

(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 2017362491 B2

(54) Title
Intrathecal delivery of recombinant Adeno-associated virus encoding Methyl-CpG binding protein 2

(51) International Patent Classification(s)
C12N 7/00 (2006.01) **C07K 14/47** (2006.01)
A61K 48/00 (2006.01)

(21) Application No: **2017362491** (22) Date of Filing: **2017.11.17**

(87) WIPO No: **WO18/094251**

(30) Priority Data

(31) Number **62/423,618** (32) Date **2016.11.17** (33) Country **US**

(43) Publication Date: **2018.05.24**
(44) Accepted Journal Date: **2023.02.02**

(71) Applicant(s)
Ohio State Innovation Foundation;Nationwide Children's Hospital Inc.

(72) Inventor(s)
Foust, Kevin;Kaspar, Brian K.

(74) Agent / Attorney
Davies Collison Cave Pty Ltd, Level 15 1 Nicholson Street, MELBOURNE, VIC, 3000, AU

(56) Related Art
S. K. GARG ET AL: THE JOURNAL OF NEUROSCIENCE, vol. 33, 2013, pages 13612 - 13620
GADALLA, K.K.E. et al. Molecular Therapy, 2013, vol. 21, pages 18-30
US 2013/0225666 A1
WO 2016/100575 A1

WO 2018/094251 A1

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number

WO 2018/094251 A1

(43) International Publication Date
24 May 2018 (24.05.2018)

(51) International Patent Classification:

A61K 48/00 (2006.01) C12N 7/00 (2006.01)
C07K 14/47 (2006.01)

(21) International Application Number:

PCT/US2017/062371

(22) International Filing Date:

17 November 2017 (17.11.2017)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

62/423,618 17 November 2016 (17.11.2016) US

(72) Inventors; and

(71) Applicants: KASPAR, Brian, K. [US/US]; Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205 (US). FOUST, Kevin [US/US]; Ohio State Innovation Foundation, 1524 North High Street, Columbus, OH 43201 (US).

(74) Agent: NOLAND, Greta, E.; Marshall, Gerstein & Borun LLP, 233 S. Wacker Drive, 6300 Willis Tower, Chicago, IL 60606-6357 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

- with international search report (Art. 21(3))
- with sequence listing part of description (Rule 5.2(a))

(54) Title: INTRATHECAL DELIVERY OF RECOMBINANT ADENO-ASSOCIATED VIRUS ENCODING METHYL-CPG BINDING PROTEIN 2

(57) Abstract: Methods and materials for intrathecal delivery of recombinant Adeno-associated virus 9 (rAAV9) encoding Methyl-CpG binding protein 2 (MECP2) are provided. Use of the methods and materials is contemplated, for example, for the treatment of Rett syndrome.

INTRATHECAL DELIVERY OF RECOMBINANT ADENO-ASSOCIATED VIRUS
ENCODING METHYL-CPG BINDING PROTEIN 2

[0001] The present application claims the benefit of priority of U. S. Provisional Patent Application No. 62/423,618 filed November 17, 2016.

Incorporation By Reference Of Material Submitted Electronically

[0002] Incorporated by reference in its entirety is a sequence listing in computer-readable form submitted concurrently herewith and identified as follows: ASCII text file named "50215PCT_SeqListing.txt", 24,148 bytes, created November 17, 2017.

Field of the Invention

[0003] The present invention relates to methods and materials for the intrathecal delivery of recombinant Adeno-associated virus 9 (rAAV9) encoding Methyl-CpG binding protein 2 (MECP2). Use of the methods and materials is contemplated, for example, for the treatment of Rett syndrome.

Background

[0004] Rett syndrome is a neurodevelopmental X linked dominant disorder affecting ~1 in 10,000 girls. Hemizygous males usually die of neonatal encephalopathy. Heterozygous females survive into adulthood but exhibit severe symptoms including microcephaly, loss of purposeful hand motions and speech, and motor abnormalities which appear following a period of apparently normal development. Age of onset is around 6-18 months.

[0005] Rett syndrome is classified as Typical (or Classic) Rett or Atypical Rett. Spontaneous mutations gene encoding the transcription factor Methyl-CpG binding protein 2 (MECP2) cause the majority (~90%) of cases in both classifications although Atypical Rett can be caused by mutations in genes other than *MECP2*. The nature of the *MECP2* mutation (e.g. deletion vs. point mutation) and skewed X chromosome inactivation impact disease severity. The *MECP2* transcription factor modulates transcription of thousands of genes. Therapeutic efforts have focused on targets downstream of *MECP2* including neurotransmitters, growth factors and metabolic pathways. At least nine clinical trials directed toward Rett syndrome have reported positive outcomes across different measures, but the findings have not been independently validated or resulted in new treatments [Katz *et al*, *Trends in Neurosciences*, 39: 100-113 (2016)]. There are currently no approved therapies for Rett Syndrome.

[0006] There are male and female mouse models in which the mice exhibit RTT-like behaviors [Guy *et al.*, *Nature Genetics*, 27: 322-326 (2001); Chen *et al.*, *Nature Genetics* 27: 327-331 (2001); and Katz *et al.*, 5: 733-745 (2012)].

[0007] MECP2 is a 52kD nuclear protein that is expressed in a variety of tissues but is enriched in neurons and has been studied most in the nervous system. There are two isoforms of MECP2 in humans known as MECP2A and B (**Figure 1**) [Weaving *et al.*, *Journal of Medical Genetics*, 42: 1-7 (2005)]. The two isoforms derive from alternatively spliced mRNA transcripts and have different translation start sites. MECP2B includes exons 1, 3 and 4 and is the predominant isoform in the brain. MECP2 reversibly binds to methylated DNA and modulates gene expression [Guy *et al.*, *Annual Review of Cell and Developmental Biology*, 27: 631-652 (2011)] These functions map to the methyl binding domain (MBD) and transcriptional repressor domain (TRD), respectively [Nan & Bird, *Brain & Development*, 23, Suppl 1: S32-37 (2001)]. Originally thought of as a transcriptional repressor, MECP2 can both induce and suppress target gene expression [Chahrour *et al.*, *Science*, 320: 1224-1229 (2008)]. MECP2 is hypothesized to support proper neuronal development and maintenance. In neurons, MECP2 facilitates translation of synaptic activity into gene expression through DNA binding and interaction with different binding partners [Ebert *et al.*, *Nature*, 499: 341-345 (2013) and Lyst *et al.*, *Nature Neuroscience*, 16: 898-902 (2013)]. In astrocytes, MECP2 deficiency is linked to apneic events in mice [Lioy *et al.*, *Nature*, 475: 497-500 (2011)]. MECP2 deficiency can cause reduced brain size, increased neuronal packing density and reduced dendritic complexity [Armstrong *et al.*, *Journal of Neuropathology and Experimental Neurology*, 54: 195-201 (1995)]. Importantly, neuron death is not associated with MECP2 deficiency [Leonard *et al.*, *Nature Reviews, Neurology*, 13: 37-51 (2017)]. MECP2 is also found outside the nervous system though levels vary across tissues (**Figure 2**). A recent study examined the dependence of Rett symptoms in mice on peripheral *Mecp2* expression [Ross *et al.*, *Human Molecular Genetics*, 25: 4389-4404 (2016)]. Peripheral deficiency was associated with hypo-activity, exercise fatigue and bone abnormalities. The majority of RTT-associated behavioral, sensorimotor, gait and autonomic (respiratory and cardiac) phenotypes were absent in mice with peripheral *MECP2* knock out.

[0008] Because *MECP2* is an X-linked gene, one copy of *MECP2* is silenced due to X chromosome inactivation (Xci) in females. On a per cell basis, Xci is believed to be random which leads to *MECP2* chimerism in Rett females. Disease severity is impacted by whether the majority of active X chromosomes contain the intact or mutated *MECP2* gene. This is called skewed Xci. Males do not undergo Xci, therefore *MECP2* deficiency is more severe as no cells will have a functional copy of *MECP2*. The nature of the *MECP2* mutation also impacts disease severity. Over 600 different mutations of the *MECP2* gene are described in

the RettBASE database (<http://mecp2.chw.edu.au/>) including deletions, non-sense and point mutations. The most common mutation (~9% of patients) is the T185M allele which affects the methyl binding domain. Other common mutations are shown in **Figure 3** [Leonard, *supra*]. Together these account for over 40% of cases listed in RettBASE. Large scale deletions involving *MECP2* were found in 8-10% of cases [Li *et al.*, *Journal of Human Genetics*, 52: 38-47 (2007) and Hardwick *et al.*, *European Journal of Human Genetics*, 15: 1218-1229 (2007)]. There is genotype-phenotype correlation with R133C, R294X and C-terminal mutations and deletions (downstream of the TRD) causing milder disease. Large deletions and early truncating mutations (R270X, R255X and R168X) are associated with severe Rett syndrome. Table 1 describes consensus Rett diagnostic criteria recently compiled by a group of international Rett clinicians [Neul *et al.*, *Annals of Neurology*, 68: 944-950 (2010)].

Table 1 RTT Diagnostic Criteria 2010	
-Consider diagnosis when postnatal deceleration of head growth observed.	
<i>Required for typical or classic RTT</i>	
1. A period of regression followed by recovery or stabilization.* 2. All main criteria and all exclusion criteria 3. Supportive criteria are not required, although often present in typical RTT	
<i>Required for atypical or variant RTT</i>	
1. A period of regression followed by recovery or stabilization 2. At least 2 out of the 4 main criteria 3. 5 out of 11 supportive criteria	
<i>Main Criteria</i>	
1. Partial or complete loss of acquired purposeful hand skills. 2. Partial or complete loss of acquired spoken language** 3. Gait abnormalities: Impaired (dyspraxic) or absence of ability. 4. Stereotypic hand movements such as hand wringing/squeezing, clapping/tapping, mouthing and washing/rubbing automatisms.	
<i>Exclusion Criteria for RTT</i>	
1. Brain injury secondary to trauma (peri- or postnatally), neurometabolic disease, or severe infection that causes neurological problems*** 2. Grossly abnormal psychomotor development in first 6 months of life [#]	
<i>Supportive Criteria for atypical RTT^{##}</i>	
Breathing disturbances when awake Bruxism when awake Impaired sleep pattern Abnormal muscle tone Peripheral vasomotor disturbances Scoliosis/kyphosis Growth retardation Small cold hands and feet Inappropriate laughing/screaming spells Diminished response to pain Intense eye communication- "eye pointing"	
* = Because <i>MECP2</i> mutations are now identified in some individuals prior to any clear evidence of regression, the diagnosis of "possible" RTT should be given to those individuals under 3 years old who have not lost any skills but otherwise have clinical features suggestive of RTT. These individuals should be reassessed every 6-12 months for evidence of regression. If regression manifests, the diagnosis should then be changed to definite RTT. However, if the child does not show any evidence of regression by 5 years, the diagnosis of RTT should be questioned.	

** = Loss of acquired language is based on best acquired spoken language skill, not strictly on the acquisition of distinct words or higher language skills. Thus, an individual who had learned to babble but then loses this ability is considered to have loss of acquired language.
*** = There should be clear evidence (neurological or ophthalmological examination and MRI/CT) that the presumed insult directly resulted in neurological dysfunction.
[#] = Grossly abnormal to the point that normal milestones (acquiring head control, swallowing, developing social smile) are not met. Mild generalized hypotonia or other previously reported subtle developmental alterations during the first six months of life is common in RTT and do not constitute an exclusionary criterion.
^{##} = If an individual has or ever had a clinical feature listed it is counted as a supportive criterion. Many of these features have an age dependency, manifesting and becoming more predominant at certain ages. Therefore, the diagnosis of atypical RTT may be easier for older individuals than for younger. In the case of a younger individual (under 5 years old) who has a period of regression and ≥ 2 main criteria but does not fulfill the requirements of 5/11 supportive criteria, the diagnosis of "probably atypical RTT" may be given. Individuals who fall into this category should be reassessed as they age and the diagnosis revised accordingly.

[0009] Adeno-associated virus (AAV) is a replication-deficient parvovirus, the single-stranded DNA genome of which is about 4.7 kb in length including 145 nucleotide inverted terminal repeat (ITRs). The nucleotide sequence of the AAV serotype 2 (AAV2) genome is presented in Srivastava *et al.*, *J Virol*, 45: 555-564 (1983) as corrected by Ruffing *et al.*, *J Gen Virol*, 75: 3385-3392 (1994). *Cis*-acting sequences directing viral DNA replication (rep), encapsidation/packaging and host cell chromosome integration are contained within the ITRs. Three AAV promoters (named p5, p19, and p40 for their relative map locations) drive the expression of the two AAV internal open reading frames encoding rep and cap genes. The two rep promoters (p5 and p19), coupled with the differential splicing of the single AAV intron (at nucleotides 2107 and 2227), result in the production of four rep proteins (rep 78, rep 68, rep 52, and rep 40) from the rep gene. Rep proteins possess multiple enzymatic properties that are ultimately responsible for replicating the viral genome. The cap gene is expressed from the p40 promoter and it encodes the three capsid proteins VP1, VP2, and VP3. Alternative splicing and non-consensus translational start sites are responsible for the production of the three related capsid proteins. A single consensus polyadenylation site is located at map position 95 of the AAV genome. The life cycle and genetics of AAV are reviewed in Muzyczka, *Current Topics in Microbiology and Immunology*, 158: 97-129 (1992).

[0010] AAV possesses unique features that make it attractive as a vector for delivering foreign DNA to cells, for example, in gene therapy. AAV infection of cells in culture is noncytopathic, and natural infection of humans and other animals is silent and asymptomatic. Moreover, AAV infects many mammalian cells allowing the possibility of targeting many different tissues *in vivo*. Moreover, AAV transduces slowly dividing and non-dividing cells, and can persist essentially for the lifetime of those cells as a transcriptionally active nuclear episome (extrachromosomal element). The AAV proviral genome is infectious as cloned DNA in plasmids which makes construction of recombinant genomes feasible.

Furthermore, because the signals directing AAV replication, genome encapsidation and integration are contained within the ITRs of the AAV genome, some or all of the internal approximately 4.3 kb of the genome (encoding replication and structural capsid proteins, rep-cap) may be replaced with foreign DNA such as a gene cassette containing a promoter, a DNA of interest and a polyadenylation signal. The rep and cap proteins may be provided *in trans*. Another significant feature of AAV is that it is an extremely stable and hearty virus. It easily withstands the conditions used to inactivate adenovirus (56° to 65°C for several hours), making cold preservation of AAV less critical. AAV may even be lyophilized. Finally, AAV-infected cells are not resistant to superinfection. Multiple serotypes of AAV exist and offer varied tissue tropism. Known serotypes include, for example, AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, AAV11, AAV12, AAV13 and AAVrh74. AAV9 is described in U.S. Patent No. 7,198,951 and in Gao *et al.*, *J. Virol.*, 78: 6381-6388 (2004).

[0011] There remains a need in the art for methods and products for delivering MECP2 polynucleotides to, and expressing the polynucleotides in, the central nervous system.

Summary

[0012] The present disclosure provides methods and materials useful for treating Rett syndrome in a patient in need thereof.

[0013] Methods are provided of treating Rett syndrome in a patient comprising the step of intrathecal administration of a recombinant adeno-associated virus 9 (rAAV9) encoding Methyl-CpG binding protein 2 (MECP2) to a patient in need thereof, wherein the rAAV9 comprises a self-complementary genome encoding MECP2B and wherein the sequence of the self-complementary genome is set out in SEQ ID NO: 1. An exemplary rAAV9 provided is the scAAV named AVXS-201.

[0014] Methods are provided which further comprise the step of intrathecal administration of iohexol, iobitridol, iomeprol, iopamidol, iopentol, iopromide, ioversol or ioxilan, or mixtures of two or more thereof, to the patient, and/or which further comprise putting the patient in the Trendelenberg position.

Brief Description of the Drawings

[0015] Figure 1: Diagram of the human MECP2 locus. The picture shows the alternative transcription start sites (arrows), exons (boxes) and splicing pattern of the mature mRNAs. MECP2B is the isoform most abundant in the brain and is encoded by AVXS-201.

[0016] Figure 2: Chart depicts relative MECP2 protein expression levels in various human tissues as detected by immunohistochemistry. Modified from The Human Protein Atlas (www.proteinatlas.org).

[0017] Figure 3: Key functional domains of the MECP2 protein and common mutations found in Rett patients. MBD = methyl-CpG-binding, TRD = Transcriptional Repression Domain, NID = NCOR–SMRT interaction domain (NID), and the nuclear localization signal (NLS)

[0018] Figure 4: Proof of concept with AAV9 mediated restoration of *Mecp2* expression in male Rett mice. A) Cartoon of the recombinant AAV genome. B) Experimental design. C) Kaplan-Meier survival curve showing the increased survival of scAAV9.738.*Mecp2* treated Rett mice compared to animals treated with control vector. D) Vector mediated *Mecp2* restoration improves the behavioral phenotype when measured by the Bird scoring (Box 1).

[0019] Figure 5: scAAV9.738.*Mecp2* treatment of female Rett mice makes physiological levels of *Mecp2* and improves aberrant behavior. A) Experimental design B) Fluorescence intensity measurements from brain sections that were immunolabeled for *Mecp2* from wild type and scAAV9.738.*Mecp2* treated Rett mice. The distribution of intensity measurements is similar between the two groups. C) Bird phenotype scoring shows a reduction in symptoms in animals receiving scAAV9.738.*Mecp2*. D-G) Rotarod, Inverted Grid, Platform and nesting behavioral assessments, respectively, all show improvement in scAAV9.738.*Mecp2* treated versus control treated animals..

[0020] Figure 6: A cartoon depicting the first generation (A) and the revised (B, AVXS-201) recombinant AAV genomes described here. The colors reflect similarities and differences between the constructs. Between scAAV9.738.*Mecp2* and AVXS-201, the promoter was shortened, intervening sequences between key elements were shortened, the murine *Mecp2* alpha cDNA was replaced with a human MECP2B cDNA, and the bovine growth hormone polyadenylation signal was changed to a shorter synthetic element. The overall goal of the changes was to improve packaging efficiency while maintaining physiological expression levels of a clinically relevant MECP2 cDNA.

[0021] Figure 7: Dose response of AVXS-201 in *Mecp2*^{dy} mice. A) A Kaplan-Meier plot of the different doses used to treat *Mecp2*^{dy} mice. Median survival for the dose groups are color coded and indicated by the dashed lines. Every cohort that received AVXS-201 had an increase in survival over the control treated null mice. B) The median survival data from each group were plotted to show the dose response curve. The dashed line represents median survival of PBS treated *Mecp2*^{dy}. These data are consistent with the known effects of MECP2 deficiency and overabundance.

[0022] Figure 8: Bird behavioral scoring for *Mecp2*^{+/y} mice treated with AVXS-201. A) Control treated affected mice accumulate deficits with increasing age. Behavioral deficits are attenuated with AVXS-201 treatment regardless of dose. B) The same data as in (A) is re-graphed showing only the control treated and the AVXS-201 1.44x10¹⁰ vg group.

[0023] Figure 9: AVXS-201 treated *Mecp2* null mice recover spontaneous ambulation. Open field analysis shows that AVXS-201 treated null mice traverse (A) greater distances and at increased (B) average velocity compared to control treated nulls. C) Rotarod performance at 3 months of age was also improved with moderate doses of AVXS-201. + = p≤0.001; * = p≤0.05; ‡ = p≤0.0001 .

[0024] Figure 10: AVXS-201 makes a moderate amount of MECP2 at therapeutic doses. A) Anti-MeCP2 western blots from brain hemisphere homogenates made from male wild type (PBS) or *Mecp2*^{+/y} mice. *Mecp2* nulls were either uninjected (KO) or received the indicated doses of AVXS-201. B) Quantification of panel A. The targeted therapeutic dose of 1.44x10¹⁰ vg produced 11% of wild type levels of protein.

[0025] Figure 11: AVXS-201 is well tolerated in wild type mice. A) Kaplan-Meier survival plot of male wild type mice that received P1 ICV administration of AVXS-201. B) Bird phenotypic scoring of the treated and wild type mice shows that a wide range of doses are well tolerated. The highest dose (1.13x10¹¹, blue line) produced mild behavioral impairments.

[0026] Figure 12: AVXS-201 treatment in wild type animals does not impair ambulation. Open field analysis of wild type male mice treated with AVXS-201 show similar (A) distances traveled and (B) average speeds as the control treated wild type mice. C) Rotarod performance was decreased in the wild type animals that received the high dose of AVXS-201. + = p≤0.001, * = p≤0.05

[0027] Figure 13: AVXS-201 produces dose dependent increases in MECP2 protein in wild type brains. A) Anti-MeCP2 western blots show a dose dependent elevation of total MeCP2 protein in various brain regions 3 weeks after P1 ICV injection. (Cb = cerebellum, Med = medulla, Hipp = hippocampus, Ctx = cortex, Mid = midbrain). TG3 indicates samples taken from a severe mouse model of MeCP2 Duplication Syndrome¹. B) Quantification of panel A. High, but not moderate, doses of AVXS-201 double MECP2 expression in select brain regions.

[0028] Figure 14: Intrathecal infusion of AVXS-201 in non-human primates does not impair body weight growth. The three AVXS-201 treated animals are shown in red, and body weight for a control subject is shown in blue.

[0029] Figure 15: Intrathecal infusion of AVXS-201 in non-human primates does not impact hematology values through 18 months post injection. Values for the three AVXS-201 treated animals are shown in red and control subjects are shown in blue.

[0030] Figure 16: Intrathecal infusion of AVXS-201 in non-human primates does not impact serum chemistry through 12-18 months post injection. Liver and electrolyte values are similar between AVXS-201 and control treated subjects. Values for the three AVXS-201 treated animals are shown in red and control subjects are shown in blue.

[0031] Figure 17: Intrathecal infusion of AVXS-201 in non-human primates does not impact serum chemistry through 12-18 months post injection. Cardiac and renal values are similar between AVXS-201 and control treated subjects. Values for the three AVXS-201 treated animals are shown in red and control subjects are shown in blue.

[0032] Figure 18: Similar levels of MeCP2 expression throughout the brains of AVXS-201 treated and control non-human primates. Anti-MeCP2 immunohistochemistry revealed no gross structural abnormalities or obvious differences in MeCP2 expression. OC = Occipital Cortex, TC = Temporal Cortex, LSc = Lumbar spinal cord, Thal = Thalamus, Hipp = Hippocampus, Cb = Cerebellum.

[0033] Figure 19: Western blots of brain regions from control and AVXS-201 injected animals show similar levels of MeCP2. Total MeCP2 levels are shown in green and GAPDH loading controls are shown in red. Quantifications of panels A and B are shown below their respective blots. Dashed lines in the graphs indicate the average normalized values detected across controls. OC = Occipital Cortex, TC = Temporal Cortex, LSc = Lumbar spinal cord, Thal = Thalamus, Hipp = Hippocampus, Cb = Cerebellum. Values are shown as average \pm SEM.

[0034] Figure 20: *In situ* hybridization shows vector derived transcript in all regions examined from brains of AVXS-201 treated animals but not controls. The figure shows probes against Gapdh (red) and vector derived MECP2 mRNA (green) along with nuclear labeling (Dapi, blue). OC = Occipital Cortex, TC = Temporal Cortex, LSc = Lumbar spinal cord, Hipp = Hippocampus, Cb = Cerebellum. Scale bars = 20 μ m.

[0035] Figure 21: *In situ* hybridization shows vector derived transcript in all regions examined from brains of AVXS-201 treated animals but not controls 18 months post injection. The figure shows probes against Gapdh (red) and vector derived MECP2 mRNA (green) along with nuclear labeling (Dapi, blue). OC = Occipital Cortex, TC = Temporal Cortex, CA1 and CA3 = Regions of the Hippocampus, CC = Corpus Callosum, Thal = Thalamus, Cau = Caudate, Put = Putamen, SColl = Superior Colliculus, Med = Medulla, Cb

= Cerebellum, Cerv = cervical spinal cord, Thor = thoracic spinal cord, Lumb = lumbar spinal cord. Scale bars = 20 μ m

[0036] Figure 22: X-linked neurodevelopmental Autism Spectrum Disorder (ASD) affects ~1 in 10,000 girls. The age of onset is 6-18 months of age. 90% of cases result from mutations in Methyl CpG Binding Protein 2 (MeCP2), a transcription factor that regulates thousands of genes.

[0037] Figure 23: Re-expression of MeCP2 in null mice ameliorates survival and behavioral phenotypes (mouse image from Guy *et al.* 2001 *Nature*).

[0038] Figure 24: Gene therapy for Rett Syndrome: non-pathogenic adeno-associated virus serotype 9 (AAV9) mediates delivery of MeCP2 to the CNS with an endogenous promoter and efficient targeting of neurons and astrocytes. Image depicting injection site from Lee *et al.* 2007 *Faseb*.

[0039] Figure 25: Regulation of MeCP2 in wild type mice injected with AAV-P546-MeCP2. A) MeCP2 protein expression in half brain of ICV treated MeCP2^{Y/+} mice. B) MeCP2 protein expression in mouse half-brain.

[0040] Figure 26: MeCP2 relative expression in MeCP2 null mice post AAV9-P546-MeCP2 ICV injection. A) MeCP2 protein expression in half brain of ICV treated MeCP2Y/- mice. B) MeCP2 protein expression in mouse half-brain.

[0041] Figure 27: Effect of P546-MeCP2 delivered directly to the CNS of MeCP2^{Y/+} mice on behavioral scores. Qualitative behavioral scoring: tremor, gait, abnormal respiration, mobility, general condition, hindlimb clasping (mouse image from Guy *et al.* 2007 *Nature*).

[0042] Figure 28: P546-MeCP2 delivered directly to the CNS of *MeCP2^{Y/+}* mice rescues motor activity. A) Open Field (distance); 7-9 weeks post injection. B) Rotarod Performance; 12 weeks post injection.

[0043] Figure 29: Survival of MeCP2^{Y/+} vs MeCP2^{Y/-} mice.

[0044] Figure 30: Non-human primate (NHP) safety study in *Macaca fascicularis*. Two macaques were injected as 12 months intrathecally with 2.0e¹³ viral genomes/injection. Shown is MeCP2 protein expression in NHP CNS tissues 5 weeks post injection. When 3 macaques were injected at 6 – 12 months intrathecally with 1.0-2.4¹³ viral genomes/injection, weight, liver enzyme levels and blood parameters remained at normal levels up to 11 months post injection.

2017362491 16 Jan 2023

[0045] Figure 31: MeCP2 relative expression in *M. fascicularis* 5 weeks post AAV9-P546-MeCP2 intrathecal injection.

[0046] Figure 32: P546-MeCP2 delivered directly to the CNS of wild type mice does not affect survival.

[0047] Figure 33: MECP2 expression in cortex of ICV treated MeCP2^{Y/+} mice.

[0048] Figure 34: Effect of P546-MeCP2 delivered directly to the CNS of MeCP2^{Y/+} mice on behavioral scores.

[0049] Figure 35: Effect of AAV9-P546-MeCP2 on wild type mouse open field activity (7-9 weeks). A) Open Field speed. B) Open Field Distance.

[0050] Figure 36: Effect of AAV9-546-MeCP2 on wild type mouse rotarod performance. Shown is mean performance over three trials (ICV delivery, wild type mice, age: 3 months).

[0051] Figure 37: Viral vectors for RTT gene therapy. A) P738-mMeCP2 (J. Neurosci, 2013). B) P545-hMECP2.

[0052] Figure 38: P545-MeCP2 results in robust expression in astrocytes.

[0053] Figure 39: P545-MeCP2 results in robust expression in neurons.

[0054] Figure 40: AAV9-P545-MeCP2 allows targeting of both neurons and astrocytes in the MeCP2^{Y/-} mouse brain.

[0055] Figure 41: ICV injection of AAV9-P545 MeCP2 in newborn MeCP2^{Y/-} mice results in high transduction of neurons and astrocytes. A) ICV injection, 88 days old. B) Newborn, ICV.

[0056] Figure 42: ICV injections of AAV9-P545-MeCP2 greatly increases the lifespan of MeCP2^{Y/-} mice.

[0057] Figure 43: AAV9-P545-MeCP2 improves behavior scores of MeCP2^{Y/-} mice and does not alter behavior in treated wild type mice. Score criteria: 0 – same as in the wild type animal, 1 – where the symptom was present, 2 – where the symptom was severe. Symptoms: mobility, gait, hindlimb clapping, tremor, breathing, general condition.

[0058] Figure 44: AAV9-P545-MeCP2 Improves performance of MeCP2^{Y/-} mice. A) Total distance (20 min). B) Average speed.

[0059] Figure 45: ICV injection of AAV9-P545 MeCP2 (6e¹⁰ vp/pup) in newborn wild type mice does not result in liver toxicity. A) H&E analysis, age 12 weeks. B) ALT analysis.

[0060] Figure 46: A map of the AAV vector.

Detailed Description

[0061] In one aspect, the invention provides methods for the intrathecal administration (i.e., administration into the space under the arachnoid membrane of the brain or spinal cord) of a polynucleotide encoding MECP2 to a patient comprising administering a rAAV9 with a genome including the polynucleotide. In some embodiments, the rAAV9 genome is a self-complementary genome. In other embodiments, the rAAV9 genome is a single-stranded genome.

[0062] The methods deliver the polynucleotide encoding MECP2 to the brain and spinal cord of the patient (i.e., the central nervous system of the patient). Some target areas of the brain contemplated for delivery include, but are not limited to, the motor cortex and the brain stem. Some target cells of the central nervous system contemplated for delivery include, but are not limited to, nerve cells and glial cells. Examples of glial cells are microglial cells, oligodendrocytes and astrocytes.

[0063] Delivery of polynucleotides encoding MECP2 is indicated, for example, for treatment of Rett Syndrome.

[0064] "Treatment" comprises the step of administering via the intrathecal route an effective dose, or effective multiple doses, of a composition comprising a rAAV of the invention to a subject animal (including a human patient) in need thereof. If the dose is administered prior to development of a disorder/disease, the administration is prophylactic. If the dose is administered after the development of a disorder/disease, the administration is therapeutic. In embodiments of the invention, an effective dose is a dose that alleviates (either eliminates or reduces) at least one symptom associated with the disorder/disease state being treated, improves at least one symptom associated with the disorder/disease state being treated, that slows or prevents progression to a disorder/disease state, that diminishes the extent of disease, that results in remission (partial or total) of disease, and/or that prolongs survival.

[0065] In treatment of Rett syndrome, the methods result in an effect in the subject including, but not limited to, regaining purposeful hand movements, improvement in speech, reduction in apneas, reduction in seizures, reduction in anxiety, increased socialization, increase in IQ, normalization of sleep patterns and/or increased mobility.

[0066] Combination treatments are also contemplated by the invention. Combination as used herein includes both simultaneous treatment or sequential treatment. Combinations of methods of the invention with standard medical treatments for Rett syndrome are specifically contemplated, as are combinations with novel therapies.

[0067] While delivery to an individual in need thereof after birth is contemplated, intrauterine delivery to a fetus is also contemplated.

[0068] In another aspect, the invention provides rAAV genomes. The rAAV genomes comprise one or more AAV ITRs flanking a polynucleotide encoding MECP2. The polynucleotide is operatively linked to transcriptional control DNAs, specifically promoter DNA and polyadenylation signal sequence DNA that are functional in target cells to form a "gene cassette." The gene cassette may include promoters that allow expression specifically within neurons or specifically within glial cells. Examples include neuron specific enolase and glial fibrillary acidic protein promoters. Inducible promoters under the control of an ingested drug may also be used. Examples include, but are not limited to, systems such as the tetracycline (TET on/off) system [Urlinger et al., Proc. Natl. Acad. Sci. USA 97(14):7963-7968 (2000)] and the Ecdysone receptor regulatable system [Palli et al., Eur J. Biochem 270: 1308-1315 (2003)]. The gene cassette may further include intron sequences to facilitate processing of an RNA transcript when the polynucleotide is expressed in mammalian cells.

[0069] The rAAV genomes of the invention lack AAV rep and cap DNA. AAV DNA in the rAAV genomes (e.g., ITRs) may be from any AAV serotype for which a recombinant virus can be derived including, but not limited to, AAV serotypes AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, AAV11, AAV12, AAV13 and AAVrh74. The nucleotide sequences of the genomes of the AAV serotypes are known in the art. For example, the AAV9 genome is provided in Gao et al., J. Virol., 78: 6381-6388 (2004).

[0070] In another aspect, the invention provides DNA plasmids comprising rAAV genomes of the invention. The DNA plasmids are transferred to cells permissible for infection with a helper virus of AAV (e.g., adenovirus, E1-deleted adenovirus or herpesvirus) for assembly of the rAAV genome into infectious viral particles with AAV9 capsid proteins. Techniques to produce rAAV particles, in which an AAV genome to be packaged, rep and cap genes, and helper virus functions are provided to a cell, are standard in the art. Production of rAAV requires that the following components are present within a single cell (denoted herein as a packaging cell): a rAAV genome, AAV rep and cap genes separate from (i.e., not in) the rAAV genome, and helper virus functions. Production of pseudotyped rAAV is disclosed in, for example, WO 01/83692 which is

incorporated by reference herein in its entirety. In various embodiments, AAV capsid proteins may be modified to enhance delivery of the recombinant vector. Modifications to capsid proteins are generally known in the art. See, for example, US 2005/0053922 and US 2009/0202490, the disclosures of which are incorporated by reference herein in their entirety.

[0071] A method of generating a packaging cell is to create a cell line that stably expresses all the necessary components for AAV particle production. For example, a plasmid (or multiple plasmids) comprising a rAAV genome lacking AAV rep and cap genes, AAV rep and cap genes separate from the rAAV genome, and a selectable marker, such as a neomycin resistance gene, are integrated into the genome of a cell. AAV genomes have been introduced into bacterial plasmids by procedures such as GC tailing (Samulski et al., 1982, Proc. Natl. Acad. S6. USA, 79:2077-2081), addition of synthetic linkers containing restriction endonuclease cleavage sites (Laughlin et al., 1983, Gene, 23:65-73) or by direct, blunt-end ligation (Senapathy & Carter, 1984, J. Biol. Chem., 259:4661-4666). The packaging cell line is then infected with a helper virus such as adenovirus. The advantages of this method are that the cells are selectable and are suitable for large-scale production of rAAV. Other examples of suitable methods employ adenovirus or baculovirus rather than plasmids to introduce rAAV genomes and/or rep and cap genes into packaging cells.

