发明名称：使用超临界流体制备活性物质与多孔载体的相互作用复合物的方法

摘要
本发明涉及一种用于制备在含水介质中溶解度低的活性物质与多孔载体的相互作用复合物的方法，其特征在于包括以下步骤：
(a) 混合通过超临界流体产生的活性物质以及限定量的多孔载体，
(b) 在静态模式下使超临界流体与在步骤(a)中得到的混合物接触一定的时间，直至在步骤(a)中得到的混合物在含水介质中的溶解度得到提高，
(c) 用超临界流体洗涤在步骤(b)中得到的相互作用复合物，
(d) 回收由此形成的相互作用复合物的颗粒。本发明还涉及通过所述方法得到的复合物。
1、一种用于制备在含水介质中溶解度低的活性物质与多孔载体的相互作用复合物的方法，其特征在于包括以下步骤：
 (a) 混合通过超临界流体产生的活性物以及限定量的多孔载体，
 (b) 在静模式下使超临界流体与在步骤 (a) 中得到的混合物接触一定的时间，直至在步骤 (a) 中得到的混合物在含水介质中的溶解度得到提高，
 (c) 用超临界流体流洗涤在步骤 (b) 中得到的相互作用复合物，
 (d) 回收由此形成的相互作用复合物的颗粒。

2、如权利要求 1 所述的方法，其特征在于，所述多孔载体是通过超临界流体产生的，而且步骤 (a) 包括以下步骤：
 (a1) 将活性物质和多孔载体溶解在有机溶剂中，所述有机溶剂可溶于超临界流体中，
 (a2) 连续地使步骤 (a1) 中得到的溶液与超临界流体接触，以使活性物质和载体进行受控的脱溶剂作用，并确保它们的凝聚，
 (a3) 使用超临界流体萃取残留的溶剂，由此洗涤所形成的复合物，然后分离液态的溶剂和气态的超临界流体。

3、如权利要求 1 所述的方法，其特征在于，在用于步骤 (a) 之前所述活性物质是通过包括以下步骤的方法产生的：
 (i) 将活性物质溶解在有机溶剂中，所述有机溶剂可溶于超临界流体中，
 (ii) 连续地使步骤 (i) 中得到的溶液与超临界流体接触，以使活性物质进行受控的脱溶剂作用，并确保其凝聚，
(iii) 使用超临界流体萃取残留的溶剂，由此洗涤所形成的活性物质的颗粒，然后分离液态的溶剂和气态的超临界流体；

而且在步骤(a)中使用的多孔载体是固体。

4、如权利要求1所述的方法，其特征在于，在用于步骤(a)之前，所述活性物质是通过包括以下步骤的方法产生的：

(i) 用超临界流体萃取活性物质，并任选地添加辅助溶剂，
(ii) 使超临界混合物汽化，以使活性物质进行受控的脱溶剂作用，并确保其凝聚，
(iii) 使用超临界流体洗涤所形成的活性物质的颗粒，并任选地分离液态的辅助溶剂和气态的超临界流体；

而且在步骤(a)中使用的多孔载体是固体。

5、如权利要求1所述的方法，其特征在于，步骤(a)包括以下步骤：

(a1) 将活性物质溶解在有机溶剂中，所述有机溶剂可溶于超临界流体中，
(a2) 连续地使如此得到的溶液与超临界流体接触，以使活性物质进行受控的脱溶剂作用，并确保其在放置于反应器之前凝聚在多孔载体上，
(a3) 使用超临界流体萃取残留的溶剂，由此洗涤所形成的复合物，然后分离液态的溶剂和气态的超临界流体。

6、如权利要求1所述的方法，其特征在于，步骤(a)包括以下步骤：

(a1) 用超临界流体萃取活性物质，并任选地添加辅助溶剂，
(a2) 使超临界混合物汽化，以使活性物质进行受控的脱溶剂作用，并确保其在放置于反应器之前凝聚在多孔载体上。

(a3) 使用超临界流体洗涤所形成的复合物，并任选地分离液态的辅助溶剂和气态的超临界流体；

7、如权利要求 2—6 之一所述的方法，其特征在于，所述有机溶剂或辅助溶剂选自于以下组中：醇、酮、乙酸、乙酸乙酯、二氯甲烷、乙腈、二甲基甲酰胺、二甲基亚砜、以及它们的混合物。

8、如前述任一权利要求所述的方法，其特征在于，所述超临界流体是 CO₂。

9、如前述任一权利要求所述的方法，其特征在于，所述活性物质选自于 N－酰苯胺衍生物，特别是 (S)－2', 3', 5'－三甲基－4'－羟基－a－十二烷基硫代苯基－N－乙酰苯胺，表鬼臼毒素衍生物，特别是 4'－脱甲基－4'－脱氧－4'－磷酸－4－O－(2，3－二 (2，3，4，5，6－五甲氧基乙酰基) －4，6－亚乙基－β－D－葡糖基)－表鬼臼毒素，吡罗昔康、戊酸、辛酸、月桂酸和硬脂酸。

10、如前述任一权利要求所述的方法，其特征在于，所述多孔载体选自于环糊精及其混合物。

11、如前述任一权利要求所述的方法，其特征在于，分子扩散的步骤 (b) 是在搅拌下进行的。

12、如前述任一权利要求所述的方法，其特征在于，分子扩散的步
骤（b）是在扩散剂存在下进行的。

13. 如权利要求12所述的方法，其特征在于，所述扩散剂选自于以下组中：醇、含或不含表面活性剂的水、以及它们的混合物。

14. 如前述任一权利要求所述的方法，其特征在于，超临界流体的压力在10－40 MPa之间，而温度在0－120℃之间。

15. 如前述任一权利要求所述的方法，其特征在于，各个步骤都是在密封的反应器中实施的，特别是在高压釜中。

16. 如前述任一权利要求所述的方法，其特征在于，该方法是连续进行的。

17. 在含水介质中溶解度低的活性物质在多孔载体中的相互作用复合物，其特征在于是通过如权利要求1－16之一所述的方法制得的。

18. 如权利要求17所述的复合物，其特征在于，如此复合的活性物质在5%月桂基硫酸钠水溶液中的溶解度超过约600μg/ml。
使用超临界流体制备活性物质与多孔载体的相互作用复合物的方法

技术领域

本发明涉及通过超临界流体、特别是 CO₂ 技术使纳米颗粒的活性物质与多孔载体相互作用的方法。

背景技术

在 40% 的情况下，具有高附加值的新药物分子是不溶于水或者在水中的溶解度非常低，这对它们的生物利用度是不利的。增加粉末的比表面积可以提高它们的溶解速率。如果它们的溶解速率提高的话，活性成分的生物利用度也能大大增强。

在近 15 年中，已使用通过超临界流体技术制得的具有高比表面积的细粉末。通常使用两种类型的方法：RESS（超临界溶液的快速膨胀）法、和 SAS（溶剂一抗溶剂）法。通过改进操作条件，可控制由活性物质所形成颗粒的形态和尺寸。

使用超临界 CO₂ 作为溶剂有以下优点：

一对于对热敏感的活性物质，可在低温下工作（> 31℃）；

一通过改变操作方法的参数（压力、温度、流率等）可容易地改变溶解性，

一通过简单的降压就可溶液地分离溶剂/溶质混合物，

一溶剂的化学惰性：无毒性、不可燃性、无腐蚀性，

一与常规有机溶剂相比低成本。

在药物、化妆品以及营养药物领域中，存在着非常多的专利和公开文件都涉及活性物质在包衣材料中的微胶囊化。然而，所描述的绝大多数
方法并不涉及生物利用度的改善，而是涉及活性物质在载体上的吸附。

Bertucco 等人（Drugs encapsulation using a compressed gas antisolvent technique – Proceedings of the 4th Italian Conference on Supercritical Fluids and Their Applications 1997, 327-334, 由 E. Reverchon 编辑）描述了一种方法，其中活性物质悬浮于生物聚合物的溶液中，该生物聚合物起着载体的作用。该悬浮液放置在高压釜中，随后在超临界 CO₂ 存在下放置，以使其去溶剂化（用超临界流体萃取溶剂）并通过超饱和作用使载体复合在活性物质上。该方法是一种间歇法，其中活性物质没有由于超临界流体而沉淀，因为它是在悬浮液中。因此，活性物质的颗粒结构没有改变，这有助于提高其在含水介质中的溶解。

Benoit 等人在他们的专利申请 WO 98/13136 中描述了一种相同的方法。

沉积载体的另一种技术包括将所述载体溶解在超临界流体中，然后使该载体沉淀在活性物质上。为此目的，活性物质及其载体预先放置在搅拌的高压釜中，然后注入超临界 CO₂，仅溶解载体（这意味着载体在超临界流体中是可溶的，而活性物质则不溶），通过改变高压釜内的压力和温度，使所述载体沉淀。在此情况下，活性物质的初始结构仍保持不变，而且难以控制沉淀复合物中得到的活性物质/载体比例。该间歇法的详细内容可参考 Benoit 等人的欧洲专利申请 EP 706 821。

