发明专利

申请号 20140023505.8
申请日 2014.01.02
同一申请的已公布的文献号 CN 105143046 A
申请公布日 2015.12.09
优先权数据
10-2013-0046677 2013.04.26 KR
PCT国际申请进入国家阶段日 2015.10.26
PCT国际申请的申请数据 PCT/KR2014/000009 2014.01.02
PCT国际申请的公布数据 WO2014/175537 KO 2014.10.30

专利权人 韩国机场公社
地址 韩国首尔市
发明人 金东洙 赵昇相 梁锡应
专利代理机构 乐天知识产权代理有限公司
72003
代理人 张琦 韩玉顺

发明名称
通道空气调节装置，包括该装置的乘客登机桥，用于乘客登机桥的空气调节系统及其控制系统

摘要
一种用于对连接到登机厅的可移动通道进行空气调节的通道空气调节装置，包括：室内单元，设置在可移动通道上；室外单元，设置在单元的顶部并连接到室内单元；以及室外单元支撑单元，支撑室外单元以使其单元设置在单元的顶部，其中，室外单元支撑单元可升高或降低室外单元，以便于形成在室外单元之上的空间。
1. 一种通道空气调节装置，用于对连接到登录厅的可移动通道进行空气调节，所述通道空气调节装置包括：
   室内单元，设置在所述可移动通道上；
   室外单元，设置在所述室内单元上并连接到所述室内单元；以及
   室外单元支撑单元，支撑所述室外单元以使所述室外单元设置在所述室内单元上，
   其中，所述室外单元的两端中靠近所述登录厅的一端被设置成不干涉所述登录厅，
   所述室外单元支撑单元包括：上支架，使所述室外单元设置在所述上支架的顶面；下支
   架，使所述室内单元设置在所述下支架的顶面上；以及升降机，所述升降机能够相对于所述
   下支架升高和降低所述上支架，以便升高或降低所述室外单元，以调整形成在所述室内单
   元的顶面的空间。

2. 根据权利要求1所述的通道空气调节装置，
   其中，对于升降机，设置两个升降机，以及
   所述两个升降机沿着所述可移动通道的纵向长度被安装在所述下支架的两端。

3. 根据权利要求1所述的通道空气调节装置，
   其中，所述升降机设置在所述上支架与所述下支架之间，如果所述室外单元的另一端
   相对于所述上支架向远离所述登录厅的方向突出，则所述升降机与所述上支架和所述下支
   架相对被偏心地放置在远离所述登录厅的方向，以避免所述室外单元倾覆。

4. 根据权利要求1所述的通道空气调节装置，
   其中，所述下支架具有垂直支撑杆，所述垂直支撑杆在所述上支架被所述升降机降低
   的极限高度处支撑所述上支架。

5. 根据权利要求1所述的通道空气调节装置，
   其中，所述升降机是剪叉式升降机。

6. 根据权利要求5所述的通道空气调节装置，
   其中，所述剪叉机包括剪叉机，所述剪叉机包括：第一臂，其一端连接到所述上支架，而
   另一端连接到所述下支架；以及第二臂，其一端连接到所述下支架，而另一端连接到所述上
   支架。

7. 根据权利要求6所述的通道空气调节装置，
   其中，在所述剪叉机中，所述第一臂的另一端和所述第二臂的另一端相固定，所述第一
   臂的一端沿着所述上支架滑动，所述第二臂的一端沿着所述下支架滑动，由此升高或降低
   所述上支架。

8. 根据权利要求7所述的通道空气调节装置，
   其中，所述第一臂的一端被定位成比所述第一臂的另一端更靠近所述登录厅，且沿着
   所述可移动通道的纵向滑动。

9. 根据权利要求6所述的通道空气调节装置，
   其中，在所述剪叉机处，能安装有缓震器，以当所述上支架被降低时执行缓冲功能，或
   安装有液压缸或动力缸，以有利于升高所述上支架。

10. 根据权利要求1所述的通道空气调节装置，
    其中，压缩机被设置在所述室外单元的内部。

11. 根据权利要求10所述的通道空气调节装置，
其中，所述压缩机是涡旋式压缩机或回转式压缩机。
12. 一种乘客登机桥空气调节系统，包括：
根据权利要求1所述的通道空气调节装置；以及
延伸通道空气调节装置，其对述所述可移动通道的纵向连接到所述可移动通道的另一
端的延伸通道进行空气调节，以便所述乘客登机桥的长度能够被延长或缩减。
13. 根据权利要求12所述的乘客登机桥空气调节系统，
其中，所述延伸通道空气调节装置的室内单元包括第一供气扇和第二供气扇，以及
所述第一供气扇被定位成比所述第二供气扇更靠近所述可移动通道。
14. 根据权利要求13所述的乘客登机桥空气调节系统，
其中，所述延伸通道空气调节装置包括：
连接开口，连接到所述第一供气扇和第二供气扇中的每一个，以使从所述第一供气扇
和所述第二供气扇排出的空气能够被输送到所述延伸通道的管道，
所述连接开口的内部被分隔，以避免从所述第一供气扇排出的空气与从所述第二供气
扇排出的空气彼此混合。
15. 根据权利要求14所述的乘客登机桥空气调节系统，
其中，所述第一供气扇和第二供气扇中的每一个的开/关独立地控制。
16. 根据权利要求15所述的乘客登机桥空气调节系统，
其中，在所述可移动通道的外表面或所述延伸通道的内表面上设置有控制所述第一供
气扇的开/关单元，在所述可移动通道的外表面或所述延伸通道的内表面中的另一
个上设置有操作所述开/关单元的固定构件，以及
所述开/关单元和所述固定构件中的任一个设置在与所述延伸通道被延长或缩短时另
一个的移动线路对应的位置。
17. 根据权利要求16所述的乘客登机桥空气调节系统，
其中，所述可移动通道的外表面上设置有向所述可移动通道的外部突出的所述开/关
单元，以及
在所述延伸通道的内表面上设置有向所述延伸通道的内部突出的所述固定构件。
18. 根据权利要求17所述的乘客登机桥空气调节系统，
其中，当所述固定构件随着所述延伸通道沿缩短所述乘客登机桥的长度的方向移动而
移动时，所述开/关单元响应于所述固定构件的移动而使所述第一供气扇关闭，以及
当所述固定构件随着所述延伸通道沿延长所述乘客登机桥的长度方向移动而移动时，
所述开/关单元响应于所述第一供气扇的移动而使所述第一供气扇打开。
19. 根据权利要求18所述的乘客登机桥空气调节系统，
其中，所述开/关单元是拨动开关，
随着所述固定构件被沿缩短所述乘客登机桥的长度的方向移动的所述延伸通道移动，
在所述开/关单元接触所述固定构件进而在关闭方向操作时，所述第一供气扇关闭，以及
随着所述固定构件被沿延伸所述乘客登机桥的长度的方向移动的所述延伸通道移动，
当所述开/关单元接触所述固定构件进而在打开方向操作时，所述第一供气扇打开。
20. 根据权利要求18所述的乘客登机桥空气调节系统，
其中，所述开/关单元是沿延长所述延伸通道的方向按顺序放置的第一传感器和第二
传感器，

