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특허청구의 범위

청구항 1 

스택으로서,

제 1 크로스-트랙 폭을 갖는 제 1 부분을 구비한 시드층 구조; 및

상기 시드층 구조 위에 증착되고 그리고 제 2 크로스-트랙 폭을 갖는 자유층을 포함하며,

상기 제 1 크로스-트랙 폭은 상기 제 2 크로스-트랙 폭 보다 더 크고, 상기 시드층 구조의 높이는 상기 제 1 크

로스-트랙 폭보다 더 큰, 

스택.

청구항 2 

삭제

청구항 3 

제 1 항에 있어서,

상기 자유층은 2개의 영구 자석들 사이에 위치되고 그리고 

상기 제 1 크로스-트랙 폭은 상기 제 2 크로스-트랙 폭 및 상기 2개의 영구 자석들의 결합된 크로스 트랙 폭과

실질적으로 동일한, 

스택.

청구항 4 

제 1 항에 있어서,

상기 자유층이 사이에 개재되어 있는 2개의 영구 자석들을 더 포함하고, 

상기 시드층 구조는 반강자성(AFM; antiferromagnetic)층을 포함하고, 

상기 AFM 층 및 상기 자유층은 중첩되지 않는, 

스택.

청구항 5 

제 1 항에 있어서,

상기 시드층 구조의 상기 제 1 부분은 합성형 반강자성(SAF; synthetic antiferromagnetic)층인, 

스택.

청구항 6 

제 1 항에 있어서,

상기 시드층 구조는 테이퍼드(tapered) 크로스-트랙 폭을 갖는 반강자성(AFM)층을 더 포함하는, 

스택.

청구항 7 

제 1 항에 있어서,

상기 시드층 구조는 사다리꼴 형상을 갖는 반강자성(AFM)층을 더 포함하는, 

스택.
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청구항 8 

제 1 항에 있어서,

2개의 차폐들을 더 포함하고,

상기 시드층 구조 및 상기 자유층은 상기 2개의 차폐들 간의 차폐-대-차폐 간격(shield-to-shield spacing)을

감소시킴으로써 상기 스택의 비대칭(asymmetry)을 4%로 또는 4% 미만으로 감소시키는,

스택.

청구항 9 

삭제

청구항 10 

스택으로서,

제 1 영구 자석과 제 2 영구 자석 사이에 있는 자유층;

반강자성(AFM)층 구조 ―상기 AFM 층 구조의 적어도 일 부분의 크로스-트랙 폭은 상기 자유층의 크로스-트랙 폭

보다 더 크고, 상기 AFM 층 구조의 높이는 상기 AFM 층 구조의 상기 크로스-트랙 폭보다 더 큼 ―, 및

상기 자유층과 영구 자석들의 결합과 상기 AFM 층 구조 사이에 위치되는 터널링 배리어층을 포함하는, 

스택.

청구항 11 

제 10 항에 있어서,

상기 AFM 층 구조의 크로스-트랙 폭은 상기 영구 자석들 및 상기 자유층의 결합된 크로스-트랙 폭과 실질적으로

동일한, 

스택.

청구항 12 

제 10 항에 있어서,

상기 AFM 층 구조는,

상기 터널링 배리어층에 인접한 합성형 반강자성(SAF)층; 및

AFM 물질을 포함하는 시드층을 더 포함하는, 

스택.

청구항 13 

제 12 항에 있어서,

상기 SAF 층의 적어도 일부가 차폐층에 인접하는, 

스택.

청구항 14 

제 13 항에 있어서,

상기 차폐층에 인접하는 상기 SAF 층의 부분의 크로스-트랙 폭은 상기 자유층의 상기 크로스-트랙 폭과 실질적

으로 동일한, 

스택.
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청구항 15 

제 12 항에 있어서,

상기 AFM 층 구조의 크로스-트랙 표면은 상기 자유층의 크로스-트랙 표면과 중첩되지 않는, 

스택.

청구항 16 

삭제

청구항 17 

제 10 항에 있어서,

상기 AFM 층 구조의 높이는 상기 자유층의 상기 크로스-트랙 폭보다 더 큰, 

스택.

청구항 18 

디바이스로서,

자유층;

합성형 반강자성(SAF)층; 및

반강자성(AFM)층 구조를 포함하며,

상기 AFM 층 구조의 적어도 일 부분의 크로스-트랙 폭은 상기 자유층의 크로스-트랙 폭보다 더 크고, 상기 AFM

층 구조의 높이는 상기 AFM 층 구조의 상기 크로스-트랙 폭보다 더 큰, 

디바이스.

청구항 19 

제 18 항에 있어서,

상기 AFM 층 구조는 차폐층 상에 위치되며 상기 차폐층의 적어도 일 부분이 크로스-트랙 방향을 따라 상기 AFM

층 구조의 부분들 사이에 위치되는, 

디바이스.

청구항 20 

제 18 항에 있어서,

상기 자유층은 크로스-트랙 방향을 따라 제 1 영구 자석과 제 2 영구 자석 사이에 위치되는, 

디바이스.

명 세 서

기 술 분 야

자기 데이터 저장 및 리트리벌 시스템에서, 자기 판독/기록 헤드는 자기 디스크에 저장된 자기적으로 인코딩된[0001]

정보를 리트리브하기 위해 자기저항(MR) 센서를 갖는 판독기 부분을 포함한다.  디스크의 표면으로부터의 자속

은 MR 센서의 감지층의 자화 벡터의 회전을 일으키고, 이는 결국 MR 센서의 전기 저항에서 변화를 일으킨다.

MR 센서의 저항의 변화는, 전류를 MR 센서에 통과시키고 MR 센서 양단의 전압을 측정함으로써 검출될 수 있다.

