

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(10) International Publication Number

WO 2018/022888 A1

(43) International Publication Date
01 February 2018 (01.02.2018)(51) International Patent Classification:
C09K 5/04 (2006.01) *B60H 1/32* (2006.01)
F25B 9/00 (2006.01)Brook Drive, East Amherst, NY 14051 (US). **POTTKER, Gustavo**; 36 Wyeth Drive, Getzville, NY 14068 (US). **SMITH, Gregory, Laurence**; 7180 Woodgate Street, Niagara Falls, Ontario, L2J 4A6 (CA). **VERA BECERRA, Elizabet Del Carmen**; 112 Caspian Court, Amherst, NY 14228 (US). **ZOU, Yang**; 20 Peabody Street, Buffalo, NY 14210 (US). **CLOSE, Joshua**; 233 Towers Boulevard, Cheektowaga, NY 14227 (US).(21) International Application Number:
PCT/US2017/044182(22) International Filing Date:
27 July 2017 (27.07.2017)(25) Filing Language:
English(74) Agent: **POSILLICO, Joseph, F.**; Fox Rothschild LLP, 2000 Market Street; 20th Floor, Philadelphia, PA 19103 (US).(26) Publication Language:
English(30) Priority Data:
62/368,521 29 July 2016 (29.07.2016) US
62/502,231 05 May 2017 (05.05.2017) US
62/502,165 05 May 2017 (05.05.2017) US

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,

(71) Applicant: **HONEYWELL INTERNATIONAL INC.**
[US/US]; 115 Tabor Road, P.O. Box 377, Morris Plains, NJ 07950 (US).(72) Inventors: **SETHI, Ankit**; 347 Alberta Drive, Apt. 8, Buffalo, NY (US). **YANA MOTTA, Samuel, F.**; 5710 Field

(54) Title: HEAT TRANSFER COMPOSITIONS, METHODS AND SYSTEMS

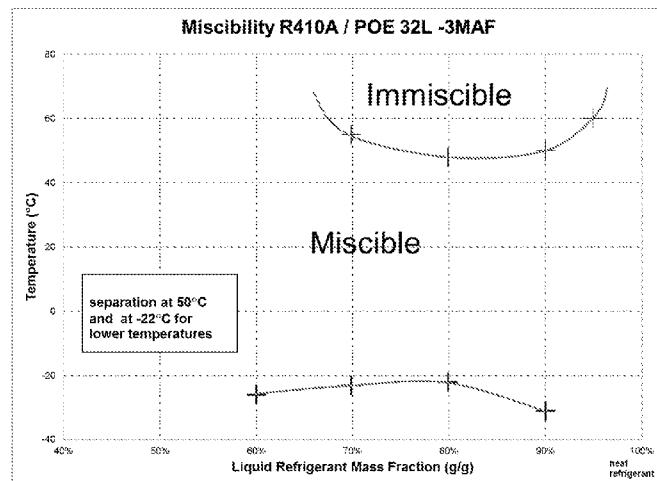


Figure 1: R410A Miscibility with POE-32 Oil

(57) Abstract: The present invention relates to a refrigerant composition, including difluoromethane (HFC- 32), pentafluoroethane (HFC-125), and trifluoriodomethane (CF₃I) for use in a heat exchange system, including air conditioning and refrigeration applications and in particular aspects to the use of such compositions as a replacement of the refrigerant R-410A for heating and cooling applications and to retrofitting heat exchange systems, including systems designed for use with R-410A.

SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (*unless otherwise indicated, for every kind of regional protection available*): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

- *with international search report (Art. 21(3))*
- *before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))*

HEAT TRANSFER COMPOSITIONS, METHODS AND SYSTEMS

Cross Reference to Related Applications

5 The present application claims the priority benefit of each of the following: U.S. Provisional Application No. 62/368,521, filed July 29, 2016; U.S. Provisional Application No. 62/502,231, filed May 5, 2017; and U.S. Provisional Application No. 62/502,165, filed May 5, 2017.

10 Field of the Invention

The present invention relates to compositions, methods and systems having utility in heat exchange systems, including air conditioning and refrigeration applications and in particular aspects to compositions useful in heat transfer systems of the type in which the refrigerant R-410A would have been used, that is as a replacement of the refrigerant R-410A for 15 heating and cooling applications and to retrofitting heat exchange systems, including systems designed for use with R-410A.

Background

Mechanical refrigeration systems, and related heat transfer devices, such as heat pumps 20 and air conditioners are well known in the art for industrial, commercial and domestic uses. Chlorofluorocarbons (CFCs) were developed in the 1930s as refrigerants for such systems. However, since the 1980s, the effect of CFCs on the stratospheric ozone layer has become 25 the focus of much attention. In 1987, a number of governments signed the Montreal Protocol to protect the global environment, setting forth a timetable for phasing out the CFC products. CFCs were replaced with more environmentally acceptable materials that contain hydrogen, namely the hydrochlorofluorocarbons (HCFCs).

One of the most commonly used hydrochlorofluorocarbon refrigerants was 30 chlorodifluoromethane (HCFC-22). However, subsequent amendments to the Montreal protocol accelerated the phase out of the CFCs and also scheduled the phase-out of HCFCs, including HCFC-22.

In response to the requirement for a non-flammable, non-toxic alternative to the CFCs and 35 HCFCs, industry has developed a number of hydrofluorocarbons (HFCs) which have zero

ozone depletion potential. R-410A (a 50:50 w/w blend of difluoromethane (HFC-32) and pentafluoroethane (HFC-125)) was adopted as the industry replacement for HCFC-22 in air conditioning and chiller applications as it does not contribute to ozone depletion. However, R-410A is not a drop-in replacement for R-22. Thus, the replacement of R-22 with R-410A required the redesign of major components within heat exchange systems, including the replacement and redesign of the compressor to accommodate the higher operating pressure and volumetric capacity of R-410A, when compared with R-22.

While R-410A has a more acceptable Ozone Depleting Potential (ODP) than R-22, the continued use of R-410A is problematic, due to its high Global Warming Potential of 2088. There is therefore a need in the art for the replacement of R-410A with a more environmentally acceptable alternative.

It is understood in the art that it is highly desirable for a replacement heat transfer fluid to possess a difficult to achieve mosaic of properties including excellent heat transfer properties and in particular heat transfer properties that are well matched to the needs of the particular application, chemical stability, low or no toxicity, non-flammability, lubricant miscibility and/or lubricant compatibility amongst others. In addition, any replacement for R-410A would ideally be a good match for the operating conditions of R-410A in order to avoid modification or redesign of the system. The development of a heat transfer fluid meeting all of these requirements, many of which are unpredictable is a significant challenge.

With regard to efficiency in use, it is important to note that a loss of refrigerant thermodynamic performance or energy efficiency may result in an increase in fossil fuel usage as a result of the increased demand for electrical energy. The use of such a refrigerant will therefore have a negative secondary environmental impact.

Flammability is considered to be an important, and in some cases, a critical property for many heat transfer applications. Thus, it is frequently beneficial to use compounds in such compositions to achieve, if possible a refrigerant, which is non-flammable. As used herein, the term "non-flammable" refers to compositions which are determined to be non-flammable in accordance with ASTM standard E-681-2001 at conditions described in ASHRAE Standard 34-2013 and described in Appendix B1 to ASHRAE Standard 34-2013.

It is critical for maintenance of system efficiency, and proper and reliable functioning of the compressor, that lubricant circulating in a vapour compression heat transfer system is returned to the compressor to perform its intended lubricating function. Otherwise, lubricant might accumulate and become lodged in the coils and piping of the system, including in the 5 heat transfer components. Furthermore, when lubricant accumulates on the inner surfaces of the evaporator, it lowers the heat exchange efficiency of the evaporator, and thereby reduces the efficiency of the system.

R-410A is currently used with polyol ester (POE) lubricating oil in air conditioning 10 applications, as R-410A is miscible with POE at temperatures experienced during use of such systems. However, R-410A is immiscible with POE at temperatures typically experienced during operation of low temperature refrigeration systems, and heat pump systems. Therefore, unless steps are taken to mitigate against this immiscibility, POE and R-410A cannot be used in low temperature refrigeration or heat pump systems.

15 It is therefore desirable to be able to provide compositions which are capable of being used as a replacement for R-410A in air conditioning applications. It is an additional benefit to be able to use the compositions of the invention in for example heat pump and low temperature refrigeration systems, wherein said compositions do not suffer the drawback of immiscibility 20 with POE at temperatures experienced during operation of these systems.

Summary

The present invention provides a refrigerant composition which can be used as a replacement for R-410A and which exhibits the desired mosaic of properties of excellent 25 heat transfer properties, chemical stability, low or no toxicity, non-flammability, lubricant miscibility and/or lubricant compatibility in combination with an acceptable Global Warming Potential (GWP).

According to the present invention, there is provided a refrigerant comprising at least about 30 97% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

from 43% by weight to 51% by weight difluoromethane (HFC-32),

from 3.5% by weight to 11.5% by weight pentafluoroethane (HFC-125), and

from 37.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I).

According to the present invention, there is provided a refrigerant comprising at least about 98.5% by weight of a blend of the following three compounds, with the following

5 percentages being based on the total weight of the following three compounds:

from 43% by weight to 51% by weight difluoromethane (HFC-32),

from 3.5% by weight to 11.5% by weight pentafluoroethane (HFC-125), and

from 37.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I).

10 According to the present invention, there is provided a refrigerant comprising at least about 99.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

from 43% by weight to 51% by weight difluoromethane (HFC-32),

from 3.5% by weight to 11.5% by weight pentafluoroethane (HFC-125), and

15 from 37.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I), with the percentages being based on the total weight of the these three compounds.

According to the present invention, there is provided a refrigerant consisting essentially of:

from 43% by weight to 51% by weight difluoromethane (HFC-32),

20 from 3.5% by weight to 11.5% by weight pentafluoroethane (HFC-125), and

from 37.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I), with the percentages being based on the total weight of the these three compounds.

According to the present invention, there is provided a refrigerant consisting of:

from 43% by weight to 51% by weight difluoromethane (HFC-32),
from 3.5% by weight to 11.5% by weight pentafluoroethane (HFC-125), and
from 37.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I), with the percentages being based on the total weight of the these three compounds.

5

Preferably, there is provided a refrigerant comprising at least about 97% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

from about 48% by weight to about 51% by weight difluoromethane (HFC-32),

10 from about 9.5% by weight to about 11.5% by weight pentafluoroethane (HFC-125), and

from about 36.5% by weight to about 40.5% by weight trifluoroiodomethane (CF₃I)

Preferably, there is provided a refrigerant comprising at least about 98.5% by weight of a blend of the following three compounds, with the following percentages being based on the 15 total weight of the following three compounds:

from about 48% by weight to about 51% by weight difluoromethane (HFC-32),

from about 9.5% by weight to about 11.5% by weight pentafluoroethane (HFC-125), and

from about 36.5% by weight to about 40.5% by weight trifluoroiodomethane (CF₃I).

20 Preferably, there is provided a refrigerant comprising at least about 99.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

from about 48% by weight to about 51% by weight difluoromethane (HFC-32),

from about 9.5% by weight to about 11.5% by weight pentafluoroethane (HFC-125), and

25 from about 36.5% by weight to about 40.5% by weight trifluoroiodomethane (CF₃I).

Preferably, the refrigerant consists essentially of:

from about 48% by weight to about 51% by weight difluoromethane (HFC-32),

from about 9.5% by weight to about 11.5% by weight pentafluoroethane (HFC-125), and

5 from about 36.5% by weight to about 40.5% by weight trifluoroiodomethane (CF₃I), with the percentages being based on the total weight of the these three compounds.

Preferably, the refrigerant consists of:

from about 48% by weight to about 51% by weight difluoromethane (HFC-32),

10 from about 9.5% by weight to about 11.5% by weight pentafluoroethane (HFC-125), and

from about 36.5% by weight to about 40.5% by weight trifluoroiodomethane (CF₃I), with the percentages being based on the total weight of the these three compounds.

15 More preferably, the refrigerant comprises at least about 97% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

about 50% by weight difluoromethane (HFC-32),

about 11.5% by weight pentafluoroethane (HFC-125), and

about 38.5% by weight trifluoroiodomethane (CF₃I).

20 More preferably, the refrigerant comprises at least about 98.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

about 50% by weight difluoromethane (HFC-32),

about 11.5% by weight pentafluoroethane (HFC-125), and

about 38.5% by weight trifluoriodomethane (CF₃I)

More preferably, the refrigerant comprises at least about 99.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight

5 of the following three compounds:

about 50% by weight difluoromethane (HFC-32),

about 11.5% by weight pentafluoroethane (HFC-125), and

about 38.5% by weight trifluoriodomethane (CF₃I)

10 More preferably, the refrigerant consists essentially of:

about 50% by weight difluoromethane (HFC-32),

about 11.5% by weight pentafluoroethane (HFC-125), and

about 38.5% by weight trifluoriodomethane (CF₃I), with the percentages being based on the total weight of the these three compounds.

15 More preferably, the refrigerant consists of:

about 50% by weight difluoromethane (HFC-32),

about 11.5% by weight pentafluoroethane (HFC-125), and

about 38.5% by weight trifluoriodomethane (CF₃I), with the percentages being based on the total weight of the these three compounds.

20 For the purposes of this invention, the refrigerant can consist essentially of or consist of the difluoromethane (HFC-32), pentafluoroethane (HFC-125), and trifluoriodomethane (CF₃I).

According to the present invention, there is provided a refrigerant comprising at least about 97% by weight of a blend of the following three compounds, with the following percentages

25 being based on the total weight of the following three compounds:

from 42% by weight to 48% by weight difluoromethane (HFC-32),
from 6.5% by weight to 12.5% by weight pentafluoroethane (HFC-125), and
from 39.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I).

5 According to the present invention, there is provided a refrigerant comprising at least about 98.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:
from 42% by weight to 48% by weight difluoromethane (HFC-32),
from 6.5% by weight to 12.5% by weight pentafluoroethane (HFC-125), and
10 from 39.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I).

According to the present invention, there is provided a refrigerant comprising at least about 99.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

15 from 42% by weight to 48% by weight difluoromethane (HFC-32),
from 6.5% by weight to 12.5% by weight pentafluoroethane (HFC-125), and
from 39.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I).

In addition, according to the present invention, the refrigerant consists essentially of:

20 from 42% by weight to 48% by weight difluoromethane (HFC-32),
from 6.5% by weight to 12.5% by weight pentafluoroethane (HFC-125), and
from 39.5% by weight to 45.5% by weight of trifluoroiodomethane (CF₃I), with the percentages being based on the total weight of the these three compounds.

In addition, according to the present invention, the refrigerant consists of:

from 42% by weight to 48% by weight difluoromethane (HFC-32),

from 6.5% by weight to 12.5% by weight pentafluoroethane (HFC-125), and

from 39.5% by weight to 45.5% by weight of trifluoriodomethane (CF₃I), with the percentages being based on the total weight of the these three compounds.

5 Preferably, the refrigerant comprises at least about 97% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

from about 43.5% by weight to about 48% by weight difluoromethane (HFC-32),

from about 10% by weight to about 12.5% by weight pentafluoroethane (HFC-125), and

10 from about 40% by weight to about 44% by weight trifluoriodomethane (CF₃I).

Preferably, the refrigerant comprises at least about 98.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

15 from about 43.5% by weight to about 48% by weight difluoromethane (HFC-32),

from about 10% by weight to about 12.5% by weight pentafluoroethane (HFC-125), and

from about 40% by weight to about 44% by weight trifluoriodomethane (CF₃I).

20 Preferably, the refrigerant comprises at least about 99.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

from about 43.5% by weight to about 48% by weight difluoromethane (HFC-32),

from about 10% by weight to about 12.5% by weight pentafluoroethane (HFC-125), and

from about 40% by weight to about 44% by weight trifluoriodomethane (CF₃I).

In addition, according to the present invention, the refrigerant consists essentially of:

from about 43.5% by weight to about 48% by weight trifluoromethane (HFC-32),

from about 10% by weight to about 12.5% by weight pentafluoroethane (HFC-125), and

from about 40% by weight to about 44% by weight trifluoroiodomethane (CF₃I), with the

5 percentages being based on the total weight of the these three compounds.

In addition, according to the present invention, the refrigerant consists of:

from about 43.5% by weight to about 48% by weight trifluoromethane (HFC-32),

from about 10% by weight to about 12.5% by weight pentafluoroethane (HFC-125), and

10 from about 40% by weight to about 44% by weight trifluoroiodomethane (CF₃I), with the percentages being based on the total weight of the these three compounds.

More preferably, the refrigerant comprises at least about 97% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

15 about 46% by weight difluoromethane (HFC-32),

about 12% by weight pentafluoroethane (HFC-125), and

about 42% by weight trifluoroiodomethane (CF₃I).

More preferably, the refrigerant comprises at least about 98.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

about 46% by weight difluoromethane (HFC-32),

about 12% by weight pentafluoroethane (HFC-125), and

about 42% by weight trifluoroiodomethane (CF₃I).

More preferably, the refrigerant comprises at least about 99.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

- 5 about 46% by weight difluoromethane (HFC-32),
about 12% by weight pentafluoroethane (HFC-125), and
about 42% by weight trifluoriodomethane (CF₃I).

In addition, according to the present invention, the refrigerant consists essentially of:

- 10 about 46% by weight difluoromethane (HFC-32),
about 12% by weight pentafluoroethane (HFC-125), and
about 42% by weight trifluoriodomethane (CF₃I), with the percentages being based on the total weight of the these three compounds.
- 15 In addition, according to the present invention, the refrigerant consists of:
about 46% by weight difluoromethane (HFC-32),
about 12% by weight pentafluoroethane (HFC-125), and
about 42% by weight trifluoriodomethane (CF₃I) with the percentages being based on the total weight of the following three compounds.

20

Brief Description of the Drawings

Figure 1 is a chart illustrating the miscibility of R410A with POE-32 Oil according to Example 15.

Detailed Description

Applicants have found that the refrigerant of the present invention is capable of providing exceptionally advantageous properties in connection with a combination of two or more properties selected from: heat transfer properties, chemical stability, low or no toxicity, non-flammability and/or lubricant compatibility in combination with an acceptable Global Warming Potential (GWP), especially in connection with the use of the refrigerant of the present invention as a replacement for R-410A.

For the purposes of this invention, the term "about" in relation to the amounts expressed in weight percent means that the amount of the component can vary by an amount of +/- 2% by weight, preferably +/- 1% by weight, more preferably 0.5% by weight. The term "about", in relation to temperatures means that the stated temperature can vary by an amount of +/- 5°C, preferably +/- 2°C and more preferably +/- 1°C, most preferably +/- 0.5°C.

A particular advantage of the refrigerants of the present invention is that they are non-flammable when tested in accordance with ASTM E681-2009 test procedure as required in ASHRAE Standard 34-2013 and described in Appendix B1 to ASHRAE Standard 34-2013. Flammability is defined as the ability of a composition to ignite and/or propagate a flame. It will be appreciated by the skilled person that the flammability of a refrigerant is an important characteristic for use in many important heat transfer applications. Thus, it is a desire in the art to provide a refrigerant composition which can be used as a replacement for R-410A which has excellent heat transfer properties, chemical stability, low or no toxicity, and/or lubricant compatibility and which maintains non-flammability in use. This requirement is met by the refrigerants of the present invention.

25

The refrigerant can be incorporated into a heat transfer composition. Thus, there is provided heat transfer compositions, methods and systems which utilize in a heat transfer system that is useful with the refrigerant R-410A a refrigerant that has the important characteristic of at once providing in said system and/or in connection with said methods a refrigerant that:

(a) has an efficiency (COP) from about 95% to about 105%, preferably about 100% to about 105% of the efficiency of R410A in said system and/or used in said method; and

(b) is non-flammable as determined in accordance with ASTM E681-2009 test procedure as required in ASHRAE Standard 34-2013 and described in Appendix B1 to

5 ASHRAE Standard 34-2013; such refrigerant consists essentially of:

from 43% by weight to 51% by weight difluoromethane (HFC-32),

from 3.5% by weight to 11.5% by weight pentafluoroethane (HFC-125), and

from 37.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I).

10 There is provided heat transfer compositions, methods and systems which utilize in a heat transfer system that is useful with the refrigerant R-410A a refrigerant that has the important characteristic of at once providing in said system and/or in connection with said methods a refrigerant that:

(a) has an efficiency (COP) from about 95% to about 105%, preferably about 100% to about 105% of the efficiency of R410A in said system and/or used in said method; and

(b) is non-flammable as determined in accordance with ASTM E681-2009 test procedure as required in ASHRAE Standard 34-2013 and described in Appendix B1 to ASHRAE Standard 34-2013; such refrigerant consists essentially of:

from about 48% by weight to about 51% by weight difluoromethane (HFC-32),

20 from about 9.5% by weight to about 11.5% by weight pentafluoroethane (HFC-125), and

from about 36.5% by weight to about 40.5% by weight trifluoroiodomethane (CF₃I).

25 There is provided heat transfer compositions, methods and systems which utilize in a heat transfer system that is useful with the refrigerant R-410A a refrigerant that has the important characteristic of at once providing in said system and/or in connection with said methods a refrigerant that:

(a) has an efficiency (COP) from about 95% to about 105%, preferably about 100% to about 105% of the efficiency of R410A in said system and/or used in said method;

(b) has a capacity from about 95% to about 105%, preferably about 98% to 105% of the capacity of R410A in said system and/or used in said method; and

5 (c) is non-flammable as determined in accordance with ASTM E681-2009 test procedure as required in ASHRAE Standard 34-2013 and described in Appendix B1 to ASHRAE Standard 34-2013; such refrigerant consists essentially of:

from 43% by weight to 51% by weight difluoromethane (HFC-32),

from 3.5% by weight to 11.5% by weight pentafluoroethane (HFC-125), and

10 from 37.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I).

There is provided heat transfer compositions, methods and systems which utilize in a heat transfer system that is useful with the refrigerant R-410A a refrigerant that has the important characteristic of at once providing in said system and/or in connection with said methods a refrigerant that:

(a) has an efficiency (COP) from about 95% to about 105%, preferably about 100% to about 105% of the efficiency of R410A in said system and/or used in said method;

(b) has a capacity from about 95% to about 105%, preferably about 98% to about 105% of the capacity of R410A in said system and/or used in said method; and

20 (c) is non-flammable as determined in accordance with ASTM E681-2009 test procedure as required in ASHRAE Standard 34-2013 and described in Appendix B1 to ASHRAE Standard 34-2013; such refrigerant consists essentially of:

from about 48% by weight to about 51% by weight difluoromethane (HFC-32),

from about 9.5% by weight to about 11.5% by weight pentafluoroethane (HFC-125), and

25 from about 36.5% by weight to about 40.5% by weight trifluoroiodomethane (CF₃I).

There is provided heat transfer compositions, methods and systems which utilize in a heat transfer system that is useful with the refrigerant R-410A a refrigerant that has the important characteristic of at once providing in said system and/or in connection with said methods a refrigerant that:

5 (a) has an efficiency (COP) from about 95% to about 105%, preferably about 100% to about 105% of the efficiency of R410A in said system and/or used in said method;

(b) has a capacity from about 95% to about 105%, preferably about 98% to about 105% of the capacity of R410A in said system and/or used in said method;

(c) is non-flammable as determined in accordance with ASTM E681-2009 test

10 procedure as required in ASHRAE Standard 34-2013 and described in Appendix B1 to ASHRAE Standard 34-2013;

(d) produces in the system and/or the methods a compressor discharge temperature that is not greater than 10°C higher than that of R-410A; and

15 (e) produces in the system and/or the methods a compressor pressure ratio that is from about 95% to about 105% of the compressor pressure ratio of R-410A; such refrigerant consists essentially of:

from 43% by weight to 51% by weight difluoromethane (HFC-32),

from 3.5% by weight to 11.5% by weight pentafluoroethane (HFC-125), and

from 37.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I).

20

There is provided heat transfer compositions, methods and systems which utilize in a heat transfer system that is useful with the refrigerant R-410A a refrigerant that has the important characteristic of at once providing in said system and/or in connection with said methods a refrigerant that:

25 (a) has an efficiency (COP) from about 95% to about 105%, preferably about 100% to about 105% of the efficiency of R410A in said system and/or used in said method;

(b) has a capacity from about 95% to about 105%, preferably about 98% to about 105% of the capacity of R410A in said system and/or used in said method;

(c) is non-flammable as determined in accordance with ASTM E681-2009 test procedure as required in ASHRAE Standard 34-2013 and described in Appendix B1 to ASHRAE Standard 34-2013;

(d) produces in the system and/or the methods a compressor discharge temperature 5 that is not greater than 10°C higher than that of R-410A; and

(e) produces in the system and/or the methods a compressor pressure ratio that is from about 95% to about 105% of the compressor pressure ratio of R-410A; such refrigerant consists essentially of:

from about 48% by weight to about 51% by weight difluoromethane (HFC-32),

10 from about 9.5% by weight to about 11.5% by weight pentafluoroethane (HFC-125), and

from about 36.5% by weight to about 40.5% by weight trifluoriodomethane (CF₃I).

There is further provided heat transfer compositions, methods and systems which utilize in a heat transfer system that is useful with the refrigerant R-410A a refrigerant that has the

15 important characteristic of at once providing in said system and/or in connection with said methods a refrigerant that:

(a) has an efficiency (COP) from about 95% to about 105%, preferably about 100% to about 105% of the efficiency of R410A in said system and/or used in said method; and

(b) is non-flammable as determined in accordance with ASTM E681-2009 test 20 procedure as required in ASHRAE Standard 34-2013 and described in Appendix B1 to ASHRAE Standard 34-2013; such refrigerant consists essentially of:

from 42% by weight to 48% by weight difluoromethane (HFC-32),

from 6.5% by weight to 12.5% by weight pentafluoroethane (HFC-125),

and from 39.5% by weight to 45.5% by weight trifluoriodomethane (CF₃I).

25

There is provided heat transfer compositions, methods and systems which utilize in a heat transfer system that is useful with the refrigerant R-410A a refrigerant that has the important

characteristic of at once providing in said system and/or in connection with said methods a refrigerant that:

(a) has an efficiency (COP) from about 95% to about 105%, preferably about 100% to about 105% of the efficiency of R410A in said system and/or used in said method; and

5 (b) is non-flammable as determined in accordance with ASTM E681-2009 test procedure as required in ASHRAE Standard 34-2013 and described in Appendix B1 to ASHRAE Standard 34-2013; such refrigerant consists essentially of:

from about 43.5% by weight to about 48% by weight difluoromethane (HFC-32),

from about 10% by weight to about 12.5% by weight pentafluoroethane (HFC-125),

10 and from about 40% by weight to about 44% by weight trifluoroiodomethane (CF₃I).

There is provided heat transfer compositions, methods and systems which utilize in a heat transfer system that is useful with the refrigerant R-410A a refrigerant that has the important characteristic of at once providing in said system and/or in connection with said methods a refrigerant that:

(a) has an efficiency (COP) from about 95% to about 105%, preferably about 100% to about 105% of the efficiency of R410A in said system and/or used in said method;

(b) has a capacity from about 95% to about 105%, preferably about 98% to about 105% of the capacity of R410A in said system and/or used in said method; and

20 (c) is non-flammable as determined in accordance with ASTM E681-2009 test procedure as required in ASHRAE Standard 34-2013 and described in Appendix B1 to ASHRAE Standard 34-2013; such refrigerant consists essentially of:

from 42% by weight to 48% by weight difluoromethane (HFC-32),

from 6.5% by weight to 12.5% by weight pentafluoroethane (HFC-125),

25 and from 39.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I).

There is provided heat transfer compositions, methods and systems which utilize in a heat transfer system that is useful with the refrigerant R-410A a refrigerant that has the important characteristic of at once providing in said system and/or in connection with said methods a refrigerant that:

5 (a) has an efficiency (COP) from about 95% to about 105%, preferably about 100% to about 105% of the efficiency of R410A in said system and/or used in said method;

(b) has a capacity from about 95% to about 105%, preferably about 98% to about 105% of the capacity of R410A in said system and/or used in said method; and

(c) is non-flammable as determined in accordance with ASTM E681-2009 test

10 procedure as required in ASHRAE Standard 34-2013 and described in Appendix B1 to ASHRAE Standard 34-2013; such refrigerant consists essentially of:

from about 43.5% by weight to about 48% by weight difluoromethane (HFC-32),

from about 10% by weight to about 12.5% by weight pentafluoroethane (HFC-125),

and from about 40% by weight to about 44% by weight trifluoriodomethane (CF₃I).

15

There is provided heat transfer compositions, methods and systems which utilize in a heat transfer system that is useful with the refrigerant R-410A a refrigerant that has the important characteristic of at once providing in said system and/or in connection with said methods a refrigerant that:

20 (a) has an efficiency (COP) from about 95% to about 105%, preferably about 100% to about 105% of the efficiency of R410A in said system and/or used in said method;

(b) has a capacity from about 95% to about 105%, preferably about 98% to about 105% of the capacity of R410A in said system and/or used in said method;

(c) is non-flammable as determined in accordance with ASTM E681-2009 test

25 procedure as required in ASHRAE Standard 34-2013 and described in Appendix B1 to ASHRAE Standard 34-2013;

(d) produces in the system and/or the methods a compressor discharge temperature that is not greater than 10°C higher than that of R-410A; and

(e) produces in the system and/or the methods a compressor pressure ratio that is from about 95% to about 105% of the compressor pressure ratio of R-410A; such refrigerant consists essentially of:

from 42% by weight to 48% by weight difluoromethane (HFC-32),

5 from 6.5% by weight to 12.5% by weight pentafluoroethane (HFC-125),

and from 39.5% by weight to 45.5% by weight trifluoriodomethane (CF₃I).

There is provided heat transfer compositions, methods and systems which utilize in a heat transfer system that is useful with the refrigerant R-401A a refrigerant that has the important
10 characteristic of at once providing in said system and/or in connection with said methods a refrigerant that:

(a) has an efficiency (COP) from about 95% to about 105%, preferably about 100% to about 105% of the efficiency of R410A in said system and/or used in said method;

15 (b) has a capacity from about 95% to about 105%, preferably about 98% to about 105% of the capacity of R410A in said system and/or used in said method;

(c) is non-flammable as determined in accordance with ASTM E681-2009 test procedure as required in ASHRAE Standard 34-2013 and described in Appendix B1 to ASHRAE Standard 34-2013;

20 (d) produces in the system and/or the methods a compressor discharge temperature that is not greater than 10°C higher than that of R-410A; and

(e) produces in the system and/or the methods a compressor pressure ratio that is from about 95% to about 105% of the compressor pressure ratio of R-410A; such refrigerant consists essentially of:

from about 43.5% by weight to about 48% by weight difluoromethane (HFC-32),

25 from about 10% by weight to about 12.5% by weight pentafluoroethane (HFC-125),

and from about 40% by weight to about 44% by weight trifluoriodomethane (CF₃I).

The refrigerant can be incorporated into a heat transfer composition.

The invention relates to a heat transfer composition comprising a refrigerant comprising at least about 97% by weight of a blend of the following three compounds, with the following

5 percentages being based on the total weight of the following three compounds:

from 43% by weight to 51% by weight difluoromethane (HFC-32),

from 3.5% by weight to 11.5% by weight pentafluoroethane (HFC-125), and

from 37.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I).

10 The invention further relates to a heat transfer composition comprising a refrigerant comprising at least about 98.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

from 43% by weight to 51% by weight difluoromethane (HFC-32),

from 3.5% by weight to 11.5% by weight pentafluoroethane (HFC-125), and

15 from 37.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I).

The invention further relates to a heat transfer composition comprising a refrigerant comprising at least about 99.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

20 from 43% by weight to 51% by weight difluoromethane (HFC-32),

from 3.5% by weight to 11.5% by weight pentafluoroethane (HFC-125), and

from 37.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I).

Thus, the invention further relates to a heat transfer composition comprising a refrigerant consisting essentially of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds::

from 43% by weight to 51% by weight difluoromethane (HFC-32),

5 from 3.5% by weight to 11.5% by weight pentafluoroethane (HFC-125), and

from 37.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I).

Thus, the invention further relates to a heat transfer composition comprising a refrigerant consisting of a blend of the following three compounds, with the following percentages being

10 based on the total weight of the following three compounds::

from 43% by weight to 51% by weight difluoromethane (HFC-32),

from 3.5% by weight to 11.5% by weight pentafluoroethane (HFC-125), and

from 37.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I).

15 Preferably, the heat transfer composition comprises a refrigerant comprising at least about 97% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

from about 48% by weight to about 51% by weight difluoromethane (HFC-32),

from about 9.5% by weight to about 11.5% by weight pentafluoroethane (HFC-125), and

20 from about 36.5% by weight to about 40.5% by weight trifluoroiodomethane (CF₃I).

The invention further relates to a heat transfer composition comprising a refrigerant comprising at least about 98.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

25 from about 48% to about 51% by weight difluoromethane (HFC-32),

from about 95% by weight to about 11.5% by weight pentafluoroethane (HFC-125), and from about 36.5% by weight to about 40.5% by weight trifluoriodomethane (CF₃I).

5 Preferably, the heat transfer composition comprises a refrigerant which consists essentially of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds::

from about 48% by weight to about 51% by weight difluoromethane (HFC-32),
from about 9.5% by weight to about 11.5% by weight pentafluoroethane (HFC-125), and
from about 36.5% by weight to about 40.5% by weight trifluoriodomethane (CF₃I).

10

Preferably, the heat transfer composition comprises a refrigerant which consists of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds::

from about 48% by weight to about 51% by weight difluoromethane (HFC-32),
15 from about 9.5% by weight to about 11.5% by weight pentafluoroethane (HFC-125), and
from about 36.5% by weight to about 40.5% by weight trifluoriodomethane (CF₃I).

20 The heat transfer composition may further comprise a refrigerant which comprises at least about 97% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

about 50% by weight difluoromethane (HFC-32),
about 11.5% by weight pentafluoroethane (HFC-125), and
about 38.5% by weight trifluoriodomethane (CF₃I).

More preferably the heat transfer composition comprises a refrigerant which comprises at least about 98.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

about 50% by weight difluoromethane (HFC-32),

5 about 11.5% by weight pentafluoroethane (HFC-125), and

about 38.5% by weight trifluoriodomethane (CF₃I).

More preferably the heat transfer composition comprises a refrigerant which comprises at least about 99.5% by weight of a blend of the following three compounds, with the following

10 percentages being based on the total weight of the following three compounds:

about 50% by weight difluoromethane (HFC-32),

about 11.5% by weight pentafluoroethane (HFC-125), and

about 38.5% by weight trifluoriodomethane (CF₃I).

15

More preferably, the heat transfer composition comprises a refrigerant which consists essentially of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

about 50% by weight difluoromethane (HFC-32),

20 about 11.5% by weight pentafluoroethane (HFC-125), and

about 38.5% by weight trifluoriodomethane (CF₃I).

More preferably, the heat transfer composition comprises a refrigerant which consists of a blend of the following three compounds, with the following percentages being based on the 25 total weight of the following three compounds:

about 50% by weight difluoromethane (HFC-32),
about 11.5% by weight pentafluoroethane (HFC-125), and
about 38.5% by weight trifluoroiodomethane (CF₃I).

5 The invention further relates to a heat transfer composition comprising a refrigerant comprising at least about 97% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:
from 42% by weight to 48% by weight difluoromethane (HFC-32),
from 6.5% by weight to 12.5% by weight pentafluoroethane (HFC-125), and
10 from 39.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I).

The invention further relates to a heat transfer composition comprising a refrigerant comprising at least about 98.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

15 from 42% by weight to 48% by weight difluoromethane (HFC-32),
from 6.5% by weight to 12.5% by weight pentafluoroethane (HFC-125), and
from 39.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I).

20 The invention further relates to a heat transfer composition comprising a refrigerant comprising at least about 99.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:
from 42% by weight to 48% by weight difluoromethane (HFC-32),
from 6.5% by weight to 12.5% by weight pentafluoroethane (HFC-125), and
from 39.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I).

The invention further relates to a heat transfer composition comprising a refrigerant consisting essentially of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

- 5 from 42% by weight to 48% by weight difluoromethane (HFC-32),
from 6.5% by weight to 12.5% by weight pentafluoroethane (HFC-125), and
from 39.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I).

The invention further relates to a heat transfer composition comprising a refrigerant 10 consisting of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

- from 42% by weight to 48% by weight difluoromethane (HFC-32),
from 6.5% by weight to 12.5% by weight pentafluoroethane (HFC-125), and
from 39.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I).

15

Preferably, the heat transfer composition comprises a refrigerant which comprises at least about 97% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

- from about 43.5% by weight to about 48% by weight difluoromethane (HFC-32),
20 from about 10% by weight to about 12.5% by weight pentafluoroethane (HFC-125), and
from about 40% by weight to about 44% by weight trifluoroiodomethane (CF₃I).

25 Preferably, the heat transfer composition comprises at least about 98.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

from about 43.5% by weight to about 48% by weight difluoromethane (HFC-32),
from about 10% by weight to about 12.5% by weight pentafluoroethane (HFC-125), and
from about 40% by weight to about 44% by weight trifluoroiodomethane (CF₃I).

5 Preferably, the heat transfer composition comprises at least about 99.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:
from about 43.5% by weight to about 48% by weight difluoromethane (HFC-32),
from about 10% by weight to about 12.5% by weight pentafluoroethane (HFC-125), and
10 from about 40% by weight to about 44% by weight trifluoroiodomethane (CF₃I).

Preferably, the heat transfer composition comprises a refrigerant which consists essentially of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

15 from about 43.5% by weight to about 48% by weight difluoromethane (HFC-32),
from about 10% by weight to about 12.5% by weight pentafluoroethane (HFC-125), and
from about 40% by weight to about 44% by weight trifluoroiodomethane (CF₃I).

20 Preferably, the heat transfer composition comprises a refrigerant which consists of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

from about 43.5% by weight to about 48% by weight difluoromethane (HFC-32),
from about 10% by weight to about 12.5% by weight pentafluoroethane (HFC-125), and
from about 40% by weight to about 44% by weight trifluoroiodomethane (CF₃I).

More preferably, the heat transfer composition comprises a refrigerant which comprises at least about 97% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

- 5 about 46% by weight difluoromethane (HFC-32),
about 12% by weight pentafluoroethane (HFC-125), and
about 42% by weight trifluoriodomethane (CF₃I).

More preferably, the heat transfer composition comprises a refrigerant which comprises at 10 least about 98.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

- about 46% by weight difluoromethane (HFC-32),
about 12% by weight pentafluoroethane (HFC-125), and
about 42% by weight trifluoriodomethane (CF₃I).

15

More preferably, the heat transfer composition comprises a refrigerant which comprises at least about 99.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

- about 46% by weight difluoromethane (HFC-32),
20 about 12% by weight pentafluoroethane (HFC-125), and
about 42% by weight trifluoriodomethane (CF₃I).

More preferably, the heat transfer composition comprises a refrigerant which consists 25 essentially of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

about 46% by weight difluoromethane (HFC-32),
about 12% by weight pentafluoroethane (HFC-125), and
about 42% by weight trifluoroiodomethane (CF₃I).

- 5 More preferably, the heat transfer composition comprises a refrigerant which consists of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:
 - about 46% by weight difluoromethane (HFC-32),
 - about 12% by weight pentafluoroethane (HFC-125), and
 - 10 about 42% by weight trifluoroiodomethane (CF₃I).

Preferably, the heat transfer composition comprises the refrigerant in an amount of greater than 40% by weight of the heat transfer composition or greater than about 50% by weight of the heat transfer composition, or greater than 70% by weight of the heat transfer

- 15 composition, or greater than 80% by weight of the heat transfer composition or greater than 90% by weight of the heat transfer composition. The heat transfer composition may consist essentially of the refrigerant.

- 20 The heat transfer compositions of the invention may include other components for the purpose of enhancing or providing certain functionality to the compositions. Such other components or additives may include one or more of lubricants, dyes, solubilizing agents, compatibilizers, stabilizers, antioxidants, corrosion inhibitors, extreme pressure additives and anti wear additives.

- 25 The heat transfer composition of the invention particularly comprises a refrigerant as discussed above and a stabilizer. Examples of preferred stabilizers include diene-based compounds and/or phenol-based compounds and/or phosphorus compounds and/or nitrogen compounds and/or epoxides selected from the group consisting of aromatic

epoxides, alkyl epoxides, alkyenyl epoxides.

The stabilizer preferably is provided in the heat transfer composition in an amount of from about 0.001% by weight to about 5 % by weight, preferably about 0.01% by weight to about

5 2% by weight, more preferably from about 0.1 to about 1% by weight. In each case, percentage by weight refers to the weight of the heat transfer composition.

The diene-based compounds include C3 to C15 dienes and to compounds formed by

reaction of any two or more C3 to C4 dienes. Preferably, the diene based compounds are

10 selected from the group consisting of allyl ethers, propadiene, butadiene, isoprene and terpenes. The diene-based compounds are preferably terpenes, which include but are not limited to terebene, retinal, geraniol, terpinene, delta-3 carene, terpinolene, phellandrene, fenchene, myrcene, farnesene, pinene, nerol, citral, camphor, menthol, limonene, nerolidol, phytol, carnosic acid and vitamin A₁. Preferably, the stabilizer is farnesene.

15

Preferred terpene stabilizers are disclosed in US Provisional Patent Application No.