当所述固定构件被所述第二传感器检测，且随后随着所述固定构件被沿缩短所述乘客登机桥的长度的方向移动的所述延伸通道移动而被所述第一传感器检测时，所述第一供气扇关闭，以及

当所述固定构件被所述第一传感器检测，且随后随着所述固定构件被沿延长所述乘客登机桥的长度的方向移动的所述延伸通道移动而被所述第二传感器检测时，所述第一供气扇打开。

21. 根据权利要求12所述的乘客登机桥空气调节系统，
其中，压缩机设置在所述延伸通道空气调节装置的室外单元的内部。

22. 根据权利要求21所述的乘客登机桥空气调节系统，
其中，设置在所述延伸通道空气调节装置的室外单元的内部的所述压缩机是涡旋式压缩机或回转式压缩机。

23. 一种乘客登机桥，包括：
登机厅，
可移动通道，能旋转地连接到所述登机厅；以及
延伸通道，连接到所述可移动通道的一端，所述可移动通道的一端为与所述可移动通道与所述登机厅彼此连接的端部相对的端部。

其中所述延伸通道滑动地移动以将所述可移动通道的一部分容纳在其中，并且根据权利要求12所述的乘客登机桥空气调节系统被安装在所述登机厅、所述可移动通道和所述延伸通道。

24. 一种乘客登机桥空气调节控制装置，包括：
根据权利要求12所述的乘客登机桥空气调节系统；以及
航班管理服务器，存储并更新飞机的出发和到达信息以及乘客数量信息；以及
乘客登机桥空气调节装置控制器，从所述航班管理服务器接收出发和到达信息以及乘客数量信息，以控制所述乘客登机桥空气调节系统。

25. 根据权利要求24所述的乘客登机桥空气调节控制装置，
其中，在连接到所述乘客登机桥的飞机的出发信息的出发时间以及到达信息的到达时间更早的预设时间之前，所述乘客登机桥空气调节装置控制器运行所述通道空气调节装置和所述延伸通道空气调节装置。

26. 根据权利要求24所述的乘客登机桥空气调节控制装置，
其中，在所述乘客登机桥的飞机的乘客载送完成后，所述乘客登机桥空气调节装置控制器启动所述乘客登机桥检测—结束信号，以停止所述通道空气调节装置和所述延伸通道空气调节装置的运行。

27. 根据权利要求24所述的乘客登机桥空气调节控制装置，
其中，在基于将连接到所述乘客登机桥的飞机的出发信息的出发时间或到达信息的到达时间的预设时间之后，所述乘客登机桥空气调节装置控制器停止所述通道空气调节装置和所述延伸通道空气调节装置的运行。

28. 根据权利要求24所述的乘客登机桥空气调节控制装置，
其中，所述乘客登机桥空气调节装置控制器响应于来自所述航班管理服务器的乘客数
量的信息，停止所述通道空气调节装置和所述延伸通道空气调节装置的运行。

29. 根据权利要求24所述的乘客登机桥空气调节控制系统，
其中，所述乘客登机桥空气调节装置控制器通过显示控制器从所述航班管理服务器接收出发信息、到达信息以及有关乘客数量的信息，以控制所述乘客登机桥空气调节系统。

30. 根据权利要求24所述的乘客登机桥空气调节控制系统，
其中，所述乘客登机桥空气调节系统被应用到单个乘客登机桥或多个乘客登机桥中的每一个。
通道空气调节装置，包括该装置的乘客登机桥，用于乘客登机桥的空气调节系统及其控制系统

技术领域
[0001] 本文描述的实施例大体涉及一种可应用于乘客登机桥的通道的通道空气调节装置，包括该装置的乘客登机桥空气调节系统，乘客登机桥以及乘客登机桥空气调节控制系统。

背景技术
[0002] 乘客登机桥是一种用于在飞机与机场航站楼之间输送乘客的机器形式的桥。通常，从航站楼到登机厅（rotunda圆厅）安装固定通道。从登机厅到飞机安装可移动乘客登机桥，使得可移动登机桥可以采用它的轮子转弯并移动进而邻近飞机的乘客登机桥。通常，可移动乘客登机桥包括内通道和外通道，且通过移动外通道而将内通道容纳在其中，从而对可移动乘客登机桥的长度进行调节。

[0003] 机场航站楼和飞机中应有合适的空气调节装置。然而，乘客登机桥的壁在多数情况下是由玻璃制造的，而户外空气会流过登机厅的区域，从机舱上方，穿过可移动乘客登机桥的内通道与外通道之间的空隙，以使得机场航站楼和飞机中的温度高于或低于适当的温度，而导致乘客的抱怨。为了消除这种不便，在乘客登机桥上安装有多种空气调节及加热系统。

[0004] 对于解决上述问题的传统的用于乘客登机桥的空气调节及加热装置，本申请的申请人提交，且已经获得授权并登记的韩国专利公开第1192296号（题为：“Cooling and Heating System and Cooling and Heating Control System for Boarding Bridge（用于登机桥的制冷和加热系统以及制冷和加热控制系统）”），描述了一种通道空气调节及加热装置，该通道空气调节及加热装置包括登机厅上的横向旋转转台，在设置在大厅的转台上布置冷凝器和压缩机，在可移动通道上设置了蒸发器，以便有利于在通道的内部进行空气调节及加热。

[0005] 然而，由于传统的通道空气调节及加热装置应该在登机厅上设置转台，以在登机厅上安装室外单元，还安装夹紧装置以使转台能够随着登机厅的旋转一起旋转，这具有需要更多安装和运行成本的问题。