[0072] General principles of rAAV production are reviewed in, for example, Carter, 1992, Current Opinions in Biotechnology, 1533-539; and Muzyczka, 1992, Curr. Topics in Microbial, and Immunol., 158:97-129). Various approaches are described in Ratschin et al., Mol. Cell. Biol. 4:2072 (1984); Hermonat et al., Proc. Natl. Acad. Sci. USA, 81 :6466 (1984); Tratschin et al., Mo1. Cell. Biol. 5:3251 (1985); McLaughlin et al., J. Virol., 62: 1963 (1988); and Lebkowski et al., 1988 Mol. Cell. Biol., 7:349 (1988). Samulski et al. (1989, J. Virol., 63:3822-3828); U.S. Patent No. 5, 173,414; WO 95/13365 and corresponding U.S. Patent No. 5,658.776 ; WO 95/13392; WO 96/17947; PCT/US98/18600; WO 97/09441 (PCT/US96/14423); WO 97/08298 (PCT/US96/13872); WO 97/21825 (PCT/US96/20777); WO 97/06243 (PCT/FR96/01064); WO 99/1 1764; Perrin et al. (1995) Vaccine 13: 1244-1250; Paul et al. (1993) Human Gene Therapy 4:609-615; Clark et al. (1996) Gene Therapy 3: 1 124-1 132; U.S. Patent. No. 5,786,211 ; U.S. Patent No. 5,871 ,982; and U.S. Patent. No. 6,258,595. The foregoing documents are hereby incorporated by reference in their entirety herein, with particular emphasis on those sections of the documents relating to rAAV production.

[0073] The invention thus provides packaging cells that produce replication-deficient, infectious rAAV. In one embodiment packaging cells may be stably transformed cancer

cells such as HeLa cells, 293 cells and PerC.6 cells (a cognate 293 line). In another embodiment, packaging cells are cells that are not transformed cancer cells such as low passage 293 cells (human fetal kidney cells transformed with E1 of adenovirus), MRC-5 cells (human fetal fibroblasts), WI-38 cells (human fetal fibroblasts), Vero cells (monkey kidney cells) and FRhL-2 cells (rhesus fetal lung cells).

[0074] Thus, in another aspect, the invention provides rAAV such as rAAV9 (i.e. , replication-deficient, infectious encapsidated rAAV9 particles) comprising a rAAV genome of the invention. The genomes of the rAAV lack AAV rep and cap DNA, that is, there is no AAV rep or cap DNA between the ITRs of the genomes. In some embodiments, the rAAV genome is a self-complementary genome. In some embodiments, the rAAV genome is a single-stranded genome.

[0075] rAAV are provided such as a self-complementary AAV9 (scAAV9) named "AVXS-201." Its gene cassette (nucleotides 151-2558 of the AVXS-201 genome set out in SEQ ID NO: 1) has, in sequence, a 546bp promoter fragment (SEQ ID NO: 2) (nucleotides 74085586-74086323 of NC_000086.7 in the reverse orientation) from the mouse MECP2 gene, an SV40 intron, a human MECP2B cDNA (SEQ ID NO: 3) (CCDS Database #CCDS48193.1), and a synthetic polyadenylation signal sequence (SEQ ID NO: 4). The gene cassette is flanked by a mutant AAV2 inverted terminal repeat (ITR) and a wild type AAV2 inverted terminal repeat that together enable packaging of self-complementary AAV genomes. The genome lacks AAV rep and cap DNA, that is, there is no AAV rep or cap DNA between the ITRs of the genome.

[0076] rAAV are provided such as a scAAV9 named "scAAV9.738.Mecp2." Its gene cassette (nucleotides 198-2890 of the scAAV9.738.Mecp2 genome set out in SEQ ID NO: 5) has, in sequence, a 738bp promoter fragment (SEQ ID NO: 6) (nucleotides 74085586-74086323 of NC_000086.7 in the reverse orientation) from the mouse MECP2 gene, an SV40 intron, a mouse MECP2a cDNA (SEQ ID NO: 7) (CCDS Database #CCDS41016.1), and a polyadenylation signal sequence from the bovine growth hormone gene. The gene cassette is flanked by a mutant AAV2 inverted terminal repeat (ITR) and a wild type AAV2 inverted terminal repeat that together enable packaging of self-complementary AAV genomes. The genome lacks AAV rep and cap DNA, that is, there is no AAV rep or cap DNA between the ITRs of the genome.

[0077] Conservative nucleotide substitutions in the rAAV9 genome including, but not limited to, in the gene cassette in the rAAV9 genome, are contemplated. For example, a MECP2 cDNA in a gene cassette may have 80%, 81 %, 82%, 83%, 84%, 85%, 86%,

87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% sequence identity to the MECP2a cDNA in scAAV9.738.Mecp2 or the MECP2B cDNA in AVXS-201.

[0078] In some embodiments, the MECP2 polypeptide encoded by a rAAV9 of the invention may be a variant MECP2 polypeptide. A variant polypeptide retains MECP2 activity and has an amino acid sequence at least about 60, 70, 80, 85, 90, 95, 97, 98, 99 or 99.5% identical to the amino acid sequence of the MECP2 polypeptide encoded by the MECP2a cDNA in scAAV9.738.Mecp2 or the MECP2B cDNA in AVXS-201.

[0079] The rAAV may be purified by methods standard in the art such as by column chromatography or cesium chloride gradients. Methods for purifying rAAV vectors from helper virus are known in the art and include methods disclosed in, for example, Clark et al., *Hum. Gene Ther.*, 10(6): 1031-1039 (1999); Schenpp and Clark, *Methods Mol. Med.*, 69: 427-443 (2002); U.S. Patent No. 6,566, 118 and WO 98/09657.

[0080] In another aspect, the invention contemplates compositions comprising a rAAV, such as a rAAV9, encoding a MECP2 polypeptide.

[0081] Compositions of the invention comprise rAAV in a pharmaceutically acceptable carrier. The compositions may also comprise other ingredients such as diluents and adjuvants. Acceptable carriers, diluents and adjuvants are nontoxic to recipients and are preferably inert at the dosages and concentrations employed, and include buffers such as phosphate, citrate, or other organic acids; antioxidants such as ascorbic acid; low molecular weight polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, arginine or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; salt-forming counterions such as sodium; and/or nonionic surfactants such as Tween, pluronics or polyethylene glycol (PEG).

[0082] Sterile injectable solutions are prepared by incorporating rAAV in the required amount in the appropriate solvent with various other ingredients enumerated above, as required, followed by filter sterilization. Generally, dispersions are prepared by incorporating the sterilized active ingredient into a sterile vehicle which contains the basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum drying and the freeze drying technique that yield a

powder of the active ingredient plus any additional desired ingredient from the previously sterile-filtered solution thereof.

[0083] Titers and dosages of rAAV to be administered in methods of the invention will vary depending, for example, on the particular rAAV, the mode of administration, the treatment goal, the individual, the timing of administration, and the cell type(s) being targeted, and may be determined by methods standard in the art. Titers of rAAV may range from about 1×10^6 , about 1×10^7 , about 1×10^8 , about 1×10^9 , about 1×10^{10} , about 1×10^{11} , about 1×10^{12} , about 1×10^{13} to about 1×10^{14} or more DNase resistant particles (DRP) per ml. Dosages may also be expressed in units of viral genomes (vg). These dosages of rAAV may range from about 1×10^9 vg or more, about 1×10^{10} vg or more, about 1×10^{11} vg or more, about 1×10^{12} vg or more, about 6×10^{12} or more, about 1×10^{13} vg or more, about 1.3×10^{13} vg or more, about 1.4×10^{13} vg or more, about 2×10^{13} vg or more, about 3×10^{13} vg or more, about 6×10^{13} vg or more, about 1×10^{14} vg or more, about 3×10^{14} or more, about 6×10^{14} or more, about 1×10^{15} vg or more, about 3×10^{15} or more, about 6×10^{15} or more, about 1×10^{16} or more, about 3×10^{16} or more, or about 6×10^{16} or more. For a neonate, the dosages of rAAV may range from about 1×10^9 vg or more, about 1×10^{10} vg or more, about 1×10^{11} vg or more, about 1×10^{12} vg or more, about 6×10^{12} or more, about 1×10^{13} vg or more, about 1.3×10^{13} vg or more, about 1.4×10^{13} vg or more, about 2×10^{13} vg or more, about 3×10^{13} vg or more, about 6×10^{13} vg or more, about 1×10^{14} vg or more, about 3×10^{14} or more, about 6×10^{14} or more, about 1×10^{15} vg or more, about 3×10^{15} or more, about 6×10^{15} or more, about 1×10^{16} or more, about 3×10^{16} or more, or about 6×10^{16} or more.

[0084] The methods of the invention result in the transduction of target cells (including, but not limited to, nerve or glial cells). The term "transduction" is used to refer to the administration/delivery of a polynucleotide to a target cell either in vivo or in vitro, via a replication-deficient infectious rAAV of the invention resulting in expression of a functional MECP2 polypeptide by the recipient cell.

[0085] Transduction of cells using rAAV of the invention results in sustained expression of the MECP2 polypeptide encoded by the rAAV. In some embodiments, the target expression level is contemplated to be about 75% to about 125% of the normal (or wild type) physiological expression level in a subject who does not have Rett syndrome. The target expression level may be about 75%, about 80%, about 85%, about 90%, about 95%, about 100%, about 105%, about 110%, about 115%, about 120% or about 125% of the normal expression level.

[0086] In some embodiments of treatment methods of the invention, a non-ionic, low-osmolar contrast agent is also administered to the patient. Such contrast agents include, but are not limited to, iobitridol, iohexol, iomeprol, iopamidol, iopentol, iopromide, ioversol, ioxilan, and mixtures of two or more of the contrast agents. In some embodiments, the treatment methods thus further comprise administration of iohexol to the patient. The non-ionic, low-osmolar contrast agent is contemplated to increase transduction of target cells in the central nervous system of the patient. It is contemplated that the transduction of cells is increased when a rAAV of the disclosure is used in combination with a contrast agent as described herein relative to the transduction of cells when a rAAV of the disclosure is used alone. In various embodiments, the transduction of cells is increased by at least about 1 %, or at least about 5%, at least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 100%, at least about 120%, at least about 150%, at least about 180%, at least about 200%, at least about 250%, at least about 300%, at least about 350%, at least about 400%, at least about 450%, at least about 500% or more when a vector of the disclosure is used in combination with a contrast agent as described herein, relative to the transduction of a vector of the disclosure when not used in combination with a contrast agent. In further embodiments, the transduction of cells is increased by about 10% to about 50%, or by about 10% to about 100%, or by about 5% to about 10%, or by about 5% to about 50%, or by about 1 % to about 500%, or by about 10% to about 200%, or by about 10% to about 300%, or by about 10% to about 400%, or by about 100% to about 500%, or by about 150% to about 300%, or by about 200% to about 500% when a vector of the disclosure is used in combination with a contrast agent as described herein, relative to the transduction of a vector of the disclosure when not used in combination with a contrast agent.

[0087] In some embodiments, it is contemplated that the transduction of cells is increased when the patient is put in the Trendelenberg position (head down position). In some embodiments, for example, the patient is tilted in the head down position at about 1 degree to about 30 degrees, about 15 to about 30 degrees, about 30 to about 60 degrees, about 60 to about 90 degrees, or about 90 up to about 180 degrees) during or after intrathecal vector infusion. In various embodiments, the transduction of cells is increased by at least about 1 %, or at least about 5%, at least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 100%, at least about 120%, at least about 150%, at least about 180%, at least about 200%, at least about 250%, at least about 300%, at least about 350%, at least about 400%, at least about

450%, at least about 500% or more when a the Trendelenberg position is used as described herein, relative to when the Trendelenberg position is not used.

[0088] In further embodiments, the transduction of cells is increased by about 10% to about 50%, or by about 10% to about 100%, or by about 5% to about 10%, or by about 5% to about 50%, or by about 1 % to about 500%, or by about 10% to about 200%, or by about 10% to about 300%, or by about 10% to about 400%, or by about 100% to about 500%, or by about 150% to about 300%, or by about 200% to about 500% when a vector of the disclosure is used in combination with a contrast agent and the Trendelenberg position as described herein, relative to the transduction of a vector of the disclosure when not used in combination with a contrast agent and Trendelenberg position.

[0089] The disclosure also provides treatment method embodiments wherein the intrathecal administration of a vector of the disclosure and a contrast agent to the central nervous system of a patient in need thereof results in an increase in survival of the patient relative to survival of the patient when a vector of the disclosure is administered in the absence of the contrast agent. In various embodiments, administration of a vector of the disclosure and a contrast agent to the central nervous system of a patient in need thereof results in an increase of survival of the patient of at least about 1 %, at least about 5%, at least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 100%, at least about 150%, at least about 200% or more relative to survival of the patient when a vector of the disclosure is administered in the absence of the contrast agent.

[0090] The disclosure also provides treatment method embodiments wherein the intrathecal administration of a vector of the disclosure and a contrast agent to the central nervous system of a patient in need thereof who is put in the Trendelenberg position results in a further increase in survival of the patient relative to survival of the patient when a vector of the disclosure is administered in the absence of the contrast agent and the Trendelenberg position. In various embodiments, administration of a vector of the disclosure and a contrast agent to the central nervous system of a patient in need thereof put in the Trendelberg position results in an increase of survival of the patient of at least about 1 %, at least about 5%, at least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 100%, at least about 150%, at least about 200% or more relative to survival of the patient when a vector of the disclosure is administered in the absence of the contrast agent and the Trendelenberg position.

Examples

[0091] The present invention is illustrated by the following.

- Proof of concept studies in female and male Rett mouse models show therapeutic efficacy following intravenous injection of scAAV9.738.Mecp2. (Example 1)
- A second generation gene therapy vector, AVXS-201, shows extension of survival over a wide range of doses following intracerebroventricular (ICV) treatment of Mecp2^{-/y} mice. The maximal increase in median survival was 477% following AVXS-201 treatment. (Example 2)
- Male Mecp2^{-/y} mice treated with AVXS-201 show a durable improvement in behavior as measured by a composite rating developed for Rett mice. (Example 3)
- Phenotypic benefit in Mecp2^{-/y} mice treated with AVXS-201 is obtained with moderate levels of protein expression. (Example 4)
- Treatment of wild type mice with AVXS-201 was well tolerated across all doses tested with consistent changes in behavioral scoring only noted in the high dose group. (Example 5 and Example 6)
- Intrathecal dosing in non-human primates indicates AVXS-201 is safe and well tolerated through 18 months post injection. (Example 7)
- AVXS-201 expresses transgene at physiological levels broadly in non-human primate brain and spinal cord following a one-time intrathecal injection. (Example 8)

Example 1

Gene therapy for Rett Syndrome Proof of Concept Studies in Female Rett Mice

[0092] As proof of concept, symptomatic male and female Rett mice were intravenously treated with scAAV9.738.Mecp2 [Garg et al., The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 33: 13612-13620 (2013)]. The recombinant viral genome of scAAV9.738.Mecp2 (SEQ ID NO: 5) includes a 738bp promoter fragment from the mouse Mecp2 gene [Adachi et al., Human Molecular Genetics, 14: 3709-3722 (2005)] driving expression of a mouse Mecp2a cDNA (CCDS Database # CCDS41016.1) and a bovine growth hormone polyadenylation signal. The gene cassette (nucleotides 198-2890 of SEQ ID NO: 5) is flanked by a mutant AAV2 inverted terminal repeat (ITR) and a wild type AAV2 ITR that enable packaging of self-complementary AAV genomes.

[0093] Self-complementary AAV9 (scAAV9) was produced by transient transfection procedures using a double-stranded AAV2-ITR-based vector, with a plasmid encoding Rep2Cap9 sequence as previously described [Gao et al., J. Virol., 78: 6381-6388 (2004)] along with an adenoviral helper plasmid pHelper (Stratagene, Santa Clara, CA) in 293 cells. Virus was produced in three separate batches for the experiments and purified by two cesium chloride density gradient purification steps, dialyzed against PBS and formulated with 0.001 % Pluronic-F68 to prevent virus aggregation and stored at 4°C. All

vector preparations were titered by quantitative PCR using Taq-Man technology. Purity of vectors was assessed by 4-12% sodium dodecyl sulfate-acrylamide gel electrophoresis and silver staining (Invitrogen, Carlsbad, CA).

2017362491
16 Jan 2023

[0094] Male mice with an *Mecp2* null allele were treated intravenously with 3×10^{12} vg of either scAAV9.738.*Mecp2* or an scAAV9 control vector between 4-6 weeks of age. The animals were followed for survival and assessed weekly for a phenotypic score [Guy et al., *Science*, 315: 143-147 (2007)].

Components of the phenotypic scoring from *Guy et al.* 2007.

A. Mobility: The mouse is observed when placed on bench, then when handled gently. 0 = as wild-type. 1 = reduced movement when compared to wild-type: extended freezing period when first placed on bench and longer periods spent immobile. 2 = no spontaneous movement when placed on the bench; mouse can move in response to a gentle prod or a food pellet placed nearby. (Note: mice may become more active when in their own cage environment.)

B. Gait: 0 = as wild-type. 1 = hind legs are spread wider than wild-type when walking or running with reduced pelvic elevation, resulting in a "waddling" gait. 2 = more severe abnormalities: tremor when feet are lifted, walks backwards or 'bunny hops' by lifting both rear feet at once.

C. Hindlimb clasping: Mouse observed when suspended by holding base of the tail. 0 = legs splayed outwards. 1 = hindlimbs are drawn towards each other (without touching) or one leg is drawn in to the body. 2 = both legs are pulled in tightly, either touching each other or touching the body.

D. Tremor: Mouse observed while standing on the flat palm of the hand. 0 = no tremor. 1 = intermittent mild tremor. 2* = continuous tremor or intermittent violent tremor

E. Breathing: Movement of flanks observed while animal is standing still. 0 = normal breathing. 1 = periods of regular breathing interspersed with short periods of more rapid breathing or with pauses in breathing. 2* = very irregular breathing - gasping or panting.

F. General condition: Mouse observed for indicators of general well-being such as coat condition, eyes, body stance. 0 = clean shiny coat, clear eyes, normal stance. 1 = eyes dull, coat dull/ungroomed, somewhat hunched stance. 2* = eyes crusted or narrowed, piloerection, hunched posture.

[0095] Figure 4 shows that the group treated with scAAV9.738.*Mecp2* did not reach median survival during the time of the experiment but surpassed control treated animals by more than 10 weeks at the time of publication. Animals treated with scAAV9.738.*Mecp2* also had lower behavioral score compared to control treated animals. The experiment was repeated with affected female mice (Figure 5). Animals were IV treated with either scAAV9.738.*Mecp2* or control as before with the males. Females were treated between 10-12 months of age when Rett mice are symptomatic. Animals were followed for approximately 6 months post injection and tested for their phenotypic score.

Importantly, female Rett mice do not have early lethality like the more severe males [Guy et al., *Nature Genetics*, 27: 322-326 (2001)]. Treatment with scAAV9.738.Mecp2 halted progression of disease and indicated a reversal of disease severity with scores retreating to near 1. This was in stark contrast to control treated animals who finished the experiment with phenotypic scores near 6 indicating a worsening of symptoms (Figure 5C). Data from rotarod, inverted screen test, platform test and nesting ability all support behavioral improvement in animals treated with scAAV9.738.Mecp2 compared to control treated animals. Post mortem analysis of brains from scAAV9.738.Mecp2 treated females showed that the fluorescence intensity measurements of MECP2 expression mirrored that of wild type brains indicating that the gene therapy transgene expression was at approximately physiological levels.

Example 2

AVXS-201 Preclinical Efficacy Studies

[0096] To improve packaging efficiency and to incorporate a clinically relevant human MECP2 cDNA while maintaining physiological levels of gene expression, scAAV9.738.Mecp2 was re-engineered with a shorter promoter, a human MECP2B cDNA, and a synthetic polyadenylation signal. The re-engineered genome was packaged into AAV9 capsids as described below and the resulting scAAV was subsequently named "AVXS-201" (Figure 6). AVXS-201 was originally named "AAV9-P545-MeCP2."

Promoter region sequence (mouse MeCP2 promoter fragment) (SEQ ID NO: 2)

GTGAACAAACGCCAGGCTCCTAACAGGCAACTTGCTACTTCTACAGAAAATGATAATA
AAGAAAATGCTGGTGAAGTCAAATGCTTATCACAAATGGTGAACACTACTCAGCAGGGAGGCT
CTAATAGGCGCCAAGAGCCTAGACTTCCTTAAGCGCCAGAGTCCACAAGGGCCCAGTT
AATCCTCAACATTCAAATGCTGCCACAAAACCAGCCCCCTGTGCCCTAGCCGCCTCT
TTTTTCCAAGTGACAGTAGAACTCCACCAATCCGCAGCTGAATGGGTCCGCCTCTTT
CCCTGCCTAACACAGACAGGAACCTCGCCAATTGAGGGCGTCACCGCTAAGGCTCCGC
CCCAGCCTGGCTCCACAACCAATGAAGGGTAATCTCGACAAAGAGCAAGGGGTGGG
GCGCGGGCGCGCAGGTGCAGCAGCACACAGGCTGGTCGGAGGGCGGGCGCAG
GTCTGCCGTGCCGGGTCCCGGCATCGGTTGCCGCCGCTCCCTCCTCGGAGAGA
GGGCTGTGGTAAAACCCGTCCGGAAAC

Coding region sequence (human MeCP2B cds) (SEQ ID NO: 3)

ATGGCCGCCGCCGCCGCCGCCGCCGAGCGGGAGGAGGAGGAGGAGGAGGAGGAGG

AGAGACTGGAAGAAAAGTCAGAAGACCAGGACCTCCAGGGCCTCAAGGACAAACCCCT
CAAGTTAAAAGGTGAAGAAAGATAAGAAAGAAGAGAAAGAGGGCAAGCATGAGCCC
GTGCAGCCATCAGCCCACCACTCTGCTGAGCCCGCAGAGGCAGGCAGAGACA
TCAGAAGGGTCAGGCTCCGGGGCTGTGCCGGAAGCTCTGCCCTCCCCAAACAG
CGGCGCTCCATCATCCGTGACCGGGGACCCATGTATGATGACCCCACCCCTGCCTGAAG
GCTGGACACGGAAGCTTAAGCAAAGGAAATCTGGCCGCTCTGCTGGGAAGTATGATGT
GTATTTGATCAATCCCCAGGGAAAAGCCTTCGCTCTAAAGTGGAGTTGATTGCGTACT
TCGAAAAGGTAGGCGACACATCCCTGGACCCCTAATGATTTGACTTCACGGTAACGGG
AGAGGGAGCCCCTCCCGCGAGAGCAGAAACCACCTAAGAAGGCCAAATCTCCAAA
GCTCCAGGAACTGGCAGAGGCCGGGACGCCAAAGGGAGCGGACACGAGACC
CAAGGCAGGCCACGTCAGAGGGTGTGCAGGTGAAAAGGGCCTGGAGAAAAGTCCTGG
GAAGCTCCTGTCAAGATGCCCTTCAAACCTGCCAGGGGCAAGGCTGAGGGGGGT
GGGGCCACCACATCCACCCAGGTATGGTGATCAAACGCCCGCAGGAAGCGAAAA
GCTGAGGCCGACCCCTCAGGCCATTCCAAGAACGGGCCGAAAGCCGGGAGTGTG
GTGGCAGCCGCTGCCGCCAGGCCAAAAGAACGGCGTGAAGGAGTCTTCTATCCGA
TCTGTGCAGGAGACCGTACTCCCCATCAAGAACCGCAAGACCCGGAGACGGTCAGC
ATCGAGGTCAAGGAAGTGGTGAAGCCCCTGCTGGTGTCCACCCCTGGTGAGAACAGC
GGGAAAGGACTGAAGACCTGTAAGAGCCCTGGCGGAAAAGCAAGGAGAGCAGCCCC
AAGGGGCGCAGCAGCAGGCCCTCCTCACCCCCCAAGAACGGGACCCACCATCAC
CACCACTCAGAGTCCCCAAAGGCCCGTGCCACTGCTCCCACCCCTGCCACCTC
CACCTGAGCCCAGAGCTCCGAGGACCCACCAAGCCCCCTGAGCCCCAGGACTTGA
GCAGCAGCGTCTGCAAAGAGGAGAACGGAGATGCCAGAGGAGGCTACTGGAGAGCGACG
GCTGCCCAAGGAGCCAGCTAACAGACTCAGCCCGGGTTGCCACCGGCCACGGCCG
CAGAAAAGTACAAACACCGAGGGAGGGAGAGCGCAAAGACATTGTTCATCCTCCAT
GCCAAGGCCAACACAGAGAGGAGCCTGTGGACAGCCGGACGCCGTGACCGAGAGAGT
TAGCTGA

PolyA sequence (synthetic) (SEQ ID NO: 4)

AATAAAAGATCTTATTTCATTAGATCTGTGTGTTGGTTTTGTGTG

[0097] scAAV9 was produced by transient transfection procedures using a double-stranded AAV2-ITR-based vector, with a plasmid encoding Rep2Cap9 sequence as previously described [Gao et al., *supra*] along with an adenoviral helper plasmid pHelper (Stratagene, Santa Clara, CA) in 293 cells. Virus was produced in three separate batches for the experiments and purified by two cesium chloride density gradient purification steps, dialyzed against PBS and formulated with 0.001 % Pluronic-F68 to prevent virus aggregation and stored at 4°C. All vector preparations were titered by quantitative PCR using Taq-Man technology. Purity of vectors was assessed by 4-12% sodium dodecyl sulfate-acrylamide gel electrophoresis and silver staining (Invitrogen, Carlsbad, CA).

[0098] Efficacy and dosing studies were performed in the same strain of Rett mice as in Figure 4. Doses between Example 1 and Example 2 are not compared due to improvements in titering methods. Experiments in Example 1 used optical titering of viral preparations while studies in Example 2 and below use the more accurate digital droplet PCR titer. To mimic the proposed clinical delivery route of intrathecal administration, these injections were performed as intracerebroventricular (ICV) in postnatal day 1 pups. Intrathecal delivery was chosen to deliver AVXS-201 directly to the nervous system which is the key site of action for Rett syndrome. Pups were followed for their natural lives and assessed for survival, composite phenotypic score, open field and rotarod behavior. Survival data over a two log dose range is shown in Figure 7. The results shown in Figure 7 demonstrate that the combination of vectors and techniques used in the treatment methods of the invention achieve an improved outcome. All doses tested extended median survival over control treated *Mecp2^{-/-}* mice with maximum individual survival observed reaching 500 days (ongoing) compared to 93 days for control treated Rett mice. The highest median lifespan (315d) was achieved with a moderate dose of 1.44×10^{10} vg per animal. The data show a bell shaped dose response (Figure 7B) which distinguishes the results achieved herein from the effects of improper MECP2 dosage (gene copy number) observed previously [see, for example, Lombardi et al, *The Journal of Clinical Investigation*, 125: 2914-2923 (2015)]. Importantly, even at the highest dose tested, AVXS-201 treatment did not shorten survival of *Mecp^{-/-}* mice relative to control treatment.

[0099] In addition to survival, treated and control mice were scored weekly for Rett phenotypes (phenotypes set out in the previous Example). Untreated males progress rapidly from a score of 0 to an average peak of 5.25 by 10 weeks of age (Figure 8). In contrast, phenotypic scores of all the treated groups only reached a score of about 2 by 17 weeks of age with the exception of the 5.56×10^{10} vg group which reached a score of 5 at 18 weeks. Treated and control animals were also assessed in the open field and rotarod tests (Figure 9). Reduced spontaneous movement is a symptom of Rett male

mice. Open field analysis to assess spontaneous movement and velocity was performed when groups were 2-3 months of age. Affected animals had a nearly 43% reduction in the total distance traveled compared to wild type mice. Significant increases in distance traveled were noted in all but two of the groups treated with AVXS-201 over control treated Mecp2 knockout males. Velocity compared to control treated knockouts was also significantly improved. This shows that AVXS-201 treatment of a male Rett mouse model improves exploratory behavior and ambulation. Treated and control animals were tested at 3 months of age for performance on the rotarod which is a measure of motor coordination. Animals were tested on three consecutive days and scores were averaged across days and dose. The resulting data are shown in Figure 9C. Control treated Mecp^{l/y} mice performed significantly worse on rotarod compared to control treated wild type littermates. Rotarod performance was significantly improved over control treatment in the 7.00x10⁹ and 1.44x10¹⁰vg cohorts.

Example 3

AVXS-201 Expression of MECP2 Protein in the Treated Rett Mouse Brain

[0100] At 3 weeks post injection, PBS treated male wild type, untreated Rett and vector treated Rett animals were euthanized to examine MECP2 protein levels in the brain following postnatal day 1 ICV injection of AVXS-201. One brain hemisphere was homogenized and analyzed by western blot to monitor MECP2 expression. A representative blot and quantification are shown in Figure 10. After normalization to the PBS treated wild type brains, the knockout and the 1.75x10⁹vg AVXS-201 dose group had no detectable levels of MECP2. Treatment with 3.50x10⁹vg and 7.00x10⁹vg produced detectable MECP2 levels that reached -1 % and 3.6% of wild type levels, respectively. The most effective dose when measured by increase in median survival (1.44x10¹⁰vg) yielded -11 % of wild type MeCP2 levels. The 5.56x10¹⁰vg dose examined by western blot produced MECP2 levels of -54% of wild type while 1.13x10¹¹ reached more than 2x wild type levels. These data show that protein expression level and distribution throughout the brain are key for predicting the effectiveness of an MECP2 gene therapy.

Example 4

Treatment of Wild Type Mice with AVXS-201 Is Safe and Well Tolerated

[0101] An important concern for an MECP2 replacement therapy is to assess the impact on the cells expressing an intact copy of MECP2. AVXS-201 was designed with this consideration in mind by incorporating a fragment of the murine Mecp2 promoter to support physiological regulation of the MECP2 transgene. To test the safety of AVXS-201, survival

and behavior analysis was performed on cohorts of wild type mice that received P1 ICV injections of AVXS-201 just as in the male Rett mice.

[0102] A total of 131 wild type male mice were treated with various ICV doses of AVXS-201 and followed for survival (Figure 11). No deaths were recorded in the targeted therapeutic dose (1.44×10^{10} vg) with 21 treated animals alive through P342. No deaths were recorded in the PBS treated group and one death each was recorded in the 3.50×10^9 , 2.78×10^{10} and 1.13×10^{11} vg treated groups. Behavioral scoring using the criteria from Box 1, shows that vector treated groups largely had mean phenotypic scores <1 . Mean aggregate scores >1 were only noted in the two highest dosed groups (5.56×10^{10} and 1.13×10^{11} vg). Open field testing at 2-3 months of age showed no statistical difference between vector and PBS treated wild type males (Figure 12). Interestingly, a significant decrease in rotarod performance was detected in the 1.13×10^{11} vg cohort compared to control treated wild type mice at three months of age. These data are suggestive of a toxic effect of MECP2 overexpression at the highest AVXS-201 dose. Together these data indicate that in a "worst-case scenario" of AVXS-201 treatment only transducing wild type cells, there is minimal impact on animal survival and behavior at the targeted therapeutic dose.

Example 5

Physiological Levels of MECP2 are Maintained in Brains of Wild Type Mice Treated with Therapeutic Doses of AVXS-201

[0103] To further investigate the levels associated with symptomatic MECP2 overexpression, wild type male mice received P1 ICV injections of PBS or AVXS-201 at the therapeutic target of 1.44×10^{10} vg or the highest dose tested of 1.13×10^{11} vg. Animals were euthanized 3 weeks post injection, and brains were harvested for western blot. For comparison, tissues were blotted alongside brains from a mouse model of MECP2 overexpression called Tg3. Brains were dissected into separate regions (Cb=cerebellum, Med=medulla, Hipp=hippocampus, Ctx=cortex and Mid=midbrain; Figure 13) and the individual regions were homogenized for blotting. Data was normalized to MECP2 levels in PBS treated wild type brains. Treatment with the target therapeutic dose (1.44×10^{10} vg) had MECP2 levels between 1 and 1.5x wild type tissues across all regions examined. The high dose (1.13×10^{11} vg) ranged from 1.31-2.56x wild type levels, but did not reach the 2.31-3.93x levels of Tg3 tissues. These data, along with behavior and survival data shown earlier, give confidence that AVXS-201 expresses protein at near physiological levels when administered at the targeted dose. Importantly, therapeutic dosing dose not approach the 2x protein levels associated with MECP2 duplication syndrome. This shows the safety of an MECP2 replacement approach using gene therapy.

Example 6

Body Weight, Hematology and Serum Chemistry are Unremarkable in Non-Human Primates through 18 Months after Intrathecal Injection of AVXS-201

[0104] To investigate the safety and tolerability of AVXS-201 and the associated intrathecal injection procedure, three treated male cynomolgus macaques were followed for 18 months post injection. Dosing parameters are shown in Table 2.

Table 2	Animal ID	Total Viral Genomes (vg)	Body Weight at Injection (kg)	Vector Genomes/Body Weight (vg/kg)	Duration post Tx
Hematology and Serum Chemistry	15C34	6.0×10^{12}	1.23	4.9×10^{12}	18 mo
	15C40	1.4×10^{13}	1.79	7.8×10^{12}	18 mo
	15C48	1.4×10^{13}	1.83	7.7×10^{12}	18 mo
MECP2 Expression	15C38	1.3×10^{13}	1.68	7.7×10^{12}	6 wk
	15C49	1.0×10^{13}	1.30	7.7×10^{12}	6 wk

[0105] Two animals were treated at the intended therapeutic dose (~ 1.44×10^{13} vg equivalent on a per kg of body weight basis), and one received a ~2-fold lower dose (~ 7.00×10^{12} vg equivalent on a per kg of body weight basis). The intrathecal injection procedure was previously described in Meyer et al, Molecular Therapy: The Journal of the American Society of Gene Therapy, 23: 477-487 (2015). Briefly, vector was mixed with contrast agent for verifying vector spread. The anesthetized subject was placed in the lateral decubitus position and the posterior midline injection site at -L4/5 level (below the conus of the spinal cord) was prepared. Under sterile conditions, a spinal needle with stylet was inserted and subarachnoid cannulation was confirmed with the flow of clear CSF from the needle. 0.8 ml of CSF was drained in order to decrease the pressure in the subarachnoid space and immediately after the vector solution was injected. Following injection, animals were kept in the Trendelenburg position and their body was tilted head-down for 10 minutes. Treated animals were dosed at 6 or 12 months of age, body weight, blood counts and serum chemistries were collected monthly for the first 6 months post injection, and every two months thereafter. Body weight is shown in Figure 14, blood counts are shown in Figure 15 and serum chemistries are shown in Figures 16 and 17 graphed with values from control treated animals from the same colony at the Mannheimer Foundation (Homestead, FL). Overall, body weight, cell counts and serum values from vector treated animals were

consistent with control treated animals. No values substantially deviated from controls for more than 2 consecutive observations in a given animal with the exception of amylase which was higher in two vector treated animals at baseline. These data show that AVXS-201 and the intrathecal injection procedure are safe and well tolerated.