그런 다음, 외부 회로소자(circuitry)가, 전압 정보를 적절한 포맷으로 전환하고, 디스크에 인코딩되어 있는 정

보를 복원하기 위해 그 정보를 조작(manupulate)한다.

발명의 내용
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과제의 해결 수단

본원에 설명되고 청구되는 구현들은 스택을 제공하며, 이 스택은 제 1 크로스-트랙(cross-track) 폭을 갖는 제[0002]

1 부분을 구비한 시드(seed)층 구조 및 시드층 구조 위에 증착되고 그리고 제 2 크로스-트랙 폭을 갖는 자유층

을 가지며, 제 1 크로스-트랙 폭은 제 2 크로스-트랙 폭 보다 더 크다.  일 대안적인 구현에서, 시드층 구조의

크로스-트랙 폭은 2개의 영구 자석들의 크로스-트랙 폭 및 자유층의 결합된 크로스-트랙 폭과 실질적으로 동일

하다.

본 발명의 하나 또는 그 초과의 실시형태들의 상세들은 아래에 첨부된 도면들 및 설명에 제시된다.  이러한 특[0003]

징들 및 용도들 그리고 다양한 다른 특징들 및 용도들은 다음 상세한 설명을 읽음으로써 명백해질 것이다.

도면의 간단한 설명

도 1은 자기저항 센서를 포함하는 예시적 판독 헤드를 도시하는 개략적인 블록도를 도시한다.[0004]

도 2는 자기저항 센서를 포함하는 예시적인 판독 헤드를 도시하는 대안적인 개략적 블록도를 도시한다.

도 3 내지 도 5는 자기저항 센서를 포함하는 예시적 판독 헤드를 제조하는 다양한 스테이지들을 도시한다.

도 6은 자기저항 센서를 포함하는 예시적 판독 헤드를 도시하는 대안적인 개략적 블록도를 도시한다.

도 7은 자기저항 센서를 포함하는 예시적 판독 헤드를 도시하는 대안적인 개략적 블록도를 도시한다.

도 8은 자기저항 센서를 포함하는 예시적 판독 헤드를 도시하는 대안적인 개략적 블록도를 도시한다.

도 9는 자기저항 센서를 포함하는 예시적 판독 헤드를 도시하는 대안적인 개략적 블록도를 도시한다.

도 10은 자기저항 센서를 포함하는 예시적 판독 헤드를 도시하는 대안적인 개략적 블록도를 도시한다.

도 11은 자기저항 센서를 포함하는 판독 헤드를 제조하는 것을 도시하는 예시적 동작들을 도시한다.

발명을 실시하기 위한 구체적인 내용

자기 매체로부터 데이터를 판독하기 위하여 높은 데이터 밀도들 및 감지 센서(sensitive sensor)들에 대한 수요[0005]

가 증가하고 있다.  증가된 감도(sensitivity)를 갖는 거대 자기저항(GMR) 센서들은 구리 같은 얇은 전도성의,

비자성 스페이서층에 의해 분리되는 두 개의 연질(soft) 자기층들로 이루어진다.  터널 자기저항(TMR) 센서들은

전자들이 이동하는 GMR에 대한 범위를 제공하고 이때 상기 전자들의 스핀들은 얇은 절연 터널 배리어를 가로지

르는 층들에 수직으로 배향된다(oriented).   반강자성(AFM)  물질(소위  "피닝  층(pinning  layer)(PL)"이라고

함)은 제 1 연질 자기층이 회전하는 것을 방지하기 위하여 상기 제 1 연질 자기층에 인접하여 배치된다.  이런

특성을 나타내는 AFM 물질들은 "피닝 물질들"이라 칭해진다.  상기 제 1 연질 자기층의 회전이 방지되므로, 제

1 연질층은 "핀드층"이라 칭해진다.  제 2 연질층은 외부 장에 응답하여 자유롭게 회전하고 "자유층(FL)"이라

불린다.

MR 센서를 적절히 동작시키기 위해서는, 도메인 벽 모션이 데이터 복원을 어렵게 만드는 전기 잡음을 야기하기[0006]

때문에, 센서가 에지 도메인들의 형성에 대해 안정화되어야 한다.  안정화를 달성하는 일반적인 방법은 영구 자

석 인접 접합 설계를 이용하는 것이다.  이 방식에서는, 높은 항전계를 갖는 영구 자석들(즉, 경질 자석들)이

센서의 각 단부에 배치된다.  영구 자석들로부터의 자기장은 센서를 안정화시키며, 에지 도메인 형성을 방지할

뿐만 아니라 적절한 바이어스를 제공한다.  PL의 강성도를 증가시키기 위해, SAF(synthetic antiferromagnet)가

PL에서 사용된다.  AFM/PL의 사용은 SAF 구조의 일관적이고 예측가능한 배향을 허용한다.  더욱이, AFM/PL의 사

용은 또한 MR 센서를 사용하는 판독기에 대한 높은 진폭 선형 응답을 가능하게 하기 위해 안정적인 구조를 제공

한다.

그러나, AFM/PL 구조를 사용하는 것은 판독기의 차폐-대-차폐 간격(SSS; shield-to-shield spacing)을 증가시[0007]

킨다.  레코딩 시스템에서 SNR(signal-to-noise ratio)을 결정하는 자기 센서들의 펄스 폭 변동들 PW50이 헤더

의 SSS에 의존하기 때문에, 더 낮은 SSS를 달성하는 것이 레코딩 시스템의 SNR을 감소시킨다.  PW50과 SSS 간의

관계의 예는, 모델링 및 실험 둘 모두에 의해 제안될 때, 아래와 같이 제공될 수 있다:

ΔPW50  0.3 * ΔSSS[0008]

따라서, SSS의 감소는 PW50의 값의 감소로 이어지고, 그로 인해 레코딩 시스템에 대한 SNR 값이 증가한다.  따[0009]
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라서, 판독기의 더 높은 선형 밀도는 SSS를 감소시킴으로써 달성될 수 있다.  더욱이, 더 작은 SSS는 또한 미디

어 판독기의 크로스-트랙 분해능을 향상시키고, 크로스-트랙 분해능의 그러한 감소는 미디어 판독기에 의해 달

성될 수 있는 면적 밀도의 추가적인 향상에 기여한다.