[0006] 并且，上述专利描述了一种延伸通道空气调节及加热装置，其中，扩散器盖被安装在延伸的通道扩散器处，而用于打开和关闭扩散器盖的打开/关闭单元被安装在可移动通道处，使得通过根据延伸通道的延长或缩短来移动扩散器盖与设置在可移动通道处的打开/关闭单元接触，而使延伸通道扩散器打开和关闭。

[0007] 然而，由于在传统的用于乘客登机桥的空气调节及加热系统中的延伸通道空气调节及加热装置应该制作模具以制造扩散器盖和打开/关闭单元，因此存在带来高制造成本的问题。而且，扩散器盖与延伸通道的外壳之间应该有间隔，以便有利于扩散器盖的滑动；然而，风吹过该间隔，由泄漏的风引起的噪音造成通道内部的噪音问题。此外，如果延伸通道扩散器的大部分被关闭，那么风会聚集在延伸通道扩散器的打开部分，因此，风量和风
速度过增加，造成登上乘客登机桥的乘客的的头飞舞的不便。
[0008] 而且，由于大型往复式压缩机的安装，上述专利在一体式的室内单元和室外单元
的侧面分别安装压缩机以及单的马达，使得耗费高制造成本和高电力成本，且装置的
外观一直不美观。

发明内容
[0009] 技术问题
[0010] 基于前述问题，多个示例性实施例提供了一种通道空气调节装置，其能够降低安
装成本，运行成本和制造成本，防止由风的泄露和由扩散器的一部分关闭造成的风量和风
速的增加引起的噪音问题，以及实现设备的小型化。
[0011] 解决方案
[0012] 根据第一示例性实施例，一种通道空气调节及加热装置可包括：室内单元，设置在
可移动通道上，室外单元，设置在室内单元并连接到室外单元；以及室外单元支撑单元，支
撑室外单元以使室外单元设置在室内单元上，其中，室外单元支撑单元可升高或降低室外
单元，以调整形成在室内单元的顶部的空间。
[0013] 根据第二示例性实施例，一种通道空气调节及加热装置可包括：根据第一个示例
性实施例的通道空气调节装置；以及延伸通道空气调节装置，对延伸通道进行空气调节，该
延伸通道沿可移动通道的纵向连接到可移动通道的另一端，以使乘客登机桥的长度能够被
延长或缩短。
[0014] 根据第一示例性实施例，延伸通道空气调节装置的室内单元可包括：第一供气扇和
第二供气扇，第一供气扇被定位成比第二供气扇更靠近可移动通道。
[0015] 根据第一示例性实施例，延伸通道空气调节装置可包括：连接开口，连接到第一供气
扇和第二供气扇中的每个，以使从第一供气扇和第二供气扇排出的空气能够被输送到延伸
通道的管道，连接开口的内部被分离以避免从第一供气扇排出的空气与从第二供气扇排出
的空气彼此混合。
[0016] 根据第一示例性实施例，第一供气扇和第二供气扇中的每个的开/关可独立地控制。
[0017] 根据第一示例性实施例，在可移动通道的外表面或延伸通道的内表面上设置有控制
第一供气扇的开/关单元，而在可移动通道的外表面或延伸通道的内表面上的另一个
上设置有操作开/关单元的固定构件，且开/关单元和固定构件中的任一个设置在与延伸
通道被延长或缩短时它们之间的另一个的移动线路对应的位置。
[0018] 根据第三示例性实施例，一种乘客登机桥可包括：登机厅；可移动通道，可旋转地
连接到登机厅；以及延伸通道，连接到可移动通道的、与可移动通道及大厅彼此连接的端部
相对的端部，其中延伸通道滑动地移动以将可移动通道的一部分容纳在其中，根据第二示
例性实施例的乘客登机桥空气调节系统被安装在登机厅，可移动通道和延伸通道中。
[0019] 根据第四示例性实施例，一种乘客登机桥空气调节控制系统可包括：根据第二示
例性实施例的乘客登机桥空气调节系统，以及航班管理服务器，其储存并更新飞机的出发
和到达信息；以及乘客登机桥空气调节装置控制器，从航班管理服务器接收出发和到达信
息，以控制乘客登机桥空气调节系统。
[0020] 技术效果
[0021] 根据上述多个示例性实施例，通过借助室外单元支撑单元将室外单元设置在室内单元上，整个通道空气调节装置可设置在可移动通道上，因此，诸如转台和夹紧装置的部件是不必要的，因而降低了安装和运行成本。

[0022] 而且，由于由延伸通道空气调节装置的室内单元的第一供气扇和第二供气扇供应的空气彼此分开，且每个供气扇被单独控制，所以可以在延伸通道扩散器的一部分被关闭时防止风量和风速增大的问题。

[0023] 而且，由于第一供气扇由开/关单元和固定构件控制，传统技术的扩散器盖就不必要，因此，可以防止由于空气的泄露造成的噪音问题。

附图说明
[0024] 图1是应用了根据一示例性实施例的乘客登机桥空气调节系统的乘客登机桥的平面图。
[0025] 图2是应用了根据该示例性实施例的乘客登机桥空气调节系统的乘客登机桥的侧视图。
[0026] 图3是描述了根据一示例性实施例的通道空气调节装置的主视放大图。
[0027] 图4是描述了根据一示例性实施例的乘客登机桥空气调节系统的延伸通道空气调节装置的放大的平面图。
[0028] 图5是描述了开/关单元和固定构件的示意图放大剖视图。
[0029] 图6是描述了当开/关单元是拨动开关时延伸通道空气调节装置由固定构件操作的主视放大图。
[0030] 图7是描述了当开/关单元是第一传感器和第二传感器时延伸通道空气调节装置由固定构件操作的主视放大图。
[0031] 图8示出了一示例性实施例的乘客登机桥通道空气调节控制系统的原理图。
[0032] 图9示出了储存在航班管理服务器中的航班信息的示例。

