
(12) STANDARD PATENT (11) Application No. AU 2014274491 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title
FAULT TOLERANT BATCH PROCESSING

(51) International Patent Classification(s)
G06F 11/00 (2006.01)

(21) Application No: 2014274491 (22) Date of Filing: 2014.12.08

(43) Publication Date: 2015.01.15
(43) Publication Journal Date: 2015.01.15
(44) Accepted Journal Date: 2017.01.05

(62) Divisional of:
2010273531

(71) Applicant(s)
Ab Initio Technology LLC

(72) Inventor(s)
Douros, Bryan Phil;Atterbury, Matthew Darcy;Wakeling, Tim

(74) Agent / Attorney
Pizzeys Patent and Trade Mark Attorneys Pty Ltd, PO Box 291, WODEN, ACT, 2606

(56) Related Art
US 2001/0042224
US 2008/0005227
US 2008/0294937

ABSTRACT

Processing a batch of input data includes reading the batch including multiple

records and passing the batch through a dataflow graph. At least one but fewer than

all of the graph components includes a checkpoint process for an action performed for

each of multiple units of work associated with one or more of the records. The

checkpoint process includes opening a checkpoint buffer at the start of processing

(207, 208). If a result from performing the action for a unit of work was previously

saved in the checkpoint buffer (225), the saved result is used to complete processing

(250) of the unit of work without performing the action again. If a result from

performing the action for the unit of work is not saved in the checkpoint buffer, the

action is performed (230) to complete processing of the unit of work and the result

from performing the action is saved (240) in the checkpoint buffer.

WO 2011/008734 PCT/US2O1O/0-41791

4/4

HZ

C0

,It C.!

C) Z

, 00
H

Z 0 -E

0 L
C)

FAULT TOLERANT BATCH PROCESSING

TECHNICAL FIELD

This description relates to processing batches of data in a fault tolerant

manner.

5 BACKGROUND

Complex computations can often be expressed a directed graph (called a

"dataflow graph"), with components of the computation being associated with the

nodes (or vertices) of the graph and data flows between the components

corresponding to links (or arcs, edges) between the nodes of the graph. The

10 components include data processing components that process the data and

components that act as a source or sink of the data flows. The data processing

components form a pipelined system that can process data in multiple stages

concurrently. A system that implements such graph-based computations is described

in U.S. Patent 5,966,072, EXECUTING COMPUTATIONS EXPRESSED AS

15 GRAPHS. In some cases, a graph-based computation is configured to receive a flow

of input data and process the continuous flow of data to provide results from one or

more of the components indefinitely until the computation is shut down. In some

cases, a graph-based computation is configured to receive a batch of input data and

process the batch of data to provide results for that batch, and then shut down or

20 return to an idle state after the batch has been processed.

SUMMARY

In one aspect, in general, a method for processing a batch of input data in a

fault tolerant manner includes: reading a batch of input data including a plurality of

records from one or more data sources; and passing the batch through a dataflow

25 graph including two or more nodes representing components connected by links

representing flows of data between the components, wherein at least one but fewer

than all of the components includes a checkpoint process for an action performed for

each of multiple units of work associated with one or more of the records. The

checkpoint process includes: opening a checkpoint buffer stored in non-volatile

30 memory at the start of processing for the batch; and for each unit of work from the

batch, if a result from performing the action for the unit of work was previously saved

- 1-

in the checkpoint buffer, using the saved result to complete processing of the unit of

work without performing the action again, or if a result from performing the action for

the unit of work is not saved in the checkpoint buffer, performing the action to

complete processing of the unit of work and saving the result from performing the

5 action in the checkpoint buffer.

Aspects can include one or more of the following features.

The action includes communicating with a remote server.

The result from performing the action includes information from

communication with the remote server for the unit of work.

10 The method further includes deleting the checkpoint buffer when the

processing of the batch is complete.

Communications with the remote server are tolled.