60/638,003 filed on December 12, 2004, which is incorporated herein by reference.

The diene based compounds can be provided in the heat transfer composition in an amount

20 of from about 0.001% by weight to about 10 % by weight, preferably about 0.01% by weight to about 5% by weight more preferably from about 0.1 to about 2.5% by weight, and even more preferably from about 1 to about 2.5% by weight. In each case, percentage by weight refers to the weight of the heat transfer composition.

25 In addition, the diene based compounds can be provided in the heat transfer composition in an amount of from about 0.001% by weight to about 5% by weight, preferably about 0.01% by weight to about 2% by weight, more preferably from about 0.1 to about 1% by weight. In each case, percentage by weight refers to the weight of the heat transfer composition.

The diene based compounds are preferably provided in combination with a phosphorous compound.

The phosphorus compound can be a phosphite or a phosphate compound. For the

5 purposes of this invention, the phosphite compound can be a diaryl, dialkyl, triaryl and/or trialkyl phosphite, in particular one or more compounds selected from hindered phosphites, tris-(di-tert-butylphenyl)phosphite, di-n-octyl phosphite, iso-decyl diphenyl phosphite, triphenyl phosphite and diphenyl phosphite, particularly diphenyl phosphite.

10 The phosphate compounds can be a triaryl phosphate, trialkyl phosphate, alkyl mono acid phosphate, aryl diacid phosphate, amine phosphate, preferably triaryl phosphate and/or a trialkyl phosphate, particularly tri-n-butyl phosphate.

Preferably the stabilizer comprises farnesene and diphenyl phosphite.

15

The phosphorus compounds can be provided in the heat transfer composition in an amount of from about 0.001% by weight to about 10% by weight, more preferably about 0.01% by weight to about 5% by weight and even more preferably from about 0.1 to about 2.5% by weight, and even more preferably from about 1 to about 2.5% by weight. In each case, by weight refers to weight of the heat transfer composition.

In addition, the phosphorus compounds can be provided in the heat transfer composition in an amount of from about 0.001% by weight to about 5% by weight, preferably about 0.01% by weight to about 2% by weight, more preferably from about 0.1 to about 1% by weight. In each case, by weight refers to weight of the heat transfer composition.

25 The heat transfer composition of the invention comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 97% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

from 43% by weight to 51% by weight difluoromethane (HFC-32),

from 3.5% by weight to 11.5% by weight pentafluoroethane (HFC-125), and

from 37.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I)

and a stabilizer composition comprising a terpene and a phosphorus compound. The

5 phosphorus compound is preferably selected from a phosphate or a phosphite. Preferably, the stabilizer composition comprises a terpene and a phosphite, more preferably farnesene and diphenyl phosphite.

Additionally, the heat transfer composition of the invention comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at

10 least about 98.5% by weight or at least about 98.57% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

from 43% by weight to 51% by weight difluoromethane (HFC-32),

from 3.5% by weight to 11.5% by weight pentafluoroethane (HFC-125), and

15 from 37.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I)

and a stabilizer composition comprising a terpene and a phosphorus compound. The

phosphorus compound is preferably selected from a phosphate or a phosphite. Preferably, the stabilizer composition comprises a terpene and a phosphite more preferably farnesene and diphenyl phosphite.

20

Additionally, the heat transfer composition of the invention comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 99.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

25 from 43% by weight to 51% by weight difluoromethane (HFC-32),

from 3.5% by weight to 11.5% by weight pentafluoroethane (HFC-125), and

from 37.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I)

and a stabilizer composition comprising a terpene and a phosphorus compound. The phosphorus compound is preferably selected from a phosphate or a phosphite. Preferably, the stabilizer composition comprises a terpene and a phosphite more preferably farnesene and diphenyl phosphite.

5

Additionally, the heat transfer composition of the invention comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting essentially of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

10 from 43% by weight to 51% by weight difluoromethane (HFC-32),
from 3.5% by weight to 11.5% by weight pentafluoroethane (HFC-125), and
from 37.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I)

and a stabilizer composition comprising a terpene and a phosphorus compound. The phosphorus compound is preferably selected from a phosphate or a phosphite. Preferably,
15 the stabilizer composition comprises a terpene and a phosphite, more preferably farnesene and diphenyl phosphite.

20 Additionally, the heat transfer composition of the invention comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

from 43% by weight to 51% by weight difluoromethane (HFC-32),
from 3.5% by weight to 11.5% by weight pentafluoroethane (HFC-125), and
from 37.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I)

25 and a stabilizer composition comprising a terpene and a phosphorus compound. The phosphorus compound is preferably selected from a phosphate or a phosphite. Preferably, the stabilizer composition comprises a terpene and a phosphite, more preferably farnesene and diphenyl phosphite.

Additionally, the heat transfer composition of the invention comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 97% by weight of a blend of the following three compounds, with the following 5 percentages being based on the total weight of the following three compounds: from about 48% by weight to about 51% by weight difluoromethane (HFC-32), from about 9.5% by weight to about 11.5% by weight pentafluoroethane (HFC-125), and from about 36.5% by weight to about 40.5% by weight trifluoroiodomethane (CF₃I) and a stabilizer composition comprising a terpene and a phosphorus compound. The phosphorus compound is 10 preferably selected from a phosphate or a phosphite. Preferably, the stabilizer in such composition comprises a terpene and a phosphite, more preferably farnesene and diphenyl phosphite.

Additionally, the heat transfer composition of the invention comprises a refrigerant according 15 to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 98.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from about 48% by weight to about 51% by weight difluoromethane (HFC-32), from about 9.5% by weight to about 11.5% by weight pentafluoroethane (HFC-125), and from about 36.5% by 20 weight to about 40.5% by weight trifluoroiodomethane (CF₃I) and a stabilizer composition comprising a terpene and a phosphorus compound. The phosphorus compound is preferably selected from a phosphate or a phosphite. Preferably, the stabilizer in such composition comprises a terpene and a phosphite, more preferably farnesene and diphenyl phosphite.

25

Additionally, the heat transfer composition of the invention comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 99.5% by weight of a blend of the following three compounds, with the following 30 percentages being based on the total weight of the following three compounds: from about 48% by weight to about 51% by weight difluoromethane (HFC-32), from about 9.5% by weight to about 11.5% by weight pentafluoroethane (HFC-125), and from about 36.5% by

weight to about 40.5% by weight trifluoroiodomethane (CF₃I) and a stabilizer composition comprising a terpene and a phosphorus compound. The phosphorus compound is preferably selected from a phosphate or a phosphite. Preferably, the stabilizer in such composition comprises a terpene and a phosphite, more preferably farnesene and diphenyl phosphite.

5 Additionally, the heat transfer composition of the invention comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting essentially of a blend of the following three compounds, with the following percentages 10 being based on the total weight of the following three compounds: from about 48% by weight to about 51% by weight difluoromethane (HFC-32), from about 9.5% by weight to about 11.5% by weight pentafluoroethane (HFC-125), and from about 36.5% by weight to about 40.5% by weight trifluoroiodomethane (CF₃I) and a stabilizer composition comprising a terpene and a phosphorus compound. The phosphorus compound is preferably selected 15 from a phosphate or a phosphite. Preferably, the stabilizer in such composition comprises a terpene and a phosphite, more preferably farnesene and diphenyl phosphite.

20 Additionally, the heat transfer composition of the invention comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting of a blend of the following three compounds, with the following percentages being based on 25 the total weight of the following three compounds: from about 48% by weight to about 51% by weight difluoromethane (HFC-32), from about 9.5% by weight to about 11.5% by weight pentafluoroethane (HFC-125), and from about 36.5% by weight to about 40.5% by weight trifluoroiodomethane (CF₃I) and a stabilizer composition comprising a terpene and a phosphorus compound. The phosphorus compound is preferably selected from a phosphite or a phosphite. Preferably, the stabilizer in such composition comprises a terpene and a phosphite, more preferably farnesene and diphenyl phosphite.

30 Additionally, the heat transfer composition of the invention comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 97% by weight of a blend of the following three compounds, with the following

percentages being based on the total weight of the following three compounds: about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I) and a stabilizer composition comprising a terpene and a phosphorus compound selected from a phosphate or a phosphite. The phosphorus compound is preferably selected from a phosphate or a phosphite. Preferably, the stabilizer in such composition comprises a terpene and a phosphite, more preferably farnesene and diphenyl phosphite.

Additionally, the heat transfer composition of the invention comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 98.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I) and a stabilizer composition comprising a terpene and a phosphorus compound selected from a phosphate or a phosphite.

The phosphorus compound is preferably selected from a phosphate or a phosphite. Preferably, the stabilizer in such composition comprises a terpene and a phosphite, more preferably farnesene and diphenyl phosphite.

Additionally, the heat transfer composition of the invention comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 99.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I) and a stabilizer composition comprising a terpene and a phosphorus compound selected from a phosphate or a phosphite.

The phosphorus compound is preferably selected from a phosphate or a phosphite. Preferably, the stabilizer in such composition comprises a terpene and a phosphite, more preferably farnesene and diphenyl phosphite.

Additionally, the heat transfer composition of the invention can comprise a refrigerant consisting essentially of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I) and a stabilizer composition comprising a terpene and a phosphorus compound selected from a phosphate or a phosphite. The phosphorus compound is preferably selected from a phosphate or a phosphite. Preferably, the stabilizer in such composition comprises a terpene and a phosphite, more preferably farnesene and diphenyl phosphite.

10

Additionally, the heat transfer composition of the invention can comprise a refrigerant consisting of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I) and a stabilizer composition comprising a terpene and a phosphorus compound selected from a phosphate or a phosphite. The phosphorus compound is preferably selected from a phosphate or a phosphite. Preferably, the stabilizer in such composition comprises a terpene and a phosphite, more preferably farnesene and diphenyl phosphite.

15

Additionally, the heat transfer composition of the invention comprises a refrigerant according to any one of the refrigerants described herein but preferably those refrigerants comprising at least about 97% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

20

from 42% by weight to 48% by weight difluoromethane (HFC-32),
from 6.5% by weight to 12.5% by weight pentafluoroethane (HFC-125), and
from 39.5% by weight to 45.5% by weight trifluoriodomethane (CF₃I) and a stabilizer composition comprising a terpene and a phosphorous compound. The phosphorous compound is preferably selected from a phosphate or a phosphite. Preferably the stabilizer

in such a composition comprises a terpene and a phosphite, more preferably farnesene and diphenyl phosphite.

Additionally, the heat transfer composition of the invention comprises a refrigerant according to any one of the refrigerants described herein but preferably those refrigerants comprising

5 at least about 98.5% by weight of a blend of the following three compounds with the following percentages being based on the total weight of the following three compounds:

from 42% by weight to 48% by weight difluoromethane (HFC-32),

from 6.5% by weight to 12.5% by weight pentafluoroethane (HFC-125), and

from 39.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I) and a stabilizer

10 composition comprising a terpene and a phosphorous compound. The phosphorous compound is preferably selected from a phosphate or phosphite. Preferably the stabilizer in such a composition comprises a terpene and a phosphite, more preferably farnesene and diphenyl phosphite.

15 Additionally, the heat transfer composition of the invention comprises a refrigerant according to any one of the refrigerants described herein but preferably those refrigerants comprising at least about 99.5% by weight of a blend of the following three compounds with the following percentages being based on the total weight of the following three compounds:

from 42% by weight to 48% by weight difluoromethane (HFC-32),

20 from 6.5% by weight to 12.5% by weight pentafluoroethane (HFC-125), and

from 39.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I) and a stabilizer

composition comprising a terpene and a phosphorous compound. The phosphorous compound is preferably selected from a phosphate or phosphite. Preferably the stabilizer in such a composition comprises a terpene and a phosphite, more preferably farnesene and diphenyl phosphite.

Additionally, the heat transfer composition of the invention comprises a refrigerant according to any one of the refrigerants described herein but preferably those refrigerants consisting

essentially of a blend of the following three compounds with the following percentages being based on the total weight of the following three compounds:

from 42% by weight to 48% by weight difluoromethane (HFC-32),

from 6.5% by weight to 12.5% by weight pentafluoroethane (HFC-125), and

5 from 39.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I) and a stabilizer composition comprising a terpene and a phosphorous compound. The phosphorous compound is preferably selected from a phosphate or phosphite. Preferably the stabilizer in such a composition comprises a terpene and a phosphite, more preferably farnesene and diphenyl phosphite.

10

Additionally, the heat transfer composition of the invention comprises a refrigerant according to any one of the refrigerants described herein but preferably those refrigerants consisting of a blend of the following three compounds with the following percentages being based on the total weight of the following three compounds:

15 from 42% by weight to 48% by weight difluoromethane (HFC-32),

from 6.5% by weight to 12.5% by weight pentafluoroethane (HFC-125), and

from 39.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I) and a stabilizer composition comprising a terpene and a phosphorous compound. The phosphorous compound is preferably selected from a phosphate or phosphite. Preferably the stabilizer in 20 such a composition comprises a terpene and a phosphite, more preferably farnesene and diphenyl phosphite.

25 Additionally, the heat transfer composition of the invention comprises a refrigerant according to any one of the refrigerants described herein but preferably those refrigerants comprising at least about 97% by weight of the blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

from about 43.5% by weight to about 48% by weight difluoromethane (HFC-32), from about 10% by weight to about 12.5% by weight pentafluoroethane (HFC-125), and from about

40% by weight to about 44% by weight trifluoriodomethane (CF₃I) and a stabilizer composition comprising a terpene and a phosphorous compound. The phosphorous compound is preferably selected from a phosphate or a phosphite. Preferably the stabilizer in such a composition comprises a terpene and a phosphite, more preferably farnesene and

5 diphenyl phosphite.

Additionally, the heat transfer composition of the invention comprises a refrigerant according to any one of the refrigerants described herein but preferably those refrigerants comprising at least about 98.5% by weight of the blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

10 from about 43.5% by weight to about 48% by weight difluoromethane (HFC-32), from about 10% by weight to about 12.5% by weight pentafluoroethane (HFC-125), and from about 40% by weight to about 44% by weight trifluoriodomethane (CF₃I) and a stabilizer composition comprising a terpene and a phosphorous compound. The phosphorous compound is preferably selected from a phosphate or a phosphite. Preferably the stabilizer in such a composition comprises a terpene and a phosphite, more preferably farnesene and

15 diphenyl phosphite.

20 Additionally, the heat transfer composition of the invention comprises a refrigerant according to any one of the refrigerants described herein but preferably those refrigerants comprising at least about 99.5% by weight of the blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

from about 43.5% by weight to about 48% by weight difluoromethane (HFC-32), from about 10% by weight to about 12.5% by weight pentafluoroethane (HFC-125), and from about 40% by weight to about 44% by weight trifluoriodomethane (CF₃I) and a stabilizer

25 composition comprising a terpene and a phosphorous compound. The phosphorous compound is preferably selected from a phosphate or a phosphite. Preferably the stabilizer in such a composition comprises a terpene and a phosphite, more preferably farnesene and diphenyl phosphite.

30 Additionally, the heat transfer composition of the invention comprises a refrigerant according to any one of the refrigerants described herein but preferably those refrigerants consisting

essentially of the blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

from about 43.5% by weight to about 48% by weight difluoromethane (HFC-32), from about 10% by weight to about 12.5% by weight pentafluoroethane (HFC-125), and from about

5 40% by weight to about 44% by weight trifluoroiodomethane (CF₃I) and a stabilizer composition comprising a terpene and a phosphorous compound. The phosphorous compound is preferably selected from a phosphate or a phosphite. Preferably the stabilizer in such a composition comprises a terpene and a phosphite, more preferably farnesene and diphenyl phosphite.

10

Additionally, the heat transfer composition of the invention comprises a refrigerant according to any one of the refrigerants described herein but preferably those refrigerants consisting of the blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

15 from about 43.5% by weight to about 48% by weight difluoromethane (HFC-32), from about 10% by weight to about 12.5% by weight pentafluoroethane (HFC-125), and from about 40% by weight to about 44% by weight trifluoroiodomethane (CF₃I) and a stabilizer composition comprising a terpene and a phosphorous compound. The phosphorous compound is preferably selected from a phosphate or a phosphite. Preferably the stabilizer 20 in such a composition comprises a terpene and a phosphite, more preferably farnesene and diphenyl phosphite.

Additionally, the heat transfer composition of the invention comprises a refrigerant according to any one of the refrigerants described herein but preferably those refrigerants comprising at least about 97% by weight of the blend of the following three compounds, with the 25 following percentages being based on the total weight of the following three compounds:

about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoroiodomethane (CF₃I) and a stabilizer composition comprising a terpene and a phosphorous compound. The phosphorous compound is preferably selected from a phosphate or a phosphite. Preferably the stabilizer 30 in such a composition comprises a terpene and a phosphite, more preferably farnesene and diphenyl phosphite.

Additionally, the heat transfer composition of the invention comprises a refrigerant according to any one of the refrigerants described herein but preferably those refrigerants comprising at least about 98.5% by weight of the blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

5 about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoroiodomethane (CF₃I) and a stabilizer composition comprising a terpene and a phosphorous compound. The phosphorous compound is preferably selected from a phosphate or a phosphite. Preferably the stabilizer in such a composition comprises a terpene and a phosphite, more preferably farnesene and

10 diphenyl phosphite.

Additionally, the heat transfer composition of the invention comprises a refrigerant according to any one of the refrigerants described herein but preferably those refrigerants comprising at least about 99.5% by weight of the blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

15 about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoroiodomethane (CF₃I) and a stabilizer composition comprising a terpene and a phosphorous compound. The phosphorous compound is preferably selected from a phosphate or a phosphite. Preferably the stabilizer in such a composition comprises a terpene and a phosphite, more preferably farnesene and

20 diphenyl phosphite.

30 Additionally, the heat transfer composition of the invention can comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting essentially of about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoroiodomethane (CF₃I) and a stabilizer composition comprising a terpene and a phosphorus compound. The phosphorus compound is preferably selected from a phosphate or a phosphite. Preferably the stabilizer in such composition comprises a terpene and a phosphite, more preferably farnesene and diphenyl phosphite.

Additionally, the heat transfer composition of the invention can comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting of about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoriodomethane (CF₃I) and a stabilizer composition comprising a terpene and a phosphorus compound. The phosphorus compound is preferably selected from a phosphate or a phosphite. Preferably the stabilizer composition comprises a terpene and a phosphite, more preferably farnesene and diphenyl phosphite.

Preferably, the heat transfer composition comprises a refrigerant as set out above and a

stabilizer composition comprising farnesene and a phosphorous compound selected from a diaryl phosphite, a dialkyl phosphite, a triaryl phosphate or a trialkyl phosphate, more preferably diphenyl phosphite and/or tri-n-butyl phosphate. More preferably the heat transfer composition comprises a refrigerant as described herein and a stabilizer composition comprising farnesene and one or more of a diaryl phosphite or a dialkyl phosphite, more preferably diphenyl phosphite.

Alternatively, or in addition, the stabilizer is a nitrogen compound. For the purposes of this invention, the nitrogen compound can be one or more compounds selected from dinitrobenzene, nitrobenzene, nitromethane, nitrosobenzene, and TEMPO [(2,2,6,6-tetramethylpiperidin-1-yl)oxy]. Preferably, the stabilizer is dinitrobenzene.

Alternatively, or in addition, the nitrogen compound comprises an amine based compound.

For the purposes of this invention, the amine based compound can be one or more secondary or tertiary amines selected from diphenylamine, p-phenylenediamine, triethylamine, tributylamine, diisopropylamine, triisopropylamine and triisobutylamine. For the purposes of this invention, the amine based compound can be an amine antioxidant

such as a substituted piperidine compound, i.e. a derivative of an alkyl substituted piperidyl, piperidinyl, piperazinone, or alkoxy(piperidinyl), particularly one or more amine antioxidants selected from 2,2,6,6-tetramethyl-4-piperidone, 2,2,6,6-tetramethyl-4-piperidinol; bis-(1,2,2,6,6-pentamethylpiperidyl)sebacate; di(2,2,6,6-tetramethyl-4-piperidyl)sebacate, poly(N-hydroxyethyl-2,2,6,6-tetramethyl-4-hydroxy-piperidyl succinate; alkylated

paraphenylenediamines such as N-phenyl-N'-(1,3-dimethyl-butyl)-p-phenylenediamine or N,N'-di-sec-butyl-p-phenylenediamine and hydroxylamines such as tallow amines, methyl bis tallow amine and bis tallow amine, or phenol-alpha-naphthylamine or Tinuvin ® 765

(Ciba), BLS ® 1944 (Mayzo Inc) and BLS ® 1770 (Mayzo Inc). For the purposes of this invention, the amine based compound can be an alkylidiphenyl amine such as bis (nonylphenyl amine) or a dialkylamine such as (N-(1-methylethyl)-2-propylamine.

Alternatively, or in addition, the amine based compound can be one or more of phenyl-

5 alpha-naphthyl amine (PANA), alkyl-phenyl-alpha-naphthyl-amine (APANA) and bis (nonylphenyl) amine. Preferably the amine based compound is one or more of phenyl-alpha-naphthyl amine (PANA), alkyl-phenyl-alpha-naphthyl-amine (APANA) and bis (nonylphenyl) amine, more preferably phenyl-alpha-naphthyl amine (PANA).

The nitrogen compounds can be provided in the heat transfer composition in an amount of

10 from about 0.001% by weight to about 10% by weight, preferably about 0.01% by weight to about 5% by weight, more preferably from about 0.1 to about 2.5% by weight, and even more preferably from about 1 to about 2.5% by weight. In each case, percentage by weight refers to the weight of the heat transfer composition.

In addition, the nitrogen compounds can be provided in the heat transfer composition in an

15 amount of from about 0.001% by weight to about 5% by weight, preferably about 0.01% by weight to about 2% by weight, more preferably from about 0.1 to about 1% by weight. In each case, percentage by weight refers to the weight of the heat transfer composition.

In addition, the heat transfer composition of the invention comprises a refrigerant according

to any one of the refrigerants described here, but preferably those refrigerants comprising at

20 least about 97% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

from 43% by weight to 51% by weight difluoromethane (HFC-32),

from 3.5% by weight to 11.5% by weight pentafluoroethane (HFC-125), and

from 37.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I)

25 and a stabilizer composition comprising a nitrogen compound selected from dinitrobenzene, nitrobenzene, nitromethane, nitrosobenzene, TEMPO [(2,2,6,6-tetramethylpiperidin-1-yl)oxyl], a secondary or tertiary amine selected from diphenylamine, p-phenylenediamine, triethylamine, tributylamine, diisopropylamine, triisopropylamine and triisobutylamine; an amine antioxidant such as a substituted piperidine compound, i.e. a derivative of an alkyl 30 substituted piperidyl, piperidinyl, piperazinone, or alkyoxypiperidinyl, selected from 2,2,6,6-

tetramethyl-4-piperidone, 2,2,6,6-tetramethyl-4-piperidinol; bis-(1,2,2,6,6-pentamethylpiperidyl)sebacate; di(2,2,6,6-tetramethyl-4-piperidyl)sebacate, poly(N-hydroxyethyl-2,2,6,6-tetramethyl-4-hydroxy-piperidyl succinate; alkylated paraphenylenediamines such as N-phenyl-N'-(1,3-dimethyl-butyl)-p-phenylenediamine or

5 N,N'-di-sec-butyl-p-phenylenediamine and hydroxylamines such as tallow amines, methyl bis tallow amine and bis tallow amine, or phenol-alpha-naphthylamine or Tinuvin ® 765 (Ciba), BLS ® 1944 (Mayzo Inc) and BLS ® 1770 (Mayzo Inc); an alkylidiphenyl amine such as bis (nonylphenyl amine), a dialkylamine such as (N-(1-methylethyl)-2-propylamine or phenyl-alpha-naphthyl amine (PANA), alkyl-phenyl-alpha-naphthyl-amine (APANA) and bis

10 (nonylphenyl) amine, preferably phenyl-alpha-naphthyl amine (PANA), alkyl-phenyl-alpha-naphthyl-amine (APANA) and bis (nonylphenyl) amine, more preferably phenyl-alpha-naphthyl amine (PANA).

In addition, the heat transfer composition of the invention comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at

15 least about 98.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

from 43% by weight to 51% by weight difluoromethane (HFC-32),

from 3.5% by weight to 11.5% by weight pentafluoroethane (HFC-125), and

from 37.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I)

20 and a stabilizer composition comprising a nitrogen compound selected from dinitrobenzene, nitrobenzene, nitromethane, nitrosobenzene, TEMPO [(2,2,6,6-tetramethylpiperidin-1-yl)oxyl], a secondary or tertiary amine selected from diphenylamine, p-phenylenediamine, triethylamine, tributylamine, diisopropylamine, triisopropylamine and triisobutylamine; an amine antioxidant such as a substituted piperidine compound, i.e. a derivative of an alkyl substituted piperidyl, piperidinyl, piperazinone, or alkoxy(piperidinyl, selected from 2,2,6,6-tetramethyl-4-piperidone, 2,2,6,6-tetramethyl-4-piperidinol; bis-(1,2,2,6,6-pentamethylpiperidyl)sebacate; di(2,2,6,6-tetramethyl-4-piperidyl)sebacate, poly(N-hydroxyethyl-2,2,6,6-tetramethyl-4-hydroxy-piperidyl succinate; alkylated paraphenylenediamines such as N-phenyl-N'-(1,3-dimethyl-butyl)-p-phenylenediamine or

25 N,N'-di-sec-butyl-p-phenylenediamine and hydroxylamines such as tallow amines, methyl bis tallow amine and bis tallow amine, or phenol-alpha-naphthylamine or Tinuvin ® 765

30 N,N'-di-sec-butyl-p-phenylenediamine and hydroxylamines such as tallow amines, methyl bis tallow amine and bis tallow amine, or phenol-alpha-naphthylamine or Tinuvin ® 765

(Ciba), BLS ® 1944 (Mayzo Inc) and BLS ® 1770 (Mayzo Inc); an alkylidiphenyl amine such as bis (nonylphenyl amine), a dialkylamine such as (N-(1-methylethyl)-2-propylamine or phenyl-alpha-naphthyl amine (PANA), alkyl-phenyl-alpha-naphthyl-amine (APANA) and bis (nonylphenyl) amine, preferably phenyl-alpha-naphthyl amine (PANA), alkyl-phenyl-alpha-
5 naphthyl-amine (APANA) and bis (nonylphenyl) amine, more preferably phenyl-alpha-naphthyl amine (PANA).

In addition, the heat transfer composition of the invention comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at
10 least about 99.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

from 43% by weight to 51% by weight difluoromethane (HFC-32),

from 3.5% by weight to 11.5% by weight pentafluoroethane (HFC-125), and

from 37.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I)

15 and a stabilizer composition comprising a nitrogen compound selected from dinitrobenzene, nitrobenzene, nitromethane, nitrosobenzene, TEMPO [(2,2,6,6-tetramethylpiperidin-1-yl)oxyl], a secondary or tertiary amine selected from diphenylamine, p-phenylenediamine, triethylamine, tributylamine, diisopropylamine, triisopropylamine and triisobutylamine; an
amine antioxidant such as a substituted piperidine compound, i.e. a derivative of an alkyl
20 substituted piperidyl, piperidinyl, piperazinone, or alkyoxypiperidinyl, selected from 2,2,6,6-tetramethyl-4-piperidone, 2,2,6,6-tetramethyl-4-piperidinol; bis-(1,2,2,6,6-pentamethylpiperidyl)sebacate; di(2,2,6,6-tetramethyl-4-piperidyl)sebacate, poly(N-hydroxyethyl-2,2,6,6-tetramethyl-4-hydroxy-piperidyl succinate; alkylated
25 paraphenylenediamines such as N-phenyl-N'-(1,3-dimethyl-butyl)-p-phenylenediamine or N,N'-di-sec-butyl-p-phenylenediamine and hydroxylamines such as tallow amines, methyl bis tallow amine and bis tallow amine, or phenol-alpha-naphthylamine or Tinuvin ® 765
(Ciba), BLS ® 1944 (Mayzo Inc) and BLS ® 1770 (Mayzo Inc); an alkylidiphenyl amine such as bis (nonylphenyl amine), a dialkylamine such as (N-(1-methylethyl)-2-propylamine or phenyl-alpha-naphthyl amine (PANA), alkyl-phenyl-alpha-naphthyl-amine (APANA) and bis
30 (nonylphenyl) amine, preferably phenyl-alpha-naphthyl amine (PANA), alkyl-phenyl-alpha-

naphthyl-amine (APANA) and bis (nonylphenyl) amine, more preferably phenyl-alpha-naphthyl amine (PANA).

In addition, the heat transfer composition of the invention comprises a refrigerant according
5 to any one of the refrigerants described here, but preferably those refrigerants consisting
essentially of a blend of the following three compounds, with the following percentages
being based on the total weight of the following three compounds:

from 43% by weight to 51% by weight difluoromethane (HFC-32),

from 3.5% by weight to 11.5% by weight pentafluoroethane (HFC-125), and

10 from 37.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I)

and a stabilizer composition comprising a nitrogen compound selected from dinitrobenzene, nitrobenzene, nitromethane, nitrosobenzene, TEMPO [(2,2,6,6-tetramethylpiperidin-1-yl)oxyl], a secondary or tertiary amine selected from diphenylamine, p-phenylenediamine, triethylamine, tributylamine, diisopropylamine, triisopropylamine and triisobutylamine; an

15 amine antioxidant such as a substituted piperidine compound, i.e. a derivative of an alkyl substituted piperidyl, piperidinyl, piperazinone, or alkyoxypiperidinyl, selected from 2,2,6,6-tetramethyl-4-piperidone, 2,2,6,6-tetramethyl-4-piperidinol; bis-(1,2,2,6,6-pentamethylpiperidyl)sebacate; di(2,2,6,6-tetramethyl-4-piperidyl)sebacate, poly(N-

hydroxyethyl-2,2,6,6-tetramethyl-4-hydroxy-piperidyl succinate; alkylated

20 paraphenylenediamines such as N-phenyl-N'-(1,3-dimethyl-butyl)-p-phenylenediamine or N,N'-di-sec-butyl-p-phenylenediamine and hydroxylamines such as tallow amines, methyl bis tallow amine and bis tallow amine, or phenol-alpha-naphthylamine or Tinuvin ® 765 (Ciba), BLS ® 1944 (Mayzo Inc) and BLS ® 1770 (Mayzo Inc); an alkyl diphenyl amine such as bis (nonylphenyl amine), a dialkylamine such as (N-(1-methylethyl)-2-propylamine or

25 phenyl-alpha-naphthyl amine (PANA), alkyl-phenyl-alpha-naphthyl-amine (APANA) and bis (nonylphenyl) amine, preferably phenyl-alpha-naphthyl amine (PANA), alkyl-phenyl-alpha-naphthyl-amine (APANA) and bis (nonylphenyl) amine, more preferably phenyl-alpha-naphthyl amine (PANA).

In addition, the heat transfer composition of the invention comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

5 from 43% by weight to 51% by weight difluoromethane (HFC-32),
from 3.5% by weight to 11.5% by weight pentafluoroethane (HFC-125), and
from 37.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I)
and a stabilizer composition comprising a nitrogen compound selected from dinitrobenzene, nitrobenzene, nitromethane, nitrosobenzene, TEMPO [(2,2,6,6-tetramethylpiperidin-1-yl)oxyl], a secondary or tertiary amine selected from diphenylamine, p-phenylenediamine, triethylamine, tributylamine, diisopropylamine, triisopropylamine and triisobutylamine; an amine antioxidant such as a substituted piperidine compound, i.e. a derivative of an alkyl substituted piperidyl, piperidinyl, piperazinone, or alkyoxypiperidinyl, selected from 2,2,6,6-tetramethyl-4-piperidone, 2,2,6,6-tetramethyl-4-piperidinol; bis-(1,2,2,6,6-pentamethylpiperidyl)sebacate; di(2,2,6,6-tetramethyl-4-piperidyl)sebacate, poly(N-hydroxyethyl-2,2,6,6-tetramethyl-4-hydroxy-piperidyl succinate; alkylated paraphenylenediamines such as N-phenyl-N'-(1,3-dimethyl-butyl)-p-phenylenediamine or N,N'-di-sec-butyl-p-phenylenediamine and hydroxylamines such as tallow amines, methyl bis tallow amine and bis tallow amine, or phenol-alpha-naphthylamine or Tinuvin ® 765 (Ciba), BLS ® 1944 (Mayzo Inc) and BLS ® 1770 (Mayzo Inc); an alkyl diphenyl amine such as bis (nonylphenyl amine), a dialkylamine such as (N-(1-methylethyl)-2-propylamine or phenyl-alpha-naphthyl amine (PANA), alkyl-phenyl-alpha-naphthyl-amine (APANA) and bis (nonylphenyl) amine, preferably phenyl-alpha-naphthyl amine (PANA), alkyl-phenyl-alpha-naphthyl-amine (APANA) and bis (nonylphenyl) amine, more preferably phenyl-alpha-naphthyl amine (PANA).

The heat transfer composition of the invention can comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 97% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: of from about 48% by weight to about 51% by weight difluoromethane (HFC-32), from about 9.5%

by weight to about 11.5% by weight pentafluoroethane (HFC-125), and from about 36.5% by weight to about 40.5% by weight trifluoriodomethane (CF₃I) and a stabilizer composition comprising a nitrogen compound selected from dinitrobenzene, nitrobenzene, nitromethane, nitrosobenzene, and TEMPO [(2,2,6,6-tetramethylpiperidin-1-yl)oxyl]; a

5 secondary or tertiary amine selected from diphenylamine, p-phenylenediamine, triethylamine, tributylamine, diisopropylamine, triisopropylamine and triisobutylamine; an amine antioxidant such as a substituted piperidine compound, i.e. a derivative of an alkyl substituted piperidyl, piperidinyl, piperazinone, or alkyoxypiperidinyl, selected from 2,2,6,6-tetramethyl-4-piperidone, 2,2,6,6-tetramethyl-4-piperidinol; bis-(1,2,2,6,6-

10 pentamethylpiperidyl)sebacate; di(2,2,6,6-tetramethyl-4-piperidyl)sebacate, poly(N-hydroxyethyl-2,2,6,6-tetramethyl-4-hydroxy-piperidyl succinate; alkylated paraphenylenediamines such as N-phenyl-N'-(1,3-dimethyl-butyl)-p-phenylenediamine or N,N'-di-sec-butyl-p-phenylenediamine and hydroxylamines such as tallow amines, methyl bis tallow amine and bis tallow amine, or phenol-alpha-naphthylamine or Tinuvin ® 765

15 (Ciba), BLS ® 1944 (Mayzo Inc) and BLS ® 1770 (Mayzo Inc); an alkylidiphenyl amine such as bis (nonylphenyl amine) a dialkylamine such as (N-(1-methylethyl)-2-propylamine or phenyl-alpha-naphthyl amine (PANA), alkyl-phenyl-alpha-naphthyl-amine (APANA) and bis (nonylphenyl) amine, preferably phenyl-alpha-naphthyl amine (PANA), alkyl-phenyl-alpha-naphthyl-amine (APANA) and bis (nonylphenyl) amine, more preferably phenyl-alpha-

20 naphthyl amine (PANA).

The heat transfer composition of the invention can comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 98.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: of from about 48% by weight to about 51% by weight difluoromethane (HFC-32), from about 9.5% by weight to about 11.5% by weight pentafluoroethane (HFC-125), and from about 36.5% by weight to about 40.5% by weight trifluoriodomethane (CF₃I) and a stabilizer composition comprising a nitrogen compound selected from dinitrobenzene, nitrobenzene, nitromethane, nitrosobenzene, and TEMPO [(2,2,6,6-tetramethylpiperidin-1-yl)oxyl]; a

25 secondary or tertiary amine selected from diphenylamine, p-phenylenediamine, triethylamine, tributylamine, diisopropylamine, triisopropylamine and triisobutylamine; an amine antioxidant such as a substituted piperidine compound, i.e. a derivative of an alkyl substituted piperidyl, piperidinyl, piperazinone, or alkyoxypiperidinyl, selected from 2,2,6,6-

30

tetramethyl-4-piperidone, 2,2,6,6-tetramethyl-4-piperidinol; bis-(1,2,2,6,6-pentamethylpiperidyl)sebacate; di(2,2,6,6-tetramethyl-4-piperidyl)sebacate, poly(N-hydroxyethyl-2,2,6,6-tetramethyl-4-hydroxy-piperidyl succinate; alkylated paraphenylenediamines such as N-phenyl-N'-(1,3-dimethyl-butyl)-p-phenylenediamine or

5 N,N'-di-sec-butyl-p-phenylenediamine and hydroxylamines such as tallow amines, methyl bis tallow amine and bis tallow amine, or phenol-alpha-naphthylamine or Tinuvin ® 765 (Ciba), BLS ® 1944 (Mayzo Inc) and BLS ® 1770 (Mayzo Inc); an alkylidiphenyl amine such as bis (nonylphenyl amine) a dialkylamine such as (N-(1-methylethyl)-2-propylamine or phenyl-alpha-naphthyl amine (PANA), alkyl-phenyl-alpha-naphthyl-amine (APANA) and bis

10 (nonylphenyl) amine, preferably phenyl-alpha-naphthyl amine (PANA), alkyl-phenyl-alpha-naphthyl-amine (APANA) and bis (nonylphenyl) amine, more preferably phenyl-alpha-naphthyl amine (PANA).

The heat transfer composition of the invention can comprise a refrigerant according to any

15 one of the refrigerants described here, but preferably those refrigerants comprising at least about 99.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from about 48% by weight to about 51% by weight difluoromethane (HFC-32), from about 9.5% by weight to about 11.5% by weight pentafluoroethane (HFC-125), and from about 36.5% by

20 weight to about 40.5% by weight trifluoriodomethane (CF₃I) and a stabilizer composition comprising a nitrogen compound selected from dinitrobenzene, nitrobenzene, nitromethane, nitrosobenzene, and TEMPO [(2,2,6,6-tetramethylpiperidin-1-yl)oxyl]; a secondary or tertiary amine selected from diphenylamine, p-phenylenediamine, triethylamine, tributylamine, diisopropylamine, triisopropylamine and triisobutylamine; an

25 amine antioxidant such as a substituted piperidine compound, i.e. a derivative of an alkyl substituted piperidyl, piperidinyl, piperazinone, or alkoxyppiperidinyl, selected from 2,2,6,6-tetramethyl-4-piperidone, 2,2,6,6-tetramethyl-4-piperidinol; bis-(1,2,2,6,6-pentamethylpiperidyl)sebacate; di(2,2,6,6-tetramethyl-4-piperidyl)sebacate, poly(N-hydroxyethyl-2,2,6,6-tetramethyl-4-hydroxy-piperidyl succinate; alkylated

30 paraphenylenediamines such as N-phenyl-N'-(1,3-dimethyl-butyl)-p-phenylenediamine or N,N'-di-sec-butyl-p-phenylenediamine and hydroxylamines such as tallow amines, methyl bis tallow amine and bis tallow amine, or phenol-alpha-naphthylamine or Tinuvin ® 765 (Ciba), BLS ® 1944 (Mayzo Inc) and BLS ® 1770 (Mayzo Inc); an alkylidiphenyl amine such

as bis (nonylphenyl amine) a dialkylamine such as (N-(1-methylethyl)-2-propylamine or phenyl-alpha-naphthyl amine (PANA), alkyl-phenyl-alpha-naphthyl-amine (APANA) and bis (nonylphenyl) amine, preferably phenyl-alpha-naphthyl amine (PANA), alkyl-phenyl-alpha-naphthyl-amine (APANA) and bis (nonylphenyl) amine, more preferably phenyl-alpha-
5 naphthyl amine (PANA).

The heat transfer composition of the invention can comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting essentially of a blend of the following three compounds, with the following percentages

10 being based on the total weight of the following three compounds: from about 48% by weight to about 51% by weight difluoromethane (HFC-32), from about 9.5% by weight to about 11.5% by weight pentafluoroethane (HFC-125), and from about 36.5% by weight to about 40.5% by weight trifluoroiodomethane (CF₃I) and a stabilizer composition comprising a nitrogen compound selected from dinitrobenzene, nitrobenzene, nitromethane,
15 nitrosobenzene, and TEMPO [(2,2,6,6-tetramethylpiperidin-1-yl)oxyl]; a secondary or tertiary amine selected from diphenylamine, p-phenylenediamine, triethylamine, tributylamine, diisopropylamine, triisopropylamine and triisobutylamine; an amine antioxidant such as a substituted piperidine compound, i.e. a derivative of an alkyl substituted piperidyl, piperidinyl, piperazinone, or alkyoxypiperidinyl, selected from 2,2,6,6-tetramethyl-4-
20 piperidone, 2,2,6,6-tetramethyl-4-piperidinol; bis-(1,2,2,6,6-pentamethylpiperidyl)sebacate; di(2,2,6,6-tetramethyl-4-piperidyl)sebacate, poly(N-hydroxyethyl-2,2,6,6-tetramethyl-4-hydroxy-piperidyl succinate; alkylated paraphenylenediamines such as N-phenyl-N'-(1,3-dimethyl-butyl)-p-phenylenediamine or N,N'-di-sec-butyl-p-phenylenediamine and hydroxylamines such as tallow amines, methyl bis tallow amine and bis tallow amine, or
25 phenol-alpha-naphthylamine or Tinuvin ® 765 (Ciba), BLS ® 1944 (Mayzo Inc) and BLS ® 1770 (Mayzo Inc); an alkyldiphenyl amine such as bis (nonylphenyl amine) a dialkylamine such as (N-(1-methylethyl)-2-propylamine or phenyl-alpha-naphthyl amine (PANA), alkyl-phenyl-alpha-naphthyl-amine (APANA) and bis (nonylphenyl) amine, preferably phenyl-alpha-
30 naphthyl amine (PANA), alkyl-phenyl-alpha-naphthyl-amine (APANA) and bis (nonylphenyl) amine, more preferably phenyl-alpha-naphthyl amine (PANA).