具体实施方式
[0033] 在下文中，将参照附图具体描述本申请的多个实施例，使得本领域技术人员可以容易地实施本申请。然而，应注意的是本申请并非局限于这些实施例，而是可按多种其它方式来实施。在附图中，为了简化说明而省略了与说明书无关的部件，且相似的附图标记在整个文件中均表示相似的部件。
[0034] 在整个文件中，用于表明一个元件相对于另一个元件的位置的术语“之上”既包括一个元件与另一个元件相邻的情况，也包括其它任何元件在这两个元件之间的情况。
[0035] 在整个文件中，若非上下文另有说明，本文本中使用的术语“包括”或“包含”指的是除所指定的部件、步骤、操作和/或元件外，不排除还有或增加一个或多个其它部件、步骤、操作和/或元件。在整个文件中，术语“大约”或“大概”、“基本上”旨在具有限定指定的数量或范围并可存在允许的偏差的意思，以及旨在防止为理解本申请而公开的精确或绝对的数值范围被任何恶意第三方非法或不正当使用。在整个文件中，术语“…的步骤”并非指“为了…的步骤”。
说明书

[0036] 在下文中，将参照附图详细描述本公开。

[0037] 首先，将描述根据本申请的一个示例性实施例的通道空气调节装置50（下文中，称为“该通道空气调节装置50”）。

[0038] 该通道空气调节装置50包括室内单元53。

[0039] 室内单元53可将空气输送到可移动通道130的管道，以将空气引入可移动通道130。

[0040] 参照图1到图3，室内单元53设置在可移动通道130上。

[0041] 该通道空气调节装置50包括室外单元51。

[0042] 室外单元51可通过连接管（例如，制冷剂气体管）连接到室内单元53。

[0043] 由于传统的通道空气调节及加热装置使用用于往复式压缩机的单独的马达，所以压缩机被放置在空气调节及加热装置的外面。因此，就用于用于将压缩机与空气调节及加热装置彼此连接的单独的连接管，这导致高成本，并使该装置的外观不美。

[0044] 另一方面，参照图4，由于该通道空气调节装置50使用如延伸通道空气调节装置70（将在稍后描述）的压缩机711的涡旋式压缩机或回转式压缩机，所以可在室内单元51的内部设置压缩机。因此，由于该通道空气调节装置50只需将室内单元53和室外单元51彼此连接，所以与需要很多连接管以将冷凝器，压缩机和蒸发器彼此连接的传统的通道空气调节及加热装置相比，其能降低制造成本并有助于维护和修理。而且，由于该通道空气调节装置50的压缩机并不外露，该装置的外观得到改善。

[0045] 该通道空气调节装置50包括室外单元支撑单元55。

[0046] 参照图1和图2，室外单元51可被放置在室内单元53上的室外单元支撑单元55支撑。

[0047] 室外单元51包括对应于冷凝器和压缩机的所有部件，室内单元53包括对应于蒸发器的所有部件。因此，如图3所示，室外单元51的体积可大于室内单元53的体积。

[0048] 如果飞机的登机门与固定通道110相距不远，则乘客登机桥的总长度应当缩短。在这种情况下，由于延伸通道150在其底部具有多个轮子，从而可以滑动地移动，乘客登机桥的长度可通过延伸通道150来调整。因此，如果乘客登机桥的长度需要缩短，那么延伸通道150滑动地移动以在其中容纳可移动通道130。

[0049] 在这种情况下，如图2所示，可移动通道130的一部分就位于延伸通道150的内部，而其另一部分则位于延伸通道150的外部。参照图2和图5，位于延伸通道150内的可移动通道130的上部就没有用于安装空气调节装置的空间。此外，如果增加延伸通道150的高度，从而为在可移动通道130的上部安装空气调节装置而制造空间，则延伸通道150的内部空间会增大，同样，延伸通道空气调节装置70（下文将描述）单独不足以对延伸通道150的内部进行充分的空气调节及加热。

[0050] 换言之，仅能在位于延伸通道150外的可移动通道130的上部制造用于安装空气调节装置的空间。然而，该空间也过于狭窄而不能在其中既安装室外单元51又安装室内单元53。

[0051] 由于空间的限制，传统的空气调节及加热装置将蒸发器安装在可移动通道，将压缩机和冷凝器安装在设置在登机厅的转台上。然而，由于传统的空气调节及加热装置应将转台安装在登机厅的顶面，且还安装夹紧装置以使转台能够随着大厅的旋转一起旋转，所以
以它具有耗费大量制造和运行成本的问题。

因此，如图2所示，该通道空气调节装置50在可移动通道130上的狭小空间设置小体积的室内单元53，以便不干涉延伸通道150；在室内单元53上设置具有相对大体积的室外单元51，使得室外单元51和室内单元53可被设置在可移动通道130上，而不需要诸如转台和夹紧装置的部件。因此，该通道空气调节装置50可降低安装和运行成本。

在这种情况下，室外单元51的两端中邻近大厅120的一端可被设置成不干涉登机厅120。

即，如图2到图3所示，室外单元51的两端中邻近大厅120的一端可被设置成定位在可移动通道130上。换言之，室外单元51的一端可被设置成未定位在大厅120上。

可移动通道130可沿向上或向下的方向旋转约4.7°。在这种情况下，如果室外单元53的一端被定位在登机厅120上，那么当可移动通道130沿向上方向旋转时大厅120可被卡在室外单元51的一端。换言之，室外单元53可被登机厅120干涉，从而干涉可移动通道130的旋转。

因此，由于该通道空气调节装置50仅允许室外单元51被定位在可移动通道130上，所以不干涉可移动通道130的旋转。

此外，室外单元支撑单元55可升高或降低室外单元51，以便调整形成在室内单元53的顶部的空间。这里，形成在室内单元53的顶部的空间理想地意味着一个足够大以进行室内单元53的维修或更换的空间。

如果室内单元53需要维修或更换，那么室外单元支撑单元55可如图3b所示升高室外单元51，使得室内单元53能被维修或更换。当室内单元53的维修或更换完成时，室外单元支撑单元55可如图3a所示再次降低室外单元51。

此外，室内单元53和室外单元51可通过连接管彼此连接。在这种情况下，由于室外单元51可被室外单元支撑单元55升高或降低，所以连接管可以是柔性的，以便即使当室外单元51的高度改变时仍保持连接。换言之，连接管可具有即使当室外单元51被升高到最大高度以及室外单元51被降低到最低高度时，足以维持连接的高度和柔性。