The results of communications with the remote server are stored in volatile

memory and saved to the checkpoint buffer in groups upon the occurrence of trigger

15 events.

The trigger event is a signal from a checkpoint manager.

The trigger event is the processing of a number of records since the last write

to the checkpoint buffer.

The trigger event is the elapse of a period of time since the last write to the

20 checkpoint buffer.

A component that includes the checkpoint process runs on a plurality of

processing devices in parallel.

The allocation of data records among the plurality of parallel processing

devices is consistent between runs of the of the batch and each processing device

25 maintains a independent checkpoint buffer.

The allocation of data records among the plurality of parallel processing

devices is dynamic and the processing devices share access to a single checkpoint

buffer stored in shared non-volatile memory with writes to the checkpoint buffer

controlled by a checkpoint manager.

30 The method further includes restarting all the components in the dataflow

graph after a fault condition has occurred; reading the batch of input data including a

plurality of records from one or more data sources; and passing the entire batch

through the dataflow graph.

The action includes communicating with a remote server.

- 2-

In another aspect, in general, a computer-readable medium stores a computer

program for processing a batch of input data in a fault tolerant manner. The computer

program includes instructions for causing a computer to: read a batch of input data

including a plurality of records from one or more data sources; and pass the batch

5 through a dataflow graph including two or more nodes representing components

connected by links representing flows of data between the components, wherein at

least one but fewer than all of the components includes a checkpoint process for an

action performed for each of multiple units of work associated with one or more of

the records. The checkpoint process further includes: opening a checkpoint buffer

10 stored in non-volatile memory at the start of processing for the batch; and for each

unit of work from the batch, if a result from performing the action for the unit of work

was previously saved in the checkpoint buffer, using the saved result to complete

processing of the unit of work without performing the action again, or if a result from

performing the action for the unit of work is not saved in the checkpoint buffer,

15 performing the action to complete processing of the unit of work and saving the result

from performing the action in the checkpoint buffer.

In another aspect, in general, a system for processing a batch of input data in a

fault tolerant manner includes: means for receiving a batch of input data including a

plurality of records from one or more data sources; and means for passing the batch

20 through a dataflow graph including two or more nodes representing components

connected by links representing flows of data between the components, wherein at

least one but fewer than all of the components includes a checkpoint process for an

action performed for each of multiple units of work associated with one or more of

the records. The checkpoint process includes: opening a checkpoint buffer stored in

25 non-volatile memory at the start of processing for the batch; and for each unit of work

from the batch, if a result from performing the action for the unit of work was

previously saved in the checkpoint buffer, using the saved result to complete

processing of the unit of work without performing the action again, or if a result from

performing the action for the unit of work is not saved in the checkpoint buffer,

30 performing the action to complete processing of the unit of work and saving the result

from performing the action in the checkpoint buffer.

Aspects can include one or more of the following advantages:

The need for some checkpoint related communications between different components

in the dataflow graph can be obviated The repeat of complex or costly steps in multi

- 3-

step batch process during fault recovery can be selectively avoided without the

complexity and expense of implementing checkpointing of the entire pipelined

system. For example, this method may be used to save money by avoiding repeated

calls to a tolled service.

5 Other features and advantages of the invention will become apparent from the

following description, and from the claims.

DESCRIPTION OF DRAWINGS

FIG. 1 is a block diagram of a batch data processing system with input/output

checkpointing.

10 FIG. 2 is a flowchart of a checkpoint process.

FIG. 3 is a block diagram of a batch data processing system with input/output

checkpointing with parallelism.

FIG. 4 is a block diagram of a batch data processing system with input/output

checkpointing with parallelism and a checkpoint manager.

15 DESCRIPTION

A graph-based data processing system can be configured to process a batch of

input data in a fault tolerant manner including saving the intermediate results of one

component in a dataflow graph to a buffer from which they can be retrieved and

reused in the event that a fault condition forces a restart of the processing of a batch of

20 input data.