Shine 和 Gelb 在他们的专利申请 WO 98/15348 中描述的微胶囊化法包括以下步骤：

1、使活性物质与胶囊化聚合物混合，
2、使该聚合物由超临界流体中通过，由此使聚合物液化，
3、进行快速降压，以使活性物质周围的聚合物固化。

该方法仅适用于不溶于超临界流体中的活性物质和聚合物。因此，活性物质仍保持其原始结构，而这有助于提高其生物利用度。
在Perrut和Majewski的专利申请FR2 798 863中，活性物质（kava-kava, curcuma, 黑胡椒和甜胡椒的混合物），预先用超临界流体萃取，在包含多孔载体的高压釜中沉淀。所研究的多孔介质是麦芽糖糊精。因此，该方法是一种在载体中的简单包合作用，没有活性物质按照静态模式扩散入载体中的步骤。但是，在载体上的沉淀还不足以大大提高活性物质在含水介质中的溶解度。

Tomasko组（Chou等人，GAS crystallization of polymer-pharmaceutical composite particles, Proceedings of the 4th International Symposium on Supercritical Fluids, 1997, 55-57，以及Kim J.-H.等人，Microencapsulation of Naproxen using Rapid Expansion of Supercritical Solutions, Biotechnol. Prog. 1996, 12, 650-661），提到了使用超临界CO₂通过RESS和SAS进行共同沉淀的两种方法。所研究的活性物质是藜芦生，而载体是聚L-乳酸（L-PLA）。在SAS法中，这两种化合物同时溶解在丙酮中，然后通过逆流注射CO₂进行沉淀。由此形成的复合物在洗涤阶段后回收。藜芦生与L-PLA的混合物放置在一个室中，在此用超临界流体萃取两种化合物，然后在第二个高压釜中沉淀，其中涉及RESS法。但是，活性物质和载体的沉淀或者共同沉淀尚不足以实质性地提高活性物质在含水介质中的溶解度。另外，在这两个方法中也没有静态模式的分子扩散步骤，以改善活性物质与其载体之间的相互渗透。最后，没有研究活性物质在含水介质中的溶解度。

Sze Tu等人描述的方法（Applications of dense gases in pharmaceutical proceeding, Proceedings of the 5th Meeting on Supercritical Fluids 1998, Tome 1, 263-269）、Weber等人描述的方法（Copropticipation with compressed antisolvents for the manufacture of microcomposites, Proceedings of the 5th Meeting on Supercritical Fluids 1998, Tome 1, 243-248）、以及Bleich和Mueller描述的方法（Production of drug loaded by
the use of supercritical gases with the Aerosol Solvent Extraction System (ASES) process, J. Microencapsulation 1996, 13, 131-139) 也具有同样的问题。

Subramaniam等人在他们的专利申请WO 97/31691中研制出一种由接近临界点的抗溶剂起始的装置和方法，允许颗粒进行沉淀和涂覆。对溶液、包含溶质的悬浮液以及超临界抗溶剂之间的接触相进行处理，其中产生高频波，其将溶液分为多个小液滴。在该专利申请中，所要求保护的粒径为0.1-10 μm。另外，还描述了涂覆法。描述了氢化可的松的结晶、聚（D, L-丙交酯-乙交酯）的结晶、布洛芬的结晶以及喜树碱的结晶。但是，活性物质与载体的沉淀或者共同沉淀尚不足以实质性地提高活性物质在含水介质中的溶解度。再者，该方法没有描述静模式的分子扩散步骤，以改善活性物质的生物利用度。

Tom等人（Applications of supercritical fluids in controlled release of drugs, Supercritical Fluids Engineering Science ACS Symp. Ser. 514, American Chemical Society, Washington DC, 1992）报道了与聚合物DL-PLA复合的洛伐他汀（降血脂药）活性物质微米颗粒通过RESS法的首次共同沉淀。这两个化合物在高压釜中，用超临界CO2萃取，然后在第二室中沉淀。该方法的主要缺陷是复合物中得到的活性物质/载体比例。这是因为该比例不能被精确地选择，其原因是该比例是由两个化合物在超临界状态的CO2中的溶解度决定的。但是，活性物质和载体的共同沉淀尚不足以实质性地提高活性物质在含水介质中的溶解度。再者，该方法没有描述静模式的分子扩散步骤，以改善活性物质的生物利用度，而且也没有研究其在含水介质中的溶解度。

在Carli等人的专利申请WO 99/25322中披露了一种用于浸渍药物活性成分的方法。该方法细分如下：

1. 通过RESS法溶解活性成分，
2、使包含活性成分的超临界流体与交联聚合物接触，
3、在静态或动态模式下浸渍交联聚合物，
4、除去超临界流体。

只有溶于超临界流体中的活性物质才可以用该方法比较，因为第一个步骤包括用超临界流体萃取活性成分。另外，该方法不是一种包合法，而是一种在载体上进行浸渍的方法，并且没有给出有关由此制得的活性成分在含水介质中的溶解度得到提高的结果。最后，经过浸渍的聚合物没有经过用超临界流体洗涤的步骤。

Fisher 和 Mueller 在他们的专利 US 5,043,280 中描述了一种用超临界流体制备在载体上的活性物质的方法。该方法包括以下步骤：使一种或者多种活性成分与一种或者多种载体在超临界介质中接触。为此目的，活性成分和载体用 SAS 和/或RESS 法进行沉淀或者共同沉淀。得到无菌形式的化合物。但是，活性物质和载体的沉淀或共同沉淀尚不足以实质性地提高活性物质在含水介质中的溶解度。再者，该方法没有描述静态模式的分子扩散步骤，以改善活性物质的生物利用度，而且也没有研究其在含水介质中的溶解度。

Van Hees 等人在他们的出版物（Application of supercritical carbon dioxide for the preparation of a Piroxicam- β-cyclodextrin inclusion compound, Pharmaceutical Research, 第 16 卷 12 号, 1999）中描述了使用超临界 CO2 将吡罗昔康包合在 β-环糊精中的方法。该方法包括以下步骤：将吡罗昔康和 β-环糊精（摩尔比 1: 2.5）的混合物放置在高压釜中，该高压釜处于静态模式下。然后降压，研磨所得的化合物，并在表征之前均化。这些分析可得出有关吡罗昔康与 β-环糊精之间的复合程度的结论，但没有提供任何有关吡罗昔康/β-环糊精相对于吡罗昔康单独时的在含水介质中的溶解的改善。再者，所用的活性物质不是由超临界流体产生的，而且不进行用超临界流体洗涤复合物的步骤。
Kamihira M.等人（Formation of inclusion complexes between cyclodextrins and aromatic compounds under pressurized carbon dioxide, J. of Fermentation and Bioengineering, 第 69 卷 6 号, 350-353, 1990）描述了一种用于萃取挥发性芳香化合物并通过包含在环糊精中来捕获它们的方法。以此方式，用RESS法萃取香叶醇和芥子油，然后在包含环糊精与水的混合物的第二高压釜中进行动态汽化。温度、压力和水含量等参数的影响是通过测量活性物质在环糊精中的包含量来研究的。该文献中描述的包含步骤是在动态下进行的，而不是本发明所要求保护的静态。另外，该方法不包括用超临界流体进行洗涤的步骤。最后，没有研究活性物质在含水介质中的溶解度。

Sze Tu等人在他们的出版物（Application of dense gases in pharmaceutical processing, Proceedings of 5th meeting on supercritical fluids, Nice, France, 1998年3月）中描述了如何通过SAS法进行活性物质（对羟基苯甲酸）和聚合物（PLGA，聚丙交酯－聚己内酯，或者PLA，聚乳酸）的沉淀。该共同沉淀是通过两种技术进行的，一种是聚合物和活性物质在两个不同的溶液中；或者在相同的溶液中。在两种情况下，包含两个组分的两个溶液或者一个溶液用超临界CO₂SAS处理。但是，活性物质和多孔载体的共同沉淀尚不足以实质性的提高活性物质在含水介质中的溶解度。再者，该方法没有描述静态模式的分子扩散步骤，以改善活性物质的生物利用度，而且也没有研究其在含水介质中的溶解度。