The heat transfer composition of the invention can comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting of a blend

of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from about 48% by weight to about 51% by weight difluoromethane (HFC-32), from about 9.5% by weight to about 11.5% by weight pentafluoroethane (HFC-125), and from about 36.5% by weight to about 40.5% by weight

5 trifluoriodomethane (CF_3I) and a stabilizer composition comprising a nitrogen compound selected from dinitrobenzene, nitrobenzene, nitromethane, nitrosobenzene, and TEMPO [(2,2,6,6-tetramethylpiperidin-1-yl)oxyl]; a secondary or tertiary amine selected from diphenylamine, p-phenylenediamine, triethylamine, tributylamine, diisopropylamine, triisopropylamine and triisobutylamine; an amine antioxidant such as a substituted piperidine 10 compound, i.e. a derivative of an alkyl substituted piperidyl, piperidinyl, piperazinone, or alkoxy piperidinyl, selected from 2,2,6,6-tetramethyl-4-piperidone, 2,2,6,6-tetramethyl-4-piperidinol; bis-(1,2,2,6,6-pentamethylpiperidyl)sebacate; di(2,2,6,6-tetramethyl-4-piperidyl)sebacate, poly(N-hydroxyethyl-2,2,6,6-tetramethyl-4-hydroxy-piperidyl succinate; alkylated paraphenylenediamines such as N-phenyl-N'-(1,3-dimethyl-butyl)-p- 15 phenylenediamine or N,N'-di-sec-butyl-p-phenylenediamine and hydroxylamines such as tallow amines, methyl bis tallow amine and bis tallow amine, or phenol-alpha-naphthylamine or Tinuvin ® 765 (Ciba), BLS ® 1944 (Mayzo Inc) and BLS ® 1770 (Mayzo Inc); an alkyl diphenyl amine such as bis (nonylphenyl amine) a dialkylamine such as (N-(1-methylethyl)-2-propylamine or phenyl-alpha-naphthyl amine (PANA), alkyl-phenyl-alpha- 20 naphthyl-amine (APANA) and bis (nonylphenyl) amine, preferably phenyl-alpha-naphthyl amine (PANA), alkyl-phenyl-alpha-naphthyl-amine (APANA) and bis (nonylphenyl) amine, more preferably phenyl-alpha-naphthyl amine (PANA).

The heat transfer composition of the invention can comprise a refrigerant comprising at least

25 about 97% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoriodomethane (CF_3I) and a stabilizer composition comprising a nitrogen compound selected from dinitrobenzene, nitrobenzene, nitromethane, nitrosobenzene, and TEMPO [(2,2,6,6-tetramethylpiperidin-1-yl)oxyl], a secondary or tertiary amine selected from diphenylamine, p-phenylenediamine, triethylamine, tributylamine, diisopropylamine, triisopropylamine and triisobutylamine; an amine antioxidant such as a substituted piperidine compound, i.e. a derivative of an alkyl 30

substituted piperidyl, piperidinyl, piperazinone, or alkyoxypiperidinyl, selected from 2,2,6,6-tetramethyl-4-piperidone, 2,2,6,6-tetramethyl-4-piperidinol; bis-(1,2,2,6,6-pentamethylpiperidyl)sebacate; di(2,2,6,6-tetramethyl-4-piperidyl)sebacate, poly(N-hydroxyethyl-2,2,6,6-tetramethyl-4-hydroxy-piperidyl succinate; alkylated

5 paraphenylenediamines such as N-phenyl-N'-(1,3-dimethyl-butyl)-p-phenylenediamine or N,N'-di-sec-butyl-p-phenylenediamine and hydroxylamines such as tallow amines, methyl bis tallow amine and bis tallow amine, or phenol-alpha-naphthylamine or Tinuvin ® 765 (Ciba), BLS ® 1944 (Mayzo Inc) and BLS ® 1770 (Mayzo Inc); an alkylidiphenyl amine such as bis (nonylphenyl amine) a dialkylamine such as (N-(1-methylethyl)-2-propylamine or phenyl-alpha-naphthyl amine (PANA), alkyl-phenyl-alpha-naphthyl-amine (APANA) and bis (nonylphenyl) amine, preferably phenyl-alpha-naphthyl amine (PANA), alkyl-phenyl-alpha-naphthyl-amine (APANA) and bis (nonylphenyl) amine, more preferably phenyl-alpha-naphthyl amine (PANA).

10

The heat transfer composition of the invention can comprise a refrigerant comprising at least about 98.5% by weight of a blend of the following three compounds, with the following 15 percentages being based on the total weight of the following three compounds: about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I) and a stabilizer composition comprising a nitrogen compound selected from dinitrobenzene, nitrobenzene,

20 nitromethane, nitrosobenzene, and TEMPO [(2,2,6,6-tetramethylpiperidin-1-yl)oxyl, a secondary or tertiary amine selected from diphenylamine, p-phenylenediamine, triethylamine, tributylamine, diisopropylamine, triisopropylamine and triisobutylamine; an amine antioxidant such as a substituted piperidine compound, i.e. a derivative of an alkyl 25 substituted piperidyl, piperidinyl, piperazinone, or alkyoxypiperidinyl, selected from 2,2,6,6-tetramethyl-4-piperidone, 2,2,6,6-tetramethyl-4-piperidinol; bis-(1,2,2,6,6-pentamethylpiperidyl)sebacate; di(2,2,6,6-tetramethyl-4-piperidyl)sebacate, poly(N-hydroxyethyl-2,2,6,6-tetramethyl-4-hydroxy-piperidyl succinate; alkylated 30 paraphenylenediamines such as N-phenyl-N'-(1,3-dimethyl-butyl)-p-phenylenediamine or N,N'-di-sec-butyl-p-phenylenediamine and hydroxylamines such as tallow amines, methyl bis tallow amine and bis tallow amine, or phenol-alpha-naphthylamine or Tinuvin ® 765 (Ciba), BLS ® 1944 (Mayzo Inc) and BLS ® 1770 (Mayzo Inc); an alkylidiphenyl amine such as bis (nonylphenyl amine) a dialkylamine such as (N-(1-methylethyl)-2-propylamine or phenyl-alpha-naphthyl amine (PANA), alkyl-phenyl-alpha-naphthyl-amine (APANA) and bis

(nonylphenyl) amine, preferably phenyl-alpha-naphthyl amine (PANA), alkyl-phenyl-alpha-naphthyl-amine (APANA) and bis (nonylphenyl) amine, more preferably phenyl-alpha-naphthyl amine (PANA).

The heat transfer composition of the invention can comprise a refrigerant comprising at least

5 about 99.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I) and a stabilizer composition comprising a nitrogen compound selected from dinitrobenzene, nitrobenzene, 10 nitromethane, nitrosobenzene, and TEMPO [(2,2,6,6-tetramethylpiperidin-1-yl)oxyl, a secondary or tertiary amine selected from diphenylamine, p-phenylenediamine, triethylamine, tributylamine, diisopropylamine, triisopropylamine and triisobutylamine; an amine antioxidant such as a substituted piperidine compound, i.e. a derivative of an alkyl substituted piperidyl, piperidinyl, piperazinone, or alkyoxypiperidinyl, selected from 2,2,6,6-15 tetramethyl-4-piperidone, 2,2,6,6-tetramethyl-4-piperidinol; bis-(1,2,2,6,6-pentamethylpiperidyl)sebacate; di(2,2,6,6-tetramethyl-4-piperidyl)sebacate, poly(N-hydroxyethyl-2,2,6,6-tetramethyl-4-hydroxy-piperidyl succinate; alkylated paraphenylenediamines such as N-phenyl-N'-(1,3-dimethyl-butyl)-p-phenylenediamine or N,N'-di-sec-butyl-p-phenylenediamine and hydroxylamines such as tallow amines, methyl 20 bis tallow amine and bis tallow amine, or phenol-alpha-naphthylamine or Tinuvin ® 765 (Ciba), BLS ® 1944 (Mayzo Inc) and BLS ® 1770 (Mayzo Inc); an alkyldiphenyl amine such as bis (nonylphenyl amine) a dialkylamine such as (N-(1-methylethyl)-2-propylamine or phenyl-alpha-naphthyl amine (PANA), alkyl-phenyl-alpha-naphthyl-amine (APANA) and bis (nonylphenyl) amine, preferably phenyl-alpha-naphthyl amine (PANA), alkyl-phenyl-alpha-25 naphthyl-amine (APANA) and bis (nonylphenyl) amine, more preferably phenyl-alpha-naphthyl amine (PANA).

The heat transfer composition of the invention can comprise a refrigerant consisting essentially of a blend of the following three compounds, with the following percentages

30 being based on the total weight of the following three compounds: about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I) and a stabilizer composition comprising a

nitrogen compound selected from dinitrobenzene, nitrobenzene, nitromethane, nitrosobenzene, and TEMPO [(2,2,6,6-tetramethylpiperidin-1-yl)oxyl, a secondary or tertiary amine selected from diphenylamine, p-phenylenediamine, triethylamine, tributylamine, diisopropylamine, triisopropylamine and triisobutylamine; an amine antioxidant such as a 5 substituted piperidine compound, i.e. a derivative of an alkyl substituted piperidyl, piperidinyl, piperazinone, or alkyoxypiperidinyl, selected from 2,2,6,6-tetramethyl-4-piperidone, 2,2,6,6-tetramethyl-4-piperidinol; bis-(1,2,2,6,6-pentamethylpiperidyl)sebacate; di(2,2,6,6-tetramethyl-4-piperidyl)sebacate, poly(N-hydroxyethyl-2,2,6,6-tetramethyl-4-hydroxy-piperidyl succinate; alkylated paraphenylenediamines such as N-phenyl-N'-(1,3-dimethyl-butyl)-p-phenylenediamine or N,N'-di-sec-butyl-p-phenylenediamine and hydroxylamines such as tallow amines, methyl bis tallow amine and bis tallow amine, or phenol-alpha-naphthylamine or Tinuvin ® 765 (Ciba), BLS ® 1944 (Mayzo Inc) and BLS ® 1770 (Mayzo Inc); an alkyldiphenyl amine such as bis (nonylphenyl amine) a dialkylamine such as (N-(1-methylethyl)-2-propylamine or phenyl-alpha-naphthyl amine (PANA), alkyl-phenyl-alpha-naphthyl-amine (APANA) and bis (nonylphenyl) amine, preferably phenyl-alpha-naphthyl amine (PANA), alkyl-phenyl-alpha-naphthyl-amine (APANA) and bis (nonylphenyl) amine, more preferably phenyl-alpha-naphthyl amine (PANA). 10 15 20 25 30

The heat transfer composition of the invention can comprise a refrigerant consisting of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I) and a stabilizer composition comprising a nitrogen compound selected from dinitrobenzene, nitrobenzene, nitromethane, nitrosobenzene, and TEMPO [(2,2,6,6-tetramethylpiperidin-1-yl)oxyl] a secondary or tertiary amine selected from diphenylamine, p-phenylenediamine, triethylamine, tributylamine, diisopropylamine, triisopropylamine and triisobutylamine; an amine antioxidant such as a substituted piperidine compound, i.e. a derivative of an alkyl substituted piperidyl, piperidinyl, piperazinone, or alkyoxypiperidinyl, selected from 2,2,6,6-tetramethyl-4-piperidone, 2,2,6,6-tetramethyl-4-piperidinol; bis-(1,2,2,6,6-pentamethylpiperidyl)sebacate; di(2,2,6,6-tetramethyl-4-piperidyl)sebacate, poly(N-hydroxyethyl-2,2,6,6-tetramethyl-4-hydroxy-piperidyl succinate; alkylated paraphenylenediamines such as N-phenyl-N'-(1,3-dimethyl-butyl)-p-phenylenediamine or N,N'-di-sec-butyl-p-phenylenediamine and hydroxylamines such as tallow amines, methyl bis tallow amine and bis tallow amine, or phenol-alpha- 20 25 30

5 naphthylamine or Tinuvin ® 765 (Ciba), BLS ® 1944 (Mayzo Inc) and BLS ® 1770 (Mayzo Inc); an alkylidiphenyl amine such as bis (nonylphenyl amine) a dialkylamine such as (N-(1-methylethyl)-2-propylamine or phenyl-alpha-naphthyl amine (PANA), alkyl-phenyl-alpha-naphthyl-amine (APANA) and bis (nonylphenyl) amine, preferably phenyl-alpha-naphthyl
10 amine (PANA), alkyl-phenyl-alpha-naphthyl-amine (APANA) and bis (nonylphenyl) amine, more preferably phenyl-alpha-naphthyl amine (PANA) or preferably, the nitrogen compound
15 is dinitrobenzene.

Thus, the heat transfer composition of the invention comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at
10 least about 97% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from 42% by weight to 48% by weight difluoromethane (HFC-32), from 6.5% by weight to 12.5% by weight pentafluoroethane (HFC-125), and from 39.5% by weight to 45.5% by weight trifluoriodomethane (CF₃I); and a stabilizer composition comprising a nitrogen compound
15 selected from dinitrobenzene, nitrobenzene, nitromethane, nitrosobenzene, TEMPO [(2,2,6,6-tetramethylpiperidin-1-yl)oxyl], a secondary or tertiary amine selected from diphenylamine, p-phenylenediamine, triethylamine, tributylamine, diisopropylamine, triisopropylamine and triisobutylamine; an amine antioxidant such as a substituted piperidine compound, i.e. a derivative of an alkyl substituted piperidyl, piperidinyl, piperazinone, or
20 alkyoxypiperidinyl, selected from 2,2,6,6-tetramethyl-4-piperidone, 2,2,6,6-tetramethyl-4-piperidinol; bis-(1,2,2,6,6-pentamethylpiperidyl)sebacate; di(2,2,6,6-tetramethyl-4-piperidyl)sebacate, poly(N-hydroxyethyl-2,2,6,6-tetramethyl-4-hydroxy-piperidyl succinate; alkylated paraphenylenediamines such as N-phenyl-N'-(1,3-dimethyl-butyl)-p-phenylenediamine or N,N'-di-sec-butyl-p-phenylenediamine and hydroxylamines such as
25 tallow amines, methyl bis tallow amine and bis tallow amine, or phenol-alpha-naphthylamine or Tinuvin ® 765 (Ciba), BLS ® 1944 (Mayzo Inc) and BLS ® 1770 (Mayzo Inc); an alkylidiphenyl amine such as bis (nonylphenyl amine), a dialkylamine such as (N-(1-methylethyl)-2-propylamine phenyl-alpha-naphthyl amine (PANA), alkyl-phenyl-alpha-naphthyl-amine (APANA) and bis (nonylphenyl) amine, preferably phenyl-alpha-naphthyl
30 amine (PANA), alkyl-phenyl-alpha-naphthyl-amine (APANA) and bis (nonylphenyl) amine, more preferably phenyl-alpha-naphthyl amine (PANA).

Thus, the heat transfer composition of the invention comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at

least about 98.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from 42% by weight to 48% by weight difluoromethane (HFC-32), from 6.5% by weight to 12.5% by weight pentafluoroethane (HFC-125), and from 39.5% by weight to 45.5% by weight

5 trifluoriodomethane (CF_3I); and a stabilizer composition comprising a nitrogen compound selected from dinitrobenzene, nitrobenzene, nitromethane, nitrosobenzene, TEMPO [(2,2,6,6-tetramethylpiperidin-1-yl)oxyl], a secondary or tertiary amine selected from diphenylamine, p-phenylenediamine, triethylamine, tributylamine, diisopropylamine, triisopropylamine and triisobutylamine; an amine antioxidant such as a substituted piperidine

10 compound, i.e. a derivative of an alkyl substituted piperidyl, piperidinyl, piperazinone, or alkoxy piperidinyl, selected from 2,2,6,6-tetramethyl-4-piperidone, 2,2,6,6-tetramethyl-4-piperidinol; bis-(1,2,2,6,6-pentamethylpiperidyl)sebacate; di(2,2,6,6-tetramethyl-4-piperidyl)sebacate, poly(N-hydroxyethyl-2,2,6,6-tetramethyl-4-hydroxy-piperidyl succinate; alkylated paraphenylenediamines such as N-phenyl-N'-(1,3-dimethyl-butyl)-p-

15 phenylenediamine or N,N'-di-sec-butyl-p-phenylenediamine and hydroxylamines such as tallow amines, methyl bis tallow amine and bis tallow amine, or phenol-alpha-naphthylamine or Tinuvin ® 765 (Ciba), BLS ® 1944 (Mayzo Inc) and BLS ® 1770 (Mayzo Inc); an alkyl diphenyl amine such as bis (nonylphenyl amine), a dialkylamine such as (N-(1-methylethyl)-2-propylamine phenyl-alpha-naphthyl amine (PANA), alkyl-phenyl-alpha-naphthyl-amine (APANA) and bis (nonylphenyl) amine, preferably phenyl-alpha-naphthyl amine (PANA), alkyl-phenyl-alpha-naphthyl-amine (APANA) and bis (nonylphenyl) amine, more preferably phenyl-alpha-naphthyl amine (PANA).

20

Thus, the heat transfer composition of the invention comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at

25 least about 99.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from 42% by weight to 48% by weight difluoromethane (HFC-32), from 6.5% by weight to 12.5% by weight pentafluoroethane (HFC-125), and from 39.5% by weight to 45.5% by weight trifluoriodomethane (CF_3I); and a stabilizer composition comprising a nitrogen compound selected from dinitrobenzene, nitrobenzene, nitromethane, nitrosobenzene, TEMPO [(2,2,6,6-tetramethylpiperidin-1-yl)oxyl], a secondary or tertiary amine selected from diphenylamine, p-phenylenediamine, triethylamine, tributylamine, diisopropylamine, triisopropylamine and triisobutylamine; an amine antioxidant such as a substituted piperidine

30

compound, i.e. a derivative of an alkyl substituted piperidyl, piperidinyl, piperazinone, or alkoxy piperidinyl, selected from 2,2,6,6-tetramethyl-4-piperidone, 2,2,6,6-tetramethyl-4-piperidinol; bis-(1,2,2,6,6-pentamethylpiperidyl)sebacate; di(2,2,6,6-tetramethyl-4-piperidyl)sebacate, poly(N-hydroxyethyl-2,2,6,6-tetramethyl-4-hydroxy-piperidyl succinate;

5 alkylated paraphenylenediamines such as N-phenyl-N'-(1,3-dimethyl-butyl)-p-phenylenediamine or N,N'-di-sec-butyl-p-phenylenediamine and hydroxylamines such as tallow amines, methyl bis tallow amine and bis tallow amine, or phenol-alpha-naphthylamine or Tinuvin ® 765 (Ciba), BLS ® 1944 (Mayzo Inc) and BLS ® 1770 (Mayzo Inc); an alkyl diphenyl amine such as bis (nonylphenyl amine), a dialkylamine such as (N-(1-methylethyl)-2-propylamine phenyl-alpha-naphthyl amine (PANA), alkyl-phenyl-alpha-naphthyl-amine (APANA) and bis (nonylphenyl) amine, preferably phenyl-alpha-naphthyl amine (PANA), alkyl-phenyl-alpha-naphthyl-amine (APANA) and bis (nonylphenyl) amine, more preferably phenyl-alpha-naphthyl amine (PANA).

10

Thus, the heat transfer composition of the invention comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting essentially of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from 42% by weight to 48% by weight difluoromethane (HFC-32), from 6.5% by weight to 12.5% by weight pentafluoroethane (HFC-125), and from 39.5% by weight to 45.5% by weight trifluoriodomethane (CF₃I); and a stabilizer composition comprising a nitrogen compound selected from dinitrobenzene, nitrobenzene, nitromethane, nitrosobenzene, TEMPO [(2,2,6,6-tetramethylpiperidin-1-yl)oxyl], a secondary or tertiary amine selected from diphenylamine, p-phenylenediamine, triethylamine, tributylamine, diisopropylamine, triisopropylamine and triisobutylamine; an amine antioxidant such as a substituted piperidine compound, i.e. a derivative of an alkyl substituted piperidyl, piperidinyl, piperazinone, or alkoxy piperidinyl, selected from 2,2,6,6-tetramethyl-4-piperidone, 2,2,6,6-tetramethyl-4-piperidinol; bis-(1,2,2,6,6-pentamethylpiperidyl)sebacate; di(2,2,6,6-tetramethyl-4-piperidyl)sebacate, poly(N-hydroxyethyl-2,2,6,6-tetramethyl-4-hydroxy-piperidyl succinate; alkylated paraphenylenediamines such as N-phenyl-N'-(1,3-dimethyl-butyl)-p-phenylenediamine or N,N'-di-sec-butyl-p-phenylenediamine and hydroxylamines such as tallow amines, methyl bis tallow amine and bis tallow amine, or phenol-alpha-naphthylamine or Tinuvin ® 765 (Ciba), BLS ® 1944 (Mayzo Inc) and BLS ® 1770 (Mayzo Inc); an alkyl diphenyl amine such as bis (nonylphenyl amine), a dialkylamine such as (N-(1-

15

20

25

30

methylethyl)-2-propylamine phenyl-alpha-naphthyl amine (PANA), alkyl-phenyl-alpha-naphthyl-amine (APANA) and bis (nonylphenyl) amine, preferably phenyl-alpha-naphthyl amine (PANA), alkyl-phenyl-alpha-naphthyl-amine (APANA) and bis (nonylphenyl) amine, more preferably phenyl-alpha-naphthyl amine (PANA).

5 Thus, the heat transfer composition of the invention comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from 42% by weight to 48% by weight difluoromethane (HFC-32), from 6.5% by weight to 12.5% by weight pentafluoroethane

10 (HFC-125), and from 39.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I); and a stabilizer composition comprising a nitrogen compound selected from dinitrobenzene, nitrobenzene, nitromethane, nitrosobenzene, TEMPO [(2,2,6,6-tetramethylpiperidin-1-yl)oxyl], a secondary or tertiary amine selected from diphenylamine, p-phenylenediamine, triethylamine, tributylamine, diisopropylamine, triisopropylamine and triisobutylamine; an

15 amine antioxidant such as a substituted piperidine compound, i.e. a derivative of an alkyl substituted piperidyl, piperidinyl, piperazinone, or alkyloxypiperidinyl, selected from 2,2,6,6-tetramethyl-4-piperidone, 2,2,6,6-tetramethyl-4-piperidinol; bis-(1,2,2,6,6-pentamethylpiperidyl)sebacate; di(2,2,6,6-tetramethyl-4-piperidyl)sebacate, poly(N-hydroxyethyl-2,2,6,6-tetramethyl-4-hydroxy-piperidyl succinate; alkylated

20 paraphenylenediamines such as N-phenyl-N'-(1,3-dimethyl-butyl)-p-phenylenediamine or N,N'-di-sec-butyl-p-phenylenediamine and hydroxylamines such as tallow amines, methyl bis tallow amine and bis tallow amine, or phenol-alpha-naphthylamine or Tinuvin ® 765 (Ciba), BLS ® 1944 (Mayzo Inc) and BLS ® 1770 (Mayzo Inc); an alkyl diphenyl amine such as bis (nonylphenyl amine), a dialkylamine such as (N-(1-methylethyl)-2-propylamine

25 phenyl-alpha-naphthyl amine (PANA), alkyl-phenyl-alpha-naphthyl-amine (APANA) and bis (nonylphenyl) amine, preferably phenyl-alpha-naphthyl amine (PANA), alkyl-phenyl-alpha-naphthyl-amine (APANA) and bis (nonylphenyl) amine, more preferably phenyl-alpha-naphthyl amine (PANA).

30 The heat transfer composition of the invention comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 97% by weight of a blend of the following three compounds, with the following

percentages being based on the total weight of the following three compounds from about 43.5% by weight to about 48% by weight difluoromethane (HFC-32), from about 10% by weight to about 12.5% by weight pentafluoroethane (HFC-125), and from about 40% by weight to about 44% by weight trifluoroiodomethane (CF₃I) and a stabilizer composition

5 comprising a nitrogen compound selected from dinitrobenzene, nitrobenzene, nitromethane, nitrosobenzene, and TEMPO [(2,2,6,6-tetramethylpiperidin-1-yl)oxyl]; a secondary or tertiary amine selected from diphenylamine, p-phenylenediamine, triethylamine, tributylamine, diisopropylamine, triisopropylamine and triisobutylamine; an amine antioxidant such as a substituted piperidine compound, i.e. a derivative of an alkyl

10 substituted piperidyl, piperidinyl, piperazinone, or alkyoxypiperidinyl, selected from 2,2,6,6-tetramethyl-4-piperidone, 2,2,6,6-tetramethyl-4-piperidinol; bis-(1,2,2,6,6-pentamethylpiperidyl)sebacate; di(2,2,6,6-tetramethyl-4-piperidyl)sebacate, poly(N-hydroxyethyl-2,2,6,6-tetramethyl-4-hydroxy-piperidyl succinate; alkylated

15 paraphenylenediamines such as N-phenyl-N'-(1,3-dimethyl-butyl)-p-phenylenediamine or N,N'-di-sec-butyl-p-phenylenediamine and hydroxylamines such as tallow amines, methyl bis tallow amine and bis tallow amine, or phenol-alpha-naphthylamine or Tinuvin ® 765 (Ciba), BLS ® 1944 (Mayzo Inc) and BLS ® 1770 (Mayzo Inc); an alkylidiphenyl amine such as bis (nonylphenyl amine), a dialkylamine such as (N-(1-methylethyl)-2-propylamine, phenyl-alpha-naphthyl amine (PANA), alkyl-phenyl-alpha-naphthyl-amine (APANA) and bis

20 (nonylphenyl) amine, preferably phenyl-alpha-naphthyl amine (PANA), alkyl-phenyl-alpha-naphthyl-amine (APANA) and bis (nonylphenyl) amine, more preferably phenyl-alpha-naphthyl amine (PANA).

The heat transfer composition of the invention comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least

25 about 98.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds from about 43.5% by weight to about 48% by weight difluoromethane (HFC-32), from about 10% by weight to about 12.5% by weight pentafluoroethane (HFC-125), and from about 40% by weight to about 44% by weight trifluoroiodomethane (CF₃I) and a stabilizer composition

30 comprising a nitrogen compound selected from dinitrobenzene, nitrobenzene, nitromethane, nitrosobenzene, and TEMPO [(2,2,6,6-tetramethylpiperidin-1-yl)oxyl]; a secondary or tertiary amine selected from diphenylamine, p-phenylenediamine, triethylamine, tributylamine, diisopropylamine, triisopropylamine and triisobutylamine; an

amine antioxidant such as a substituted piperidine compound, i.e. a derivative of an alkyl substituted piperidyl, piperidinyl, piperazinone, or alkyoxypiperidinyl, selected from 2,2,6,6-tetramethyl-4-piperidone, 2,2,6,6-tetramethyl-4-piperidinol; bis-(1,2,2,6,6-

pentamethylpiperidyl)sebacate; di(2,2,6,6-tetramethyl-4-piperidyl)sebacate, poly(N-

5 hydroxyethyl-2,2,6,6-tetramethyl-4-hydroxy-piperidyl succinate; alkylated paraphenylenediamines such as N-phenyl-N'-(1,3-dimethyl-butyl)-p-phenylenediamine or N,N'-di-sec-butyl-p-phenylenediamine and hydroxylamines such as tallow amines, methyl bis tallow amine and bis tallow amine, or phenol-alpha-naphthylamine or Tinuvin ® 765 (Ciba), BLS ® 1944 (Mayzo Inc) and BLS ® 1770 (Mayzo Inc); an alkylidiphenyl amine such 10 as bis (nonylphenyl amine), a dialkylamine such as (N-(1-methylethyl)-2-propylamine, phenyl-alpha-naphthyl amine (PANA), alkyl-phenyl-alpha-naphthyl-amine (APANA) and bis (nonylphenyl) amine, preferably phenyl-alpha-naphthyl amine (PANA), alkyl-phenyl-alpha-naphthyl-amine (APANA) and bis (nonylphenyl) amine, more preferably phenyl-alpha-naphthyl amine (PANA).

15

The heat transfer composition of the invention comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 99.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds from about

20 43.5% by weight to about 48% by weight difluoromethane (HFC-32), from about 10% by weight to about 12.5% by weight pentafluoroethane (HFC-125), and from about 40% by weight to about 44% by weight trifluoriodomethane (CF₃I) and a stabilizer composition comprising a nitrogen compound selected from dinitrobenzene, nitrobenzene, nitromethane, nitrosobenzene, and TEMPO [(2,2,6,6-tetramethylpiperidin-1-yl)oxyl]; a 25 secondary or tertiary amine selected from diphenylamine, p-phenylenediamine, triethylamine, tributylamine, diisopropylamine, triisopropylamine and triisobutylamine; an amine antioxidant such as a substituted piperidine compound, i.e. a derivative of an alkyl substituted piperidyl, piperidinyl, piperazinone, or alkyoxypiperidinyl, selected from 2,2,6,6-tetramethyl-4-piperidone, 2,2,6,6-tetramethyl-4-piperidinol; bis-(1,2,2,6,6-

30 pentamethylpiperidyl)sebacate; di(2,2,6,6-tetramethyl-4-piperidyl)sebacate, poly(N-hydroxyethyl-2,2,6,6-tetramethyl-4-hydroxy-piperidyl succinate; alkylated paraphenylenediamines such as N-phenyl-N'-(1,3-dimethyl-butyl)-p-phenylenediamine or N,N'-di-sec-butyl-p-phenylenediamine and hydroxylamines such as tallow amines, methyl

bis tallow amine and bis tallow amine, or phenol-alpha-naphthylamine or Tinuvin ® 765 (Ciba), BLS ® 1944 (Mayzo Inc) and BLS ® 1770 (Mayzo Inc); an alkyldiphenyl amine such as bis (nonylphenyl amine), a dialkylamine such as (N-(1-methylethyl)-2-propylamine, phenyl-alpha-naphthyl amine (PANA), alkyl-phenyl-alpha-naphthyl-amine (APANA) and bis 5 (nonylphenyl) amine, preferably phenyl-alpha-naphthyl amine (PANA), alkyl-phenyl-alpha-naphthyl-amine (APANA) and bis (nonylphenyl) amine, more preferably phenyl-alpha-naphthyl amine (PANA).

10 The heat transfer composition of the invention comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting essentially of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds from about 43.5% by weight to about 48% by weight difluoromethane (HFC-32), from about 10% by weight to about 12.5% by weight pentafluoroethane (HFC-125), and from about 40% by weight to about 44% by weight 15 trifluoriodomethane (CF₃I) and a stabilizer composition comprising a nitrogen compound selected from dinitrobenzene, nitrobenzene, nitromethane, nitrosobenzene, and TEMPO [(2,2,6,6-tetramethylpiperidin-1-yl)oxyl]; a secondary or tertiary amine selected from diphenylamine, p-phenylenediamine, triethylamine, tributylamine, diisopropylamine, triisopropylamine and triisobutylamine; an amine antioxidant such as a substituted piperidine 20 compound, i.e. a derivative of an alkyl substituted piperidyl, piperidinyl, piperazinone, or alkoxy piperidinyl, selected from 2,2,6,6-tetramethyl-4-piperidone, 2,2,6,6-tetramethyl-4-piperidinol; bis-(1,2,2,6,6-pentamethylpiperidyl)sebacate; di(2,2,6,6-tetramethyl-4-piperidyl)sebacate, poly(N-hydroxyethyl-2,2,6,6-tetramethyl-4-hydroxy-piperidyl succinate; alkylated paraphenylenediamines such as N-phenyl-N'-(1,3-dimethyl-butyl)-p- 25 phenylenediamine or N,N'-di-sec-butyl-p-phenylenediamine and hydroxylamines such as tallow amines, methyl bis tallow amine and bis tallow amine, or phenol-alpha-naphthylamine or Tinuvin ® 765 (Ciba), BLS ® 1944 (Mayzo Inc) and BLS ® 1770 (Mayzo Inc); an alkyldiphenyl amine such as bis (nonylphenyl amine), a dialkylamine such as (N-(1-methylethyl)-2-propylamine, phenyl-alpha-naphthyl amine (PANA), alkyl-phenyl-alpha- 30 naphthyl-amine (APANA) and bis (nonylphenyl) amine, preferably phenyl-alpha-naphthyl amine (PANA), alkyl-phenyl-alpha-naphthyl-amine (APANA) and bis (nonylphenyl) amine, more preferably phenyl-alpha-naphthyl amine (PANA).

The heat transfer composition of the invention comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds from about 43.5% by weight to about 48% by weight difluoromethane (HFC-32), from about 10% by weight to about 12.5% by weight pentafluoroethane (HFC-125), and from about 40% by weight to about 44% by weight trifluoriodomethane (CF₃I) and a stabilizer composition comprising a nitrogen compound selected from dinitrobenzene, nitrobenzene, nitromethane, nitrosobenzene, and TEMPO [(2,2,6,6-tetramethylpiperidin-1-yl)oxyl]; a secondary or tertiary amine selected from 5 diphenylamine, p-phenylenediamine, triethylamine, tributylamine, diisopropylamine, triisopropylamine and triisobutylamine; an amine antioxidant such as a substituted piperidine compound, i.e. a derivative of an alkyl substituted piperidyl, piperidinyl, piperazinone, or alkyoxypiperidinyl, selected from 2,2,6,6-tetramethyl-4-piperidone, 2,2,6,6-tetramethyl-4-piperidinol; bis-(1,2,2,6,6-pentamethylpiperidyl)sebacate; di(2,2,6,6-tetramethyl-4-10 piperidyl)sebacate, poly(N-hydroxyethyl-2,2,6,6-tetramethyl-4-hydroxy-piperidyl succinate; alkylated paraphenylenediamines such as N-phenyl-N'-(1,3-dimethyl-butyl)-p-phenylenediamine or N,N'-di-sec-butyl-p-phenylenediamine and hydroxylamines such as tallow amines, methyl bis tallow amine and bis tallow amine, or phenol-alpha-naphthylamine or Tinuvin ® 765 (Ciba), BLS ® 1944 (Mayzo Inc) and BLS ® 1770 (Mayzo Inc); an alkyldiphenyl amine such as bis (nonylphenyl amine), a dialkylamine such as (N-(1-methylethyl)-2-propylamine, phenyl-alpha-naphthyl amine (PANA), alkyl-phenyl-alpha-naphthyl-amine (APANA) and bis (nonylphenyl) amine, preferably phenyl-alpha-naphthyl amine (PANA), alkyl-phenyl-alpha-naphthyl-amine (APANA) and bis (nonylphenyl) amine, more preferably phenyl-alpha-naphthyl amine (PANA).

25

The heat transfer composition of the invention comprises a refrigerant comprising at least about 97% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoriodomethane (CF₃I) and a stabilizer composition comprising a nitrogen compound selected from dinitrobenzene, nitrobenzene, nitromethane, nitrosobenzene, and TEMPO [(2,2,6,6-tetramethylpiperidin-1-yl)oxyl], a secondary or tertiary amine selected from diphenylamine, p-phenylenediamine,

triethylamine, tributylamine, diisopropylamine, triisopropylamine and triisobutylamine; an amine antioxidant such as a substituted piperidine compound, i.e. a derivative of an alkyl substituted piperidyl, piperidinyl, piperazinone, or alkyoxypiperidinyl, selected from 2,2,6,6-tetramethyl-4-piperidone, 2,2,6,6-tetramethyl-4-piperidinol; bis-(1,2,2,6,6-
5 pentamethylpiperidyl)sebacate; di(2,2,6,6-tetramethyl-4-piperidyl)sebacate, poly(N-hydroxyethyl-2,2,6,6-tetramethyl-4-hydroxy-piperidyl succinate; alkylated
paraphenylenediamines such as N-phenyl-N'-(1,3-dimethyl-butyl)-p-phenylenediamine or
N,N'-di-sec-butyl-p-phenylenediamine and hydroxylamines such as tallow amines, methyl
bis tallow amine and bis tallow amine, or phenol-alpha-naphthylamine or Tinuvin ® 765
10 (Ciba), BLS ® 1944 (Mayzo Inc) and BLS ® 1770 (Mayzo Inc); an alkylidiphenyl amine such
as bis (nonylphenyl amine), a dialkylamine such as (N-(1-methylethyl)-2-propylamine,
phenyl-alpha-naphthyl amine (PANA), alkyl-phenyl-alpha-naphthyl-amine (APANA) and bis
(nonylphenyl) amine, preferably phenyl-alpha-naphthyl amine (PANA), alkyl-phenyl-alpha-
naphthyl-amine (APANA) and bis (nonylphenyl) amine, more preferably phenyl-alpha-
15 naphthyl amine (PANA).

The heat transfer composition of the invention comprises a refrigerant comprising at least about 98.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125),
20 and about 42% by weight trifluoriodomethane (CF₃I) and a stabilizer composition
comprising a nitrogen compound selected from dinitrobenzene, nitrobenzene,
nitromethane, nitrosobenzene, and TEMPO [(2,2,6,6-tetramethylpiperidin-1-yl)oxyl, a
secondary or tertiary amine selected from diphenylamine, p-phenylenediamine,
triethylamine, tributylamine, diisopropylamine, triisopropylamine and triisobutylamine; an
25 amine antioxidant such as a substituted piperidine compound, i.e. a derivative of an alkyl
substituted piperidyl, piperidinyl, piperazinone, or alkyoxypiperidinyl, selected from 2,2,6,6-
tetramethyl-4-piperidone, 2,2,6,6-tetramethyl-4-piperidinol; bis-(1,2,2,6,6-
pentamethylpiperidyl)sebacate; di(2,2,6,6-tetramethyl-4-piperidyl)sebacate, poly(N-
hydroxyethyl-2,2,6,6-tetramethyl-4-hydroxy-piperidyl succinate; alkylated
paraphenylenediamines such as N-phenyl-N'-(1,3-dimethyl-butyl)-p-phenylenediamine or
N,N'-di-sec-butyl-p-phenylenediamine and hydroxylamines such as tallow amines, methyl
bis tallow amine and bis tallow amine, or phenol-alpha-naphthylamine or Tinuvin ® 765
30 (Ciba), BLS ® 1944 (Mayzo Inc) and BLS ® 1770 (Mayzo Inc); an alkylidiphenyl amine such

as bis (nonylphenyl amine), a dialkylamine such as (N-(1-methylethyl)-2-propylamine, phenyl-alpha-naphthyl amine (PANA), alkyl-phenyl-alpha-naphthyl-amine (APANA) and bis (nonylphenyl) amine, preferably phenyl-alpha-naphthyl amine (PANA), alkyl-phenyl-alpha-naphthyl-amine (APANA) and bis (nonylphenyl) amine, more preferably phenyl-alpha-
5 naphthyl amine (PANA).

The heat transfer composition of the invention comprises a refrigerant comprising at least about 99.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125),
10 and about 42% by weight trifluoriodomethane (CF₃I) and a stabilizer composition

comprising a nitrogen compound selected from dinitrobenzene, nitrobenzene, nitromethane, nitrosobenzene, and TEMPO [(2,2,6,6-tetramethylpiperidin-1-yl)oxyl, a secondary or tertiary amine selected from diphenylamine, p-phenylenediamine, triethylamine, tributylamine, diisopropylamine, triisopropylamine and triisobutylamine; an
15 amine antioxidant such as a substituted piperidine compound, i.e. a derivative of an alkyl substituted piperidyl, piperidinyl, piperazinone, or alkyloxypiperidinyl, selected from 2,2,6,6-tetramethyl-4-piperidone, 2,2,6,6-tetramethyl-4-piperidinol; bis-(1,2,2,6,6-pentamethylpiperidyl)sebacate; di(2,2,6,6-tetramethyl-4-piperidyl)sebacate, poly(N-hydroxyethyl-2,2,6,6-tetramethyl-4-hydroxy-piperidyl succinate; alkylated
20 paraphenylenediamines such as N-phenyl-N'-(1,3-dimethyl-butyl)-p-phenylenediamine or N,N'-di-sec-butyl-p-phenylenediamine and hydroxylamines such as tallow amines, methyl bis tallow amine and bis tallow amine, or phenol-alpha-naphthylamine or Tinuvin ® 765
(Ciba), BLS ® 1944 (Mayzo Inc) and BLS ® 1770 (Mayzo Inc); an alkyl diphenyl amine such as bis (nonylphenyl amine), a dialkylamine such as (N-(1-methylethyl)-2-propylamine,
25 phenyl-alpha-naphthyl amine (PANA), alkyl-phenyl-alpha-naphthyl-amine (APANA) and bis (nonylphenyl) amine, preferably phenyl-alpha-naphthyl amine (PANA), alkyl-phenyl-alpha-naphthyl-amine (APANA) and bis (nonylphenyl) amine, more preferably phenyl-alpha-
naphthyl amine (PANA).

