch of a scanning or printing

service.

Each input, output and parameter has an ID that
describes the nature of the data (for example image or
document), a type which identifies the family that the
data belongs to and a format that identifies the exact
format that the data takes. Thus, for example, if the
type is “MIME” then the format may be image/png or
application/word whereas if the type is “simple” then

the format may be “string” or “int”.

10

15

20

25

21

In addition, inputs, outputs and parameters may
specify a constraint or limit on those properties, for
a maximum size of input data or a maximum or minimum

resolution may be specified.

The service description thus provides a controller 10
with the information necessary to determine whether
the service is suitable for and can carry out an

operation required for a particular task.

Figure 2 shows a more detailed functional block

diagram of one example of a controller 10.

As shown in Figure 2, the service discoverer 12
comprises a service discovery manager 15 configured to
receive a number of plug-ins 16 (three in the example
shown) . Each of the plug-ins 16 is configured to
enable discovery of services operating in accordance
with certain protocols. The plug-ins 16 may comprise,
as shown, a plug-in configured to discover Web
services, for example operating in accordance with the
UDDI (Universal Description Discovery and Integration)
protocol and the SOAP (Simple Object Access Protocol)

communications protocol, a plug-in configured to

10

15

20

25

22
e
discover JINIA services and a plug-in configured to
discover local services. Figure 2 shows the 1local
plug-in 16 having discovered a local service 30. The
fact that the services use or implement a common API

is illustrated diagrammatically in Figure 2 by using a

block 19 to represent the common API.

The use of a plug-in architecture means that, as new
discovery systems and protocols are developed, new
plug-ins 16 can be designed to enable discovery of
services using those protocols. In addition, a
controller 10 need only use those plug-ins required by
the client(s) 20 with which it communicates. Thus,
for example, if a controller 10 is only communicating
with a dedicated processor-controlled machine such as
a digital camera, then only those plug-ins
commensurate with the services that a digital camera

can use may be provided.

In addition to the plug-in architecture, the services
useable by the network system are all configured to
use the same common API. The use of a common APT
enables a new service to be used straight away,
provided that a plug-in exists for the protocol (s)

required by that service.

10

15

20

25

23

As shown in Figure 2, the operations controller 11
maintains a services cache 17 in which the service
descriptions of discovered services are held. In
addition, the service publisher 13 stores a services
list 18 containing the service descriptions of all of
the services that have been discovered by the
controller 10. The service publisher 13 is also
configured to communicate with the network N and the
directly connected client device(s) 20 using the
common APT (again represented diagrammatically by a
block 19) so that the other controllers 10 on the
network N and the connected client device(s) 20 can

see the controller as a service.

The controllers 10 may be implemented by programming
computing apparatus such as a personal computer or
server or other processor device. Figure 3 shows a
functional block diagram of one example of computing
apparatus 50 that may be programmed by program

instructions to provide a controller 10.

As shown in Figure 3, the computing apparatus 50
comprises a processor 500 with associated memory 51 in

the form of ROM and/or RAM and a mass storage device

10

15

20

25

24
52 such as a hard disk drive. The computing apparatus
also comprises a removable medium device 53 for
receiving a removable medium 54 such as, for example,
a CDROM, DVD, floppy disk or the like. In addition,
the computing apparatus comprises a number of user
interface devices 56. As shown these include a
pointing device 56a such as a mouse, a keyboard 56b, a
microphone 56c, a loudspeaker 56d, a display 56e and a
printer 56f. The computing apparatus also comprises
one or more communications devices 57 such as a
network card and/or a MODEM for enabling communication
over the network N and one or more input/output
interface(s) 58 for enabling communication with
external devices such as the client device 20 and the

services 30 directly linked to the controller 10.

The computing apparatus is programmed by at least one

of:

program instructions pre-stored in the memory 51 or in

the mass storage device 52;

program instructions provided as a signal via a

communications device 57 or an I/O interface 58.

10

15

20

25

25
program instructions downloaded from a removable
medium 54 received via the removable medium device 53
or from a portable data storage device connectable to
the computing apparatus via an I/0O interface such as a

USB port; and

program instructions directly entered by the user

using the keyboard 56b.

Figure 3 shows the computing apparatus as having been
programmed so that the memory 51 contains a service
discovery manager module 5la for implementing the
service discovery manager 15, plug-in modules 51b for
implementing the plug-ins 16, an operations controller
module 51c for implementing the operations controller
11, a task manager module 51d for implementing the
task manager 14 and, a service publisher module 5le

for implementing the service publisher 13.

It will be appreciated the client devices 20 will,
being processor controlled machines, also have a
processor with associated memory, I/0 interfaces and
some form of user interface device(s) which, in the
case of a personal computer, will be similar to that

shown in Figure 3 and in the case of a digital camera

10

15

20

25

26
will be more limited generally consisting of a small
display and a user control that enables selection of

items from a displayed menu.

The manner in which a controller 10 enables the
carrying out of a task based on a number of services

will now be described.