여기서 개시된 센서 스택 어셈블리는 판독기에 대한 감소된 SSS를 제공한다.  특히, 센서 스택은 자유층 FL에[0010]

대해 넓은 면적의 범위를 갖는 SAF/AFM 구조를 포함한다.  감소된 SSS는 펄스 폭 감소로 이어지고, 그로 인해서

그러한 AFM/PL 구조를 사용하는 판독기의 선형 밀도 성능의 증가로 이어진다.  더욱이, SSS를 감소시키는 것은

또한 판독기의 크로스-트랙 분해능을 향상시키고, 따라서 판독기의 면적 밀도 성능을 향상시킨다.

더욱이, AFM/PL 시스템의 자기 분산은 또한, 다양한 판독기들에서 우세한 자기 잡음에 기여한다.  AFM의 제거는[0011]

PL 자성체들이 연성의 단축(uniaxial) 특성들에 대해 최적이게 하여 잡음 감소로 이어진다.  반면에, AFM/PL 시

스템은 SAF 구조의 일관되고 예측가능한 배향을 허용한다.  본 명세서에 개시된 센서 스택 어셈블리는 자유층

(FL)에 대해 넓은 면적의 범위를 갖는 SAF/AFM 구조를 제공한다.  센서 적층 어셈블리의 일 구현에서, SAF/AFM

폭은 인접한 영구 자석(PM)과 일치한다.

본 명세서에 개시된 센서 적층 어셈블리의 대안적인 구현은 SAF/AFM 구조를 포함하며, 여기서 SAF/AFM 스트립의[0012]

높이는 SAF/AFM 스트립의 폭보다 더 길다(따라서 고 종횡비를 가짐).  다른 대안적인 구현에서, AFM이 FL을 포

함하는 센서의 영역들에 바로 인접한 영역들로부터 제거되지만, AFM은 (FL로부터 떨어진 영역들인) FL의 영역들

폭에 존재한다.  이러한 구현은 안정적인 SAF 구조 및 SSS에서의 감소를 제공하여 PW50 개선을 발생시킨다.  또

다른 대안적인 구현에서, FL 및 SAF는 배리어층을 이용하여 서로로부터 디커플링된다.

다른 대안적인 구현에서, AFM의 높이는 FL의 폭보다 더 크다(AFM의 높이는 AFM의 폭보다 더 작을 수 있음).  예[0013]

를 들어, 이러한 구현에서, AFM은 FL 바로 아래의 영역으로부터 제거된다.  이러한 구현은, AFM 섹션의 높이가,

결합된 두 개의 AFM 섹션들의 전체 폭보다 더 작은 경우에도 AFM의 높이가 여러 가지의 개별 AFM 섹션들에 대한

AFM의 폭보다 더 크기 때문에 유리한 AFM 형상 이방성을 제공한다.

도 1은 자기저항 센서(102)를 포함하는 예시적인 판독 헤드(100)를 도시하는 개략적인 블록도를 도시한다. 센서[0014]

(100)의 구현은 디스크 드라이브에서 자기 판독/기록 헤드에 사용될 수 있다.  판독 헤드(100)는 디스크 드라이

브의 데이터 디스크들로부터 데이터를 판독하기 위해 자기저항을 사용한다.  판독 헤드(100)의 정확한 특성은

광범위하게 변화할 수 있지만, 터널링 자기 저항(MR) 판독 헤드(100)가 본 명세서에 설명된 시드층들 및 SAF에

사용될 수 있는 판독 헤드(100)의 일례로서 설명된다.  그러나 SAF 및 시드층들은 예를 들어, 수직 전류 인가형

(CCP; current perpendicular-to-the-plane) 거대 자기 저항 헤드, 거대 자기 저항 헤드 또는 이와 유사한 것

과 같은 임의의 유용한 판독 헤드(100)에 사용될 수 있다.

일 구현에서, 판독 헤드(100)는 데이터 디스크들의 회전에 의해 생성되는 에어 베어링(air bearing) 상의 디스[0015]

크 드라이브 데이터 디스크들의 표면 상을 비행(fly)한다.  데이터 디스크들은 다수의 데이터 트랙들(150)을 가

지며, 이러한 데이터 트랙들 중 하나가 도 1에 도시되어 있다.  트랙들(150)은 복수의 비트들로 분할된다.  디

스크가 화살표(152) 방향으로 회전할 때, 판독 헤드(100)는 데이터 트랙(150)을 따르고, 자기저항 센서(102) 아

래를 통과할 때에 하나 또는 그 초과의 비트들을 판독한다.

판독 헤드(100)는 제 1 차폐층(shield layer)(104) 및 제 2 차폐층(106)을 포함한다.  자기저항 센서(102)가[0016]

제 1 차폐층(104)과 제 2 차폐층(106) 사이에 위치된다.  높은 자기 투자율(magnetic permeability)을 갖는 물

질로 이루어진 제 1, 2 차폐층들(104, 106)은, 외부로부터의(extraneous) 자기장들, 이를 테면, 예를 들어 데이

터 디스크들 상의 인접하는 비트들로부터의 자기장들이 자기저항 센서(102)에 영향을 주는 것을 줄이거나 또는

실질적으로 차단으며, 이에 따라 자기저항 센서(102)의 성능을 개선한다.  일 구현에서, 제 1, 2 차폐층들(104,

106)은 자기저항 센서(102) 바로 아래의 비트로부터의 자기장들이 자기저항 센서(102)에 영향을 미칠 수 있게

하고, 그에 따라 판독될 수 있게 한다.  따라서, 비트들의 물리적인 크기가 계속해서 감소함에 따라, 차폐물간

간격(shield-to-shield spacing) 역시 감소되어야 한다.