Fig. 1 is a block diagram of an exemplary data processing system100. Data is

passed through a sequence of data processing components of a dataflow graph that

processes a flow of data from one or more data sources to one or more data sinks.

Any of the various data processing components in the dataflow graph can be

25 implemented by processes running on separate processing devices, or multiple data

processing components may be implemented by one or more processes running on a

single processing device. Data may be processed in batches that identify a set of input

data records to be processed by the system 100.

The processing of a batch of data by the system 100 may be initiated by user

30 input or some other event, such as the expiration of a timer. When processing of a

batch of data is started, input data records are read from one or more input data

sources. For example, the input data may be read from one or more files stored on a

- 4-

computer-readable storage device, such as represented by data storage component

110. Input data records may also be read from a database running on a server, such as

represented by data storage component 112. A join component 120 reads data (e.g.,

records) from multiple data sources in a sequence and arranges the input data into a

5 sequence of discrete work units. The work units may represent records stored in a

predetermined format based on input records, for example, or may represent

transactions to be processed, for example. In some implementations, each work unit

may be identified by a number that is unique within the batch, such as a count of work

units processed. The work units are then passed in sequence to the next component in

10 the dataflow graph.

The exemplary dataflow graph implementing the system 100 also includes

data processing components 130 and 140. The data processing component 130

includes a checkpoint process, which regularly saves state information about its

processing to non-volatile memory during the course of batch processing. When a

15 fault condition occurs and a batch must be restarted, the checkpointed component 130

accesses the stored state information to reduce the amount of processing that must be

repeated during a repeat run of the batch. Thus, checkpointing provides fault

tolerance at the cost of using the non-volatile memory resource and adding

complexity to the data processing component 130. The data processing component

20 140 is a component without checkpointing. Other dataflow graphs could include

more or fewer data processing components. As many of the data processing

components as necessary may be configured to include checkpoint processes.

Typically, components with high costs in terms of delay or some other metric are

configured to include checkpoint processes, so that in the event of a fault condition,

25 the high cost processing steps in the system 100 need not be repeated for all work

units in the batch.

The data processing component 130 includes the step of accessing a remote

server 150. For each work unit processed, the first processing component 130 will

send a request to the remote server 150 and receive a result (e.g., data from a

30 database) from the remote server. Such an operation can be costly for various reasons

including network delays experienced in communicating with the remote server or

tolling of services provided by the remote server. After receiving the result, the

component 130 generates output for the next data processing component 140. Since

this component 130 has been configured to include a checkpoint process, it saves the

- 5-

results from the remote server 150 as part of the processing state information before

completing processing by passing the output for the work unit to the next data

processing component 140 and starting processing of the next work unit. The

processing state information may be temporarily stored in volatile memory on the

5 processing device running the checkpoint process. At regular times the processing

state information for one or more work units is written to a checkpoint buffer stored in

non-volatile memory, so that it will be available later in the event of a fault condition.

As work units make their way through the data processing components of the

dataflow graph, the final results associated with each work unit are transferred to a

10 data sink 160. The work units can be transferred individually, or in some

implementations the work units can be used to incrementally update a final result, or

can be accumulated (e.g., in a queue), before the final results are transferred to the

data sink 160. The data sink 160 can be a data storage component that stores the work

units or some accumulated output based on the work units, for example, or the data

15 sink 160 can be a queue to which the work units are published, or some other type of

sink for receiving the final results. The batch processing ends when the results for all

work units in the batch have been transferred to the data sink 160. At this point, the

components in the dataflow graph may be terminated. A checkpoint process

associated with a checkpointed component may delete its checkpoint buffer as part of

20 its termination routine.

Fig. 2 is a flowchart of an exemplary process 200 for checkpointing a

checkpointed component. The process 200 starts up 201, for example, upon an

external call from software implementing batch processing through a dataflow graph.