Example 7

Histopathological Analysis of Tissues from Non-Human Primates Following Intrathecal Injection of AVXS-201

[0106] In addition to the in vivo (Example 6) and post mortem analyses (Example 8) samples of visceral and nervous system tissues from animals 15C38, 15C49 and 15C34 (Table 1) were sent to GEMpath Inc. (Longmont, CO) for paraffin embedding, sectioning and hematoxylin and eosin staining. The remaining animals (Table 8.2) are still in life and will be sent for analysis at study conclusion. Slides were read and reports were prepared by a GEMpath Board Certified Veterinary Pathologist. The tissues sampled and examined are shown in Table 3. The pathology reports note that AVXS-201 treatment did not induce lesions in any protocol-specified tissues at the 6 week or 18 month time point.

Table 3

Animal ID	Tissues
15C38 15C49	Adrenal Gland, Brain (amygdala, striatum, hippocampus, occipital cortex, temporal cortex, mid brain, brain stem, cerebellum), Eye and Optic Nerve, Heart, Kidney, Liver, Lung, Lymph Node (inguinal), Pancreas, Spinal Cord (sections from cervical, thoracic, lumbar and sacral regions; some sections had attached dorsal root ganglia), Small Intestine (jejunum and ileum), Skeletal Muscle (diaphragm, gastrocnemius, quadriceps femoris, triceps brachii, transverse abdominal, tibialis anterior), Spleen.
15C34	Testis/Epididymis, Thymus, Urinary Bladder Adrenal Gland, Brain (amygdala, striatum, hippocampus, hypothalamus, visual cortex, motor and somatosensory cortex, associative cortex, auditory cortex, superior and inferior colliculi, cerebellum, deep cerebellar nuclei, pons and medulla oblongata), Eye and Optic Nerve, Heart, Kidney, Liver, Lung, Lymph Node, Pancreas, Spinal Cord (sections from cervical, thoracic, lumbar and sacral regions), Small Intestine (jejunum and ileum), Skeletal Muscle (diaphragm, gastrocnemius, quadriceps femoris, triceps brachii, transverse abdominal, tibialis anterior), Spleen, Testis/Epididymis, Thymus, Urinary Bladder

Example 8

Physiological Levels of MeCP2 in the Non-Human Primate Brain Following Intrathecal Injection of AVXS-201

[0107] Two 12-month-old, male cynomolgus macaques received intrathecal injections of 7.7×10^{12} vg/kg of AVXS-201 as described above. Animals persisted for six weeks post injection and were euthanized for analysis of MeCP2 expression. Selected brain regions were analyzed for total MeCP2 expression by immunohistochemistry (Figure 18). No obvious elevations of MeCP2 were detected in cortical and subcortical regions nor proximal to the injection site (lumbar spinal cord). Importantly, these data also fail to show any gross abnormalities in tissues from animals that received AVXS-201 injection. To

further examine transgene expression, brain regions were homogenized and compared against historical control tissue from animals from the same colony (Figure 19). Samples of occipital and temporal cortices, hypothalamus, lumbar spinal cord, thalamus, amygdala, hippocampus and cerebellum were analyzed by western blot for total MeCP2 expression. Across all of the regions examined no region showed a ≥ 2 fold level of MeCP2 expression above controls. Elevated MeCP2 was detected in the hypothalamus and amygdala which are regions proximal to 3rd ventrical and lateral ventrical, respectively, but not the cerebellum. Further, the lumbar spinal cord which is proximal to the injection site did not show elevated MeCP2 levels. These data suggest that the combination of viral dose and expression construct are regulating MECP2 expression. Further, in situ hybridization (ISH) was performed to detect vector derived transcript and determine distribution in the brain at 6 weeks and 18 months post injection (Figures 20 and 21). All regions examined in the brain and spinal cord (occipital cortex, temporal cortex, hippocampus, corpus callosum, thalamus, caudate, putamen, superior colliculus, pons, medulla, cerebellum, cervical, thoracic and lumbar spinal cord) showed expression of vector derived transcript that was not present in tissues from control treated animals. These data show a specificity of the ISH probe for vector derived MECP2 transcript and show that the AVXS-201 promoter construct is functional in NHP nervous system tissue. These data show that AVXS-201 distributes broadly throughout the CNS when administered via lumbar puncture and expresses at physiological levels.

Disclosure from Provisional Patent Application No. 62/423,618

Gene Therapy for Rett Syndrome

Gene therapy to restore the transcription factor MeCP2 appears to be a feasible strategy for treating Rett syndrome, a progressive neurodevelopmental disorder leading to apparent autistic behavior, loss of motor function, and early death. We have developed an adeno-associated virus serotype 9 (AAV9) expressing human MECP2 under the control of a truncated endogenous promoter. The purpose of this work is to assess the efficacy and safety of this vector in mice (MeCP2 null and wild type) and non-human primates. Through continued research, our goal is to bring this treatment from the bench to the bedside.

AAV9-P545-MeCP2

Promoter region sequence (mouse MeCP2 promoter fragment)

GTGAACAAACGCCAGGCTCCTAACAGGCAACTTGCTACTTCTACAGAAAATGATA
ATAAAGAAATGCTGGTGAAGTCAAATGCTTATCACAATGGTGAACCTACTCAGCAGG
GAGGCTCTAATAGGCGCCAAGAGCCTAGACTTCCTTAAGCGCCAGAGTCCACAAG
GGCCCAGTTAACCTCAACATTCAAATGCTGCCACAAAACCAGCCCCCTGTGCC
CTAGCCGCCTTTTTCCAAGTGACAGTAGAACTCCACCAATCCGCAGCTGAATG

GGGTCCGCCTTTCCCTGCCCTAAACAGACAGGAACCTGCCAATTGAGGGCG
 TCACCGCTAAGGCTCCGCCCGCAGCCTGGGCTCCACAACCAATGAAGGGTAATCTC
 GACAAAGAGCAAGGGTGGGGCGCGGGCGCAGGTGCAGCAGCACACAGGCT
 GGTCGGGAGGGCGGGCGACGTCTGCCGTGCGGGTCCCAGCATCGGTTGC
 GCGCGCCTCCCTCGGAGAGAGGGCTGTGGTAAAACCGTCCGGAAAAC

Coding region sequence (human MeCP2 cds)

ATGGCCGCCGCCGCCGCCGCCGCCGCCAGCAGCGGGAGGAGGAGGAGGAGG
 AGGAGAGACTGGAAGAAAAGTCAGAAAGACCAGGACCTCCAGGGCCTCAAGGACA
 AACCCCTCAAGTTAAAAAGGTGAAGAAAGATAAGAAAGAAGAGAAAGAGGGCAA
 GCATGAGCCCCTGCAGCCATCAGCCCACCACTCTGCTGAGCCCAGAGGCAGG
 CAAAGCAGAGACATCAGAAGGGTCAGGCTCCGCCGGCTGTGCCGGAAAGCTTC
 TGCCTCCCCAACAGCGCGCTCCATCATCCGTGACCGGGGACCCATGTATGAT
 GACCCCACCCCTGCCTGAAGGCTGGACACGGAAGCTTAAGCAAAGGAAATCTGGCC
 GCTCTGCTGGGAAGTATGATGTGATTGATCAATCCCCAGGGAAAAGCCTTCGC
 TCTAAAGTGGAGTTGATTGCGTACTCGAAAAGGTAGGCGACACATCCCTGGACC
 CTAATGATTTGACTTCACGGTAACTGGGAGAGGGAGCCCCTCCGGAGAGACA
 GAAACCACCTAAGAAGCCCCAAATCTCCCAAAGCTCCAGGAACCTGGCAGAGGCCGG
 GGACGCCCAAGGGAGCGGCACACAGGACACCAAGGCGGCCACGTCAAGAGGG
 TGTGCAGGTGAAAAGGGTCTGGAGAAAAGTCCTGGGAAGCTCCTGTCAAGATG
 CCTTTCAAACCTCGCCAGGGGCAAGGCTGAGGGGGTGGGCCACCATCC
 ACCCAGGTATGGTGTCAACACGCCCCGGCAGGAAGCGAAAAGCTGAGGCCGAC
 CCTCAGGCCATTCCAAGAAACGGGGCCGAAAGCCGGGAGTGTGGTGGCAGCC
 GCTGCCGCCAGGCCAAAAGAAAGCCGTGAAGGAGTCTTCTATCGATCTGTGC
 AGGAGACCGTACTCCCCATCAAGAAGCGCAAGACCCGGAGACGGTCAGCATCG
 AGGTCAAGGAAGTGGTGAAGCCCCCTGCTGGTGTCCACCTCGGTGAGAAGAGCG
 GGAAAGGACTGAAGACCTGTAAGAGCCCTGGCGGAAAAGCAAGGAGAGCAGCC
 CCAAGGGCGCAGCAGCGCCTCCTCACCCCCAAGAAGGAGCACCACCA
 ATCACCAACTCAGAGTCCCAAAGGCCCCGTGCCACTGCTCCACCCCTGCC
 CCCACCTCCACCTGAGCCCGAGAGCTCCGAGGACCCACCAGCCCCCTGAGCC
 CCAGGACTTGAGCAGCAGCGTCTGCAAAGAGGAGAAGATGCCAGAGGAGGCTC
 ACTGGAGAGCGACGGCTGCCCAAAGGAGCCAGCTAAGACTCAGCCCGGGTTGC
 CACCGCCGCCACGGCCGAGAAAAGTACAAACACCGAGGGAGGGAGAGCGCAA
 AGACATTGTTTATCCTCCATGCCAAGGCCAAACAGAGAGGAGCCTGTGGACAGC
 CGGACGCCGTGACCGAGAGAGTTAGCTGA

PolyA sequence (synthetic)

AATAAAAGATTTTATTTCATTAGATCTGTGTGTTGGTTTTGTGTG

A map of the AAV vector is provided in Figure 46.

[0108] While the present invention has been described in terms of various embodiments and examples, it is understood that variations and improvements will occur to those skilled in the art. Therefore, only such limitations as appear in the claims should be placed on the invention.

[0109] All documents referred to herein are incorporated by reference in their entirety.

[0110] Throughout this specification and the claims which follow, unless the context requires otherwise, the word "comprise", and variations such as "comprises" and "comprising", will be understood to imply the inclusion of a stated integer or step or group

of integers or steps but not the exclusion of any other integer or step or group of integers or steps.

[0111] The reference in this specification to any prior publication (or information derived from it), or to any matter which is known, is not, and should not be taken as an acknowledgment or admission or any form of suggestion that that prior publication (or information derived from it) or known matter forms part of the common general knowledge in the field of endeavour to which this specification relates.

The claims defining the invention are as follows:

1. A recombinant adeno-associates virus (rAAV) vector comprising gene cassette comprising a promoter consisting of SEQ ID NO: 2, an SV40 intron, a polynucleotide sequence encoding a methyl-CpG-binding protein 2 (MECP2) and a synthetic polyadenylation signal, wherein the gene cassette is flanked by a mutant AAV2 inverted terminal repeat.
2. The rAAV vector of claim 1, wherein the rAAV vector is self-complementary (scAAV).
3. The rAAV vector of claim 1 or claim 2, wherein the polynucleotide sequence encoding the MECP2 comprises SEQ ID NO: 3.
4. The rAAV vector of any one of claims 1-3, wherein the polyadenylation signal sequence comprises SEQ ID NO: 4.
5. The rAAV vector of any one of claims 1-4, wherein the rAAV comprises nucleotides 151-2558 of SEQ ID NO: 1.
6. A virus comprising the viral vector of any one of claims 1-5.
7. The virus of claim 6, further comprising one or more capsid proteins.
8. A pharmaceutical composition comprising the rAAV vector of any one of claims 1-5 or the virus of claim 6 or claim 7.
9. The pharmaceutical composition of claim 8, wherein the composition is formulated for intrathecal (IT) administration.
10. The pharmaceutical composition of claim 8 or claim 9, further comprising a non-ionic, low-osmolar contrast agent.
11. The pharmaceutical composition of claim 8 or claim 9, when used in combination with a non-ionic, low-osmolar contrast agent.
12. The pharmaceutical composition of claim 10 or claim 11, wherein the non-ionic, low-osmolar contrast agent comprises one or more of iobitridol, iohexol, iomeprol, iopamidol, iopentol, iopromide, ioversol, and ioxilan.
13. The pharmaceutical composition of claim 10 or claim 11, wherein the non-ionic, low-osmolar contrast agent comprises iohexol.
14. A method of treating Rett Syndrome in a patient comprising the step of intrathecal administration of viral vector of any one of claims 1-5, the virus of claim 6 or claim 7, or the pharmaceutical composition of any one of claims 8-13.
15. Use of a viral vector of any one of claims 1-5, the virus of claim 6 or claim 7, or the pharmaceutical composition of any one of claims 8-13 in the manufacture of a medicament for treating Rett syndrome.
16. The use of claim 15, wherein the medicament is formulated for intrathecal (IT) administration.

17. A self-complementary adeno-associated virus serotype 9 (scAAV9) comprising a polynucleotide comprising SEQ ID NO: 1.

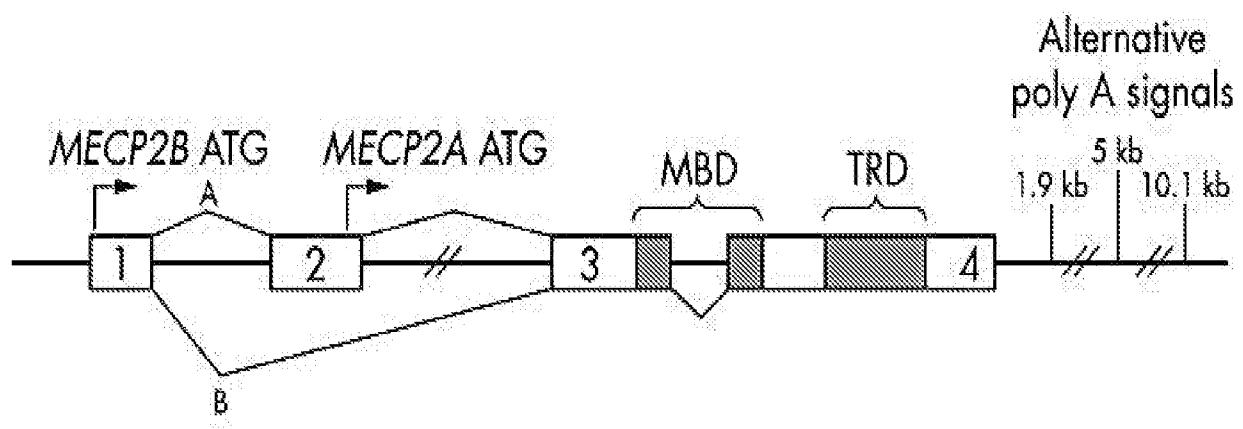
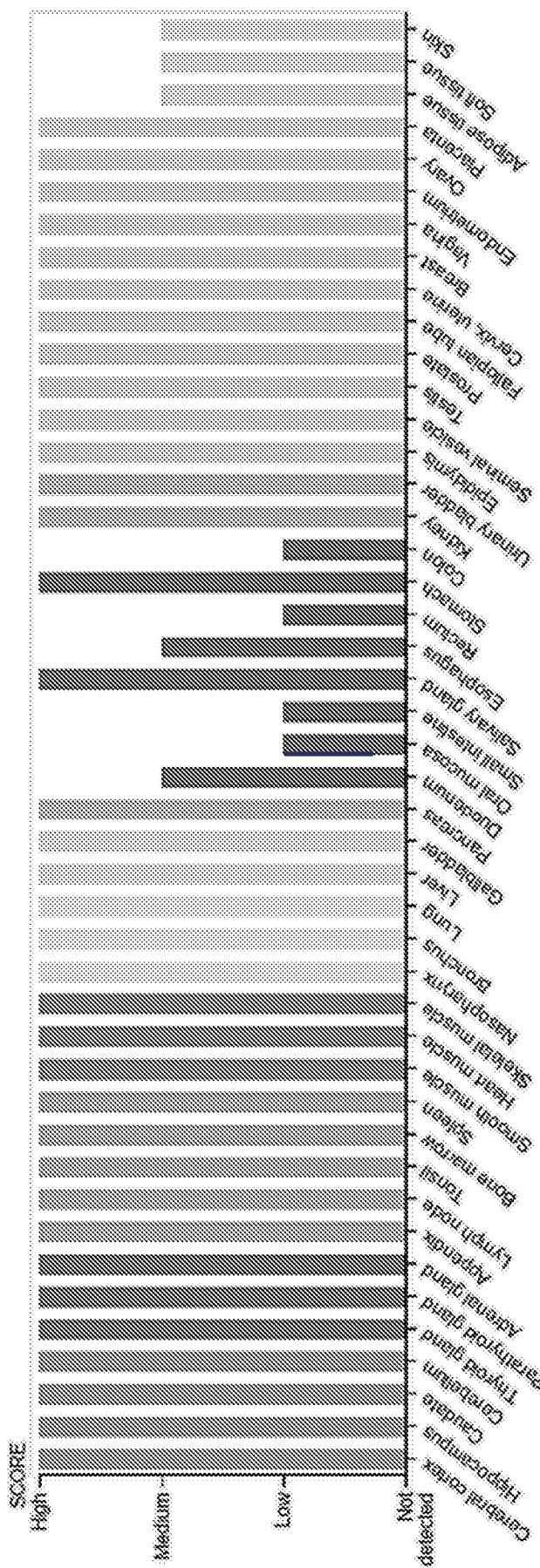


Figure 1

Figure 2

16 Jan 2023

2017362491

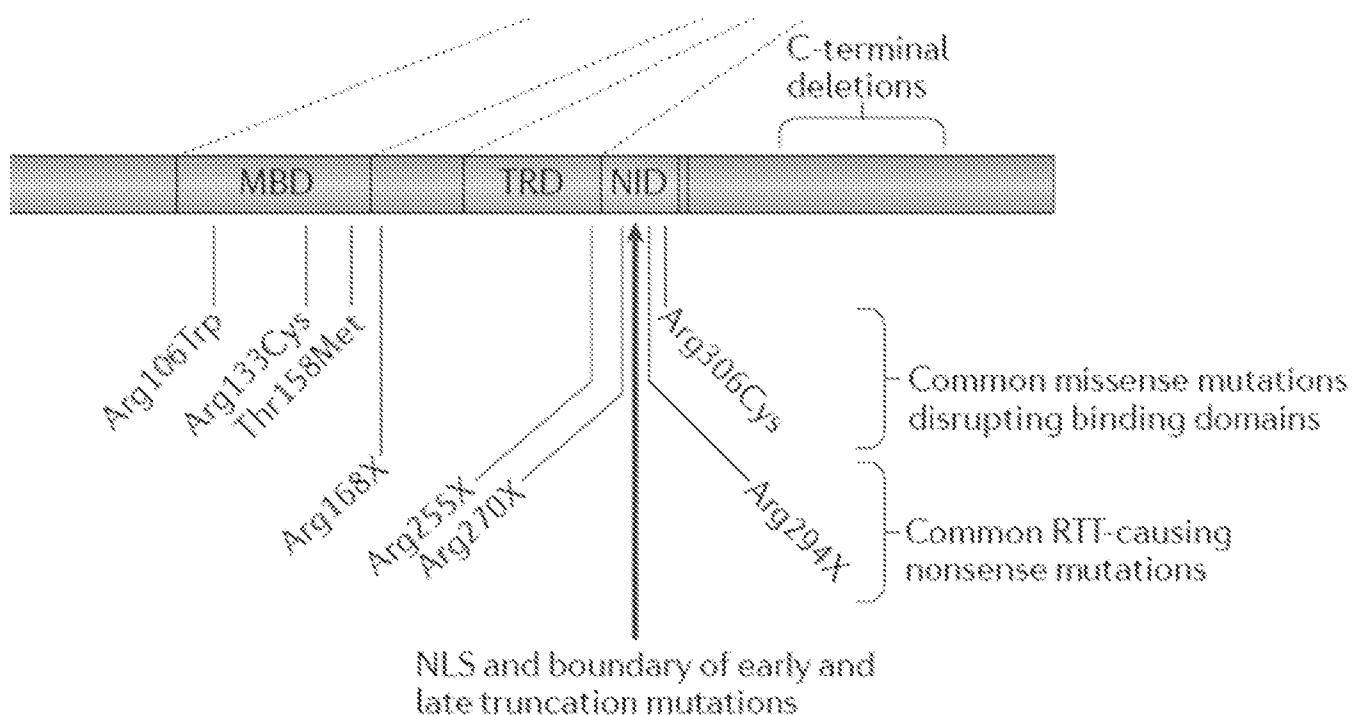

Figure 3

Figure 4

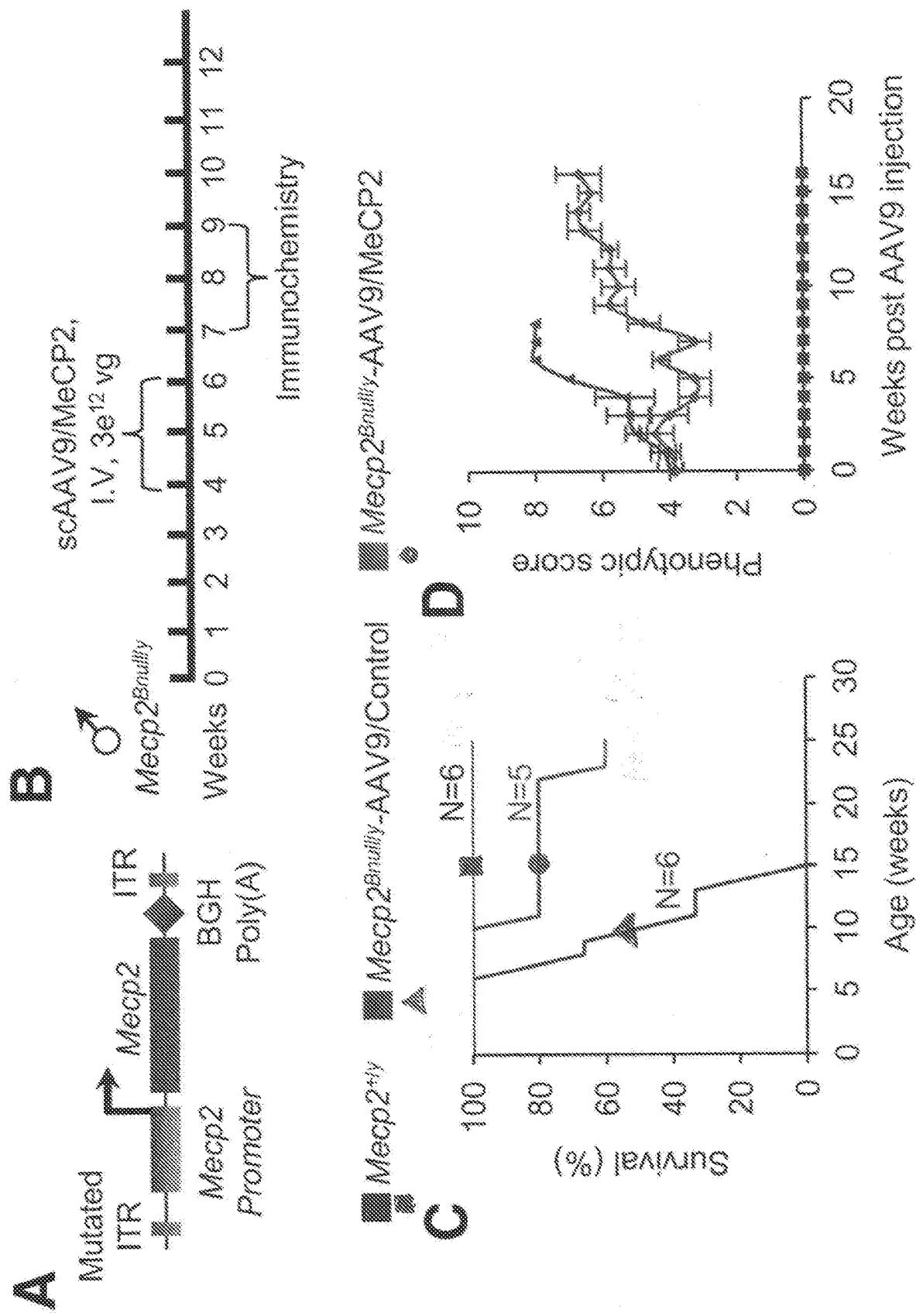
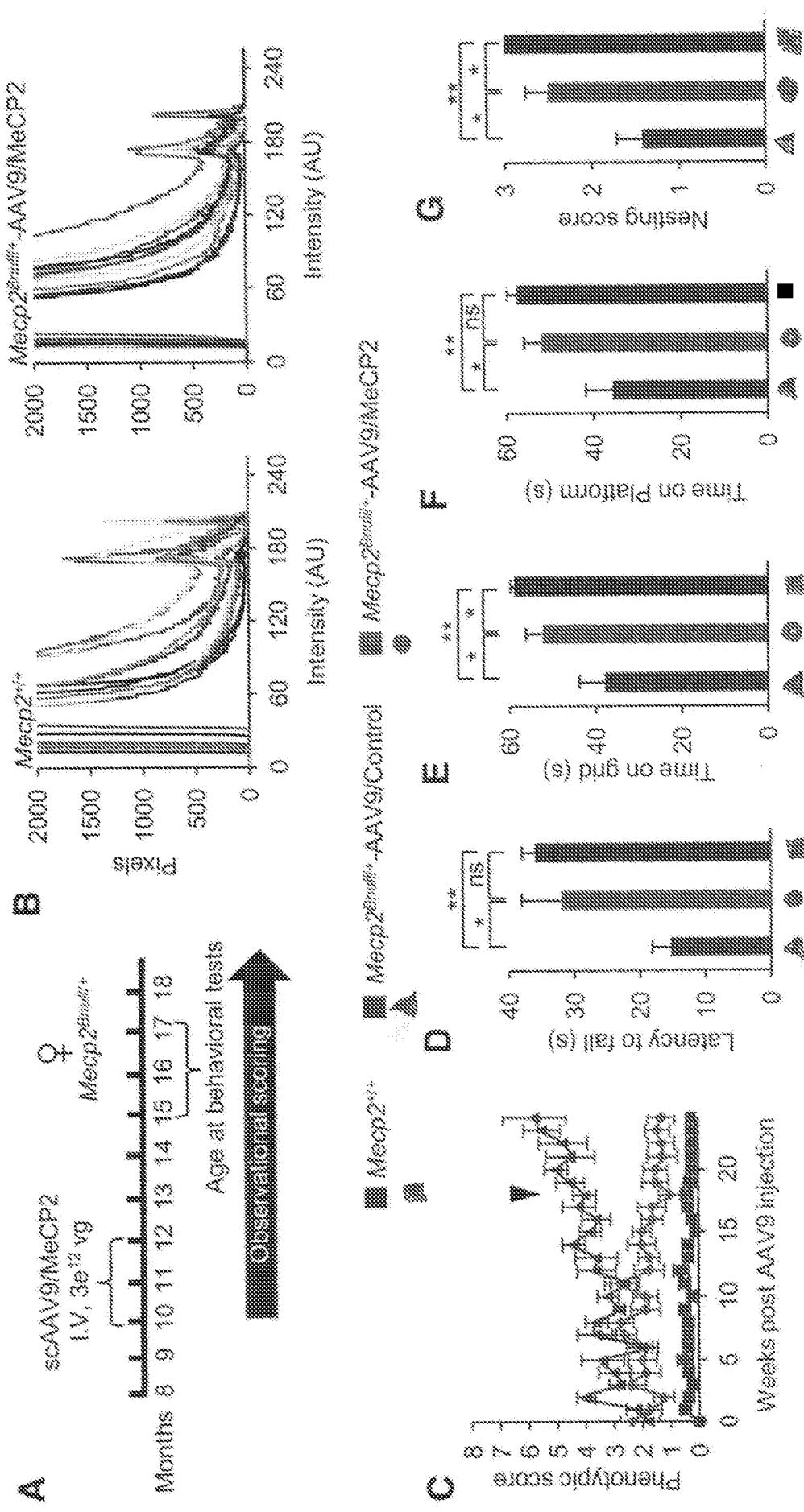