자기저항  센서(102)는,  반강자성(antiferromagnetic,  AFM)  시드층(110),  합성형  반강자성(synthetic[0017]

antiferromagnetic, SAF)층(112), 터널링 장벽층(114), 자유층(free layer)(116) 및 캡핑층(118)을 포함한 복

수의 층들을 포함한다.  일 구현예에서, AFM 층(110)은 제 1 전극에 전기적으로 결합되고, 캡핑층(118)은 제 2

전극에 전기적으로 결합된다.  자기저항 센서(102)의 일 구현에서, 자유층(116)은 또한, 한 쌍의 영구 자석들

(120) 사이에 위치되는 제 2 캡층을 포함한다.

일 구현에서, SAF층(112)은 핀드층 및 기준층을 포함한다.  핀드층과 기준층의 각각의 자기 모멘트들은 관심 범[0018]
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위 내의 자기장들(예를 들어, 데이터 디스크들 상에 저장된 데이터의 비트들에 의해 발생되는 자기장들) 하에서

회전하는 것이 허용되지 않는다.  기준층과 핀드층의 자기 모멘트들은 일반적으로 도 1의 평면에 수직으로 그리

고 서로에 대해 역평행(anti-parallel)하게 배향된다.

일 구현에서, 자유층(116)은 반강자성체(antiferromagnet)에 교환 결합(exchange coupled)되지 않는다.  결과[0019]

적으로, 자유층(116)의 자기 모멘트는 관심 범위 내의 인가된 자기장의 영향 하에서 자유롭게 회전한다.  판독

헤드(100)는 영구 자석들(PM)(120)의 쌍을 더 포함하는 바, 이러한 영구 자석들의 쌍은, 도면의 평면에 평행하

고 일반적으로 수평으로 배향되는 자기 모멘트로 자유층(116)을 바이어싱하는 자기장을 생성한다.  이러한 바이

어스는,  판독 헤드(100)에  의해 감지되는 데이터 내에 노이즈를 도입시킬 수 있는,  예를 들어 열 에너지로

인해, 자유층(116)의 자기 모멘트가 드리프트하는 것을 막는다.  하지만, 이러한 바이어스는 충분히 작아서, 자

유층(116)의 자기 모멘트는, 데이터 디스크들 상에 저장된 데이터 비트의 자기장과 같은 인가된 자기장에 응답

하여 변할 수 있다.  자기저항 센서(102)는 절연 물질들을 포함하는 아이솔레이션층(122)에 의해 영구 자석들

(120)로부터 분리되고 전기적으로 아이솔레이트된다.

터널링 배리어층(114)이 SAF(112)와 자유층(116)을 분리한다.  터널링 배리어층(114)은 SAF(112)의 기준층과 자[0020]

유층(116) 사이에서 양자역학적 전자 터널링이 일어나기에 충분히 얇다.  전자 터널링은 전자 스핀에 의존적이

어서, 자기저항 센서(102)의 자기 응답이 SAF(112)와 자유층(116)의 상대적 배향들 및 스핀 분극들의 함수가 되

게 한다.  SAF(112)와 자유층(116)의 자성 모멘트들이 평행일 때 가장 높은 확률의 전자 터널링이 발생하고,

SAF(112)와 자유층(116)의 자성 모멘트들이 역-평행일 때 가장 낮은 확률의 전자 터널링이 발생한다.  이에 따

라, 자기 저항 센서(102)의 전기 저항은 인가되는 자기장에 응답하여 변한다.  디스크 드라이브의 데이터 디스

크들 상의 데이터 비트들은 도면의 평면 안으로든 아니면 도면의 평면 바깥으로든, 도 1의 평면에 수직인 방향

으로 자화된다.  따라서, 자기저항 센서(102)가 데이터 비트 위를 통과할 때, 자유층(116)의 자기 모멘트는 도

1의 평면 안으로 아니면 도 1의 평면 밖으로 회전되어, 자기저항 센서(102)의 전기 저항을 변화시킨다.  자기

저항 센서(102)에 의해 감지되는 비트의 값(예를 들어, 1 또는 0)은 자기저항 센서(102)에 접속된 제 1 전극에

서부터 제 2 전극으로 흐르는 전류를 기초로 결정될 수 있다.

디스크 드라이브와 같은 자기 데이터 저장 디바이스의 저장 용량을 증가시키기 위해, 데이터 디스크들 상의 자[0021]

기적으로  배향된  도메인들(비트들)의  크기는  지속적으로  더  작아지고  있어서  더  높은  데이터  밀도들을

생성한다.  그에 따라, 자기저항 센서(102)가 데이터 트랙(150) 상의 인접한 비트들의 자기장들로부터 실질적으

로 절연되도록,  판독 헤드(100)의  크기가 더 작아질 수 있으며,  특히 차폐-대-차폐 간격(SSS)이  감소될 수

있다.  SSS를 감소시키기 위해, 자기저항 센서(102)의 구현에서 시드/AFM 층(110)과 SAF 층(112)의 크로스-트랙

폭은 자유층(116)의 크로스-트랙 폭보다 더 크다.  대안적인 구현에서, AFM 층(110)과 SAF 층(112)을 포함하는

시드층 구조의 크로스-트랙 폭은 자유층(116)의 크로스-트랙 폭보다 더 크다.  도 1에 예시된 자기저항 센서

(102)의 경우, AFM 층(110)과 SAF 층의 크로스-트랙 폭은 실질적으로 유사하다.  더욱이, AFM 층(110)과 SAF

층의 크로스-트랙 폭은 자유층(116)과 영구 자석들(120)의 결합된 크로스-트랙 폭과 실질적으로 유사하다.