30 The heat transfer composition of the invention comprises a refrigerant consisting essentially of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds about 46% by weight difluoromethane

(HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoriodomethane (CF₃I) and a stabilizer composition comprising a nitrogen compound selected from dinitrobenzene, nitrobenzene, nitromethane, nitrosobenzene, and TEMPO [(2,2,6,6-tetramethylpiperidin-1-yl)oxyl, a secondary or tertiary amine selected from

5 diphenylamine, p-phenylenediamine, triethylamine, tributylamine, diisopropylamine, triisopropylamine and triisobutylamine; an amine antioxidant such as a substituted piperidine compound, i.e. a derivative of an alkyl substituted piperidyl, piperidinyl, piperazinone, or alkoxy piperidinyl, selected from 2,2,6,6-tetramethyl-4-piperidone, 2,2,6,6-tetramethyl-4-piperidinol; bis-(1,2,2,6,6-pentamethylpiperidyl)sebacate; di(2,2,6,6-tetramethyl-4-piperidyl)sebacate, poly(N-hydroxyethyl-2,2,6,6-tetramethyl-4-hydroxy-piperidyl succinate; alkylated paraphenylenediamines such as N-phenyl-N'-(1,3-dimethyl-butyl)-p-phenylenediamine or N,N'-di-sec-butyl-p-phenylenediamine and hydroxylamines such as tallow amines, methyl bis tallow amine and bis tallow amine, or phenol-alpha-naphthylamine or Tinuvin ® 765 (Ciba), BLS ® 1944 (Mayzo Inc) and BLS ® 1770 (Mayzo Inc); an alkyl diphenyl amine such as bis (nonylphenyl amine), a dialkylamine such as (N-(1-methylethyl)-2-propylamine, phenyl-alpha-naphthyl amine (PANA), alkyl-phenyl-alpha-naphthyl-amine (APANA) and bis (nonylphenyl) amine, preferably phenyl-alpha-naphthyl amine (PANA), alkyl-phenyl-alpha-naphthyl-amine (APANA) and bis (nonylphenyl) amine, more preferably phenyl-alpha-naphthyl amine (PANA).

20 The heat transfer composition of the invention comprises a refrigerant consisting of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoriodomethane (CF₃I) and a stabilizer composition comprising a nitrogen compound selected from dinitrobenzene, nitrobenzene, nitromethane, nitrosobenzene, and TEMPO [(2,2,6,6-tetramethylpiperidin-1-yl)oxyl, a secondary or tertiary amine selected from diphenylamine, p-phenylenediamine, triethylamine, tributylamine, diisopropylamine, triisopropylamine and triisobutylamine; an amine antioxidant such as a substituted piperidine compound, i.e. a derivative of an alkyl substituted piperidyl, piperidinyl, piperazinone, or alkoxy piperidinyl, selected from 2,2,6,6-tetramethyl-4-piperidone, 2,2,6,6-tetramethyl-4-piperidinol; bis-(1,2,2,6,6-pentamethylpiperidyl)sebacate; di(2,2,6,6-tetramethyl-4-piperidyl)sebacate, poly(N-hydroxyethyl-2,2,6,6-tetramethyl-4-hydroxy-piperidyl succinate; alkylated paraphenylenediamines such as N-phenyl-N'-(1,3-dimethyl-butyl)-p-

phenylenediamine or N,N'-di-sec-butyl-p-phenylenediamine and hydroxylamines such as tallow amines, methyl bis tallow amine and bis tallow amine, or phenol-alpha-naphthylamine or Tinuvin ® 765 (Ciba), BLS ® 1944 (Mayzo Inc) and BLS ® 1770 (Mayzo Inc); an alkylidiphenyl amine such as bis (nonylphenyl amine), a dialkylamine such as (N-(1-methylethyl)-2-propylamine, phenyl-alpha-naphthyl amine (PANA), alkyl-phenyl-alpha-naphthyl-amine (APANA) and bis (nonylphenyl) amine, preferably phenyl-alpha-naphthyl amine (PANA), alkyl-phenyl-alpha-naphthyl-amine (APANA) and bis (nonylphenyl) amine, more preferably phenyl-alpha-naphthyl amine (PANA).

Alternatively, or in addition, the stabilizer comprises a phenol, preferably a hindered phenol.

For the purposes of this invention, the phenol can be one or more compounds selected from 4,4'-methylenebis(2,6-di-tert-butylphenol); 4,4'-bis(2,6-di-tert-butylphenol); 2,2- or 4,4-biphenyldiols, including 4,4'-bis(2-methyl-6-tert-butylphenol); derivatives of 2,2- or 4,4-biphenyldiols; 2,2'-methylenebis(4-ethyl-6-tertbutylphenol); 2,2'-methylenebis(4-methyl-6-tert-butylphenol); 4,4-butyldenebis(3-methyl-6-tert-butylphenol); 4,4-isopropylidenebis(2,6-di-tert-butylphenol); 2,2'-methylenebis(4-methyl-6-nonylphenol); 2,2'-isobutylidenebis(4,6-dimethylphenol); 2,2'-methylenebis(4-methyl-6-cyclohexylphenol); 2,6-di-tert-butyl-4-methylphenol (BHT); 2,6-di-tert-butyl-4-ethylphenol; 2,4-dimethyl-6-tert-butylphenol; 2,6-di-tert-alpha-dimethylamino-p-cresol; 2,6-di-tert-butyl-4(N,N'-dimethylaminomethylphenol); 4,4'-thiobis(2-methyl-6-tert-butylphenol); 4,4'-thiobis(3-methyl-6-tert-butylphenol); 2,2'-thiobis(4-methyl-6-tert-butylphenol); bis(3-methyl-4-hydroxy-5-tert-butylbenzyl) sulfide; bis(3,5-di-tert-butyl-4-hydroxybenzyl)sulfide, tocopherol, hydroquinone, 2,2'6,6'-tetra-tert-butyl-4,4'-methylenediphenol and t-butyl hydroquinone, preferably BHT

The phenol compounds can be provided in the heat transfer composition in an amount of from about 0.001% by weight to about 5 % by weight, preferably about 0.01% by weight to about 2% by weight, more preferably from about 0.1 to about 1% by weight. In each case, by percentage weight refers to the weight of the heat transfer composition.

Alternatively, the phenol compounds can be provided in the heat transfer composition in an amount of from about 0.001% by weight to about 5 % by weight, preferably about 0.005% by weight to about 2% by weight, more preferably from about 0.01 to about 1% by weight. In each case, percentage by weight refers to the weight of the heat transfer composition.

The heat transfer composition of the invention comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least

about 97% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from 43% by weight to 51% by weight difluoromethane (HFC-32), from 3.5% by weight to 11.5% by weight pentafluoroethane (HFC-125), and from 37.5% by weight to 45.5% by weight

5 trifluoriodomethane (CF_3I); and a stabilizer composition comprising a phenol compound selected from 4,4'-methylenebis(2,6-di-tert-butylphenol); 4,4'-bis(2,6-di-tert-butylphenol); 2,2- or 4,4-biphenyldiols, including 4,4'-bis(2-methyl-6-tert-butylphenol); derivatives of 2,2- or 4,4-biphenyldiols; 2,2'-methylenebis(4-ethyl-6-tertbutylphenol); 2,2'-methylenebis(4-methyl-6-tert-butylphenol); 4,4-butyldenebis(3-methyl-6-tert-butylphenol); 4,4-

10 isopropylidenebis(2,6-di-tert-butylphenol); 2,2'-methylenebis(4-methyl-6-nonylphenol); 2,2'-isobutylidenebis(4,6-dimethylphenol); 2,2'-methylenebis(4-methyl-6-cyclohexylphenol); 2,6-di-tert-butyl-4-methylphenol (BHT); 2,6-di-tert-butyl-4-ethylphenol; 2,4-dimethyl-6-tert-butylphenol; 2,6-di-tert-alpha-dimethylamino-p-cresol; 2,6-di-tert-butyl-4(N,N'-dimethylaminomethylphenol); 4,4'-thiobis(2-methyl-6-tert-butylphenol); 4,4'-thiobis(3-methyl-6-tert-butylphenol); 2,2'-thiobis(4-methyl-6-tert-butylphenol); bis(3-methyl-4-hydroxy-5-tert-butylbenzyl) sulfide; bis (3,5-di-tert-butyl-4-hydroxybenzyl)sulfide, tocopherol, hydroquinone, 2,2'6,6'-tetra-tert-butyl-4,4'-methylenediphenol and t-butyl hydroquinone, preferably BHT

15

Additionally, the heat transfer composition of the invention comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at

20 least about 98.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from 43% by weight to 51% by weight difluoromethane (HFC-32), from 3.5% by weight to 11.5% by weight pentafluoroethane (HFC-125), and from 37.5% by weight to 45.5% by weight trifluoriodomethane (CF_3I); and a stabilizer composition comprising a phenol compound selected from 4,4'-methylenebis(2,6-di-tert-butylphenol); 4,4'-bis(2,6-di-tert-butylphenol); 2,2- or 4,4-biphenyldiols, including 4,4'-bis(2-methyl-6-tert-butylphenol); derivatives of 2,2- or 4,4-biphenyldiols; 2,2'-methylenebis(4-ethyl-6-tertbutylphenol); 2,2'-methylenebis(4-methyl-6-tert-butylphenol); 4,4-butyldenebis(3-methyl-6-tert-butylphenol); 4,4-

25 isopropylidenebis(2,6-di-tert-butylphenol); 2,2'-methylenebis(4-methyl-6-nonylphenol); 2,2'-isobutylidenebis(4,6-dimethylphenol); 2,2'-methylenebis(4-methyl-6-cyclohexylphenol); 2,6-di-tert-butyl-4-methylphenol (BHT); 2,6-di-tert-butyl-4-ethylphenol; 2,4-dimethyl-6-tert-butylphenol; 2,6-di-tert-alpha-dimethylamino-p-cresol; 2,6-di-tert-butyl-4(N,N'-dimethylaminomethylphenol); 4,4'-thiobis(2-methyl-6-tert-butylphenol); 4,4'-thiobis(3-methyl-

30

6-tert-butylphenol); 2,2'-thiobis(4-methyl-6-tert-butylphenol); bis(3-methyl-4-hydroxy-5-tert-butylbenzyl) sulfide; bis (3,5-di-tert-butyl-4-hydroxybenzyl)sulfide, tocopherol, hydroquinone, 2,2'6,6'-tetra-tert-butyl-4,4'-methylenediphenol and t-butyl hydroquinone, preferably BHT

5 Additionally, the heat transfer composition of the invention comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 99.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from 43% by weight to 51% by weight difluoromethane (HFC-32), from 3.5% by weight to 11.5% by weight pentafluoroethane (HFC-125), and from 37.5% by weight to 45.5% by weight trifluoriodomethane (CF₃I); and a stabilizer composition comprising a phenol compound selected from 4,4'-methylenebis(2,6-di-tert-butylphenol); 4,4'-bis(2,6-di-tert-butylphenol); 2,2- or 4,4-biphenyldiols, including 4,4'-bis(2-methyl-6-tert-butylphenol); derivatives of 2,2- or 4,4-biphenyldiols; 2,2'-methylenebis(4-ethyl-6-tertbutylphenol); 2,2'-methylenebis(4-methyl-6-tert-butylphenol); 4,4-butyldenebis(3-methyl-6-tert-butylphenol); 4,4-isopropylidenebis(2,6-di-tert-butylphenol); 2,2'-methylenebis(4-methyl-6-nonylphenol); 2,2'-isobutyldenebis(4,6-dimethylphenol); 2,2'-methylenebis(4-methyl-6-cyclohexylphenol); 2,6-di-tert-butyl-4-methylphenol (BHT); 2,6-di-tert-butyl-4-ethylphenol; 2,4-dimethyl-6-tert-butylphenol; 2,6-di-tert-alpha-dimethylamino-p-cresol; 2,6-di-tert-butyl-4(N,N'-dimethylaminomethylphenol); 4,4'-thiobis(2-methyl-6-tert-butylphenol); 4,4'-thiobis(3-methyl-6-tert-butylphenol); 2,2'-thiobis(4-methyl-6-tert-butylphenol); bis(3-methyl-4-hydroxy-5-tert-butylbenzyl) sulfide; bis (3,5-di-tert-butyl-4-hydroxybenzyl)sulfide, tocopherol, hydroquinone, 2,2'6,6'-tetra-tert-butyl-4,4'-methylenediphenol and t-butyl hydroquinone, preferably BHT

10

15

20

25 Additionally, the heat transfer composition of the invention comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting essentially of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from 43% by weight to 51% by weight difluoromethane (HFC-32), from 3.5% by weight to 11.5% by weight pentafluoroethane (HFC-125), and from 37.5% by weight to 45.5% by weight trifluoriodomethane (CF₃I); and a stabilizer composition comprising a phenol compound selected from 4,4'-methylenebis(2,6-di-tert-butylphenol); 4,4'-bis(2,6-di-tert-butylphenol);

30

2,2- or 4,4-biphenyldiols, including 4,4'-bis(2-methyl-6-tert-butylphenol); derivatives of 2,2- or 4,4-biphenyldiols; 2,2'-methylenebis(4-ethyl-6-tertbutylphenol); 2,2'-methylenebis(4-methyl-6-tert-butylphenol); 4,4-butyldenebis(3-methyl-6-tert-butylphenol); 4,4-isopropylidenebis(2,6-di-tert-butylphenol); 2,2'-methylenebis(4-methyl-6-nonylphenol); 2,2'-isobutylidenebis(4,6-dimethylphenol); 2,2'-methylenebis(4-methyl-6-cyclohexylphenol); 2,6-di-tert-butyl-4-methylphenol (BHT); 2,6-di-tert-butyl-4-ethylphenol; 2,4-dimethyl-6-tert-butylphenol; 2,6-di-tert-alpha-dimethylamino-p-cresol; 2,6-di-tert-butyl-4(N,N'-dimethylaminomethylphenol); 4,4'-thiobis(2-methyl-6-tert-butylphenol); 4,4'-thiobis(3-methyl-6-tert-butylphenol); 2,2'-thiobis(4-methyl-6-tert-butylphenol); bis(3-methyl-4-hydroxy-5-tert-butylbenzyl) sulfide; bis (3,5-di-tert-butyl-4-hydroxybenzyl)sulfide, tocopherol, hydroquinone, 2,2'6,6'-tetra-tert-butyl-4,4'-methylenediphenol and t-butyl hydroquinone, preferably BHT

Additionally, the heat transfer composition of the invention comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from 43% by weight to 51% by weight difluoromethane (HFC-32), from 3.5% by weight to 11.5% by weight pentafluoroethane (HFC-125), and from 37.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I); and a stabilizer composition comprising a phenol compound selected from 4,4'-methylenebis(2,6-di-tert-butylphenol); 4,4'-bis(2,6-di-tert-butylphenol); 2,2- or 4,4-biphenyldiols, including 4,4'-bis(2-methyl-6-tert-butylphenol); derivatives of 2,2- or 4,4-biphenyldiols; 2,2'-methylenebis(4-ethyl-6-tertbutylphenol); 2,2'-methylenebis(4-methyl-6-tert-butylphenol); 4,4-butyldenebis(3-methyl-6-tert-butylphenol); 4,4-isopropylidenebis(2,6-di-tert-butylphenol); 2,2'-methylenebis(4-methyl-6-nonylphenol); 2,2'-isobutylidenebis(4,6-dimethylphenol); 2,2'-methylenebis(4-methyl-6-cyclohexylphenol); 2,6-di-tert-butyl-4-methylphenol (BHT); 2,6-di-tert-butyl-4-ethylphenol; 2,4-dimethyl-6-tert-butylphenol; 2,6-di-tert-alpha-dimethylamino-p-cresol; 2,6-di-tert-butyl-4(N,N'-dimethylaminomethylphenol); 4,4'-thiobis(2-methyl-6-tert-butylphenol); 4,4'-thiobis(3-methyl-6-tert-butylphenol); 2,2'-thiobis(4-methyl-6-tert-butylphenol); bis(3-methyl-4-hydroxy-5-tert-butylbenzyl) sulfide; bis (3,5-di-tert-butyl-4-hydroxybenzyl)sulfide, tocopherol, hydroquinone, 2,2'6,6'-tetra-tert-butyl-4,4'-methylenediphenol and t-butyl hydroquinone, preferably BHT

Additionally, the heat transfer composition of the invention comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 97% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from about

5 48% by weight to about 51% by weight difluoromethane (HFC-32), from about 9.5% by weight to about 11.5% by weight pentafluoroethane (HFC-125), and from about 36.5% by weight to about 40.5% by weight trifluoriodomethane (CF₃I) and a stabilizer composition comprising a phenol compound selected from 4,4'-methylenebis(2,6-di-tert-butylphenol); 4,4'-bis(2,6-di-tert-butylphenol); 2,2- or 4,4-biphenyldiols, including 4,4'-bis(2-methyl-6-tert-10 butylphenol); derivatives of 2,2- or 4,4-biphenyldiols; 2,2'-methylenebis(4-ethyl-6-tertbutylphenol); 2,2'-methylenebis(4-methyl-6-tert-butylphenol); 4,4-butyldenebis(3-methyl-6-tert-butylphenol); 4,4-isopropylidenebis(2,6-di-tert-butylphenol); 2,2'-methylenebis(4-methyl-6-nonylphenol); 2,2'-isobutylidenebis(4,6-dimethylphenol); 2,2'-methylenebis(4-methyl-6-cyclohexylphenol); 2,6-di-tert-butyl-4-methylphenol (BHT); 2,6-di-tert-butyl-4-15 ethylphenol; 2,4-dimethyl-6-tert-butylphenol; 2,6-di-tert-alpha-dimethylamino-p-cresol; 2,6-di-tert-butyl-4(N,N'-dimethylaminomethylphenol); 4,4'-thiobis(2-methyl-6-tert-butylphenol); 4,4'-thiobis(3-methyl-6-tert-butylphenol); 2,2'-thiobis(4-methyl-6-tert-butylphenol); bis(3-methyl-4-hydroxy-5-tert-butylbenzyl) sulfide; bis (3,5-di-tert-butyl-4-hydroxybenzyl)sulfide, tocopherol, hydroquinone, 2,2'6,6'-tetra-tert-butyl-4,4'-methylenediphenol and t-butyl20 hydroquinone, preferably BHT

Additionally, the heat transfer composition of the invention comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 98.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from about

25 48% by weight to about 51% by weight difluoromethane (HFC-32), from about 9.5% by weight to about 11.5% by weight pentafluoroethane (HFC-125), and from about 36.5% by weight to about 40.5% by weight trifluoriodomethane (CF₃I) and a stabilizer composition comprising a phenol compound selected from 4,4'-methylenebis(2,6-di-tert-butylphenol); 4,4'-bis(2,6-di-tert-butylphenol); 2,2- or 4,4-biphenyldiols, including 4,4'-bis(2-methyl-6-tert-30 butylphenol); derivatives of 2,2- or 4,4-biphenyldiols; 2,2'-methylenebis(4-ethyl-6-tertbutylphenol); 2,2'-methylenebis(4-methyl-6-tert-butylphenol); 4,4-butyldenebis(3-methyl-6-tert-butylphenol); 4,4-isopropylidenebis(2,6-di-tert-butylphenol); 2,2'-methylenebis(4-methyl-6-nonylphenol); 2,2'-isobutylidenebis(4,6-dimethylphenol); 2,2'-methylenebis(4-

methyl-6-cyclohexylphenol); 2,6-di-tert-butyl-4-methylphenol (BHT); 2,6-di-tert-butyl-4-ethylphenol; 2,4-dimethyl-6-tert-butylphenol; 2,6-di-tert-alpha-dimethylamino-p-cresol; 2,6-di-tert-butyl-4(N,N'-dimethylaminomethylphenol); 4,4'-thiobis(2-methyl-6-tert-butylphenol); 4,4'-thiobis(3-methyl-6-tert-butylphenol); 2,2'-thiobis(4-methyl-6-tert-butylphenol); bis(3-methyl-4-hydroxy-5-tert-butylbenzyl) sulfide; bis (3,5-di-tert-butyl-4-hydroxybenzyl)sulfide, tocopherol, hydroquinone, 2,2'6,6'-tetra-tert-butyl-4,4'-methylenediphenol and t-butyl hydroquinone, preferably BHT

10 Additionally, the heat transfer composition of the invention comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 99.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from about 48% by weight to about 51% by weight difluoromethane (HFC-32), from about 9.5% by weight to about 11.5% by weight pentafluoroethane (HFC-125), and from about 36.5% by weight to about 40.5% by weight trifluoriodomethane (CF₃I) and a stabilizer composition comprising a phenol compound selected from 4,4'-methylenebis(2,6-di-tert-butylphenol); 4,4'-bis(2,6-di-tert-butylphenol); 2,2- or 4,4-biphenyldiols, including 4,4'-bis(2-methyl-6-tert-butylphenol); derivatives of 2,2- or 4,4-biphenyldiols; 2,2'-methylenebis(4-ethyl-6-tertbutylphenol); 2,2'-methylenebis(4-methyl-6-tert-butylphenol); 4,4-butyldenebis(3-methyl-6-tert-butylphenol); 4,4-isopropylidenebis(2,6-di-tert-butylphenol); 2,2'-methylenebis(4-methyl-6-nonylphenol); 2,2'-isobutylidenebis(4,6-dimethylphenol); 2,2'-methylenebis(4-methyl-6-cyclohexylphenol); 2,6-di-tert-butyl-4-methylphenol (BHT); 2,6-di-tert-butyl-4-ethylphenol; 2,4-dimethyl-6-tert-butylphenol; 2,6-di-tert-alpha-dimethylamino-p-cresol; 2,6-di-tert-butyl-4(N,N'-dimethylaminomethylphenol); 4,4'-thiobis(2-methyl-6-tert-butylphenol); 4,4'-thiobis(3-methyl-6-tert-butylphenol); 2,2'-thiobis(4-methyl-6-tert-butylphenol); bis(3-methyl-4-hydroxy-5-tert-butylbenzyl) sulfide; bis (3,5-di-tert-butyl-4-hydroxybenzyl)sulfide, tocopherol, hydroquinone, 2,2'6,6'-tetra-tert-butyl-4,4'-methylenediphenol and t-butyl hydroquinone, preferably BHT

20 Additionally, the heat transfer composition of the invention comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 99.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from about 48% by weight to about 51% by weight difluoromethane (HFC-32), from about 9.5% by weight to about 11.5% by weight pentafluoroethane (HFC-125), and from about 36.5% by weight to about 40.5% by weight trifluoriodomethane (CF₃I) and a stabilizer composition comprising a phenol compound selected from 4,4'-methylenebis(2,6-di-tert-butylphenol); 4,4'-bis(2,6-di-tert-butylphenol); 2,2- or 4,4-biphenyldiols, including 4,4'-bis(2-methyl-6-tert-butylphenol); derivatives of 2,2- or 4,4-biphenyldiols; 2,2'-methylenebis(4-ethyl-6-tertbutylphenol); 2,2'-methylenebis(4-methyl-6-tert-butylphenol); 4,4-butyldenebis(3-methyl-6-tert-butylphenol); 4,4-isopropylidenebis(2,6-di-tert-butylphenol); 2,2'-methylenebis(4-methyl-6-nonylphenol); 2,2'-isobutylidenebis(4,6-dimethylphenol); 2,2'-methylenebis(4-methyl-6-cyclohexylphenol); 2,6-di-tert-butyl-4-methylphenol (BHT); 2,6-di-tert-butyl-4-ethylphenol; 2,4-dimethyl-6-tert-butylphenol; 2,6-di-tert-alpha-dimethylamino-p-cresol; 2,6-di-tert-butyl-4(N,N'-dimethylaminomethylphenol); 4,4'-thiobis(2-methyl-6-tert-butylphenol); 4,4'-thiobis(3-methyl-6-tert-butylphenol); 2,2'-thiobis(4-methyl-6-tert-butylphenol); bis(3-methyl-4-hydroxy-5-tert-butylbenzyl) sulfide; bis (3,5-di-tert-butyl-4-hydroxybenzyl)sulfide, tocopherol, hydroquinone, 2,2'6,6'-tetra-tert-butyl-4,4'-methylenediphenol and t-butyl hydroquinone, preferably BHT

25 Additionally, the heat transfer composition of the invention comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 99.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from about 48% by weight to about 51% by weight difluoromethane (HFC-32), from about 9.5% by weight to about 11.5% by weight pentafluoroethane (HFC-125), and from about 36.5% by weight to about 40.5% by weight trifluoriodomethane (CF₃I) and a stabilizer composition comprising a phenol compound selected from 4,4'-methylenebis(2,6-di-tert-butylphenol); 4,4'-bis(2,6-di-tert-butylphenol); 2,2- or 4,4-biphenyldiols, including 4,4'-bis(2-methyl-6-tert-butylphenol); derivatives of 2,2- or 4,4-biphenyldiols; 2,2'-methylenebis(4-ethyl-6-tertbutylphenol); 2,2'-methylenebis(4-methyl-6-tert-butylphenol); 4,4-butyldenebis(3-methyl-6-tert-butylphenol); 4,4-isopropylidenebis(2,6-di-tert-butylphenol); 2,2'-methylenebis(4-methyl-6-nonylphenol); 2,2'-isobutylidenebis(4,6-dimethylphenol); 2,2'-methylenebis(4-methyl-6-cyclohexylphenol); 2,6-di-tert-butyl-4-methylphenol (BHT); 2,6-di-tert-butyl-4-ethylphenol; 2,4-dimethyl-6-tert-butylphenol; 2,6-di-tert-alpha-dimethylamino-p-cresol; 2,6-di-tert-butyl-4(N,N'-dimethylaminomethylphenol); 4,4'-thiobis(2-methyl-6-tert-butylphenol); 4,4'-thiobis(3-methyl-6-tert-butylphenol); 2,2'-thiobis(4-methyl-6-tert-butylphenol); bis(3-methyl-4-hydroxy-5-tert-butylbenzyl) sulfide; bis (3,5-di-tert-butyl-4-hydroxybenzyl)sulfide, tocopherol, hydroquinone, 2,2'6,6'-tetra-tert-butyl-4,4'-methylenediphenol and t-butyl hydroquinone, preferably BHT

30 Additionally, the heat transfer composition of the invention comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting essentially of a blend of the following three compounds, with the following percentages

being based on the total weight of the following three compounds: from about 48% by weight to about 51% by weight difluoromethane (HFC-32), from about 9.5% by weight to about 11.5% by weight pentafluoroethane (HFC-125), and from about 36.5% by weight to about 40.5% by weight trifluoriodomethane (CF₃I) and a stabilizer composition comprising

5 a phenol compound selected from 4,4'-methylenebis(2,6-di-tert-butylphenol); 4,4'-bis(2,6-di-tert-butylphenol); 2,2- or 4,4-biphenyldiols, including 4,4'-bis(2-methyl-6-tert-butylphenol); derivatives of 2,2- or 4,4-biphenyldiols; 2,2'-methylenebis(4-ethyl-6-tertbutylphenol); 2,2'-methylenebis(4-methyl-6-tert-butylphenol); 4,4-butyldenebis(3-methyl-6-tert-butylphenol); 4,4-isopropylidenebis(2,6-di-tert-butylphenol); 2,2'-methylenebis(4-methyl-6-nonylphenol);

10 2,2'-isobutylidenebis(4,6-dimethylphenol); 2,2'-methylenebis(4-methyl-6-cyclohexylphenol); 2,6-di-tert-butyl-4-methylphenol (BHT); 2,6-di-tert-butyl-4-ethylphenol; 2,4-dimethyl-6-tert-butylphenol; 2,6-di-tert-alpha-dimethylamino-p-cresol; 2,6-di-tert-butyl-4(N,N'-dimethylaminomethylphenol); 4,4'-thiobis(2-methyl-6-tert-butylphenol); 4,4'-thiobis(3-methyl-6-tert-butylphenol); 2,2'-thiobis(4-methyl-6-tert-butylphenol); bis(3-methyl-4-hydroxy-5-tert-butylbenzyl) sulfide; bis (3,5-di-tert-butyl-4-hydroxybenzyl)sulfide, tocopherol, hydroquinone,

15 2,2'6,6'-tetra-tert-butyl-4,4'-methylenediphenol and t-butyl hydroquinone, preferably BHT

Additionally, the heat transfer composition of the invention comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting of

20 a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from about 48% by weight to about 51% by weight difluoromethane (HFC-32), from about 9.5% by weight to about 11.5% by weight pentafluoroethane (HFC-125), and from about 36.5% by weight to about 40.5% by weight trifluoriodomethane (CF₃I) and a stabilizer composition comprising a phenol compound

25 selected from 4,4'-methylenebis(2,6-di-tert-butylphenol); 4,4'-bis(2,6-di-tert-butylphenol); 2,2- or 4,4-biphenyldiols, including 4,4'-bis(2-methyl-6-tert-butylphenol); derivatives of 2,2- or 4,4-biphenyldiols; 2,2'-methylenebis(4-ethyl-6-tertbutylphenol); 2,2'-methylenebis(4-methyl-6-tert-butylphenol); 4,4-butyldenebis(3-methyl-6-tert-butylphenol); 4,4-isopropylidenebis(2,6-di-tert-butylphenol); 2,2'-methylenebis(4-methyl-6-nonylphenol); 2,2'-isobutylidenebis(4,6-dimethylphenol); 2,2'-methylenebis(4-methyl-6-cyclohexylphenol); 2,6-di-tert-butyl-4-methylphenol (BHT); 2,6-di-tert-butyl-4-ethylphenol; 2,4-dimethyl-6-tert-butylphenol; 2,6-di-tert-alpha-dimethylamino-p-cresol; 2,6-di-tert-butyl-4(N,N'-dimethylaminomethylphenol); 4,4'-thiobis(2-methyl-6-tert-butylphenol); 4,4'-thiobis(3-methyl-

30

6-tert-butylphenol); 2,2'-thiobis(4-methyl-6-tert-butylphenol); bis(3-methyl-4-hydroxy-5-tert-butylbenzyl) sulfide; bis (3,5-di-tert-butyl-4-hydroxybenzyl)sulfide, tocopherol, hydroquinone, 2,2'6,6'-tetra-tert-butyl-4,4'-methylenediphenol and t-butyl hydroquinone, preferably BHT

5 The heat transfer composition of the invention comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 97% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125),
10 and about 38.5% by weight trifluoriodomethane (CF₃I) and a stabilizer composition comprising a phenol compound selected from 4,4'-methylenebis(2,6-di-tert-butylphenol); 4,4'-bis(2,6-di-tert-butylphenol); 2,2- or 4,4-biphenyldiols, including 4,4'-bis(2-methyl-6-tert-butylphenol); derivatives of 2,2- or 4,4-biphenyldiols; 2,2'-methylenebis(4-ethyl-6-tertbutylphenol); 2,2'-methylenebis(4-methyl-6-tert-butylphenol); 4,4-butyldenebis(3-methyl-15 6-tert-butylphenol); 4,4-isopropylidenebis(2,6-di-tert-butylphenol); 2,2'-methylenebis(4-methyl-6-nonylphenol); 2,2'-isobutylidenebis(4,6-dimethylphenol); 2,2'-methylenebis(4-methyl-6-cyclohexylphenol); 2,6-di-tert-butyl-4-methylphenol (BHT); 2,6-di-tert-butyl-4-ethylphenol; 2,4-dimethyl-6-tert-butylphenol; 2,6-di-tert-alpha-dimethylamino-p-cresol; 2,6-di-tert-butyl-4(N,N'-dimethylaminomethylphenol); 4,4'-thiobis(2-methyl-6-tert-butylphenol);
20 4,4'-thiobis(3-methyl-6-tert-butylphenol); 2,2'-thiobis(4-methyl-6-tert-butylphenol); bis(3-methyl-4-hydroxy-5-tert-butylbenzyl) sulfide; bis (3,5-di-tert-butyl-4-hydroxybenzyl)sulfide, tocopherol, hydroquinone, 2,2'6,6'-tetra-tert-butyl-4,4'-methylenediphenol and t-butyl hydroquinone, preferably BHT

25 The heat transfer composition of the invention comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 98.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I) and a stabilizer composition comprising a phenol compound selected from 4,4'-methylenebis(2,6-di-tert-butylphenol); 4,4'-bis(2,6-di-tert-butylphenol); 2,2- or 4,4-biphenyldiols, including 4,4'-bis(2-methyl-6-tert-butylphenol); derivatives of 2,2- or 4,4-biphenyldiols; 2,2'-methylenebis(4-ethyl-6-

tertbutylphenol); 2,2'-methylenebis(4-methyl-6-tert-butylphenol); 4,4-butyldenebis(3-methyl-6-tert-butylphenol); 4,4-isopropylidenebis(2,6-di-tert-butylphenol); 2,2'-methylenebis(4-methyl-6-nonylphenol); 2,2'-isobutylidenebis(4,6-dimethylphenol); 2,2'-methylenebis(4-methyl-6-cyclohexylphenol); 2,6-di-tert-butyl-4-methylphenol (BHT); 2,6-di-tert-butyl-4-ethylphenol: 2,4-dimethyl-6-tert-butylphenol; 2,6-di-tert-alpha-dimethylamino-p-cresol; 2,6-di-tert-butyl-4(N,N'-dimethylaminomethylphenol); 4,4'-thiobis(2-methyl-6-tert-butylphenol); 4,4'-thiobis(3-methyl-6-tert-butylphenol); 2,2'-thiobis(4-methyl-6-tert-butylphenol); bis(3-methyl-4-hydroxy-5-tert-butylbenzyl) sulfide; bis (3,5-di-tert-butyl-4-hydroxybenzyl)sulfide, tocopherol, hydroquinone, 2,2'6,6'-tetra-tert-butyl-4,4'-methylenediphenol and t-butyl hydroquinone, preferably BHT

The heat transfer composition of the invention comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 99.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I) and a stabilizer composition comprising a phenol compound selected from 4,4'-methylenebis(2,6-di-tert-butylphenol); 4,4'-bis(2,6-di-tert-butylphenol); 2,2- or 4,4-biphenyldiols, including 4,4'-bis(2-methyl-6-tert-butylphenol); derivatives of 2,2- or 4,4-biphenyldiols; 2,2'-methylenebis(4-ethyl-6-tertbutylphenol); 2,2'-methylenebis(4-methyl-6-tert-butylphenol); 4,4-butyldenebis(3-methyl-6-tert-butylphenol); 4,4-isopropylidenebis(2,6-di-tert-butylphenol); 2,2'-methylenebis(4-methyl-6-nonylphenol); 2,2'-isobutylidenebis(4,6-dimethylphenol); 2,2'-methylenebis(4-methyl-6-cyclohexylphenol); 2,6-di-tert-butyl-4-methylphenol (BHT); 2,6-di-tert-butyl-4-ethylphenol: 2,4-dimethyl-6-tert-butylphenol; 2,6-di-tert-alpha-dimethylamino-p-cresol; 2,6-di-tert-butyl-4(N,N'-dimethylaminomethylphenol); 4,4'-thiobis(2-methyl-6-tert-butylphenol); 4,4'-thiobis(3-methyl-6-tert-butylphenol); 2,2'-thiobis(4-methyl-6-tert-butylphenol); bis(3-methyl-4-hydroxy-5-tert-butylbenzyl) sulfide; bis (3,5-di-tert-butyl-4-hydroxybenzyl)sulfide, tocopherol, hydroquinone, 2,2'6,6'-tetra-tert-butyl-4,4'-methylenediphenol and t-butyl hydroquinone, preferably BHT

The heat transfer composition of the invention comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting essentially of

a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I) and a stabilizer composition comprising a phenol compound

5 selected from 4,4'-methylenebis(2,6-di-tert-butylphenol); 4,4'-bis(2,6-di-tert-butylphenol); 2,2- or 4,4-biphenyldiols, including 4,4'-bis(2-methyl-6-tert-butylphenol); derivatives of 2,2- or 4,4-biphenyldiols; 2,2'-methylenebis(4-ethyl-6-tertbutylphenol); 2,2'-methylenebis(4-methyl-6-tert-butylphenol); 4,4-isopropylidenebis(2,6-di-tert-butylphenol); 2,2'-methylenebis(4-methyl-6-nonylphenol); 2,2'-isobutylidenebis(4,6-dimethylphenol); 2,2'-methylenebis(4-methyl-6-cyclohexylphenol); 2,6-di-tert-butyl-4-methylphenol (BHT); 2,6-di-tert-butyl-4-ethylphenol; 2,4-dimethyl-6-tert-butylphenol; 2,6-di-tert-alpha-dimethylamino-p-cresol; 2,6-di-tert-butyl-4(N,N'-dimethylaminomethylphenol); 4,4'-thiobis(2-methyl-6-tert-butylphenol); 4,4'-thiobis(3-methyl-6-tert-butylphenol); 2,2'-thiobis(4-methyl-6-tert-butylphenol); bis(3-methyl-4-hydroxy-5-tert-butylbenzyl) sulfide; bis (3,5-di-tert-butyl-4-hydroxybenzyl)sulfide, tocopherol, hydroquinone, 2,2'6,6'-tetra-tert-butyl-4,4'-methylenediphenol and t-butyl hydroquinone, preferably BHT

The heat transfer composition of the invention comprises a refrigerant consisting of a blend of the following three compounds, with the following percentages being based on the total

20 weight of the following three compounds: about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I) and a stabilizer composition comprising a phenol compound selected from 4,4'-methylenebis(2,6-di-tert-butylphenol); 4,4'-bis(2,6-di-tert-butylphenol); 2,2- or 4,4-biphenyldiols, including 4,4'-bis(2-methyl-6-tert-butylphenol); derivatives of 2,2- or 4,4-biphenyldiols; 2,2'-methylenebis(4-ethyl-6-tertbutylphenol); 2,2'-methylenebis(4-methyl-6-tert-butylphenol); 4,4-isopropylidenebis(2,6-di-tert-butylphenol); 2,2'-methylenebis(4-methyl-6-nonylphenol); 2,2'-isobutylidenebis(4,6-dimethylphenol); 2,2'-methylenebis(4-methyl-6-cyclohexylphenol); 2,6-di-tert-butyl-4-methylphenol (BHT); 2,6-di-tert-butyl-4-ethylphenol; 2,4-dimethyl-6-tert-butylphenol; 2,6-di-tert-alpha-dimethylamino-p-cresol; 2,6-di-tert-butyl-4(N,N'-dimethylaminomethylphenol); 4,4'-thiobis(2-methyl-6-tert-butylphenol); 4,4'-thiobis(3-methyl-6-tert-butylphenol); 2,2'-thiobis(4-methyl-6-tert-butylphenol); bis(3-methyl-4-hydroxy-5-tert-butylbenzyl) sulfide; bis (3,5-di-tert-butyl-4-hydroxybenzyl)sulfide, tocopherol, hydroquinone, 2,2'6,6'-tetra-tert-butyl-4,4'-methylenediphenol and t-butyl hydroquinone, preferably BHT

butylbenzyl) sulfide; bis (3,5-di-tert-butyl-4-hydroxybenzyl)sulfide, tocopherol, hydroquinone, 2,2'6,6'-tetra-tert-butyl-4,4'-methylenediphenol and t-butyl hydroquinone, preferably BHT

The heat transfer composition of the invention comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least

5 about 97% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from 42% by weight to 48% by weight difluoromethane (HFC-32), from 6.5% by weight to 12.5% by weight pentafluoroethane (HFC-125), and from 39.5% by weight to 45.5% by weight trifluoriodomethane (CF₃I); and a stabilizer composition comprising a phenol compound

10 selected from 4,4'-methylenebis(2,6-di-tert-butylphenol); 4,4'-bis(2,6-di-tert-butylphenol); 2,2- or 4,4-biphenyldiols, including 4,4'-bis(2-methyl-6-tert-butylphenol); derivatives of 2,2- or 4,4-biphenyldiols; 2,2'-methylenebis(4-ethyl-6-tertbutylphenol); 2,2'-methylenebis(4-methyl-6-tert-butylphenol); 4,4-butyldenebis(3-methyl-6-tert-butylphenol); 4,4-isopropylidenebis(2,6-di-tert-butylphenol); 2,2'-methylenebis(4-methyl-6-nonylphenol); 2,2'-isobutylidenebis(4,6-dimethylphenol); 2,2'-methylenebis(4-methyl-6-cyclohexylphenol); 2,6-di-tert-butyl-4-methylphenol (BHT); 2,6-di-tert-butyl-4-ethylphenol; 2,4-dimethyl-6-tert-butylphenol; 2,6-di-tert-alpha-dimethylamino-p-cresol; 2,6-di-tert-butyl-4(N,N'-dimethylaminomethylphenol); 4,4'-thiobis(2-methyl-6-tert-butylphenol); 4,4'-thiobis(3-methyl-6-tert-butylphenol); 2,2'-thiobis(4-methyl-6-tert-butylphenol); bis(3-methyl-4-hydroxy-5-tert-butylbenzyl) sulfide; bis (3,5-di-tert-butyl-4-hydroxybenzyl)sulfide, tocopherol, hydroquinone, 2,2'6,6'-tetra-tert-butyl-4,4'-methylenediphenol and t-butyl hydroquinone, preferably BHT

Additionally, the heat transfer composition of the invention comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 98.5% by weight of a blend of the following three compounds, with the following

25 percentages being based on the total weight of the following three compounds: from 42% by weight to 48% by weight difluoromethane (HFC-32), from 6.5% by weight to 12.5% by weight pentafluoroethane (HFC-125), and from 39.5% by weight to 45.5% by weight trifluoriodomethane (CF₃I); and a stabilizer composition comprising a phenol compound selected from 4,4'-methylenebis(2,6-di-tert-butylphenol); 4,4'-bis(2,6-di-tert-butylphenol);

