发明名称
一种水性无机富锌涂料及其制备方法

摘要
本发明提供一种水性无机富锌涂料及其制备方法，该涂料包括如下原料：锌粉、碱金属硅酸盐、醋丙乳液、蒙脱土、分散剂、消泡剂、增稠剂、稳定剂和水。制备方法：按重量份称取各原料，将硅酸盐倒入带有搅拌装置的容器中，加入水，搅拌，得到混合均匀的硅酸盐溶液，备用；向硅酸盐溶液中滴加醋丙乳液，搅拌，加入除铁粉外的其他原料，继续搅拌，取滤网将沉淀滤去得到基料；向基料中加入锌粉，搅拌，即得水性无机富锌涂料。本发明制得的水性无机富锌涂料干燥时间短，耐盐雾，耐热，耐冲击，附着力均达0级，漆膜柔韧性1mm，相对于普通富锌涂料增强了涂料的柔韧性和致密性，大大提高了涂料的耐腐蚀性能和机械性能。
1. 一种水性无机富锌涂料，其特征在于，按照重量份数计，由以下原料配制而成：锌粉 65~75 份，碱金属硅酸盐 8~12 份，醋丙乳液 10~20 份，蒙脱土 10~15 份，分散剂 0.5~1 份，消泡剂 0.5~1 份，增稠剂 0.3~0.8 份，稳定剂 1~2 份，水 12~20 份。

2. 根据权利要求 1 所述的一种水性无机富锌涂料，其特征在于，所述锌粉的粒径为 500~1000 目。

3. 根据权利要求 1 所述的一种水性无机富锌涂料，其特征在于，所述碱金属硅酸盐为硅酸钾和 / 或硅酸钠。

4. 根据权利要求 1 所述的一种水性无机富锌涂料，其特征在于，所述醋丙乳液为 A-171 改性醋丙乳液。

5. 根据权利要求 1 所述的一种水性无机富锌涂料，其特征在于，所述蒙脱土经过烷基铵盐改性，其细度大于 2000 目。

6. 根据权利要求 1 所述的一种水性无机富锌涂料，其特征在于，所述分散剂为聚丙烯酰胺、脂肪酸聚乙二醇酯、甲基戊醇中的一种或多种。

7. 根据权利要求 1 所述的一种水性无机富锌涂料，其特征在于，所述消泡剂为聚二甲基硅氧烷。

8. 根据权利要求 1 所述的一种水性无机富锌涂料，其特征在于，所述增稠剂为海藻酸钠、瓜胶或硅凝胶中的一种或多种。

9. 根据权利要求 1 所述的一种水性无机富锌涂料，其特征在于，所述稳定剂为 TEGO-1500N 型、628N 型和 DM-042 型稳定剂中的一种或多种。

10. 权利要求 1 所述的一种水性无机富锌涂料的制备方法，其特征在于，包括如下步骤：

 （1）按重量份数称取各原料，将硅酸盐倒入带有搅拌装置的容器中，加入水，以 500~700r/min 的转速搅拌 20~30min，得到混合均匀的硅酸盐溶液，备用；

 （2）在 2000~2500 r/min 的转速下，向步骤（1）制备的硅酸盐溶液中滴加醋丙乳液，搅拌 30~60min 后，加入除锌粉外的其余原料，继续搅拌 20~30min，取 200~500 目滤网将沉淀滤去得到基料；

 （3）向步骤（2）制得的基料中加入锌粉，在 1000~1500r/min 的转速下搅拌 30~60min，即得水性无机富锌涂料。
说明书

一种水性无机富锌涂料及其制备方法

技术领域
[0001]本发明涉及涂料领域，具体涉及一种水性无机富锌涂料及其制备方法。

背景技术
[0002]钢铁在现代建筑中的使用越来越多，由于其制造工艺简单、机械性能优异等特点，非常适合现代高层、跨度较大的建筑。大量使用钢铁的同时，腐蚀问题随之而来，每年因腐蚀造成的损失约占全球生产总值的5%左右。