도 1에 예시된 구현은 전체 AFM 층(110)의 크로스-트랙 폭이 자유층(116)의 크로스-트랙 폭보다 실질적으로 더[0022]

큰 것으로 예시하지만, 대안적인 구현에서, AFM 층(110)의 부분이 자유층(116)의 크로스-트랙 폭보다 더 큰 크

로스-트랙 폭을 갖는다.  예를 들면, 그러한 구현에서, AFM 층(110)은, 자유층(116)의 크로스-트랙 폭과 실질적

으로 유사한 크로스-트랙 폭을 갖는 AFM 층(110)의 적어도 일부를 이용하여 드레이드된다(graded)(도시되지 않

음).  예를 들면, 일 구현에서, SAF 층(112)에 근접한 AFM 층(110)의 크로스-트랙 폭은 차폐(104)에 근접한 AFM

층(110)의 크로스-트랙 폭보다 더 크고, 그 역도 가능하다.  마찬가지로, 대안적인 구현에서, SAF 층(112)의 부

분은 자유층(116)의 크로스-트랙 폭보다 더 큰 크로스-트랙 폭을 갖는다.  예를 들면, 그러한 구현에서, SAF 층

(112)은, 자유층(116)의 크로스-트랙 폭과 실질적으로 유사한 크로스-트랙 폭을 갖는 SAF 층(112)의 적어도 일

부에 따라 그레이드될 수 있다(도시되지 않음).  자기저항 센서(102)의 또 다른 대안적인 구현에서, 시드층 구

조(AFM 층(110) 및 SAF 층(112)의 결합)의 높이는 시드층 구조의 크로스-트랙 폭보다 더 크다.  예시된 구현에

서, 시드층 구조의 높이는 도 1의 표면 안으로의 깊이로 표현된다.

도 2는 자기저항 센서(202)를 포함하는 예시적인 판독 헤드(200)를 예시한 대안적인 개략적인 블록도를 예시한[0023]

다.  예시된 구현에서, 판독 헤드(200)의 많은 양상들은 판독 헤드(100)의 대응하는 양상들과 실질적으로 유사

하다.  예를 들면, 판독 헤드(200)는 제 1 차폐층(204) 및 제 2 차폐층(206)을 포함한다.  자기저항 센서(202)

는 제 1  차폐층(204)  및 제 2  차폐층(206)  사이에 위치된다.   자기저항 센서(202)는 반강자성(AFM)  시드층

(210), 합성형 반강자성(SAF) 층(212), 터널 배리어층(214), 자유층(216) 및 캡핑층(218)을 포함하는 복수의 층

들을 포함한다.  일 구현에서, AFM 층(210)은 제 1 전극에 전기적으로 연결되고, 캡층(218)은 제 2 전극에 전기
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적으로 연결된다.  자기저항 센서(202)의 일 구현에서, 자유층(216)은 또한 한 쌍의 영구 자석들(220) 사이에

위치된 제 2 캡층을 포함한다.

일 구현에서, SAF 층(212)은 핀드층 및 기준층을 포함한다.  핀드층 및 기준층 각각의 자기 모멘트들은 관심의[0024]

영역 내의 자기장들 하에서 회전하도록 허용하지 않는다(예를 들어, 자기장들은 데이터 디스크들 상에 저장된

데이터의 비트들에 의해 생성됨).  기준층 및 핀드층의 자기 모멘트들은 일반적으로 도 2의 평면에 수직으로 그

리고 서로 역-평행하게 배향된다.

일 구현에서, 자유층(216)은 반강자성체에 교환 결합(exchange couple)되지 않는다.  그 결과, 자유층(216)의[0025]

자기 모멘트는 관심의 영역내의 인가된 자기장의 영향 하에서 자유롭게 회전한다.  판독 헤드(200)는 도면의 평

면과 평행하고 일반적으로 수평으로 배향되는 자기 모멘트로 자유층(216)을 바이어싱시키는 자기장을 생성하는

영구 자석들(PM)의 쌍(220)을 추가로 포함한다.  이러한 바이어스는 예를 들어, 판독 헤드(200)에 의해 감지되

는 데이터 내로 노이즈를 도입시킬 수 있는 열 에너지로 인해 자유층(216)의 자기 모멘트가 드리프트하는 것을

방지한다.  그러나 이 바이어스는 자유층(216)의 자기 모멘트가 데이터 디스크들 상에 저장된 데이터 비트의 자

기장과 같은 인가된 자기장에 응답하여 변할 수 있도록 충분히 작다.  자기저항 센서(202)는 절연 물질들을 포

함하는 아이솔레이션층(222)에 의해 영구 자석들(220)로부터 분리되고 전기적으로 아이솔레이트된다.