Figure 5

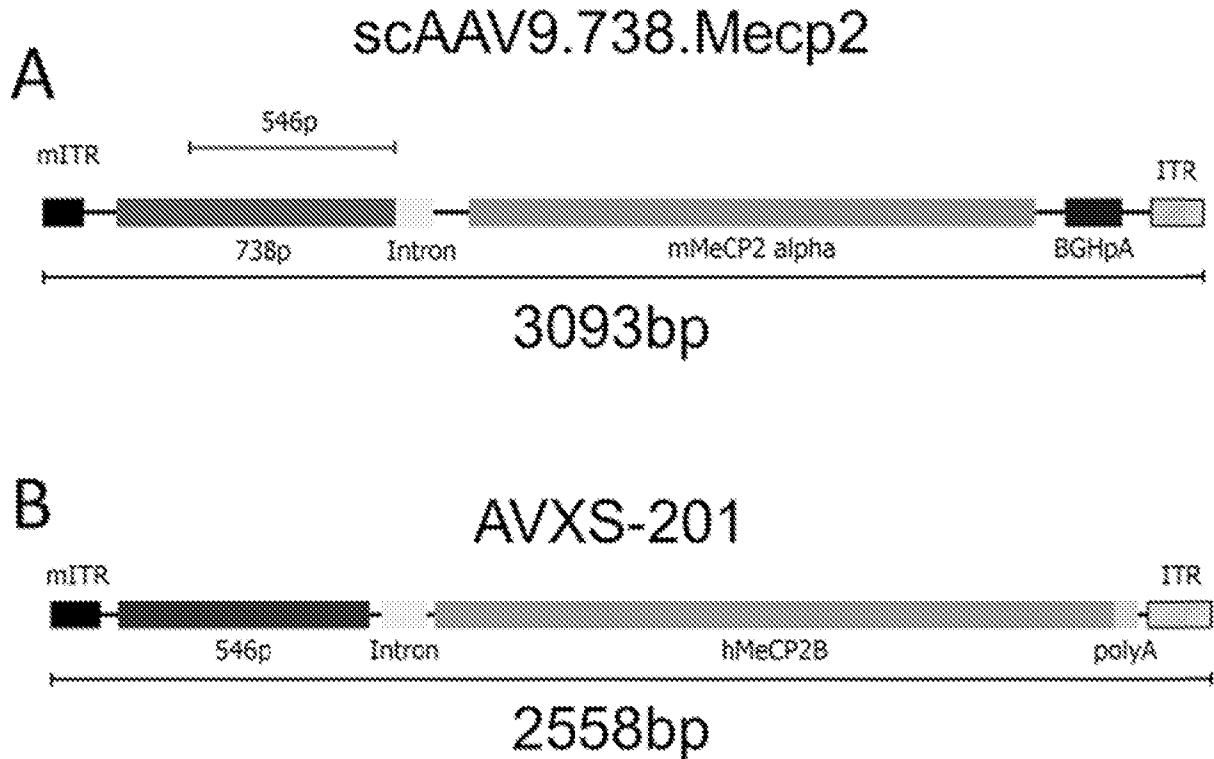

Figure 6

Figure 7

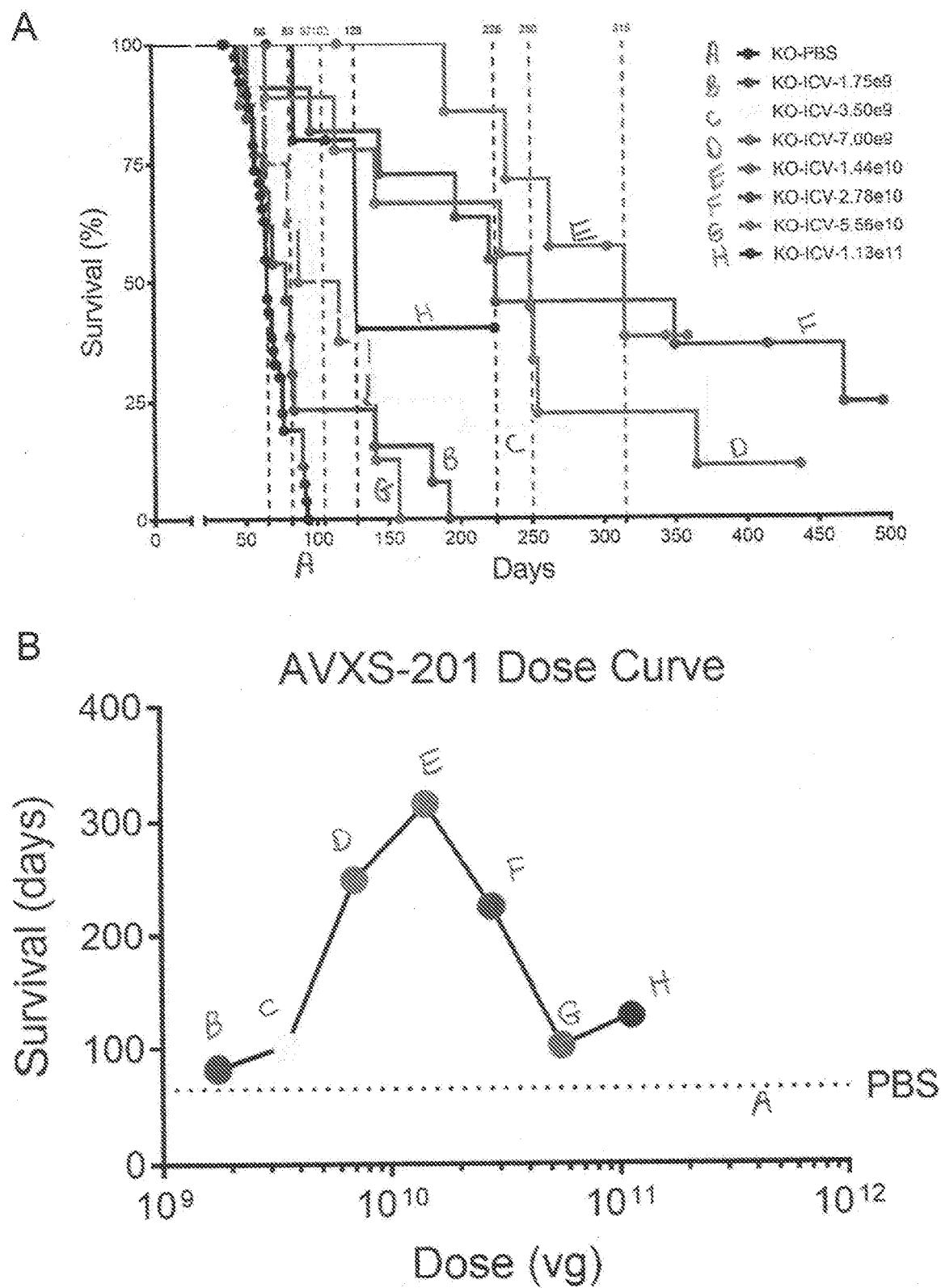


Figure 8

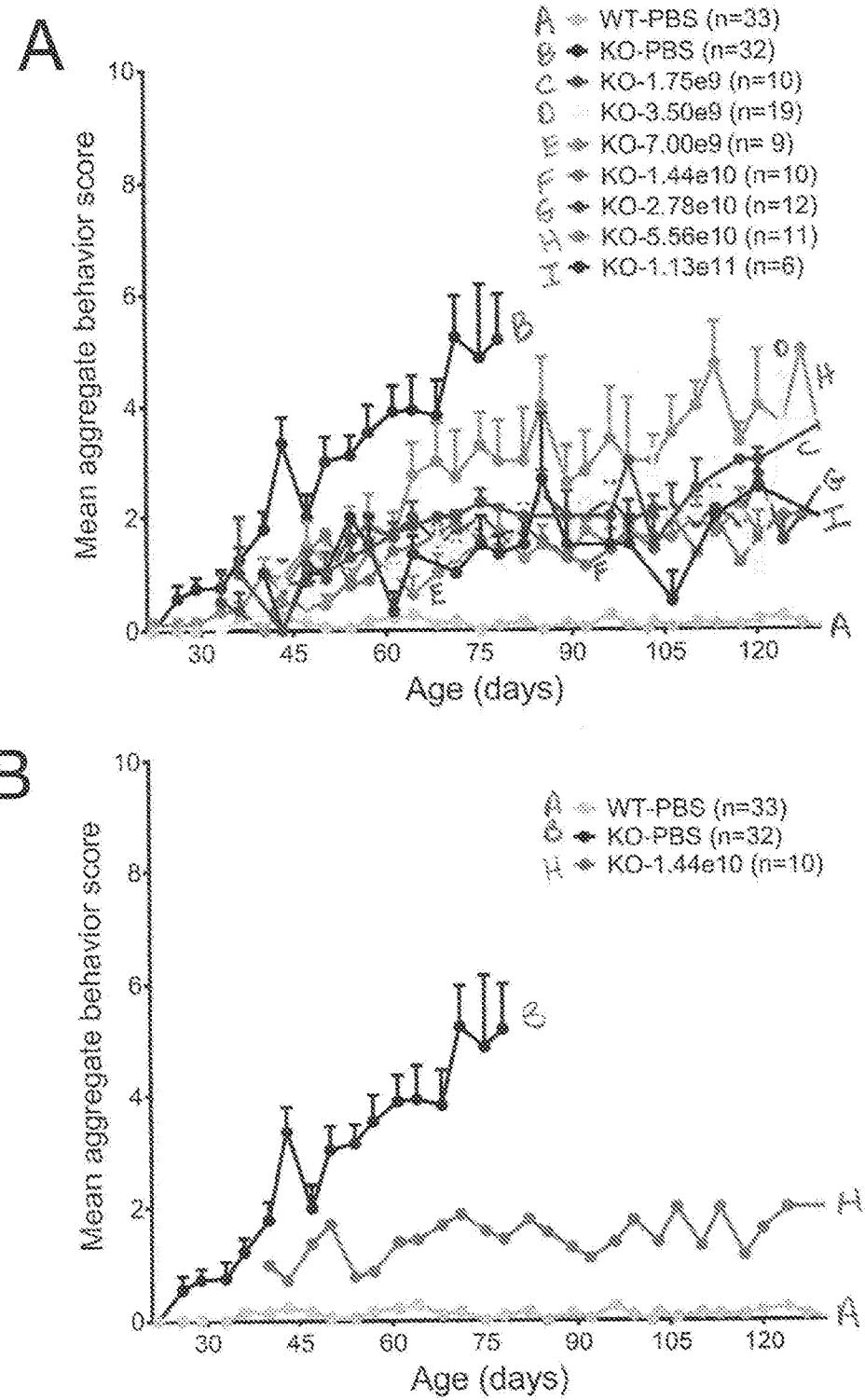
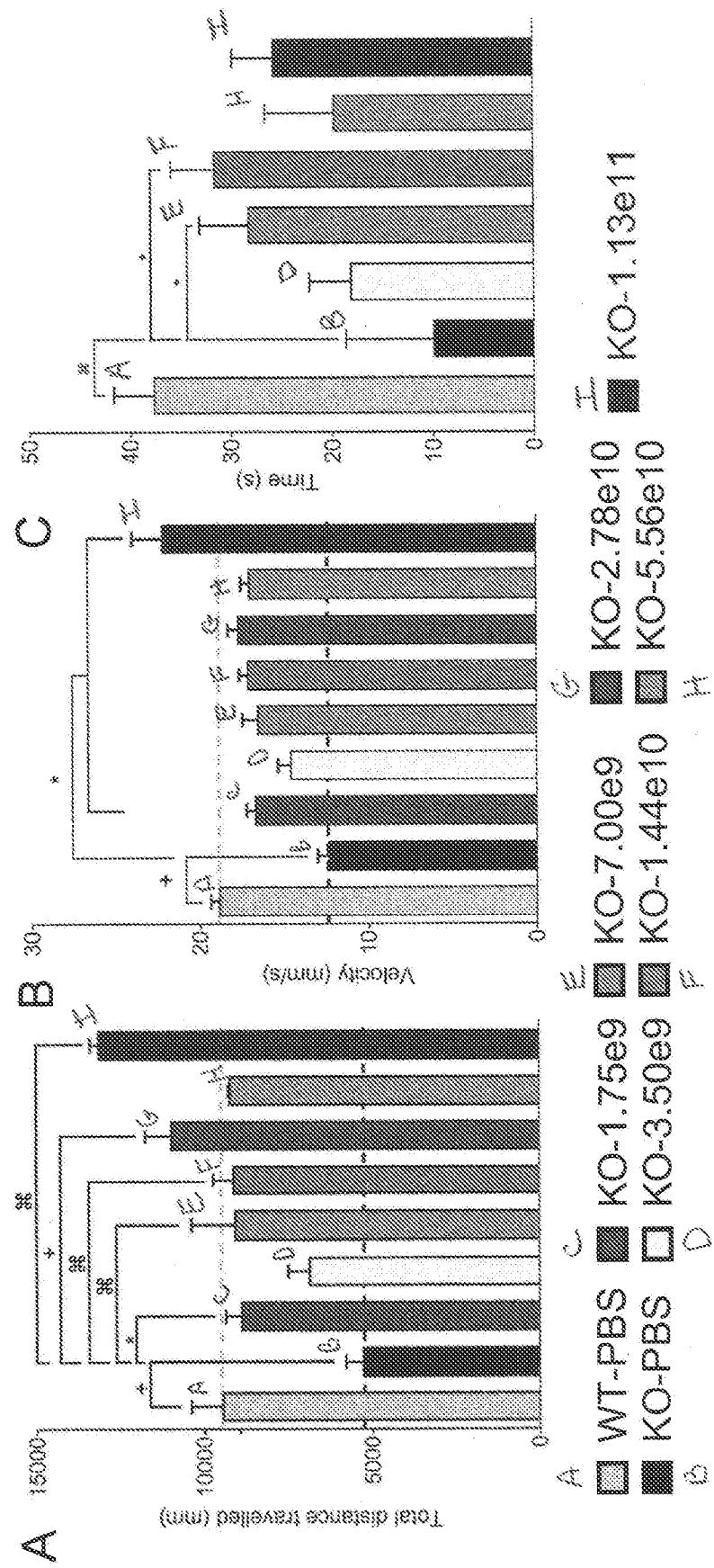
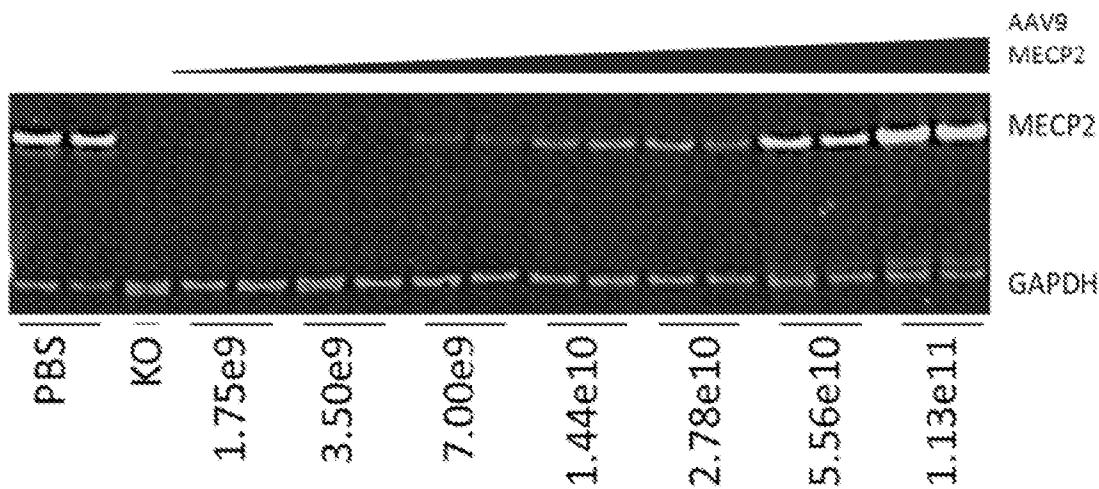



Figure 9


2017362491

16 Jan 2023

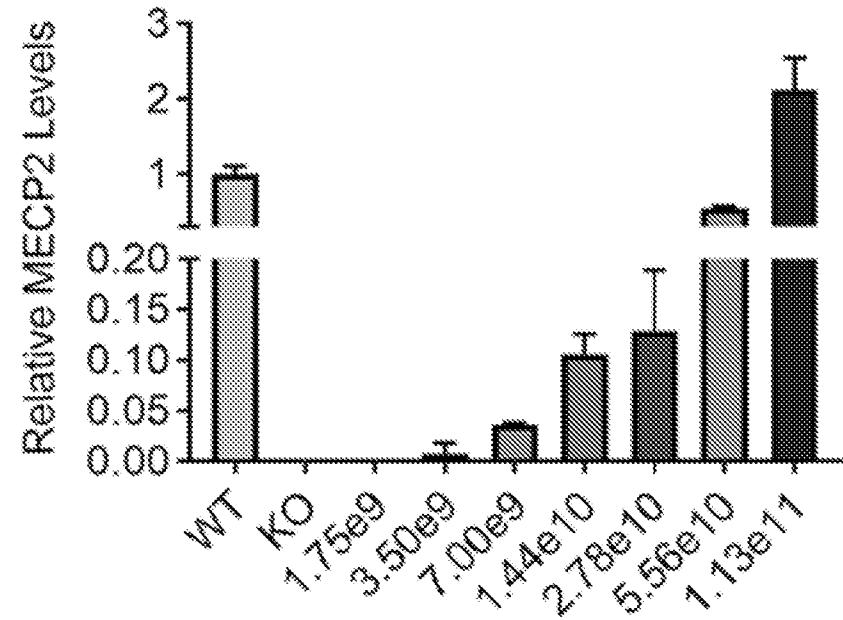

10/48

Figure 10

A

B

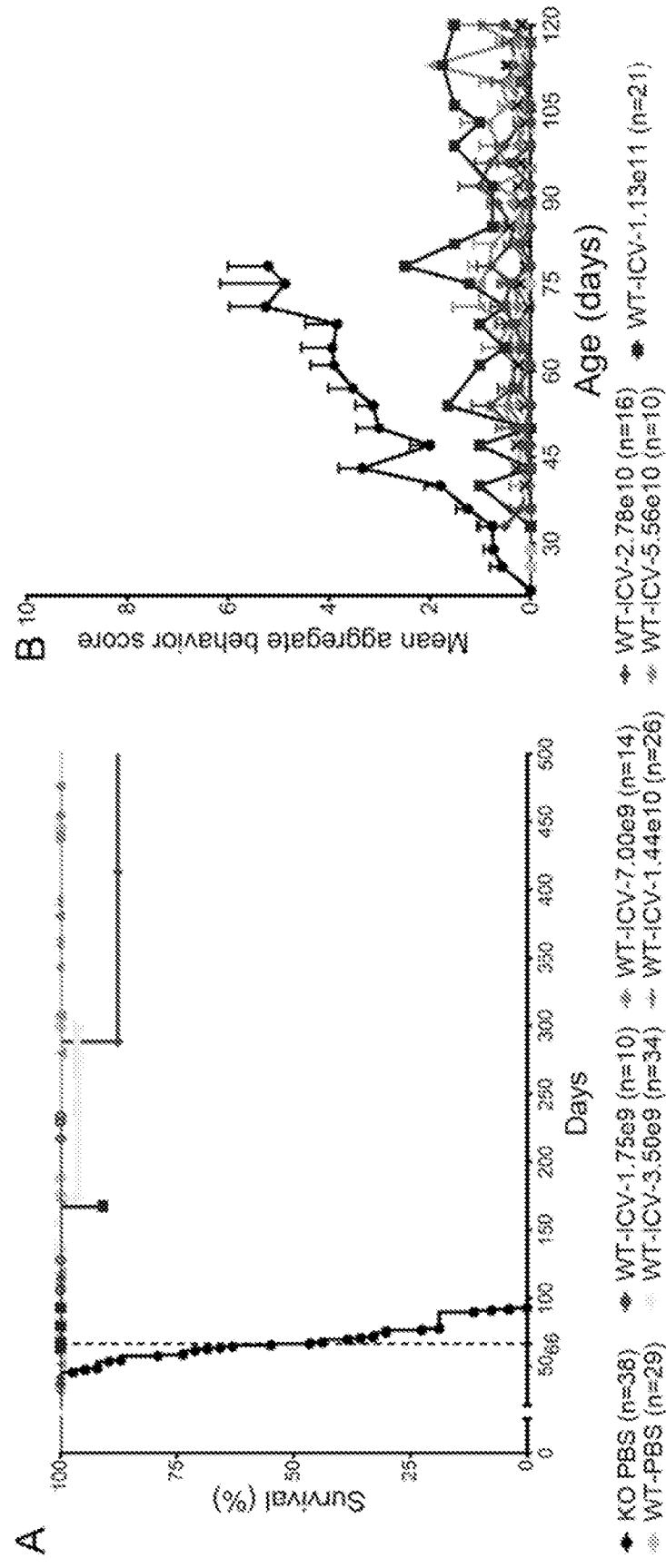

Figure 11

Figure 12

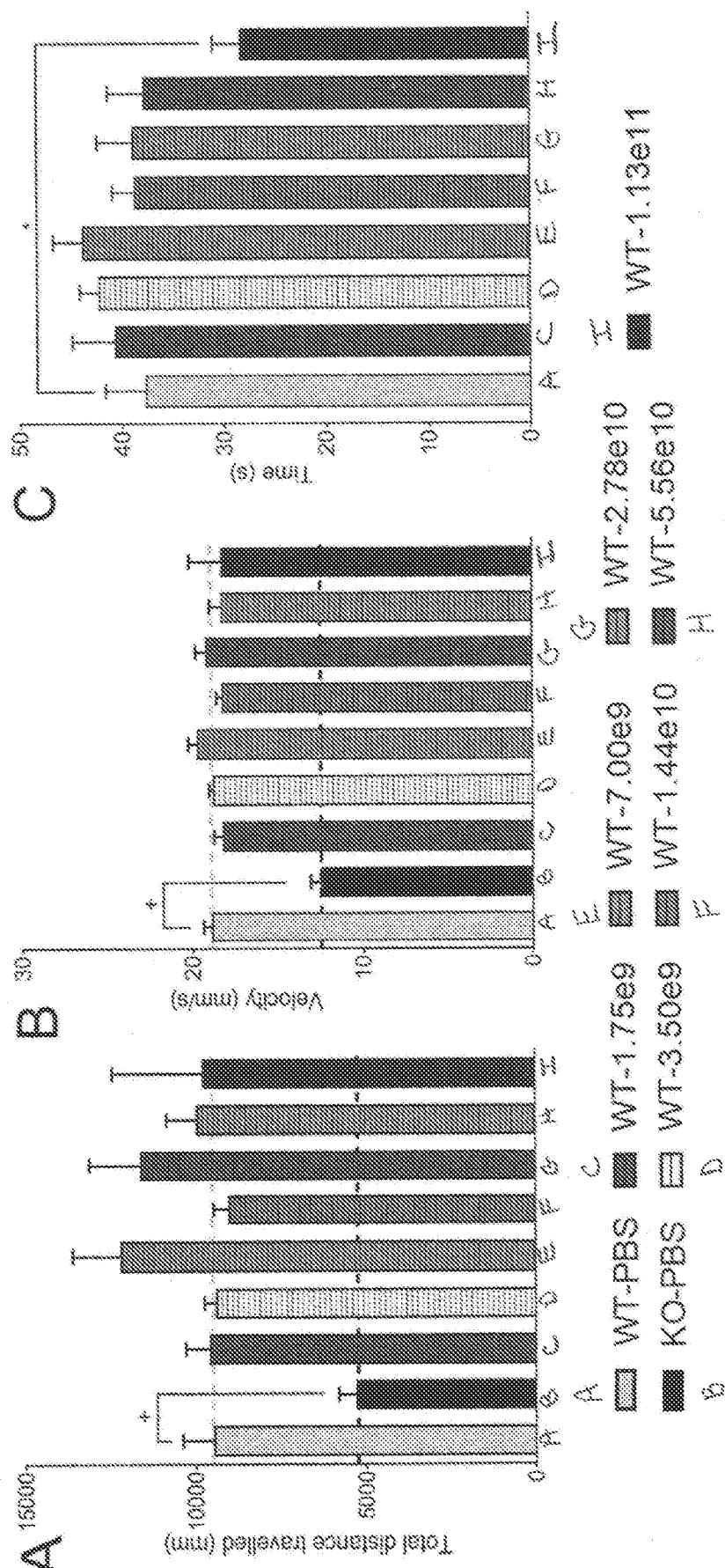
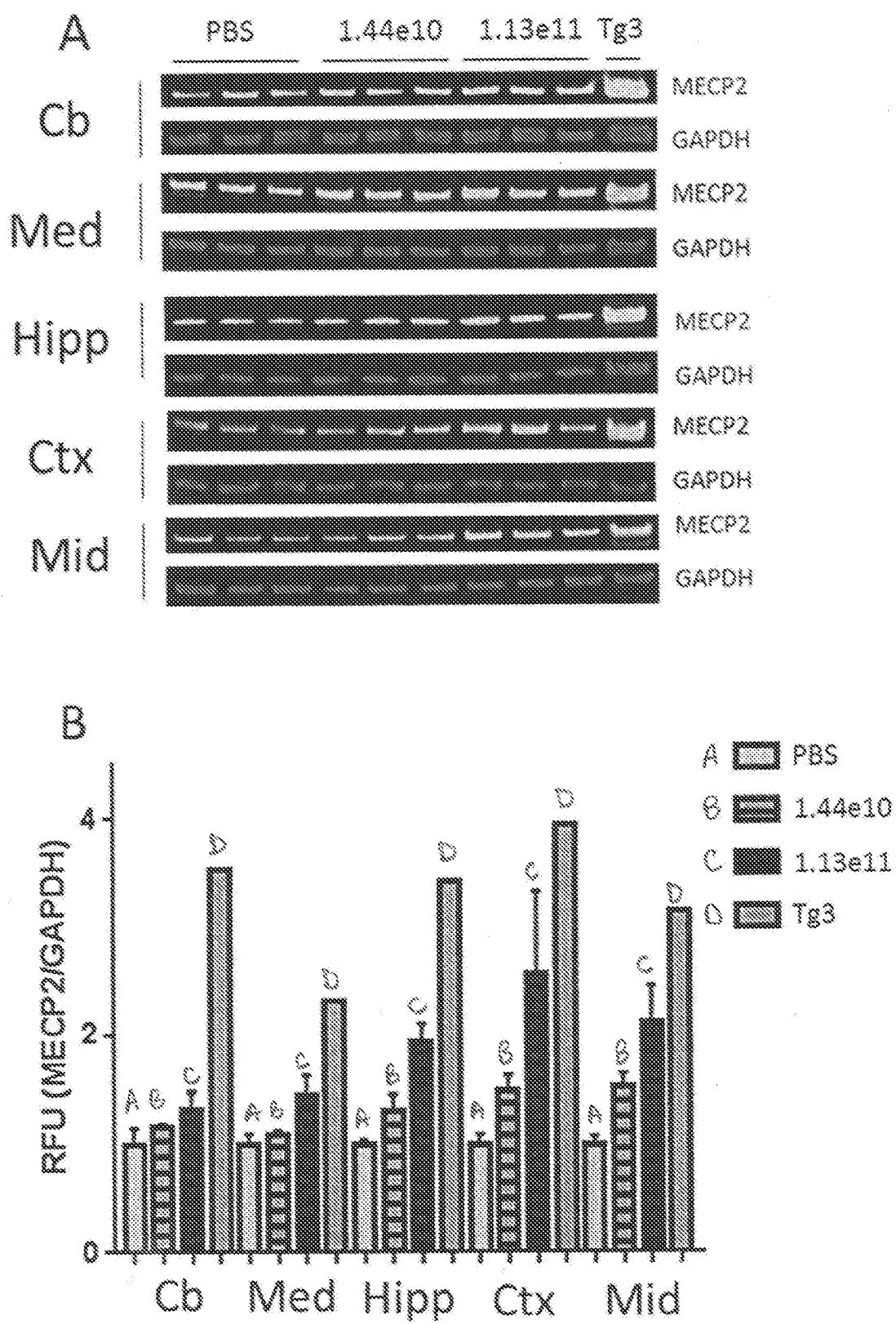
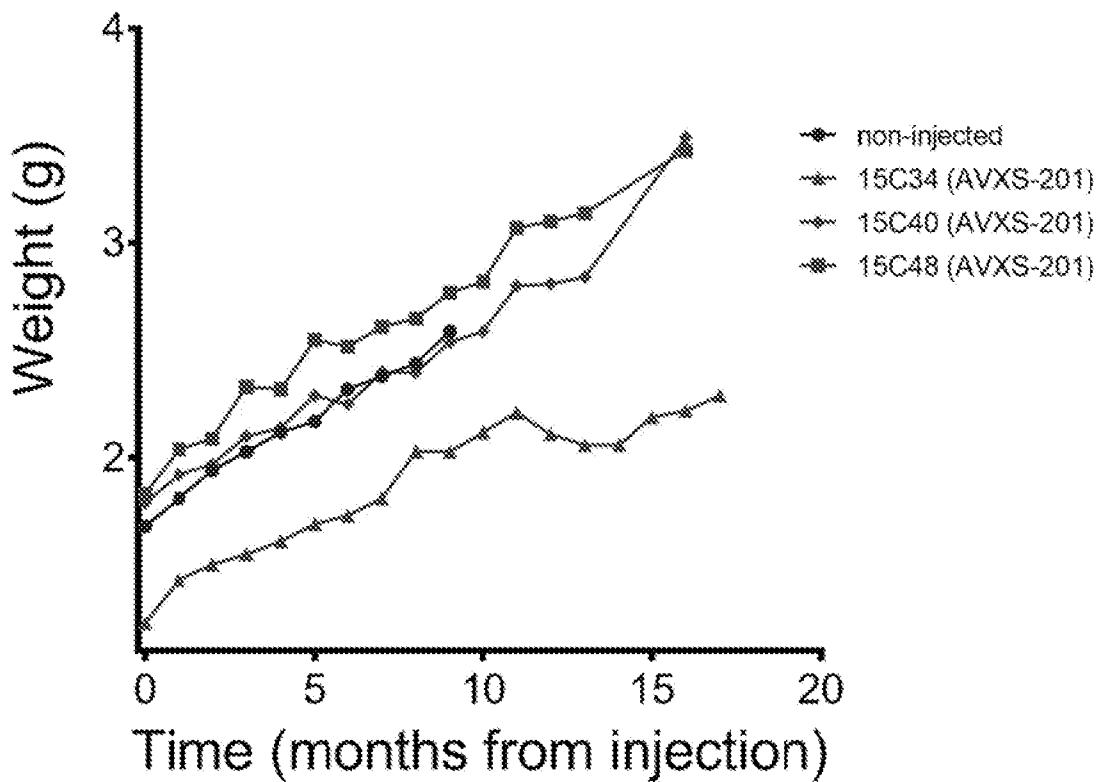




Figure 13

Figure 14

2017362491 16 Jan 2023

15/48

Figure 15

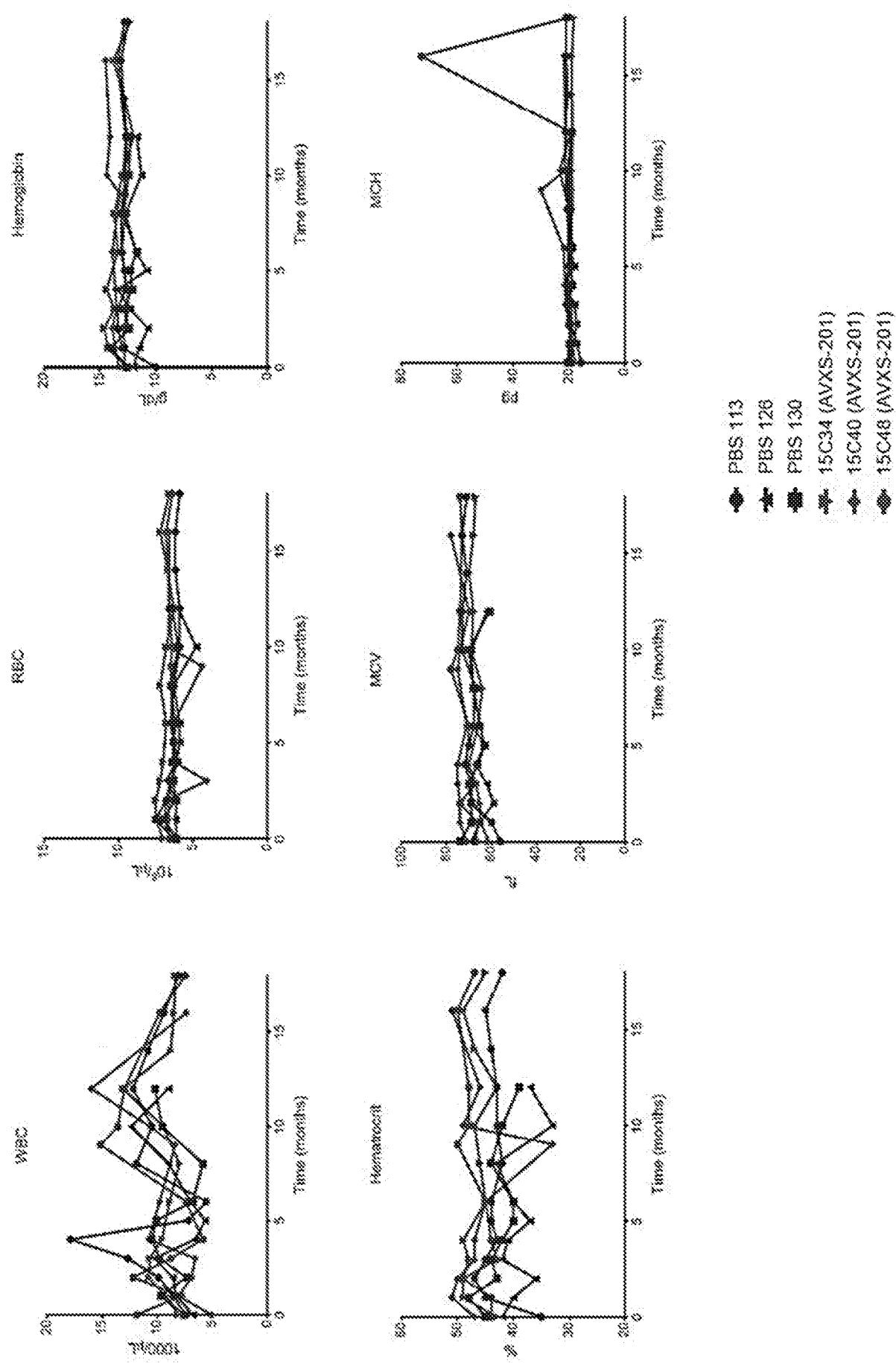
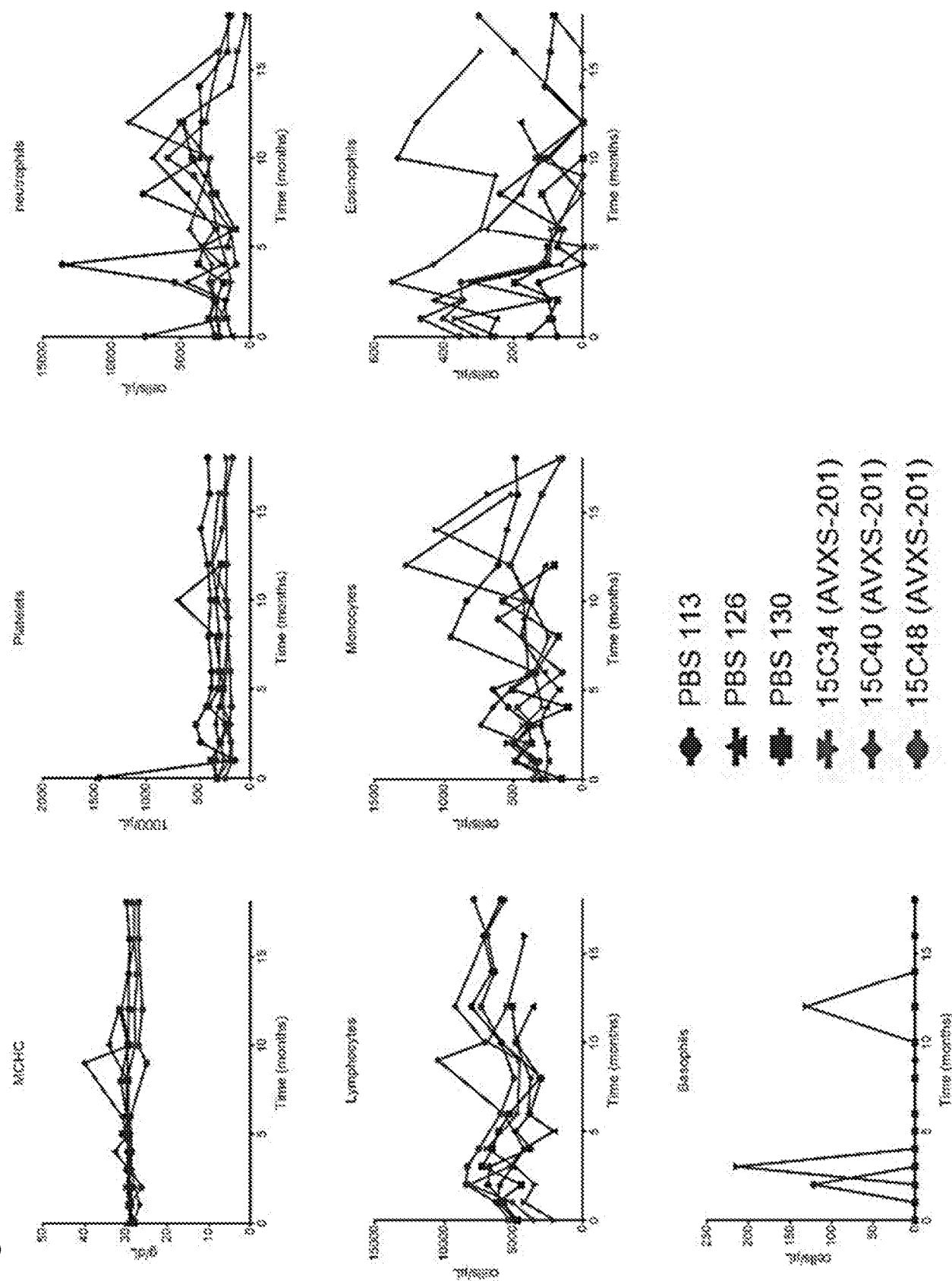
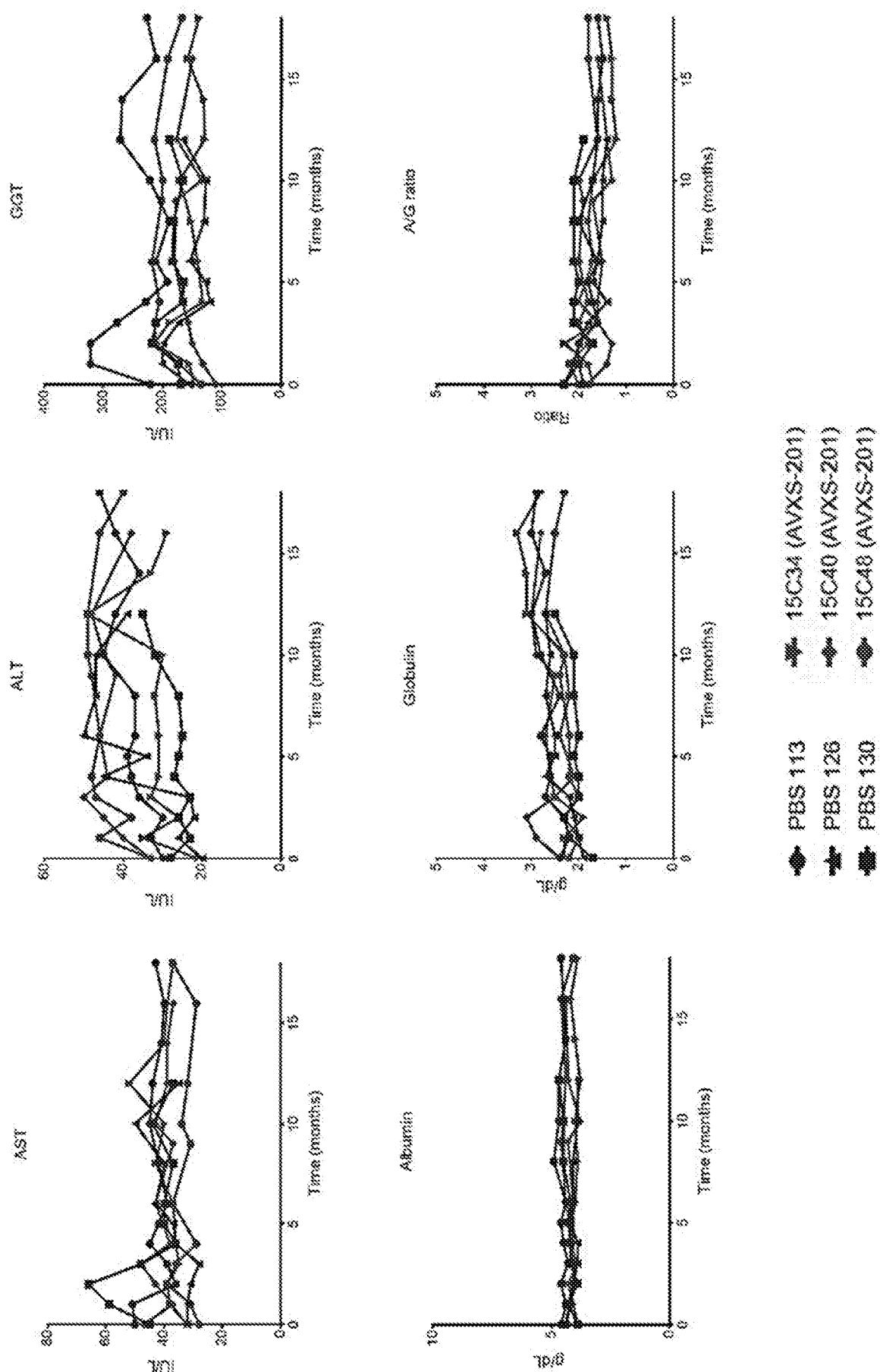




Figure 15 cont.