A task consists of one or more services, depending
upon the particular task. Common tasks or tasks that
have been or are 1likely to frequently used may be
stored by the task manager 14. Other tasks may be
assembled by the task manager 14 from available
services in accordance with input information received

from the user.

In order for a task to be carried out it has, of
course, first to be initiated by a user. In order to
facilitate this, a client device 20 may be provided
with a basic task user interface that prompts the user

with a question such as:

What do you want to do?

and may present the user with a number of options

10

15

20

25

27
defining currently available tasks. The nature of the
tasks available will generally depend wupon the
particular client device. As an example, if the
client device is a networked photocopier, then task

options may include:

Scan
Scan and email

Scan, OCR and email

As another possibility, the basic task user interface
may enable the user to define a task by selecting
options from a displayed menu, for example if the user
wishes to scan a hard copy document and email it in
editable form the user may select displayed options
“scan”, “optical character recognition”, and “email”

from a menu.

Figure 4 is a flowchart illustrating steps carried out

by the task manager.

As set out above, the controller 10 stores the
description for discovered services. At S1 in Figure
4, the task manager 14 determines from the available

discovered services, the client device and the user

10

15

20

25

28
which tasks are available to that client device and

user.

Then, at S2, the task manager causes the client device
20 to present the user with a list of tasks/options
available to that user, one example of an available
task may be “scan a hard copy document, perform
optical character recognition and then email the

document in an editable form”.

When, at 83, the user selects a task from the list
presented to him at the client device then, at S4, the
task manager identifies a first service required by
the task by checking the type components of the stored
service descriptions to determine which of the type
components match the tasks requirements and, of those,
which services have input, output, capability and

classification parameters acceptable for the task.

It is possible that more than one service may match
the requirement. If so, then at S84, the task manager
selects one of those matching services in accordance
with predetermined criteria as will be described

below.

10

15

20

25

29
Once a service has been selected for the first
procedure or step of the task then, at S5, the task
manager 14 determines whether user input is required
and, if so, causes the client device to present the
appropriate wuser interface to the user to get the

required user input at S6.

If the answer at S5 is no or if user input has already
been obtained at step S6 then, at S7, the task manager
requests the operations controller 11 to cause the

required service to be run.

Then, at 88, the task manager checks to see whether
the task has been completed, that is whether the task
involves a further procedure that requires another

service,

If the task manager determines that the task involves
a further procedure that requires another service then
steps S4 to S7 are repeated and at S8 the task manager
again checks whether there are further procedures that
require services to be run in order for the task to be
completed. The procedure ends once the task manager
determines at S8 that there are no further procedures

requiring services to be run.

10

15

20

25

30

Figure 5 shows steps carried out when a service is

discovered.

When the operations controller 11 starts the service
discoverer 12 it registers a Discovery Listener with
the service discovery manager 15. When the service
discoverer 12 locates a plug-in 16, it starts the
plug-in 16 and then registers the service discovery
manager 15 with the plug-in 16. When a service
30,31,32 is discovered by a plug-in 16, the plug-in 16
notifies the service discovery manager 15 which

notifies the operations controller 11.

Upon discovery of a new service then, at S11 in Figure
5, the operations controller 11 receives the service
description, updates route information associated with
the service description (for example by adding its
controller network address to route address and by
adding one to a hop count, where a “hop” is a step or
passage from one controller to the next on the
network) and, having stored the service description
with its associated route information in its service
cache 17, passes the service description with its

associated route information to the service publisher

10

15

20

25

31
13 for storage in the services 1list 18. As another
possibility, the hop count may be updated by the

service publisher 13.

Because the service publisher 13 of each controller 10
republishes (that is makes accessible to other
controllers on the network N) discovered services by
using or implementing the common API 19, the same
service may be discovered by a controller 10 via a
number of different routes. In the event that a
service is discovered more than once, then the service
description is still added to the service cache 17
step S12 so that, if a subsequent request to run that
service fails, the operations controller 11 can try
and access the service via the other route or one of

the other routes.

Figure 6 shows a flowchart for illustrating operations
carried out by the operations controller 11 when the
task manager 14 issues a request for a service to be
run at S20. Thus, at S21, the operations controller
11 implements the run service method of the service
description of the selected service at S21 to cause
the service to be run. If the service is not a local

service, then the controller 10 causes the request for

10

15

20

25

32
the service to be run to be passed on to the
controller from which the service was discovered and,
if that controller is not the controller that actually
runs that particular service, that controller will, in
turn, pass the request for the service to be run on to
the controller from which it discovered the service
and so on until the request for the service to be run
reaches the <controller that actually runs that
particular service. The controller that actually runs
that particular service will then invoke the service
and return the results to the requesting controller

10.

If, at S22, the request for a service to run fails,
for example because one or more of the network
addresses along the route path is inoperable or the
service is currently busy, then at S23, the operations
controller 11 determines whether there is another
route for the same service and, if so, selects that

other route at S24 and repeats steps S21 to S23.

If the answer at S23 is no, that is the service has
failed and there is no other route that has not yet
been explored, then at S25, the operations controller

checks whether there is another acceptable service

10

15

20

25

33

and, if so, selects that other service at step S26 and

repeats steps S21 to S26.