터널링 배리어층(214)은 SAF(212)와 자유층(216)을 분리한다.  터널링 배리어층(214)은 양자역할적 전자 터널링[0026]

이 자유층(216)과 SAF(212)의 기준층 사이에서 일어나도록 충분히 얇다.  전자 터널링은 전자-스핀 의존적이어

서, 자기저항 센서(202)의 자기 응답이 SAF(212)와 자유층(216)의 상대적 배향들 및 스핀 분극들의 함수가 되게

한다.   SAF(212)와  자유층(216)의  자성  모멘트들이  평행일  때  가장  높은  확률의  전자  터널링이  발생하고,

SAF(212)와 자유층(216)의 자성 모멘트들이 역-평행일 때 가장 낮은 확률의 전자 터널링이 발생한다.  이에 따

라, 자기 저항 센서(202)의 전기 저항은 인가되는 자기장에 응답하여 변한다.  디스크 드라이브의 데이터 디스

크들 상의 데이터 비트들은 도면의 평면 안으로든 아니면 도면의 평면 바깥으로든, 도 2의 평면에 수직인 방향

으로 자화된다.  따라서, 자기저항 센서(202)가 데이터 비트 위를 통과할 때, 자유층(216)의 자기 모멘트는 도

2의 평면 안으로 아니면 도 2의 평면 밖으로 회전되어, 자기저항 센서(202)의 전기 저항을 변화시킨다.  자기

저항 센서(202)에 의해 감지되는 비트의 값(예를 들어, 1 또는 0)은 자기저항 센서(202)에 접속된 제 1 전극에

서부터 제 2 전극으로 흐르는 전류를 기초로 결정될 수 있다.

디스크 드라이브와 같은 자기 데이터 저장 디바이스의 저장 용량을 증가시키기 위해, 데이터 디스크들 상의 자[0027]

기 배향 도메인들(magnetically oriented domains)(비트들)의 크기가 지속적으로 더 작아져, 더 높은 데이터 밀

도들이 생성된다.  그에 따라, 자기저항 센서(202)가 데이터 트랙 상의 인접 비트들의 자기장으로부터 사실상

아이솔레이트되도록, 판독 헤드(200)의 크기가 더 작아질 수 있고, 특히, 차폐-대-차폐 간격(SSS)이 감소될 수

있다.

잡음을 감소시킴으로써 SNR을 개선시키기 위해, 자기저항 센서(202)의 구현에서, 시드/AFM 층(210) 및 SAF 층[0028]

(212)의 크로스-트랙 폭은 자유층(216)의 크로스-트랙 폭보다 더 크다.  구체적으로, SAF/AFM 구조의 증가된 폭

은 자기저항 센서(202)의 안정성을 개선시키고, 따라서 잡음의 감소를 발생시킨다.  대안적인 구현에서, 시드층

구조 ― AFM 층(210) 및 SAF 층(212)을 포함함 ― 의 크로스-트랙 폭은 자유층(216)의 크로스-트랙 폭보다 더

크다.  도 2에 도시된 자기저항 센서(202)의 경우, SAF 층(212)의 크로스-트랙 폭은, 자유층(116) 및 영구 자석

들(120)의 결합된 크로스-트랙 폭과 실질적으로 유사하다.  대안적인 구현에서, 훨씬 더 폭넓은 SAF/AFM 구조를

갖는 것에 부가하여, FL이 위치되는 AFM 영역이 또한 제거되거나 또는 그레이드(grade)되고, 이는 SSS를 감소시

킨다.  따라서, 폭넓은 SAF/AFM 구조 및 FL이 위치되는 AFM의 제거된 부분을 갖는 결합 구조는 SSS을 감소시키

고 그리고 안정성의 개선 및 잡음의 감소를 발생시킨다.

판독 헤드(200)의 AFM 층(210)은, AFM 층(210)의 크로스-트랙 표면이 영구 자석들(220)의 크로스-트랙 표면으로[0029]

사실상 제한되도록 구성된다.  예컨대, 도 2에 도시된 바와 같이, AFM 층(210)의 내부 에지는 영구 자석들(22

0)의 내부 에지와 사실상 정렬된다.  AFM 층(210)의 그러한 구조는, 더 낮은 차폐-대-차폐 간격(SSS)을 가진 자

기저항 센서(202)가 구성되도록 허용한다.

도 2에 도시된 구현은 전체 AFM 층(210)의 크로스-트랙 폭이 자유층(216)의 크로스-트랙 폭보다 실질적으로 더[0030]

큰 것으로 도시하지만, 대안적인 구현에서, AFM 층(210)의 일부는, 자유층(216)의 크로스-트랙 폭보다 더 큰 크

로스-트랙 폭을 갖는다.  예를 들어, 그러한 구현에서, AFM 층(210)은, 자유층(216)의 크로스-트랙 폭과 실질적

으로 유사한 크로스-트랙 폭을 갖는 AFM 층(210)의 적어도 일부를 이용하여 그레이드된다(도시되지 않음).  유

사하게, 대안적인 구현에서, SAF 층(212)의 일부는, 자유층(216)의 크로스-트랙 폭보다 더 큰 크로스-트랙 폭을

등록특허 10-1442097

- 9 -



갖는다.  예를 들어, 그러한 구현에서, SAF 층(212)은, 자유층(216)의 크로스-트랙 폭과 실질적으로 유사한 크

로스-트랙 폭을 갖는 SAF 층(212)의 적어도 일부에 따라 그레이드된다(도시되지 않음).  자기저항 센서(202)의

또 다른 대안적인 구현에서, (AFM 층(210)과 SAF 층(212)이 결합된) 시드층 구조의 높이는 시드층 구조의 크로

스-트랙  폭보다  더  크다.   도시된  구현에서,  시드층  구조의  높이는  도  2의  표면  안으로의  깊이에  의해

표현된다.