30 2,2- or 4,4-biphenyldiols, including 4,4'-bis(2-methyl-6-tert-butylphenol); derivatives of 2,2- or 4,4-biphenyldiols; 2,2'-methylenebis(4-ethyl-6-tertbutylphenol); 2,2'-methylenebis(4-methyl-6-tert-butylphenol); 4,4-butyldenebis(3-methyl-6-tert-butylphenol); 4,4-isopropylidenebis(2,6-di-tert-butylphenol); 2,2'-methylenebis(4-methyl-6-nonylphenol); 2,2'-

isobutylidenebis(4,6-dimethylphenol); 2,2'-methylenebis(4-methyl-6-cyclohexylphenol); 2,6-di-tert-butyl-4-methylphenol (BHT); 2,6-di-tert-butyl-4-ethylphenol; 2,4-dimethyl-6-tert-butylphenol; 2,6-di-tert-alpha-dimethylamino-p-cresol; 2,6-di-tert-butyl-4(N,N'-dimethylaminomethylphenol); 4,4'-thiobis(2-methyl-6-tert-butylphenol); 4,4'-thiobis(3-methyl-6-tert-butylphenol); 2,2'-thiobis(4-methyl-6-tert-butylphenol); bis(3-methyl-4-hydroxy-5-tert-butylbenzyl) sulfide; bis (3,5-di-tert-butyl-4-hydroxybenzyl)sulfide, tocopherol, hydroquinone, 2,2'6,6'-tetra-tert-butyl-4,4'-methylenediphenol and t-butyl hydroquinone, preferably BHT

10 Additionally, the heat transfer composition of the invention comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 99.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from 42% by weight to 48% by weight difluoromethane (HFC-32), from 6.5% by weight to 12.5% by weight pentafluoroethane (HFC-125), and from 39.5% by weight to 45.5% by weight

15 trifluoriodomethane (CF₃I); and a stabilizer composition comprising a phenol compound selected from 4,4'-methylenebis(2,6-di-tert-butylphenol); 4,4'-bis(2,6-di-tert-butylphenol); 2,2- or 4,4-biphenyldiols, including 4,4'-bis(2-methyl-6-tert-butylphenol); derivatives of 2,2- or 4,4-biphenyldiols; 2,2'-methylenebis(4-ethyl-6-tertbutylphenol); 2,2'-methylenebis(4-methyl-6-tert-butylphenol); 4,4-butyldenebis(3-methyl-6-tert-butylphenol); 4,4-

20 isopropylidenebis(2,6-di-tert-butylphenol); 2,2'-methylenebis(4-methyl-6-nonylphenol); 2,2'-isobutylidenebis(4,6-dimethylphenol); 2,2'-methylenebis(4-methyl-6-cyclohexylphenol); 2,6-di-tert-butyl-4-methylphenol (BHT); 2,6-di-tert-butyl-4-ethylphenol; 2,4-dimethyl-6-tert-butylphenol; 2,6-di-tert-alpha-dimethylamino-p-cresol; 2,6-di-tert-butyl-4(N,N'-dimethylaminomethylphenol); 4,4'-thiobis(2-methyl-6-tert-butylphenol); 4,4'-thiobis(3-methyl-6-tert-butylphenol); 2,2'-thiobis(4-methyl-6-tert-butylphenol); bis(3-methyl-4-hydroxy-5-tert-butylbenzyl) sulfide; bis (3,5-di-tert-butyl-4-hydroxybenzyl)sulfide, tocopherol, hydroquinone, 2,2'6,6'-tetra-tert-butyl-4,4'-methylenediphenol and t-butyl hydroquinone, preferably BHT

25

30 Additionally, the heat transfer composition of the invention comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting essentially of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from 42% by weight to

48% by weight difluoromethane (HFC-32), from 6.5% by weight to 12.5% by weight pentafluoroethane (HFC-125), and from 39.5% by weight to 45.5% by weight trifluoriodomethane (CF₃I); and a stabilizer composition comprising a phenol compound selected from 4,4'-methylenebis(2,6-di-tert-butylphenol); 4,4'-bis(2,6-di-tert-butylphenol); 5 2,2- or 4,4-biphenyldiols, including 4,4'-bis(2-methyl-6-tert-butylphenol); derivatives of 2,2- or 4,4-biphenyldiols; 2,2'-methylenebis(4-ethyl-6-tertbutylphenol); 2,2'-methylenebis(4-methyl-6-tert-butylphenol); 4,4-isopropylidenebis(2,6-di-tert-butylphenol); 2,2'-methylenebis(4-methyl-6-nonylphenol); 2,2'-isobutylidenebis(4,6-dimethylphenol); 2,2'-methylenebis(4-methyl-6-cyclohexylphenol); 2,6-10 di-tert-butyl-4-methylphenol (BHT); 2,6-di-tert-butyl-4-ethylphenol; 2,4-dimethyl-6-tert-butylphenol; 2,6-di-tert-alpha-dimethylamino-p-cresol; 2,6-di-tert-butyl-4(N,N'-dimethylaminomethylphenol); 4,4'-thiobis(2-methyl-6-tert-butylphenol); 4,4'-thiobis(3-methyl-6-tert-butylphenol); 2,2'-thiobis(4-methyl-6-tert-butylphenol); bis(3-methyl-4-hydroxy-5-tert-butylbenzyl) sulfide; bis (3,5-di-tert-butyl-4-hydroxybenzyl)sulfide, tocopherol, hydroquinone, 15 2,2'6,6'-tetra-tert-butyl-4,4'-methylenediphenol and t-butyl hydroquinone, preferably BHT

Additionally, the heat transfer composition of the invention comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from 42% by weight to 48% by weight 20 difluoromethane (HFC-32), from 6.5% by weight to 12.5% by weight pentafluoroethane (HFC-125), and from 39.5% by weight to 45.5% by weight trifluoriodomethane (CF₃I); and a stabilizer composition comprising a phenol compound selected from 4,4'-methylenebis(2,6-di-tert-butylphenol); 4,4'-bis(2,6-di-tert-butylphenol); 2,2- or 4,4-biphenyldiols, including 4,4'-bis(2-methyl-6-tert-butylphenol); derivatives of 2,2- or 4,4-biphenyldiols; 2,2'-methylenebis(4-ethyl-6-tertbutylphenol); 2,2'-methylenebis(4-methyl-6-tert-butylphenol); 4,4-isopropylidenebis(2,6-di-tert-butylphenol); 2,2'-methylenebis(4-methyl-6-nonylphenol); 2,2'-isobutylidenebis(4,6-dimethylphenol); 2,2'-methylenebis(4-methyl-6-cyclohexylphenol); 2,6-di-tert-butyl-4-methylphenol (BHT); 2,6-di-tert-butyl-4-ethylphenol; 2,4-dimethyl-6-tert-butylphenol; 2,6-di-25 tert-alpha-dimethylamino-p-cresol; 2,6-di-tert-butyl-4(N,N'-dimethylaminomethylphenol); 4,4'-thiobis(2-methyl-6-tert-butylphenol); 4,4'-thiobis(3-methyl-6-tert-butylphenol); 2,2'-thiobis(4-methyl-6-tert-butylphenol); bis(3-methyl-4-hydroxy-5-tert-butylbenzyl) sulfide; bis 30 (3,5-di-tert-butyl-4-hydroxybenzyl)sulfide, tocopherol, hydroquinone, 2,2'6,6'-tetra-tert-butyl-4,4'-methylenediphenol and t-butyl hydroquinone, preferably BHT

(3,5-di-tert-butyl-4-hydroxybenzyl)sulfide, tocopherol, hydroquinone, 2,2'6,6'-tetra-tert-butyl-4,4'-methylenediphenol and t-butyl hydroquinone, preferably BHT

Additionally, the heat transfer composition of the invention comprises a refrigerant according

to any one of the refrigerants described here, but preferably those refrigerants comprising at

5 least about 97% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from about 43.5% by weight to about 48% by weight difluoromethane (HFC-32), from about 10% by weight to about 12.5% by weight pentafluoroethane (HFC-125), and from about 40% by weight to about 44% by weight trifluoroiodomethane (CF₃I) and a stabilizer composition

10 comprising a phenol compound selected from 4,4'-methylenebis(2,6-di-tert-butylphenol); 4,4'-bis(2,6-di-tert-butylphenol); 2,2- or 4,4-biphenyldiols, including 4,4'-bis(2-methyl-6-tert-butylphenol); derivatives of 2,2- or 4,4-biphenyldiols; 2,2'-methylenebis(4-ethyl-6-tertbutylphenol); 2,2'-methylenebis(4-methyl-6-tert-butylphenol); 4,4-butyldenebis(3-methyl-6-tert-butylphenol); 4,4-isopropylidenebis(2,6-di-tert-butylphenol); 2,2'-methylenebis(4-methyl-6-nonylphenol); 2,2'-isobutylidenebis(4,6-dimethylphenol); 2,2'-methylenebis(4-methyl-6-cyclohexylphenol); 2,6-di-tert-butyl-4-methylphenol (BHT); 2,6-di-tert-butyl-4-ethylphenol; 2,4-dimethyl-6-tert-butylphenol; 2,6-di-tert-alpha-dimethylamino-p-cresol; 2,6-di-tert-butyl-4(N,N'-dimethylaminomethylphenol); 4,4'-thiobis(2-methyl-6-tert-butylphenol); 4,4'-thiobis(3-methyl-6-tert-butylphenol); 2,2'-thiobis(4-methyl-6-tert-butylphenol); bis(3-methyl-4-hydroxy-5-tert-butylbenzyl) sulfide; bis (3,5-di-tert-butyl-4-hydroxybenzyl)sulfide, tocopherol, hydroquinone, 2,2'6,6'-tetra-tert-butyl-4,4'-methylenediphenol and t-butyl hydroquinone, preferably BHT

Additionally, the heat transfer composition of the invention comprises a refrigerant according

to any one of the refrigerants described here, but preferably those refrigerants comprising at

25 least about 98.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from about 43.5% by weight to about 48% by weight difluoromethane (HFC-32), from about 10% by weight to about 12.5% by weight pentafluoroethane (HFC-125), and from about 40% by weight to about 44% by weight trifluoroiodomethane (CF₃I) and a stabilizer composition

30 comprising a phenol compound selected from 4,4'-methylenebis(2,6-di-tert-butylphenol); 4,4'-bis(2,6-di-tert-butylphenol); 2,2- or 4,4-biphenyldiols, including 4,4'-bis(2-methyl-6-tert-butylphenol); derivatives of 2,2- or 4,4-biphenyldiols; 2,2'-methylenebis(4-ethyl-6-tertbutylphenol); 2,2'-methylenebis(4-methyl-6-tert-butylphenol); 4,4-butyldenebis(3-methyl-

6-tert-butylphenol); 4,4-isopropylidenebis(2,6-di-tert-butylphenol); 2,2'-methylenebis(4-methyl-6-nonylphenol); 2,2'-isobutylidenebis(4,6-dimethylphenol); 2,2'-methylenebis(4-methyl-6-cyclohexylphenol); 2,6-di-tert-butyl-4-methylphenol (BHT); 2,6-di-tert-butyl-4-ethylphenol; 2,4-dimethyl-6-tert-butylphenol; 2,6-di-tert-alpha-dimethylamino-p-cresol; 2,6-di-tert-butyl-4(N,N'-dimethylaminomethylphenol); 4,4'-thiobis(2-methyl-6-tert-butylphenol); 4,4'-thiobis(3-methyl-6-tert-butylphenol); 2,2'-thiobis(4-methyl-6-tert-butylphenol); bis(3-methyl-4-hydroxy-5-tert-butylbenzyl) sulfide; bis (3,5-di-tert-butyl-4-hydroxybenzyl)sulfide, tocopherol, hydroquinone, 2,2'6,6'-tetra-tert-butyl-4,4'-methylenediphenol and t-butyl hydroquinone, preferably BHT

10 Additionally, the heat transfer composition of the invention comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 99.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from about 43.5% by weight to about 48% by weight difluoromethane (HFC-32), from about 10% by weight to about 12.5% by weight pentafluoroethane (HFC-125), and from about 40% by weight to about 44% by weight trifluoroiodomethane (CF₃I) and a stabilizer composition comprising a phenol compound selected from 4,4'-methylenebis(2,6-di-tert-butylphenol); 4,4'-bis(2,6-di-tert-butylphenol); 2,2- or 4,4-biphenyldiols, including 4,4'-bis(2-methyl-6-tert-butylphenol); derivatives of 2,2- or 4,4-biphenyldiols; 2,2'-methylenebis(4-ethyl-6-tertbutylphenol); 2,2'-methylenebis(4-methyl-6-tert-butylphenol); 4,4-butyldenebis(3-methyl-6-tert-butylphenol); 4,4-isopropylidenebis(2,6-di-tert-butylphenol); 2,2'-methylenebis(4-methyl-6-nonylphenol); 2,2'-isobutylidenebis(4,6-dimethylphenol); 2,2'-methylenebis(4-methyl-6-cyclohexylphenol); 2,6-di-tert-butyl-4-methylphenol (BHT); 2,6-di-tert-butyl-4-ethylphenol; 2,4-dimethyl-6-tert-butylphenol; 2,6-di-tert-alpha-dimethylamino-p-cresol; 2,6-di-tert-butyl-4(N,N'-dimethylaminomethylphenol); 4,4'-thiobis(2-methyl-6-tert-butylphenol); 4,4'-thiobis(3-methyl-6-tert-butylphenol); 2,2'-thiobis(4-methyl-6-tert-butylphenol); bis(3-methyl-4-hydroxy-5-tert-butylbenzyl) sulfide; bis (3,5-di-tert-butyl-4-hydroxybenzyl)sulfide, tocopherol, hydroquinone, 2,2'6,6'-tetra-tert-butyl-4,4'-methylenediphenol and t-butyl hydroquinone, preferably BHT

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

weight to about 48% by weight difluoromethane (HFC-32), from about 10% by weight to about 12.5% by weight pentafluoroethane (HFC-125), and from about 40% by weight to about 44% by weight trifluoriodomethane (CF₃I) and a stabilizer composition comprising a phenol compound selected from 4,4'-methylenebis(2,6-di-tert-butylphenol); 4,4'-bis(2,6-di-tert-butylphenol); 2,2- or 4,4-biphenyldiols, including 4,4'-bis(2-methyl-6-tert-butylphenol); derivatives of 2,2- or 4,4-biphenyldiols; 2,2'-methylenebis(4-ethyl-6-tertbutylphenol); 2,2'-methylenebis(4-methyl-6-tert-butylphenol); 4,4-butyldenebis(3-methyl-6-tert-butylphenol); 4,4-isopropylidenebis(2,6-di-tert-butylphenol); 2,2'-methylenebis(4-methyl-6-nonylphenol); 2,2'-isobutylidenebis(4,6-dimethylphenol); 2,2'-methylenebis(4-methyl-6-cyclohexylphenol); 2,6-di-tert-butyl-4-methylphenol (BHT); 2,6-di-tert-butyl-4-ethylphenol; 2,4-dimethyl-6-tert-butylphenol; 2,6-di-tert-alpha-dimethylamino-p-cresol; 2,6-di-tert-butyl-4(N,N'-dimethylaminomethylphenol); 4,4'-thiobis(2-methyl-6-tert-butylphenol); 4,4'-thiobis(3-methyl-6-tert-butylphenol); 2,2'-thiobis(4-methyl-6-tert-butylphenol); bis(3-methyl-4-hydroxy-5-tert-butylbenzyl) sulfide; bis (3,5-di-tert-butyl-4-hydroxybenzyl)sulfide, tocopherol, hydroquinone, 2,2'6,6'-tetra-tert-butyl-4,4'-methylenediphenol and t-butyl hydroquinone, preferably BHT

Additionally, the heat transfer composition of the invention comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from about 43.5% by weight to about 48% by weight difluoromethane (HFC-32), from about 10% by weight to about 12.5% by weight pentafluoroethane (HFC-125), and from about 40% by weight to about 44% by weight trifluoriodomethane (CF₃I) and a stabilizer composition comprising a phenol compound selected from 4,4'-methylenebis(2,6-di-tert-butylphenol); 4,4'-bis(2,6-di-tert-butylphenol); 2,2- or 4,4-biphenyldiols, including 4,4'-bis(2-methyl-6-tert-butylphenol); derivatives of 2,2- or 4,4-biphenyldiols; 2,2'-methylenebis(4-ethyl-6-tertbutylphenol); 2,2'-methylenebis(4-methyl-6-tert-butylphenol); 4,4-butyldenebis(3-methyl-6-tert-butylphenol); 4,4-isopropylidenebis(2,6-di-tert-butylphenol); 2,2'-methylenebis(4-methyl-6-nonylphenol); 2,2'-isobutylidenebis(4,6-dimethylphenol); 2,2'-methylenebis(4-methyl-6-cyclohexylphenol); 2,6-di-tert-butyl-4-methylphenol (BHT); 2,6-di-tert-butyl-4-ethylphenol; 2,4-dimethyl-6-tert-butylphenol; 2,6-di-tert-alpha-dimethylamino-p-cresol; 2,6-di-tert-butyl-4(N,N'-dimethylaminomethylphenol); 4,4'-thiobis(2-methyl-6-tert-butylphenol); 4,4'-thiobis(3-methyl-6-tert-butylphenol); 2,2'-thiobis(4-methyl-6-tert-butylphenol); bis(3-methyl-4-hydroxy-5-tert-butylbenzyl) sulfide; bis (3,5-di-tert-butyl-4-hydroxybenzyl)sulfide, tocopherol, hydroquinone, 2,2'6,6'-tetra-tert-butyl-4,4'-methylenediphenol and t-butyl hydroquinone, preferably BHT

butylbenzyl) sulfide; bis (3,5-di-tert-butyl-4-hydroxybenzyl)sulfide, tocopherol, hydroquinone, 2,2'6,6'-tetra-tert-butyl-4,4'-methylenediphenol and t-butyl hydroquinone, preferably BHT

The heat transfer composition of the invention comprises a refrigerant comprising at least about 97% by weight of a blend of the following three compounds, with the following

5 percentages being based on the total weight of the following three compounds: about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoriodomethane (CF₃I) and a stabilizer composition comprising a phenol compound selected from 4,4'-methylenebis(2,6-di-tert-butylphenol); 4,4'-bis(2,6-di-tert-butylphenol); 2,2- or 4,4-biphenyldiols, including 4,4'-bis(2-methyl-6-tert-10 butylphenol); derivatives of 2,2- or 4,4-biphenyldiols; 2,2'-methylenebis(4-ethyl-6-tertbutylphenol); 2,2'-methylenebis(4-methyl-6-tert-butylphenol); 4,4-butyldenebis(3-methyl-6-tert-butylphenol); 4,4-isopropylidenebis(2,6-di-tert-butylphenol); 2,2'-methylenebis(4-methyl-6-nonylphenol); 2,2'-isobutylidenebis(4,6-dimethylphenol); 2,2'-methylenebis(4-methyl-6-cyclohexylphenol); 2,6-di-tert-butyl-4-methylphenol (BHT); 2,6-di-tert-butyl-4-15 ethylphenol; 2,4-dimethyl-6-tert-butylphenol; 2,6-di-tert-alpha-dimethylamino-p-cresol; 2,6-di-tert-butyl-4(N,N'-dimethylaminomethylphenol); 4,4'-thiobis(2-methyl-6-tert-butylphenol); 4,4'-thiobis(3-methyl-6-tert-butylphenol); 2,2'-thiobis(4-methyl-6-tert-butylphenol); bis(3-methyl-4-hydroxy-5-tert-butylbenzyl) sulfide; bis (3,5-di-tert-butyl-4-hydroxybenzyl)sulfide, tocopherol, hydroquinone, 2,2'6,6'-tetra-tert-butyl-4,4'-methylenediphenol and t-butyl 20 hydroquinone, preferably BHT

The heat transfer composition of the invention comprises a refrigerant comprising at least about 98.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoriodomethane (CF₃I) and a stabilizer composition

25 comprising a phenol compound selected from 4,4'-methylenebis(2,6-di-tert-butylphenol); 4,4'-bis(2,6-di-tert-butylphenol); 2,2- or 4,4-biphenyldiols, including 4,4'-bis(2-methyl-6-tert-butylphenol); derivatives of 2,2- or 4,4-biphenyldiols; 2,2'-methylenebis(4-ethyl-6-tertbutylphenol); 2,2'-methylenebis(4-methyl-6-tert-butylphenol); 4,4-butyldenebis(3-methyl-6-tert-butylphenol); 4,4-isopropylidenebis(2,6-di-tert-butylphenol); 2,2'-methylenebis(4-methyl-6-nonylphenol); 2,2'-isobutylidenebis(4,6-dimethylphenol); 2,2'-methylenebis(4-methyl-6-cyclohexylphenol); 2,6-di-tert-butyl-4-methylphenol (BHT); 2,6-di-tert-butyl-4-30 ethylphenol; 2,4-dimethyl-6-tert-butylphenol; 2,6-di-tert-alpha-dimethylamino-p-cresol; 2,6-

di-tert-butyl-4(N,N'-dimethylaminomethylphenol); 4,4'-thiobis(2-methyl-6-tert-butylphenol); 4,4'-thiobis(3-methyl-6-tert-butylphenol); 2,2'-thiobis(4-methyl-6-tert-butylphenol); bis(3-methyl-4-hydroxy-5-tert-butylbenzyl) sulfide; bis (3,5-di-tert-butyl-4-hydroxybenzyl)sulfide, tocopherol, hydroquinone, 2,2'6,6'-tetra-tert-butyl-4,4'-methylenediphenol and t-butyl

5 hydroquinone, preferably BHT

The heat transfer composition of the invention comprises a refrigerant comprising at least about 99.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: about 46%

10 by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoriodomethane (CF₃I) and a stabilizer composition comprising a phenol compound selected from 4,4'-methylenebis(2,6-di-tert-butylphenol); 4,4'-bis(2,6-di-tert-butylphenol); 2,2- or 4,4-biphenyldiols, including 4,4'-bis(2-methyl-6-tert-butylphenol); derivatives of 2,2- or 4,4-biphenyldiols; 2,2'-methylenebis(4-ethyl-6-tertbutylphenol); 2,2'-methylenebis(4-methyl-6-tert-butylphenol); 4,4-butyldenebis(3-methyl-6-tert-butylphenol); 4,4-isopropylidenebis(2,6-di-tert-butylphenol); 2,2'-methylenebis(4-methyl-6-nonylphenol); 2,2'-isobutylidenebis(4,6-dimethylphenol); 2,2'-methylenebis(4-methyl-6-cyclohexylphenol); 2,6-di-tert-butyl-4-methylphenol (BHT); 2,6-di-tert-butyl-4-ethylphenol; 2,4-dimethyl-6-tert-butylphenol; 2,6-di-tert-alpha-dimethylamino-p-cresol; 2,6-

15 di-tert-butyl-4(N,N'-dimethylaminomethylphenol); 4,4'-thiobis(2-methyl-6-tert-butylphenol); 4,4'-thiobis(3-methyl-6-tert-butylphenol); 2,2'-thiobis(4-methyl-6-tert-butylphenol); bis(3-methyl-4-hydroxy-5-tert-butylbenzyl) sulfide; bis (3,5-di-tert-butyl-4-hydroxybenzyl)sulfide, tocopherol, hydroquinone, 2,2'6,6'-tetra-tert-butyl-4,4'-methylenediphenol and t-butyl

20 hydroquinone, preferably BHT

25

The heat transfer composition of the invention comprises a refrigerant consisting essentially of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoriodomethane (CF₃I) and a stabilizer composition comprising a phenol compound selected from 4,4'-methylenebis(2,6-di-tert-butylphenol); 4,4'-bis(2,6-di-tert-butylphenol); 2,2- or 4,4-biphenyldiols, including 4,4'-bis(2-methyl-6-tert-butylphenol); derivatives of 2,2-

or 4,4-biphenyldiols; 2,2'-methylenebis(4-ethyl-6-tertbutylphenol); 2,2'-methylenebis(4-methyl-6-tert-butylphenol); 4,4-butylidenebis(3-methyl-6-tert-butylphenol); 4,4-isopropylidenebis(2,6-di-tert-butylphenol); 2,2'-methylenebis(4-methyl-6-nonylphenol); 2,2'-isobutylidenebis(4,6-dimethylphenol); 2,2'-methylenebis(4-methyl-6-cyclohexylphenol); 2,6-di-tert-butyl-4-methylphenol (BHT); 2,6-di-tert-butyl-4-ethylphenol; 2,4-dimethyl-6-tert-butylphenol; 2,6-di-tert-alpha-dimethylamino-p-cresol; 2,6-di-tert-butyl-4(N,N'-dimethylaminomethylphenol); 4,4'-thiobis(2-methyl-6-tert-butylphenol); 4,4'-thiobis(3-methyl-6-tert-butylphenol); 2,2'-thiobis(4-methyl-6-tert-butylphenol); bis(3-methyl-4-hydroxy-5-tert-butylbenzyl) sulfide; bis (3,5-di-tert-butyl-4-hydroxybenzyl)sulfide, tocopherol, hydroquinone, 2,2'6,6'-tetra-tert-butyl-4,4'-methylenediphenol and t-butyl hydroquinone, preferably BHT

The heat transfer composition of the invention comprises a refrigerant consisting of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoroiodomethane (CF₃I) and a stabilizer composition comprising a phenol compound selected from 4,4'-methylenebis(2,6-di-tert-butylphenol); 4,4'-bis(2,6-di-tert-butylphenol); 2,2- or 4,4-biphenyldiols, including 4,4'-bis(2-methyl-6-tert-butylphenol); derivatives of 2,2- or 4,4-biphenyldiols; 2,2'-methylenebis(4-ethyl-6-tertbutylphenol); 2,2'-methylenebis(4-methyl-6-tert-butylphenol); 4,4-butylidenebis(3-methyl-6-tert-butylphenol); 4,4-isopropylidenebis(2,6-di-tert-butylphenol); 2,2'-methylenebis(4-methyl-6-nonylphenol); 2,2'-isobutylidenebis(4,6-dimethylphenol); 2,2'-methylenebis(4-methyl-6-cyclohexylphenol); 2,6-di-tert-butyl-4-methylphenol (BHT); 2,6-di-tert-butyl-4-ethylphenol; 2,4-dimethyl-6-tert-butylphenol; 2,6-di-tert-alpha-dimethylamino-p-cresol; 2,6-di-tert-butyl-4(N,N'-dimethylaminomethylphenol); 4,4'-thiobis(2-methyl-6-tert-butylphenol); 4,4'-thiobis(3-methyl-6-tert-butylphenol); 2,2'-thiobis(4-methyl-6-tert-butylphenol); bis(3-methyl-4-hydroxy-5-tert-butylbenzyl) sulfide; bis (3,5-di-tert-butyl-4-hydroxybenzyl)sulfide, tocopherol, hydroquinone, 2,2'6,6'-tetra-tert-butyl-4,4'-methylenediphenol and t-butyl hydroquinone, preferably BHT.

The heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 97% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from 43% by weight to 51% by weight difluoromethane (HFC-32),

from 3.5% by weight to 11.5% by weight pentafluoroethane (HFC-125), and from 37.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I) and a stabilizer composition comprising BHT, wherein said BHT is present in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

5

The heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 98.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

10 from 43% by weight to 51% by weight difluoromethane (HFC-32),

from 3.5% by weight to 11.5% by weight pentafluoroethane (HFC-125), and

from 37.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I) and a stabilizer composition comprising BHT, wherein said BHT is present in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

15

The heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 99.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

20 from 43% by weight to 51% by weight difluoromethane (HFC-32),

from 3.5% by weight to 11.5% by weight pentafluoroethane (HFC-125), and

from 37.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I) and a stabilizer composition comprising BHT, wherein said BHT is present in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

25

The heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting essentially of a blend of the following three compounds, with the following

percentages being based on the total weight of the following three compounds: from 43% by weight to 51% by weight difluoromethane (HFC-32),

from 3.5% by weight to 11.5% by weight pentafluoroethane (HFC-125), and

from 37.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I) and a stabilizer

5 composition comprising BHT, wherein said BHT is present in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

The heat transfer composition of the invention can preferably comprise a refrigerant consisting of a blend of the following three compounds, with the following percentages being 10 based on the total weight of the following three compounds: from 43% by weight to 51% by weight difluoromethane (HFC-32),

from 3.5% by weight to 11.5% by weight pentafluoroethane (HFC-125), and

from 37.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I) and a stabilizer

composition comprising BHT, wherein said BHT is present in an amount of from about 15 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

The heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 97% by weight of a blend of the following three compounds, with 20 the following percentages being based on the total weight of the following three compounds: from about 48% by weight to about 51% by weight difluoromethane (HFC-32),

from about 9.5% by weight to about 11.5% by weight pentafluoroethane (HFC-125), and

from about 36.5% by weight to about 40.5% by weight trifluoroiodomethane (CF₃I) and a

stabilizer composition comprising BHT, wherein said BHT is present in an amount of from 25 about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

The heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 98.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

5 from about 48% by weight to about 51% by weight difluoromethane (HFC-32),
from about 9.5% by weight to about 11.5% by weight pentafluoroethane (HFC-125), and
from about 36.5% by weight to about 40.5% by weight trifluoriodomethane (CF₃I) and a
stabilizer composition comprising BHT, wherein said BHT is present in an amount of from
about 0.001% by weight to about 5 % by weight based on the weight of heat transfer
10 composition.

The heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 99.5% by weight of a blend of the following three compounds, with
15 the following percentages being based on the total weight of the following three compounds:
from about 48% by weight to about 51% by weight difluoromethane (HFC-32),

from about 9.5% by weight to about 11.5% by weight pentafluoroethane (HFC-125), and
from about 36.5% by weight to about 40.5% by weight trifluoriodomethane (CF₃I) and a
stabilizer composition comprising BHT, wherein said BHT is present in an amount of from
20 about 0.001% by weight to about 5 % by weight based on the weight of heat transfer
composition.

The heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants
25 consisting essentially of a blend of the following three compounds, with the following
percentages being based on the total weight of the following three compounds: from about
48% by weight to about 51% by weight difluoromethane (HFC-32),

from about 9.5% by weight to about 11.5% by weight pentafluoroethane (HFC-125), and

from about 36.5% by weight to about 40.5% by weight trifluoroiodomethane (CF₃I) and a stabilizer composition comprising BHT, wherein said BHT is present in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

5

The heat transfer composition of the invention can preferably comprise a refrigerant consisting of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from about 48% by weight to about 51% by weight difluoromethane (HFC-32),

10 from about 9.5% by weight to about 11.5% by weight pentafluoroethane (HFC-125), and from about 36.5% by weight to about 40.5% by weight trifluoroiodomethane (CF₃I) and a stabilizer composition comprising BHT, wherein said BHT is present in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

15

The heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 97% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: 20 about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoroiodomethane (CF₃I) and a stabilizer composition comprising BHT, wherein said BHT is present in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

25 The heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 98.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane 30 (HFC-125), and about 38.5% by weight trifluoroiodomethane (CF₃I) and a stabilizer

composition comprising BHT, wherein said BHT is present in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

The heat transfer composition of the invention can preferably comprise a refrigerant
5 according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 99.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoroiodomethane (CF₃I) and a stabilizer
10 composition comprising BHT, wherein said BHT is present in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

The heat transfer composition of the invention can preferably comprise a refrigerant
according to any one of the refrigerants described here, but preferably those refrigerants
15 consisting essentially of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoroiodomethane (CF₃I) and a stabilizer composition
comprising BHT, wherein said BHT is present in an amount of from about 0.001% by weight
20 to about 5 % by weight based on the weight of heat transfer composition.

The heat transfer composition of the invention can preferably comprise a refrigerant
consisting of a blend of the following three compounds, with the following percentages being
based on the total weight of the following three compounds: about 50% by weight
25 difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoroiodomethane (CF₃I) and a stabilizer composition comprising BHT, wherein said BHT is present in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

The heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 97% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

5 from 42% by weight to 48% by weight difluoromethane (HFC-32), from 6.5% by weight to 12.5% by weight pentafluoroethane (HFC-125), and from 39.5% by weight to 45.5% by weight trifluoriodomethane (CF₃I); and a stabilizer composition comprising BHT, wherein said BHT is present in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

10

Additionally, the heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 98.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

15 from 42% by weight to 48% by weight difluoromethane (HFC-32), from 6.5% by weight to 12.5% by weight pentafluoroethane (HFC-125), and from 39.5% by weight to 45.5% by weight trifluoriodomethane (CF₃I); and a stabilizer composition comprising BHT, wherein said BHT is present in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

20

Additionally, the heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 99.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

25 from 42% by weight to 48% by weight difluoromethane (HFC-32), from 6.5% by weight to 12.5% by weight pentafluoroethane (HFC-125), and from 39.5% by weight to 45.5% by weight trifluoriodomethane (CF₃I); and a stabilizer composition comprising BHT, wherein said BHT is present in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

30

Additionally, the heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting essentially of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

5 from 42% by weight to 48% by weight difluoromethane (HFC-32), from 6.5% by weight to 12.5% by weight pentafluoroethane (HFC-125), and a stabilizer composition comprising BHT, wherein said BHT is present in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

10 Additionally, the heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from 42% by weight to 48% by weight difluoromethane (HFC-32), from 6.5% by weight to 12.5% by weight pentafluoroethane (HFC-125), and from 39.5% by weight to 45.5% by weight trifluoriodomethane (CF₃I); and a stabilizer composition comprising BHT, wherein said BHT is present in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

20 Additionally, the heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 97% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from about 43.5% by weight to about 48% by weight difluoromethane (HFC-32), from about 10% by weight to about 12.5% by weight pentafluoroethane (HFC-125), and from about 40% by weight to about 44% by weight trifluoriodomethane (CF₃I) and a stabilizer composition comprising BHT, wherein said BHT is present in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

Additionally, the heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 98.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following 5 three compounds: from about 43.5% by weight to about 48% by weight difluoromethane (HFC-32), from about 10% by weight to about 12.5% by weight pentafluoroethane (HFC-125), and from about 40% by weight to about 44% by weight trifluoriodomethane (CF₃I) and a stabilizer composition comprising BHT, wherein said BHT is present in an amount of 10 from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

Additionally, the heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 99.5% by weight of a blend of the following three 15 compounds, with the following percentages being based on the total weight of the following three compounds: from about 43.5% by weight to about 48% by weight difluoromethane (HFC-32), from about 10% by weight to about 12.5% by weight pentafluoroethane (HFC-125), and from about 40% by weight to about 44% by weight trifluoriodomethane (CF₃I) and a stabilizer composition comprising BHT, wherein said BHT is present in an amount of 20 from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

Additionally, the heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those 25 refrigerants consisting essentially of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from about 43.5% by weight to about 48% by weight difluoromethane (HFC-32), from about 10% by weight to about 12.5% by weight pentafluoroethane (HFC-125), and from about 40% by weight to about 44% by weight trifluoriodomethane (CF₃I) and a stabilizer 30 composition comprising BHT, wherein said BHT is present in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

Additionally, the heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting of a blend of the following three compounds, with the following 5 percentages being based on the total weight of the following three compounds: from about 43.5% by weight to about 48% by weight difluoromethane (HFC-32), from about 10% by weight to about 12.5% by weight pentafluoroethane (HFC-125), and from about 40% by weight to about 44% by weight trifluoroiodomethane (CF₃I) and a stabilizer composition comprising BHT, wherein said BHT is present in an amount of from about 0.001% by weight 10 to about 5 % by weight based on the weight of heat transfer composition.

The heat transfer composition of the invention can preferably comprise a refrigerant comprising at least about 97% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: 15 about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoroiodomethane (CF₃I) and a stabilizer composition comprising BHT, wherein said BHT is present in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

20 The heat transfer composition of the invention can preferably comprise a refrigerant comprising at least about 98.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoroiodomethane (CF₃I) and a stabilizer 25 composition comprising BHT, wherein said BHT is present in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

The heat transfer composition of the invention can preferably comprise a refrigerant comprising at least about 99.5% by weight of a blend of the following three compounds, with 30 the following percentages being based on the total weight of the following three compounds:

about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoroiodomethane (CF₃I) and a stabilizer composition comprising BHT, wherein said BHT is present in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

5

The heat transfer composition of the invention can preferably comprise a refrigerant consisting essentially of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoroiodomethane (CF₃I) and a stabilizer composition comprising BHT, wherein said BHT is present in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

10

The heat transfer composition of the invention can preferably comprise a refrigerant consisting of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoroiodomethane (CF₃I) and a stabilizer composition comprising BHT, wherein said BHT is present in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

15

The heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 97% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from 43% by weight to 51% by weight difluoromethane (HFC-32),

20

from 3.5% by weight to 11.5% by weight pentafluoroethane (HFC-125), and from 37.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I) and a stabilizer composition consisting essentially of BHT, wherein said BHT is present in an amount of

from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

The heat transfer composition of the invention can preferably comprise a refrigerant

5 according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 98.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from 43% by weight to 51% by weight difluoromethane (HFC-32),

from 3.5% by weight to 11.5% by weight pentafluoroethane (HFC-125), and

10 from 37.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I) and a stabilizer composition consisting essentially of BHT, wherein said BHT is present in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

15 The heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 99.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from 43% by weight to 51% by weight difluoromethane (HFC-32),

20 from 3.5% by weight to 11.5% by weight pentafluoroethane (HFC-125), and

from 37.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I) and a stabilizer composition consisting essentially of BHT, wherein said BHT is present in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

25

The heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting essentially of a blend of the following three compounds, with the following

percentages being based on the total weight of the following three compounds: from 43% by weight to 51% by weight difluoromethane (HFC-32),

from 3.5% by weight to 11.5% by weight pentafluoroethane (HFC-125), and

from 37.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I) and a stabilizer

5 composition consisting essentially of BHT, wherein said BHT is present in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

The heat transfer composition of the invention can preferably comprise a refrigerant

10 consisting of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from 43% by weight to 51% by weight difluoromethane (HFC-32),

from 3.5% by weight to 11.5% by weight pentafluoroethane (HFC-125), and

from 37.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I) and a stabilizer

15 composition consisting essentially of BHT, wherein said BHT is present in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

The heat transfer composition of the invention can preferably comprise a refrigerant

20 according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 97% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from about 48% by weight to about 51% by weight difluoromethane (HFC-32),

from about 9.5% by weight to about 11.5% by weight pentafluoroethane (HFC-125), and

25 from about 36.5% by weight to about 40.5% by weight trifluoroiodomethane (CF₃I) and a stabilizer composition consisting essentially of BHT, wherein said BHT is present in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

The heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 98.5% by weight of a blend of the following three compounds, with 5 the following percentages being based on the total weight of the following three compounds: from about 48% by weight to about 51% by weight difluoromethane (HFC-32),

from about 9.5% by weight to about 11.5% by weight pentafluoroethane (HFC-125), and

from about 36.5% by weight to about 40.5% by weight trifluoroiodomethane (CF₃I) and a stabilizer composition consisting essentially of BHT, wherein said BHT is present in an

10 amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

The heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants

15 comprising at least about 99.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from about 48% by weight to about 51% by weight difluoromethane (HFC-32),

from about 9.5% by weight to about 11.5% by weight pentafluoroethane (HFC-125), and

from about 36.5% by weight to about 40.5% by weight trifluoroiodomethane (CF₃I) and a

20 stabilizer composition consisting essentially of BHT, wherein said BHT is present in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

The heat transfer composition of the invention can preferably comprise a refrigerant

25 according to any one of the refrigerants described here, but preferably those refrigerants consisting essentially of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from about 48% by weight to about 51% by weight difluoromethane (HFC-32),

from about 9.5% by weight to about 11.5% by weight pentafluoroethane (HFC-125), and

from about 36.5% by weight to about 40.5% by weight trifluoroiodomethane (CF₃I) and a stabilizer composition consisting essentially of BHT, wherein said BHT is present in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

5

The heat transfer composition of the invention can preferably comprise a refrigerant consisting of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from about 48% by weight to about 51% by weight difluoromethane (HFC-32),

- 10 from about 9.5% by weight to about 11.5% by weight pentafluoroethane (HFC-125), and from about 36.5% by weight to about 40.5% by weight trifluoroiodomethane (CF₃I) and a stabilizer composition consisting essentially of BHT, wherein said BHT is present in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.
- 15 The heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 97% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoroiodomethane (CF₃I) and a stabilizer composition consisting essentially of BHT, wherein said BHT is present in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.
- 20 The heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 98.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoroiodomethane (CF₃I) and a stabilizer
- 25 The heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 98.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoroiodomethane (CF₃I) and a stabilizer

composition consisting essentially of BHT, wherein said BHT is present in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

5 The heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 99.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I) and a stabilizer composition consisting essentially of BHT, wherein said BHT is present in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

10 15 The heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting essentially of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I) and a stabilizer composition consisting essentially of BHT, wherein said BHT is present in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

20 25 The heat transfer composition of the invention can preferably comprise a refrigerant consisting of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I) and a stabilizer composition consisting essentially of BHT, wherein said BHT is present in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

30

The heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 97% by weight of a blend of the following three compounds, with 5 the following percentages being based on the total weight of the following three compounds: from 42% by weight to 48% by weight difluoromethane (HFC-32), from 6.5% by weight to 12.5% by weight pentafluoroethane (HFC-125), and from 39.5% by weight to 45.5% by weight trifluoriodomethane (CF₃I); and a stabilizer composition consisting essentially of BHT, wherein said BHT is present in an amount of from about 0.001% by weight to about 5 10 % by weight based on the weight of heat transfer composition.