室外单元支撑元件55可包括上支架551。并且，室外单元支撑单元55可包括下支架555。

参照图3，室外单元51可被安装在上支架551上，室内单元53可被安装在下支架555上。此外，升降机553可被安装在上支架551与下支架555之间。

如图3b所示，升降机553可升高或降低上支架551，以便调节形成在室内单元53的顶部的空间。

可设置两(2)个升降机553。两(2)个升降机553可沿着可移动通道130的纵向被安装在下支架555的两侧。然而，升降机553的数量并不限于两(2)个，而可以是三(3)个或更多。

下支架555可具有垂直支撑杆5551，垂直支撑杆5551在上支架551与升降机5533降低的极限高度处支撑上支架551。在这种情况下，垂直支撑杆可以是多个。

这里，上支架551下降的高度限制可意味着，在上支架551没有被升高的状态，即在室外单元51降低到最大程度的状态下上支架551的高度。

参照图3a，如果室外单元51被定位在最低位置，那么垂直支撑杆5551的端部接触
上支架551的底面，以便支撑上支架551。即，室外单元51的重量也施加到垂直支撑杆5551以及升降机553，因此，室外单元51可被更稳定地支撑。此外，剪叉架和减震器(将在下文描述)也可不超载。

【0067】 此外，当升降机553被定位在上支架551与下支架555之间，如果室外单元51的另一端相对于上支架551朝向远离登机台120的方向突出，则升降机553可基于上支架551和下支架555偏心地被定位成朝向远离登机台120的方向，以避免室外单元51倾覆。

【0068】 换言之，如果如图3所示室外单元51的另一端突出到可移动通道130之上，那么为了保持平衡，升降机553的纵向中心与上支架551和下支架555中每个的纵向中心相比可在远离登机台120的方向偏心。

【0069】 如图2到图3所示，该升降机553可为剪叉式升降机。

【0070】 升降机553可包括剪叉架，该剪叉架具有：第一臂5535，其一端连接到上支架551，另一端连接到下支架555；第二臂5537，其一端连接到下支架555，另一端连接到上支架551。

【0071】 在这种情况下，第一臂5535的另一端与第二臂5537的另一端固定，而第一臂5535的一端沿着上支架551滑动，第二臂5537的一端沿着下支架555滑动，使得上支架551可被升高或降低。

【0072】 参照图3，第一臂5535的一端可被定位成比第一臂5535的另一端更靠近登机台120，且沿着可移动通道130的纵向滑动。此外，第二臂5537的一端可被定位成比第二臂5537的另一端更靠近登机台120，且沿着可移动通道130的纵向滑动。

【0073】 此外，如图3所示，升降机553可包括设置在上支架551的底侧的上板5531，以及设置在下支架555的顶侧的下板5533。在这种情况下，第一臂5535的一端可被连接到上板5531，另一端可被连接到下板5533。并且，第二臂5537的另一端可被连接到上板5531，另一端可被连接到下板5533。

【0074】 参照图3b，第一臂5535的一端沿着上板5531沿箭头方向滑动，第二臂5537的另一端沿着下板5533沿箭头方向滑动，使得上支架551可被升高。因此，室外单元51可被升高。

【0075】 在乘客登机梯被缩短到最小的状态下，室外单元支撑单元55可仅被安装在定位于延伸通道150外的可移动通道130上。换言之，室外单元支撑单元的长度受限。

【0076】 为此，如图3所示，室外单元51的长度可比室外单元支撑单元55长。因此，室外单元的另一端可由上支架551完全地支撑，且可能部分地突出到可移动通道130上。换言之，室外单元51的另一端相对于它的一端不能被稳定支撑。

【0077】 因此，为了稳定地升高或降低室外单元51，理想的是固定第一臂5535的另一端与第二臂5537的另一端，上述两臂被定位成靠近室外单元51的不稳定的另一端，并滑动第一臂5535的一端和第二臂5537的一端，上述两臂位于靠近室外单元51的相对稳定地安装的一端。

【0078】 在剪叉架处可安装减震器或液压缸或动力缸，当上支架551被降低时减震器执行缓冲功能，液压缸或动力缸有利于升高上支架551。

【0079】 通过减震器可保护液压缸或动力缸，第一臂5535和第二臂5537免于冲击，且第一臂5535和第二臂5537可容易地升高上支架551。

【0080】 同时，尽管没有在附图中示出，但该通道可调节装置50还可包括加热装置。

【0081】 举例而言，该加热装置可以是根据热泵原理的加热装置。根据热泵原理的加热装
装置可以被压缩在室外单元51中的制冷剂要在高温、高压状态释放热量的方式体现。在这种情况下，如图1到图3所示，室外单元51可被安装在上支架551上，使热量能够通过管等被传递到可移动通道130。

【0082】同时，在另一示例中，加热装置可以是电加热装置。或者，电加热装置可以被辅助地加入到根据热泵原理的上述加热装置。

【0083】同时，描述了根据本申请的示例性实施例的乘客登机桥空气调节系统（下文中，称为“该乘客登机桥空气调节系统”）。然而，与根据本申请的示例性实施例的通道空气调节装置中部件或构造完全相同或相似的该乘客登机桥空气调节系统的部件或构造，将用与通道空气调节装置相同的附图标记表示，且重复说明将被简化或省略。

【0084】该乘客登机桥空气调节系统包括该通道空气调节装置50。

【0085】如上所述，该通道空气调节装置50被安装于可移动通道130的空气调节。

【0086】该乘客登机桥空气调节系统包括延伸通道空气调节装置70。

【0087】延伸通道空气调节装置70被构造为对延伸通道150进行空气调节，该延伸通道沿可移动通道130的纵向向延伸地连接到可移动通道130的端部，该端部与可移动通道130连接到大厅120的端部（即可移动通道130的另一端）相对。

【0088】延伸通道150可具有比可移动通道130更高的高度（如图2所示），且在其底部具有轮子以便移动。因此，当飞机的登机门和登机厅120通过乘客登机桥彼此连接时，可以适当地移动延伸通道150。

【0089】此外，延伸通道150可调整乘客登机桥的长度。换言之，延伸通道150可滑动以使部分可移动通道130容纳于其中，以便调整乘客登机桥的长度。

【0090】如图1和图2所示，延伸通道空气调节装置70可被安装在位于靠近飞机的登机门的延伸通道150上。

【0091】与可移动通道130不同，延伸通道150不受空气调节装置的安装所限制。这是因为当调整乘客登机桥的总长度时，仅有一部分可移动通道130被容纳在延伸通道150之内。因此，如果一部分可移动通道130被容纳在延伸通道150之内，则在可移动通道130的上部处就不能获得用于安装空气调节装置的充足空间。另一方面，由于延伸通道150并未被容纳在另一通道之内，所以在延伸通道150的上部有用于安装空气调节装置的充足空间。