Start-up may include allocating volatile memory for the process 200 on the processing

25 device that the checkpointed component runs on and reserving any other required

resources. The process 200 next checks 205 whether a checkpoint buffer associated

with this process already is saved in non-volatile memory. If no checkpoint buffer

exists, a new checkpoint buffer is created 207 in non-volatile memory. If a

checkpoint buffer was previously stored, it is opened 208. Opening 208 the

30 checkpoint buffer may include finding the location of the checkpoint buffer in non

volatile memory or possibly copying all or part the checkpoint buffer to volatile

memory on the processing device.

At the beginning of a loop for handling each work unit, input data associated

with a work unit is received 210 from a previous component in the dataflow graph or

- 6-

from a source. Pre-processing 220 is optionally performed for the work unit. Pre

processing 220 may include, for example, reformatting a data record or determining a

value that may be used to search the checkpoint buffer for a result associated with the

work unit. The checkpoint buffer of the checkpoint process 200 is checked 225 to

5 determine if the result for this work unit is stored in the checkpoint buffer (e.g., from

a previous processing of the batch that was interrupted).

If the associated result is not stored in the checkpoint buffer, processing

including a costly action 230 is performed for the work unit. An example of a costly

action could include accessing resources on a remote server across a network and

10 incurring significant delay or tolling charges. The results of this processing are then

stored 240 in the checkpoint buffer. The results can be associated with the work unit

being processed using an incrementing counter, for example, that identifies the work

unit and its associated result by the same counter value. The results may be written

directly to non-volatile memory, or may be temporarily buffered in volatile memory

15 until a triggering event causes it to be copied to non-volatile memory. Exemplary

triggering events include processing a fixed number of work units, an elapsed period

of time, or a signal from an external process.

If the associated result is stored in the checkpoint buffer, the result is retrieved

250 from the checkpoint buffer.

20 Post-processing 260 is optionally performed to complete processing of the

work unit. Post-processing 260 may include reformatting data or passing data to the

next component in a dataflow graph, for example. After processing of a work unit is

complete the checkpoint process 200 next checks 270 whether another work unit

remains to be processed. If another work unit is available, the checkpoint process 200

25 loops back to read the input data associated with the next work unit. When no more

work units remain to be processed, the checkpoint process 200 waits 280 for an

external signal indicating that the batch processing has been completed and

instructing it to terminate. When the termination signal is received, the checkpoint

process 200 deletes 285 its checkpoint buffer from non-volatile memory, before

30 completing its termination sequence 290. Completing the termination sequence 290

may include releasing volatile memory on the processing device or other reserved

resources.

Fig. 3 is a block diagram of an exemplary data processing system 300 in

which a dataflow graph implementing the system 300 includes a parallel component

- 7-

with distributed checkpoint processing. One or more components in the dataflow

graph may be run on multiple processing devices (e.g., multiple computers or multiple

processors or processor cores of a parallel processor) in parallel. In this example,

multiple instances 331, 332, 333 of a checkpointed parallel component are explicitly

5 depicted. An instance of the parallel component is run on each processing device and

each instance processes a subset of the work units in a batch. In this example of a

distributed checkpointing approach, a different checkpoint process is run for each of

the three instances of the parallel component.

When processing of a batch of data is started, input data records are read from

10 one or more input data sources. For example, the input data may be read from one or

more files stored on a computer-readable storage device, such as represented by data

storage component 310. Input data records may also be read from a database running

on a server, such as represented by data storage component 312. A join component

320 reads data from multiple data sources in a sequence and arranges the input data

15 into a sequence of discrete work units. The work units are then passed in sequence to

the next component in the dataflow graph.