[0003]涂布防腐蚀涂料是缓解腐蚀最有效的方法，且使用方便，价格便宜。防腐蚀涂料的品种繁多，较为常见的有富锌涂料，其耐腐蚀性、耐热性、耐用性都非常突出，通常作为防锈底漆使用。富锌涂料的成膜物质多种多样，据此可以将其分为无机型和有机型两类。无机富锌涂料与有机富锌涂料相比，耐腐蚀性更优异，施工也更安全。但是，现有的无机富锌涂料还存在着成膜性不好，机械性能差等问题。

[0004]中国专利CN14119708A公开了一种无机富锌防腐涂料，该无机富锌防腐涂料由如下重量份的原料组成：固体水玻璃18～25份、矿渣微粉10～15份、偏高岭土15～25份、纳米二氧化钛2～5份、纳米氧化锌1～5份、纳米二氧化硅1～5份、分散剂0.5～1份、消泡剂1.1～2.0、锌粉30～40份。该技术方案制得的无机富锌涂料成膜性差，不耐冲击。

[0005]中国专利CN14305041A公开了一种改性水性无机富锌涂料, 由复合粉末与水性无机粘结剂按重量比 (65～75):(35～25) 混合而成，复合粉末包括：金属锌粉40～70份；复合铁粘粉3～15份；防锈剂0～15份；水性无机粘结剂为硅酸锂粘结剂，包括：硅酸钙10～25份；硅溶胶60～75份；改性粘合剂10～15份；其他助剂0.6～3份，所述改性粘合剂为有机氟化物或有机硅改性的丙烯酸乳液。该技术方案制得的水性无机富锌涂料虽然机械性能优良，但配方中未采用纯锌粉，易出现闪锈的问题。

发明内容
[0006]基于上述信息，本发明的目的在于提供一种机械性能优良，耐腐蚀且易于加工的水性无机富锌涂料及其制备方法。

[0007]本发明的制备方法如下：

[0008]一种水性无机富锌涂料，由以下重量份数计：锌粉65～75份，碱金属硅酸盐8～12份，醋丙乳液10～20份，蒙脱土10～15份，分散剂0.5～1份，消泡剂0.5～1份，醇酸树脂0.3～0.8份，稳定剂1～2份，水12～20份。

[0009]所述锌粉的粒径为500～1000目。

[0010]所述碱金属硅酸盐为硅酸钾和/或硅酸钠。

[0011]所述醋丙乳液为A-171改性醋丙乳液。

[0012]所述蒙脱土经过烷基氨盐改性，其细度大于2000目。

[0013]所述分散剂为聚丙烯酰胺、脂肪酸聚乙二醇酯、甲基戊醇中的一种或多种。
所述消泡剂为聚丙二甲基硅氧烷。
所述增稠剂为海藻酸钠、羧胶或硅凝胶中的一种或多种。
所述稳定剂为 TEGO-1500N 型,628TM 型和 DM-042 型稳定剂中的一种或多种。
一种水性无机富锌涂料的制备方法，包括如下步骤：
(1) 按重量份数取各原料，将硅酸钾倒入带有搅拌装置的容器中，加入水，以 500 ～ 700r/min 的转速搅拌 20 ～ 30min，得到混合均匀的硅酸钾溶液，备用；
(2) 在 2000 ～ 2500r/min 的转速下，向步骤 (1) 制备的硅酸钾溶液中滴加醋酸乳液，搅拌 30 ～ 60min 后，加入除锌粉外的其余原料，继续搅拌 20 ～ 30min，取 200 ～ 500 目滤网将沉淀滤去得到基料；
(3) 向步骤 (2) 制得的基料中加入锌粉，在 1000 ～ 1500r/min 的转速下搅拌 30 ～ 60min，即得水性无机富锌涂料。
本发明利用醋酸乳液的优良的机械性能来改性富锌涂料，制得的水性无机富锌涂料干燥时间短，耐盐雾，耐热，耐冲击，附着力均达 0 级，漆膜柔韧性 1mm，相对于普通富锌涂料增强了涂料的柔韧性和致密性，大大提高了涂料的耐腐蚀性能和机械性能。