Additionally, the heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 98.5% by weight of a blend of the following three 15 compounds, with the following percentages being based on the total weight of the following three compounds: from 42% by weight to 48% by weight difluoromethane (HFC-32), from 6.5% by weight to 12.5% by weight pentafluoroethane (HFC-125), and from 39.5% by weight to 45.5% by weight trifluoriodomethane (CF₃I); and a stabilizer composition consisting essentially of BHT, wherein said BHT is present in an amount of from about 20 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

Additionally, the heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 99.5% by weight of a blend of the following three 25 compounds, with the following percentages being based on the total weight of the following three compounds: from 42% by weight to 48% by weight difluoromethane (HFC-32), from 6.5% by weight to 12.5% by weight pentafluoroethane (HFC-125), and from 39.5% by weight to 45.5% by weight trifluoriodomethane (CF₃I); and a stabilizer composition consisting essentially of BHT, wherein said BHT is present in an amount of from about 30 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

Additionally, the heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting essentially of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

5 from 42% by weight to 48% by weight difluoromethane (HFC-32), from 6.5% by weight to 12.5% by weight pentafluoroethane (HFC-125), and a stabilizer composition consisting essentially of BHT, wherein said BHT is present in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

10 Additionally, the heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from 42% by weight to 48% by weight difluoromethane (HFC-32), from 6.5% by weight to 12.5% by weight pentafluoroethane (HFC-125), and from 39.5% by weight to 45.5% by weight trifluoriodomethane (CF₃I); and a stabilizer composition consisting essentially of BHT, wherein said BHT is present in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

20 Additionally, the heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 97% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from about 43.5% by weight to about 48% by weight difluoromethane (HFC-32), from about 10% by weight to about 12.5% by weight pentafluoroethane (HFC-125), and from about 40% by weight to about 44% by weight trifluoriodomethane (CF₃I) and a stabilizer composition consisting essentially of BHT, wherein said BHT is present in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

Additionally, the heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 98.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following

5 three compounds: from about 43.5% by weight to about 48% by weight difluoromethane (HFC-32), from about 10% by weight to about 12.5% by weight pentafluoroethane (HFC-125), and from about 40% by weight to about 44% by weight trifluoriodomethane (CF₃I) and a stabilizer composition consisting essentially of BHT, wherein said BHT is present in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of

10 heat transfer composition.

Additionally, the heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 99.5% by weight of a blend of the following three

15 compounds, with the following percentages being based on the total weight of the following three compounds: from about 43.5% by weight to about 48% by weight difluoromethane (HFC-32), from about 10% by weight to about 12.5% by weight pentafluoroethane (HFC-125), and from about 40% by weight to about 44% by weight trifluoriodomethane (CF₃I) and a stabilizer composition consisting essentially of BHT, wherein said BHT is present in

20 an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

Additionally, the heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those

25 refrigerants consisting essentially of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from about 43.5% by weight to about 48% by weight difluoromethane (HFC-32), from about 10% by weight to about 12.5% by weight pentafluoroethane (HFC-125), and from about 40% by weight to about 44% by weight trifluoriodomethane (CF₃I) and a stabilizer

30 composition consisting essentially of BHT, wherein said BHT is present in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

Additionally, the heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting of a blend of the following three compounds, with the following 5 percentages being based on the total weight of the following three compounds: from about 43.5% by weight to about 48% by weight difluoromethane (HFC-32), from about 10% by weight to about 12.5% by weight pentafluoroethane (HFC-125), and from about 40% by weight to about 44% by weight trifluoroiodomethane (CF₃I) and a stabilizer composition consisting essentially of BHT, wherein said BHT is present in an amount of from about 10 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

The heat transfer composition of the invention can preferably comprise a refrigerant comprising at least about 97% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: 15 about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoroiodomethane (CF₃I) and a stabilizer composition consisting essentially of BHT, wherein said BHT is present in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

20

The heat transfer composition of the invention can preferably comprise a refrigerant comprising at least about 98.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane 25 (HFC-125), and about 42% by weight trifluoroiodomethane (CF₃I) and a stabilizer composition consisting essentially of BHT, wherein said BHT is present in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

The heat transfer composition of the invention can preferably comprise a refrigerant comprising at least about 99.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane

5 (HFC-125), and about 42% by weight trifluoriodomethane (CF₃I) and a stabilizer composition consisting essentially of BHT, wherein said BHT is present in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

10 The heat transfer composition of the invention can preferably comprise a refrigerant consisting essentially of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoriodomethane (CF₃I) and a stabilizer composition

15 consisting essentially of BHT, wherein said BHT is present in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

20 The heat transfer composition of the invention can preferably comprise a refrigerant consisting of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoriodomethane (CF₃I) and a stabilizer composition consisting essentially of BHT, wherein said BHT is present in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

25

The heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 97% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from 43% by weight to 51% by weight difluoromethane (HFC-32),

from 3.5% by weight to 11.5% by weight pentafluoroethane (HFC-125), and

from 37.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I) and a stabilizer composition comprising farnesene, diphenyl phosphite and BHT, wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the

5 weight of the heat transfer composition, the diphenyl phosphite is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

10 The heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 98.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from 43% by weight to 51% by weight difluoromethane (HFC-32),

15 from 3.5% by weight to 11.5% by weight pentafluoroethane (HFC-125), and

from 37.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I) and a stabilizer composition comprising farnesene, diphenyl phosphite and BHT, wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphite is provided in an amount of

20 from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

The heat transfer composition of the invention can preferably comprise a refrigerant

25 according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 99.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from 43% by weight to 51% by weight difluoromethane (HFC-32),

from 3.5% by weight to 11.5% by weight pentafluoroethane (HFC-125), and

from 37.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I) and a stabilizer composition comprising farnesene, diphenyl phosphite and BHT, wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphite is provided in an amount of

5 from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

The heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants

10 consisting essentially of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from 43% by weight to 51% by weight difluoromethane (HFC-32),

from 3.5% by weight to 11.5% by weight pentafluoroethane (HFC-125), and

from 37.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I) and a stabilizer

15 composition comprising farnesene, diphenyl phosphite and BHT, wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphite is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight

20 to about 5 % by weight based on the weight of heat transfer composition.

The heat transfer composition of the invention can preferably comprise a refrigerant consisting of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from 43% by weight to 51% by weight difluoromethane (HFC-32),

25 from 3.5% by weight to 11.5% by weight pentafluoroethane (HFC-125), and

from 37.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I) and a stabilizer

composition comprising farnesene, diphenyl phosphite and BHT, wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphite is provided in an amount of

30 from about 0.001% by weight to about 5% by weight based on the weight of the heat

transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

The heat transfer composition of the invention can preferably comprise a refrigerant

according to any one of the refrigerants described here, but preferably those refrigerants

5 comprising at least about 97% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from about 48% by weight to about 51% by weight difluoromethane (HFC-32),

from about 9.5% by weight to about 11.5% by weight pentafluoroethane (HFC-125), and

from about 36.5% by weight to about 40.5% by weight trifluoriodomethane (CF₃I) and a

10 stabilizer composition comprising farnesene, diphenyl phosphite and BHT, wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphite is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001%

15 by weight to about 5 % by weight based on the weight of heat transfer composition.

The heat transfer composition of the invention can preferably comprise a refrigerant

according to any one of the refrigerants described here, but preferably those refrigerants

comprising at least about 98.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

20 from about 48% by weight to about 51% by weight difluoromethane (HFC-32),

from about 9.5% by weight to about 11.5% by weight pentafluoroethane (HFC-125), and

from about 36.5% by weight to about 40.5% by weight trifluoriodomethane (CF₃I) and a

stabilizer composition comprising farnesene, diphenyl phosphite and BHT, wherein the

farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight

25 based on the weight of the heat transfer composition, the diphenyl phosphite is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

The heat transfer composition of the invention can preferably comprise a refrigerant

30 according to any one of the refrigerants described here, but preferably those refrigerants

comprising at least about 99.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from about 48% by weight to about 51% by weight difluoromethane (HFC-32),

from about 9.5% by weight to about 11.5% by weight pentafluoroethane (HFC-125), and

5 from about 36.5% by weight to about 40.5% by weight trifluoroiodomethane (CF_3I) and a stabilizer composition comprising farnesene, diphenyl phosphite and BHT, wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphite is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of
10 the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

The heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting essentially of a blend of the following three compounds, with the following

15 percentages being based on the total weight of the following three compounds: from about 48% by weight to about 51% by weight difluoromethane (HFC-32),

from about 9.5% by weight to about 11.5% by weight pentafluoroethane (HFC-125), and

from about 36.5% by weight to about 40.5% by weight trifluoroiodomethane (CF_3I) and a stabilizer composition comprising farnesene, diphenyl phosphite and BHT, wherein the

20 farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphite is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

25 The heat transfer composition of the invention can preferably comprise a refrigerant consisting of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from about 48% by weight to about 51% by weight difluoromethane (HFC-32),

from about 9.5% by weight to about 11.5% by weight pentafluoroethane (HFC-125), and

from about 36.5% by weight to about 40.5% by weight trifluoroiodomethane (CF₃I) and a stabilizer composition comprising farnesene, diphenyl phosphite and BHT, wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphite is provided in 5 an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

The heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants 10 comprising at least about 97% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoroiodomethane (CF₃I) and a stabilizer composition comprising farnesene, diphenyl phosphite and BHT, wherein the farnesene is 15 provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphite is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

20

The heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 98.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: 25 about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoroiodomethane (CF₃I) and a stabilizer composition comprising farnesene, diphenyl phosphite and BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphite is provided in an amount of 30 from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

The heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 99.5% by weight of a blend of the following three compounds, with 5 the following percentages being based on the total weight of the following three compounds: about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I) and a stabilizer composition comprising farnesene, diphenyl phosphite and BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the 10 weight of the heat transfer composition, the diphenyl phosphite is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

15 The heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting essentially of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), 20 and about 38.5% by weight trifluoriodomethane (CF₃I) and a stabilizer composition comprising farnesene, diphenyl phosphite and BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphite is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer 25 composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

The heat transfer composition of the invention can preferably comprise a refrigerant consisting of about 50% by weight difluoromethane (HFC-32), about 11.5% by weight 30 pentafluoroethane (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I) and a stabilizer composition comprising farnesene, diphenyl phosphite and BHT wherein the

farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphite is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

5 The heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 97% by weight of a blend of the following three compounds, with
10 the following percentages being based on the total weight of the following three compounds: from 42% by weight to 48% by weight difluoromethane (HFC-32), from 6.5% by weight to 12.5% by weight pentafluoroethane (HFC-125), and from 39.5% by weight to 45.5% by weight trifluoriodomethane (CF₃I); and a stabilizer composition comprising farnesene, diphenyl phosphite and BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer
15 composition, the diphenyl phosphite is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

20

Additionally, the heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 98.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following
25 three compounds: from 42% by weight to 48% by weight difluoromethane (HFC-32), from 6.5% by weight to 12.5% by weight pentafluoroethane (HFC-125), and from 39.5% by weight to 45.5% by weight trifluoriodomethane (CF₃I); and a stabilizer composition comprising farnesene, diphenyl phosphite and BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer
30 composition, the diphenyl phosphite is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer

composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

Additionally, the heat transfer composition of the invention can preferably comprise a
5 refrigerant according to any one of the refrigerants described here, but preferably those
refrigerants comprising at least about 99.5% by weight of a blend of the following three
compounds, with the following percentages being based on the total weight of the following
three compounds: from 42% by weight to 48% by weight difluoromethane (HFC-32), from
6.5% by weight to 12.5% by weight pentafluoroethane (HFC-125), and from 39.5% by
10 weight to 45.5% by weight trifluoriodomethane (CF₃I); and a stabilizer composition
comprising farnesene, diphenyl phosphite and BHT wherein the farnesene is provided in an
amount of from about 0.001% by weight to about 5% by weight based on the weight of the
heat transfer composition, the diphenyl phosphite is provided in an amount of from about
0.001% by weight to about 5% by weight based on the weight of the heat transfer
15 composition and the BHT is provided in an amount of from about 0.001% by weight to about
5 % by weight based on the weight of heat transfer composition.

Additionally, the heat transfer composition of the invention can preferably comprise a
refrigerant according to any one of the refrigerants described here, but preferably those
20 refrigerants consisting essentially of a blend of the following three compounds, with the
following percentages being based on the total weight of the following three compounds:
from 42% by weight to 48% by weight difluoromethane (HFC-32), from 6.5% by weight to
12.5% by weight pentafluoroethane (HFC-125), and from 39.5% by weight to 45.5% by
weight trifluoriodomethane (CF₃I); and a stabilizer composition comprising farnesene,
25 diphenyl phosphite and BHT wherein the farnesene is provided in an amount of from about
0.001% by weight to about 5% by weight based on the weight of the heat transfer
composition, the diphenyl phosphite is provided in an amount of from about 0.001% by
weight to about 5% by weight based on the weight of the heat transfer composition and the
BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight
30 based on the weight of heat transfer composition.

Additionally, the heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from 42% by

5 weight to 48% by weight difluoromethane (HFC-32), from 6.5% by weight to 12.5% by weight pentafluoroethane (HFC-125), and from 39.5% by weight to 45.5% by weight trifluoriodomethane (CF₃I); and a stabilizer composition comprising farnesene, diphenyl phosphite and BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the 10 diphenyl phosphite is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

15 Additionally, the heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 97% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from about 43.5% by weight to about 48% by weight difluoromethane 20 (HFC-32), from about 10% by weight to about 12.5% by weight pentafluoroethane (HFC-125), and from about 40% by weight to about 44% by weight trifluoriodomethane (CF₃I) and a stabilizer composition comprising farnesene, diphenyl phosphite and BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphite is provided in 25 an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

30 Additionally, the heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 98.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following

three compounds: from about 43.5% by weight to about 48% by weight difluoromethane (HFC-32), from about 10% by weight to about 12.5% by weight pentafluoroethane (HFC-125), and from about 40% by weight to about 44% by weight trifluoriodomethane (CF₃I) and a stabilizer composition comprising farnesene, diphenyl phosphite and BHT wherein the

5 farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphite is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

10

Additionally, the heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 99.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following

15 three compounds: from about 43.5% by weight to about 48% by weight difluoromethane (HFC-32), from about 10% by weight to about 12.5% by weight pentafluoroethane (HFC-125), and from about 40% by weight to about 44% by weight trifluoriodomethane (CF₃I) and a stabilizer composition comprising farnesene, diphenyl phosphite and BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight

20 based on the weight of the heat transfer composition, the diphenyl phosphite is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

25 Additionally, the heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting essentially of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from about 43.5% by weight to about 48% by weight difluoromethane (HFC-32), from about

30 10% by weight to about 12.5% by weight pentafluoroethane (HFC-125), and from about 40% by weight to about 44% by weight trifluoriodomethane (CF₃I) and a stabilizer composition comprising farnesene, diphenyl phosphite and BHT wherein the farnesene is

provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphite is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

Additionally, the heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from about 43.5% by weight to about 48% by weight difluoromethane (HFC-32), from about 10% by weight to about 12.5% by weight pentafluoroethane (HFC-125), and from about 40% by weight to about 44% by weight trifluoriodomethane (CF₃I) and a stabilizer composition comprising farnesene, diphenyl phosphite and BHT wherein the farnesene is provided in an

amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphite is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

20

The heat transfer composition of the invention can preferably comprise a refrigerant comprising at least about 97% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoriodomethane (CF₃I) and a stabilizer

composition comprising farnesene, diphenyl phosphite and BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphite is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

The heat transfer composition of the invention can preferably comprise a refrigerant comprising at least about 98.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

5 about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoriodomethane (CF₃I) and a stabilizer composition comprising farnesene, diphenyl phosphite and BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphite is provided in an amount of
10 from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

The heat transfer composition of the invention can preferably comprise a refrigerant

15 comprising at least about 99.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoriodomethane (CF₃I) and a stabilizer composition comprising farnesene, diphenyl phosphite and BHT wherein the farnesene is
20 provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphite is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

25

The heat transfer composition of the invention can preferably comprise a refrigerant consisting essentially of about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoriodomethane (CF₃I) and a stabilizer composition comprising farnesene, diphenyl phosphite and BHT wherein the
30 farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphite is provided in

an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

5 The heat transfer composition of the invention can preferably comprise a refrigerant consisting of about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoriodomethane (CF₃I) and a stabilizer composition comprising farnesene, diphenyl phosphite and BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight
10 based on the weight of the heat transfer composition, the diphenyl phosphite is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

The heat transfer composition of the invention can preferably comprise a refrigerant
15 according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 97% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from 43% by weight to 51% by weight difluoromethane (HFC-32),
from 3.5% by weight to 11.5% by weight pentafluoroethane (HFC-125), and
20 from 37.5% by weight to 45.5% by weight trifluoriodomethane (CF₃I) and a stabilizer composition consisting essentially of farnesene, diphenyl phosphite and BHT, wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphite is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of
25 the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

The heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 98.5% by weight of a blend of the following three compounds, with
30

the following percentages being based on the total weight of the following three compounds: from 43% by weight to 51% by weight difluoromethane (HFC-32),

from 3.5% by weight to 11.5% by weight pentafluoroethane (HFC-125), and

from 37.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I) and a stabilizer

5 composition consisting essentially of farnesene, diphenyl phosphite and BHT, wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphite is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001%
10 by weight to about 5 % by weight based on the weight of heat transfer composition.

The heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 99.5% by weight of a blend of the following three compounds, with
15 the following percentages being based on the total weight of the following three compounds: from 43% by weight to 51% by weight difluoromethane (HFC-32),

from 3.5% by weight to 11.5% by weight pentafluoroethane (HFC-125), and

from 37.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I) and a stabilizer

20 composition consisting essentially of farnesene, diphenyl phosphite and BHT, wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphite is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001%
by weight to about 5 % by weight based on the weight of heat transfer composition.

25 The heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting essentially of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from 43% by weight to 51% by weight difluoromethane (HFC-32),

30 from 3.5% by weight to 11.5% by weight pentafluoroethane (HFC-125), and

from 37.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I) and a stabilizer composition consisting essentially of farnesene, diphenyl phosphite and BHT, wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphite is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

The heat transfer composition of the invention can preferably comprise a refrigerant consisting of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from 43% by weight to 51% by weight difluoromethane (HFC-32),

from 3.5% by weight to 11.5% by weight pentafluoroethane (HFC-125), and

from 37.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I) and a stabilizer composition consisting essentially of farnesene, diphenyl phosphite and BHT, wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphite is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

The heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 97% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from about 48% by weight to about 51% by weight difluoromethane (HFC-32),

from about 9.5% by weight to about 11.5% by weight pentafluoroethane (HFC-125), and

from about 36.5% by weight to about 40.5% by weight trifluoroiodomethane (CF₃I) and a stabilizer composition consisting essentially of farnesene, diphenyl phosphite and BHT, wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphite is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from

about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

The heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants

5 comprising at least about 98.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from about 48% by weight to about 51% by weight difluoromethane (HFC-32),

from about 9.5% by weight to about 11.5% by weight pentafluoroethane (HFC-125), and

from about 36.5% by weight to about 40.5% by weight trifluoriodomethane (CF₃I) and a

10 stabilizer composition consisting essentially of farnesene, diphenyl phosphite and BHT, wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphite is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from 15 about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

The heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants

comprising at least about 99.5% by weight of a blend of the following three compounds, with 20

the following percentages being based on the total weight of the following three compounds: from about 48% by weight to about 51% by weight difluoromethane (HFC-32),

from about 9.5% by weight to about 11.5% by weight pentafluoroethane (HFC-125), and

from about 36.5% by weight to about 40.5% by weight trifluoriodomethane (CF₃I) and a

stabilizer composition consisting essentially of farnesene, diphenyl phosphite and BHT,

25 wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphite is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer 30 composition.

The heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting essentially of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from about

5 48% by weight to about 51% by weight difluoromethane (HFC-32),

from about 9.5% by weight to about 11.5% by weight pentafluoroethane (HFC-125), and

from about 36.5% by weight to about 40.5% by weight trifluoroiodomethane (CF_3I) and a stabilizer composition consisting essentially of farnesene, diphenyl phosphite and BHT, wherein the farnesene is provided in an amount of from about 0.001% by weight to about

10 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphite is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

15 The heat transfer composition of the invention can preferably comprise a refrigerant consisting of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from about 48% by weight to about 51% by weight difluoromethane (HFC-32),

from about 9.5% by weight to about 11.5% by weight pentafluoroethane (HFC-125), and

20 from about 36.5% by weight to about 40.5% by weight trifluoroiodomethane (CF_3I) and a stabilizer composition consisting essentially of farnesene, diphenyl phosphite and BHT, wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphite is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

25 The heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 97% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I) and a stabilizer

composition consisting essentially of farnesene, diphenyl phosphite and BHT, wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight

5 based on the weight of the heat transfer composition, the diphenyl phosphite is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

10 The heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 98.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I) and a stabilizer

15 composition consisting essentially of farnesene, diphenyl phosphite and BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphite is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of

20 the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

25 The heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 99.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I) and a stabilizer

30 composition consisting essentially of farnesene, diphenyl phosphite and BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphite is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of

the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

The heat transfer composition of the invention can preferably comprise a refrigerant
5 according to any one of the refrigerants described here, but preferably those refrigerants consisting essentially of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I) and a stabilizer composition
10 consisting essentially of farnesene, diphenyl phosphite and BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphite is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight
15 to about 5 % by weight based on the weight of heat transfer composition.

The heat transfer composition of the invention can preferably comprise a refrigerant consisting of about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I) and
20 a stabilizer composition consisting essentially of farnesene, diphenyl phosphite and BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphite is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from
25 about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

The heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 97% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:
30

from 42% by weight to 48% by weight difluoromethane (HFC-32), from 6.5% by weight to 12.5% by weight pentafluoroethane (HFC-125), and from 39.5% by weight to 45.5% by weight trifluoriodomethane (CF₃I); and a stabilizer composition consisting essentially of farnesene, diphenyl phosphite and BHT wherein the farnesene is provided in an amount of

5 from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphite is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

10

Additionally, the heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 98.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following

15 three compounds: from 42% by weight to 48% by weight difluoromethane (HFC-32), from 6.5% by weight to 12.5% by weight pentafluoroethane (HFC-125), and from 39.5% by weight to 45.5% by weight trifluoriodomethane (CF₃I); and a stabilizer composition consisting essentially of farnesene, diphenyl phosphite and BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the

20 weight of the heat transfer composition, the diphenyl phosphite is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

25 Additionally, the heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 99.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from 42% by weight to 48% by weight difluoromethane (HFC-32), from

30 6.5% by weight to 12.5% by weight pentafluoroethane (HFC-125), and from 39.5% by weight to 45.5% by weight trifluoriodomethane (CF₃I); and a stabilizer composition consisting essentially of farnesene, diphenyl phosphite and BHT wherein the farnesene is

provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphite is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

Additionally, the heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting essentially of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

from 42% by weight to 48% by weight difluoromethane (HFC-32), from 6.5% by weight to 12.5% by weight pentafluoroethane (HFC-125), and from 39.5% by weight to 45.5% by weight trifluoriodomethane (CF₃I); and a stabilizer composition consisting essentially of farnesene, diphenyl phosphite and BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphite is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

Additionally, the heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from 42% by weight to 48% by weight difluoromethane (HFC-32), from 6.5% by weight to 12.5% by weight pentafluoroethane (HFC-125), and from 39.5% by weight to 45.5% by weight trifluoriodomethane (CF₃I); and a stabilizer composition consisting essentially of farnesene, diphenyl phosphite and BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphite is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

Additionally, the heat transfer composition of the invention can preferably comprise a
5 refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 97% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from about 43.5% by weight to about 48% by weight difluoromethane (HFC-32), from about 10% by weight to about 12.5% by weight pentafluoroethane (HFC-125), and from about 40% by weight to about 44% by weight trifluoriodomethane (CF₃I) and a stabilizer composition consisting essentially of farnesene, diphenyl phosphite and BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphite is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.
10
15
20

Additionally, the heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 98.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from about 43.5% by weight to about 48% by weight difluoromethane (HFC-32), from about 10% by weight to about 12.5% by weight pentafluoroethane (HFC-125), and from about 40% by weight to about 44% by weight trifluoriodomethane (CF₃I) and a stabilizer composition consisting essentially of farnesene, diphenyl phosphite and BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphite is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.
25
30

Additionally, the heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 99.5% by weight of a blend of the following three 5 compounds, with the following percentages being based on the total weight of the following three compounds: from about 43.5% by weight to about 48% by weight difluoromethane (HFC-32), from about 10% by weight to about 12.5% by weight pentafluoroethane (HFC-125), and from about 40% by weight to about 44% by weight trifluoriodomethane (CF₃I) and a stabilizer composition consisting essentially of farnesene, diphenyl phosphite and 10 BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphite is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer 15 composition.

Additionally, the heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting essentially of a blend of the following three compounds, with the 20 following percentages being based on the total weight of the following three compounds: from about 43.5% by weight to about 48% by weight difluoromethane (HFC-32), from about 10% by weight to about 12.5% by weight pentafluoroethane (HFC-125), and from about 40% by weight to about 44% by weight trifluoriodomethane (CF₃I) and a stabilizer 25 composition consisting essentially of farnesene, diphenyl phosphite and BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphite is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

Additionally, the heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from about

5 43.5% by weight to about 48% by weight difluoromethane (HFC-32), from about 10% by weight to about 12.5% by weight pentafluoroethane (HFC-125), and from about 40% by weight to about 44% by weight trifluoriodomethane (CF₃I) and a stabilizer composition consisting essentially of farnesene, diphenyl phosphite and BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the
10 weight of the heat transfer composition, the diphenyl phosphite is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

15 The heat transfer composition of the invention can preferably comprise a refrigerant comprising at least about 97% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoriodomethane (CF₃I) and a stabilizer
20 composition consisting essentially of farnesene, diphenyl phosphite and BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphite is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001%
25 by weight to about 5 % by weight based on the weight of heat transfer composition.

The heat transfer composition of the invention can preferably comprise a refrigerant comprising at least about 98.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:
30 about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoriodomethane (CF₃I) and a stabilizer composition consisting essentially of farnesene, diphenyl phosphite and BHT wherein the

farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphite is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

5 The heat transfer composition of the invention can preferably comprise a refrigerant comprising at least about 99.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

10 about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoroiodomethane (CF₃I) and a stabilizer composition consisting essentially of farnesene, diphenyl phosphite and BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphite is provided in

15 an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

20 The heat transfer composition of the invention can preferably comprise a refrigerant consisting essentially of about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoroiodomethane (CF₃I) and a stabilizer composition consisting essentially of farnesene, diphenyl phosphite and BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl

25 phosphite is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

30 The heat transfer composition of the invention can preferably comprise a refrigerant consisting of about 46% by weight difluoromethane (HFC-32), about 12% by weight

pentafluoroethane (HFC-125), and about 42% by weight trifluoroiodomethane (CF₃I) and a stabilizer composition consisting essentially of farnesene, diphenyl phosphite and BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphite is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

Each of the heat transfer compositions of the invention as defined above may additionally comprise a lubricant. In general, the heat transfer composition comprises a lubricant, in amounts of from about 5 to 60% by weight of the heat transfer composition, preferably about 10 to about 60% by weight of the heat transfer composition, preferably from about 20 to about 50 % by weight of the heat transfer composition, alternatively about 20 to about 40% by weight of the heat transfer composition, alternatively about 20 to about 30 % by weight of the heat transfer composition, alternatively about 30 to about 50% by weight of the heat transfer composition, alternatively about 30 to about 40% by weight of the heat transfer composition. The heat transfer composition may comprise a lubricant, in amounts of from about 5 to about 10% by weight of the heat transfer composition, preferably around about 8 % by weight of the heat transfer composition.

Commonly used refrigerant lubricants such as polyol esters (POEs), polyalkylene glycols (PAGs), silicone oils, mineral oil, alkylbenzenes (ABs), polyvinyl ethers (PVEs) and poly(alpha-olefin) (PAO) that are used in refrigeration machinery may be used with the refrigerant compositions of the present invention.

Preferably the lubricants are selected from polyol esters (POEs), polyalkylene glycols (PAGs), mineral oil, alkylbenzenes (ABs) and polyvinyl ethers (PVE), more preferably from polyol esters (POEs), mineral oil, alkylbenzenes (ABs) and polyvinyl ethers (PVE), particularly from polyol esters (POEs), mineral oil and alkylbenzenes (ABs), most preferably from polyol esters (POEs).

Commercially available mineral oils include Witco LP 250 (registered trademark) from Witco, Suniso 3GS from Witco and Calumet R015 from Calumet. Commercially available alkylbenzene lubricants include Zerol 150 (registered trademark) and Zerol 300 (registered

trademark) from Shrieve Chemical. Commercially available esters include neopentyl glycol dipelargonate which is available as Emery 2917 (registered trademark) and Hatcol 2370 (registered trademark). Other useful esters include phosphate esters, di-basic acid esters and fluoro esters.

5 For the purposes of this invention, the heat transfer composition can comprise a refrigerant and a stabilizer composition as disclosed above and a lubricant selected from polyol esters (POEs), polyalkylene glycols (PAGs), mineral oil, alkylbenzenes (ABs) and polyvinyl ethers (PVE), more preferably from polyol esters (POEs), mineral oil, alkylbenzenes (ABs) and polyvinyl ethers (PVE), particularly from polyol esters (POEs), mineral oil and

10 alkylbenzenes (ABs), most preferably from polyol esters (POEs).

A preferred heat transfer composition comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 97% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: of from 43% by weight to 51% by weight difluoromethane (HFC-32), from 3.5% by weight to 11.5% by weight pentafluoroethane (HFC-125), and about 37.5% by weight to 45.5% by weight trifluoriodomethane (CF₃I); and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition.

20 A preferred heat transfer composition further comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 98.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: of from 43% by weight to 51% by weight difluoromethane (HFC-32), from 3.5% by weight to 11.5% by weight pentafluoroethane (HFC-125), and about 37.5% by weight to 45.5% by weight trifluoriodomethane (CF₃I); and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition.

25

30 A preferred heat transfer composition further comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 99.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: of from 43%

by weight to 51% by weight difluoromethane (HFC-32), from 3.5% by weight to 11.5% by weight pentafluoroethane (HFC-125), and about 37.5% by weight to 45.5% by weight trifluoriodomethane (CF₃I); and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition.

5 A preferred heat transfer composition further comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting essentially of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: of from 43% by weight to 51% by weight difluoromethane (HFC-32), from 3.5% by weight to 11.5% by weight pentafluoroethane (HFC-125), and about 37.5% by weight to 45.5% by weight trifluoriodomethane (CF₃I); and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition.

15 A preferred heat transfer composition further comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: of from 43% by weight to 51% by weight difluoromethane (HFC-32), from 3.5% by weight to 11.5% by weight pentafluoroethane (HFC-125), and about 37.5% by weight to 45.5% by weight trifluoriodomethane (CF₃I); and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition.

25 A preferred heat transfer composition further comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 97% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from about 48% by weight to about 51% by weight difluoromethane (HFC-32), from about 9.5% by weight to about 11.5% by weight pentafluoroethane (HFC-125), and from about 36.5% by weight to about 40.5% by weight trifluoriodomethane (CF₃I) and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition.

A preferred heat transfer composition further comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 98.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from about

5 48% by weight to about 51% by weight difluoromethane (HFC-32), from about 9.5% by weight to about 11.5% by weight pentafluoroethane (HFC-125), and from about 36.5% by weight to about 40.5% by weight trifluoriodomethane (CF₃I) and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition.

10 A preferred heat transfer composition further comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 99.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from about 48% by weight to about 51% by weight difluoromethane (HFC-32), from about 9.5% by weight to about 11.5% by weight pentafluoroethane (HFC-125), and from about 36.5% by weight to about 40.5% by weight trifluoriodomethane (CF₃I) and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition.

20 A preferred heat transfer composition further comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting essentially of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from about 48% by weight to about 51% by weight difluoromethane (HFC-32), from about 9.5% by weight to about 11.5% by weight pentafluoroethane (HFC-125), and from about 36.5% by weight to about 40.5% by weight trifluoriodomethane (CF₃I) and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition.

25 A preferred heat transfer composition further comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from about 48% by weight to about 51% by weight difluoromethane (HFC-32), from about 9.5% by weight to about 11.5% by weight

pentafluoroethane (HFC-125), and from about 36.5% by weight to about 40.5% by weight trifluoroiodomethane (CF₃I) and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition.

5 A preferred heat transfer composition further comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 97% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds from about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoroiodomethane (CF₃I) and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition.

10 A preferred heat transfer composition further comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 98.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds from about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoroiodomethane (CF₃I) and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition.

15 A preferred heat transfer composition further comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 99.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds from about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoroiodomethane (CF₃I) and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition.

20 A preferred heat transfer composition further comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting essentially of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds from about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about

38.5% by weight trifluoriodomethane (CF₃I) and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition.

A preferred heat transfer composition further comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting of a blend of

5 the following three compounds, with the following percentages being based on the total weight of the following three compounds from about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I) and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition.

10 A preferred heat transfer composition comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 97% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from 42% by weight to 48% by weight difluoromethane (HFC-32), from 6.5% by weight to 12.5% by weight

15 pentafluoroethane (HFC-125), and from 39.5% by weight to 45.5% by weight trifluoriodomethane (CF₃I); and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition.

20 A preferred heat transfer composition comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 98.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from 42% by weight to 48% by weight difluoromethane (HFC-32), from 6.5% by weight to 12.5% by weight pentafluoroethane (HFC-125), and from 39.5% by weight to 45.5% by weight

25 trifluoriodomethane (CF₃I); and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition.

30 A preferred heat transfer composition comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 99.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from 42% by weight to 48% by weight difluoromethane (HFC-32), from 6.5% by weight to 12.5% by

weight pentafluoroethane (HFC-125), and from 39.5% by weight to 45.5% by weight trifluoriodomethane (CF₃I); and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition.

A preferred heat transfer composition comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting essentially of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from 42% by weight to 48% by weight difluoromethane (HFC-32), from 6.5% by weight to 12.5% by weight pentafluoroethane (HFC-125), and from 39.5% by weight to 45.5% by weight trifluoriodomethane (CF₃I); and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition.

A preferred heat transfer composition comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from 42% by weight to 48% by weight difluoromethane (HFC-32), from 6.5% by weight to 12.5% by weight pentafluoroethane (HFC-125), and from 39.5% by weight to 45.5% by weight trifluoriodomethane (CF₃I); and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition.

A preferred heat transfer composition comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 97% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from about 43.5% by weight to about 48% by weight difluoromethane (HFC-32), from about 10% by weight to about 12.5% by weight pentafluoroethane (HFC-125), and from about 40% by weight to about 44% by weight trifluoriodomethane (CF₃I) and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition.

A preferred heat transfer composition comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 98.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from about 43.5% by weight to about 48% by weight difluoromethane (HFC-32), from about 10% by weight to about 12.5% by weight pentafluoroethane (HFC-125), and from about 40% by

weight to about 44% by weight trifluoriodomethane (CF₃I) and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition.

A preferred heat transfer composition comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about

5 99.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from about 43.5% by weight to about 48% by weight difluoromethane (HFC-32), from about 10% by weight to about 12.5% by weight pentafluoroethane (HFC-125), and from about 40% by weight to about 44% by weight trifluoriodomethane (CF₃I); and from 10 to 60 wt.% of a

10 polyol ester (POE) lubricant, based on the weight of the heat transfer composition.

A preferred heat transfer composition comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting essentially of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds from about 43.5% by weight to about 48% by

15 weight difluoromethane (HFC-32), from about 10% by weight to about 12.5% by weight pentafluoroethane (HFC-125), and from about 40% by weight to about 44% by weight trifluoriodomethane (CF₃I) and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition.

A preferred heat transfer composition comprises a refrigerant according to any one of the

20 refrigerants described here, but preferably those refrigerants consisting of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from about 43.5% by weight to about 48% by weight difluoromethane (HFC-32), from about 10% by weight to about 12.5% by weight pentafluoroethane (HFC-125), and from about 40% by weight to about 44% by weight

25 trifluoriodomethane (CF₃I) and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition.

A preferred heat transfer composition comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 97% by weight of a blend of the following three compounds, with the following percentages being

30 based on the total weight of the following three compounds: from about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about

42% by weight trifluoriodomethane (CF₃I) and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition.

A preferred heat transfer composition comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about

5 98.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoriodomethane (CF₃I) and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition.

10 A preferred heat transfer composition comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 99.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoriodomethane (CF₃I) and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition.

15 A preferred heat transfer composition comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting essentially of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoriodomethane (CF₃I) and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition.

20 A preferred heat transfer composition comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoriodomethane (CF₃I) and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition.

The heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 97% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

- 5 from 43% by weight to 51% by weight difluoromethane (HFC-32),
from 3.5% by weight to 11.5% by weight pentafluoroethane (HFC-125), and
from 37.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I) and a stabilizer composition comprising BHT, wherein said BHT is present in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition
- 10 and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition.

The heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 98.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

- 15 from 43% by weight to 51% by weight difluoromethane (HFC-32),
from 3.5% by weight to 11.5% by weight pentafluoroethane (HFC-125), and
from 37.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I) and a stabilizer composition comprising BHT, wherein said BHT is present in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition
- 20 and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition.

The heat transfer composition of the invention can preferably comprise a refrigerant

- 25 according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 99.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:
from 43% by weight to 51% by weight difluoromethane (HFC-32),

from 3.5% by weight to 11.5% by weight pentafluoroethane (HFC-125), and

from 37.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I) and a stabilizer composition comprising BHT, wherein said BHT is present in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat

5 transfer composition.

The heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting essentially of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from 43% by

10 weight to 51% by weight difluoromethane (HFC-32),

from 3.5% by weight to 11.5% by weight pentafluoroethane (HFC-125), and

from 37.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I) and a stabilizer composition comprising BHT, wherein said BHT is present in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition

15 and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition.

The heat transfer composition of the invention can preferably comprise a refrigerant consisting of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from 43% by weight to 51% by

20 weight difluoromethane (HFC-32),

from 3.5% by weight to 11.5% by weight pentafluoroethane (HFC-125), and

from 37.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I) and a stabilizer composition comprising BHT, wherein said BHT is present in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition

25 and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition.

The heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 97% by weight of a blend of the following three compounds, with

the following percentages being based on the total weight of the following three compounds: from about 48% by weight to about 51% by weight difluoromethane (HFC-32),

from about 9.5% by weight to about 11.5% by weight pentafluoroethane (HFC-125), and

from about 36.5% by weight to about 40.5% by weight trifluoriodomethane (CF₃I) and a

5 stabilizer composition comprising BHT, wherein said BHT is present in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition.

The heat transfer composition of the invention can preferably comprise a refrigerant

10 according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 98.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from about 48% by weight to about 51% by weight difluoromethane (HFC-32),

from about 9.5% by weight to about 11.5% by weight pentafluoroethane (HFC-125), and

15 from about 36.5% by weight to about 40.5% by weight trifluoriodomethane (CF₃I) and a stabilizer composition comprising BHT, wherein said BHT is present in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition.

20 The heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 99.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from about 48% by weight to about 51% by weight difluoromethane (HFC-32),

25 from about 9.5% by weight to about 11.5% by weight pentafluoroethane (HFC-125), and

from about 36.5% by weight to about 40.5% by weight trifluoriodomethane (CF₃I) and a stabilizer composition comprising BHT, wherein said BHT is present in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition.

The heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting essentially of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from about

5 48% by weight to about 51% by weight difluoromethane (HFC-32),

from about 9.5% by weight to about 11.5% by weight pentafluoroethane (HFC-125), and

from about 36.5% by weight to about 40.5% by weight trifluoriodomethane (CF₃I) and a stabilizer composition comprising BHT, wherein said BHT is present in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer

10 composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition.

The heat transfer composition of the invention can preferably comprise a refrigerant consisting of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from about 48% by weight to

15 about 51% by weight difluoromethane (HFC-32),

from about 9.5% by weight to about 11.5% by weight pentafluoroethane (HFC-125), and

from about 36.5% by weight to about 40.5% by weight trifluoriodomethane (CF₃I) and a stabilizer composition comprising BHT, wherein said BHT is present in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer

20 composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition.

The heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants

25 comprising at least about 97% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I) and a stabilizer composition comprising BHT, wherein said BHT is present in an amount of from about

30 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition

and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition.

The heat transfer composition of the invention can preferably comprise a refrigerant

5 according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 98.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I) and a stabilizer
10 composition comprising BHT, wherein said BHT is present in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition.

15 The heat transfer composition of the invention can preferably comprise a refrigerant

according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 99.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I) and a stabilizer
20 composition comprising BHT, wherein said BHT is present in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition.

25

The heat transfer composition of the invention can preferably comprise a refrigerant

according to any one of the refrigerants described here, but preferably those refrigerants

consisting essentially of a blend of the following three compounds, with the following

percentages being based on the total weight of the following three compounds: about 50%

30 by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I) and a stabilizer composition

comprising BHT, wherein said BHT is present in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition.