【0092】在这种情况中，由于通道空气调节装置50横越登机厅120和可移动通道130安装，可移动通道130以及连接到可移动通道130的部分延伸通道150可通过通道空气调节装置50进行充分的空气调节。因此，理想的是安装延伸通道空气调节装置70，以便对难以通过通道空气调节装置50充分进行空气调节的空间进行空气调节。因此，理想的是如图1和图2所示尽可能远离通道空气调节装置50地安装延伸通道空气调节装置70。然而，这仅是一个示例，延伸通道空气调节装置70所安装的位置不限于如图1和图2所示的位置。

【0093】延伸通道空气调节装置70的室内单元73可包括第一供气扇731和第二供气扇733。在这种情况下，第一供气扇731可位于比第二供气扇733更靠近可移动通道130。

【0094】图4是示意性示出了从延伸通道150的室内单元53供应的用于空气调节的空气通过延伸通道管道77流入延伸通道150的平面图。这里，延伸通道管道77可安装在延伸通道150的屋顶和天花板之间，或安装在延伸通道150的屋顶之上。因此，延伸通道管道77可被设置成即使当乘客登机桥的长度缩短时，即可移动通道130被容纳到延伸通道150中，也避免
干涉可移动通道130。

[0095] 第一供气扇731可供应用于对延伸通道150邻近可移动通道130的一部分进行空气调节的空气。此外，如图4所示，第二供气扇733可供应用于对延伸通道150邻近登机门的其他部分进行空气调节的空气。

[0096] 例如，如图4所示，连接到第一供气扇731和第二供气扇733的连接开口75的内部可被分隔壁78分隔。

[0097] 延伸通道空气调节装置70可包括连接开口75，上述连接开口分别连接到第一供气扇731和第二供气扇733，以便将从第一供气扇731和第二供气扇733排出的空气输送到延伸通道管道77。在这种情况下，连接开口75的内部可被分隔壁78以避免从第一供气扇731排出的空气和从第二供气扇733排出的空气彼此混合。

[0098] 如上所述，通过将从第一供气扇731排出的用于空气调节的空气与从第二供气扇733排出的用于空气调节的空气彼此分开，即使延伸通道扩散器的一部分被关闭，风可能也无法在延伸通道扩散器的打开部分聚集。

[0099] 更具体地说，当可移动通道130被插入延伸通道150时，即使将从第一供气扇731排出的空气供应到通道中的延伸通道扩散器的一部分被关闭，由于隔墙78，从第一供气扇731排出的空气也不能移动到延伸通道连接到第二供气扇733的管道。因此，由于风不能聚集在打开状态的延伸通道扩散器处，所以可以消除在用于乘客登机桥的传统空气调节系统中引起风量和风速的过度增加而引起乘客头发乱舞的不便。

[0100] 第一供气扇731和第二供气扇733中每个的开/关可独立地控制。

[0101] 当可移动通道130的一部分随着延伸通道150的运动被插入延伸通道150时，已插入可移动通道130的延伸通道150的内部可通过可移动通道130的扩散器供应的空气进行空气调节。因此，不需要运行被定位相邻可移动通道130的第一供气扇731。

[0102] 因此，由于该乘客登机桥空气调节系统仅允许第二供气扇733运行，这使得延伸通道空气调节装置70仅能够将用于空气调节的空气供应到没有放置可移动通道130的延伸通道150的内部。因此，减少不必要的功耗，以便实现就总体来看高效的空气调节系统。

[0103] 在可移动通道130的外表面或延伸通道150的内表面上可设置开/关单元72，该开/关单元72控制第一供气扇731的开/关；且上述两者中的另一者上可具有固定构件74，该固定构件74操作开/关单元72，其中开/关单元72和固定构件75中的任一个可被设置在与延伸通道150被延长或缩短时另一个的移动线路对应的位置。

[0104] 在这种情况下，如果固定构件74如图5所示设置在延伸通道150处，那么开/关单元72可被设置在可移动通道130上，以便位于与固定构件74随着延伸通道150移动的移动线路对应的位置。

[0105] 如图6（a）和图7（a）所示，当延伸通道150沿着乘客登机桥的长度被延长的方向移动时，仅用第二供气扇733难以对延伸通道150的整个内部进行空气调节。因此，参照图6（a）和图7（a），开/关单元72可响应于固定构件74沿箭头方向的运动来运行第一供气扇731，以便对延伸通道150的整个内部进行空气调节。

[0106] 相反，如图6（b）和图7（b）所示，当延伸通道150沿乘客登机桥的长度被缩短的方向移动时，单独使用第二供气扇733可以对延伸通道150的整个内部充分进行空气调节。因此，参照图6（b）和图7（b），开/关单元72可响应于固定构件74沿箭头方向的运动停止第一供气扇731。
扇731的运行，从而防止了不必要的功耗。

【0107】通过示例，如图6所示，开/关单元72可以是拨动开关721。

【0108】参照图6（a），当固定构件74由于延伸通道150沿乘客登机桥的长度被延长的方向移动而沿箭头方向移动时，固定构件74接触拨动开关721，以便从关的方向（由虚线表示）向开的方向（由实线表示）操作拨动开关721。因此，可运行第一供气扇731。

【0109】参照图6（b），当固定构件74由于延伸通道150沿乘客登机桥的长度被缩短的方向移动而沿箭头方向移动时，固定构件74接触拨动开关721，以便从开的方向（由虚线表示）向关的方向（由实线表示）操作拨动开关721。因此，可停止第一供气扇731的运行。

【0110】在另一示例中，如图7所示，开/关单元72可包括第一传感器723和第二传感器725。

【0111】参照图7（a），当延伸通道150沿乘客登机桥的长度被延长的方向移动使得固定构件74沿箭头方向移动时，固定构件74按第一传感器723、第二传感器725的顺序被检测。换句话说，当固定构件74首先被第一传感器723检测，随后被第二传感器725检测时，可操作第一供气扇731。