Since the next data processing component in the dataflow graph is a parallel

component, the work units are partitioned and allocated to multiple component

instances by a work unit partition component 330. In this example, the allocation of

20 work units among the instances is consistent between different batch processing runs,

so that the instances do not need to access state information for work units allocated

to other instances. The work unit partition component 330 assigns work units to

particular instances based on a consistent algorithm that may be repeated with

consistent results if a fault conditions occurs and the batch needs to run again. For

25 example, the work unit allocation partition component 330 may simply allocate work

units one at a time to each component instance in turn, looping to the first instance

when the work unit count exceeds the number of parallel instances. In another

example, the work unit partition component 330 may apply a partition algorithm that

is not guaranteed to yield consistent allocations between runs and save the allocation

30 information to nonvolatile memory, so that the same allocation may be repeated if a

repeat run the of the batch is required.

Each instance 331, 332, 333 of the checkpointed parallel component

independently processes the work units allocated to it using the methods described in

relation the checkpointed component 130 of Fig. 1. Each instance 331, 332, 333

- 8-

creates and maintains its own checkpoint buffer in non-volatile memory. When a

work unit is processed an instance checks its own checkpoint buffer to determine if

the work unit has been previously processed during a prior run of the batch. In the

exemplary system 300, the checkpointed parallel component includes the action of

5 communicating with a remote server 350 to acquire information for each work unit.

In other examples, the checkpointed parallel component may include other actions

that have a high cost associated with them that justify the maintenance of a checkpoint

buffer for fault tolerance.

When processing of a work unit is completed the results are passed to a gather

10 component 338 that collects results from multiple instances and passes them to the

next data processing component in the dataflow graph.

The data processing component 340 is a component without checkpointing. In

other examples, any number of components in the dataflow graph can include

checkpointing. In some cases it is advantageous to limit checkpoint processing to

15 components in which costly actions are performed. Other dataflow graphs could

include more or fewer data processing components with or without parallelism for any

given data processing component.

As work units make their way through the components of the dataflow graph,

the final results associated with each work unit are transferred to a data sink 360. The

20 batch processing ends when the results for all work units in the batch have been

transferred to the data sink 360. At this point, the processes associated with the

components in the dataflow graph may be terminated. A checkpoint process for a

given instance may delete its checkpoint buffer as part of its termination routine.

Fig. 4 is a block diagram of an exemplary data processing system 400 in

25 which in which a dataflow graph implementing the system 400 includes a parallel

component with centralized checkpoint processing. In this example, multiple

instances 431, 432, 433 of a checkpointed parallel component are explicitly depicted.

An instance of the parallelized component is run on each processing device and each

instance processes a subset of the work units in a batch. In this example of a

30 centralized checkpointing approach, a checkpoint manager 436 handles at least some

of the checkpoint processing in communication with each of the three instances of the

parallel component. The checkpoint manager 436 can be run on one of the processing

devices that is running an instance of the parallel component or on an separate

processing device.

- 9-

When processing of a batch of data is started, input data records are read from

the data storage components 410 and 412. A join component 420 reads data from

multiple data sources in a sequence and arranges the input data into a sequence of

discrete work units stored. The work units are then passed in sequence to the next

5 component in the dataflow graph, which in this example is a checkpointed parallel

component.

In the example of Fig. 4, the checkpoint manager 436 controls access to a

single checkpoint buffer that is shared by the instances 431, 432, 433 each running on

a different processing device. Sharing a single checkpoint buffer for all work units in

10 a batch allows the work units to be dynamically allocated to the instances without

needing to match the allocation from a previous run of the batch. The shared

checkpoint buffer is stored on a shared non-volatile memory 435 that all the instances

can access either directly via a bus or communications network, or indirectly via

communications with the checkpoint manager 436. The instances 431, 432, 433 may

15 read the shared non-volatile memory 435 to check the checkpoint buffer when they

processes a work unit. If results for the current work unit are found in the checkpoint

buffer, the stored result is used to avoid repeating the high cost action. If results for

the current work unit are not found in the checkpoint buffer, the action for the work

unit is executed and the result is stored in the checkpoint buffer. To write to the

20 checkpoint buffer, the instances 431, 432, 433 send a write request message to the

checkpoint manager 436. The checkpoint manager 436 then writes to the shared non

volatile memory 435 to update the checkpoint buffer. In an alternative embodiment,

the checkpoint manager 436 sends a token to requesting instance that gives it

permission to write to the shared non-volatile memory 435 in order to update the

25 checkpoint buffer.