5 The heat transfer composition of the invention can preferably comprise a refrigerant consisting of about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I) and a stabilizer composition comprising BHT, wherein said BHT is present in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer
10 composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition.

The heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants
15 comprising at least about 97% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from 42% by weight to 48% by weight difluoromethane (HFC-32), from 6.5% by weight to 12.5% by weight pentafluoroethane (HFC-125), and from 39.5% by weight to 45.5% by weight trifluoriodomethane (CF₃I); and a stabilizer composition comprising BHT, wherein
20 said BHT is present in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition.

Additionally, the heat transfer composition of the invention can preferably comprise a
25 refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 98.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from 42% by weight to 48% by weight difluoromethane (HFC-32), from 6.5% by weight to 12.5% by weight pentafluoroethane (HFC-125), and from 39.5% by weight to 45.5% by weight trifluoriodomethane (CF₃I); and a stabilizer composition comprising BHT, wherein said BHT is present in an amount of from about 0.001% by weight
30

to about 5 % by weight based on the weight of heat transfer composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition.

Additionally, the heat transfer composition of the invention can preferably comprise a

5 refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 99.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from 42% by weight to 48% by weight difluoromethane (HFC-32), from 6.5% by weight to 12.5% by weight pentafluoroethane (HFC-125), and from 39.5% by 10 weight to 45.5% by weight trifluoriodomethane (CF₃I); and a stabilizer composition comprising BHT, wherein said BHT is present in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition.

15 Additionally, the heat transfer composition of the invention can preferably comprise a

refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting essentially of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from 42% by weight to 48% by weight difluoromethane (HFC-32), from 6.5% by weight to 12.5% by weight pentafluoroethane (HFC-125), and a stabilizer composition comprising

20 BHT, wherein said BHT is present in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition.

25 Additionally, the heat transfer composition of the invention can preferably comprise a

refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from 42% by weight to 48% by weight difluoromethane (HFC-32), from 6.5% by weight to 12.5% by weight pentafluoroethane (HFC-125), and from 39.5% by weight to 45.5% by weight

30 trifluoriodomethane (CF₃I); and a stabilizer composition comprising BHT, wherein said BHT

is present in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition.

5 Additionally, the heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 97% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from about 43.5% by weight to about 48% by weight difluoromethane (HFC-32), from about 10% by weight to about 12.5% by weight pentafluoroethane (HFC-125), and from about 40% by weight to about 44% by weight trifluoriodomethane (CF₃I) and a stabilizer composition comprising BHT, wherein said BHT is present in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition.

20 Additionally, the heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 98.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from about 43.5% by weight to about 48% by weight difluoromethane (HFC-32), from about 10% by weight to about 12.5% by weight pentafluoroethane (HFC-125), and from about 40% by weight to about 44% by weight trifluoriodomethane (CF₃I) and a stabilizer composition comprising BHT, wherein said BHT is present in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition.

30 Additionally, the heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 99.5% by weight of a blend of the following three

compounds, with the following percentages being based on the total weight of the following three compounds: from about 43.5% by weight to about 48% by weight difluoromethane (HFC-32), from about 10% by weight to about 12.5% by weight pentafluoroethane (HFC-125), and from about 40% by weight to about 44% by weight trifluoriodomethane (CF₃I)

5 and a stabilizer composition comprising BHT, wherein said BHT is present in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition.

10 Additionally, the heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting essentially of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from about 43.5% by weight to about 48% by weight difluoromethane (HFC-32), from about 15 10% by weight to about 12.5% by weight pentafluoroethane (HFC-125), and from about 40% by weight to about 44% by weight trifluoriodomethane (CF₃I) and a stabilizer composition comprising BHT, wherein said BHT is present in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat 20 transfer composition.

Additionally, the heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting of a blend of the following three compounds, with the following 25 percentages being based on the total weight of the following three compounds: from about 43.5% by weight to about 48% by weight difluoromethane (HFC-32), from about 10% by weight to about 12.5% by weight pentafluoroethane (HFC-125), and from about 40% by weight to about 44% by weight trifluoriodomethane (CF₃I) and a stabilizer composition comprising BHT, wherein said BHT is present in an amount of from about 0.001% by weight 30 to about 5 % by weight based on the weight of heat transfer composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition.

The heat transfer composition of the invention can preferably comprise a refrigerant comprising at least about 97% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

5 about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoroiodomethane (CF₃I) and a stabilizer composition comprising BHT, wherein said BHT is present in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat

10 transfer composition.

The heat transfer composition of the invention can preferably comprise a refrigerant comprising at least about 98.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

15 about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoroiodomethane (CF₃I) and a stabilizer composition comprising BHT, wherein said BHT is present in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat

20 transfer composition.

The heat transfer composition of the invention can preferably comprise a refrigerant comprising at least about 99.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

25 about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoroiodomethane (CF₃I) and a stabilizer composition comprising BHT, wherein said BHT is present in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat

30 transfer composition.

The heat transfer composition of the invention can preferably comprise a refrigerant consisting essentially of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoriodomethane (CF₃I) and a stabilizer composition comprising wherein said BHT is present BHT, in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition.

10 The heat transfer composition of the invention can preferably comprise a refrigerant consisting of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoriodomethane (CF₃I) and a stabilizer composition comprising BHT, wherein said BHT is present in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition.

15 The heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 97% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from 43% by weight to 51% by weight difluoromethane (HFC-32), from 3.5% by weight to 11.5% by weight pentafluoroethane (HFC-125), and from 37.5% by weight to 45.5% by weight trifluoriodomethane (CF₃I) and a stabilizer 20 composition comprising farnesene, diphenyl phosphite and BHT, wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphite is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition

The heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 98.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

5 from 43% by weight to 51% by weight difluoromethane (HFC-32),

from 3.5% by weight to 11.5% by weight pentafluoroethane (HFC-125), and

from 37.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I) and a stabilizer composition comprising farnesene, diphenyl phosphite and BHT, wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the 10 weight of the heat transfer composition, the diphenyl phosphite is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition

15 The heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 99.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from 43% by weight to 51% by weight difluoromethane (HFC-32),

20 from 3.5% by weight to 11.5% by weight pentafluoroethane (HFC-125), and

from 37.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I) and a stabilizer composition comprising farnesene, diphenyl phosphite and BHT, wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphite is provided in an amount of 25 from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition

30 The heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting essentially of a blend of the following three compounds, with the following

percentages being based on the total weight of the following three compounds: from 43% by weight to 51% by weight difluoromethane (HFC-32),

from 3.5% by weight to 11.5% by weight pentafluoroethane (HFC-125), and

from 37.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I) and a stabilizer

5 composition comprising farnesene, diphenyl phosphite and BHT, wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphite is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight 10 to about 5 % by weight based on the weight of heat transfer composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition

The heat transfer composition of the invention can preferably comprise a refrigerant consisting of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from 43% by weight to 51% by 15 weight difluoromethane (HFC-32),

from 3.5% by weight to 11.5% by weight pentafluoroethane (HFC-125), and

from 37.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I) and a stabilizer

composition comprising farnesene, diphenyl phosphite and BHT, wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the 20 weight of the heat transfer composition, the diphenyl phosphite is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition

25 The heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 97% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from about 48% by weight to about 51% by weight difluoromethane (HFC-32),

30 from about 9.5% by weight to about 11.5% by weight pentafluoroethane (HFC-125), and

from about 36.5% by weight to about 40.5% by weight trifluoroiodomethane (CF₃I) and a stabilizer composition comprising farnesene, diphenyl phosphite and BHT, wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphite is provided in

5 an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition

10 The heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 98.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from about 48% by weight to about 51% by weight difluoromethane (HFC-32),

15 from about 9.5% by weight to about 11.5% by weight pentafluoroethane (HFC-125), and from about 36.5% by weight to about 40.5% by weight trifluoroiodomethane (CF₃I) and a stabilizer composition comprising farnesene, diphenyl phosphite and BHT, wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphite is provided in

20 an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition

25 The heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 99.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from about 48% by weight to about 51% by weight difluoromethane (HFC-32),

30 from about 9.5% by weight to about 11.5% by weight pentafluoroethane (HFC-125), and

from about 36.5% by weight to about 40.5% by weight trifluoroiodomethane (CF_3I) and a stabilizer composition comprising farnesene, diphenyl phosphite and BHT, wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphite is provided in

5 an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition

10 The heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting essentially of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from about 48% by weight to about 51% by weight difluoromethane (HFC-32),

15 from about 9.5% by weight to about 11.5% by weight pentafluoroethane (HFC-125), and from about 36.5% by weight to about 40.5% by weight trifluoroiodomethane (CF_3I) and a stabilizer composition comprising farnesene, diphenyl phosphite and BHT, wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphite is provided in

20 an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition

25 The heat transfer composition of the invention can preferably comprise a refrigerant consisting of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from about 48% by weight to about 51% by weight difluoromethane (HFC-32),

from about 9.5% by weight to about 11.5% by weight pentafluoroethane (HFC-125), and

30 from about 36.5% by weight to about 40.5% by weight trifluoroiodomethane (CF_3I) and a stabilizer composition comprising farnesene, diphenyl phosphite and BHT, wherein the

farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphite is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001%
5 by weight to about 5 % by weight based on the weight of heat transfer composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition

The heat transfer composition of the invention can preferably comprise a refrigerant
10 according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 97% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I) and a stabilizer
15 composition comprising farnesene, diphenyl phosphite and BHT, wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition and from 10 to 60
20 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition.

The heat transfer composition of the invention can preferably comprise a refrigerant
according to any one of the refrigerants described here, but preferably those refrigerants
25 comprising at least about 98.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I) and a stabilizer
composition comprising farnesene, diphenyl phosphite and BHT wherein the farnesene is
30 provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphite is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat

transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition.

5 The heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 99.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane 10 (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I) and a stabilizer composition comprising farnesene, diphenyl phosphite and BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphite is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat 15 transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition.

The heat transfer composition of the invention can preferably comprise a refrigerant 20 according to any one of the refrigerants described here, but preferably those refrigerants consisting essentially of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I) and a stabilizer composition 25 comprising farnesene, diphenyl phosphite and BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphite is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 30 5 % by weight based on the weight of heat transfer composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition.

The heat transfer composition of the invention can preferably comprise a refrigerant consisting of about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I) and 5 a stabilizer composition comprising farnesene, diphenyl phosphite and BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphite is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% 10 by weight to about 5 % by weight based on the weight of heat transfer composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition.

The heat transfer composition of the invention can preferably comprise a refrigerant 15 according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 97% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from 42% by weight to 48% by weight difluoromethane (HFC-32), from 6.5% by weight to 12.5% by weight pentafluoroethane (HFC-125), and from 39.5% by weight to 45.5% by 20 weight trifluoriodomethane (CF₃I); and a stabilizer composition comprising farnesene, diphenyl phosphite and BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphite is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the 25 BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition.

Additionally, the heat transfer composition of the invention can preferably comprise a 30 refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 98.5% by weight of a blend of the following three

compounds, with the following percentages being based on the total weight of the following three compounds: from 42% by weight to 48% by weight difluoromethane (HFC-32), from 6.5% by weight to 12.5% by weight pentafluoroethane (HFC-125), and from 39.5% by weight to 45.5% by weight trifluoriodomethane (CF₃I); and a stabilizer composition

5 comprising farnesene, diphenyl phosphite and BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphite is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about

10 5 % by weight based on the weight of heat transfer composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition.

Additionally, the heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those

15 refrigerants comprising at least about 99.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from 42% by weight to 48% by weight difluoromethane (HFC-32), from 6.5% by weight to 12.5% by weight pentafluoroethane (HFC-125), and from 39.5% by weight to 45.5% by weight trifluoriodomethane (CF₃I); and a stabilizer composition

20 comprising farnesene, diphenyl phosphite and BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphite is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about

25 5 % by weight based on the weight of heat transfer composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition.

Additionally, the heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those

30 refrigerants consisting essentially of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from 42% by weight to 48% by weight difluoromethane (HFC-32), from 6.5% by weight to

12.5% by weight pentafluoroethane (HFC-125), and from 39.5% by weight to 45.5% by weight trifluoriodomethane (CF₃I); and a stabilizer composition comprising farnesene, diphenyl phosphite and BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer

5 composition, the diphenyl phosphite is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition.

10

Additionally, the heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from 42% by

15 weight to 48% by weight difluoromethane (HFC-32), from 6.5% by weight to 12.5% by weight pentafluoroethane (HFC-125), and from 39.5% by weight to 45.5% by weight trifluoriodomethane (CF₃I); and a stabilizer composition comprising farnesene, diphenyl phosphite and BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the 20 diphenyl phosphite is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition.

25

Additionally, the heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 97% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following 30 three compounds: from about 43.5% by weight to about 48% by weight difluoromethane (HFC-32), from about 10% by weight to about 12.5% by weight pentafluoroethane (HFC-125), and from about 40% by weight to about 44% by weight trifluoriodomethane (CF₃I)

and a stabilizer composition comprising farnesene, diphenyl phosphite and BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphite is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition.

10 Additionally, the heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 98.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from about 43.5% by weight to about 48% by weight difluoromethane (HFC-32), from about 10% by weight to about 12.5% by weight pentafluoroethane (HFC-125), and from about 40% by weight to about 44% by weight trifluoriodomethane (CF₃I) and a stabilizer composition comprising farnesene, diphenyl phosphite and BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphite is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition.

25

Additionally, the heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 99.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from about 43.5% by weight to about 48% by weight difluoromethane (HFC-32), from about 10% by weight to about 12.5% by weight pentafluoroethane (HFC-125), and from about 40% by weight to about 44% by weight trifluoriodomethane (CF₃I)

and a stabilizer composition comprising farnesene, diphenyl phosphite and BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphite is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition.

10 Additionally, the heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting essentially of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from about 43.5% by weight to about 48% by weight difluoromethane (HFC-32), from about 15 10% by weight to about 12.5% by weight pentafluoroethane (HFC-125), and from about 40% by weight to about 44% by weight trifluoriodomethane (CF₃I) and a stabilizer composition comprising farnesene, diphenyl phosphite and BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphite is provided in an amount of 20 from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition.

25 Additionally, the heat transfer composition of the invention can preferably comprise a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: from about 43.5% by weight to about 48% by weight difluoromethane (HFC-32), from about 10% by 30 weight to about 12.5% by weight pentafluoroethane (HFC-125), and from about 40% by weight to about 44% by weight trifluoriodomethane (CF₃I) and a stabilizer composition comprising farnesene, diphenyl phosphite and BHT wherein the farnesene is provided in an

amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphite is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition.

The heat transfer composition of the invention can preferably comprise a refrigerant comprising at least about 97% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoriodomethane (CF₃I) and a stabilizer composition comprising farnesene, diphenyl phosphite and BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphite is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition.

20

The heat transfer composition of the invention can preferably comprise a refrigerant comprising at least about 98.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoriodomethane (CF₃I) and a stabilizer composition comprising farnesene, diphenyl phosphite and BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphite is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition.

The heat transfer composition of the invention can preferably comprise a refrigerant comprising at least about 99.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

5 about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoriodomethane (CF₃I) and a stabilizer composition comprising farnesene, diphenyl phosphite and BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphite is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition.

10

15 The heat transfer composition of the invention can preferably comprise a refrigerant consisting essentially of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoriodomethane (CF₃I) and a stabilizer composition

20 comprising farnesene, diphenyl phosphite and BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphite is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about

25 5 % by weight based on the weight of heat transfer composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition.

30

The heat transfer composition of the invention can preferably comprise a refrigerant consisting of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about

42% by weight trifluoriodomethane (CF₃I) and a stabilizer composition comprising farnesene, diphenyl phosphite and BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphite is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition.

Where the compositions of the invention are provided for use in mobile air conditioning, the

lubricant is a polyol ester (POE) lubricant or a polyalkylene glycol lubricant, preferably a polyol ester (POE) lubricant. Alternatively, when the compositions of the invention are provided for stationary air conditioning applications, the lubricant is preferably a polyol ester (POE), an alkyl benzene or a mineral oil, more preferably a polyol ester (POE) lubricant. The heat transfer composition of the invention may consist essentially of or consist of a refrigerant, a stabilizer composition and a lubricant as described herein.

It has surprisingly been discovered that the refrigerant compositions of the invention are miscible with POE lubricants across a desirable and wide range of temperatures, e.g. temperatures of from about -40°C to +80°C. This allows the inventive refrigerant and heat transfer compositions to be used in a wider variety of heat transfer applications than R410A.

For example, the inventive refrigerant and heat transfer compositions may be used in refrigeration, air conditioning and heat pump applications.

A heat transfer composition is provided comprising a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 97% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

from 43% by weight to 51% by weight difluoromethane (HFC-32),

from 3.5% by weight to 11.5% by weight pentafluoroethane (HFC-125), and

from 37.5% by weight to 45.5% by weight trifluoriodomethane (CF₃I)

and a POE lubricant; wherein the lubricant is present in an amount of 5 wt.% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase at at least one temperature in the range of -40 °C to +80 °C.

Additionally, heat transfer compositions are provided comprising a refrigerant according to

5 any one of the refrigerants described here, but preferably those refrigerants comprising at least about 98.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

from 43% by weight to 51% by weight difluoromethane (HFC-32),

from 3.5% by weight to 11.5% by weight pentafluoroethane (HFC-125), and

10 from 37.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I)

and a POE lubricant; wherein the lubricant is present in an amount of 5 wt.% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase at at least one temperature in the range of -40 °C to +80 °C.

Additionally, heat transfer compositions are provided comprising a refrigerant according to

15 any one of the refrigerants described here, but preferably those refrigerants comprising at least about 99.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds::

from 43% by weight to 51% by weight difluoromethane (HFC-32),

from 3.5% by weight to 11.5% by weight pentafluoroethane (HFC-125), and

20 from 37.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I)

and a POE lubricant; wherein the lubricant is present in an amount of 5 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase at at least one temperature in the range of -40 °C to +80 °C.

Additionally, heat transfer compositions are provided comprising a refrigerant according to

25 any one of the refrigerants described here, but preferably those refrigerants consisting essentially of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

from 43% by weight to 51% by weight difluoromethane (HFC-32),

from 3.5% by weight to 11.5% by weight pentafluoroethane (HFC-125), and
from about 37.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I)
and a POE lubricant; wherein the lubricant is present in an amount of 5 wt% relative to the
total amount of refrigerant and lubricant and wherein the mixture has one liquid phase at at
5 least one temperature in the range of -40 °C to +80 °C.

10 Additionally, heat transfer compositions are provided comprising a refrigerant according to
any one of the refrigerants described here, but preferably those refrigerants consisting of the
following three compounds, with the following percentages being based on the total weight
of the following three compounds:

from 43% by weight to 51% by weight difluoromethane (HFC-32),

from 3.5% by weight to 11.5% by weight pentafluoroethane (HFC-125), and

from 37.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I)

15 and a POE lubricant; wherein the lubricant is present in an amount of 5 wt% relative to the
total amount of refrigerant and lubricant and wherein the mixture has one liquid phase at at
least one temperature in the range of -40 °C to +80 °C.

20 The present invention can further comprise a heat transfer composition as set out herein
wherein the lubricant is present in an amount of 20 wt% relative to the total amount of
refrigerant and lubricant and wherein the mixture has one liquid phase at at least one
temperature in the range of -40 °C to +80 °C.

The present invention can further comprise a heat transfer composition as set out herein
wherein the lubricant is present in an amount of 50 wt% relative to the total amount of
refrigerant and lubricant and wherein the mixture has one liquid phase at at least one
temperature in the range of -40 °C to +80 °C.

25 In a particularly preferred feature of the present invention, the heat transfer composition
comprises a refrigerant according to any one of the refrigerants described here, but
preferably those refrigerants comprising at least about 97% by weight of a blend of the

following three compounds, with the following percentages being based on the total weight of the following three compounds:

from 43% by weight to 51% by weight difluoromethane (HFC-32),

from 3.5% by weight to 11.5% by weight pentafluoroethane (HFC-125), and

5 from 37.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I)

and a POE lubricant; wherein the lubricant is present in an amount of 5 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase across the temperature range of -40 °C to +80 °C.

In a particularly preferred feature of the present invention, the heat transfer composition

10 comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 98.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

from 43% by weight to 51% by weight difluoromethane (HFC-32),

15 from 3.5% by weight to 11.5% by weight pentafluoroethane (HFC-125), and

from 37.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I)

and a POE lubricant; wherein the lubricant is present in an amount of 5 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase across the temperature range of -40 °C to +80 °C.

20

In a particularly preferred feature of the present invention, the heat transfer composition comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 99.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

from 43% by weight to 51% by weight difluoromethane (HFC-32),

from 3.5% by weight to 11.5% by weight pentafluoroethane (HFC-125), and

from 37.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I)

and a POE lubricant; wherein the lubricant is present in an amount of 5 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase across the temperature range of -40 °C to +80 °C.

5 In a particularly preferred feature of the present invention, the heat transfer composition comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting essentially of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

10 from 43% by weight to 51% by weight difluoromethane (HFC-32),

from 3.5% by weight to 11.5% by weight pentafluoroethane (HFC-125), and

from 37.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I)

and a POE lubricant; wherein the lubricant is present in an amount of 5 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase

15 across the temperature range of -40 °C to +80 °C.

In a particularly preferred feature of the present invention, the heat transfer composition comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

20 from 43% by weight to 51% by weight difluoromethane (HFC-32),

from 3.5% by weight to 11.5% by weight pentafluoroethane (HFC-125), and

from 37.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I)

and a POE lubricant; wherein the lubricant is present in an amount of 5 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase

25 across the temperature range of -40 °C to +80 °C.

The present invention can further comprise a heat transfer composition as set out below wherein the lubricant is present in an amount of 20 wt% relative to the total amount of

refrigerant and lubricant and wherein the mixture has one liquid phase across the temperature range of -40 °C to +80 °C.

The present invention can further comprise a heat transfer composition as set out below wherein the lubricant is present in an amount of 50 wt% relative to the total amount of

5 refrigerant and lubricant and wherein the mixture has one liquid phase across the temperature range of -40 °C to +80 °C.

In a particularly preferred feature of the present invention, the heat transfer composition comprises a refrigerant as set out above, and a POE lubricant, wherein the lubricant is present in an amount of 5 wt% relative to the total amount of refrigerant and lubricant and 10 wherein the mixture has one liquid phase at at least one temperature in the range of -40 to -25 °C and/or in the range of +50 to +80 °C.

In a particularly preferred feature of the present invention, the heat transfer composition comprises a refrigerant as set out above, and a POE lubricant, wherein the lubricant is present in an amount of 20 wt% relative to the total amount of refrigerant and lubricant and 15 wherein the mixture has one liquid phase at at least one temperature in the range of -40 to -25 °C and/or in the range of +50 to +80 °C.

In a particularly preferred feature of the present invention, the heat transfer composition comprises a refrigerant as set out above, and a POE lubricant, wherein the lubricant is present in an amount of 50 wt% relative to the total amount of refrigerant and lubricant and 20 wherein the mixture has one liquid phase at at least one temperature in the range of -40 to -25 °C and/or in the range of +50 to +80 °C.

In an alternative particularly preferred feature of the present invention, the heat transfer composition comprises a refrigerant as set out above, and a POE lubricant, wherein the lubricant is present in an amount of 5 wt% relative to the total amount of refrigerant and 25 lubricant and wherein the mixture has one liquid phase across the temperature range of -40 to -25 °C and/or +50 to +80 °C.

In an alternative particularly preferred feature of the present invention, the heat transfer composition comprises a refrigerant as set out above, and a POE lubricant, wherein the lubricant is present in an amount of 20 wt% relative to the total amount of refrigerant and 30 lubricant and wherein the mixture has one liquid phase across the temperature range of -40 to -25 °C and/or +50 to +80 °C.

In an alternative particularly preferred feature of the present invention, the heat transfer composition comprises a refrigerant as set out above, and a POE lubricant, wherein the lubricant is present in an amount of 50 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase across the temperature range of -40 to - 25 °C and/or +50 to +80 °C.

The present invention further provides a heat transfer composition comprising a refrigerant refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 97% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following 10 three compounds:

from about 48% by weight to about 51% by weight difluoromethane (HFC-32),

from about 9.5% by weight to about 11.5% by weight pentafluoroethane (HFC-125), and

from about 36.5% by weight to about 40.5% by weight trifluoroiodomethane (CF₃I)

and a POE lubricant; wherein the lubricant is present in an amount of 5 wt% relative to the 15 total amount of refrigerant and lubricant and wherein the mixture has one liquid phase at at least one temperature in the range of -40 °C to +80 °C.

The present invention further provides a heat transfer composition comprising a refrigerant refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 98.5% by weight of a blend of the following three 20 compounds, with the following percentages being based on the total weight of the following three compounds:

from about 48% by weight to about 51% by weight difluoromethane (HFC-32),

from about 9.5% by weight to about 11.5% by weight pentafluoroethane (HFC-125), and

from about 36.5% by weight to about 40.5% by weight trifluoroiodomethane (CF₃I)

25 and a POE lubricant; wherein the lubricant is present in an amount of 5 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase at at least one temperature in the range of -40 °C to +80 °C.

The present invention further provides a heat transfer composition comprising a refrigerant refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 99.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following

5 three compounds:

from about 48% by weight to about 51% by weight difluoromethane (HFC-32),

from about 9.5% by weight to about 11.5% by weight pentafluoroethane (HFC-125), and

from about 36.5% by weight to about 40.5% by weight trifluoriodomethane (CF₃I)

and a POE lubricant; wherein the lubricant is present in an amount of 5 wt% relative to the
10 total amount of refrigerant and lubricant and wherein the mixture has one liquid phase at at least one temperature in the range of -40 °C to +80 °C.

The present invention further provides a heat transfer composition comprising a refrigerant refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting essentially of a blend of the following three compounds, with the
15 following percentages being based on the total weight of the following three compounds:

from about 48% by weight to about 51% by weight difluoromethane (HFC-32),

from about 9.5% by weight to about 11.5% by weight pentafluoroethane (HFC-125), and

from about 36.5% by weight to about 40.5% by weight trifluoriodomethane (CF₃I)

and a POE lubricant; wherein the lubricant is present in an amount of 5 wt% relative to the
20 total amount of refrigerant and lubricant and wherein the mixture has one liquid phase at at least one temperature in the range of -40 °C to +80 °C.

The present invention further provides a heat transfer composition comprising a refrigerant refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting of a blend of the following three compounds, with the following
25 percentages being based on the total weight of the following three compounds:

from about 48% by weight to about 51% by weight difluoromethane (HFC-32),

from about 9.5% by weight to about 11.5% by weight pentafluoroethane (HFC-125), and

from about 36.5% by weight to about 40.5% by weight trifluoriodomethane (CF₃I) and a POE lubricant; wherein the lubricant is present in an amount of 5 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase at at least one temperature in the range of -40 °C to +80 °C.

5

The present invention can further comprise a heat transfer composition as set out below wherein the lubricant is present in an amount of 20 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase at at least one temperature in the range of -40 °C to +80 °C.

10 The present invention can further comprise a heat transfer composition as set out below wherein the lubricant is present in an amount of 50 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase at at least one temperature in the range of -40 °C to +80 °C.

15 In a particularly preferred feature of the present invention, the heat transfer composition comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 97% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

from about 48% by weight to about 51% by weight difluoromethane (HFC-32),

20 from about 9.5% by weight to about 11.5% by weight pentafluoroethane (HFC-125), and

from about 36.5% by weight to about 40.5% by weight trifluoriodomethane (CF₃I)

and a POE lubricant; wherein the lubricant is present in an amount of 5 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase across the temperature range of -40 °C to +80 °C.

25 In a particularly preferred feature of the present invention, the heat transfer composition comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 98.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

from about 48% by weight to about 51% by weight difluoromethane (HFC-32),
from about 9.5% by weight to about 11.5% by weight pentafluoroethane (HFC-125), and
from about 36.5% by weight to about 40.5% by weight trifluoroiodomethane (CF₃I)
and a POE lubricant; wherein the lubricant is present in an amount of 5 wt% relative to the
5 total amount of refrigerant and lubricant and wherein the mixture has one liquid phase
across the temperature range of -40 °C to +80 °C.

In a particularly preferred feature of the present invention, the heat transfer composition
comprises a refrigerant according to any one of the refrigerants described here, but
preferably those refrigerants comprising at least about 99.5% by weight of a blend of the
10 following three compounds, with the following percentages being based on the total weight
of the following three compounds:

from about 48% by weight to about 51% by weight difluoromethane (HFC-32),
from about 9.5% by weight to about 11.5% by weight pentafluoroethane (HFC-125), and
from about 36.5% by weight to about 40.5% by weight trifluoroiodomethane (CF₃I)

15 and a POE lubricant; wherein the lubricant is present in an amount of 5 wt% relative to the
total amount of refrigerant and lubricant and wherein the mixture has one liquid phase
across the temperature range of -40 °C to +80 °C.

In a particularly preferred feature of the present invention, the heat transfer composition
comprises a refrigerant according to any one of the refrigerants described here, but
20 preferably those refrigerants consisting essentially of a blend of the following three
compounds, with the following percentages being based on the total weight of the following
three compounds:

from about 48% by weight to about 51% by weight difluoromethane (HFC-32),
from about 9.5% by weight to about 11.5% by weight pentafluoroethane (HFC-125), and
25 from about 36.5% by weight to about 40.5% by weight trifluoroiodomethane (CF₃I)

and a POE lubricant; wherein the lubricant is present in an amount of 5 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase across the temperature range of -40 °C to +80 °C.

In a particularly preferred feature of the present invention, the heat transfer composition

5 comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

from about 48% by weight to about 51% by weight difluoromethane (HFC-32),

from about 9.5% by weight to about 11.5% by weight pentafluoroethane (HFC-125), and

10 from about 36.5% by weight to about 40.5% by weight trifluoroiodomethane (CF₃I)

and a POE lubricant; wherein the lubricant is present in an amount of 5 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase across the temperature range of -40 °C to +80 °C.

15 The present invention can further comprise a heat transfer composition as set out herein wherein the lubricant is present in an amount of 20 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase across the temperature range of -40 °C to +80 °C.

The present invention can further comprise a heat transfer composition as set out herein

20 wherein the lubricant is present in an amount of 50 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase across the temperature range of -40 °C to +80 °C.

In a particularly preferred feature of the present invention, the heat transfer composition comprises a refrigerant as set out herein, and a POE lubricant, wherein the lubricant is

25 present in an amount of 5 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase at at least one temperature in the range of -40 to -25 °C and/or in the range of +50 to +80 °C.

In a particularly preferred feature of the present invention, the heat transfer composition comprises a refrigerant as set out herein, and a POE lubricant, wherein the lubricant is

present in an amount of 20 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase at at least one temperature in the range of -40 to -25 °C and/or in the range of +50 to +80 °C.

In a particularly preferred feature of the present invention, the heat transfer composition
5 comprises a refrigerant as set out herein, and a POE lubricant, wherein the lubricant is present in an amount of 50 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase at at least one temperature in the range of -40 to -25 °C and/or in the range of +50 to +80 °C.

In an alternative particularly preferred feature of the present invention, the heat transfer
10 composition comprises a refrigerant as set out herein, and a POE lubricant, wherein the lubricant is present in an amount of 5 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase across the temperature range of -40 to -25 °C and/or +50 to +80 °C.

In an alternative particularly preferred feature of the present invention, the heat transfer
15 composition comprises a refrigerant as set out herein, and a POE lubricant, wherein the lubricant is present in an amount of 20 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase across the temperature range of -40 to -25 °C and/or +50 to +80 °C.

In an alternative particularly preferred feature of the present invention, the heat transfer
20 composition comprises a refrigerant as set out herein, and a POE lubricant, wherein the lubricant is present in an amount of 50 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase across the temperature range of -40 to -25 °C and/or +50 to +80 °C.

In a particularly preferred feature of the present invention, the heat transfer composition
25 comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 97% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

about 50% by weight difluoromethane (HFC-32),

30 about 11.5% by weight pentafluoroethane (HFC-125), and

about 38.5% by weight trifluoriodomethane (CF₃I)

and a POE lubricant; wherein the lubricant is present in an amount of 5 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase at at least one temperature in the range of -40 °C to +80 °C

5 In a particularly preferred feature of the present invention, the heat transfer composition comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 98.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

10 about 50% by weight difluoromethane (HFC-32),

about 11.5% by weight pentafluoroethane (HFC-125), and

about 38.5% by weight trifluoriodomethane (CF₃I)

and a POE lubricant; wherein the lubricant is present in an amount of 5 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase at at

15 least one temperature in the range of -40 °C to +80 °C

In a particularly preferred feature of the present invention, the heat transfer composition comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 99.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

20 about 50% by weight difluoromethane (HFC-32),

about 11.5% by weight pentafluoroethane (HFC-125), and

about 38.5% by weight trifluoriodomethane (CF₃I)

and a POE lubricant; wherein the lubricant is present in an amount of 5 wt% relative to the

25 total amount of refrigerant and lubricant and wherein the mixture has one liquid phase at at least one temperature in the range of -40 °C to +80 °C

The present invention further provides a heat transfer composition comprising a refrigerant consisting essentially of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

about 50% by weight difluoromethane (HFC-32),

5 about 11.5% by weight pentafluoroethane (HFC-125), and

about 38.5% by weight trifluoriodomethane (CF₃I)

and a POE lubricant; wherein the lubricant is present in an amount of 5 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase at at least one temperature in the range of -40 °C to +80 °C

10 The present invention further provides a heat transfer composition comprising a refrigerant consisting of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

about 50% by weight difluoromethane (HFC-32),

about 11.5% by weight pentafluoroethane (HFC-125), and

15 about 38.5% by weight trifluoriodomethane (CF₃I)

and a POE lubricant; wherein the lubricant is present in an amount of 5 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase at at least one temperature in the range of -40 °C to +80 °C.

20 The present invention can further comprise a heat transfer composition as set out herein wherein the lubricant is present in an amount of 20 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase at at least one temperature in the range of -40 °C to +80 °C.

25 The present invention can further comprise a heat transfer composition as set out herein wherein the lubricant is present in an amount of 50 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase at at least one temperature in the range of -40 °C to +80 °C.

In a particularly preferred feature of the present invention, the heat transfer composition comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 97% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

about 50% by weight difluoromethane (HFC-32),

about 11.5% by weight pentafluoroethane (HFC-125), and

about 38.5% by weight trifluoriodomethane (CF₃I)

and a POE lubricant; wherein the lubricant is present in an amount of 5 wt% relative to the

total amount of refrigerant and lubricant and wherein the mixture has one liquid phase across the temperature range of -40 °C to +80 °C.

In a particularly preferred feature of the present invention, the heat transfer composition comprises a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 98.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

about 50% by weight difluoromethane (HFC-32),

about 11.5% by weight pentafluoroethane (HFC-125), and

about 38.5% by weight trifluoriodomethane (CF₃I)

and a POE lubricant; wherein the lubricant is present in an amount of 5 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase across the temperature range of -40 °C to +80 °C.

In a particularly preferred feature of the present invention, the heat transfer composition comprises a refrigerant according to any one of the refrigerants described here, but

preferably those refrigerants comprising at least about 99.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

about 50% by weight difluoromethane (HFC-32),

about 11.5% by weight pentafluoroethane (HFC-125), and

about 38.5% by weight trifluoriodomethane (CF₃I)

and a POE lubricant; wherein the lubricant is present in an amount of 5 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase

5 across the temperature range of -40 °C to +80 °C.

In a particularly preferred feature of the present invention, the heat transfer composition comprises a refrigerant consisting essentially of a blend of the following three compounds, with the following percentages being based on the total weight of the following three

10 compounds:

about 50% by weight difluoromethane (HFC-32),

about 11.5% by weight pentafluoroethane (HFC-125), and

about 38.5% by weight trifluoriodomethane (CF₃I)

and a POE lubricant; wherein the lubricant is present in an amount of 5 wt% relative to the

15 total amount of refrigerant and lubricant and wherein the mixture has one liquid phase across the temperature range of -40 °C to +80 °C.

In a particularly preferred feature of the present invention, the heat transfer composition comprises a refrigerant consisting of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

20 about 50% by weight difluoromethane (HFC-32),

about 11.5% by weight pentafluoroethane (HFC-125), and

about 38.5% by weight trifluoriodomethane (CF₃I)

and a POE lubricant; wherein the lubricant is present in an amount of 5 wt% relative to the

total amount of refrigerant and lubricant and wherein the mixture has one liquid phase

25 across the temperature range of -40 °C to +80 °C.

The present invention can further comprise a heat transfer composition as set out herein wherein the lubricant is present in an amount of 20 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase across the temperature range of -40 °C to +80 °C.

5 The present invention can further comprise a heat transfer composition as set out herein wherein the lubricant is present in an amount of 50 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase across the temperature range of -40 °C to +80 °C.

In a particularly preferred feature of the present invention, the heat transfer composition 10 comprises a refrigerant as set out herein, and a POE lubricant, wherein the lubricant is present in an amount of 5 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase at at least one temperature in the range of -40 to -25 °C and/or in the range of +50 to +80 °C.

In a particularly preferred feature of the present invention, the heat transfer composition 15 comprises a refrigerant as set out herein, and a POE lubricant, wherein the lubricant is present in an amount of 20 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase at at least one temperature in the range of -40 to -25 °C and/or in the range of +50 to +80 °C.

In a particularly preferred feature of the present invention, the heat transfer composition 20 comprises a refrigerant as set out herein, and a POE lubricant, wherein the lubricant is present in an amount of 50 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase at at least one temperature in the range of -40 to -25 °C and/or in the range of +50 to +80 °C.

In an alternative particularly preferred feature of the present invention, the heat transfer 25 composition comprises a refrigerant as set out herein, and a POE lubricant, wherein the lubricant is present in an amount of 5 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase across the temperature range of -40 to -25 °C and/or +50 to +80 °C.

In an alternative particularly preferred feature of the present invention, the heat transfer 30 composition comprises a refrigerant as set out herein, and a POE lubricant, wherein the lubricant is present in an amount of 20 wt% relative to the total amount of refrigerant and

lubricant and wherein the mixture has one liquid phase across the temperature range of -40 to - 25 °C and/or +50 to +80 °C.

In an alternative particularly preferred feature of the present invention, the heat transfer composition comprises a refrigerant as set out herein, and a POE lubricant, wherein the

5 lubricant is present in an amount of 50 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase across the temperature range of -40 to - 25 °C and/or +50 to +80 °C.

The heat transfer composition is provided comprising a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about

10 97% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

from 42% by weight to 48% by weight difluoromethane (HFC-32),

from 6.5% by weight to 12.5% by weight pentafluoroethane (HFC-125), and

from 39.5% by weight to bout 45.5% by weight trifluoriodomethane (CF₃I)

15 and a POE lubricant; wherein the lubricant is present in an amount of 5 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase at at least one temperature in the range of -40 °C to +80 °C.

Additionally, heat transfer compositions are provided comprising a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at

20 least about 98.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

from 42% by weight to 48% by weight difluoromethane (HFC-32),

from 6.5% by weight to 12.5% by weight pentafluoroethane (HFC-125), and

from 39.5% by weight to 45.5% by weight trifluoriodomethane (CF₃I)

25 and a POE lubricant; wherein the lubricant is present in an amount of 5 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase at at least one temperature in the range of -40 °C to +80 °C.

Additionally, heat transfer compositions are provided comprising a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 99.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

- 5 from 42% by weight to 48% by weight difluoromethane (HFC-32),
from 6.5% by weight to 12.5% by weight pentafluoroethane (HFC-125), and
from 39.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I)

and a POE lubricant; wherein the lubricant is present in an amount of 5 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase at at 10 least one temperature in the range of -40 °C to +80 °C.

Additionally, heat transfer compositions are provided comprising a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting essentially of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

- 15 from 42% by weight to 48% by weight difluoromethane (HFC-32),
from 6.5% by weight to 12.5% by weight pentafluoroethane (HFC-125), and
from 39.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I)

and a POE lubricant; wherein the lubricant is present in an amount of 5 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase at at 20 least one temperature in the range of -40 °C to +80 °C.

Additionally, heat transfer compositions are provided comprising a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

- 25 from 42% by weight to 48% by weight difluoromethane (HFC-32),
from 6.5% by weight to 12.5% by weight pentafluoroethane (HFC-125), and
from 39.5% by weight to 45.5% by weight trifluoroiodomethane (CF₃I)

and a POE lubricant; wherein the lubricant is present in an amount of 5 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase at at least one temperature in the range of -40 °C to +80 °C.

The present invention can further comprise a heat transfer composition as set out herein

5 wherein the lubricant is present in an amount of 20 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase at at least one temperature in the range of -40 °C to +80 °C.

The present invention can further comprise a heat transfer composition as set out herein

wherein the lubricant is present in an amount of 50 wt% relative to the total amount of

10 refrigerant and lubricant and wherein the mixture has one liquid phase at at least one temperature in the range of -40 °C to +80 °C.