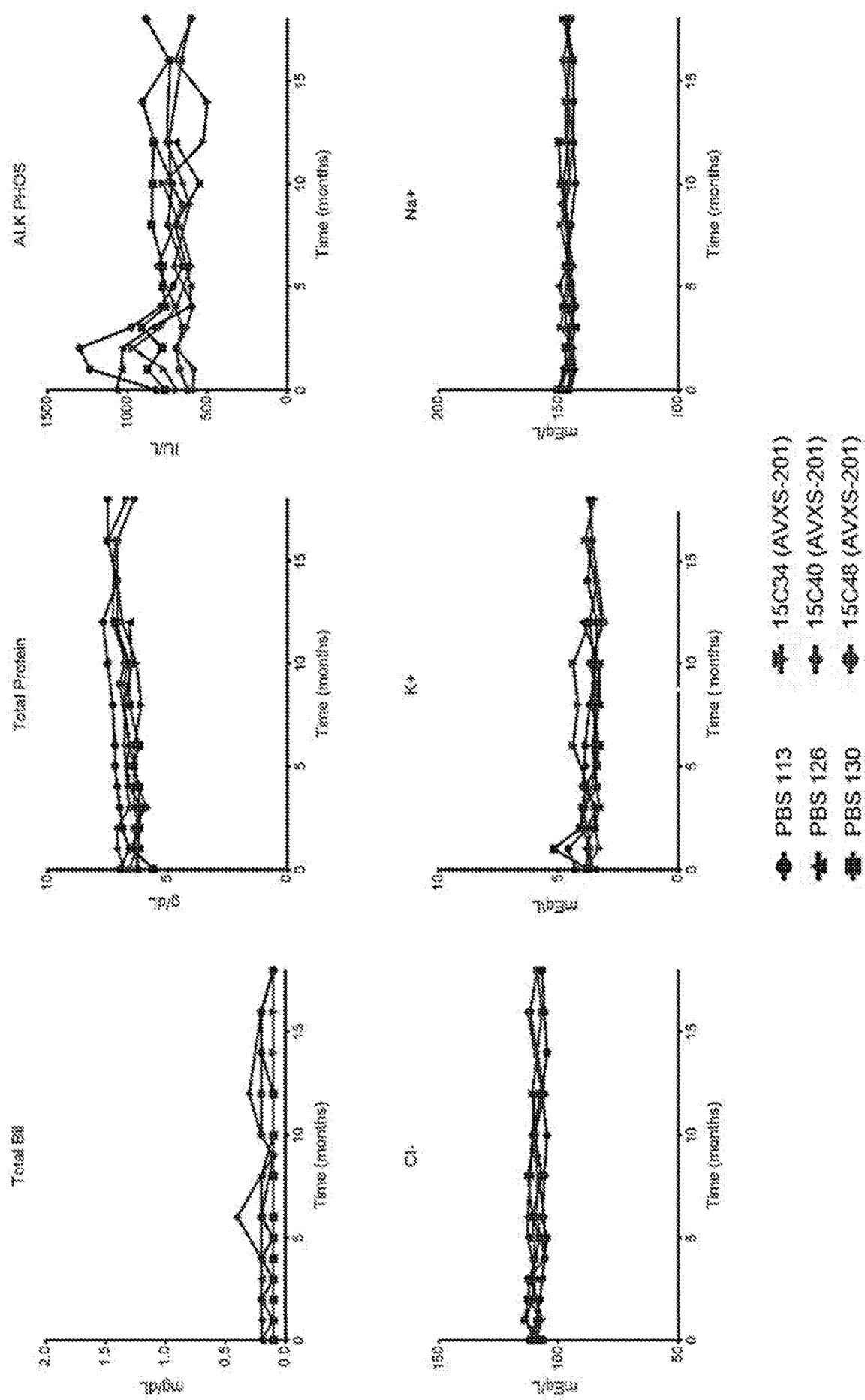


Figure 16

2017362491 16 Jan 2023

18/48

Figure 16 cont.

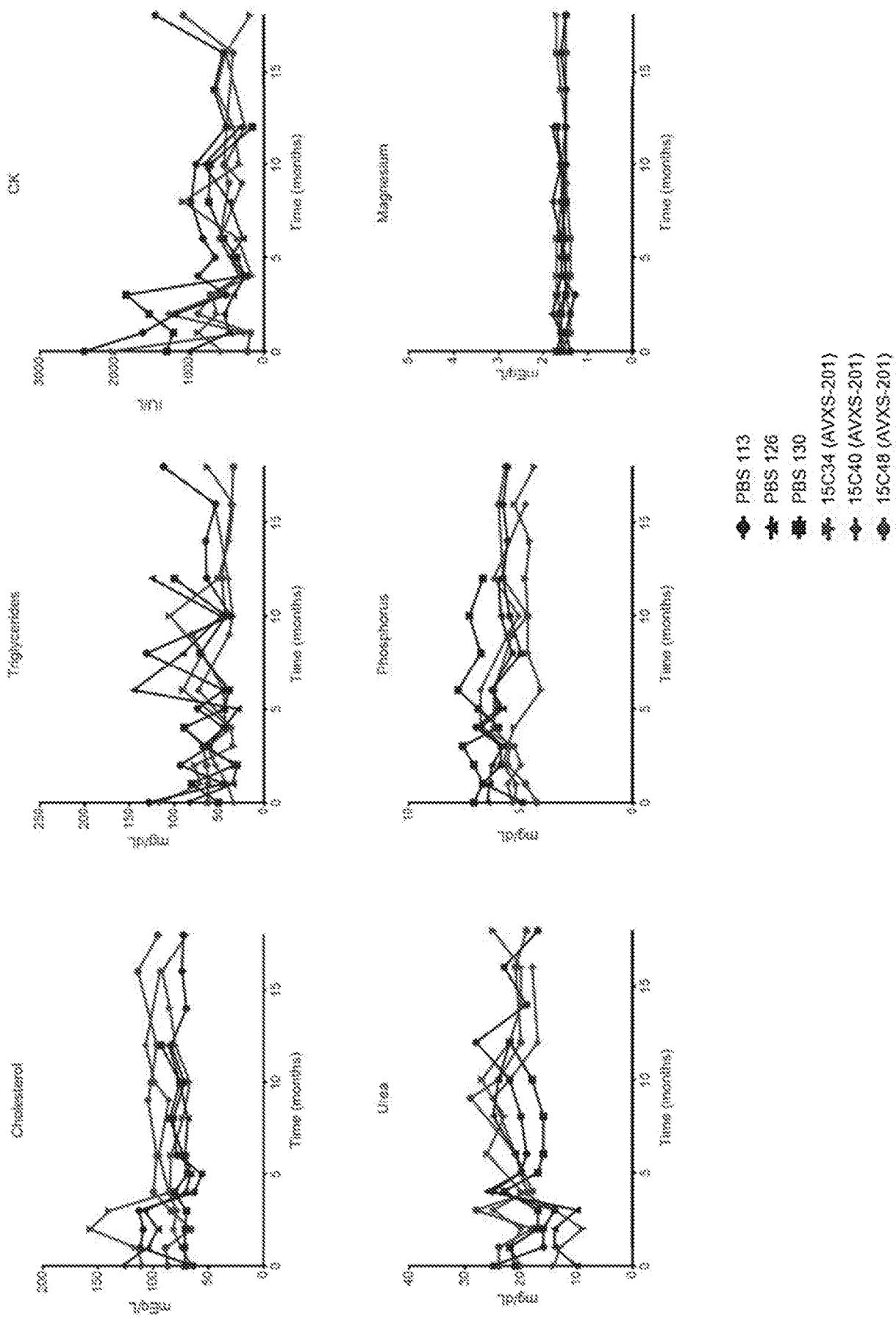
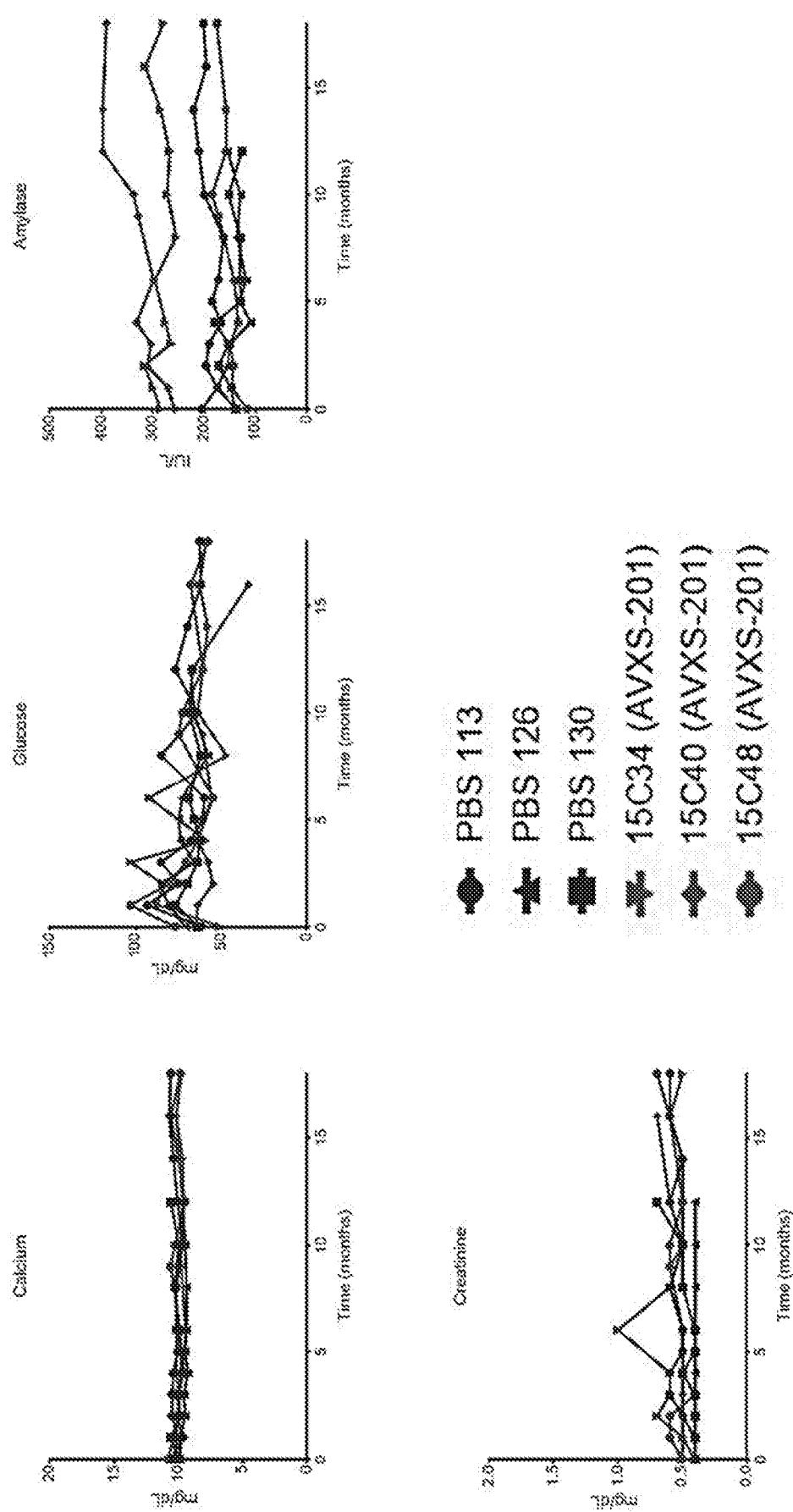
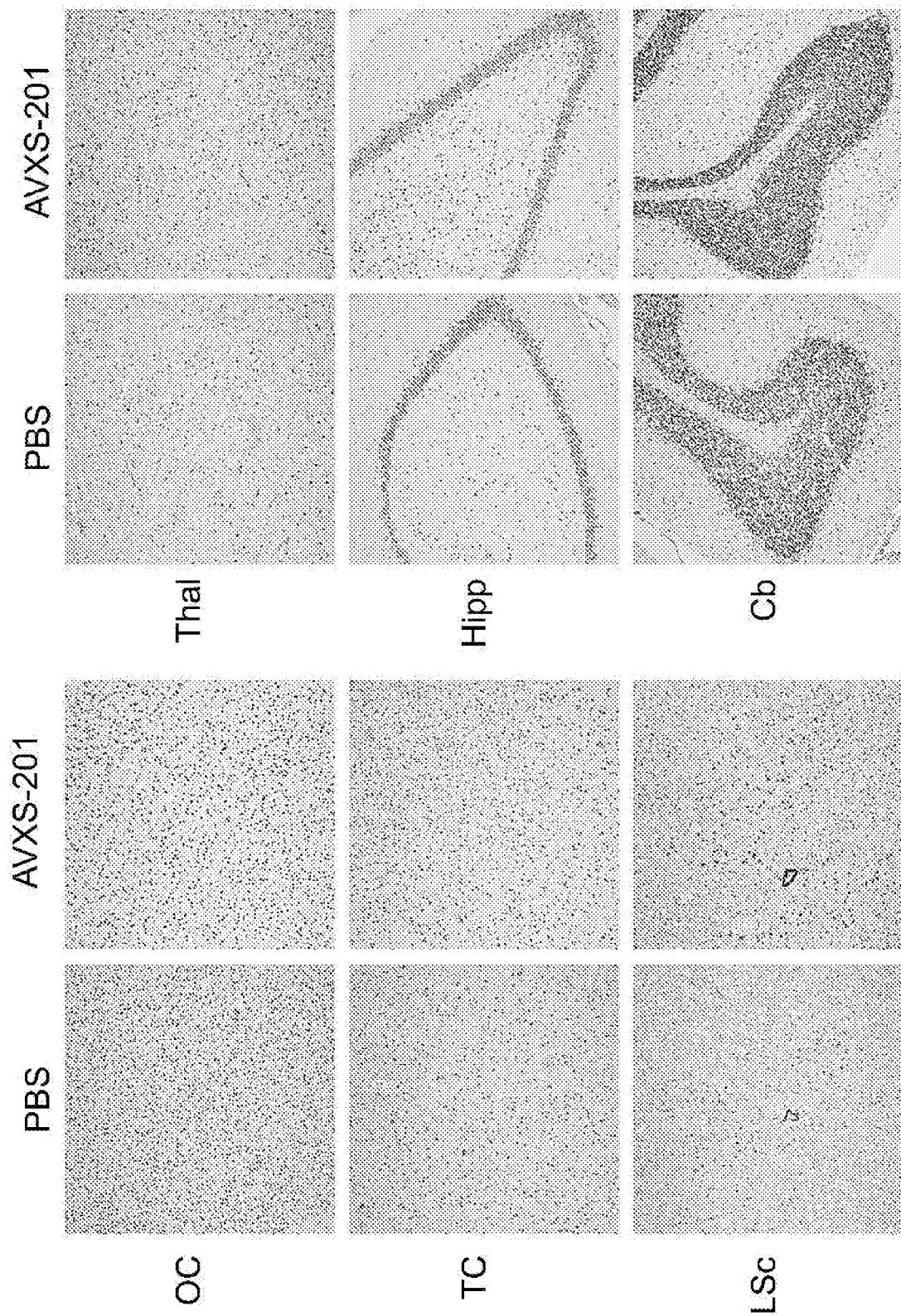
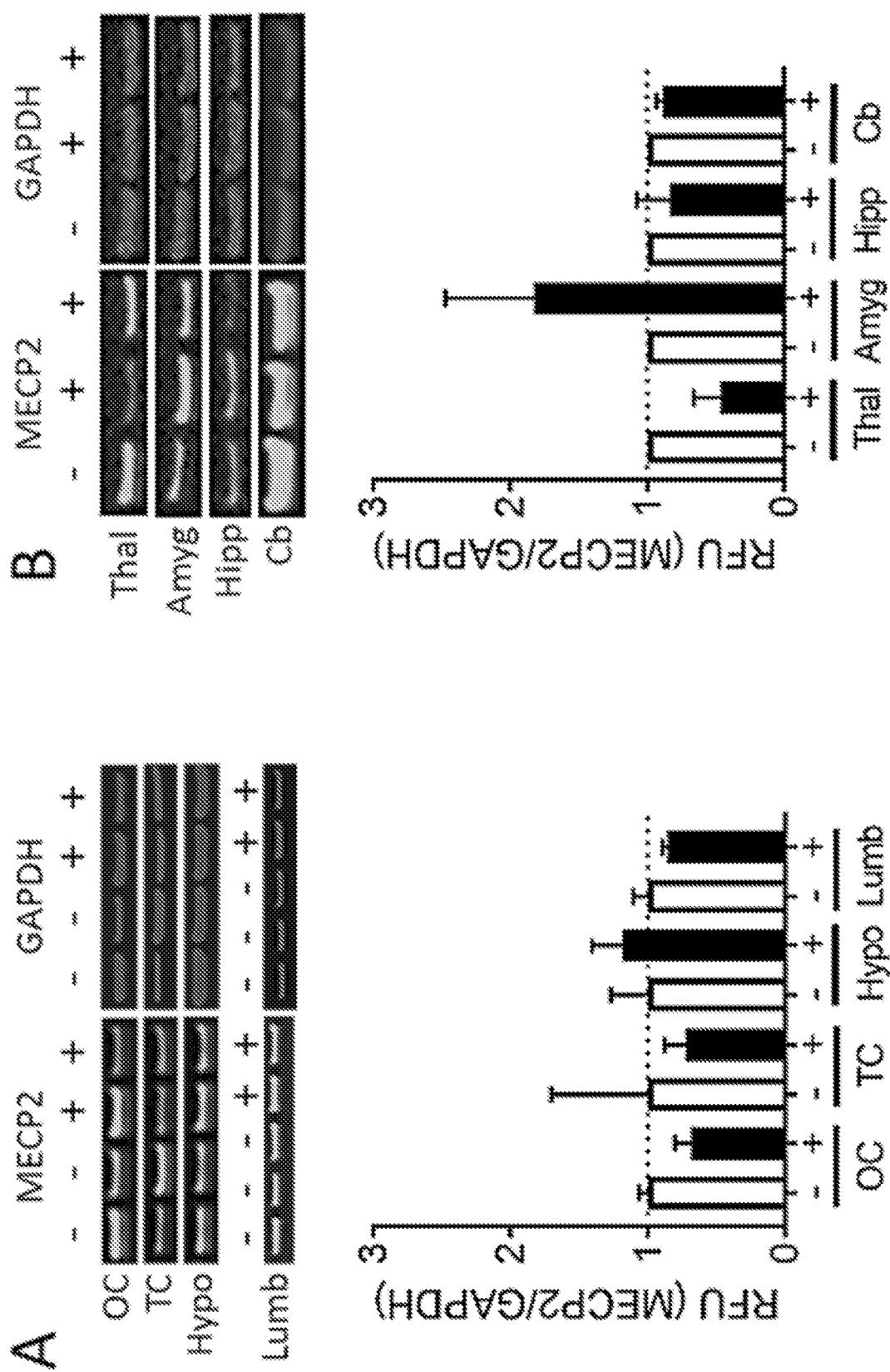
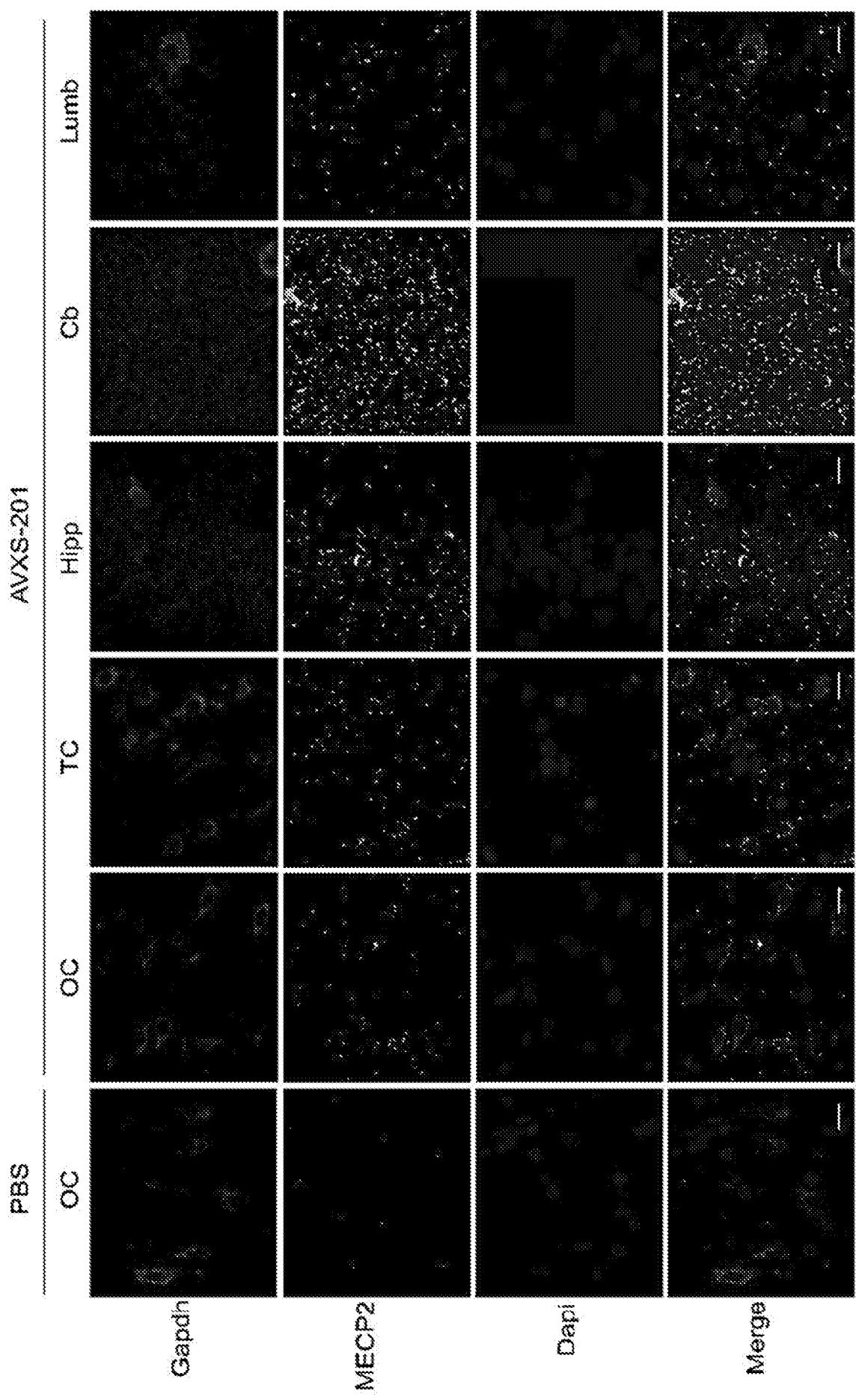


Figure 17

Figure 17 cont.

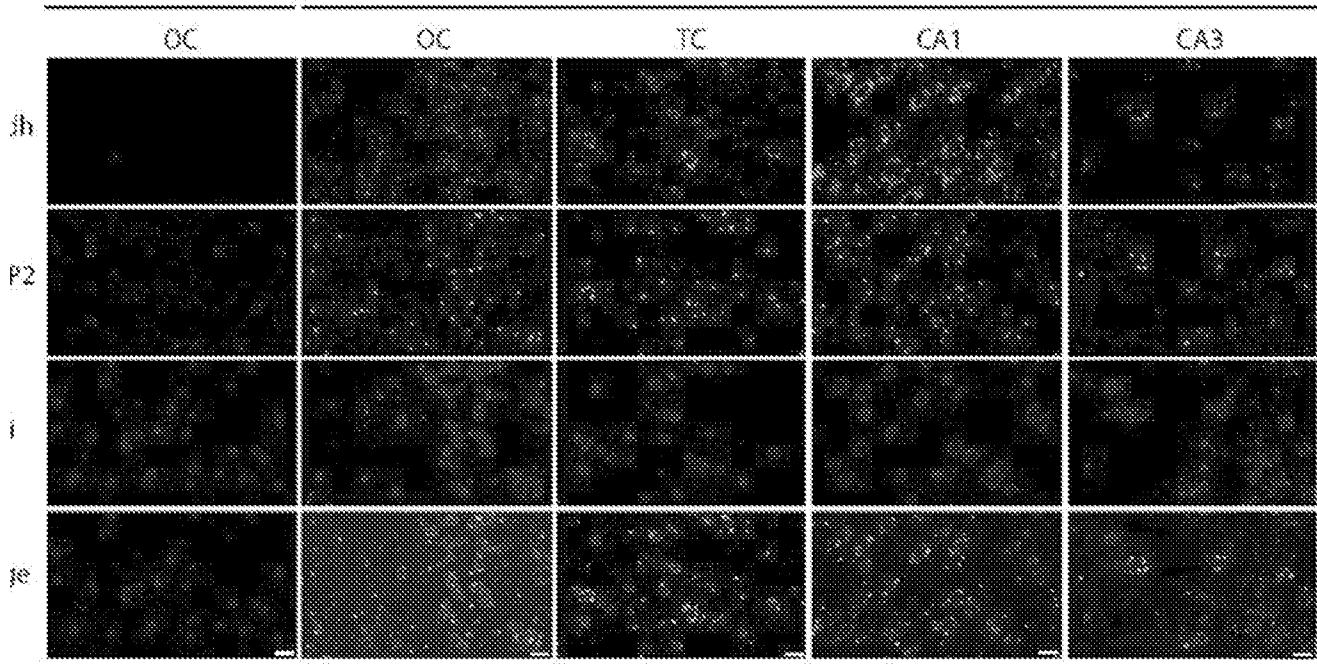
Figure 18


Figure 19

2017362491 16 Jan 2023

23/48


Figure 20

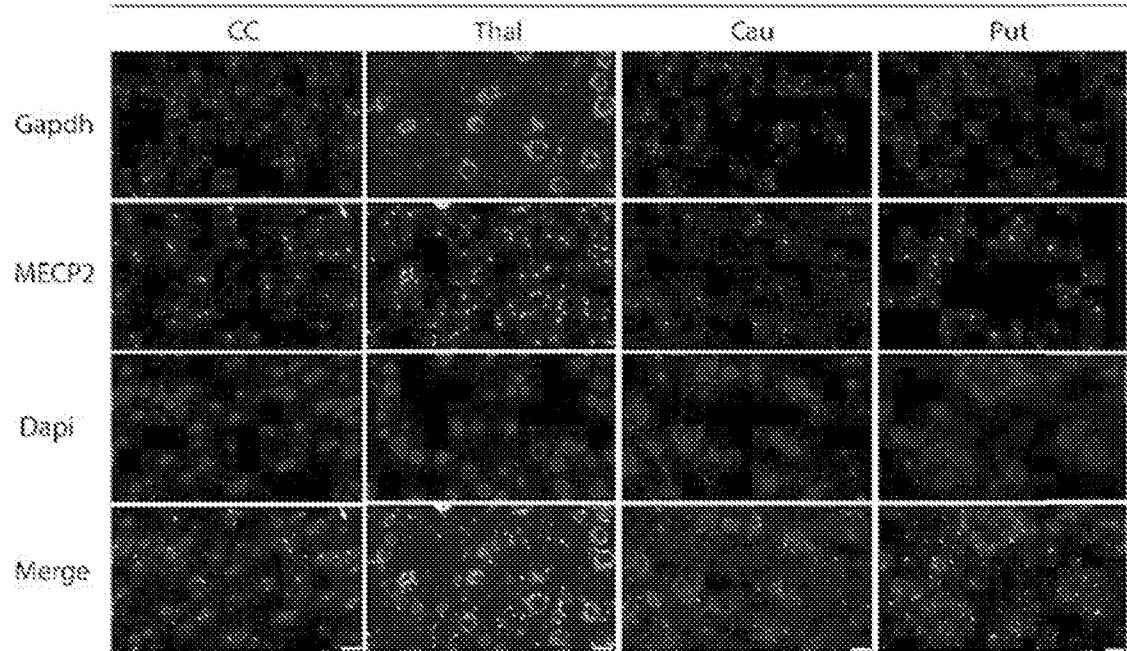
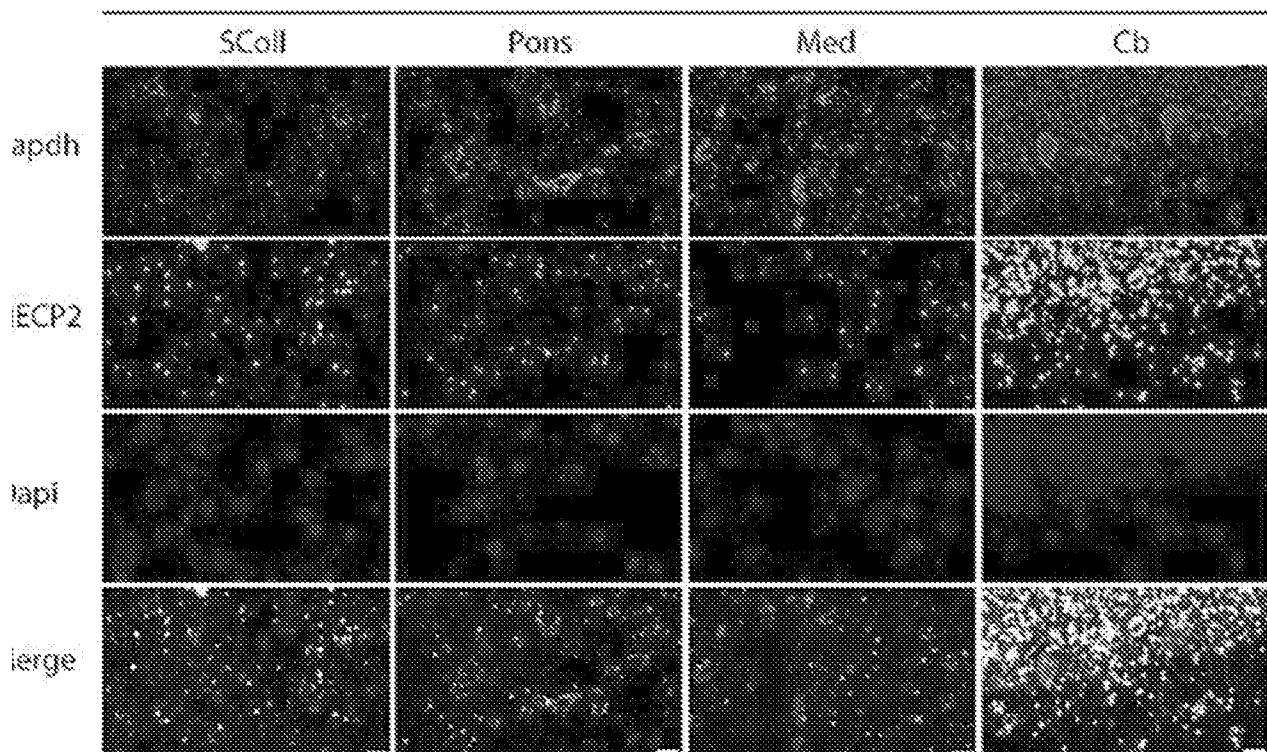
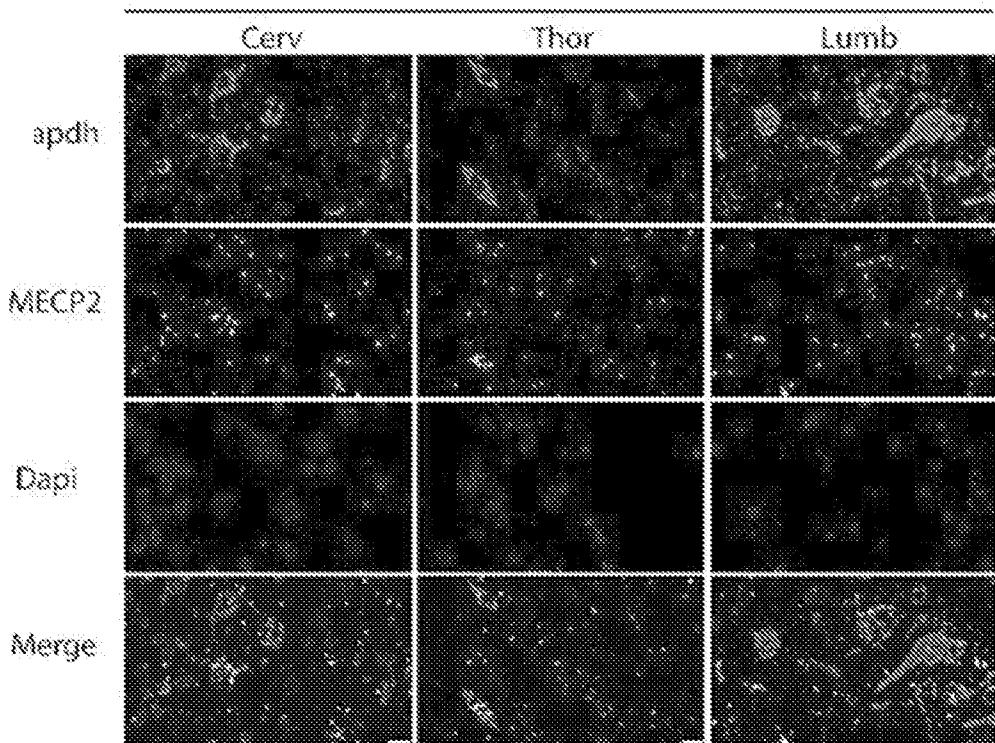
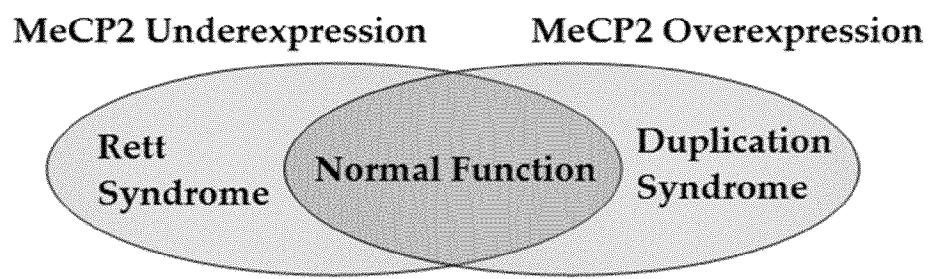