Where more than one service is available for carrying
out a particular procedure, then as set out at S4 in
Figure 4, one of the services may be selected on the
basis of predetermined criteria. These criteria may

include at least one of:

1. the number of hops required to reach the
controller that runs the service, on the grounds
that this may determine the reliability of the

service and the time taken to access the service;

2. a rating system;

3. required processing time;

4. current status of the service;
5. costs;

6. quality;

7. recommendations from users on the system.
One or more of the above preferences may be determined
by information input by the user via an appropriate

user interface.

In addition to the above, dependent upon the client

10

15

20

25

34
device or devices 20 that the controller 10 services,
the controller 10 may be specialised so that it
filters through only particular services. This may be
achieved by selection of the plug-ins so that only
services complying with particular protocols are
discovered or may be achieved by the operations
controller 11 filtering through only services whose
service descriptions match certain requirements. For
example where the client device is a digital camera,
then the controller 10 may be configured to filter
through only services that are applicable to a digital
camera so excluding, for example, word processing

services.

The operations controller 11 may also have security
settings that determine whether or not a service will
be passed on to a requesting controller. Figure 7
shows a flowchart illustrating one way in which this
may be implemented. Thus, when at S30, a controller
10 receives a service discovery request, that request
will be accompanied by data that identifies the
requesting controller and may also identify the

requesting user.

At S31, the operations controller 11 determines

10

15

20

25

35
whether the security rating for the requesting
controller or task manager and/or user enables them to
have access to the requested service and, if not,
advises the requesting service discoverer 12 that the

service 1s not available.

An operations controller 11 may have different

security ratings for local and remote users.

In the event that the operations controller 11
determines that the requesting controller and/or user
has/have an appropriate security rating, then at 833,
the operations controller checks whether the service
is a republished service and, if not, causes the
service to be run at S34. If, however, the service is
a republished service then at S35, the operations
controller passes the request for the service on to
the controller from which the service was discovered.
That controller then repeats the procedure shown in
Figure 7 so that the request is passed from controller
to controller until it reaches the controller that

runs the requested service.

As shown in Figure 7, the controller is arranged to

check the security rating before determining whether

10

15

20

25

36

or not a service is a republished service. This
enables each controller to have its own security
ratings for remote services. As another possibility,
steps S33 and S31 may be reversed so that the
operations controller 11 first checks whether the
service 1is a republished service and, if so, passes
the request onto the controller from which the service
was discovered without checking the security ratings.
This would mean that whether or not a particular
controller and/or user is given access to a service
will be determined solely by the controller that

initially discovered that service.

Figure 4 illustrates one way of carrying out a task.
Figure 8 illustrates another way in which a task may
be carried out once the user has selected a task or
has indicated what they require of the task for
example scan a hard copy document, perform optical
character recognition and then email the document in

an editable form.

As set out above, the controller 10 stores the

descriptions for discovered services.

At S40 in Figure 8 the task manager 14 requests the

10

15

20

25

37
operations controller 11 to identify from the
description stored in the service cache 17 a service
or services matching the requirements for a first

procedure or step of the task.

The task manager 11 then checks the type components of
the stored service descriptions to determine if any of
the type components match the task manager’s
requirements and, if so, determines whether the input,
output, capability and classification parameters in
that service description are acceptable for the task

in hand.

If, at S41, the operations controller 11 reports that
no appropriate services have been identified, then at
S42, the task manager 14 requests the operations
controller 11 to instruct the service discovered 12 to

locate a service.

Moe than one service may match the task requirements.
Accordingly, at S43, the task manager 14 determines
whether more than one service has been identified and,
if so, selects on of the services on the basis of

predetermined criteria as will be discussed below.

10

15

20

25

38
Once a service has been selected for the first
procedure or step of the task then, at S44, the task
manager 14 determines whether the task involves a
further procedure that requires another service and,

if the answer is yes, repeats steps S40 to S43.

Once services have been discovered for all of the
procedures required to complete the task then at S45
the task manager 14 determines the next action or
procedure required by the task and requests the
operations controller 11 to act accordingly. Thus, if
the task manager determines at S45 that user input is
required and that this does not include a new user
interface then the task manager requests the
operations controller to communicate with the client
device 20 to prompt the user to input the necessary
data. Otherwise the task manager determines the next
action required is for a service to be run, then the
task manager requests the operations controller 11 to
cause the required service to be run. The required
service may in some cases include a sub-service such
as a user interface service and in those cases the
operations controller 11 will first download the

required user interface to the client device 20.

10

15

20

25

39
Step S45 is repeated until the task manager determines
at S46 that the task has been completed, that is all
of the services required to complete the task have

been run.

As described above, each of the controllers
republishes discovered services using or implementing
the common API so that, as far as other controllers
are concerned, each controller also 1looks 1like a
service. The services available may include input
services, output services, processing services and
user 1interface services. The provision of wuser
interfaces as services means that the user interface
can be loaded onto the client device and run as and
when required so that dedicated user input services
can be provided for particular services and, in
addition, the user interface for a particular client

device may be easily updated and/or modified.