具体实施方式
以下对本发明的具体实施方式进行详细说明。
实施例 1
一种水性无机富锌涂料，按照重量份数计，由以下原料配制而成：锌粉 65 份，硅酸钾 8 份，A-171 改性醋酸乳液 10 份，蒙脱土 10 份，聚丙烯酰胺 0.5 份，聚二甲基硅氧烷 0.5 份，海藻酸钠 0.3 份，TEGO-1500N 型稳定剂 1 份，水 12 份。
制备方法包括如下步骤：
(1) 按重量份数取各原料，将硅酸钾倒入带有搅拌装置的容器中，加入水，以 500r/min 的转速搅拌 20min，得到混合均匀的硅酸钾溶液，备用；
(2) 在 2000r/min 的转速下，向步骤 (1) 制备的硅酸钾溶液中滴加 A-171 改性醋酸乳液，搅拌 30min 后，加入除锌粉外的其余原料，继续搅拌 20min，取 200 目滤网将沉淀滤去得到基料；
(3) 向步骤 (2) 制得的基料中加入锌粉，在 1000r/min 的转速下搅拌 30min，即得水性无机富锌涂料。
实施例 2
一种水性无机富锌涂料，按照重量份数计，由以下原料配制而成：锌粉 68 份，硅酸钾 9 份，A-171 改性醋酸乳液 12 份，蒙脱土 11 份，聚丙烯酰胺 0.6 份，聚二甲基硅氧烷 0.6 份，羧胶 0.5 份，TEGO-1500N 型稳定剂 1 份，水 14 份。
制备方法包括如下步骤：
(1) 按重量份数取各原料，将硅酸钾倒入带有搅拌装置的容器中，加入水，以 600r/min 的转速搅拌 25min，得到混合均匀的硅酸钾溶液，备用；
(2) 在 2000r/min 的转速下，向步骤 (1) 制备的硅酸钾溶液中滴加 A-171 改性醋酸乳液，搅拌 40min 后，加入除锌粉外的其余原料，继续搅拌 20min，取 200 目滤网将沉淀滤去得到基料；
(3) 向步骤 (2) 制得的基料中加入锌粉，在 1000r/min 的转速下搅拌 30min，即得水性无机富锌涂料。

实施例 3

(1) 按重量份数计，由以下原料配制而成：锌粉 70 份，硅酸钾 10 份，A-171 改性醋丙乳液 15 份，聚丙烯酰胺 0.8 份，聚二甲基硅氧烷 0.7 份，硅凝胶 0.6 份，TEGO-1500N 型稳定剂 1 份，水 16 份。

制备方法包括如下步骤：

(1) 按重量份数计取各原料，将硅酸钾倒入带有搅拌装置的容器中，加入水，以 700r/min 的转速搅拌 25min，得到混合均匀的硅酸盐溶液，备用；

(2) 在 2500r/min 的转速下，向步骤 (1) 制备的硅酸钾溶液中滴加 A-171 改性醋丙乳液，搅拌 50min 后，加入除锌粉外的其余原料，继续搅拌 25min，取 400 目滤网将沉淀滤去得到基料；

(3) 向步骤 (2) 制得的基料中加入锌粉，在 1500r/min 的转速下搅拌 30min，即得水性无机富锌涂料。

实施例 4

(1) 按重量份数计，由以下原料配制而成：锌粉 73 份，硅酸钠 11 份，A-171 改性醋丙乳液 17 份，聚脱土 14 份，脂肪酸聚乙二醇酯 0.9 份，聚二甲基硅氧烷 0.9 份，海藻酸钠 0.7 份，628H 型稳定剂 2 份，水 18 份。