2017362491 16 Jan 2023

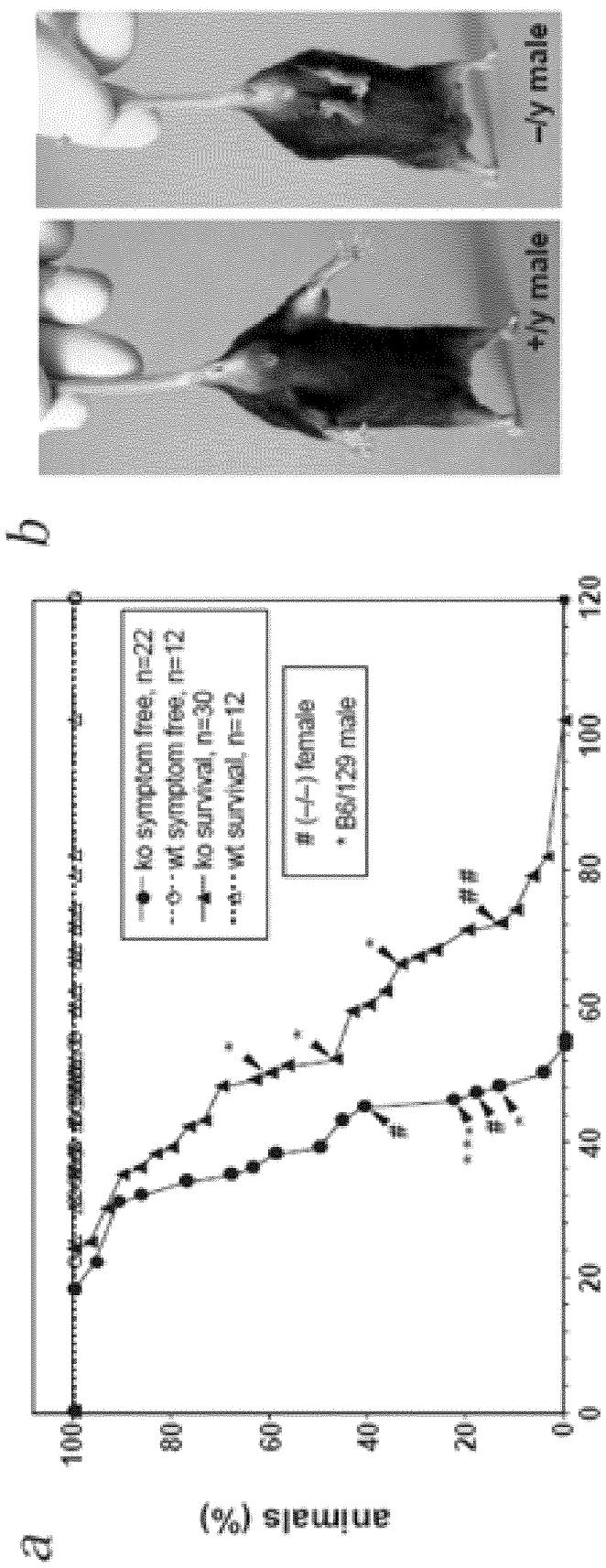
Figure 21
PBS

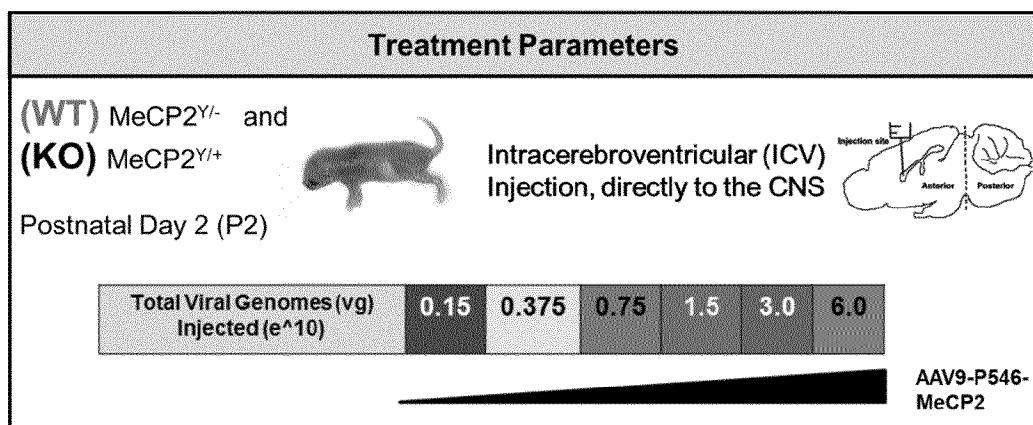
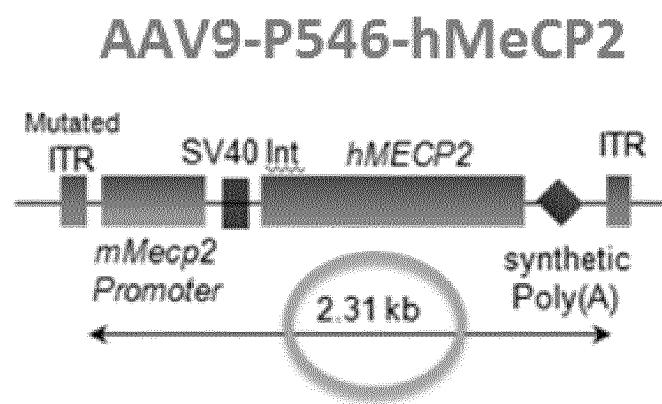
AVXS-201

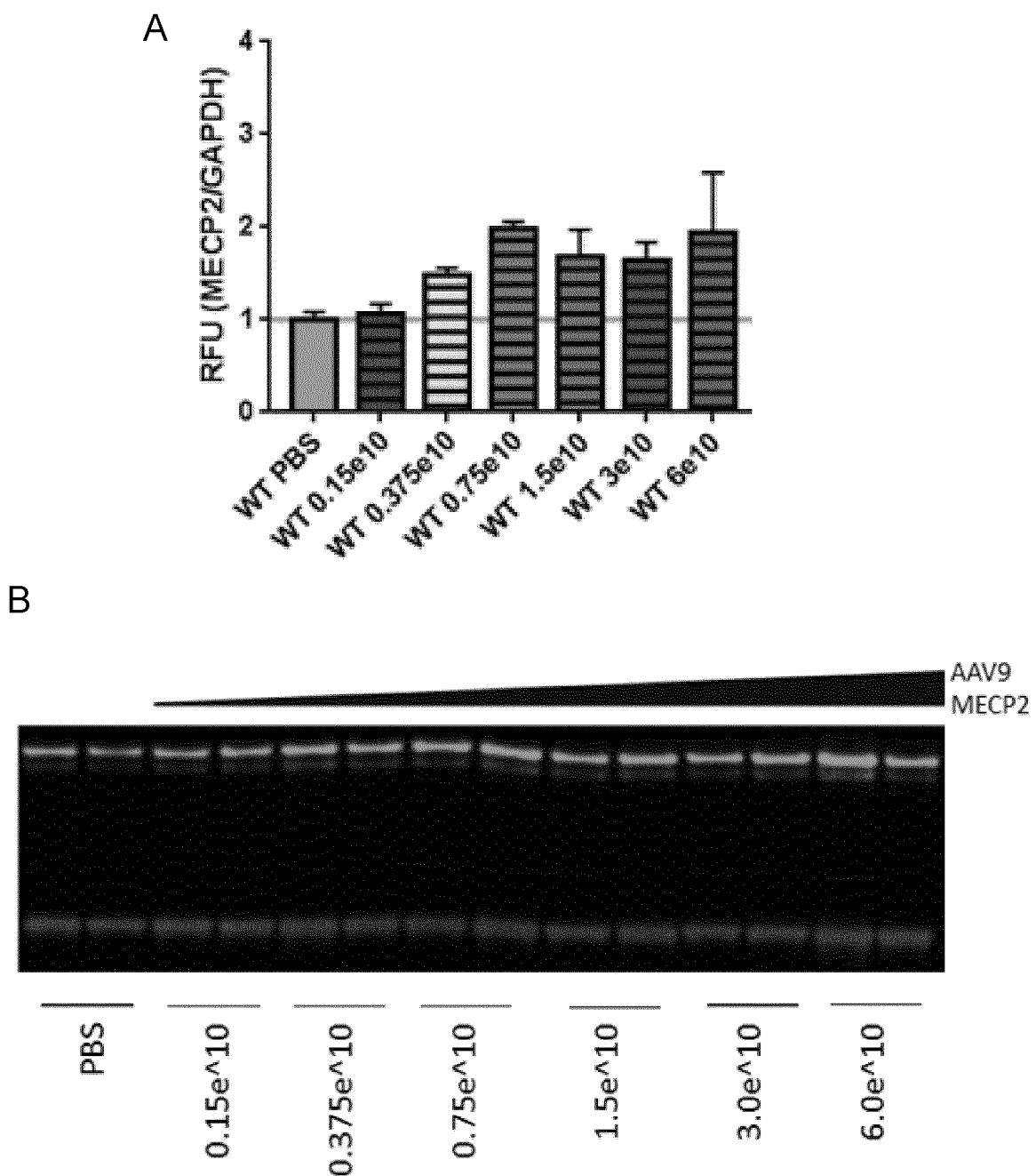

AVXS-201

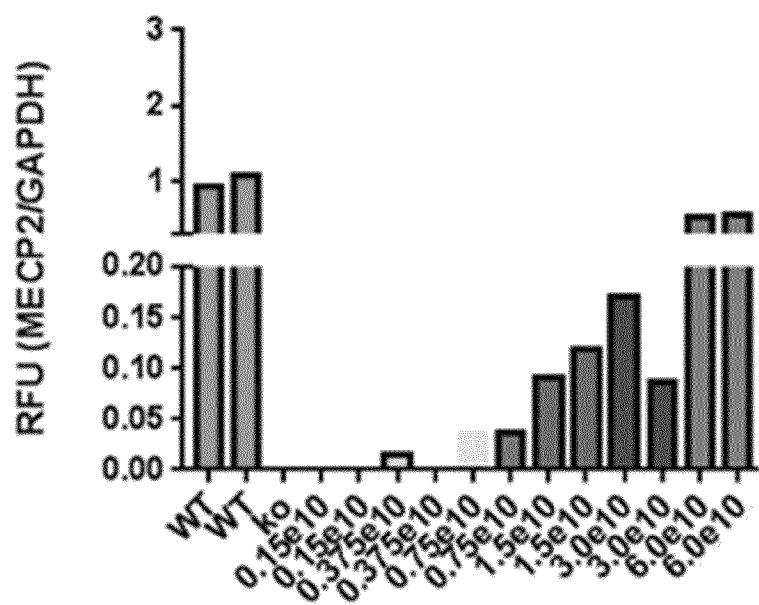
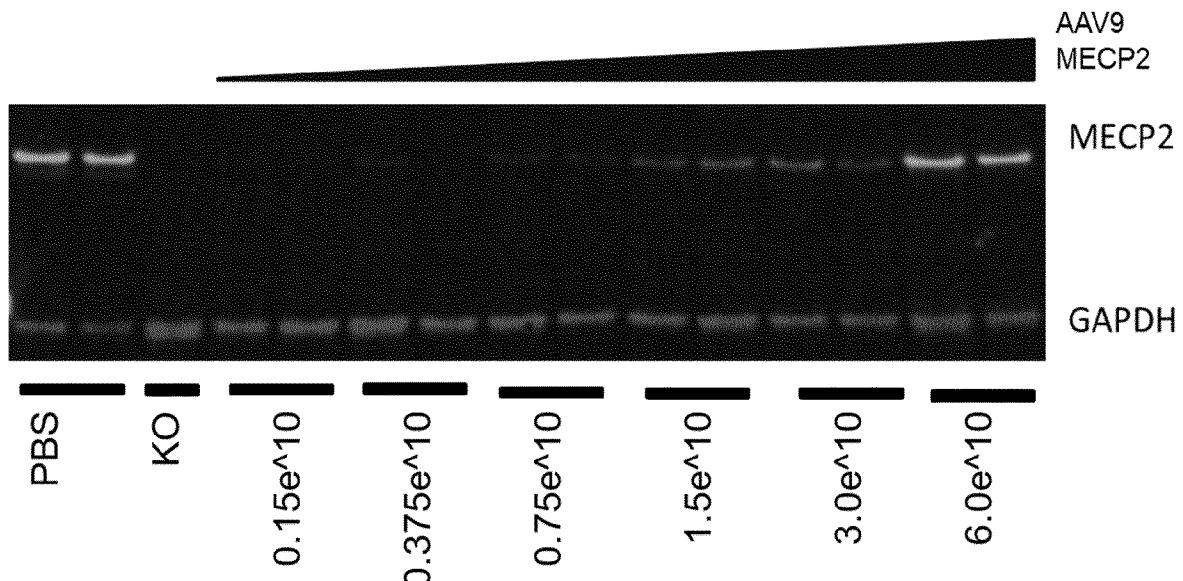

2017362491 16 Jan 2023


Figure 21 cont.


AVXS-201


AVXS-201

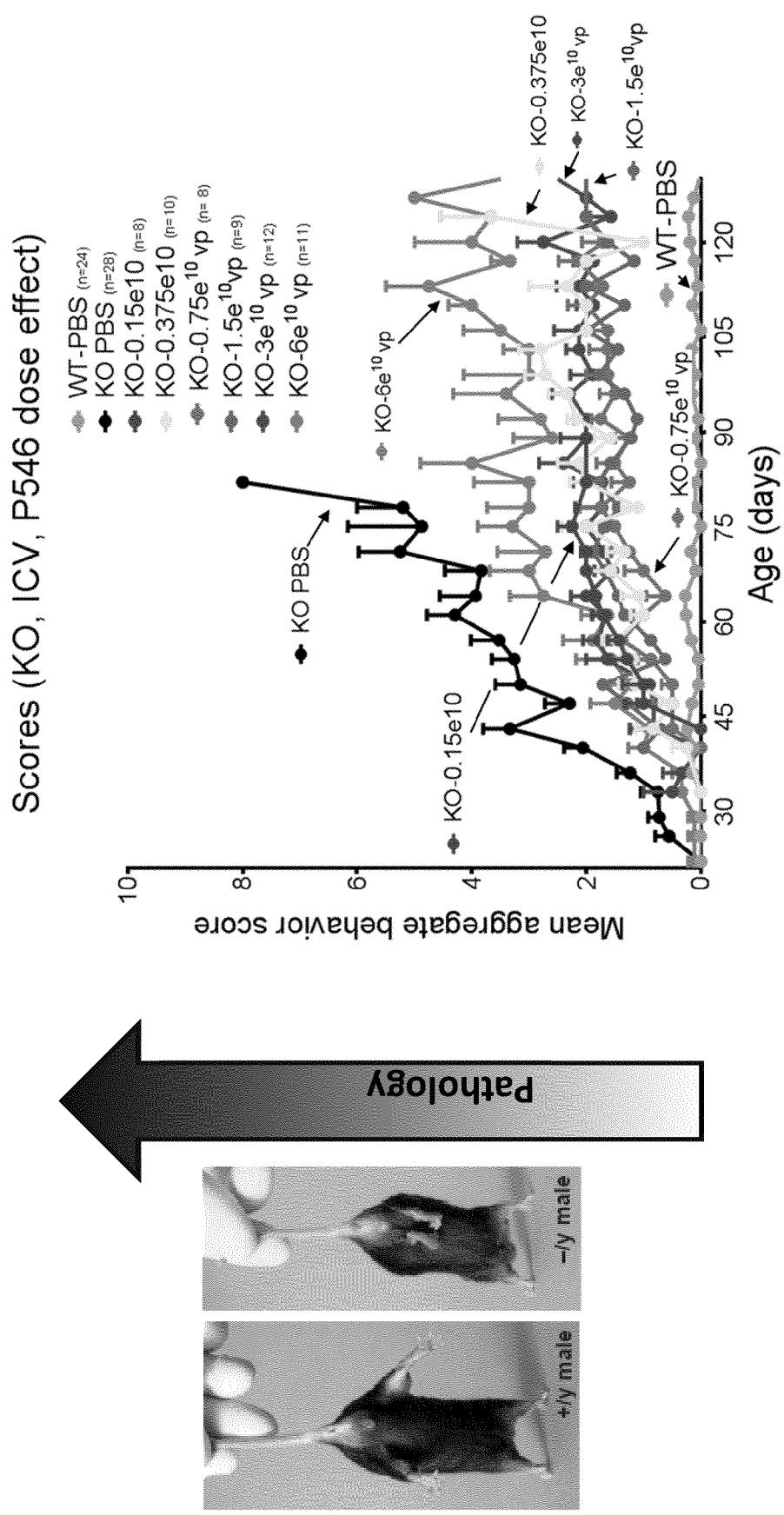
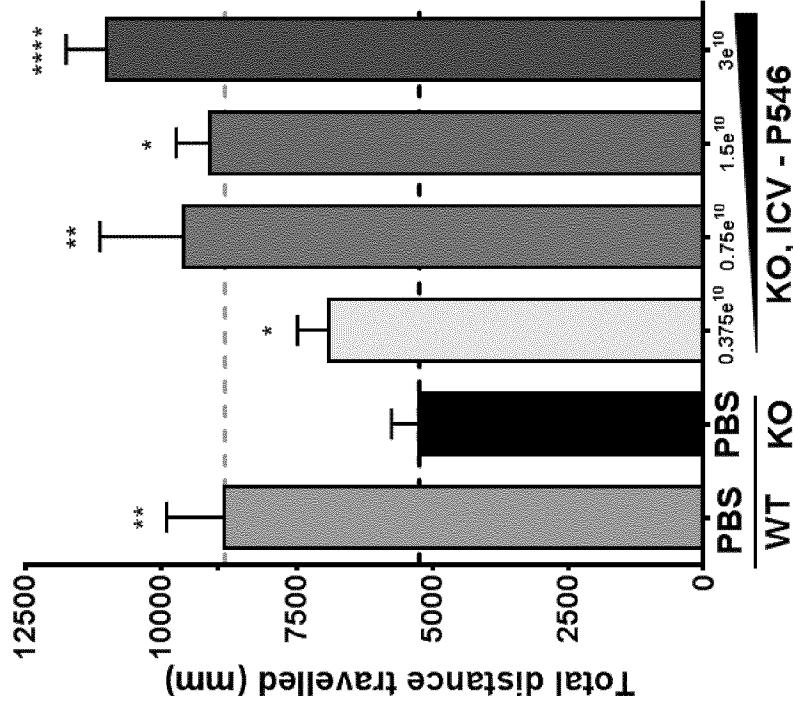

Figure 22

Figure 23

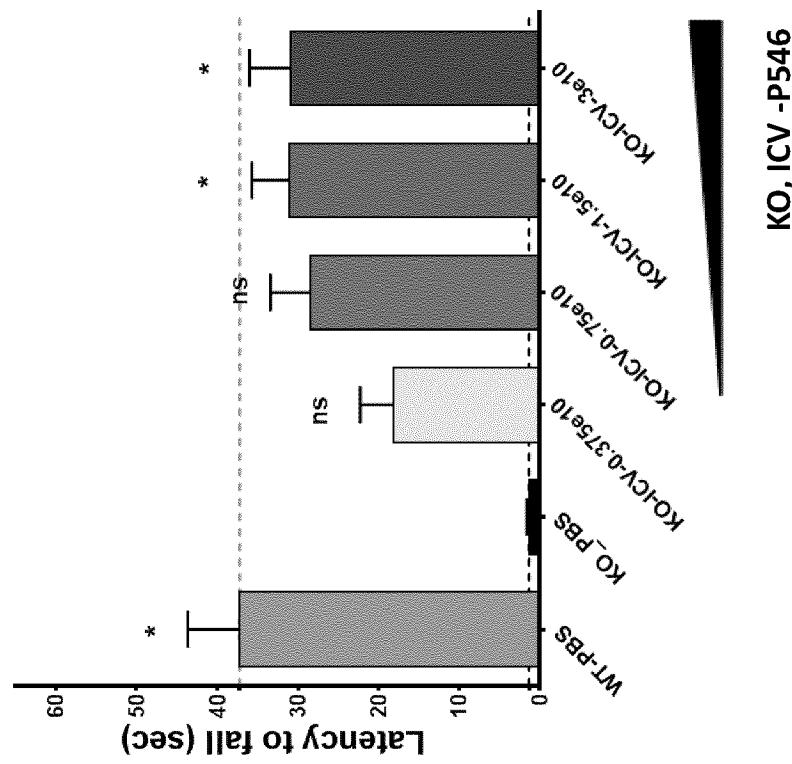
Figure 24

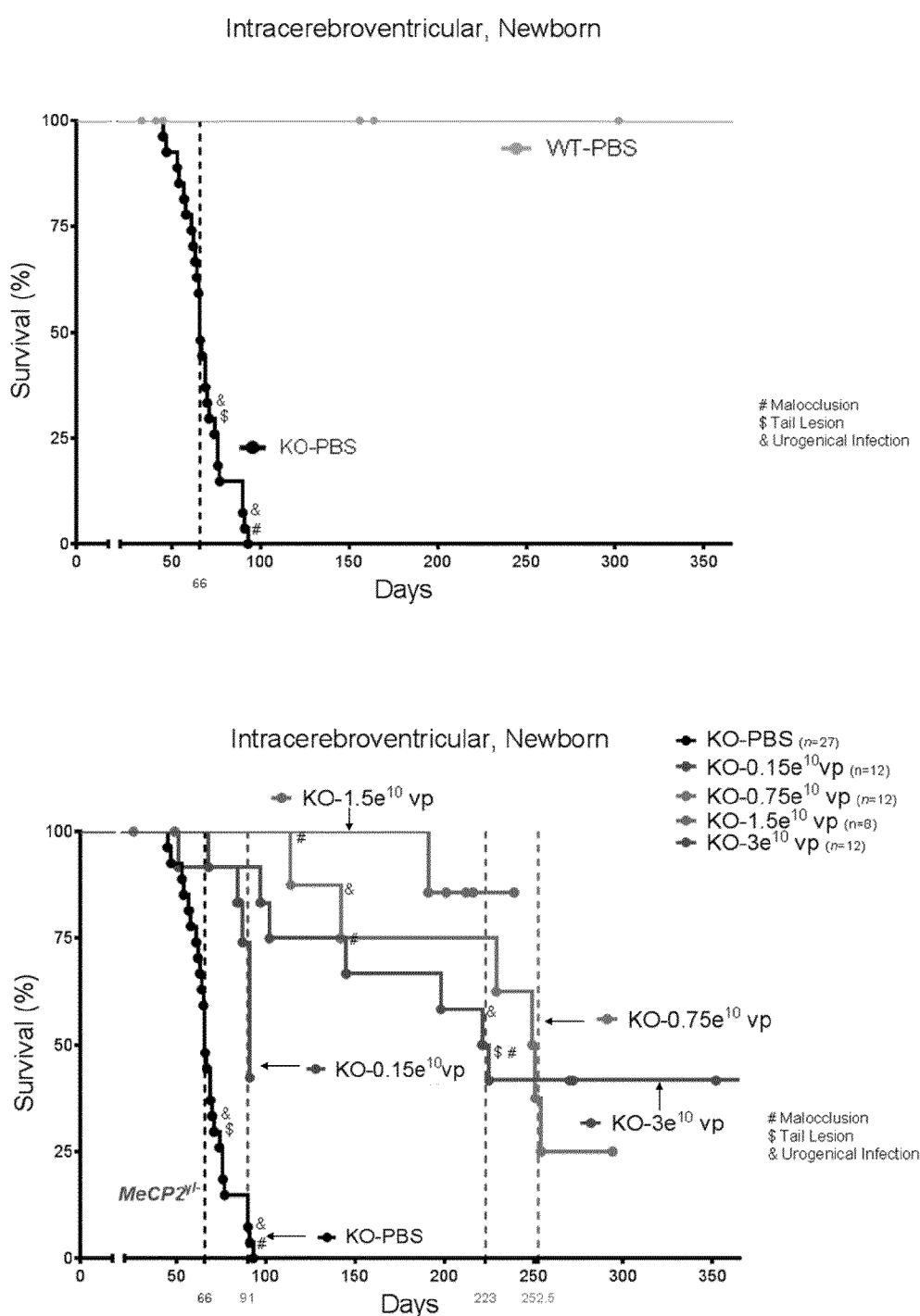
Figure 25

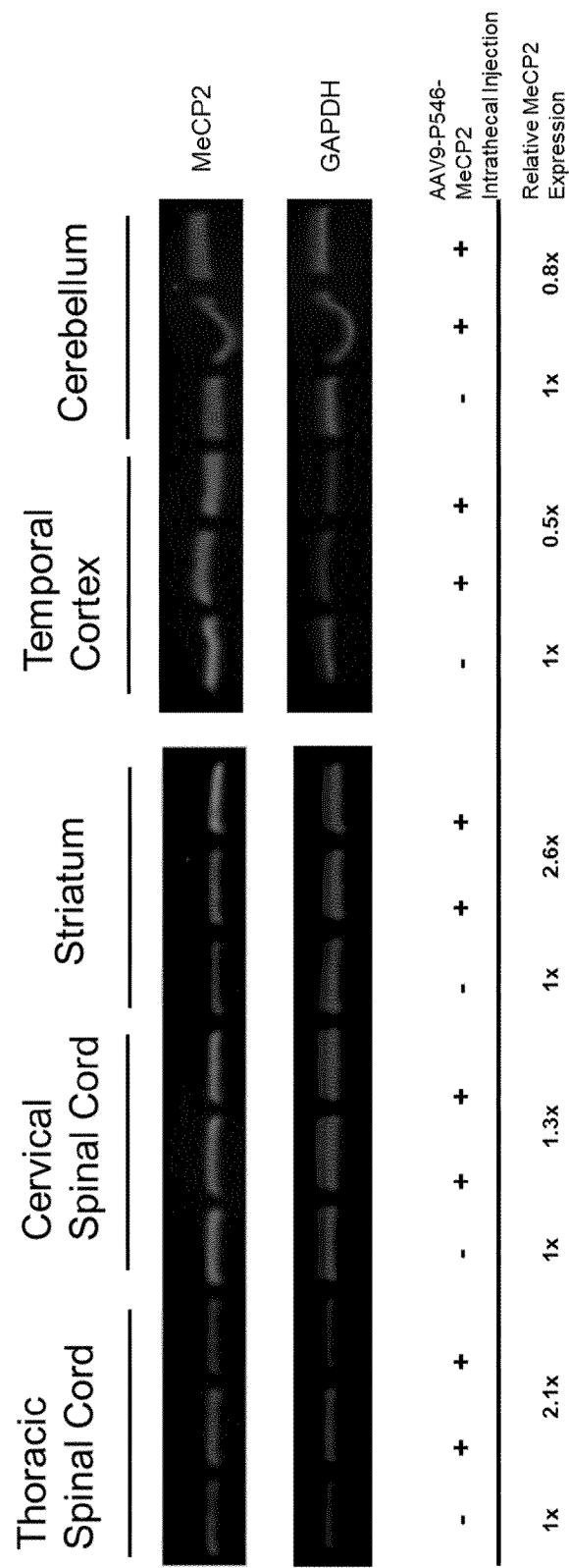
Figure 26**A****B**


Figure 27

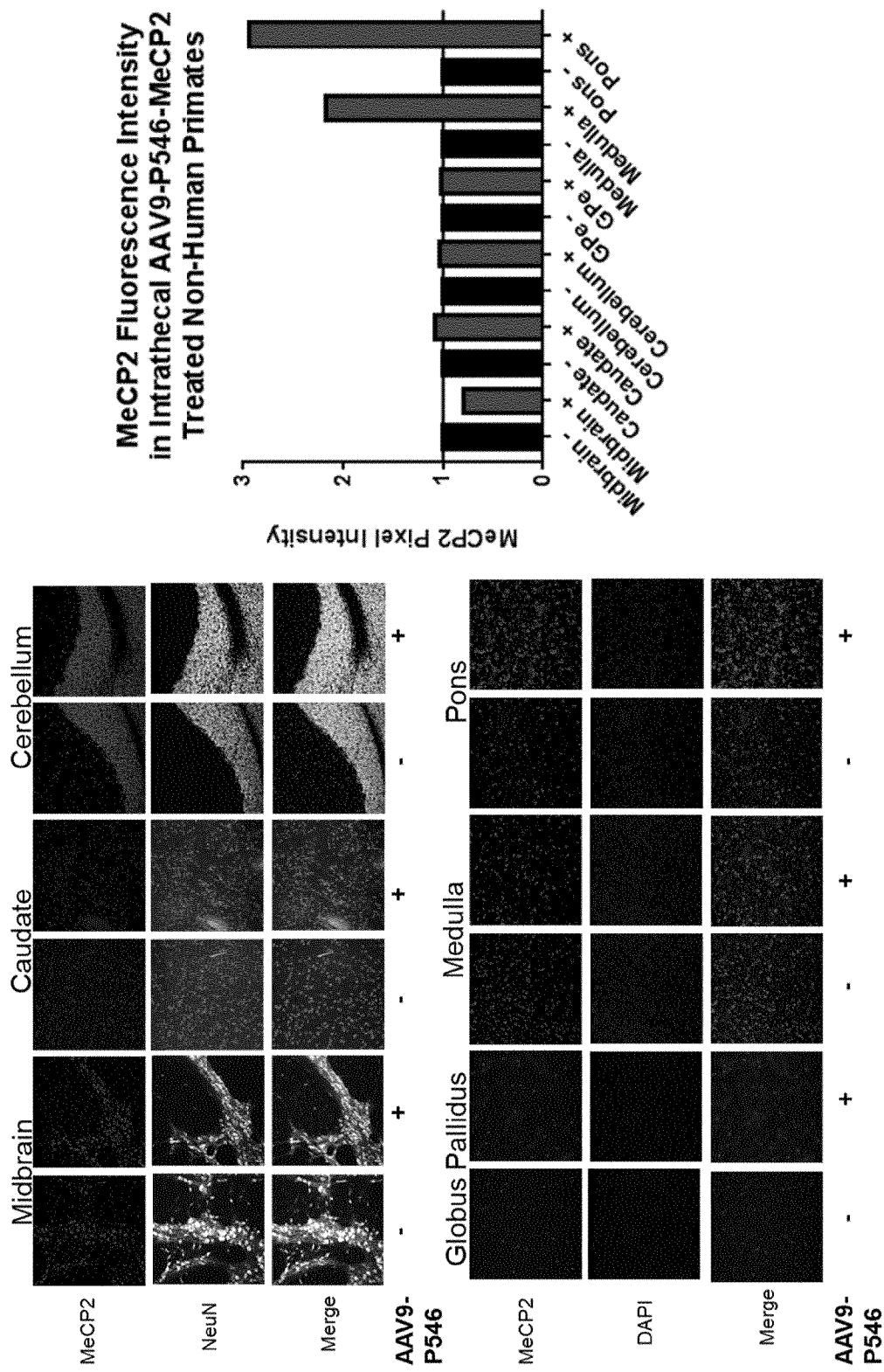
2017362491 16 Jan 2023

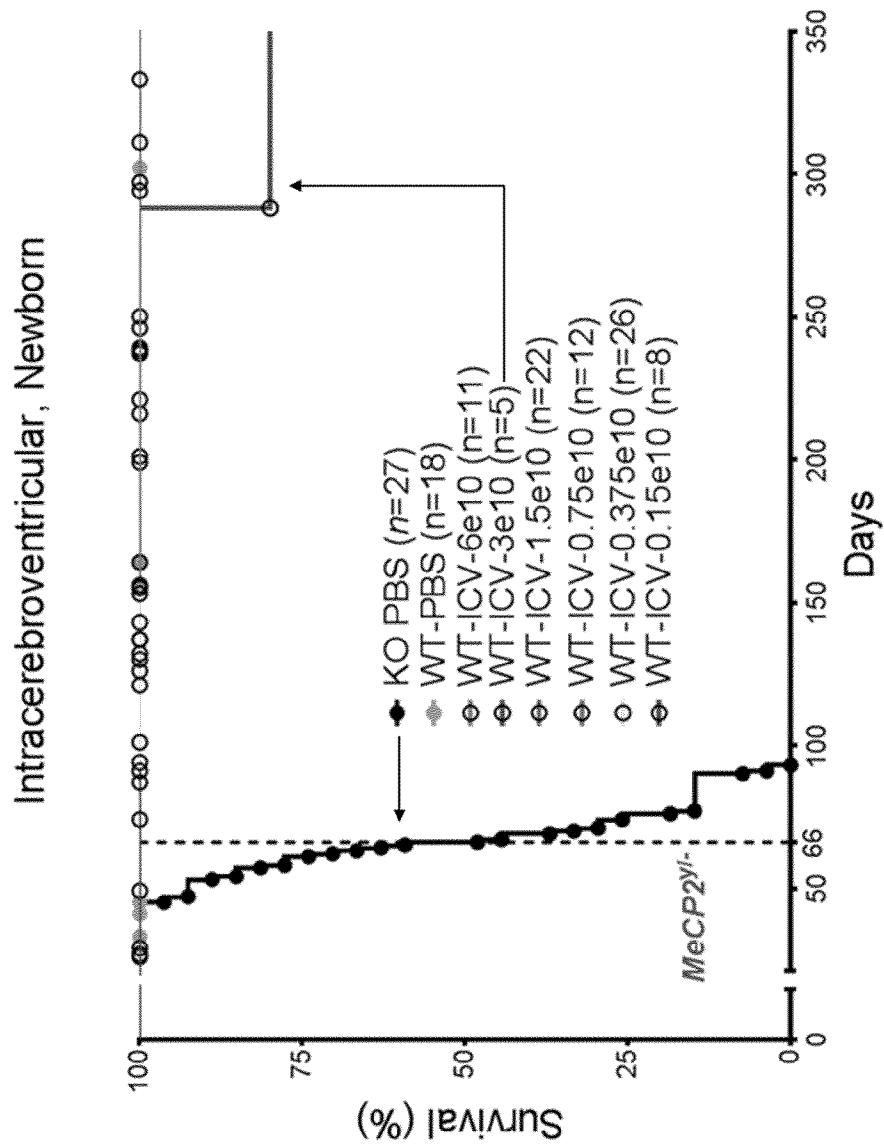

32/48

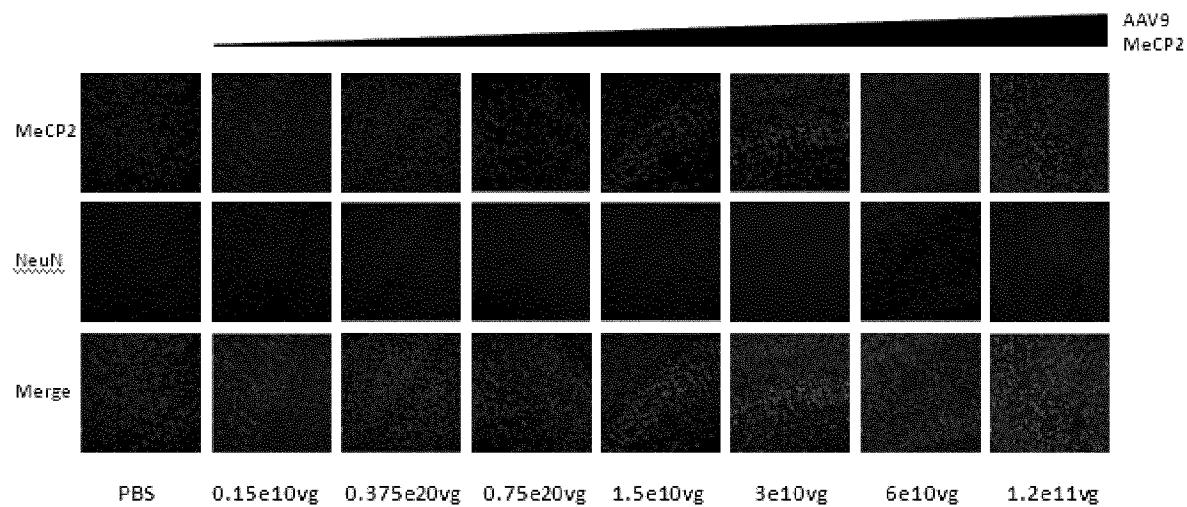
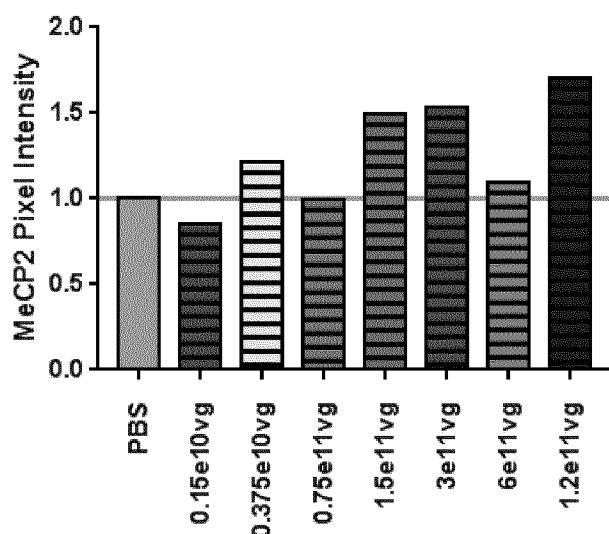