【0112】参照图7（b），当延伸通道150沿乘客登机桥的长度被缩短的方向移动使得固定构件74沿箭头方向移动时，固定构件74按第二传感器725、第一传感器723的顺序被检测。换句话说，当固定构件74首先被第二传感器725检测，随后被第一传感器723检测时，可停止第一供气扇731的运行。

【0113】延伸通道空气调节装置70可包括延伸通道回路76，该延伸通道回路将外部空气输送到延伸通道空气调节装置70的室外单元71。

【0114】延伸通道回路76可将外部空气吸到其中并将空气输送到延伸通道空气调节装置70的室外单元71，以便使室外单元71能够将外部空气改造成用于空气调节的空气。

【0115】参照图4，延伸通道回路76可设置在延伸通道空气调节装置70的室内单元73。

【0116】在该延伸通道空气调节装置70的室外单元71的内部可设置有压缩机。

【0117】传统的延伸通道空气调节及加热装置已经使用了用于往复式压缩机的单独的马达，且在空气调节及加热装置的外面设置了压缩机。因此，传统的延伸通道空气调节及加热装置需要高成本并造成其外观不美。

【0118】在另一方面，由于该延伸通道空气调节装置70使用涡旋式压缩机或回转式压缩机，所以可在室外单元71之内设置压缩机。因此，与已经以一体化形式被制造并安装的传统的延伸通道空气调节及加热装置相比，该延伸通道空气调节装置70降低了制造成本。而且，由于该延伸通道空气调节装置70的压缩机被设置为从外面不可见，因此该装置的外观得到改善。

【0119】同时，以下将说明根据本申请的一个示例性实施例的乘客登机桥（下文中称为“该乘客登机桥”）。

【0120】该乘客登机桥包括登机厅120和与登机厅120可旋转地连接的可移动通道130。该乘客登机桥包括与可移动通道130的端部连接的延伸通道150，该端部是与可移动通道130与登机厅120彼此连接的端部相对的端部。在这种情况下，延伸通道150可滑动地移动，而使得可移动通道130的一部分位于该延伸通道150的内部。

【0121】在这种情况下，该乘客登机桥空气调节系统可应用于可移动通道130以及延伸通道150。
对于应用于该乘客登机桥的乘客登机桥空气调节系统的通道空气调节装置50和延伸通道空气调节装置70，可使用比传统的用于建筑物的空调调节装置更大尺寸（大功率）的空调调节装置。

在该乘客登机桥中，空气调节装置可被分开并通过设置在可移动通道130的上部的室外单元支撑单元55设置，因此，可应用比传统的用于乘客登机桥的空调调节及加热装置更大尺寸的空调调节装置。换言之，大型的空调调节装置可被分成两部分，其中一部分可设置在上支架551上，另一部分可设置在下支架555上。

如上所述，传统的用于乘客登机桥的空调调节及加热装置已经被分成两部分，通过转台和夹紧装置，其中一部分已经被设置在登机口120上，另一部分已经被设置在可移动通道130上；然而，在这种情况下，存在导致大的制造和运行成本的缺点。

由于应用于乘客登机桥的通道空调调节装置50可被分开并设置在可移动通道130的上部而不需要转台和夹紧装置，所以可以降低制造和运行成本。

举例而言，关于上述的大型空调调节装置，可采用公共汽车中使用的空调调节装置。

对于在传统的可移动通道中使用的空气调节及加热装置，已经采用建筑用空调调节装置。建筑物用空调调节装置被制造为适合少量使用者，因此，如果该装置本应该被应用于具有大量使用者的长的可移动通道，则会由于风量小而不能供给足够的空调调节及加热。

公共汽车和可移动通道130在内部空间的尺寸（例如宽度）方面彼此具有某种程度的相似。尽管使用者人数众多，但公共汽车中使用的空调调节及加热装置能够供给充足的风量的空调调节及加热。因此，公共汽车中使用的空调调节及加热装置也能够应用于具有与公共汽车类似的内部空间的可移动通道130。

同时，将说明根据本申请的一个示例性实施例的乘客登机桥空调调节控制系统的（下文中称为“该乘客登机桥空调调节控制系统”）。

该乘客登机桥空调调节控制系统包括该乘客登机桥空调调节系统。

乘客登机桥空调调节系统可应用于单个乘客登机桥或多个乘客登机桥中的每一个。

该乘客登机桥空调调节控制系统包括航班管理服务器10。

航班管理服务器10存储飞机的到达或出发的时间表，即飞机的航班信息。飞机的这些航班信息由航空电信网（未示出）传输和共享。

参照图8，时间表管理员100可将实时变化的准确的航班信息输入到航班管理服务器10中，以便实时更新存储在航班管理服务器10中的飞机的航班信息。

航班管理服务器10可将飞机的航班信息传输到显示控制器20或者乘客登机桥空调调节装置控制器30（后文将描述）。

该乘客登机桥空调调节控制系统包括乘客登机桥空调调节装置控制器30。

乘客登机桥空调调节装置控制器30可在连接到乘客登机桥的飞机的出发信息的出发时间或者到达信息的到达时间的一预定时间之前，运行通道空调调节装置50和延伸通道空调调节装置70。

该乘客登机桥空调调节控制系统可仅比乘客使用登机桥期间提前适当时间运行。
通道空气调节装置50和延伸通道空气调节装置70，而不是一直运行通道空气调节装置50和延伸通道空气调节装置70。概括而言，由于乘客登机桥的使用是在飞机的出发时间之前或在飞机的到达时间之后，因此空气调节装置可仅在这些时间段运行以保持通道中的适当的设定温度。

[0139] 因此，乘客登机桥空气调节装置控制器30可预先设定特定时间，以在飞机的出发时间或到达时间之前的预设时间运行通道空气调节装置和延伸通道空气调节装置，并控制该通道空气调节装置和延伸通道空气调节装置在预设时间到达时运行。

[0140] 举例而言，与通道空气调节装置和延伸通道空气调节装置的运行时间相比，可以通过获得根据乘客登机桥的长度、通道空气调节装置和延伸通道空气调节装置的容量，以及外部空气温度等设定的到达适当温度的时间段的平均值，并通过外部空气温度来计算适当的设备运行时间段的数据来确定该预设时间。