Jung等人在他们的专利FR 2 815 540中描述的共同沉淀法也有相同的缺陷。该专利涉及一种用于制造非常细的颗粒的方法以及实施该方法的装置，其中所述颗粒包含至少一种插入宿主分子中的活性成分。所述方法包括以下步骤：将活性成分溶解在第一液体溶剂中，然后将由环糊精或冠醚类型的宿主分子形成的产物溶解在第二液体溶剂中。按照SAS法使这些溶液与处于临界压力下的流体接触，以使分子沉淀。如此前Sze
Tu L.描述的方法，各成分溶解在相同的溶剂中。Jung 等人提及的结果没有显示溶解速率有任何的改善。而且，活性物质和环糊精类型的载体的共同沉淀尚不足以实质性地提高活性物质在含水介质中的溶解度。再者，该方法没有描述静态模式的分子扩散步骤，以改善活性物质的生物利用率，而且也没有研究其在含水介质中的溶解度。

本发明的发明人令人惊奇地发现一种方法，其包括用超临界流体产生在含水介质中溶解度低的活性物质，使其与多孔载体混合，然后在静态模式下用超临界流体使分子扩散并用超临界流体洗涤，而且用该方法可以制得活性物质在含水介质中的溶解度大大增加并且由此使生物利用率大大增加的相互作用复合物。

的确，静态结合步骤与活性物质在载体上的沉淀步骤相结合，令人惊奇地提高了活性物质在含水介质中的溶解度。另外，在超临界介质中进行洗涤的第三步，包括通过超临界 CO₂的流动除去残留溶剂，除了洗涤相互作用复合物，也可以令人惊奇地增加溶解。

再者，这些步骤可间歇式地实施或者连续地进行，特别是对于扩散和洗涤步骤。因此，这可以相对于常规步骤使本发明的方法简化，而所述常规步骤包括：

1. 结晶
2. 固/液分离
3. 干燥
4. 在载体上的包合
5. 微粉化

发明内容

因此，本发明提供一种用于制备在含水介质中溶解度低的活性物质与多孔载体的相互作用复合物的方法，其特征在于包括以下步骤：
（a）混合，有利的是充分混合通过超临界流体产生的活性物以及定量的多孔载体，

（b）在静态模式下使超临界流体与在步骤（a）中得到的混合物接触一定的时间，直至在步骤（a）中得到的混合物在含水介质中的溶解得到提高，

（c）用超临界流体流洗涤在步骤（b）中得到的相互作用复合物，

（d）回收由此形成的相互作用复合物的颗粒。

在本发明中，在含水介质中溶解度低的活性物质是任何在含水介质中溶解度低或者不溶的活性物质，特别是那些溶解度低于至少 20 μg/ml 的活性物质。具体而言，其可以是药物、化妆品、或者营养药物活性物。有利的是，其是选自以下组中的活性物质：N-酰苯胺衍生物、表鬼臼毒素衍生物、吡罗昔康、戊酸、辛酸、月桂酸、和硬脂酸。如果是 N-酰苯胺衍生物，则有利地是以下通式 I 表示的衍生物：

![分子结构图](image)

其中：

R₁ 和 R₂ 可相同或不同，相互独立地代表氢原子，C₁-₆ 直链或支链烷基，芳基如苯基、萘基或吡啶基，该芳基可任选地被一个或者多个 C₁-₄烷基、C₁-₄烷氧基、羟基或卤素取代，

R₃ 代表 C₆-₁₅ 直链或支链烷基，或者任选地被一个或者多个 C₁-₄烷基、C₁-₄烷氧基、羟基或卤素取代的苯基，

A 代表硫或氧原子或者亚硫酰基。

更为有利的是，所述活性物质是（S）-2', 3', 5'-三甲基-4'-羟
基—α—十二烷基硫代苯基—N—乙酰苯胺（F12511）。因为式I的混合物具有不对称中心，所以根据本发明的活性物质可以是各种立体异构体或对映异构体或者它们的混合物之一。这些衍生物以及它们的制备方法都描述在专利申请FR2741619中。

如果是表鬼臼毒素衍生物，则活性物质优选是以下通式II表示的衍生物：

![化学结构式](image)

其中：
R'代表氮原子；单酯磷酸基；式—CO—N(R1R2)的氨甲酰基，其中N(R1R2)
代表氨基二乙酸基和多环胺如3—氨基奎宁环；磷酰基乙酸型H2O3P
—CH2—CO的酰基或者基团R，
R代表式A—Z—CH2—CO的酰基，其中Z代表氧或硫原子、SO2基团、
直链或支链C1-4亚烷基，在此情况下A代表取代或未取代的苯基核，
其条件是：
如果R与R'相同，即，三乙酰基衍生物，则A代表具有成盐官能团的芳香
香核，
如果 R 与 R'不同，则 A 代表芳基、萘基、或杂芳基或者取代或未取代的
苯基，对于苯基，可在芳香核的任意位置上被一次或者多次取代，
而取代基例如是卤素 F、Cl、Br、线性或者环状的 C1-6 烷氧基、C1-
6 烷基、亚甲二氧基、OCF3、CF3、NO2、CN、OCH2 芳基、OH、
OPO3H2、CH2PO3H2、PO3H2、OCH2CO2H、COOH、CH2COOH、
COCH3、CHO，
A－Z 还可代表 OCH2CO2H、SO2CH2COOH 或 PO3H2 基团。

更有利的是，所述活性物质是 4’－脱甲基－4’－脱氧－4’－磷酸－4
－O－（2，3－二（2，3，4，5，6－五氟苯氧基乙酰基）－4，6－亚乙
基－β－D－葡糖基）－表鬼臼毒素（L0081）。

这些衍生物及其制备方法描述在专利申请 FR 2 725 990 中。

在本发明中，通过超临界流体产生的活性物质可以是经过超临界流体
形成步骤处理的任意上述活性物质，即，通过使用超临界流体使其比
表面面积增加。此等步骤有利地包括 RESS 或 SAS 法。

用于本发明目的的多孔载体是可溶于含水介质中的任意合适多孔载体。
该多孔载体有利地选自以下组中：环糊精及其衍生物。该载体优
选是 Y－环糊精。

用于本发明目的的超临界流体是可应高于其临界值的温度和压力下
使用的任意流体。该流体优选是 CO2。

术语“静态模式”在本发明的范围内是指其中所有反应物都同时混
合然后使反应进行的反应或者方法。例如，在本发明的步骤（b）中，结
晶粉末、水和超临界 CO2 都被放置在高压釜中，然后使它们反应 16 小时。
产物的质量在反应期间不发生变化。

相反地，在动态模式下，反应物是根据反应的进程来提供的。在动
态模式中，经常需要流体的循环或者搅拌。产物的质量在制造过程中是
变化的。在本发明的方法中，步骤（a）典型地是一个动态步骤。

充分混合物在本发明中是指成分A和B均匀分布在所得的混合物中的A和B的混合物。

在一个具体的实施方案中，根据本发明的方法是其中多孔载体通过超临界流体产生，而且步骤（a）包括以下步骤：

（a1）将活性物质和多孔载体溶解在有机溶剂中，所述有机溶剂可溶于超临界流体中，

（a2）连续地使步骤（a1）中得到的溶液与超临界流体接触，以使活性物质和载体进行受控的脱溶剂作用，并确保它们的凝聚，

（a3）使用超临界流体萃取残留的溶剂，由此洗涤所形成的复合物，然后分离液态的溶剂和气态的超临界流体。

有利地，步骤（a）包括用SAS法使活性物质和多孔载体共同沉淀。

在另一个实施方案中，根据本发明的方法是其中在用于步骤（a）之前通过包括以下步骤的方法产生活性物质：

（i）将活性物质溶解在有机溶剂中，所述有机溶剂可溶于超临界流体中，

（ii）连续地使步骤（i）中得到的溶液与超临界流体接触，以使活性物质进行受控的脱溶剂作用，并确保其凝聚，

（iii）使用超临界流体萃取残留的溶剂，由此洗涤所形成的活性物质的颗粒，然后分离液态的溶剂和气态的超临界流体；

而且在步骤（a）中使用的多孔载体是固体。

有利的是，在用于步骤（a）之前，活性物质是通过根据SAS法沉淀而产生的。

在第三实施方案中，根据本发明的方法是其中在用于步骤（a）之前通过包括以下步骤的方法产生活性物质：

（i）用超临界流体萃取活性物质，并任选地与辅助溶剂混合，
（ii）使超临界混合物汽化，以使活性物质进行受控的脱溶剂作用，并确保其凝聚，

（iii）使用超临界流体洗涤所形成的活性物质的颗粒，并任选地分离液态的辅助溶剂和气态的超临界流体；

而且在步骤（a）中使用的多孔载体是固体。

有利的是，在用于步骤（a）之前，活性物质是通过根据 RESS 法沉淀而产生的。

在第四实施例中，根据本发明的方法是其中步骤（a）包括以下步骤：

（a1）将活性物质溶解在有机溶剂中，所述有机溶剂可溶于超临界流体中，

（a2）连续地使如此得到的溶液与超临界流体接触，以使活性物质进行受控的脱溶剂作用，并确保其在放置于反应器之前凝聚在多孔载体上，

（a3）使用超临界流体萃取残留的溶剂，由此洗涤所形成的复合物，然后分离液态的溶剂和气态的超临界流体。

有利地，步骤（a）包括用 SAS 法使活性物质沉淀在多孔载体上。

在第五实施方案中，根据本发明的方法是其中步骤（a）包括以下步骤：

（a1）用超临界流体萃取活性物质，并任选地与辅助溶剂混合，

（a2）使超临界混合物汽化，以使活性物质进行受控的脱溶剂作用，并确保其在放置于反应器之前凝聚在多孔载体上，

（a3）使用超临界流体洗涤所形成的复合物，并任选地分离液态的辅助溶剂和气态的超临界流体。

有利的是，步骤（a）包括通过 RESS 法使活性物质沉淀在多孔载体上。
有利地，有机溶剂或辅助溶剂选自于以下组中：醇，特别是甲醇或丁醇；酮，特别是丙酮、甲基乙基酮、环己酮或 N-甲基吡咯烷酮，乙酸、乙酸乙酯、二氯甲烷、乙腈、二甲基甲酰胺、二甲基亚砜（DMSO）、以及它们的混合物。溶剂或辅助溶剂优选是乙醇或二甲基亚砜。