As described above, a service may include default
parameters for the operation provided by this service.
For example, where the service is a scanning service,
then a default scanning resolution may be defined.
Similarly, where the service is a printing service,

then a default printing characteristic such as black

10

15

20

25

40
and white, one-sided and so on may be defined. In
some tasks, specific parameters may be required of a
service. Thus, for example, in the case of a task to
scan and then email in editable form a hard copy
document, the optical character recognition software
may require a scanning resolution higher than the
normal default scanning resolution of the scanning
services. In order to cope with such occurrences, the
task manager 14 may be configured to provide the task
itself with one or more default parameters and the
task may be configured such that the task default
parameters override service parameters. Taking as an
example, the task mentioned above, this would enable
the task manager 14 to define for the task a default
scanning resolution parameter higher than the default
resolution scanning parameter of the scanning service.
In contrast, where the task to scan and email a
photograph the task manager 14 may define a low
resolution scanning parameter that overrides the
scanning services default parameter so that an image
file that is not too large, that is appropriate for
emailing, is produced by the scanning service. In
addition, a user interface service for a task or a
service within a task may enable a user to change or

customize the service level default parameter or the

10

15

20

25

41
task level default parameter in accordance with the

particular users requirements.

As so far described above, once a task has been
defined and the necessary services assembled, the
operations controller 11 and the task manager 14 of
the controller 10 at which the task originated
coordinate carrying out of the task with the services
required by the task being run by the controllers

which initially discovered those services.

This may, however not necessarily always be convenient
for a user, whose local controller may change as he
moves to different physical locations serviced by the
network. In addition, certain client devices may be
more convenient when carrying out certain services
within a task. Thus, for example, in the case of the
above task to scan and email in editable form a hard
copy document, the user may wish to use a networked
photocopier to perform the scanning because this is
quick than using a scanner attached to a personal
computer but may then wish to move to a personal
computer to enable access to a keyboard to enter an
email message. In addition, some services may require

more processing power than other services and it may

(@2l

10

15

20

25

42
speed up completion of a task if a high processing
power service is completed by a device having a lot of
processing capacity, for example it may be more
efficient for a particular service to be carried out
by a networked personal computer rather than a
networked digital camera, where both of those devices

run the same or a similar service.

In an embodiment, the task manager 14 is configured to
provide a task so that the task can be stored in an
incomplete form and transferred to another, for
example more powerful, controller to enable completion

of the next part of a task.

In an embodiment, the task manager 14 stores the
current state of a task and the data associated in a
context which can be passed between controllers
allowing a user to access the task from different
client devices. This means that a user can commence a
task at one client device and then move to another
that may be more suitable for continuation of the task
with, in each case, the controller local to the user’s
current client device controlling the coordination and
processing of a task so as to enable the task data to

be stored for 1later retrieval or passed to another

10

15

20

25

43

controller for continued processing.

In an embodiment, the services and tasks are defined
using XML (Extensible Mark-up Language) and the task
is stored in a context enabling parts of the task to

be passed between controllers.

Appendix 1 illustrates an example of a service
description for a web gallery service which creates a
web gallery from a series of images. The ellipsis
indicate omitted data. As can be seen from Appendix
1, the name of the service is “web gallery” and the
service is of the type *“synthesize”. This service
description defines a required input, a number of
outputs and a number of parameters. As can be seen,
the input has an ID “image” and must be of a type MIME
in the JPEG format while an output of ID “HTML” must
be of type MIME in the HTML format and the output of
ID “fullimage” and “thumbimage” must be of type MIME
and in the JPEG format. The parameters in this
example are title, thumbs per row, thumb width, thumb
height, web file name, web images directory and web
thumb prefix all of type “simple” with the title, web
file name, web images directory and web thumb prefix

being of “string” format and the remaining parameters

10

15

20

25

44

being of “int” or integer format.

Appendix 2 illustrates an example of a task
description. In this example, the purpose of the task
is to scan a document and send it via email and the
task name is “Send OCR”. As can be seen from Appendix
2, the task consists of address book, scanner, PDF
conversion, email and OCR services with the respective
service IDs “*address"”, “service 2", “convert”,
“service 0” and “service 1”. In addition, the task
includes a user interface service of name “OCR email
UI” that is to be downloaded to the client device when
the services of ID ‘“service 0", ‘“service 1”7 and

“convert” are being run.