Figure 28


A

B

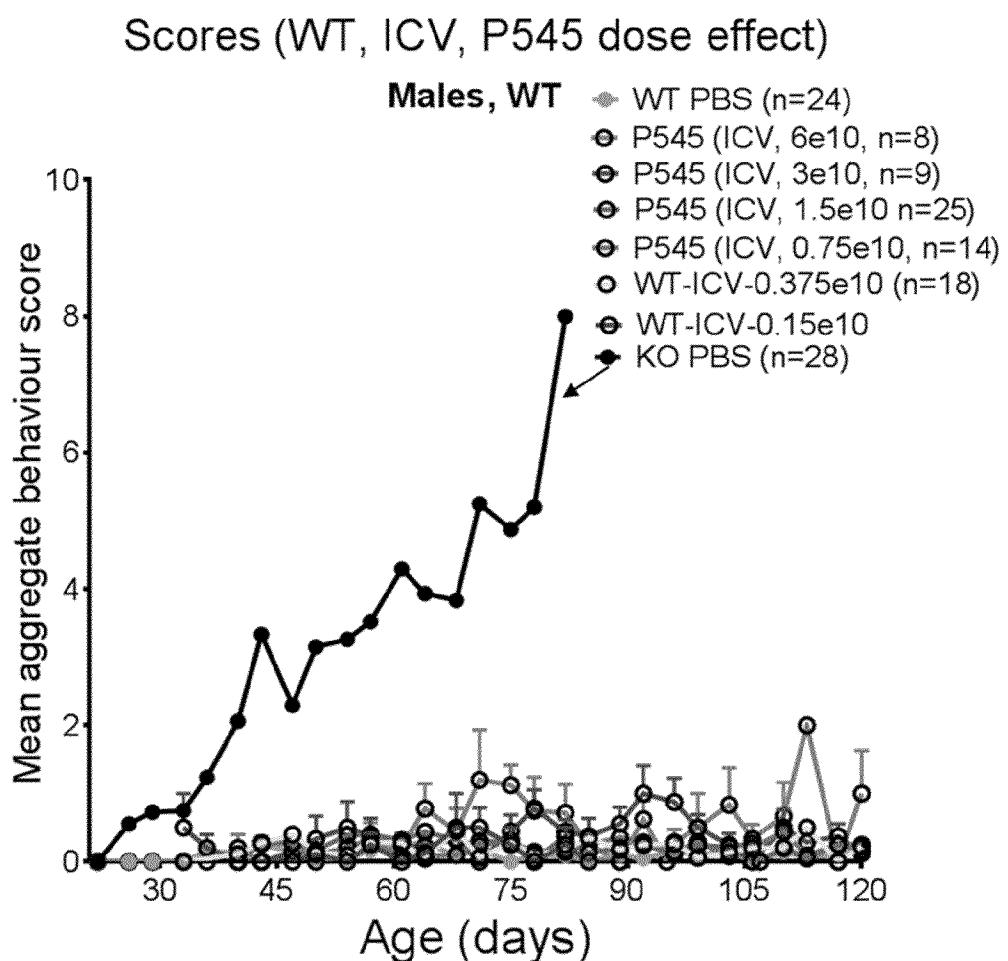

Figure 29

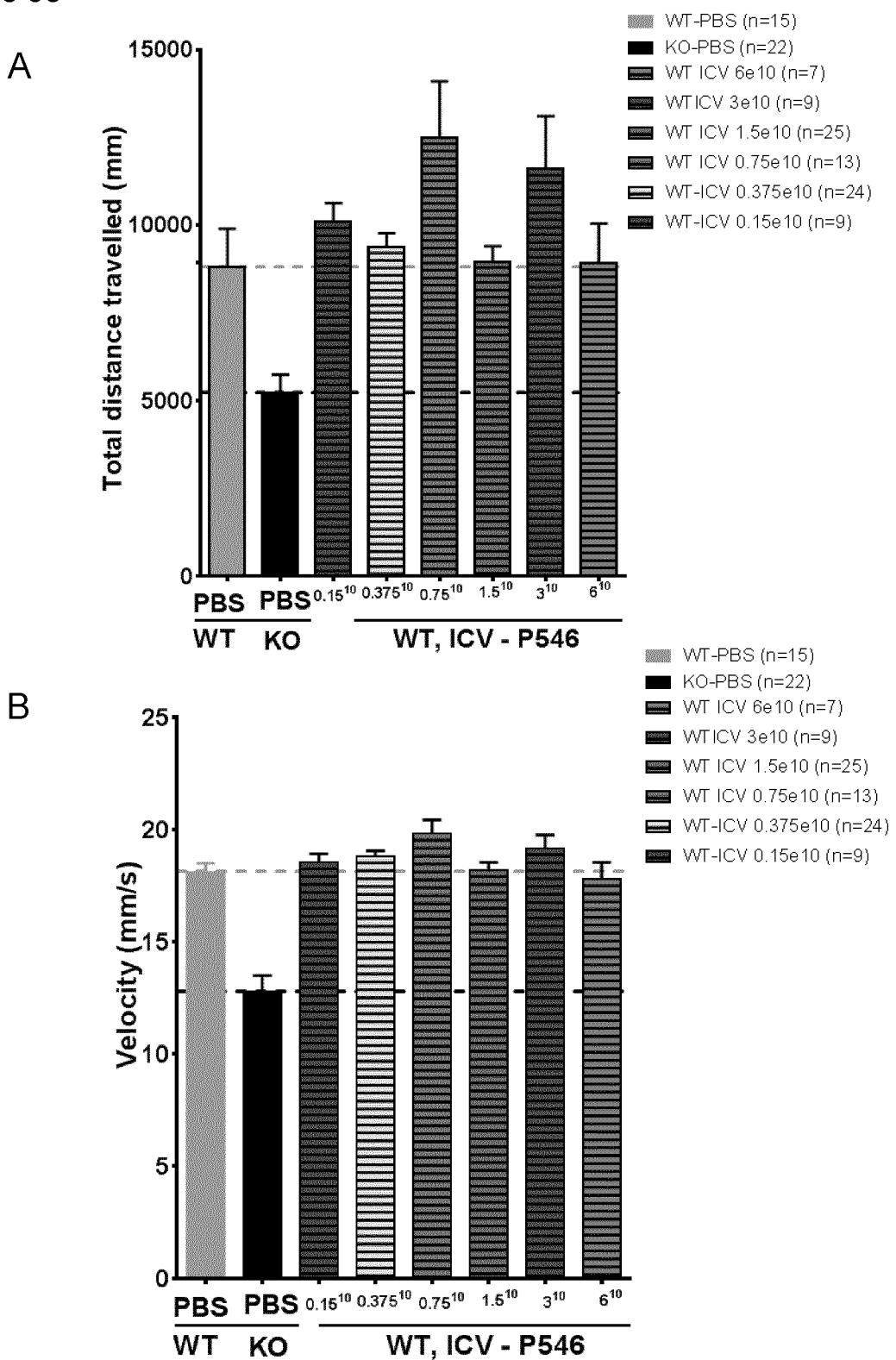

Figure 30

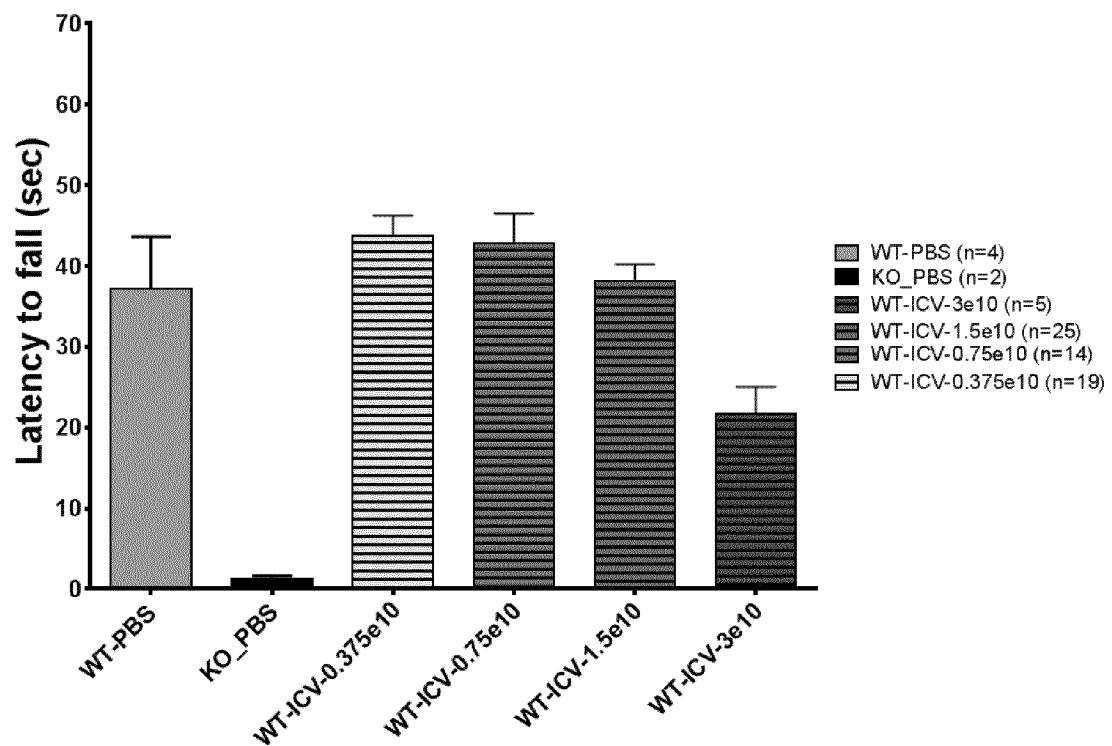


2017362491 16 Jan 2023

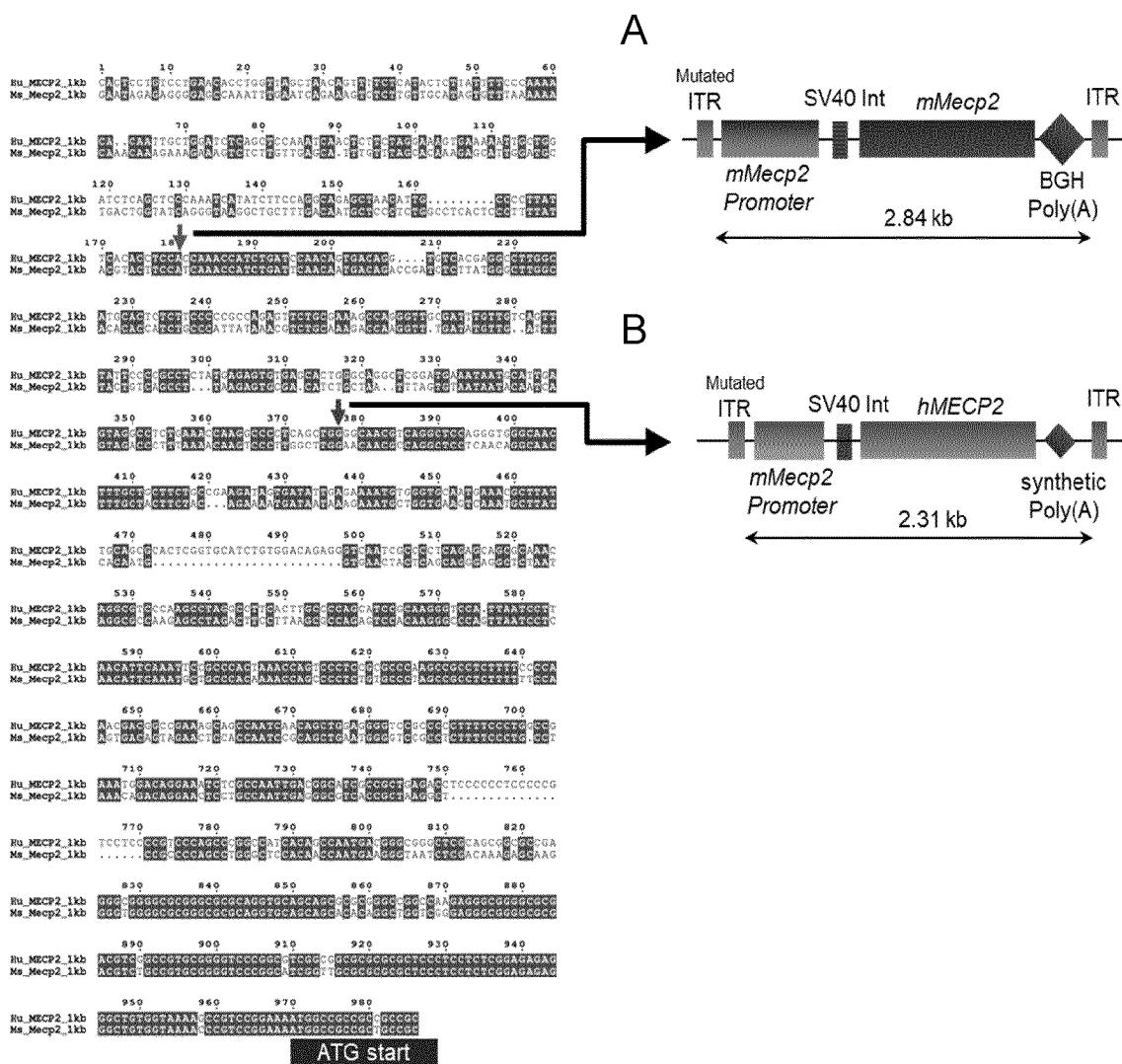
35/48

Figure 31




Figure 32


Figure 33**MeCP2 Expression in Cortex
of ICV treated MeCP2^{Y/+} Mice**


16 Jan 2023

2017362491

Figure 34

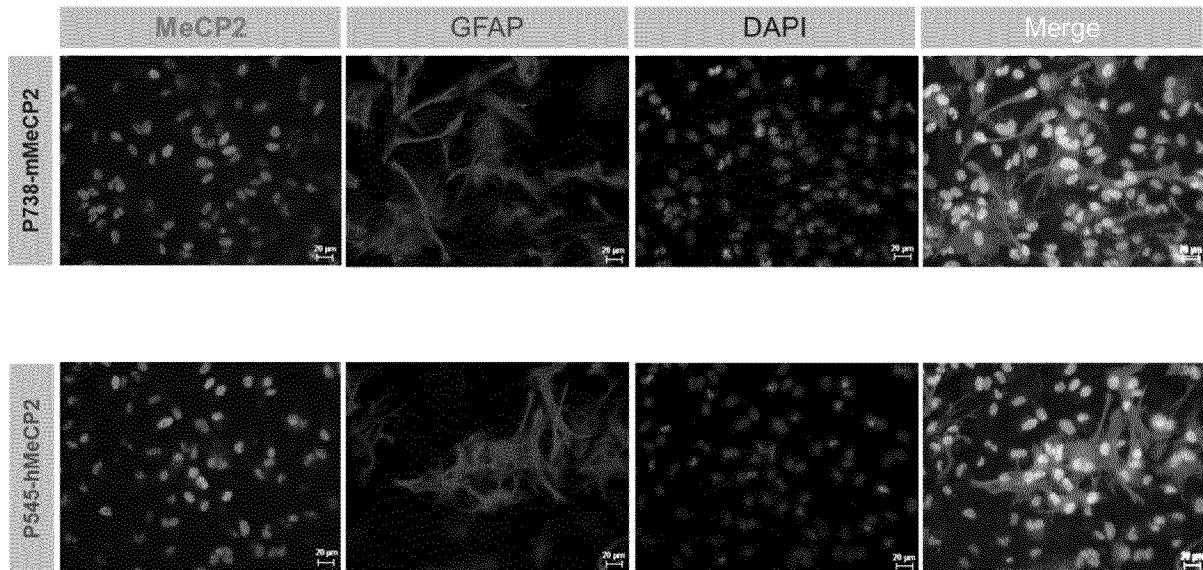
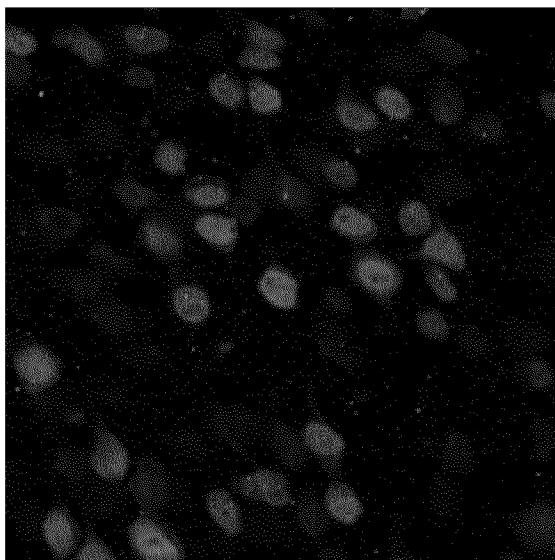
Figure 35

Figure 36

Figure 37

2017362491 16 Jan 2023

Figure 38

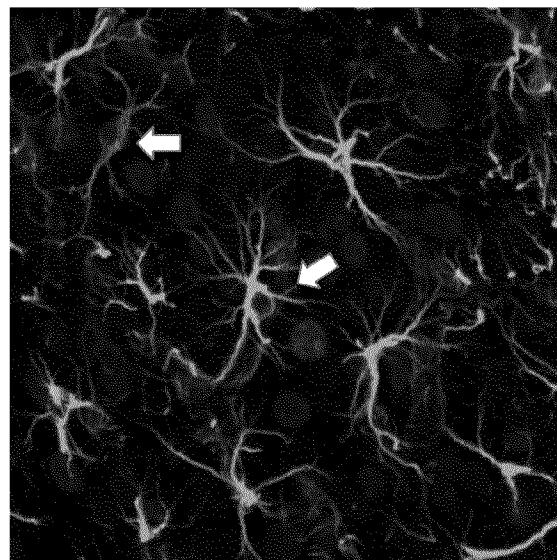
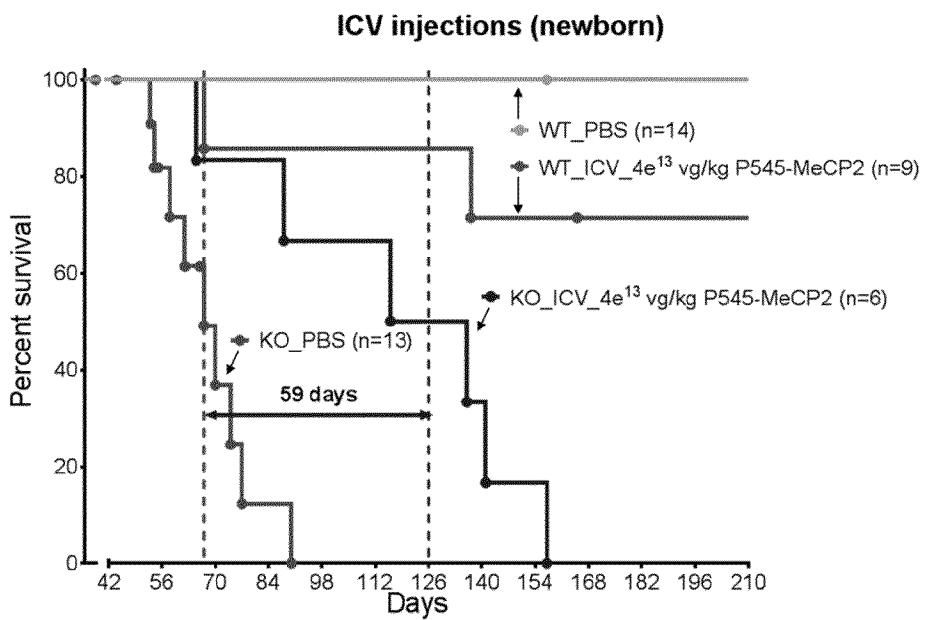
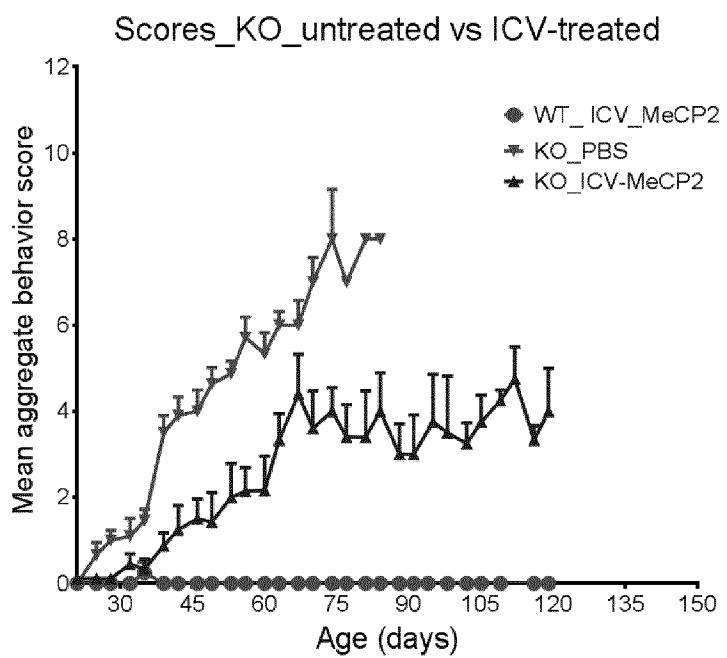
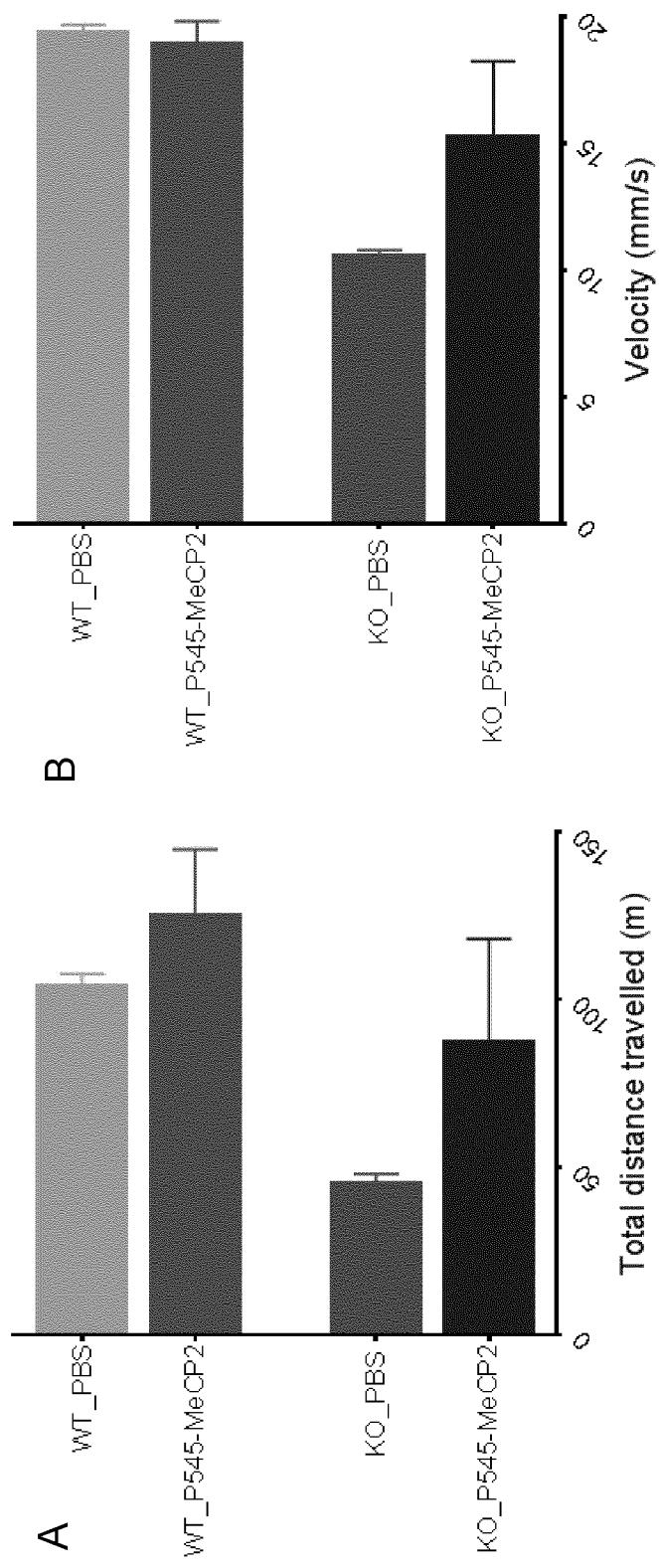
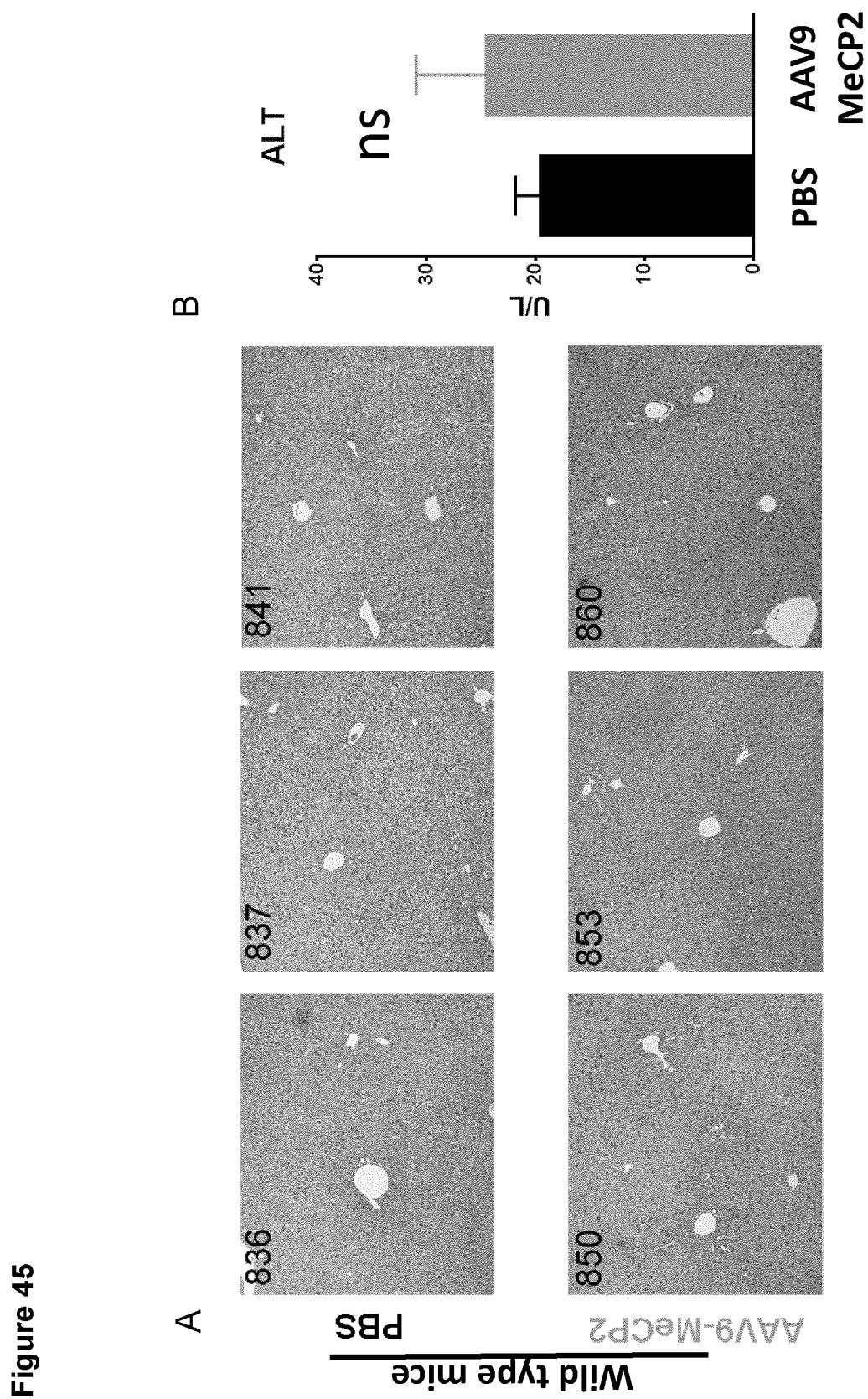

Figure 39

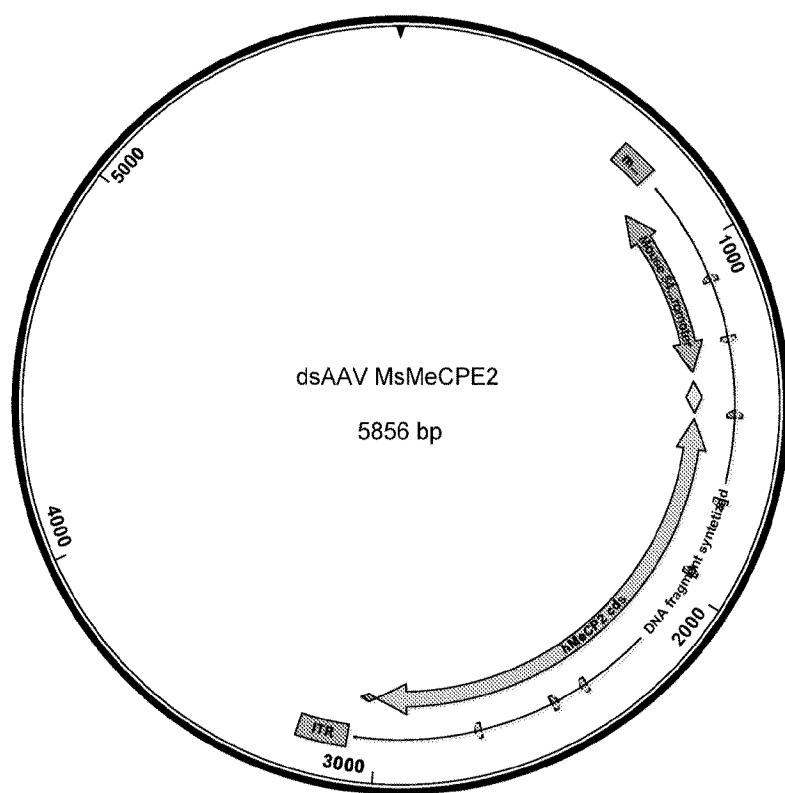
Figure 40

NeuN / MeCP2


GFAP / MeCP2




16 Jan 2023

2017362491

Figure 42**Figure 43**

Figure 44

Figure 46

50215PCT_Seqlisting.TXT
SEQUENCE LISTING

<110> Kaspar, Brian et al.