有利地，根据本发明之方法的分子扩散步骤（b）是在搅拌下进行。

更有利地，根据本发明之方法的分子扩散步骤（b）是在有扩散剂存在下进行的。

对于本发明，扩散剂是任何可以促进活性物质与载体相互作用的溶剂。有利地，该扩散剂选自于以下组中：醇、含或不含表面活性剂的水、以及它们的混合物。更有利地，该扩散剂是水。扩散剂可连续或者非连续地添加。

分子扩散步骤（b）所需要的时间可通过任意合适的方法来测定。该步骤（b）可根据需要重复多次，以得到令人满意的溶解速率。有利地，步骤（b）持续大约 16 小时。

步骤（b）中压力和温度条件的选择应促进分子扩散。有利地，超临界流体的压力在 10－40 MPa 之间，而温度在 0－120℃之间。更有利地，在本发明方法的所有步骤中，超临界流体的使用压力都在 10－40 MPa 之间，而温度都在 0－120℃之间。

有利的是，本发明方法的每个步骤都是在封闭式反应器中实施，特别是在高压釜中。有利地，根据本发明的方法是连续地进行。

本发明还提供在含水介质中溶解度低的活性物质与多孔载体的相互作用复合物，其特征在于该复合物是通过本发明的方法得到的。

有利地，根据本发明的相互作用复合物是如此复合的活性物质在 5％月桂基硫酸钠水溶液中的溶解度大于约 600 μg/ml。
各步骤中粉末的物理特征
通过 RESS 法得到的活性成分粉末
－极轻和粉末化的粉末
－单分散晶体的尺寸和类型：长度为 1－3 μm，直径为 100－200 nm 的小棒状体，
－12 kg/m³ 的堆积密度。

通过 SAS 法得到的活性成分粉末
－非常轻和粉末化的粉末
－单分散晶体的尺寸和类型：长度为 10－20 μm，直径为 100 nm 的小棒状体，
－97 kg/m³ 的堆积密度。

共同结晶的粉末（活性成分/环糊精）
－细、轻且粉末化的粉末，
－176 kg/m³ 的堆积密度。

经老化的共同结晶的粉末（活性成分/环糊精）
－密实且粉末化的粉末，
－639 kg/m³ 的堆积密度。

附图说明
通过以下参考附图的详细描述，本领域技术人员将对本发明的其他目的和优点更为清楚。在附图中：
图 1 代表用常规方法结晶并干燥后得到的产物 F12511 的 SEM 照片（扩大 1000 倍）。

19
图 2 代表用常规方法结晶并干燥后得到的产物 F12511 的 SEM 照片（扩大 2000 倍）。

图 3 代表用 SAS 法共同沉淀并用超临界 CO₂洗涤产物 F12511 和 γ一环糊精在 DMSO 中的溶液而得到的复合物的 SEM 照片（扩大 1000 倍）。

图 4 代表用 SAS 法共同沉淀并用超临界 CO₂洗涤产物 F12511 和 γ一环糊精在 DMSO 中的溶液而得到的复合物的 SEM 照片（扩大 2000 倍）。

图 5 代表与图 3 和 4 相同的复合物在有水存在的条件下于超临界介质中经过 16 小时分子扩散后的 SEM 照片（扩大 1000 倍）。

图 6 代表与图 3 和 4 相同的复合物在有水存在的条件下于超临界介质中经过 16 小时分子扩散后的 SEM 照片（扩大 2000 倍）。

图 7 显示了根据所用制剂的产物 F12511（根据本发明与 γ一环糊精的相互作用复合物或者结晶产物 F12511）在狗中的生物利用度的直方图。

具体实施方式

根据本发明的方法具体地包括在超临界介质中进行分子扩散的步骤，如电子显微镜照片所示（图 1－6），该步骤使活性物质的颗粒在载体中发生高水平的相互作用。在这些照片中可以看出，复合物的结构在扩散期间完全改变。另外，在含水介质中的溶解也发生改变。

因此，根据图 1 和 2 的复合物在 5% 月桂基硫酸钠水溶液中 2 小时后的溶解度为 6 μg/ml。根据图 3 和 4 的复合物在 5% 月桂基硫酸钠水溶液中 2 小时后的溶解度为 86 μg/ml。根据图 5 和 6 的复合物在 5% 月桂基硫酸钠水溶液中 2 小时后的溶解度为 516 μg/ml。

该扩散步骤的目的是提高活性物质微粒的溶解。

下一个步骤是用超临界流体洗涤的步骤，其可以进一步增强活性物
质在多孔载体中的相互作用复合物的溶解速率。

在含水介质中 2 小时后，用根据本发明的方法使溶解扩大约 100 倍。

以下说明本发明方法如何实施的实施例仅是用于说明的目的，而不是对本发明的限制。

粉末分析规程
对产物 F12511 的溶解试验

操作条件：

发光光度检测仪设定在 220 nm。

C8 移植柱（Lichrospher 60RP-Select B），尺寸：25 × 0.4 cm，粒径：5 μm。

流动相：

* 乙腈 820 ml
* 纯水 180 ml
* 冰醋酸 1 ml

流速：1 ml/min

溶液的制备

待检测溶液

在 100 ml 的 5％(m/V) 月桂基硫酸钠水溶液中引入相当于约 100 mg
产物 F12511 的复合物。使系统在 37℃±0.5℃的水浴中进行磁搅拌。在
搅拌 2 小时后取出 2 ml 该悬浮液的样品，并使其在 Gelman GHP Acrodisc
GF@过滤器上过滤。

在流动相中稀释样品 1/5。

进行 2 次试验。
对照溶液

在 100 ml 的烧瓶中引入 8 mg 的参比产物 F12511（用于制备化合物的起始物），并将其溶解在 1 ml 的四氢呋喃（THF）中。

用流动相补充体积。

<table>
<thead>
<tr>
<th></th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
</tr>
</thead>
<tbody>
<tr>
<td>对照溶液（ml）</td>
<td>0.5</td>
<td>1.5</td>
<td>2.0</td>
<td>3.0</td>
<td>4.0</td>
</tr>
<tr>
<td>流动相</td>
<td>至 20 ml</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>浓度（μg/ml）</td>
<td>2.0</td>
<td>6.0</td>
<td>8.0</td>
<td>12.0</td>
<td>16.0</td>
</tr>
</tbody>
</table>

试验程序

注入 20 μl 的各对照溶液。测量产物 F12511 的峰面积，并在图中作为浓度的函数的变差。相关系数 > 0.995。注入 20 μl 的测试溶液。测量测试溶液中产物 F12511 的峰面积，并确保其在 T1 和 T5 的范围内。

如果不是这种情况，在增溶剂中进行稀释和/或调节测试溶液的注射体积。由此计算出测试溶液的浓度 X（μg/ml）。

按照以下式计算产物 F12511 的溶解量（mg/ml）:

\[
(X \times 20 \times F \times 5) / (1000 \times Y)
\]

其中：Y 是测试溶液的注射体积，X 是稀释度。

测量比表面积

比表面积的测量是在 Micrometrics 的 BET ASAP 2010 吸附仪上进行的。
样品的制备

在测量阶段之前，样品需要脱气步骤。该步骤包括抽空包含气泡的样品，直至稳定地达到至少 0.003 mm Hg 或者约 0.004 mbar 的真空度。该脱气步骤是在 50℃的温度下进行的（持续时间：约 16 小时）。在脱气结束后，包含气泡的样品充满氮气，然后转移至测量工位处，在此于分析之前重复进行抽空。