When this task is implemented by a task manager, the
task manager 14 first requests the operations
controller 11 to cause the address book user interface
service to be run to cause the address book user
interface to be downloaded the client device to enable
the user to select the name and address of the
intended recipient of the email. Once the name and
address of the intended recipient have been selected
or entered by the user, then the task manager 14

requests the operation controller 11 to cause the

10

15

20

25

45
scanner service to run. The scanner service enables a
hard copy document placed on a scanner by the user to
be scanned at a default resolution, in this example
300 DPI, and to provide output data with an ID "image"
for input into the "convert" service. The scanner
service does not require a user interface to run as
the parameters required for the scanning, e.g. scan
resolution are supplied by the task defaults. Once
the task manager determines that the scanner service
has provided the output data, then the task manager 14
requests the operations controller 11 to cause the
user interface service "OCR Email UI" to be run and
downloaded to the client device to enable input of the
data required from the wuser for the remaining
services. Once the task manager 14 has determined
that the user has input the necessary information, in
this case whether the user wants to send an OCRed
version of the document to the email recipient, and/or
send it in a PDF file which has been converted from
the image, then the task manager 14 requests the
operations controller 11 to run either the "convert®
service, or the "OCR" service, or both. Once the task
manager 14 determines that the "convert" and "OCR"
services have completed their operations, if required,

then the task manager 14 requests the operations

10

15

20

25

46
controller 11 to cause the email service to run so as
to enable the document to be emailed to the intended

recipient.

As will be appreciated from Appendix 2 the operations
controller 11 and task manager 14 coordinate carrying
out of the task so that each service is called as and
when required and provides output data for a target
service with a given target service ID and target

input ID.

The service discoverer 12 may discover services only
upon instruction by the operations controller. As
another possibility, the service discoverer 12 may be
configured to check continually for new services on
the system and to alert the operations controller 11
whenever new services are discovered. This would have
the advantage that all services discoverable on the
network would be immediately available to the task
manager. However, where the network provides a large
number of services, then this would require
significant memory capacity to retain the descriptions
of all of these services and may not be desirable
where the controller has limited resources. Of

course, one or more of the controllers on the network

10

15

20

25

477
may be configured to discover services only upon
request while one or more others of the controllers on
the network may be configured continually to discover
services, dependent upon the capabilities and

requirements of the controllers.

In the described example, the user interfaces with the
system via a single client device. As set out above,
it may in some circumstances be desirable for the task
to be portable within the network system. This may be
achieved by storing the task in a data structure known
as a context, for example an XML-based context which
can be transferred to another controller or client
device that may even use a different operating system
and language without the requirement for translation

of the context.

Thus, although not shown in Appendix 2, the task
manager 14 may configure the task so as to enable the
history of the task and the data associated with the
current status of the task to be stored in an XML
context so that once a service has run, the task may
be stored with the data resulting from the running of
that service so that it can, if required by the user,

then be transferred to another controller or client

10

15

48

device that can control the carrying out of the next

service.

In the embodiments described above, the service
discoverer uses a plug-in architecture. Although this
has advantages for the reasons set out above, the
service discoverer 12 may also be implemented as a
dedicated service discoverer capable of discovering
only services operating with certain protocols.
Similarly, in the embodiments described above, the
task manager is implemented as a module which can be
replaced or upgraded as required. Although this has
advantages ag set out above, it should also be
possible to integrate the task manager within the
operations controller, although this would make
upgrading or replacing of the task manager more

difficult.

10

15

20

25

30

35

40

45

49

APPENDIX 1

EXAMPLE SERVICE DESCRIPTION

<?xml version="1.0" encoding="UTF-8" ?>

<CIAServiceGroup>

<CIAService name="WebGalleryService" type="Synthesize"
GUID="4f1d0d:fbee5bda43:-7ff2">

<URI>class:WebGalleryService.jar:com.canon.cre.cia.services.webgall
ery.WebGalleryService</URI>
<Description>
<Icon type="mime" format="image/png">iVBOR... QmCC</Icon>
<Info lang="en" name="Web Gallery">This Service creates a web gallery
from a series of images</Info>
<Info lang="fr"
name="Galerie Web">Ce service crée un galerie web d'une serie
d'images</Info>
</Description>
<Inputs>
<Input id="image" type="mime" format="image/jpeg" multiple="true"
required="true" />
</Inputs>
<Outputs>
<Output id="html" type="mime" format="text/html" multiple="true" />
<Output id="fullImage" type="mime" format="image/jpeg” muitiple="true"
/>
<Output id="thumbImage" type="mime" format="image/jpeg"
multiple="true" />
</Outputs>
<Parameters>
<Parameter id="title" type="simple" format="string" />
<Parameter id="thumbsPerRow" type="simple" format="int" />
<Parameter id="thumbWidth" type="simple" format="int" />
<Parameter id="thumbHeight" type="simple" format="int" />
<Parameter id="webFileName" type="simple" format="string" />
<Parameter id="webImagesDirectory" type="simple" format="string" />
<Parameter id="webThumbPrefix" type="simple" format="string" />
</Parameters>
</ClIAService>
<CIAUIService name="WebGalleryUI" type="SynthesizeUI"
GUID="4f1d0d:fbee5bda43:-7ff1">
<Service name="WebGalleryService" />
<UILanguage name="java" />
</CIAUIService>
</CIAServiceGroup>

10

15

20

25

30

35

40

45

50
APPENDIX 2

EXAMPLE TASK DESCRIPTION

<?xml version="1.0" encoding="UTF-8" ?>

- <!__

UTF-8 Chars: Il
-—->

<CIATask name="SendOCR">

<Device name="iR" />

<Output uri="address" id="address" type="simple" format="string" />

<Description>

<Info lang="en" hame="AddressBook" />
</Description>

<Description id="email">

<Icon uri="scan.png" />

<Info lang="en" name="Scanned Document">Scan a document and sends
via email</Info>