制备方法包括如下步骤：

(1) 按重量份数计取各原料，将硅酸钠倒入带有搅拌装置的容器中，加入水，以 700r/min 的转速搅拌 20min，得到混合均匀的硅酸盐溶液，备用；

(2) 在 2500r/min 的转速下，向步骤 (1) 制备的硅酸钠溶液中滴加 A-171 改性醋丙乳液，搅拌 60min 后，加入除锌粉外的其余原料，继续搅拌 30min，取 500 目滤网将沉淀滤去得到基料；

(3) 向步骤 (2) 制得的基料中加入锌粉，在 1500r/min 的转速下搅拌 60min，即得水性无机富锌涂料。

实施例 5

(1) 按重量份数计，由以下原料配制而成：锌粉 75 份，硅酸钠 12 份，A-171 改性醋丙乳液 20 份，聚脱土 15 份，甲基戊醇 1 份，聚二甲基硅氧烷 1 份，海藻酸钠 0.8 份，DM-042 型稳定剂 2 份，水 20 份。

制备方法包括如下步骤：

(1) 按重量份数计取各原料，将硅酸钠倒入带有搅拌装置的容器中，加入水，以 600r/min 的转速搅拌 25min，得到混合均匀的硅酸盐溶液，备用；

(2) 在 2000r/min 的转速下，向步骤 (1) 制备的硅酸钠溶液中滴加 A-171 改性醋丙乳液，搅拌 60min 后，加入除锌粉外的其余原料，继续搅拌 30min，取 500 目滤网将沉淀滤去得到基料；

(3) 向步骤 (2) 制得的基料中加入锌粉，在 1500r/min 的转速下搅拌 30min，即得水性无机富锌涂料。

性能测试结果见表 1：
[0054] 表 1 水性无机富锌涂料质量指标

<table>
<thead>
<tr>
<th>测试项目</th>
<th>实施例 1</th>
<th>实施例 2</th>
<th>实施例 3</th>
<th>实施例 4</th>
<th>实施例 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>外观</td>
<td>漆膜完整光滑，呈灰色</td>
<td>漆膜完整光滑，呈灰色</td>
<td>漆膜完整光滑，呈灰色</td>
<td>漆膜完整光滑，呈灰色</td>
<td>漆膜完整光滑，呈灰色</td>
</tr>
<tr>
<td>表干时间 (min)</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>实干时间 (h)</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>附着力</td>
<td>0 级</td>
<td>0 级</td>
<td>0 级</td>
<td>0 级</td>
<td>0 级</td>
</tr>
<tr>
<td>柔韧性 (mm)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>耐冲击性</td>
<td>通过</td>
<td>通过</td>
<td>通过</td>
<td>通过</td>
<td>通过</td>
</tr>
</tbody>
</table>

[0056] （50cm）

<table>
<thead>
<tr>
<th>耐盐雾 (2400h)</th>
<th>无气泡，无剥落，无锈蚀</th>
<th>无气泡，无剥落，无锈蚀</th>
<th>无气泡，无剥落，无锈蚀</th>
<th>无气泡，无剥落，无锈蚀</th>
<th>无气泡，无剥落，无锈蚀</th>
</tr>
</thead>
<tbody>
<tr>
<td>耐热性 (400℃，24h)</td>
<td>无变化</td>
<td>无变化</td>
<td>无变化</td>
<td>无变化</td>
<td>无变化</td>
</tr>
</tbody>
</table>

[0057] 从上表结果可以看出，本发明的水性无机富锌涂料机械性能优异，易于加工，且耐腐蚀性高，适于严苛条件下使用。

[0058] 尽管本发明的实施方案已公开如上，但其并不仅仅限于说明书和实施方式中所列运用，它完全可以被适用于各种适合本发明的领域，对于熟悉本领域的人而言，可容易地实现另外的修改，因此在不背离权利要求及等同范围所限定的一般概念下，本发明并不限于特定的细节。