吸附等温过程

根据 BET 理论，即、根据以下关系测定比表面积：

\[
\frac{1}{W \cdot [(P/P_o) - 1]} = \frac{1}{CWm} + \frac{C - 1 \cdot (P/P_o)}{Wm \cdot C}
\]

W：每单位质量的样品所吸附气体的体积（在标准温度和压力（STP）条件下）

Wm：每单位质量的样品在单层中所吸附气体的体积（在 STP 条件下）

P₀：饱和压力

C：常数

该等温曲线是如下绘制的：

\[
\frac{1}{W \cdot [(P/P_o) - 1]}
\]

作为 P/P₀ 的函数：产生一条直线，其斜率和原点处的纵坐标使我们得到 C 和 Wm。

然后按照以下式得出比表面积：

\[a(m^2 \cdot g^{-1}) = N_mN_AE \]

E：氦分子的空间占据量（space occupancy）。对于在 77 K 操作温度下的氦，通常取 E = 0.162 nm²。
\[N_A \]: 阿弗加德罗常数

\[N_m \]: 由 \(W_m \) 计算出的每单位质量的样品在单层上吸附的氮摩尔数。

测量是在常规范围的相对压力内进行的，其中 BET 理论在所述相对压力范围内是有效的，即 \(0.05 < P/P_0 < 0.2 \)。为验证该理论的有效性，一个经验性的方法是沿 \(N_{\text{adsorbed}} \cdot (1 - P/P_0) \) 的量随 \(P/P_0 \) 而变化的方向观察：其应随着 \(P/P_0 \) 继续增加。以此方式验证 BET 理论的应用范围，而且如果需要，可重新调节相对压力的范围。

对比例 1：通过 SAS/DMSO 沉淀产物 F12511

通过溶剂－抗溶剂（SAS）法，在 \(CO_2 \) 存在下，在 2 L 装有 1.37 L 料篮的高压釜中，连续地使 150 ml 产物 F12511 在 DMSO 中的溶液沉淀，其中所述产物在溶液中的浓度为 115 g/l。溶剂泵的流速为 0.6 ml/min。选择高压釜内的温度和压力，使 \(CO_2 \) 的密度为 0.8。在已沉淀大约 130 ml 的溶液后，停止溶质的注入，接着停止 \(CO_2 \) 的注入，然后通过通入 \(CO_2 \) 气流（300 bar，50℃）进行洗涤 3 小时。高压釜随后降压。该步骤的产率为 87%。

<table>
<thead>
<tr>
<th>粉末的性质</th>
<th>溶解（(\mu g/ml))</th>
<th>BET（(m^2/g))</th>
</tr>
</thead>
<tbody>
<tr>
<td>F12511</td>
<td>6～12</td>
<td>14</td>
</tr>
<tr>
<td>通过 SAS 法沉淀的 F12511</td>
<td>62</td>
<td>54</td>
</tr>
</tbody>
</table>

对比例 2：通过 RESS 沉淀产物 F12511

将 10 g 的产物 F12511 放入高压釜中，然后在 100℃、265 bar 的条件下用超临界 \(CO_2 \) 萃取。该流体接着在第二室中沉淀，并回收 0.6 g 的产物 F12511。在 2 小时后测量溶解以及比表面积。
对比例 3：通过 SAS/DMSO 共同沉淀产物 F12511 和 γ－环糊精

通过溶剂－抗溶剂（SAS）法，在 CO₂ 存在下，在 2 L 装有 1.37 L 料篮的高压釜中，连续地使 150 ml 产物 F12511（浓度：57.5 g/l）和 γ－环糊精（浓度：172.5 g/l）在 DMSO 中的溶液沉淀。溶剂泵的流速为 0.4 ml/min。选择高压釜内的温度和压力，使 CO₂ 的密度为 0.9。在已沉淀大约 100 ml 的溶液后，停止溶质的注入，接着停止 CO₂ 的注入，然后通过通入 CO₂ 气流（300 bar，50℃）进行洗涤 2 小时。高压釜随后降压。该步骤的产率为 81%。

溶解测量的结果如以下表所示。

<table>
<thead>
<tr>
<th>粉末的性质</th>
<th>溶解（μg/ml）</th>
<th>BET（m²/g）</th>
</tr>
</thead>
<tbody>
<tr>
<td>F12511</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>通过RESS 法沉淀的 F12511</td>
<td>76</td>
<td>67</td>
</tr>
</tbody>
</table>

实施例 4：由产物 F12511 和 γ－环糊精在 DMSO 中的溶液起始进行共同沉淀、包含及洗涤

通过溶剂－抗溶剂（SAS）法，在 CO₂ 存在下，在 6 L 装有 4 L 料篮的高压釜中，连续地使 450 ml 产物 F12511（浓度：40 g/l）和 γ－环糊精（浓度：240 g/l）在 DMSO 中的溶液沉淀。溶剂泵的流速为 1.1 ml/min。选择高压釜内的温度和压力，使 CO₂ 的密度为 0.9±0.05。在已沉淀大约 450 ml 的溶液后，停止溶质的注入，接着停止 CO₂ 的注入，然后使系统轻轻地打开，以便不使超临界流体液化。该步骤的平均产率为 94%。
在前一个步骤中共同沉淀的粉末与经过渗透处理的水混合（水的质量比为 25%），然后将该混合物放 入 4 L 的 Poral 料篮中，而该料篮又被放入 6 L 的沉淀高压釜中。

封闭该高压釜，并用超临界 CO₂ 使系统升压，以产生 300 bar 的静压力，而高压釜内的温度是 65℃。

分子扩散一夜后，将高压釜轻轻地打 开，然后重复该步骤一夜，但不添加扩散剂（水）。

如此得到的复合物用超临界 CO₂ 气流（270 bar，40℃）洗涤 8 小时，打开系统，然后测量所得粉末的溶解率。

<table>
<thead>
<tr>
<th>粉末的性质</th>
<th>溶解（μg/ml）</th>
</tr>
</thead>
<tbody>
<tr>
<td>共同沉淀前的 F12511</td>
<td>约 15</td>
</tr>
<tr>
<td>分子扩散后的 F12511/γ 一环糊精复合物</td>
<td>440</td>
</tr>
<tr>
<td>分子扩散并且洗涤后的 F12511/γ 一环糊精复合物</td>
<td>662</td>
</tr>
</tbody>
</table>

这些结果显示了组合共同沉淀、包 合以及在超临界介质中洗涤的方法对于提高活性成分在含水介质中的溶解的优势。

用通过该方法得到的 F12511/γ 一环糊精相互作用复合物在狗中进行药物动力学试验。在 5 条狗中给药 3 mg/kg 的标准剂量，然后测量 F12511 的血浆浓度（用 ng/ml・h 表示）。与通过常规方法结晶并干燥之后得到的 F12511 有关的结果以及与通过本发明的方法得到的 F12511/γ 一环糊精相互作用复合物有关的结果都显示在图 7 的直方图中。

发现给药由通过本发明的方法得到的 F12511/γ 一环糊精相互作用复合物制成的制剂，在狗中可以提高生物利用度 10 倍。
对比例 5: 通过 SAS 法/乙醇产生的产物 F12511 的沉淀以及在 γ－环糊精中的包含

通过溶剂－抗溶剂 (SAS) 法，在 CO₂ 存在下，在 6 L 装有 4 L 料篮的高压釜中，连续地使 8 L 产物 F12511（浓度：5 g/l）在乙醇中的溶液沉淀。溶剂泵的流速为 41.7 ml/min。选择高压釜内的温度和压力，使 CO₂ 的密度为 0.8。在已沉淀大约 8 L 的溶液后，停止溶质的注入，接着停止 CO₂ 的注入，然后使系统轻轻地打开，以便不使超临界流体液化。

在前一个步骤中沉淀的活性物质 4.3 g 与 25.8 g 的 γ－环糊精和 10g 经过渗透处理的水混合，然后将该混合物放入 4 L 的 Poral 料篮中，而该料篮又被放入 6 L 的沉淀高压釜中。

封闭该高压釜，并用超临界 CO₂ 使系统升压，以产生 300 bar 的静压力，而高压釜内的温度是 65℃。

分子扩散 16 小时后，将高压釜轻轻地打开。

<table>
<thead>
<tr>
<th>粉末的性质</th>
<th>溶解 (μg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>沉淀前的 F12511</td>
<td>约 15</td>
</tr>
<tr>
<td>用超临界 CO₂ 沉淀的 F12511</td>
<td>80</td>
</tr>
<tr>
<td>分子扩散后的 F12511/γ－环糊精复合物</td>
<td>155</td>
</tr>
</tbody>
</table>