<Info lang="fr"
name="Email le document">Scanner un document et envoyer par email</Info>
</Description>

<Description id="scan">

<Icon uri="email.png" />

<Info lang="en" name="Email Document">Scan a document and sends via
email</Info>

<Info lang="fr" name="Email le document”>Scanner un document et envoyer
par email</Info>

</Description>

<Service id="address" name="OpenAddressBook" type="ContactOutput">
<Output id="address" required="true" multiple="true"
targetServicelD="service0" targetinputID="address" />
</Service>
<Service id="service2" nhame="ScannerService" type="Scanner">
<Parameter id="resolution" type="simple" format="int">300</Parameter>
<Output id="image" required="true" multiple="true"
targetServiceID="convert" targetInputID="inputData" />
<Output id="image" required="true" multiple="true"
targetServiceID="servicel" targetInputID="image" />
</Service>
<Service id="convert" name="ConvertToPDFService" type="Convert">
<Input id="inputData" required="true" multiple="false" />
<Output id="outputData" required="true" multiple="true"
targetServiceID="service0" targetInputID="attachments" />
</Service>

- <Service id="service0" name="EmailService" type="Email">

<Parameter id="subject" type="simple" format="string">Document from
%fullname%o </Parameter>

<Input id="subject" required="false" multiple="false" />

<Input id="body" required="false" multiple="false" />

51

<Input id="address" required="true"” muitiple="true" />
<Input id="attachments" required="false" multiple="true" />

</Service>
- <Service id="servicel" name="OcrService" type="Ocr">
5 <Input id="image" required="true" multiple="true" />

<Output id="text" required="true" multiple="true"
targetServiceID="service0" targetInputlD="body" />
</Service>
= <UI name="0OCREmailUI1">
10 <Service id="service0" />
<Service id="servicel" />
<Service id="convert" />

</UI>
- <UI name="AddressBookUI">
15 <Service id="address" />
</UI>

</CIATask>

10

15

20

25

52

CLAIMS

1. Apparatus connectable to a network for enabling
the carrying out of task for a user, the apparatus
comprising:

a service discover operable to discover services at
locations on the network;

a task manager operable to control the carrying out of
tasks using services discovered by the services
discoverer;

a operations controller operable to control operations
related to services; and

a service publisher operable, as a result of a
discovery of a service by the service discoverer, to
make that service discoverable by other apparatus

connected to the network.

2. Apparatus according to claim 1, wherein the
operations controller is operable to receive requests
for the running of services, to determine whether the
requested service is a service local to the apparatus
that the operations controller can run and, if not, to
pass the request for the running of the service onto
the location on the network at which the service

discoverer discovered the service.

10

15

20

25

53

3. Apparatus according to c¢laim 2, wherein the
operations controller is configured to receive
requests for the running of services from the task
manager and from other apparatus connected to the

network.

4. Apparatus according to claim 2 or 3, wherein the
operations controller is operable to determine whether
or not a request for a service to be run can be
executed or passed onto to the location on the network
at which the service discoverer discovered the service
in accordance with at least one security rating
associated with the at least one of the user and the

requesting apparatus or task manager.

5. Apparatus according to claim 4, wherein the
operations controller is configured to use different
security ratings for requests from the task manager
and requests from other apparatus for a service to be

run.

6. Apparatus according to «c¢laim 4, wherein the
operations controller is configured to implement
different security restrictions depending upon whether

the user is 1local to the apparatus or whether a

10

15

20

25

54

service is being requested by another apparatus.

7. Apparatus according to any of the preceding
claims, wherein the service publisher is configured to
store a list of service descriptions each defining a
function or functions implemented by the corresponding

service.

8. Apparatus according to any of claims 1 to &6,
wherein the operations controller is configured to
receive and store for services discovered by the
service discoverer service descriptions with each
service description defining a function or functions

implemented by the corresponding service.

9. Apparatus according to claim 7 or 8, wherein the
service publisher is configured to store a list of the
service descriptions discovered by the service

discoverer.

10. Apparatus according to any of claims 7 to 9,
wherein each stored service description includes at
least a service name, a description of the function of
the service, and input, output and parameter data

required by the service.

10

15

20

25

55

11. Apparatus according to any preceding claim,
wherein the task manager is operable to select a
service from a number of different discovered services
that can perform the same function on the basis of

predetermined criteria.

12. Apparatus according to any of claims 1 to 10,
wherein the task manager is operable to select a
service from a number of different discovered services
that can perform the same function on the basis of at
least one of the following criteria: an indication of
the location on the network of the service; a rating
system; a required processing time; a current status
of the services; a service running cost; a service

quality; and a user recommendation.

13. Apparatus according to any preceding claim,
wherein, in the event that the same service is
discovered more than once by the service discoverer by
different routes over the network, the operations
controller is operable to store information related to
each of the routes to the service to enable the
operations controller to access the service by a

different route.