<120> INTRATHECAL DELIVERY OF RECOMBINANT ADENO-ASSOCIATED VIRUS
ENCODING METHYL-CPG BINDING PROTEIN 2

<130> 28335/50215PCT

<160> 8

<170> PatentIn version 3.5

<210> 1

<211> 2558

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Polynucleotide

<220>

<221> misc_feature

<223> AVXS-201 genome

<220>

<221> misc_feature

<222> (1)..(106)

<223> mutated ITR

<220>

<221> misc_feature

<222> (151)..(699)

<223> 546 promoter fragment

<220>

<221> misc_feature

<222> (729)..(827)

<223> SV40 intron

<220>

<221> misc_feature

<222> (848)..(2344)

<223> hMECP2B cds

<220>

<221> misc_feature

<222> (2345)..(2393)

<223> synthetic pA

<220>

50215PCT_Seqlisting.TXT

<221> misc_feature
<222> (2418)..(2558)
<223> ITR

<400> 1	
ctgcgcgctc gctcgctcac tgaggccgcc cgggcaaagc ccgggcgtcg ggacac	60
ggtcgcccgg cctcagttag cgagcgagcg cgcatcgagg gagtgaaatt cacgcgtgga	120
tctgaattca attcacgcgt ggtaccacgc gtacaacacg ccaggctcct caacaggcaa	180
ctttgctact tctacagaaa atgataataa agaaatgctg gtgaagtcaa atgcttatca	240
caatggtaa ctactcagca gggaggctct aataggcgcc aagagcctag acttcctaa	300
gcccacaggt ccacaaggc ccagttatc ctcaacattc aaatgctgcc cacaacacca	360
gcccctctgt gccctagccg cctttttt ccaagtgaca gtagaactcc accaatccgc	420
agctgaatgg ggtccgcctc tttccctgc ctaaacagac aggaactcct gccaattttag	480
ggcgtcaccg ctaaggctcc gccccagcct gggctccaca accaatgaag ggtaatctcg	540
acaaagagca aggggtgggg cgccggcgcg caggtgcagc agcacacagg ctggcgaaa	600
ggccggggcg cgacgtctgc cgtcggggt cccggcatcg gttgcgcgcg cgctccctcc	660
tctcgagag agggctgtgg taaaacccgt ccggaaaacg cgtcgaaggg cgaattctgc	720
agataactgg taagtttagt ctttttgc ttttatttca ggtcccgat ccgggtggtag	780
tgcaaataa agaactgctc ctcatcgat gttgcctta cttctaggcc tgtacggaa	840
tgttactatg gccggccggc ccggccggcgc gcccggcggaa ggaggaggag gaggcgagga	900
ggagagactg gaagaaaagt cagaagacca ggacctccag ggcctcaagg acaaaccct	960
caagttaaa aaggtgaaga aagataagaa agaagagaaa gagggcaagc atgagccgt	1020
gcagccatca gcccaccact ctgtcgagcc cgcatcgaggca ggcaaaacg agacatcaga	1080
agggtcaggc tccggccgg ctgtgcccgg agcttctgcc tccccaaac agcggcgctc	1140
catcatccgt gaccggggac ccatgtatga tgacccacc ctgcctgaag gctggacacg	1200
gaagcttaag caaaggaaat ctggccgctc tgctggaaag tatgtatgtt atttgcataa	1260
tccccaggaa aaagctttc gctctaaagt ggagttgatt gcgtacttcg aaaaggtagg	1320
cgacacatcc ctggacccta atgatttga cttcacggta actggggagag ggagccctc	1380
ccggcgagag cagaaaccac ctaagaagcc caaatctccc aaagctccag gaactggcag	1440

50215PCT_Seqlisting.TXT

aggccgggga	cgccccaaag	ggagcggcac	cacgagaccc	aaggcggcca	cgtcagaggg	1500
tgtcaggtg	aaaagggtcc	tggagaaaag	tcctggaaag	ctccttgtca	agatgcctt	1560
tcaaacttcg	ccagggggca	aggctgaggg	gggtggggcc	accacatcca	cccaggtcat	1620
ggtgatcaa	cgccccggca	ggaagcgaaa	agctgaggcc	gaccctcagg	ccattccaa	1680
gaaacggggc	cgaaagccgg	ggagtgtggt	ggcagccgct	gccgcccgg	ccaaaaagaa	1740
agccgtgaag	gagtcttcta	tccgatctgt	gcaggagacc	gtactcccc	tcaagaagcg	1800
caagacccgg	gagacggtca	gcatcgaggt	caaggaagt	gtgaagcccc	tgctgggtgc	1860
caccctcggt	gagaagagcg	ggaaaggact	gaagacctgt	aagagccctg	ggcggaaaag	1920
caaggagagc	agccccaaagg	ggcgcagcag	cagcgcctcc	tcacccccc	agaaggagca	1980
ccaccaccat	caccaccact	cagagtcccc	aaaggcccc	gtgccactgc	tcccacccct	2040
gcccccacct	ccacctgagc	ccgagagctc	cgaggacccc	accagcccc	ctgagcccc	2100
ggacttgagc	agcagcgtct	gcaaagagga	gaagatgccc	agaggaggct	cactggagag	2160
cgacggctgc	cccaaggagc	cagctaagac	tcagcccg	gttgccaccg	ccgccacggc	2220
cgcagaaaag	tacaaacacc	gaggggaggg	agagcgc	gacattgtt	catcctccat	2280
gccaaggcca	aacagagagg	agcctgtgga	cagccggacg	cccgtgaccg	agagagttag	2340
ctgaaataaa	agatctttat	tttcattaga	tctgtgtgtt	ggtttttgt	gtggcatgct	2400
ggggagagat	cgatctgagg	aaccctagt	gatggagtt	gccactccct	ctctgcgcgc	2460
tcgctcgctc	actgaggccg	ggcgaccaa	ggtcgccga	cgcccgggct	ttgcccgggc	2520
ggcctcagtg	agcgagcgag	cgcgcagaga	gggagtgg			2558

<210> 2
 <211> 549
 <212> DNA
 <213> Mus musculus

<400> 2	gtgaacaacg	ccaggctcct	caacaggcaa	ctttgctact	tctacagaaa	atgataataa	60
	agaaatgctg	gtgaagtcaa	atgcttatca	aatggtgaa	ctactcagca	gggaggctct	120
	aataggcgcc	aagagcctag	acttccttaa	gcgccagagt	ccacaagggc	ccagttatc	180

50215PCT_Seqlisting.TXT

ctcaacattc	aatgctgcc	cacaaaacca	gcccctctgt	gccctagccg	cctttttt	240
ccaagtgaca	gtagaactcc	accaatccgc	agctgaatgg	ggtccgcctc	tttccctgc	300
ctaaacagac	aggaactcct	gccaattgag	ggcgtcaccg	ctaaggctcc	gccccagcct	360
gggctccaca	accaatgaag	ggtaatctcg	acaaagagca	aggggtgggg	cgcgggcgcg	420
caggtgcagc	agcacacagg	ctggtcggga	gggcggggcg	cgacgtctgc	cgtcggggt	480
cccgccatcg	gttgcgcg	cgctccctcc	tctcggagag	agggctgtgg	taaaaccgt	540
ccggaaaac						549

<210> 3
<211> 1497
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> MeCP2B cds

<400> 3	atggccgccc	ccgcccgcgc	cgcgccgagc	ggaggaggag	gaggaggcga	ggaggagaga	60
ctggaagaaa	agtcagaaga	ccaggacctc	cagggcctca	aggacaaacc	cctcaagttt		120
aaaaaggtga	agaaagataa	gaaagaagag	aaagagggca	agcatgagcc	cgtcagcca		180
tcagcccacc	actctgctga	gccccgcagag	gcaggcaaag	cagagacatc	agaagggtca		240
ggctccgccc	cggctgtgcc	ggaagcttct	gcctccccca	aacagcggcg	ctccatcatc		300
cgtgaccggg	gacccatgta	tgatgacccc	accctgcctg	aaggctggac	acggaagctt		360
aagcaaagga	aatctggccg	ctctgctggg	aagtatgatg	tgtatttgat	caatccccag		420
ggaaaagcct	ttcgctctaa	agtggagttg	attgcgtact	tcgaaaaggt	aggcgacaca		480
tccctggacc	ctaatgattt	tgacttcacg	gtactggga	gagggagccc	ctcccgccga		540
gagcagaaac	cacctaagaa	gcccaaattct	cccaaagctc	caggaactgg	cagaggccgg		600
ggacccccca	aagggagcgg	caccacgaga	cccaaggcgg	ccacgtcaga	gggtgtgcag		660
gtgaaaaggg	tcctggagaa	aagtccctgg	aagtccttg	tcaagatgcc	tttcaaact		720
tcgccagggg	gcaaggctga	gggggtggg	gccaccacat	ccacccaggt	catggtgatc		780

50215PCT_Seqlisting.TXT
aaacgccccg gcaggaagcg aaaagctgag gccgaccctc aggccattcc caagaaacgg 840
ggccgaaagc cggggaggtgt ggtggcagcc gctgccgccc aggccaaaaa gaaagccgtg 900
aaggagtctt ctatccgatc tgtgcaggag accgtactcc ccatcaagaa gcgcaagacc 960
cgggagacgg tcagcatcga ggtcaaggaa gtggtaagc ccctgctggt gtccaccctc 1020
ggtgagaaga gcgggaaagg actgaagacc tgtaagagcc ctgggcggaa aagcaaggag 1080
agcagccccca aggggcgcag cagcagcgcc tcctcaccccc ccaagaagga gcaccaccac 1140
catcaccacc actcagagtc cccaaaggcc cccgtgccac tgctcccacc cctccccca 1200
cctccacctg agcccggagag ctccgaggac cccaccagcc cccctgagcc ccaggacttg 1260
agcagcagcg tctgcaaaga ggagaagatg cccagaggag gctcaactgga gagcgacggc 1320
tgcccccaagg agccagctaa gactcagccc gcgggtgccca ccggccgccac ggccgcagaa 1380
aagtacaaac accgagggga gggagagcgc aaagacattt tttcatcctc catgccaagg 1440
ccaaacagag aggagcctgt ggacagccgg acgcccgtga ccgagagagt tagctga 1497

<210> 4
<211> 49
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Polynucleotide

<220>
<221> misc_feature
<223> Poly A sequence

<400> 4
aataaaagat ctttattttc attagatctg tgtgttggtt ttttgtgtg 49

<210> 5
<211> 3093
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Polynucleotide

<220>

50215PCT_Seqlisting.TXT

<221> misc_feature
<223> scAAV9.738.Mecp1 genome

<220>
<221> misc_feature
<222> (1)..(106)
<223> mutated ITR

<220>
<221> misc_feature
<222> (198)..(936)
<223> 738 promoter fragment

<220>
<221> misc_feature
<222> (941)..(1037)
<223> SV40 intron

<220>
<221> misc_feature
<222> (1138)..(2643)
<223> MeCP2 cds

<220>
<221> misc_feature
<222> (2709)..(2890)
<223> BGHpA

<220>
<221> misc_feature
<222> (2953)..(3093)
<223> ITR

<400> 5
ctgcgcgctc gctcgctcac tgaggccgcc cgggcaaagc ccgggcgtcg ggccaccttt 60
ggtcgcccgg cctcagttag cgagcgagcg cgccagaggagg gagttggattt cacgcgttgg 120
tctgaattca attcacgcgt ggtaccgagc tcggatccac tagtaacggc cgccagtgtg 180
ctggaattcg cccttaatat caaaccatct gattcaacaa tgacagaccg atctctttag 240
ggcttggcac acaccatctg cccattataa acgtctgcaa agaccaagggt ttgatatgtt 300
gattttactg tcagccttaa gagtgcgaca tctgctaatt tagtgtataa atacaatcag 360
tagacccttt aaaacaagtc ccttggcttg gaacaacgcc aggctcctca acaggcaact 420
ttgctacttc tacagaaaat gataataaag aaatgctggt gaagtcaa at gcttatcaca 480
atggtaact actcagcagg gaggctctaa taggcgccaa gagcctagac ttccttaagc 540

50215PCT_Seqlisting.TXT

gccagagtcc acaagggccc agttaatcct caacattcaa atgctgccc caaaaccagc	600
ccctctgtgc cctagccgcc tctttttcc aagtgacagt agaactccac caatccgcag	660
ctgaatgggg tccgcctctt ttccctgcct aaacagacag gaactcctgc caattgaggg	720
cgtcaccgct aaggctccgc cccagcctgg gctccacaac caatgaaggg taatctcgac	780
aaagagcaag gggtggggchg cgggcgcgca ggtgcagcag cacacaggct ggtcgggagg	840
gcggggcgcg acgtctgccg tgccgggtcc cggcatcggt tgcgccgcg ctcctccctc	900
tcggagagag ggctgtggta aaaccgtcc ggaaaaactg gtaagttag tcttttgc	960
ttttatcca ggtcccgat ccggtggtgg tgcaaataa agaactgctc ctcagtggat	1020
gttgcctta cttctaggcc tgtacggaag tgttacttct gctctaaaag ctgcggatt	1080
gtacccgcgg ccgatccacc ggtttaagg gccgaggcgg ccagatctt cgaagatatg	1140
gccggccgtg ccgccaccgc cgccgcccgc gcccgcgcga gcggaggagg aggaggaggc	1200
gaggaggaga gactggagga aaagtcagaa gaccaggatc tccagggcct cagagacaag	1260
ccactgaagt ttaagaaggc gaagaaagac aagaaggagg acaaagaagg caagcatgag	1320
ccactacaac cttagccca ccattctgca gagccagcag aggccaggaa agcagaaaca	1380
tcagaaagct caggctctgc cccagcagtg ccagaagcct cggcttcccc caaacagcgg	1440
cgctccatta tccgtgaccg gggacctatg tatgtatgacc ccacccgtcc tgaaggttgg	1500
acacgaaagc ttaaacaaag gaagtctggc cgatctgctg gaaagtatga tgtatatttgc	1560
atcaatcccc agggaaaagc tttcgctct aaagtagaat tgattgcata cttgaaaag	1620
gtgggagaca ctccttgga ccctaattatgat tttgacttca cgtaactgg gagagggagc	1680
ccctccagga gagagcagaa accacctaag aagccaaat ctcccaaagc tccaggaact	1740
ggcaggggtc ggggacgccc caaagggagc ggcactggga gaccaaggc agcagcatca	1800
gaaggtgttc aggtaaaaag ggtcctggag aagagccctg ggaaacttgt tgtcaagatg	1860
cctttccaag catgcctgg gggtaagggt gagggaggtg gggctaccac atctgcccag	1920
gtcatggtga tcaaacgccc tggcagaaag cgaaaagctg aagctgaccc ccaggccatt	1980
cctaagaaac gggtagaaaa gcctgggagt gtggggcagc ctgctgcagc tgaggccaa	2040
aagaaagccg tgaaggagtc ttccatacgg tctgtgcatt agactgtgct ccccatcaag	2100

50215PCT_Seqlisting.TXT

aagcgcaaga cccgggagac ggtcagcatc gaggtcaagg aagtggtaa gcccctgctg	2160
gtgtccaccc ttggtgagaa aagcgggaag ggactgaaga cctgcaagag ccctggcgt	2220
aaaagcaagg agagcagccc caaggggcgc agcagcagtg cctcctcccc acctaagaag	2280
gagcaccatc atcaccacca tcactcagag tccacaaagg ccccatgcc actgctccca	2340
tccccacccc cacctgagcc tgagagctct gaggacccca tcagccccc tgagcctcag	2400
gacttgagca gcagcatctg caaagaagag aagatgcccc gaggaggctc actggaaagc	2460
gatggctgcc ccaaggagcc agctaagact cagcctatgg tcgccaccac taccacagtt	2520
gcagaaaagt acaaacacccg aggggaggga gagcgcaaag acattgtttc atcttccatg	2580
ccaaggccaa acagagagga gcctgtggac agccggacgc ccgtgaccga gagagttagc	2640
tgaatcggcg ccgctagcgc ggccgcgttt aaaccctgca ggtctagaaa gcttatcgat	2700
accgtcgact agagctcgct gatcagcctc gactgtgcct tctagttgcc agccatctgt	2760
tgtttgcccc tccccgtgc cttccttgac cctggaaggt gccactccca ctgtccttcc	2820
ctaataaaat gaggaaattt catcgattt tctgagtagg tgtcattcta ttctgggggg	2880
tggggtgggg caggacagca agggggagga ttgggaagac aatagcaggc atgctggggaa	2940
gagatcgatc tgaggaaccc ctagtgtatgg agttggccac tccctctctg cgcgctcgct	3000
cgctcactga ggccggcga ccaaaggctcg cccgacgccc gggcttgcc cggcggcct	3060
cagtgagcga gcgagcgcgc agagagggag tgg	3093

<210> 6
 <211> 739
 <212> DNA
 <213> Mus musculus

<220>
 <221> misc_feature
 <223> MECP2 promoter

<400> 6	
tatcaaacca tctgattcaa caatgacaga ccgatctttt atgggcttgg cacacaccat	60
ctgcccatta taaacgtctg caaagaccaa ggtttgatat gttgattttt ctgtcagcct	120
taagagtgcg acatctgcta atttagtgta ataatacaat cagtagaccc tttaaaacaa	180

50215PCT_Seqlisting.TXT

gtcccttggc ttggaacaac gccaggctcc tcaacaggca actttgctac ttctacagaa	240
aatgataata aagaaatgct ggtgaagtca aatgcttatac acaatggtga actactcagc	300
agggaggctc taataggcgc caagagccta gacttcctta agcgccagag tccacaaggg	360
cccagttaat cctcaacatt caaatgctgc ccacaaaacc agccctctg tgccctagcc	420
gcctctttt tccaagtgac agtagaactc caccaatccg cagctgaatg gggtccgcct	480
cttttccctg cctaaacaga caggaactcc tgccaattga gggcgtcacc gctaaggctc	540
cgc(cccagcc tgggctccac aaccaatgaa gggtaatctc gacaaagagc aaggggtggg	600
gcgcgccgc gcaggtgcag cagcacacag gctggcggg agggcgccgc gcgacgtctg	660
ccgtgcgggg tcccggcatc ggttgccgc gcgctccctc ctctcggaga gagggctgtg	720
gtaaaaacccg tccggaaaa	739

<210> 7
 <211> 1563
 <212> DNA
 <213> Mus musculus

<220>
 <221> misc_feature
 <223> MECP2alpha

<400> 7	
gtacccgcgg ccgatccacc ggttttaagg gccgaggcgg ccagatctt cgaagatatg	60
gccgcccgtg cggccaccgc cgccgcccgc gccgcgccga gcggaggagg aggaggaggc	120
gaggaggaga gactggagga aaagtcagaa gaccaggatc tccagggcct cagagacaag	180
ccactgaagt ttaagaaggc gaagaaagac aagaaggagg acaaagaagg caagcatgag	240
ccactacaac cttcagccca ccattctgca gagccagcag aggcaggcaa agcagaaaca	300
tcagaaagct caggctctgc cccagcagtg ccagaagcct cggcttcccc caaacagcgg	360
cgctccatta tccgtgaccg gggacctatg tatgtatgacc ccaccttgcc tgaaggttgg	420
acacgaaagc ttaaacaag gaagtctggc cgatctgctg gaaagtatga tgtatatttgc	480
atcaatcccc agggaaaagc tttcgctct aaagttagat tgattgcata cttgaaaag	540
gtgggagaca ctccttgga ccctaattgtat tttgacttca cggttaactgg gagagggagc	600

50215PCT_Seqlisting.TXT

ccctccagga gagagcagaa accacctaag aagccaaat ctcccaaagc tccaggaact	660
ggcaggggtc ggggacgccc caaaggagc ggcactggga gaccaaaggc agcagcatca	720
gaagggtttc aggtgaaaag ggtcctggag aagagccctg ggaaacttgt tgtcaagatg	780
ccttccaag catcgctgg gggtaagggt gagggaggtg gggctaccac atctgcccag	840
gtcatggtga tcaaacgccc tggcagaaag cgaaaagctg aagctgaccc ccaggccatt	900
cctaagaaac gggtagaaaa gcctggaggt gtggtggcag ctgctgcagc tgaggccaaa	960
aagaaagccg tgaaggagtc ttccatacgg tctgtgcatt agactgtgct ccccatcaag	1020
aagcgaaga cccgggagac ggtcagcatc gaggtcaagg aagtggtgaa gcccctgctg	1080
tggtccaccc ttggtgagaa aagcgggaag ggactgaaga cctgcaagag ccctggcgt	1140
aaaagcaagg agagcagccc caaggggcgc agcagcagtg cctcctcccc acctaagaag	1200
gagcaccatc atcaccacca tcactcagag tccacaaagg ccccatgcc actgctccca	1260
tccccacccc cacctgagcc tgagagctct gaggacccca tcagcccccc tgagcctcag	1320
gacttgagca gcagcatctg caaagaagag aagatgcccc gaggaggctc actggaaagc	1380
gatggctgcc ccaaggagcc agctaagact cagcctatgg tcgccaccac taccacagtt	1440
gcagaaaagt acaaacacccg aggggaggga gagcgc当地 acattgtttc atttccatg	1500
ccaaggccaa acagagagga gcctgtggac agccggacgc ccgtgaccga gagagttagc	1560
tga	1563

<210> 8
 <211> 6087
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Synthetic polynucleotide

<220>
 <221> misc_feature
 <223> Plasmid for AVXS-201 production

<220>
 <221> misc_feature
 <222> (1)..(106)
 <223> mutated ITR

50215PCT_Seqlisting.TXT

<220>
<221> misc_feature
<222> (151)..(699)
<223> 546 promotor fragment

<220>
<221> misc_feature
<222> (729)..(829)
<223> SV40 intron

<220>
<221> misc_feature
<222> (848)..(2344)
<223> hMECP2B

<220>
<221> misc_feature
<222> (2345)..(2393)
<223> synthetic pA

<220>
<221> misc_feature
<222> (2418)..(2558)
<223> ITR

<220>
<221> misc_feature
<222> (3309)..(4259)
<223> kanamycin resistance

<220>
<221> misc_feature
<222> (4325)..(4939)
<223> pMB1 ori

<400> 8
ctgcgcgctc gctcgctcac tgaggccgcc cgggcaaagc ccgggcgtcg ggcgaccttt 60
ggtcgcccgg cctcagttag cgagcgagcg cgcatagagg gagttggatt cacgcgtgga 120
tctgaattca attcacgcgt ggtaccacgc gtgaacaacg ccaggctcct caacaggcaa 180
ctttgctact tctacagaaa atgataataa agaaatgctg gtgaagtcaa atgcttatca 240
caatggtaa ctactcagca gggaggctct aataggcgcc aagagcctag acttccttaa 300
gcccccaaggcc ccagttaatc ctcaacattc aaatgctgcc cacaaaacca 360
gccccctctgt gcccttagccg cctttttt ccaagtgaca gtagaactcc accaatccgc 420
agctgaatgg ggtccgcctc tttccctgc ctaaacagac aggaactcct gccaatttag 480

50215PCT_Seqlisting.TXT

ggcgtcaccg ctaaggctcc gccccagcct gggctccaca accaatgaag ggtaatctcg	540
acaaagagca aggggtgggg cgccggcgcg caggtgcagc agcacacagg ctggtcggga	600
gggcggggcg cgacgtctgc cgtcggggt cccggcatcg gttgcgcgcg cgctccctcc	660
tctcggagag agggctgtgg taaaaccgt ccggaaaacg cgtcgaaggg cgaattctgc	720
agataactgg taagtttagt ctttttgtc ttttatttca ggtcccgat ccggtggtgg	780
tgcaaataa agaactgctc ctcagtcgat gttgcctta cttctaggcc tgtacggaag	840
tgttactatg gccgcccgg ccggccgcgc gccgagcggaa ggaggaggag gaggcggagga	900
ggagagactg gaagaaaagt cagaagacca ggacctccag ggctcaagg acaaaccct	960
caagttaaa aaggtgaaga aagataagaa agaagagaaa gagggcaagc atgagcccgt	1020
gcagccatca gcccaccact ctgctgagcc cgcataggca ggcaaagcag agacatcaga	1080
agggtcaggc tccgccccgg ctgtgcccgg agcttctgcc tcccccaaac agcggcgctc	1140
catcatccgt gaccggggac ccatgtatga tgacccacc ctgcctgaag gctggacacg	1200
gaagcttaag caaaggaaat ctggccgctc tgctggaaag tatgatgtgt atttcatcaa	1260
tccccaggaa aaagccttgc gctctaaagt ggagttgatt gcgtacttcg aaaaggtagg	1320
cgacacatcc ctggacccta atgatttga cttcacggta actgggagag ggagccctc	1380
ccggcgagag cagaaaccac ctaagaagcc caaatctccc aaagctccag gaactggcag	1440
aggccgggaa cgccccaaag ggagcggcac cacgagaccc aaggcggcca cgtcagaggg	1500
tgtcaggtg aaaagggtcc tggagaaaag tcctggaaag ctccttgtca agatgcctt	1560
tcaaacttcg ccagggggca aggctgaggg gggtggggcc accacatcca cccaggtcat	1620
ggtgatcaaa cgccccggca ggaagcgaaa agctgaggcc gaccctcagg ccattccaa	1680
gaaacggggc cgaaagccgg ggagtgtggt ggcagccgct gccgcccggg caaaaagaa	1740
agccgtgaag gagtcttcta tccgatctgt gcaggagacc gtactcccc tcaagaagcg	1800
caagaccgg gagacggtca gcatcgaggt caaggaagtg gtgaagcccc tgctgggtgc	1860
caccctcggt gagaagagcg ggaaaggact gaagacctgt aagagccctg ggcggaaaag	1920
caaggagagc agccccagg ggcgcagcag cagcgctcc tcacccccc agaaggagca	1980
ccaccaccat caccaccact cagagtcccc aaaggcccc gtgccactgc tcccaccct	2040

50215PCT_Seqlisting.TXT

gcccccacct ccacctgagc ccgagagctc cgaggacccc accagccccc ctgagccca	2100
ggacttgagc agcagcgtct gcaaagagga gaagatgcc agaggaggct cactggagag	2160
cgacggctgc cccaaggagc cagctaagac tcagcccgcg gttgccaccg ccgcccacggc	2220
cgcagaaaag tacaaacacc gaggggaggg agagcgcaa gacattgttt catcctccat	2280
gccaaggcca aacagagagg agcctgtgga cagccggacg cccgtgaccg agagagttag	2340
ctgaaataaa agatcttat tttcattaga tctgtgtgtt gttttttgt gtggcatgct	2400
ggggagagat cgatctgagg aaccctagt gatggagttg gccactccct ctctgcgcgc	2460
tcgctcgctc actgaggccg ggcgaccaaa ggtcgcccgga cgcccgggct ttgcccggc	2520
ggcctcagtg agcgagcgag cgccgagaga gggagtggcc cccccccccc cccccccggc	2580
gattctcttg tttgctccag actctcaggc aatgacctga tagcctttgt agagacctct	2640
caaaaatagc taccctctcc ggcattgaatt tatcagctag aacggttcaa tatcatattg	2700
atggtgattt gactgtctcc ggctttctc acccgtttga atctttaccc acacattact	2760
caggcattgc atttaaaata tatgagggtt ctaaaaattt ttatccttgc gttgaaataa	2820
aggcttctcc cgcaaaagta ttacagggtc ataatgttt tggtacaacc gathtagctt	2880
tatgctctga ggctttattt cttatattt ctaattctt gccttgcctg tatgatttt	2940
tggatgttgg aatcgcttga tgcggtattt tctccttacg catctgtgcg gtatttcaca	3000
ccgcatatgg tgcactctca gtacaatctg ctctgatgcc gcatagttaa gccagcccg	3060
acacccgcca acactatggt gcactctcag tacaatctgc tctgatgccg catagttaa	3120
ccagcccgaa cacccgcca cacccgctga cgcccccgtga cgggcttgc tgctccggc	3180
atccgcttac agacaagctg tgaccgtctc cgggagctgc atgtgtcaga gtttttacc	3240
gtcatcaccg aaacgcgcga gacgaaaggg cctcgtgata cgcctatttt tataggttaa	3300
tgtcatgaga ttatcaaaaa ggatcttcac ctagatcctt ttaaattaaa aatgaagttt	3360
taaatcaatc taaagtatat atgagtaaac ttgggtctgac agtttagaaaa actcatcgag	3420
catcaaatga aactgcaatt tattcatatc aggattatca ataccatatt tttgaaaaag	3480
ccgtttctgt aatgaaggag aaaactcacc gaggcagttc cataggatgg caagatcctg	3540
gtatcggtct gcgattccga ctcgtccaaac atcaatacaa cctattaatt tccctcgtc	3600

50215PCT_Seqlisting.TXT

aaaaataagg ttatcaagtg agaaatcacc atgagtgacg actgaatccg gtgagaatgg	3660
caaaagtttgcatttctt tccagacttg ttcaacaggc cagccattac gctcgcatc	3720
aaaatcactc gcatcaacca aaccgttatt cattcgtat tgccgttag cgaggcgaaa	3780
tacgcgatcg ctgttaaaag gacaattaca aacaggaatc gagtgcaacc ggcccgaggaa	3840
cactgccagc gcatcaacaa tattttcacc tgaatcagga tattcttcta atacctggaa	3900
cgctgtttt ccggggatcg cagtggttag taaccatgca tcatcaggag tacggataaa	3960
atgcttgatg gtcggaagtgcataaaattc cgtcagccag ttttagtctga ccatctcatc	4020
tgttaacatca ttggcaacgc taccttgcc atgtttcaga aacaactctg ggcgcattcggg	4080
cttcccatac aagcgataga ttgtcgacc tgattgccc acattatgc gagcccat	4140
ataccatataa atatcagcat ccatgttgaa atttaatcgc ggcctcgacg tttccgttgc	4200
aatatggctc atactcttcc ttttcaata ttattgaagc atttatcagg gttattgtct	4260
catgacccaaatcccttaac gtgagttttc gttccactga gcgtcagacc ccgtagaaaa	4320
gatcaaaggatcttcttgcag atcctttttt tctgcgcgtatctgct tgcaaacaaa	4380
aaaaccaccg ctaccagcgg tgggttggg gccggatcaa gagctaccaa ctctttcc	4440
gaaggtaact ggcttcagca gagcgcagat accaaatact gttttcttag tgtagccgtat	4500
gtttaggccac cacttcaaga actctgttagc accgcctaca tacctcgctc tgctaattcct	4560
gttaccagtg gctgctgcca gtggcgataa gtcgtgtttt accgggttgg actcaagacg	4620
atagttaccg gataaggcgc agcggtcggg ctgaacgggg gttcgtgca cacagccag	4680
cttggagcga acgacctaca ccgaactgag atacctacag cgtgagctat gagaaagcgc	4740
cacgcttccc gaagggagaa aggccggacag gttatccgtat agcggcaggg tcggaacagg	4800
agagcgcacg agggagcttc cagggggaaa cgcctggat ctttatagtc ctgtcgggtt	4860
tcgcccaccc tgacttgagc gtcgatccatgtatgtatgtcg tcaggggggc ggagcctatg	4920
gaaaaaacgcc agcaacgcgg ccttttacg gttcctggcc ttttgctggc ctttgctca	4980
catgttctt cctgcgttat cccctgattt tggataac cgtattaccg ctttgagtg	5040
agctgataacc gctcgccgca gccgaacgac cgagcgcagc gagtcagtga gcgaggaagc	5100
ggaagagcgc ccaatacgca aaccgcctct ccccgccgt tggccgattt attaatgcag	5160

50215PCT_Seqlisting.TXT

ctggcgtaat agcgaagagg cccgcaccga tcgcccttcc caacagttgc gcagcctgaa	5220
tggcgaaatgg cgattccgtt gcaatggctg gcggtaatat tggatattaccagca	5280
aggccgatag tttgagttct tctactcagg caagtgtatgt tattactaat caaagaagta	5340
ttgcgacaac ggttaatttg cgtgatggac agactcttt actcggtggc ctcactgatt	5400
ataaaaaacac ttctcaggat tctggcgtac cggttcgttc taaaatccct ttaatcgccc	5460
tcctgtttag ctcccgctct gattctaacg aggaaagcac gttatacgtg ctcgtcaaag	5520
caaccatagt acgcgcctg tagcggcgca ttaagcgcgg cgggtgtggt ggtaacgcgc	5580
agcgtgaccg ctacacttgc cagcgccta gcgcgcgtc ctgcgtttt ctcccttcc	5640
tttctcgcca cggttcgcgg ctgtttccgtt caagctctaa atcggggct cccttaggg	5700
ttccgattta gtgcgttacg gcacctcgac cccaaaaaac ttgatttaggg tgatggttca	5760
cgttagtggc catcgccctg atagacggtt ttgcgcctt tgacgttggaa gtccacgttc	5820
tttaatagtg gactcttgc ccaaactgga acaacactca accctatctc ggtctattct	5880
tttgatttat aagggatttt gccgatttcg gcctattggtaaaaaatga gctgattaa	5940
caaaaaattta acgcgaattt taacaaaata ttaacgctta caatttaaat atttgcttat	6000
acaatcttcc tggttttggg gctttctga ttatcaaccg gggtacatata gattgacatg	6060
ctagtttac gattaccgtt catcgcc	6087