对比例 6: 通过 SAS 法/DMSO 产生的产物 F12511 的沉淀以及在 γ－环糊精中的包含

通过溶剂－抗溶剂 (SAS) 法，在 CO₂ 存在下，在 2 L 装有 1.37 L 料篮的高压釜中，连续地使 150 ml 产物 F12511（浓度：200 g/l）在 DMSO 中的溶液沉淀。溶剂泵的流速为 0.5 ml/min。选择高压釜内的温度和压力，使 CO₂ 的密度为 0.9。在已沉淀大约 135 ml 的溶液后，停止溶质的注入，接着停止 CO₂ 的注入，然后使系统轻轻地打开，以便不使超临界流体液

27
化。

在前一个步骤中沉淀的活性物质 1 g 与 6 g 的 γ－环糊精和 2.33 g 经过渗透处理的水混合，然后将该混合物放入 1.37 ml 的 Poral 料篮中，而该料篮又被放入 2 L 的沉淀高压釜中。

封闭该高压釜，但用超临界 CO₂ 使系统升压，以产生 300 bar 的静压力，而高压釜内的温度是 100℃。

分子扩散 16 小时后，将高压釜轻轻地打开。

<table>
<thead>
<tr>
<th>粉末的性质</th>
<th>溶解（μg/ml）</th>
</tr>
</thead>
<tbody>
<tr>
<td>沉淀前的 F12511</td>
<td>5</td>
</tr>
<tr>
<td>用超临界 CO₂ 沉淀的 F12511</td>
<td>57</td>
</tr>
<tr>
<td>分子扩散后的 F12511/γ－环糊精复合物</td>
<td>165</td>
</tr>
</tbody>
</table>

对比例 7：通过RESS 法产生的产物 F12511 在 γ－环糊精中的包合

将 40 g 的产物 F12511 放入 4 L 的料篮中，而该料篮又被放入 6 L 的沉淀高压釜中。活性物质用 CO₂ 和乙醇（5 质量％）的超临界混合物萃取，该物质在 120 bar 和 55℃下沉淀。3 小时后，停止 CO₂ 和乙醇的注入。

在前一个步骤中沉淀的活性物质 8.96 g 与 53.76 g 的 γ－环糊精和 20.87 g 经过渗透处理的水混合，然后将该混合物放入 4 L 的 Poral 料篮中，而该料篮又被放入 6 L 的沉淀高压釜中。

封闭该高压釜，并用超临界 CO₂ 使系统升压，以产生 300 bar 的静压力，而高压釜内的温度是 65℃。

分子扩散 16 小时后，将高压釜轻轻地打开。
<table>
<thead>
<tr>
<th>粉末的性质</th>
<th>溶解（μg/ml）</th>
</tr>
</thead>
<tbody>
<tr>
<td>沉淀前的 F12511</td>
<td>约 10</td>
</tr>
<tr>
<td>用超临界 CO₂沉淀的 F12511</td>
<td>8</td>
</tr>
<tr>
<td>分子扩散后的 F12511/γ一环糊精复合物</td>
<td>292</td>
</tr>
</tbody>
</table>

对比例 8：通过搅拌分子扩散产物 L0081 在 γ一环糊精中的包合
混合 4.0 g 的产物 L0081、24.0 g 的 γ一环糊精以及 9.3 g 的水。
将所得的混合物放置在 1 L 搅拌高压釜的底部。严密封闭该高压釜，并用超临界状态的 CO₂使系统升压至 300 bar。温度设定在 50℃±10℃。开始搅拌（400 rpm）过夜，同时维持所述压力和温度。一夜之后，停止加热和搅拌，并轻轻地使高压釜降压，然后与在相同条件下但不进行搅拌而得到的粉末进行比较。

<table>
<thead>
<tr>
<th>粉末的性质</th>
<th>溶解（μg/ml）</th>
</tr>
</thead>
<tbody>
<tr>
<td>通过分子扩散但不进行搅拌而得到的 L0081/γ一环糊精复合物</td>
<td>124</td>
</tr>
<tr>
<td>通过分子扩散以及搅拌而得到的 L0081/γ一环糊精复合物</td>
<td>334</td>
</tr>
</tbody>
</table>

结果的总结

以下表总结了所用的不同方法以及相应的溶解结果，并由此可推导出对于制造在含水介质中具有高溶解度的 F12511 产物最合适的方法。
<table>
<thead>
<tr>
<th>方法</th>
<th>对比例例1</th>
<th>对比例例2</th>
<th>对比例例3</th>
<th>对比例例4</th>
<th>对比例例5</th>
<th>对比例例4</th>
<th>对比例例5</th>
</tr>
</thead>
<tbody>
<tr>
<td>通过RESS的沉淀 *</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>通过SAS/DMSO的沉淀 *</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>通过SAS/DMSO的共同沉淀 **</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>通过SAS/EtOH的沉淀 *</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>常规结晶</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>搅拌下的分子扩散</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>无搅拌的分子扩散</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>洗涤</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>溶解率（μg/ml）</td>
<td>62</td>
<td>76</td>
<td>100</td>
<td>440</td>
<td>662</td>
<td>80</td>
<td>155</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>方法</th>
<th>对比例例6</th>
<th>对比例例6</th>
<th>对比例例7</th>
<th>对比例例7</th>
<th>对比例例8</th>
<th>对比例例8</th>
</tr>
</thead>
<tbody>
<tr>
<td>通过RESS的沉淀 *</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>通过SAS/DMSO的沉淀 *</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>通过SAS/DMSO的共同沉淀 **</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>通过SAS/EtOH的沉淀 *</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>常规结晶</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>搅拌下的分子扩散</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>无搅拌的分子扩散</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>洗涤</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>溶解率（μg/ml）</td>
<td>57</td>
<td>165</td>
<td>8</td>
<td>292</td>
<td>124</td>
<td>334</td>
</tr>
</tbody>
</table>

* 产物F12511单独沉淀

** 产物F12511与y环糊精溶液的共同沉淀
从这些结果可以看出，能够得到产物 F12511 在含水介质中具有最大溶解度的方法是组合以下步骤的方法：使用超临界流体产生物 F12511，有利的是通过共同沉淀产物 F12511 和 γ一环糊精，静态模式下的分子扩散，有利的是在搅拌下进行，然后洗涤。

对比试验 9

为证实其的确是一个整体上能够使我们得到最终结果的方法，而不是一个中间步骤，我们如上所述对各种混合物进行了溶解试验并得到以下结果：

<table>
<thead>
<tr>
<th></th>
<th>扩散前</th>
<th>扩散后</th>
</tr>
</thead>
<tbody>
<tr>
<td>F12511/γ一环糊精粗粉末</td>
<td>19 μ g/ml</td>
<td>142 μ g/ml</td>
</tr>
<tr>
<td>物理混合物</td>
<td></td>
<td></td>
</tr>
<tr>
<td>通过 SAS 结晶的 F12511/γ一环糊精粉末</td>
<td>69 μ g/ml</td>
<td>150 μ g/ml</td>
</tr>
<tr>
<td>单独的物理混合物</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F12511/γ一环糊精共同结晶的粉末</td>
<td>100 μ g/ml</td>
<td>671 μ g/ml</td>
</tr>
</tbody>
</table>

用其他活性物质、其他载体和其他溶剂的测试

为证实用 F12511 得到的结果，测试属于不同治疗类别的不同分子。

<table>
<thead>
<tr>
<th>活性成分</th>
<th>治疗类别</th>
</tr>
</thead>
<tbody>
<tr>
<td>布洛芬</td>
<td>抗炎药</td>
</tr>
<tr>
<td>奥美拉唑</td>
<td>抗溃疡药</td>
</tr>
<tr>
<td>辛伐他汀</td>
<td>降血脂</td>
</tr>
<tr>
<td>特非那定</td>
<td>抗组胺药</td>
</tr>
</tbody>
</table>
所研究粉末的制造条件

对于每种研究粉末使用以下方法：

一 所研究的活性成分和环糊精在溶剂中的溶解

二 在超临界 CO₂ 存在下通过 SAS 法充分混合所研究的活性成分和环糊精

三 干燥所得的粉末

四 取样（在某些情况下）

五 使粉末与经过渗透的水混合，然后在超临界压力下的 CO₂ 中包含

六 干燥所得的粉末

七 取样

在不同的溶剂和不同类型的载体上进行这些新分子的试验。各试验总结在以下表中：

<table>
<thead>
<tr>
<th>活性成分</th>
<th>环糊精</th>
<th>溶剂</th>
<th>活性成分的浓度 (g/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>酮洛芬</td>
<td>β</td>
<td>DMSO</td>
<td>25</td>
</tr>
<tr>
<td>奥美拉唑</td>
<td>γ</td>
<td>DMSO</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>γ</td>
<td>DMF</td>
<td>30</td>
</tr>
<tr>
<td>辛伐他汀</td>
<td>γ</td>
<td>DMSO</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>γ</td>
<td>DMF</td>
<td>15</td>
</tr>
<tr>
<td>特非那定</td>
<td>β</td>
<td>DMSO</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>β</td>
<td>DMF</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>甲基-β</td>
<td>乙醇</td>
<td>8</td>
</tr>
</tbody>
</table>