10

15

20

25

56
14. Apparatus according to claim 13, wherein the
operations controller is operable to select another
route to a service in the event that the same service
is discovered more than once by the service discoverer
by different routes over the network and a request via

one of the routes to run the service fails.

15. Apparatus according to any preceding claim,
wherein, upon discovery of a service, the apparatus is
operable to increment a hop count associated with that
service and indicating the number of steps from one
apparatus to another over the network to the location

of the service.

lé. Apparatus according to any of claims 7 to 10,
wherein, upon discovery of a service, the apparatus is
operable to increment a hop count indicating the
number of steps from one apparatus to another over the
network to the location of the service, wherein the
service descriptions are associated with route
information that indicates the route taken over the
network from the service location to the apparatus and
wherein the event that the service discoverer
discovers a service more than once, the operations

controller is operable to select a route on the basis

10

15

20

25

57

of the associated hop count.

17. Apparatus according to any preceding claim,
wherein the service discoverer has a plug-in
architecture and comprises a service discovery manager
and a number of service discovery plug-in modules with
different service discovery plug-in modules being
arranged to discover services that use different

protocols.

18. Apparatus according to «claim 17, wherein one
service discovery plug-in module is configured to
discover Web services, another service discovery plug-
in module is configured to discover JINﬁTZervices and

another service discovery plug-in module is configured

to discover local services.

19. Apparatus according to any of the preceding
claims, wherein the task manager is configured to
provide a task so that the task can be stored in an

incomplete form and transferred to another apparatus.

20. Apparatus according to claim 19, wherein the task
manager 1is configured to store a current state of a

task and data associated with the task in a context,

10

15

20

25

58

for example an XML context, which can be passed

between apparatus.

21. Apparatus according to any of the preceding
claims, wherein the operation controller 11 is
operable to filter out services that cannot be used by
a client device or client devices coupled to the

apparatus.

22. Apparatus according to any preceding claim in
combination with at least one client device via which

a user can interface with the apparatus.

23. Apparatus according to any preceding claim in
combination with storage means storing at least one

service.

24. A network system apparatus comprising a plurality
of apparatus in accordance with any of claims 1 to 20,
at least one «client device associated with each
apparatus, and a plurality of service storage means
storing services, at least some of the apparatus being
directly connectable to the network and at least one
apparatus being connectable to the network via another

apparatus and at least some of the service storage

10

15

20

25

59

means being connected to the network only via an

apparatus in accordance with any of claims 1 to 20.

25. Apparatus according to claim 23 or 24, wherein
the services stored by the service storage means have

a common application programming interface.

26. Apparatus according to claim 23, 24 or 25,
wherein the services include input services, output

services, and processing services.

27. Apparatus according to claim 23, 24 or 25,
wherein the services include input services, output
services, processing services and user interface

services.

28. Apparatus according to any of claims 23 to 27,
wherein at least some services have subsidiary

services.

29. Apparatus according to any of claims 23 to 28,
wherein at least some services have default values for
parameters and the task manager 1is configured to
enable a default value to be provided for a task that

overrides a service default value.

10

15

20

25

60

30. Apparatus according to claim 27, wherein at least
one of some services and some tasks have default
values for at least one parameter and at least one
user interface service is configured to enable a user
to specify a value for a parameter that overrides the

default value.

31. A method of enabling the carrying out of task for
a user, the method comprising apparatus carrying out
the steps of:

discovering services at locations on the network;

controlling the carrying out of tasks wusing
discovered services; and

as a result of the said discoverey making
discovered services discoverable by other apparatus

connected to the network.

32. A method according to claim 31, further
comprising the apparatus carrying out the steps of
receiving requests for the running of services,
determining whether the requested service is a service
local to the apparatus that can be run and, if not,
passing the request for the running of the service
onto the location on the network at which the service

was discovered.

10

15

20

25

61

33. A method according to claim 31 wherein requests
for the running of services are received from a task
manager of the apparatus and from other apparatus

connected to the network.

34. A method according to c¢laim 32 or 33, further
comprising the apparatus carrying out the steps of
determining, in accordance with at least one security
rating associated with the at least one of the user
and the requesting apparatus or task manager, whether
or not a request for a service to be run can be
executed or passed onto to the location on the network

at which the service was discovered.

35. A method according to claim 34, wherein different
security ratings are used for requests from a task
manager of the apparatus and requests from other

apparatus for a service to be run.

36. A method according to claim 34, wherein different
security restrictions are implemented depending upon
whether the user is local to the apparatus or whether

a service is being requested by another apparatus.

10

15

20

25

62

37. A method according to any of claims 31 to 36,
further comprising the apparatus storing a list of
service descriptions each defining a function or

functions implemented by the corresponding service.

38. A method according to any of claims 31 to 36,
further comprising the apparatus receiving and storing
for discovered services service descriptions with each
service description defining a function or functions

implemented by the corresponding service.

39. A method according to claims 37 or 38, wherein
each stored service description includes at least a
service name, a description of the function of the
service, and input, output and parameter data required

by the service.