판독 헤드(200)의 대안적인 일 구현에서, 자기저항 센서(202)에 더 근접한 제 1 차폐(204)의 섹션은 자기저항[0031]

센서(202)의 폭과 동일한 폭을 갖는다.  그러나, 대안적인 구현들에서, 자기저항 센서(202)에 더 근접한 제 1

차폐(204)의 섹션의 폭은, 자기저항 센서(202)의 폭보다 더 작거나 또는 더 큰 폭을 갖는다.  자기저항 센서

(202)에 더 가까운 제 1 차폐(204)의 섹션의 폭과 자기저항 센서(202)의 폭의 비는 SAF의 안정성 및 유효한 SSS

에 영향을 준다.  즉, 이 비는 설계자로 하여금, SAF의 안정성과 SSS에서의 유효한 감소 사이에서 트레이드 오

프하게 한다.  자기저항 센서(202)에 더 가까운 제 1 차폐(204)의 섹션의 폭이 더 작아짐에 따라, SAF 안정성이

더 높아지고 유효한 SSS가 더 높아지며, 그 역도 가능하다.

자기저항 센서들(102 및 202)의 구현은, AFM 패터닝의 프로세스에서 AFM 입자들을 절단하고 그에 따라 여분의[0032]

작은 AFM 입자들을 생성하는 것과 관련된 문제들을 제거한다.  이들 감소된-사이즈의 입자들은 더 작고, 종종

불안정하다.  자기저항 센서들(102 및 202)의 제안된 구현에 대한 AFM 입자들은, 감소된-사이즈 AFM 입자 불안

정성이 자기저항 센서들(102 및 202)에 영향을 주지 않도록 자유층들로부터 멀리 떨어져 절단된다.  더욱이, 더

얇은 영구 자석들(120 및 220)일 수록 더 적은 SAF 바이어스를 생성하며, 따라서, SAF 상에서의 영구 자석 토크

를 감소시키고 그에 따라 이것을 더 안정하게 하기 위해서 SAF를 밸런싱한다.  자기저항 센서(202)의 구현은 부

가적으로, 자유층(216)에서의 차폐-대-차폐 간격(SSS)을 추가적으로 감소시키고, 따라서, 0.3*AFM 만큼 PW50을

개선시킨다.

도 3 내지 도 9는 자기저항 센서를 포함하는 예시적인 판독 헤드를 제조하는 다양한 스테이지들을 도시한다.[0033]

자기저항 센서를 형성하기 위한 방법의 일 구현은, 이전에 증착된 물질의 제거를 위한 이온-밀링(ion-milling)

및 마스킹층들과 같은 기술들을 포함한다.  부가적으로, SAF 층들이 영향을 받지 않는 것을 보장하기 위해, 판

독기의 폭의 형성 동안에, SAF/AFM 층들을 제거하지 않고, 자유층을 제거하기 위해, 종료점 검출 기술들이 사용

된다.  자기저항 센서의 대안적인 구현에서, PM의 두께는, 인접된 접합 센서 설계들의 다른 구현들에 비하여 감

소된다.  PM의 그러한 구현은, 자유층(FL)을 안정화하기 위해 이용가능한 플럭스의 양을 감소시킨다.  더욱이,

대안적인 구현에서, PM과 FL 사이의 아이솔레이션층의 두께가 또한 실질적으로 감소된다.

구체적으로, 도 3은, 시드/AFM 층(310), SF 층(312), 터널링 배리어층(314), 및 자유층(322)을 포함하는 자기저[0034]

항 센서 스택(300)의 층들의 에어 베어링 표면(ABS) 뷰를 도시한다.  자기저항 센서 스택(300)은, 본원에서 개

시된 자기저항 센서를 제조하기 위한 시작 구성으로서 사용된다.

도 4는, 마스크(430)가 자유층(422) 상에 제공되는 마스킹 동작(400)을 도시한다.  부분적으로 형성된 자기저항[0035]

센서(402)는, 시드층(410), SAF 층(412), 배리어층(414), 및 자유층(422)을 포함한다.  도 4에서 도시된 바와

같이, 마스크(430)는 자유층(422)의 제한된 및 중앙의 부분 상에 증착된다.  일 구현에서, 마스킹 층(430)의 폭

은 자기 저항 센서의 판독기 폭을 정의한다.  일 대안적인 구현에서, 마스크(430)는, 이미지 전사층, 및 그 이

미지 전사층 위에 증착된 포토레지스트의 층(미도시)을 포함한다.  이미지 전사층은 가용성 폴리머 또는 몇몇

다른 유사한 적합한 물질일 수 있다.  하나 또는 그 초과의 하드 마스크 층들, 저부 반사방지 코팅, 및/또는 릴

리즈(release)층과 같은(그러나, 이들로 제한되지 않는다) 다른 마스킹 층들이 또한 마스크(430)에 제공될 수

있다.

도 5는 자기저항 센서를 제조하기 위한 후속 동작(500)을 도시한다.  구체적으로, 도 5에서 도시된 바와 같이,[0036]

자유층(522)은 추가로, 이온 밀링 및/또는 반응성 에칭 동작(502)에 의해 정의된다.  자유층(522)의 에칭은, 마

스크 층(530)에 의해 커버되지 않은 자유층(522)의 부분에 대하여 터널링 배리어층(514)의 적어도 일 부분을 노

출시킨다.  일 구현에서, 이온/밀링 및/또는 반응성 에칭 동작(502)은 SAF 층(512) 및 AFM 층(510)에 영향을 미

치지 않는다.  대안적인 구현에서, 이온 밀링 및/또는 반응성 에칭 동작(502)은 또한, 마스크 층(530)에 의해

자유층(522)이 커버되지 않은 구역들에서 배리어층(514) 및 SAF 층(512)을 제거한다.