[0141] 并且，乘客登机桥空气调节装置控制器30可根据来自航班管理服务器10的关于乘客数量的信息，在预设时间之后停止通道空气调节装置50和延伸通道空气调节装置70的运行。例如，如果乘客数量大，则乘客登机桥空气调节装置控制器30可设定延长的预设时间，并在延长时间之后停止空气调节装置50、70的运行。相反，如果乘客的数量小，则乘客登机桥空气调节装置控制器30可设定缩短的预设时间，并在缩短时间之后停止空气调节装置50、70的运行。

[0142] 参照图8，乘客登机桥空气调节装置控制器30可从显示控制器20或航班管理服务器10接收待连接到乘客登机桥的飞机的航班信息。

[0143] 举例而言，乘客登机桥空气调节装置控制器30可根据来自航班管理服务器10接收待连接到相应的乘客登机桥的飞机的出发时间或到达时间，并控制乘客登机桥空气调节系统40在达到预设时间时运行通道空气调节装置和延伸通道空气调节装置。

[0144] 另外，乘客登机桥空气调节装置控制器30可从显示控制器20 (下文将描述)接收待连接到相应的乘客登机桥的飞机的出发时间或到达时间，并控制乘客登机桥空气调节系统40在达到预设时间时运行通道空气调节装置和延伸通道空气调节装置。

[0145] 在完成对将连接到乘客登机桥的飞机的乘客载送 (passenger handling) 后，乘客登机桥空气调节装置控制器30可检测来自乘客登机桥的结束信号，并停止通道空气调节装置和延伸通道空气调节装置的运行。

[0146] 举例而言，如图8所示，结束信号可由乘客登机桥管理员300传输到乘客登机桥空气调节装置控制器30，以控制乘客登机桥空气调节系统40。乘客登机桥管理员300可检测并控制乘客登机桥的运行，且同时还可检测并控制包括在每个乘客登机桥中的乘客登机桥空气调节系统中所包括的通道空气调节装置和延伸通道空气调节装置。

[0147] 另外，如图8所示，结束信号可由显示控制器20 (后文将描述)传输到乘客登机桥空气调节装置控制器30，以控制乘客登机桥空气调节系统40。

[0148] 此外，乘客登机桥空气调节装置控制器30可来自将连接到乘客登机桥的飞机的出发信息的出发时间或到达信息的到达时间的预设时间之后，停止通道空气调节装置和延伸通道空气调节装置的运行。

[0149] 乘客离开飞机所需的时间根据飞机型号的不同而不同。然而，理想地，通道空气调节装置和延伸通道空气调节装置的运行可在乘客登机桥与飞机完成连接的约10分钟到约
15分钟之后停止。

[0150] 此外，通道空气调节装置和延伸通道空气调节装置的运行可由乘客登机桥管理员300手动停止，或者可在所有乘客登机且乘客登机桥从飞机断开连接之后，响应于接收到的运行停止信号而自动停止。

[0151] 此外，乘客登机桥空气调节装置控制器30可通过显示控制器20从航班管理服务器10接收出发和到达的信息，以控制乘客登机桥空气调节系统40。

[0152] 显示控制器20可从航班管理服务器10接收飞机的航班信息，以按类型或地点以适合信息特性设计来显示信息。

[0153] 举例而言，如图8所示，显示控制器20可控制FIDS。FIDS用于显示所有飞机的出发或到达。

[0154] 而且，如图8所示，显示控制器20可控制GIDS。GIDS用于显示指示飞机的出发或到达的时间信息。

[0155] 参照图8，显示控制器20可从航班管理服务器10接收与飞机的出发时间或到达时间相关的信息，以告知飞机的航班信息，并且将已从航班管理服务器10接收的关于飞机的出发时间或到达时间的信息传输到乘客登机桥空气调节装置控制器30，以控制乘客登机桥空气调节系统40。

[0156] 本文提供的多个示例性实施例的上述描述仅用于说明目的，本领域技术人员应理解的是，在不改变上述示例性实施例的技术构思和必要特征的情况下，可对示例性实施例做出多种变化和更改。因此，显然的，上述多个示例性实施例是从所有方面进行诠释的，而非用于限制本申请。例如，被描述为属于一个单独类型的每个部件都能够以分散的方式实施。同样，被描述为分散的多个部件也能够以组合的方式实施。

[0157] 本发明构思的范围是所附的权利要求书及其等同物限定，而非示例性实施例的具体描述限定。应理解的是，由权利要求及其等同物的含义及范围想到的所有更改和实施例均包括在本发明构思的范围内。
图1
图2
图3a
图3b
图6
<table>
<thead>
<tr>
<th>航线</th>
<th>航班</th>
<th>计划时间</th>
<th>目的地</th>
<th>预计时间</th>
<th>登机门</th>
<th>处理中</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCA</td>
<td>CA123</td>
<td>08:30</td>
<td>上海</td>
<td>09:30</td>
<td>1</td>
<td>处理中</td>
<td></td>
</tr>
<tr>
<td>LH</td>
<td>LH238</td>
<td>09:40</td>
<td>韩国</td>
<td>09:45</td>
<td>2</td>
<td>等待</td>
<td></td>
</tr>
<tr>
<td>AF</td>
<td>SU1038</td>
<td>09:45</td>
<td>伦敦</td>
<td>09:50</td>
<td>3</td>
<td>取消</td>
<td></td>
</tr>
<tr>
<td>KE</td>
<td>KE763</td>
<td>10:50</td>
<td>柏林</td>
<td>11:05</td>
<td>4</td>
<td>取消</td>
<td></td>
</tr>
<tr>
<td>UA</td>
<td>UA095</td>
<td>10:25</td>
<td>纽约</td>
<td>11:30</td>
<td>2</td>
<td>延误</td>
<td></td>
</tr>
<tr>
<td>JAL</td>
<td>JI527</td>
<td>11:30</td>
<td>东京</td>
<td>11:40</td>
<td>3</td>
<td>延误</td>
<td></td>
</tr>
<tr>
<td>AAR</td>
<td>OZ272</td>
<td>11:50</td>
<td>悉尼</td>
<td>11:55</td>
<td>2</td>
<td>延误</td>
<td></td>
</tr>
<tr>
<td>DAW</td>
<td>DA123</td>
<td>11:10</td>
<td>伦敦</td>
<td>11:15</td>
<td>2</td>
<td>延误</td>
<td></td>
</tr>
</tbody>
</table>

图9