实施例 10：酮洛芬/β 一 环糊精/DMSO

操作条件
混合

<table>
<thead>
<tr>
<th>参数</th>
<th>值</th>
</tr>
</thead>
<tbody>
<tr>
<td>时间（h）</td>
<td>2</td>
</tr>
<tr>
<td>压力（MPa）</td>
<td>15</td>
</tr>
<tr>
<td>温度（K）</td>
<td>313</td>
</tr>
<tr>
<td>CO₂/溶剂的摩尔比</td>
<td>400</td>
</tr>
<tr>
<td>溶液的流速（ml/min）</td>
<td>1</td>
</tr>
</tbody>
</table>

干燥

<table>
<thead>
<tr>
<th>参数</th>
<th>值</th>
</tr>
</thead>
<tbody>
<tr>
<td>时间（h）</td>
<td>1</td>
</tr>
<tr>
<td>压力（MPa）</td>
<td>15</td>
</tr>
<tr>
<td>温度（K）</td>
<td>313</td>
</tr>
<tr>
<td>CO₂的流量（kg/h）</td>
<td>15</td>
</tr>
</tbody>
</table>

包含

<table>
<thead>
<tr>
<th>参数</th>
<th>值</th>
</tr>
</thead>
<tbody>
<tr>
<td>水的添加（%总质量）</td>
<td>25</td>
</tr>
<tr>
<td>时间（h）</td>
<td>16</td>
</tr>
<tr>
<td>压力（MPa）</td>
<td>15</td>
</tr>
<tr>
<td>温度（K）</td>
<td>333</td>
</tr>
</tbody>
</table>

粉末分析规程：溶解试验

操作条件

- 在 260 nm 波长下的 UV 分析

对照溶液

- 在水中制备标准溶液。确保保持 < 2 的吸光度。
分析的执行

在水中引入相当于 50 mg 活性成分的粉末，由此制备 50 ml 的酮洛芬水溶液。

在 37±0.5℃的水浴中，用搅拌棒在磁力搅拌下使粉末溶解。

搅拌 2 小时后取出 2 ml 的悬浮液，然后在 0.45 μm 的 Gelman GHP 过滤器上过滤。

进行 UV 分析，确保吸光度小于 2。如果不是，则进行稀释。

所得的结果

溶解 2 小时后，所测量的浓度（μ g/ml）如下：

<table>
<thead>
<tr>
<th>仅活性成分</th>
<th>整个方法后的粉末</th>
</tr>
</thead>
<tbody>
<tr>
<td>333</td>
<td>923</td>
</tr>
</tbody>
</table>

实施例 11：奥美拉唑/γ－环糊精/DMSO

操作条件

<table>
<thead>
<tr>
<th>混合</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>时间（h）</td>
<td>2</td>
</tr>
<tr>
<td>压力（MPa）</td>
<td>15</td>
</tr>
<tr>
<td>温度（K）</td>
<td>313</td>
</tr>
<tr>
<td>CO₂/溶剂的摩尔比</td>
<td>400</td>
</tr>
<tr>
<td>溶液的流速（ml/min）</td>
<td>1</td>
</tr>
</tbody>
</table>

干燥

<table>
<thead>
<tr>
<th>时间（h）</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>压力（MPa）</td>
<td>15</td>
</tr>
<tr>
<td>温度（K）</td>
<td>313</td>
</tr>
<tr>
<td>------------</td>
<td>-----</td>
</tr>
<tr>
<td>CO₂的流量（kg/h）</td>
<td>15</td>
</tr>
<tr>
<td>包含</td>
<td></td>
</tr>
<tr>
<td>水的添加（%总质量）</td>
<td>25</td>
</tr>
<tr>
<td>时间（h）</td>
<td>16</td>
</tr>
<tr>
<td>压力（MPa）</td>
<td>15</td>
</tr>
<tr>
<td>温度（K）</td>
<td>333</td>
</tr>
</tbody>
</table>

粉末分析规程：溶解试验

操作条件

在 296 nm 波长下的 UV 分析

对照溶液

在 1%（m/v）月桂基硫酸钠水溶液中制备标准溶液。确保保持 < 2 的吸光度。

分析的执行

在水中引入相当于 50 mg 活性成分的粉末，由此制备 50 ml 的奥美拉唑水溶液。

在 37±0.5℃的水浴中，用搅拌棒在磁力搅拌下使粉末溶解。

搅拌 2 小时后取出 2 ml 的悬浮液，然后在 0.45 μm 的 Gelman GHP 过滤器上过滤。

进行 UV 分析，确保吸光度小于 2。如果不是，则进行稀释。

所得的结果

溶解 2 小时后，所测量的浓度（μg/ml）如下：
<table>
<thead>
<tr>
<th>仅活性成分</th>
<th>整个方法后的粉末</th>
</tr>
</thead>
<tbody>
<tr>
<td>91</td>
<td>129</td>
</tr>
</tbody>
</table>

实施例 12：奥美拉唑/γ－环糊精/DMF

操作条件

<table>
<thead>
<tr>
<th>混合</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>时间（h）</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>压力（MPa）</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>温度（K）</td>
<td>313</td>
<td></td>
</tr>
<tr>
<td>CO₂/溶剂的摩尔比</td>
<td></td>
<td>400</td>
</tr>
<tr>
<td>溶液的流速（ml/min）</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

干燥

<table>
<thead>
<tr>
<th>时间（h）</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>压力（MPa）</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>温度（K）</td>
<td>313</td>
<td></td>
</tr>
<tr>
<td>CO₂的流量（kg/h）</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

包合

<table>
<thead>
<tr>
<th>水的添加（%总质量）</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>时间（h）</td>
<td>16</td>
</tr>
<tr>
<td>压力（MPa）</td>
<td>15</td>
</tr>
<tr>
<td>温度（K）</td>
<td>333</td>
</tr>
</tbody>
</table>

粉末分析规程：溶解试验

操作条件
在 296 nm 波长下的 UV 分析

对照溶液

在 1% (m/v) 月桂基硫酸钠水溶液中制备标准溶液。确保保持 < 2 的吸光度。

分析的执行

在水中引入相当于 50 mg 活性成分的粉末，由此制备 50 ml 的奥美拉唑水溶液。

在 37±0.5℃的水浴中，用搅拌棒在磁力搅拌下使粉末溶解。

搅拌 2 小时后取出 2 ml 的悬浮液，然后在 0.45 μm 的 Gelman GHP 过滤器上过滤。

进行 UV 分析，确保吸光度小于 2。如果不是，则进行稀释。

所得的结果

溶解 2 小时后，所测定的浓度（μg/ml）如下：

<table>
<thead>
<tr>
<th></th>
<th>仅活性成分</th>
<th>整个方法后的粉末</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>91</td>
<td>216</td>
</tr>
</tbody>
</table>

实施例 13：辛伐他汀/γ－环糊精/DMSO

操作参数

<table>
<thead>
<tr>
<th>混合</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>时间 (h)</td>
<td>2</td>
</tr>
<tr>
<td>压力 (MPa)</td>
<td>15</td>
</tr>
</tbody>
</table>
粉末分析规范：溶解试验

操作条件

在 248 nm 波长下的 UV 分析

对照溶液

在 1%（m/v）月桂基硫酸钠水溶液中制备标准溶液。确保保持 < 2
的吸光度。

分析的执行

在水中引入相当于 50 mg 活性成分的粉末，由此制备 50 ml 的辛伐
他汀水溶液。

在 37±0.5℃的水浴中，用搅拌棒在磁力搅拌下使粉末溶解。
搅拌 2 小时后取出 2 ml 的悬浮液，然后在 0.45 μm 的 Gelman GHP 过滤器上过滤。

进行 UV 分析，确保吸光度小于 2。如果不是，则进行稀释。

所得的结果

溶解 2 小时后，所测量的浓度（μg/ml）如下：

<table>
<thead>
<tr>
<th></th>
<th>仅活性成分</th>
<th>混合后的粉末</th>
<th>整个方法后的粉末</th>
</tr>
</thead>
<tbody>
<tr>
<td><1</td>
<td>23</td>
<td>300</td>
<td></td>
</tr>
</tbody>
</table>

实施例 14：辛伐他汀/γ－环糊精/DMF

操作参数

<table>
<thead>
<tr>
<th>混合</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>时间 (h)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>压力 (MPa)</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>温度 (K)</td>
<td>313</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO₂/溶剂的摩尔比</td>
<td>400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>溶液的流速 (ml/min)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