도 1에 도시된 자기저항 센서(102)와 실질적으로 유사한, 도 6에 도시된 바와 같은 자기저항 센서(602)를 발생[0037]

시키기 위해, 동작(500) 이후에 결과적으로 발생된 자기저항 센서는, PM을 증착하는 것, 마스크(530)를 제거하

는 것 등을 비롯한 일련의 동작들을 이용하여 추가로 프로세싱된다.  추가적으로, 자기 판독기(600)를 제조하기

위해 하부 차폐(604) 및 상부 차폐(606)가 추가된다.
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도 7은 자기저항 센서(702)를 포함하는 예시적인 판독 헤드(700)를 도시하는 대안적인 개략적 블록도를 예시한[0038]

다.  구체적으로, 자기저항 센서(702)는 배리어층(714) 위에 위치되는 측부 차폐(710) 및 측부 차폐(712)를 포

함한다.  일 구현에서, 측부 차폐들(710 및 712)은 강자성 물질로 이루어진다.  추가적으로, 판독 헤드(700)를

제조하기 위해 하부 차폐(704) 및 상부 차폐(706)가 추가된다.

도 8은 자기저항 센서(802)를 포함하는 예시적인 판독 헤드(800)를 도시하는 대안적인 개략적 블록도를 예시한[0039]

다.  구체적으로, 자기저항 센서(802)는 배리어층(814) 위에 위치되는 측부 차폐(810) 및 측부 차폐(812)를 포

함한다.  추가적으로, 판독 헤드(800)를 제조하기 위해 하부 차폐(804) 및 상부 차폐(806)가 추가된다.  일 구

현에서, 측부 차폐들(810 및 812)은 강자성 물질로 제조되며, 상부 차폐(806)에 인접한다.

도 9는 자기저항 센서(902)를 포함하는 예시적인 판독 헤드(900)를 도시하는 대안적인 개략적 블록도를 예시한[0040]

다.  추가적으로, 판독 헤드(900)를 제조하기 위해 하부 차폐(904) 및 상부 차폐(906)가 추가된다.  자기저항

센서(902)는 제 1 시드/AFM 층(910) 및 제 2 시드/AFM 층(912)을 포함하며, 차폐층(904)의 적어도 일부가 자유

층(916)의 크로스-트랙 폭과 실질적으로 유사한 크로스-트랙 폭을 갖도록, 시드/AFM 층들(910 및 912)이 그레이

드된다(graded).  따라서, 시드/AFM 층들(910 및 912)은 자유층(916)과 중첩되지 않는다.  이러한 구조는, AFM

패터닝의 프로세스에서 AFM 층 입자들을 절단하고 이것이 여분의 작은 AFM 입자들을 생성하는 문제점을 제거할

수 있다.  감소된 크기의 입자들은 작으며, 종종 불안정하다.  본 명세서에 개시된 구조는, AFM 입자들이 자유

층으로부터 멀리 떨어져서 절단되게 하고 감소된-크기의 AFM 입자들과 연관된 불안정성들을 감소시키게 한다.

도 10은 자기저항 센서(1002)를 포함하는 예시적인 판독 헤드(1000)를 예시하는 대안적인 개략적 블록도를 도시[0041]

한다.  추가적으로, 판독 헤드(1000)를 제조하기 위해 하부 차폐(1004) 및 상부 차폐(1006)가 추가된다.  자기

저항 센서(1002)는 시드/AFM 층(1010)을 갖고, 여기서 시드/AFM 층(1010)은 자유층(1016)에 가까운 측이 더 넓

은 사다리꼴 형상을 갖는다.  구체적으로, 시드/AFM 층(1010)은, 시드/AFM 층(1010)의 적어도 일부가 자유층

(1016)의 크로스-트랙 폭과 실질적으로 유사한 크로스-트랙 폭을 갖도록 그레이드된다.

도 11은 자기저항 센서를 포함하는 판독 헤드에 의해 달성될 수 있는 비대칭 감소를 예시하는 그래프를 도시한[0042]

다.  구체적으로, 도 11은 판독 헤드들의 횡방향 트랜스퍼 커브들의 그래프를 도시한다.  실선 커브(1110)는 자

유층의 크로스-트랙 폭과 실질적으로 유사한 크로스-트랙 폭을 갖는 SAF 층을 구비한 자기저항 센서에 대한 횡

방향 트랜스퍼 커브를 도시한다.  반면에, 점선 커브(1112)는 자유층의 크로스-트랙 폭보다 실질적으로 더 큰

크로스-트랙 폭을 갖는 SAF 층을 구비한 자기저항 센서에 대한 횡방향 트랜스퍼 커브를 도시한다.  도시된 바와

같이, 더 넓은 SAF를 갖는 자기저항 센서의 경우 비대칭도에 있어서 상당한 감소가 있다.  구체적으로, 실선 커

브(1110)는 40㎚의 SAF 크로스-트랙 폭 및 8㎚의 PM 크로스-트랙 폭을 가지며, 결과적으로 대략 14%의 비대칭도

를 발생시키는 스택에 대한 트랜스퍼 커브를 도시한다.  이와 비교하여, 점선 커브(1112)는 200㎚의 SAF 크로스

-트랙 폭 및 8㎚의 PM 크로스-트랙 폭을 가지며, 결과적으로 대략 4%의 비대칭도를 발생시키는 스택에 대한 트

랜스퍼 커브를 도시한다.

상술한 상세한 설명, 실시예들, 및 데이터는 본 발명의 예시적인 구현들의 구조 및 용도의 완전한 설명을 제공[0043]

한다.  본 발명의 수많은 구현들이 본 발명의 사상 및 범위로부터 벗어나지 않고 이행될 수 있기 때문에, 본 발

명은 첨부된 이하의 청구항들에 존재한다.  더욱이, 상이한 구현들의 구조적 특징들은 인용된 청구항들로부터

벗어나지 않고 또 다른 구현에 조합될 수 있다.  위에서 설명된 구현들 및 다른 구현들은 이하의 청구항들의 범

위 내에 있다.
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