Because a shared checkpoint buffer is used by all the instances 431, 432, 433,

the work unit partition component 430 may dynamically allocate work units between

the instances differently during each run of a batch of data. For example, the work

unit partition component 430 may allocate each work unit dynamically based on

30 available capacity on each processing device at run time, which may vary from run to

run. This method also allows the work unit partition component 430 to use different

numbers of parallel instances. For example, after a fault condition one of the

processing devices running an instance of the parallel component, such as instance

433 may be disabled or otherwise unavailable. In this case when the batch is

- 10-

restarted, the work unit partition component 430 may allocate all of the work units to

the remaining instances 431, 432, which may seamlessly access checkpoint buffer

entries for work units previously processed by the disabled instance 433.

The checkpoint manager 436 may be implemented by a process running on a

5 separate processing device or it may be a implemented by a process running on one of

the processing devices that is running an instance of the parallel component. The

instances 431, 432, 433 may buffer checkpoint buffer updates in local volatile

memory between checkpoint buffer update events. The checkpoint manager 436 may

send signals to the instances that trigger an instance to initiate a checkpoint buffer

10 update with any information buffered in volatile memory.

When processing of a work unit is completed the results are passed to a gather

component 438 that collects results from multiple instances and passes them to the

next data processing component in the dataflow graph.

The data processing component 440 is a component without checkpointing. In

15 other examples, any number of components in the dataflow graph can include

checkpointing. In some cases it is advantageous to limit checkpoint processing to

components in which costly actions are performed. Other dataflow graphs could

include more or fewer processing components with or without parallelism for any

given data processing component.

20 As work units make their way through the components of the dataflow graph,

the final results associated with each work unit are transferred to a data sink 460. The

batch processing ends when the results for all work units in the batch have been

transferred to the data sink 460. At this point, the components in the dataflow graph

may be terminated. The checkpoint manager 436 may delete the checkpoint buffer as

25 part of its termination routine.

The fault tolerant batch processing approach described above can be

implemented using software for execution on a computer. For instance, the software

forms procedures in one or more computer programs that execute on one or more

programmed or programmable computer systems (which may be of various

30 architectures such as distributed, client/server, or grid) each including at least one

processor, at least one data storage system (including volatile and non-volatile

memory and/or storage elements), at least one input device or port, and at least one

output device or port. The software may form one or more modules of a larger

program, for example, that provides other services related to the design and

- 11-

configuration of computation graphs. The nodes and elements of the graph can be

implemented as data structures stored in a computer readable medium or other

organized data conforming to a data model stored in a data repository.

The software may be provided on a storage medium, such as a CD-ROM,

5 readable by a general or special purpose programmable computer or delivered

(encoded in a propagated signal) over a communication medium of a network to the

computer where it is executed. All of the functions may be performed on a special

purpose computer, or using special-purpose hardware, such as coprocessors. The

software may be implemented in a distributed manner in which different parts of the

10 computation specified by the software are performed by different computers. Each

such computer program is preferably stored on or downloaded to a storage media or

device (e.g., solid state memory or media, or magnetic or optical media) readable by a

general or special purpose programmable computer, for configuring and operating the

computer when the storage media or device is read by the computer system to perform

15 the procedures described herein. The inventive system may also be considered to be

implemented as a computer-readable storage medium, configured with a computer

program, where the storage medium so configured causes a computer system to

operate in a specific and predefined manner to perform the functions described herein.

A number of embodiments of the invention have been described.