40. A method according to any of claims 31 to 39,
wherein the apparatus selects a service from a number
of different discovered services that can perform the

same function on the basis of predetermined criteria.

41. A method according to any of claims 31 to 39,
wherein the apparatus selects a service from a number

of different discovered services that can perform the

10

15

20

25

63

same function on the basis of at least one of the
following criteria: an indication of the location on
the network of the service; a rating system; a
required processing time; a current status of the
services; a service running cost; a service quality;

and a user recommendation.

42. A method according to any of claims 31 to 39,
wherein, in the event that the same service 1is
discovered more than once by different routes over the
network, the apparatus stores information related to
each of the routes to the service to enable the

service to be accessed by a different route.

43. A method according to claim 42, wherein the
apparatus selects another route to a service in the
event that the same service is discovered more than
once by different routes over the network and a
request via one of the routes to run the service

fails.

44. A method according to any of claims 31 to 43,
wherein, upon discovery of a service, the apparatus
increments a hop count indicating the number of steps

from one apparatus to another over the network to the

10

15

20

25

64

location of the service.

45. A method according to any of claims 37 to 39,
wherein, upon discovery of a service, the apparatus
increments a hop count indicating the number of steps
from one apparatus to another over the network to the
location of the service, wherein the service
descriptions are associated with route information
that indicates the route taken over the network from
the service location to the apparatus and wherein, in
the event that a service is discovered more than once,
the apparatus selects a route on the basis of the

associated hop count.

46. A method according to any of claims 31 to 45,
wherein the apparatus uses plug-in service discovery
architecture and different service discovery plug-in
modules discover services that use different

protocols.

47. A method according to «c¢laim 46, wherein one

service discovery plug-in module discovers Web

services, another service discovery plug-in module
W

discovers JINI, services and another service discovery

plug-in module discovers local services.

10

15

20

25

65

48. A method according to any of claims 31 to 47,
wherein the apparatus configures a task so that the
task can be stored in an incomplete form and

transferred to another apparatus.

49. A method according to c¢laim 48, wherein the
apparatus stores a current state of a task and data
associated with the task in a context, for example an

XML context, which can be passed between apparatus.

50. A method according to any of claims 31 to 49,
wherein the services have a common application

programming interface (API).

51. A method according to any of claims 31 to 50,
wherein the services include input services, output

services, and processing services.

52. A method according to any of claims 31 to 51,
wherein the services include input services, output
services, processing services and wuser interface

services.

53. A method according to any of claims 31 to 52,

10

15

20

25

66

wherein at least some services have subsidiary

services.

54. A method according to any of claims 31 to 53
wherein at least some services have default values for
parameters and the apparatus enables a default wvalue
to be provided for a task that overrides a service

default wvalue.

55. A method according to claim 52, wherein at least
one of some services and some tasks have default
values for at least one parameter and at least one
user interface service enables a user to specify a
value for a parameter that overrides the default

value.

56. A method according to any of claims 31 to 55,
further comprising the apparatus filtering out
services that cannot be used by a client device or

client devices coupled to the controller.

57. A computer program product comprising program
instructions for programming a processor to carry out

a method in accordance with any of claims 31 to 56.

67

58. A storage medium storing program instructions for
programming a processor to carry out a method in

accordance with any of claims 31 to 56.

&Q' - =
F e The %

Patent if ¥
A : LY

INVESTOR IN PEOPLE

/!I o T \LP\\’
Application No: GB0417101.3 Examiner: Mr David Maskery
Claims searched: 1-58 Date of search: 23 November 2004

Patents Act 1977: Search Report under Section 17

Documents considered to be relevant:

Category|Relevant | Identity of document and passage or figure of particular relevance
to claims

X 1 and 31 | WO 2004/027610 A2
at least | (IBM) See whole document.

X 1 and 31 | EP 1276047 A2
atleast | (SUN MICROSYSTEMS) See whole document.

X 1 and 31 | EP 1262869 Al
atleast | (SONY) See whole document.

X 1 and 31 | US 5655081 B
atleast | (BMC SOFTWARE) See whole document.

X 1 and 31 | JP 2004199300 A
at least | (HITACHI) See PAJ abstract.

X 1 and 31 | US 6549932 B1
at least | (IBM) See whole document.

X 1 and 31 | WO 00/77618 A2
at least | (SUN MICROSYSTEMS) See whole document.

Categories:

X Document indicating lack of novelty or inventive A Document indicating technological background and/or state
step of the art.

Y Document indicating lack of inventive step 1f P Document published on or after the declared prionty date but
combined with one or more other documents of before the filing date of this invention
same category

& Member of the same patent family E Patent document published on or after, but with priority date

carlier than, the filing date of this application.
Field of Search:

Search of GB, EP, WO & US patent documents classified in the following areas of the UKCW :

| G4A |
Worldwide search of patent documents classified in the following areas of the pC”’

[GOGF |

The following online and other databases have been used 1n the preparation of this search report

| EPODOC, JAPIO, WPL. |

An Executive Agency of the Department of Trade and Industry

	Abstract
	Bibliographic
	Drawings
	Description
	Claims
	Search_Report