干燥

<table>
<thead>
<tr>
<th>时间 (h)</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>压力 (MPa)</td>
<td>15</td>
</tr>
<tr>
<td>温度 (K)</td>
<td>313</td>
</tr>
<tr>
<td>CO₂的流量 (kg/h)</td>
<td>15</td>
</tr>
</tbody>
</table>

包含

| 水的添加（%总质量） | 25 |

39
<table>
<thead>
<tr>
<th>时间（h）</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>压力（MPa）</td>
<td>15</td>
</tr>
<tr>
<td>温度（K）</td>
<td>333</td>
</tr>
</tbody>
</table>

粉末分析规程：溶解试验

操作条件

在 248 nm 波长下的 UV 分析

对照溶液

在 1%（m/v）月桂基硫酸钠水溶液中制备标准溶液。确保保持 < 2 的吸光度。

分析的执行

在水中引入相当于 50 mg 活性成分的粉末，由此制备 50 ml 的辛伐他汀水溶液。

在 37±0.5°C 的水浴中，用搅拌棒在磁力搅拌下使粉末溶解。

搅拌 2 小时后取出 2 ml 的悬浮液，然后在 0.45 μm 的 Gelman GHP 过滤器上过滤。

进行 UV 分析，确保吸光度小于 2。如果不是，则进行稀释。

所得的结果

溶解 2 小时后，所测量的浓度（μg/ml）如下：

<table>
<thead>
<tr>
<th>仅活性成分</th>
<th>混合后的粉末</th>
<th>整个方法后的粉末</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1</td>
<td>13</td>
<td>212</td>
</tr>
</tbody>
</table>
实施例 15：特非那定/β -环糊精/DMSO

操作参数

<table>
<thead>
<tr>
<th>混合</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>时间 (h)</td>
<td>2</td>
</tr>
<tr>
<td>压力 (MPa)</td>
<td>15</td>
</tr>
<tr>
<td>温度 (K)</td>
<td>313</td>
</tr>
<tr>
<td>CO₂/溶剂的摩尔比</td>
<td>400</td>
</tr>
<tr>
<td>溶液的流速 (ml/min)</td>
<td>1-1.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>干燥</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>时间 (h)</td>
<td>1</td>
</tr>
<tr>
<td>压力 (MPa)</td>
<td>15</td>
</tr>
<tr>
<td>温度 (K)</td>
<td>313</td>
</tr>
<tr>
<td>CO₂的流量 (kg/h)</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>包含</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>水的添加 (%总质量)</td>
<td>25</td>
</tr>
<tr>
<td>时间 (h)</td>
<td>16</td>
</tr>
<tr>
<td>压力 (MPa)</td>
<td>15</td>
</tr>
<tr>
<td>温度 (K)</td>
<td>333</td>
</tr>
</tbody>
</table>

粉末分析规程：溶解试验

操作条件

在 259 nm 波长下的 UV 分析

对照溶液

在 1% (m/v) 月桂基硫酸钠水溶液中制备标准溶液。确保保持 < 2
的吸光度。

分析的执行

在水中引入相当于 50 mg 活性成分的粉末，由此制备 50 ml 的特非那定水溶液。

在 37±0.5℃的水浴中，用搅拌棒在磁力搅拌下使粉末溶解。

搅拌 2 小时后取出 2 ml 的悬浮液，然后在 0.45 μm 的 Gelman GHP 过滤器上过滤。

进行 UV 分析，确保吸光度小于 2。如果不是，则进行稀释。

所得的结果

溶解 2 小时后，所测量的浓度（μg/ml）如下：

<table>
<thead>
<tr>
<th></th>
<th>仅活性成分</th>
<th>混合后的粉末</th>
<th>整个方法后的粉末</th>
</tr>
</thead>
<tbody>
<tr>
<td><1</td>
<td>290</td>
<td>990</td>
<td></td>
</tr>
</tbody>
</table>

实施例 16：特非那定/β-环糊精/DMF

操作参数

<table>
<thead>
<tr>
<th>混合</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>时间（h）</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>压力（MPa）</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>温度（K）</td>
<td>313</td>
<td></td>
</tr>
<tr>
<td>CO₂/溶剂的摩尔比</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>溶液的流速（ml/min）</td>
<td>1－1.2</td>
<td></td>
</tr>
</tbody>
</table>

干燥
时间（h）	1
压力（MPa）	15
温度（K）	313
CO₂的流量（kg/h）	15
包含	
水的添加（%总质量）	25
时间（h）	16
压力（MPa）	15
温度（K）	333

粉末分析规程：溶解试验

操作条件

在 259 nm 波长下的 UV 分析

对照溶液

在 1%（m/v）月桂基硫酸钠水溶液中制备标准溶液。确保保持 < 2 的吸光度。

分析的执行

在水中引入相当于 50 mg 活性成分的粉末，由此制备 50 ml 的特非那定水溶液。

在 37±0.5℃的水浴中，用搅拌棒在磁力搅拌下使粉末溶解。

搅拌 2 小时后取出 2 ml 的悬浮液，然后在 0.45 μm 的 Gelman GHP 过滤器上过滤。

进行 UV 分析，确保吸光度小于 2。如果不是，则进行稀释。
所得的结果

溶解2小时后，所测量的浓度（μg/ml）如下:

<table>
<thead>
<tr>
<th></th>
<th>仅活性成分</th>
<th>整个方法后的粉末</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><1</td>
<td>323</td>
</tr>
</tbody>
</table>

实施例17: 特非那定/甲基-β-环糊精/乙醇

操作参数

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>混合</td>
<td></td>
<td></td>
</tr>
<tr>
<td>时间（h）</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>压力（MPa）</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>温度（K）</td>
<td>313</td>
<td></td>
</tr>
<tr>
<td>CO₂/溶剂的摩尔比</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>溶液的流速（ml/min）</td>
<td>1－1.2</td>
<td></td>
</tr>
<tr>
<td>干燥</td>
<td></td>
<td></td>
</tr>
<tr>
<td>时间（h）</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>压力（MPa）</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>温度（K）</td>
<td>313</td>
<td></td>
</tr>
<tr>
<td>CO₂的流量（kg/h）</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>包含</td>
<td></td>
<td></td>
</tr>
<tr>
<td>水的添加（%总质量）</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>时间（h）</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>压力（MPa）</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>温度（K）</td>
<td>333</td>
<td></td>
</tr>
</tbody>
</table>
粉末分析规程：溶解试验

操作条件

在 259 nm 波长下的 UV 分析

对照溶液

在 1%（m/v）月桂基硫酸钠水溶液中制备标准溶液。确保始终保持 < 2 的吸光度。

分析的执行

在水中引入相当于 50 mg 活性成分的粉末，由此制备 50 ml 的特非那定水溶液。

在 37±0.5℃的水浴中，用搅拌棒在磁力搅拌下使粉末溶解。

搅拌 2 小时后取出 2 ml 的悬浮液，然后在 0.45μm 的 Gelman GHP 过滤器上过滤。

进行 UV 分析，确保吸光度小于 2。如果不是，则进行稀释。

所得的结果

溶解 2 小时后，所测量的浓度（μg/ml）如下：

<table>
<thead>
<tr>
<th>只活性成分</th>
<th>混合后的粉末</th>
<th>整个方法后的粉末</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1</td>
<td>420</td>
<td>552</td>
</tr>
</tbody>
</table>

以下表汇集了所有测试分子的各个溶解结果（μg/ml）：
<table>
<thead>
<tr>
<th>活性成分</th>
<th>溶剂</th>
<th>环糊精</th>
<th>2小时的溶解度</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>仅活性成分</td>
</tr>
<tr>
<td>F12511</td>
<td>DMSO</td>
<td>β</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>DMSO</td>
<td>β</td>
<td>333</td>
</tr>
<tr>
<td>奥美拉唑</td>
<td>DMSO</td>
<td>γ</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>DMF</td>
<td>γ</td>
<td>91</td>
</tr>
<tr>
<td>辛伐他汀</td>
<td>DMSO</td>
<td>γ</td>
<td><1</td>
</tr>
<tr>
<td></td>
<td>DMF</td>
<td>γ</td>
<td><1</td>
</tr>
<tr>
<td>特非那定</td>
<td>DMSO</td>
<td>β</td>
<td><1</td>
</tr>
<tr>
<td></td>
<td>DMF</td>
<td>β</td>
<td><1</td>
</tr>
<tr>
<td></td>
<td>乙醇</td>
<td>甲基-β</td>
<td><1</td>
</tr>
</tbody>
</table>

注：X表示未取样。

从以上结果可以看出，能够得到活性成分在含水介质中具有最大溶解度的方法是组合以下步骤的方法：混合活性成分和多孔载体，有利的是环糊精，进行分子扩散，然后干燥。在各种活性成分、各种类型的环糊精以及各种溶剂中都观察到了该性质。
图7