20 Nevertheless, it will be understood that various modifications may be made without

departing from the spirit and scope of the invention. For example, some of the steps

described above may be order independent, and thus can be performed in an order

different from that described.

It is to be understood that the foregoing description is intended to illustrate and

25 not to limit the scope of the invention, which is defined by the scope of the appended

claims. For example, a number of the function steps described above may be

performed in a different order without substantially affecting overall processing.

Other embodiments are within the scope of the following claims.

Throughout this specification and the claims which follow, unless the context

30 requires otherwise, the word "comprise", and variations such as "comprises" and

'comprising", will be understood to imply the inclusion of a stated integer or step or

group of integers or steps but not the exclusion of any other integer or step or group of

integers or steps.

- 12-

The reference to any prior art in this specification is not, and should not be

taken as, an acknowledgement or any form of suggestion that the prior art forms part

of the common general knowledge in Australia.

- 13-

CLAIMS

1. A method performed by one or more computer systems that include

memory for processing a batch of input data in a fault tolerant manner, the method

including:

performing computations on the batch of input data, wherein at least one but

fewer than all of the computations includes or is associated with a checkpoint process

for multiple units of work associated with the batch;

wherein the checkpoint process includes:

for a unit of work from the batch,

if a result from performing an action for the unit of work was

previously saved in a checkpoint buffer stored in memory, using the

saved result to complete processing of the unit of work without

performing the action again; or

if the result from performing the action for the unit of work is

not saved in the checkpoint buffer, performing the action to complete

processing of the unit of work and saving the result from performing

the action in the checkpoint buffer.

2. The method of claim 1, wherein the action includes communicating

with a remote server.

3. The method of claim 2, wherein the result from performing the action

includes information from communication with the remote server for the unit of work.

4. The method of claim 1, further including deleting the checkpoint

buffer when processing of the batch is complete.

5. The method of claim 2, wherein communications with the remote

server are tolled.

6. The method of claim 2, wherein the results of communications with the

remote server are stored in volatile memory and saved to the checkpoint buffer in

- 14-

groups upon the occurrence of trigger events.

7. The method of claim 6, wherein the trigger event is a signal from a

checkpoint manager.

8. The method of claim 6, wherein the trigger event is processing of a

number of records since the last write to the checkpoint buffer.

9. The method of claim 6, wherein the trigger event is the elapse of a

period of time since the last write to the checkpoint buffer.

10. The method of claim 1, wherein the checkpoint process runs on a

plurality of processing devices in parallel.

11. The method of claim 10, wherein the batch includes data records, and

wherein an allocation of the data records among the plurality of parallel processing

devices is consistent between runs of the batch and each parallel processing device

maintains an independent checkpoint buffer.

12. The method of claim 10, wherein the batch includes data records, and

wherein an allocation of the data records among the plurality of parallel processing

devices is dynamic and the processing devices share access to a single checkpoint

buffer stored in shared non-volatile memory which writes to the checkpoint buffer

controlled by a checkpoint manager.

13. The method of claim 1, further including:

restarting processing after a fault condition has occurred;

reading the batch of input data including a plurality of records; and

processing the entire batch.

14. The method of claim 13, wherein the action includes communicating

with a remote server.

15. A computer-readable hardware storage device storing a computer

- 15-

program for processing a batch of input data in a fault tolerant manner, the computer

program including instructions for causing a computer to:

performing computations on the batch of input data, wherein at least one but

fewer than all of the computations includes or is associated with a checkpoint process

for multiple units of work associated with the batch;

wherein the checkpoint process includes:

for a unit of work from the batch,

if a result from performing an action for the unit of work was

previously saved in a checkpoint buffer stored in memory, using the

saved result to complete processing of the unit of work without

performing the action again; or

if the result from performing the action for the unit of work is

not saved in the checkpoint buffer, performing the action to complete

processing of the unit of work and saving the result from performing

the action in the checkpoint buffer.

16. A system for processing a batch of input data in a fault tolerant

manner, the system including:

means for performing computations on the batch of input data, wherein at least

one but fewer than all of the computations includes or is associated with a checkpoint

process for multiple units of work associated with the batch;

wherein the checkpoint process includes:

for a unit of work from the batch,

if a result from performing an action for the unit of work was

previously saved in a checkpoint buffer stored in memory, using the

saved result to complete processing of the unit of work without

performing the action again; or

if the result from performing the action for the unit of work is

not saved in the checkpoint buffer, performing the action to complete

processing of the unit of work and saving the result from performing

the action in the checkpoint buffer.

17. The computer-readable hardware storage device of claim 15, wherein

the action includes communicating with a remote server.

- 16-

18. The computer-readable hardware storage device of claim 17, wherein

the result from performing the action includes information from communication with

the remote server for the unit of work.

19. The computer-readable hardware storage device of claim 17, wherein

communications with the remote server are tolled.

20. The computer-readable hardware storage device of claim 17, wherein

the results of communications with the remote server are stored in volatile memory

and saved to the checkpoint buffer in groups upon the occurrence of trigger events.

21. The computer-readable hardware storage device of claim 20, wherein

the trigger event is a signal from a checkpoint manager.

22. The computer-readable hardware storage device of claim 20, wherein

the trigger event is processing of a number of records since the last write to the

checkpoint buffer.

23. The computer-readable hardware storage device of claim 20, wherein

the trigger event is the elapse of a period of time since the last write to the checkpoint

buffer.

24. The computer-readable hardware storage device of claim 15, wherein

the instructions further cause the computer to delete the checkpoint buffer when

processing of the batch is complete.

25. The computer-readable hardware storage device of claim 15, wherein

the checkpoint process runs on a plurality of processing devices in parallel.

26. The computer-readable hardware storage device of claim 25, wherein

the batch includes data records, and wherein an allocation of the data records among

the plurality of parallel processing devices is consistent between runs of the batch and

each parallel processing device maintains an independent checkpoint buffer.

- 17-

27. The computer-readable hardware storage device of claim 25, wherein

the batch includes data records, and wherein an allocation of the data records among

the plurality of parallel processing devices is dynamic and the processing devices

share access to a single checkpoint buffer stored in shared non-volatile memory which

writes to the checkpoint buffer controlled by a checkpoint manager.

28. The computer-readable hardware storage device of claim 15, wherein

the instructions further cause the computer to:

restart processing after a fault condition has occurred;

obtain the batch of input data including a plurality of records; and

process the entire batch.

29. The computer-readable hardware storage device of claim 28, wherein

the action includes communicating with a remote server.

30. A system for processing a batch of input data in a fault tolerant

manner, the system including:

one or more computers; and

one or more storage devices storing instructions that are operable, when

executed by the one or more computers, to cause the one or more computers to

perform operations including:

performing computations on the batch of input data, wherein at least

one but fewer than all of the computations includes or is associated with a

checkpoint process for multiple units of work associated with the batch;

wherein the checkpoint process includes:

for a unit of work from the batch,

if a result from performing an action for the unit of work was

previously saved in a checkpoint buffer stored in memory, using the

saved result to complete processing of the unit of work without

performing the action again; or

if the result from performing the action for the unit of work is

not saved in the checkpoint buffer, performing the action to complete

processing of the unit of work and saving the result from performing

- 18-

the action in the checkpoint buffer.

31. The system of claim 30, wherein the operations further include:

restarting processing after a fault condition has occurred;

obtaining the batch of input data including a plurality of records; and

processing the entire batch.

- 19-

20
14

27
44

91

 0
8

D
ec

 2
01

4

20
14

27
44

91

 0
8

D
ec

 2
01

4

20
14

27
44

91

 0
8

D
ec

 2
01

4

20
14

27
44

91

 0
8

D
ec

 2
01

4

	Bibliographic Page
	Abstract
	Description
	Claims
	Drawings