In a particularly preferred feature of the present invention, the heat transfer composition

comprises a refrigerant refrigerant according to any one of the refrigerants described here,

but preferably those refrigerants comprising at least about 97% by weight of a blend of the

15 following three compounds, with the following percentages being based on the total weight of the following three compounds:

from about 42% by weight to about 48% by weight difluoromethane (HFC-32),

from about 6.5% by weight to about 12.5% by weight pentafluoroethane (HFC-125), and

from about 39.5% by weight to about 45.5% by weight trifluoriodomethane (CF₃I)

20 and a POE lubricant; wherein the lubricant is present in an amount of 5 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase across the temperature range of -40 °C to +80 °C.

In a particularly preferred feature of the present invention, the heat transfer composition

25 comprises a refrigerant refrigerant according to any one of the refrigerants described here,

but preferably those refrigerants comprising at least about 98.5% by weight of a blend of the

following three compounds, with the following percentages being based on the total weight of the following three compounds:

from about 42% by weight to about 48% by weight difluoromethane (HFC-32),

from about 6.5% by weight to about 12.5% by weight pentafluoroethane (HFC-125), and
from about 39.5% by weight to about 45.5% by weight trifluoriodomethane (CF₃I)
and a POE lubricant; wherein the lubricant is present in an amount of 5 wt% relative to the
total amount of refrigerant and lubricant and wherein the mixture has one liquid phase
5 across the temperature range of -40 °C to +80 °C.

In a particularly preferred feature of the present invention, the heat transfer composition
comprises a refrigerant refrigerant according to any one of the refrigerants described here,
but preferably those refrigerants comprising at least about 99.5% by weight of a blend of the
following three compounds, with the following percentages being based on the total weight
10 of the following three compounds:

from about 42% by weight to about 48% by weight difluoromethane (HFC-32),
from about 6.5% by weight to about 12.5% by weight pentafluoroethane (HFC-125), and
from about 39.5% by weight to about 45.5% by weight trifluoriodomethane (CF₃I)
and a POE lubricant; wherein the lubricant is present in an amount of 5 wt% relative to the
15 total amount of refrigerant and lubricant and wherein the mixture has one liquid phase
across the temperature range of -40 °C to +80 °C.

In a particularly preferred feature of the present invention, the heat transfer composition
comprises a refrigerant refrigerant according to any one of the refrigerants described here,
20 but preferably those refrigerants consisting essentially of a blend of the following three
compounds, with the following percentages being based on the total weight of the following
three compounds:

from about 42% by weight to about 48% by weight difluoromethane (HFC-32),
from about 6.5% by weight to about 12.5% by weight pentafluoroethane (HFC-125), and
25 from about 39.5% by weight to about 45.5% by weight trifluoriodomethane (CF₃I)

and a POE lubricant; wherein the lubricant is present in an amount of 5 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase across the temperature range of -40 °C to +80 °C.

5 In a particularly preferred feature of the present invention, the heat transfer composition comprises a refrigerant refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

10 from about 42% by weight to about 48% by weight difluoromethane (HFC-32),
from about 6.5% by weight to about 12.5% by weight pentafluoroethane (HFC-125), and
from about 39.5% by weight to about 45.5% by weight trifluoroiodomethane (CF₃I)

and a POE lubricant; wherein the lubricant is present in an amount of 5 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase

15 across the temperature range of -40 °C to +80 °C.

The present invention can further comprise a heat transfer composition as set out herein wherein the lubricant is present in an amount of 20 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase across the temperature range of -40 °C to +80 °C.

20 The present invention can further comprise a heat transfer composition as set out herein wherein the lubricant is present in an amount of 50 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase across the temperature range of -40 °C to +80 °C.

25 In a particularly preferred feature of the present invention, the heat transfer composition comprises a refrigerant as set out herein, and a POE lubricant, wherein the lubricant is present in an amount of 5 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase at at least one temperature in the range of -40 to -25 °C and/or in the range of +50 to +80 °C.

In a particularly preferred feature of the present invention, the heat transfer composition comprises a refrigerant as set out herein, and a POE lubricant, wherein the lubricant is present in an amount of 20 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase at at least one temperature in the range of -40 to - 5 25 °C and/or in the range of +50 to +80 °C.

In a particularly preferred feature of the present invention, the heat transfer composition comprises a refrigerant as set out herein, and a POE lubricant, wherein the lubricant is present in an amount of 50 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase at at least one temperature in the range of -40 to - 10 25 °C and/or in the range of +50 to +80 °C.

In an alternative particularly preferred feature of the present invention, the heat transfer composition comprises a refrigerant as set out herein, and a POE lubricant, wherein the lubricant is present in an amount of 5 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase across the temperature range of -40 to - 15 25 °C and/or +50 to +80 °C.

In an alternative particularly preferred feature of the present invention, the heat transfer composition comprises a refrigerant as set out herein, and a POE lubricant, wherein the lubricant is present in an amount of 20 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase across the temperature range of -40 to - 20 25 °C and/or +50 to +80 °C.

In an alternative particularly preferred feature of the present invention, the heat transfer composition comprises a refrigerant as set out herein, and a POE lubricant, wherein the lubricant is present in an amount of 50 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase across the temperature range of -40 to - 25 25 °C and/or +50 to +80 °C.

The present invention provides a heat transfer composition comprising a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 97% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds: 30 from about 43.5% by weight to about 48% by weight difluoromethane (HFC-32),

from about 10% by weight to about 12.5% by weight pentafluoroethane (HFC-125), and
from about 40% by weight to about 44% by weight trifluoroiodomethane (CF₃I)
and a POE lubricant; wherein the lubricant is present in an amount of 5 wt% relative to the
total amount of refrigerant and lubricant and wherein the mixture has one liquid phase at at
5 least one temperature in the range of -40 °C to +80 °C.

The present invention further provides a heat transfer composition comprising a refrigerant
according to any one of the refrigerants described here, but preferably those refrigerants
comprising at least about 98.5% by weight of a blend of the following three compounds, with
the following percentages being based on the total weight of the following three compounds:

10 from about 43.5% by weight to about 48% by weight difluoromethane (HFC-32),
from about 10% by weight to about 12.5% by weight pentafluoroethane (HFC-125), and
from about 40% by weight to about 44% by weight trifluoroiodomethane (CF₃I)
and a POE lubricant; wherein the lubricant is present in an amount of 5 wt% relative to the
total amount of refrigerant and lubricant and wherein the mixture has one liquid phase at at
15 least one temperature in the range of -40 °C to +80 °C.

The present invention further provides a heat transfer composition comprising a refrigerant
according to any one of the refrigerants described here, but preferably those refrigerants
comprising at least about 99.5% by weight of a blend of the following three compounds, with
the following percentages being based on the total weight of the following three compounds:

20 from about 43.5% by weight to about 48% by weight difluoromethane (HFC-32),
from about 10% by weight to about 12.5% by weight pentafluoroethane (HFC-125), and
from about 40% by weight to about 44% by weight trifluoroiodomethane (CF₃I)
and a POE lubricant; wherein the lubricant is present in an amount of 5 wt% relative to the
total amount of refrigerant and lubricant and wherein the mixture has one liquid phase at at
25 least one temperature in the range of -40 °C to +80 °C.

The present invention further provides a heat transfer composition comprising a refrigerant
according to any one of the refrigerants described here, but preferably those refrigerants

consisting essentially of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

from about 43.5% by weight to about 48% by weight difluoromethane (HFC-32),

from about 10% by weight to about 12.5% by weight pentafluoroethane (HFC-125), and

5 from about 40% by weight to about 44% by weight trifluoriodomethane (CF₃I)

and a POE lubricant; wherein the lubricant is present in an amount of 5 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase at at least one temperature in the range of -40 °C to +80 °C.

10 The present invention further provides a heat transfer composition comprising a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

from about 43.5% by weight to about 48% by weight difluoromethane (HFC-32),

15 from about 10% by weight to about 12.5% by weight pentafluoroethane (HFC-125), and

from about 40% by weight to about 44% by weight trifluoriodomethane (CF₃I)

and a POE lubricant; wherein the lubricant is present in an amount of 5 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase at at least one temperature in the range of -40 °C to +80 °C.

20

The present invention can further comprise a heat transfer composition as set out herein wherein the lubricant is present in an amount of 20 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase at at least one temperature in the range of -40 °C to +80 °C.

25 The present invention can further comprise a heat transfer composition as set out herein wherein the lubricant is present in an amount of 50 wt% relative to the total amount of

refrigerant and lubricant and wherein the mixture has one liquid phase at at least one temperature in the range of -40 °C to +80 °C.

The present invention provides a heat transfer composition comprising a refrigerant

5 according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 97% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

from about 43.5% by weight to about 48% by weight difluoromethane (HFC-32),

from about 10% by weight to about 12.5% by weight pentafluoroethane (HFC-125), and

10 from about 40% by weight to about 44% by weight trifluoroiodomethane (CF₃I)

and a POE lubricant; wherein the lubricant is present in an amount of 5 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase across the temperature range of -40 °C to +80 °C.

The present invention further provides a heat transfer composition comprising a refrigerant

15 according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 98.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

from about 43.5% by weight to about 48% by weight difluoromethane (HFC-32),

from about 10% by weight to about 12.5% by weight pentafluoroethane (HFC-125), and

20 from about 40% by weight to about 44% by weight trifluoroiodomethane (CF₃I)

and a POE lubricant; wherein the lubricant is present in an amount of 5 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase across the temperature range of -40 °C to +80 °C.

The present invention further provides a heat transfer composition comprising a refrigerant

25 according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 99.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

from about 43.5% by weight to about 48% by weight difluoromethane (HFC-32),
from about 10% by weight to about 12.5% by weight pentafluoroethane (HFC-125), and
from about 40% by weight to about 44% by weight trifluoroiodomethane (CF₃I)
and a POE lubricant; wherein the lubricant is present in an amount of 5 wt% relative to the
5 total amount of refrigerant and lubricant and wherein the mixture has one liquid phase
across the temperature range of -40 °C to +80 °C.

The present invention further provides a heat transfer composition comprising a refrigerant
according to any one of the refrigerants described here, but preferably those refrigerants
consisting essentially of a blend of the following three compounds, with the following
10 percentages being based on the total weight of the following three compounds:

from about 43.5% by weight to about 48% by weight difluoromethane (HFC-32),
from about 10% by weight to about 12.5% by weight pentafluoroethane (HFC-125), and
from about 40% by weight to about 44% by weight trifluoroiodomethane (CF₃I)
and a POE lubricant; wherein the lubricant is present in an amount of 5 wt% relative to the
15 total amount of refrigerant and lubricant and wherein the mixture has one liquid phase
across the temperature range of -40 °C to +80 °C.

The present invention further provides a heat transfer composition comprising a refrigerant
according to any one of the refrigerants described here, but preferably those refrigerants
20 consisting of a blend of the following three compounds, with the following percentages being
based on the total weight of the following three compounds:

from about 43.5% by weight to about 48% by weight difluoromethane (HFC-32),
from about 10% by weight to about 12.5% by weight pentafluoroethane (HFC-125), and
from about 40% by weight to about 44% by weight trifluoroiodomethane (CF₃I)
25 and a POE lubricant; wherein the lubricant is present in an amount of 5 wt% relative to the
total amount of refrigerant and lubricant and wherein the mixture has one liquid phase
across the temperature range of -40 °C to +80 °C.

The present invention can further comprise a heat transfer composition as set out herein wherein the lubricant is present in an amount of 20 wt% relative to the total amount of 5 refrigerant and lubricant and wherein the mixture has one liquid phase across the temperature range of -40 °C to +80 °C.

The present invention can further comprise a heat transfer composition as set out herein wherein the lubricant is present in an amount of 50 wt% relative to the total amount of 10 refrigerant and lubricant and wherein the mixture has one liquid phase across the temperature range of -40 °C to +80 °C.

In a particularly preferred feature of the present invention, the heat transfer composition comprises a refrigerant as set out herein, and a POE lubricant, wherein the lubricant is present in an amount of 5 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase at at least one temperature in the range of -40 to -15 25 °C and/or in the range of +50 to +80 °C.

In a particularly preferred feature of the present invention, the heat transfer composition comprises a refrigerant as set out herein, and a POE lubricant, wherein the lubricant is present in an amount of 20 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase at at least one temperature in the range of -40 to -20 25 °C and/or in the range of +50 to +80 °C.

In a particularly preferred feature of the present invention, the heat transfer composition comprises a refrigerant as set out herein, and a POE lubricant, wherein the lubricant is present in an amount of 50 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase at at least one temperature in the range of -40 to -25 25 °C and/or in the range of +50 to +80 °C.

In an alternative particularly preferred feature of the present invention, the heat transfer composition comprises a refrigerant as set out herein, and a POE lubricant, wherein the lubricant is present in an amount of 5 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase across the temperature range of -40 to -30 25 °C and/or +50 to +80 °C.

In an alternative particularly preferred feature of the present invention, the heat transfer composition comprises a refrigerant as set out herein, and a POE lubricant, wherein the lubricant is present in an amount of 20 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase across the temperature range of -40 to - 25 °C and/or +50 to +80 °C.

In an alternative particularly preferred feature of the present invention, the heat transfer composition comprises a refrigerant as set out herein, and a POE lubricant, wherein the lubricant is present in an amount of 50 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase across the temperature range of -40 to - 25 °C and/or +50 to +80 °C.

In a particularly preferred feature of the present invention, the heat transfer composition comprises a refrigerant refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 97% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

about 46% by weight difluoromethane (HFC-32),

about 12% by weight pentafluoroethane (HFC-125), and

about 42% by weight trifluoriodomethane (CF₃I)

and a POE lubricant; wherein the lubricant is present in an amount of 5 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase at at least one temperature in the range of -40 °C to +80 °C.

In a particularly preferred feature of the present invention, the heat transfer composition comprises a refrigerant refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 98.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

about 46% by weight difluoromethane (HFC-32),

about 12% by weight pentafluoroethane (HFC-125), and

about 42% by weight trifluoriodomethane (CF₃I)

and a POE lubricant; wherein the lubricant is present in an amount of 5 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase at at least one temperature in the range of -40 °C to +80 °C.

5 In a particularly preferred feature of the present invention, the heat transfer composition comprises a refrigerant refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 99.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

10 about 46% by weight difluoromethane (HFC-32),

about 12% by weight pentafluoroethane (HFC-125), and

about 42% by weight trifluoriodomethane (CF₃I)

and a POE lubricant; wherein the lubricant is present in an amount of 5 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase at at

15 least one temperature in the range of -40 °C to +80 °C.

In a particularly preferred feature of the present invention, the heat transfer composition comprises a refrigerant refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting essentially of a blend of the following three compounds, with the following percentages being based on the total weight of the following 20 three compounds:

about 46% by weight difluoromethane (HFC-32),

about 12% by weight pentafluoroethane (HFC-125), and

about 42% by weight trifluoriodomethane (CF₃I)

and a POE lubricant; wherein the lubricant is present in an amount of 5 wt% relative to the

25 total amount of refrigerant and lubricant and wherein the mixture has one liquid phase at at least one temperature in the range of -40 °C to +80 °C.

In a particularly preferred feature of the present invention, the heat transfer composition comprises a refrigerant refrigerant according to any one of the refrigerants described here,

but preferably those refrigerants consisting of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

about 46% by weight difluoromethane (HFC-32),

5 about 12% by weight pentafluoroethane (HFC-125), and

about 42% by weight trifluoriodomethane (CF₃I)

and a POE lubricant; wherein the lubricant is present in an amount of 5 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase at at least one temperature in the range of -40 °C to +80 °C.

10 The present invention can further comprise a heat transfer composition as set out herein wherein the lubricant is present in an amount of 20 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase at at least one temperature in the range of -40 °C to +80 °C.

15 The present invention can further comprise a heat transfer composition as set out herein wherein the lubricant is present in an amount of 50 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase at at least one temperature in the range of -40 °C to +80 °C.

20 In a particularly preferred feature of the present invention, the heat transfer composition comprises a refrigerant refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 97% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

about 46% by weight difluoromethane (HFC-32),

25 about 12% by weight pentafluoroethane (HFC-125), and

about 42% by weight trifluoriodomethane (CF₃I)

and a POE lubricant; wherein the lubricant is present in an amount of 5 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase across the temperature range of -40 °C to +80 °C.

In a particularly preferred feature of the present invention, the heat transfer composition

5 comprises a refrigerant refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 98.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

about 46% by weight difluoromethane (HFC-32),

10 about 12% by weight pentafluoroethane (HFC-125), and

about 42% by weight trifluoriodomethane (CF₃I)

and a POE lubricant; wherein the lubricant is present in an amount of 5 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase across the temperature range of -40 °C to +80 °C.

15 In a particularly preferred feature of the present invention, the heat transfer composition comprises a refrigerant refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 99.5% by weight of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

20 about 46% by weight difluoromethane (HFC-32),

about 12% by weight pentafluoroethane (HFC-125), and

about 42% by weight trifluoriodomethane (CF₃I)

and a POE lubricant; wherein the lubricant is present in an amount of 5 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase

25 across the temperature range of -40 °C to +80 °C.

In a particularly preferred feature of the present invention, the heat transfer composition comprises a refrigerant refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting essentially of a blend of the following three

compounds, with the following percentages being based on the total weight of the following three compounds:

about 46% by weight difluoromethane (HFC-32),

about 12% by weight pentafluoroethane (HFC-125), and

5 about 42% by weight trifluoriodomethane (CF₃I)

and a POE lubricant; wherein the lubricant is present in an amount of 5 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase across the temperature range of -40 °C to +80 °C.

In a particularly preferred feature of the present invention, the heat transfer composition

10 comprises a refrigerant refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting of a blend of the following three compounds, with the following percentages being based on the total weight of the following three compounds:

about 46% by weight difluoromethane (HFC-32),

15 about 12% by weight pentafluoroethane (HFC-125), and

about 42% by weight trifluoriodomethane (CF₃I)

and a POE lubricant; wherein the lubricant is present in an amount of 5 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase across the temperature range of -40 °C to +80 °C.

20 The present invention can further comprise a heat transfer composition as set out herein wherein the lubricant is present in an amount of 20 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase across the temperature range of -40 °C to +80 °C.

The present invention can further comprise a heat transfer composition as set out herein
25 wherein the lubricant is present in an amount of 50 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase across the temperature range of -40 °C to +80 °C.

In a particularly preferred feature of the present invention, the heat transfer composition comprises a refrigerant as set out herein, and a POE lubricant, wherein the lubricant is present in an amount of 5 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase at at least one temperature in the range of -40 to - 5 25 °C and/or in the range of +50 to +80 °C.

In a particularly preferred feature of the present invention, the heat transfer composition comprises a refrigerant as set out herein, and a POE lubricant, wherein the lubricant is present in an amount of 20 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase at at least one temperature in the range of -40 to - 10 25 °C and/or in the range of +50 to +80 °C.

In a particularly preferred feature of the present invention, the heat transfer composition comprises a refrigerant as set out herein, and a POE lubricant, wherein the lubricant is present in an amount of 50 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase at at least one temperature in the range of -40 to - 15 25 °C and/or in the range of +50 to +80 °C.

In an alternative particularly preferred feature of the present invention, the heat transfer composition comprises a refrigerant as set out herein, and a POE lubricant, wherein the lubricant is present in an amount of 5 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase across the temperature range of -40 to - 20 25 °C and/or +50 to +80 °C.

In an alternative particularly preferred feature of the present invention, the heat transfer composition comprises a refrigerant as set out herein, and a POE lubricant, wherein the lubricant is present in an amount of 20 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase across the temperature range of -40 to - 25 25 °C and/or +50 to +80 °C.

In an alternative particularly preferred feature of the present invention, the heat transfer composition comprises a refrigerant as set out herein, and a POE lubricant, wherein the lubricant is present in an amount of 50 wt% relative to the total amount of refrigerant and lubricant and wherein the mixture has one liquid phase across the temperature range of -40 to - 30 25 °C and/or +50 to +80 °C.

Other additives not mentioned herein can also be included by those skilled in the art in view of the teaching contained herein without departing from the novel and basic features of the present invention.

Combinations of surfactants and solubilizing agents may also be added to the present

5 compositions to aid oil solubility as disclosed in US patent No. 6,516,837, the disclosure of which is incorporated by reference.

The applicants have found that the compositions of the invention are capable of achieving a difficult to achieve combination of properties including particularly low GWP. Thus, the compositions of the invention have a Global Warming Potential (GWP) of not greater than

10 about 1500, preferably not greater than about 1000, more preferably not greater than about 750. In a particularly preferred feature of the invention, the composition of the invention has a Global Warming Potential (GWP) of not greater than about 750.

In addition, the compositions of the invention have a low Ozone Depletion Potential (ODP).

Thus, the compositions of the invention have an Ozone Depletion Potential (ODP) of not
15 greater than 0.05, preferably not greater than 0.02, more preferably about zero.

In addition, the compositions of the invention show acceptable toxicity and preferably have an Occupational Exposure Limit (OEL) of greater than about 400.

The compositions disclosed herein are provided for use in heat transfer applications, including air conditioning, refrigeration and heat pumps.

20 Any reference to the heat transfer composition of the invention refers to each and any of the heat transfer compositions as described herein. Thus, for the following discussion of the uses or applications of the composition of the invention, the heat transfer composition may comprise or consist essentially of any of the refrigerants described herein

25 For the purposes of this invention, each and any of the heat transfer compositions as described herein can be used in a heat transfer system, such as an air conditioning system, a refrigeration system or a heat pump. The heat transfer system according to the present invention can comprise a compressor, an evaporator, a condenser and an expansion device, in communication with each other.

Examples of commonly used compressors, for the purposes of this invention include reciprocating, rotary (including rolling piston and rotary vane), scroll, screw, and centrifugal compressors. Thus, the present invention provides each and any of the refrigerants and/or heat transfer compositions as described herein for use in a heat transfer system comprising

5 a reciprocating, rotary (including rolling piston and rotary vane), scroll, screw, or centrifugal compressor.

Examples of commonly used expansion devices, for the purposes of this invention include a capillary tube, a fixed orifice, a thermal expansion valve and an electronic expansion valve.

10 Thus, the present invention provides each and any of the refrigerants and/or heat transfer compositions as described herein for use in a heat transfer system comprising a capillary tube, a fixed orifice, a thermal expansion valve or an electronic expansion valve.

For the purposes of this invention, the evaporator and the condenser together form a heat exchanger, preferably selected from a finned tube heat exchanger, a microchannel heat exchanger, a shell and tube, a plate heat exchanger, and a tube-in-tube heat exchanger.

15 Thus, the present invention provides each and any of the refrigerants and/or heat transfer compositions as described herein for use in a heat transfer system wherein the evaporator and condenser together form a finned tube heat exchanger, a microchannel heat exchanger, a shell and tube, a plate heat exchanger, or a tube-in-tube heat exchanger.

20 The heat transfer composition of the invention can be used in heating and cooling applications.

In a particular feature of the invention, the heat transfer composition can be used in a method of cooling comprising condensing a heat transfer composition and subsequently evaporating said composition in the vicinity of an article or body to be cooled.

25 Thus, the invention relates to a method of cooling in a heat transfer system comprising an evaporator, a condenser and a compressor, the process comprising the steps of i) condensing a heat transfer composition as described herein; and

ii) evaporating the composition in the vicinity of body or article to be cooled;

30 wherein the evaporator temperature of the heat transfer system is in the range of from about -40°C to about $+10^{\circ}\text{C}$;

Alternatively, or in addition, the heat transfer composition can be used in a method of heating comprising condensing the heat transfer composition in the vicinity of an article or body to be heated and subsequently evaporating said composition.

Thus, the invention relates to a method of heating in a heat transfer system comprising an

5 evaporator, a condenser and a compressor, the process comprising the steps of i)

condensing a heat transfer composition as described herein,

in the vicinity of a body or article to be heated

and

ii) evaporating the composition;

10 wherein the evaporator temperature of the heat transfer system is in the range of about - 30°C to about 5°C

The heat transfer composition of the invention is provided for use in air conditioning applications including both mobile and stationary air conditioning applications. Thus, any of the heat transfer compositions described herein can be used in any one of:

15 - an air conditioning application including mobile air conditioning, particularly automobile air conditioning,
- a mobile heat pump, particularly an electric vehicle heat pump;
- a chiller, particularly a positive displacement chiller, more particularly an air cooled or water cooled direct expansion chiller, which is either modular or conventionally
20 singularly packaged,
- a residential air conditioning system, particularly a ducted split or a ductless split air conditioning system,
- a residential heat pump,
- a residential air to water heat pump/hydronic system,
25 - an industrial air conditioning system
- a commercial air conditioning system, particularly a packaged rooftop unit and a variable refrigerant flow (VRF) system;
- a commercial air source, water source or ground source heat pump system.

The heat transfer composition of the invention is provided for use in a refrigeration system.

30 The term "refrigeration system" refers to any system or apparatus or any part or portion of

such a system or apparatus which employs a refrigerant to provide cooling. Thus, any of the heat transfer compositions described herein can be used in any one of:

- a low temperature refrigeration system,
- a medium temperature refrigeration system,
- 5 - a commercial refrigerator,
- a commercial freezer,
- an ice machine,
- a vending machine,
- a transport refrigeration system,
- 10 - a domestic freezer,
- a domestic refrigerator,
- an industrial freezer,
- an industrial refrigerator and
- a chiller.

15 Each of the heat transfer compositions described herein is particularly provided for use in a residential air-conditioning system (with an evaporator temperature in the range of about 0 to about 10°C, particularly about 7°C for cooling and/or in the range of about -20 to about 3°C, particularly about 0.5°C for heating). Alternatively, or additionally, each of the heat transfer compositions described herein is particularly provided for use in a residential air 20 conditioning system with a reciprocating, rotary (rolling-piston or rotary vane) or scroll compressor.

Each of the heat transfer compositions described herein is particularly provided for use in an air cooled chiller (with an evaporator temperature in the range of about 0 to about 10°C, particularly about 4.5°C), particularly an air cooled chiller with a positive displacement 25 compressor, more particular an air cooled chiller with a reciprocating scroll compressor.

Each of the heat transfer compositions described herein is particularly provided for use in a residential air to water heat pump hydronic system (with an evaporator temperature in the range of about -20 to about 3°C, particularly about 0.5°C or with an evaporator temperature in the range of about -30 to about 5°C, particularly about 0.5°C).

Each of the heat transfer compositions described herein is particularly provided for use in a medium temperature refrigeration system (with an evaporator temperature in the range of about -12 to about 0°C, particularly about -8°C).

Each of the heat transfer compositions described herein is particularly provided for use in a

5 low temperature refrigeration system (with an evaporator temperature in the range of about -40 to about -12°C, particularly about -23°C or preferably about -32°C).

Thus, the heat transfer composition of the invention is provided for use in a residential air conditioning system, wherein the residential air-conditioning system is used to supply cool air (said air having a temperature of for example, about 10°C to about 17°C, particularly

10 about 12°C) to buildings for example, in the summer. Typical system types are split, mini-split, and window, ducted split, ductless split, window, and portable air-conditioning system.

The system usually has an air-to-refrigerant evaporator (indoor coil), a compressor, an air-to-refrigerant condenser (outdoor coil), and an expansion valve. The evaporator and condenser are usually a round tube plate fin, a finned tube or microchannel heat exchanger.

15 The compressor is usually a reciprocating or rotary (rolling-piston or rotary vane) or scroll compressor. The expansion valve is usually a capillary tube, thermal or electronic expansion valve. The refrigerant evaporating temperature is preferably in the range of 0 to 10°C. The condensing temperature is preferably in the range of 40 to 70 °C.

The heat transfer composition of the invention is provided for use in a residential heat pump

20 system, wherein the residential heat pump system is used to supply warm air (said air having a temperature of for example, about 18°C to about 24°C, particularly about 21°C) to buildings in the winter. It is usually the same system as the residential air-conditioning system, while in the heat pump mode the refrigerant flow is reversed and the indoor coil becomes condenser and the outdoor coil becomes evaporator. Typical system types are

25 split and mini-split heat pump system. The evaporator and condenser are usually a round tube plate fin, a finned or microchannel heat exchanger. The compressor is usually a reciprocating or rotary (rolling-piston or rotary vane) or scroll compressor. The expansion valve is usually a thermal or electronic expansion valve. The refrigerant evaporating temperature is preferably in the range of about -20 to about 3°C or about -30 to about 5°C.

30 The condensing temperature is preferably in the range of about 35 to about 50 °C.

The heat transfer composition of the invention is provided for use in a commercial air-conditioning system wherein the commercial air conditioning system can be a chiller which

is used to supply chilled water (said water having a temperature of for example about 7°C) to large buildings such as offices and hospitals, etc. Depending on the application, the chiller system may be running all year long. The chiller system may be air-cooled or water-cooled. The air-cooled chiller usually has a plate, tube-in-tube or shell-and-tube evaporator

5 to supply chilled water, a reciprocating or scroll compressor, a round tube plate fin, a finned tube or microchannel condenser to exchange heat with ambient air, and a thermal or electronic expansion valve. The water-cooled system usually has a shell-and-tube evaporator to supply chilled water, a reciprocating, scroll, screw or centrifugal compressor, a shell-and-tube condenser to exchange heat with water from cooling tower or lake, sea and
10 other natural resources, and a thermal or electronic expansion valve. The refrigerant evaporating temperature is preferably in the range of about 0 to about 10°C. The condensing temperature is preferably in the range of about 40 to about 70 °C.

The heat transfer composition of the invention is provided for use in a residential air-to-water heat pump hydronic system, wherein the residential air-to-water heat pump hydronic system

15 is used to supply hot water (said water having a temperature of for example about 50°C or about 55°C) to buildings for floor heating or similar applications in the winter. The hydronic system usually has a round tube plate fin, a finned tube or microchannel evaporator to exchange heat with ambient air, a reciprocating, scroll or rotary compressor, a plate, tube-in-tube or shell-in-tube condenser to heat the water, and a thermal or electronic expansion
20 valve. The refrigerant evaporating temperature is preferably in the range of about -20 to about 3°C, or -30 to about 5°C. The condensing temperature is preferably in the range of about 50 to about 90 °C.

The heat transfer composition of the invention is provided for use in a medium temperature refrigeration system, wherein the medium temperature refrigeration system is preferably

25 used to chill food or beverages such as in a refrigerator or a bottle cooler. The system usually has an air-to-refrigerant evaporator to chill the food or beverage, a reciprocating, scroll or screw or rotary compressor, an air-to-refrigerant condenser to exchange heat with the ambient air, and a thermal or electronic expansion valve. The refrigerant evaporating temperature is preferably in the range of about -12 to about 0°C. The condensing
30 temperature is preferably in the range of about 40 to about 70 °C, or about 20 to about 70 °C.

The heat transfer composition of the invention is provided for use in a low temperature refrigeration system, wherein said low temperature refrigeration system is preferably used in a freezer or an ice cream machine. The system usually has an air-to-refrigerant evaporator to chill the food or beverage, a reciprocating, scroll or rotary compressor, an air-to-

5 refrigerant condenser to exchange heat with the ambient air, and a thermal or electronic expansion valve. The refrigerant evaporating temperature is preferably in the range of about -40 to about -12°C. The condensing temperature is preferably in the range of about 40 to about 70 °C, or about 20 to about 70 °C.

The present invention therefore provides the use of a heat transfer composition comprising

10 a refrigerant, said refrigerant comprising at least about 97% by weight of a blend of three compounds, said blend consisting of:

about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend;

15 in a chiller.

The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant comprising at least about 98.5% by weight of a blend of three compounds, said blend consisting of:

20 about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend; in a chiller.

25 The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant comprising at least about 99.5% by weight of a blend of three compounds, said blend consisting of:

about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend; in a chiller.

The present invention therefore provides the use of a heat transfer composition comprising

5 a refrigerant, said refrigerant consisting essentially of a blend of three compounds, said blend consisting of:

about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoroiodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend;

10 in a chiller.

The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant consisting of a blend of three compounds, said blend consisting of:

15 about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoroiodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend; in a chiller.

20 The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant comprising at least about 97% by weight of a blend of three compounds, said blend consisting of:

about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoroiodomethane (CF₃I) wherein the percentages

25 are based on the total weight of the three compounds in the blend; in a chiller.

30 The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant comprising at least about 98.5% by weight of a blend of three compounds, said blend consisting of:

about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoroiodomethane (CF₃I) wherein the percentages are based on the total weight of the three compounds in the blend; in a chiller.

5 The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant comprising at least about 99.5% by weight of a blend of three compounds, said blend consisting of:

about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoroiodomethane (CF₃I)

10 wherein the percentages are based on the total weight of the three compounds in the blend; in a chiller.

The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant consisting essentially of a blend of three compounds, said 15 blend consisting of:

about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoroiodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend; in a chiller.

20

The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant consisting of a blend of three compounds, said blend consisting of:

about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane

25 (HFC-125), and about 42% by weight trifluoroiodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend; in a chiller.

The present invention therefore provides the use of a heat transfer composition comprising 30 a refrigerant, said refrigerant comprising at least about 97% by weight of a blend of three compounds, said blend consisting of:

about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend; and from 10 to 60 wt.% of a polyol ester (POE) lubricant based on the weight of the heat

5 transfer composition, in a chiller.

The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant comprising at least about 98.5% by weight of a blend of three compounds, said blend consisting of:

10 about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend; and from 10 to 60 wt.% of a polyol ester (POE) lubricant based on the weight of the heat transfer composition, in a chiller.

15

The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant comprising at least about 99.5% by weight of a blend of three compounds, said blend consisting of:

20 about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend; and from 10 to 60 wt.% of a polyol ester (POE) lubricant based on the weight of the heat transfer composition, in a chiller.

25 The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant consisting essentially of a blend of three compounds, said blend consisting of:

about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend; and from 10 to 60 wt.% of a polyol ester (POE) lubricant based on the weight of the heat transfer composition, in a chiller.

5 The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant consisting of a blend of three compounds, said blend consisting of:

about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoroiodomethane (CF₃I)

10 wherein the percentages are based on the total weight of the three compounds in the blend; and from 10 to 60 wt.% of a polyol ester (POE) lubricant based on the weight of the heat transfer composition, in a chiller.

The present invention therefore provides the use of a heat transfer composition comprising 15 a refrigerant, said refrigerant comprising at least about 97% by weight of a blend of three compounds, said blend consisting of:

about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoroiodomethane (CF₃I) wherein the percentages are based on the total weight of the three compounds in the blend and from 10 to 60 wt.% of

20 a polyol ester (POE) lubricant; based on the weight of the heat transfer composition, in a chiller.

The present invention therefore provides the use of a heat transfer composition comprising 25 a refrigerant, said refrigerant comprising at least about 98.5% by weight of a blend of three compounds, said blend consisting of:

about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoroiodomethane (CF₃I) wherein the percentages are based on the total weight of the three compounds in the blend; and from 10 to 60 wt.%

30 of a polyol ester (POE) lubricant based on the weight of the heat transfer composition, in a chiller.

The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant comprising at least about 99.5% by weight of a blend of three compounds, said blend consisting of:

about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane

5 (HFC-125), and about 42% by weight trifluoriodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend; and from 10 to 60 wt.% of a polyol ester (POE) lubricant based on the weight of the heat transfer composition, in a chiller.

10 The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant consisting essentially of a blend of three compounds, said blend consisting of:

about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoriodomethane (CF₃I)

15 wherein the percentages are based on the total weight of the three compounds in the blend; and from 10 to 60 wt.% of a polyol ester (POE) lubricant based on the weight of the heat transfer composition, in a chiller.

20 The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant consisting of a blend of three compounds, said blend consisting of:

about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoriodomethane (CF₃I)

25 wherein the percentages are based on the total weight of the three compounds in the blend; and from 10 to 60 wt.% of a polyol ester (POE) lubricant based on the weight of the heat transfer composition, in a chiller.

30 The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant comprising at least about 97% by weight of a blend of three compounds, said blend consisting of:

about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend; and a stabilizer composition comprising farnesene and diphenyl phosphite and/or BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate

5 is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition, in a chiller.

10 The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant comprising at least about 98.5% by weight of a blend of three compounds, said blend consisting of:

about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I)

15 wherein the percentages are based on the total weight of the three compounds in the blend; and a stabilizer composition comprising farnesene and diphenyl phosphite and/or BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition in a chiller.

20 The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant comprising at least about 99.5% by weight of a blend of three compounds, said blend consisting of:

about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I)

25 wherein the percentages are based on the total weight of the three compounds in the blend; and a stabilizer composition comprising farnesene and diphenyl phosphite and/or BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate

is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition in a chiller.

5

The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant consisting essentially of a blend of three compounds, said blend consisting of:

about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane

10 (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend; and a stabilizer composition comprising farnesene and diphenyl phosphite and/or BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate

15 is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition in a chiller.

20 The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant consisting of a blend of three compounds, said blend consisting of:

about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I)

25 wherein the percentages are based on the total weight of the three compounds in the blend; and a stabilizer composition comprising farnesene and diphenyl phosphite and/or BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate is provided in an amount of from about 0.001% by weight to about 5% by weight based on

30 the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition in a chiller.

The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant comprising at least about 97% by weight of a blend of three compounds, said blend consisting of:

5 about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoroiodomethane (CF₃I) wherein the percentages are based on the total weight of the three compounds in the blend; and a stabilizer composition comprising farnesene and diphenyl phosphite and/or BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight
10 based on the weight of the heat transfer composition, the diphenyl phosphate is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition in a chiller.

15

The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant comprising at least about 98.5% by weight of a blend of three compounds, said blend consisting of:

20 about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoroiodomethane (CF₃I) wherein the percentages are based on the total weight of the three compounds in the blend; and a stabilizer composition comprising farnesene and diphenyl phosphite and/or BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight
25 based on the weight of the heat transfer composition, the diphenyl phosphate is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition in a chiller.

30

The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant comprising at least about 99.5% by weight of a blend of three compounds, said blend consisting of:

about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoroiodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend; and a stabilizer composition comprising farnesene and diphenyl phosphite and/or BHT

5 wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer

10 composition in a chiller.

The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant consisting essentially of a blend of three compounds, said blend consisting of:

15 about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoroiodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend; and a stabilizer composition comprising farnesene and diphenyl phosphite and/or BHT

wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer

20 composition in a chiller.

25

The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant consisting of a blend of three compounds, said blend consisting of:

about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoroiodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend; and a stabilizer composition comprising farnesene and diphenyl phosphite and/or BHT

wherein the farnesene is provided in an amount of from about 0.001% by weight to about

5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer

5 composition in a chiller.

The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant comprising at least about 97% by weight of a blend of three compounds, said blend consisting of:

10 about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoroiodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend; and a stabilizer composition comprising farnesene and diphenyl phosphite and/or BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about

15 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight

20 of the heat transfer composition, in a chiller.

The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant comprising at least about 98.5% by weight of a blend of three compounds, said blend consisting of:

25 about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoroiodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend; and a stabilizer composition comprising farnesene and diphenyl phosphite and/or BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about

30 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from

about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant based on the weight of the heat transfer composition, in a chiller.

5 The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant comprising at least about 99.5% by weight of a blend of three compounds, said blend consisting of:

about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I)

10 wherein the percentages are based on the total weight of the three compounds in the blend; and a stabilizer composition comprising farnesene and diphenyl phosphite and/or BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate is provided in an amount of from about 0.001% by weight to about 5% by weight based on 15 the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant based on the weight of the heat transfer composition, in a chiller.

20 The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant consisting essentially of a blend of three compounds, said blend consisting of:

about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I)

25 wherein the percentages are based on the total weight of the three compounds in the blend; and a stabilizer composition comprising farnesene and diphenyl phosphite and/or BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate is provided in an amount of from about 0.001% by weight to about 5% by weight based on 30 the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer

composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant based on the weight of the heat transfer composition, in a chiller.

The present invention therefore provides the use of a heat transfer composition comprising

5 a refrigerant, said refrigerant consisting of a blend of three compounds, said blend consisting of:

about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend;

10 and a stabilizer composition comprising farnesene and diphenyl phosphite and/or BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from
15 about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant based on the weight of the heat transfer composition, in a chiller.

The present invention therefore provides the use of a heat transfer composition comprising

20 a refrigerant, said refrigerant comprising at least about 97% by weight of a blend of three compounds, said blend consisting of:

about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoriodomethane (CF₃I) wherein the percentages are based on the total weight of the three compounds in the blend; and a stabilizer

25 composition comprising farnesene and diphenyl phosphite and/or BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001%
30 by weight to about 5 % by weight based on the weight of heat transfer composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant based on the weight of the heat transfer composition, in a chiller.

The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant comprising at least about 98.5% by weight of a blend of three compounds, said blend consisting of:

- 5 about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoriodomethane (CF₃I) wherein the percentages are based on the total weight of the three compounds in the blend; and a stabilizer composition comprising farnesene and diphenyl phosphite and/or BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight
- 10 based on the weight of the heat transfer composition, the diphenyl phosphate is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant based on the weight of the heat transfer
- 15 composition, in a chiller.

The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant comprising at least about 99.5% by weight of a blend of three compounds, said blend consisting of:

- 20 about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoriodomethane (CF₃I) wherein the percentages are based on the total weight of the three compounds in the blend; and a stabilizer composition comprising farnesene and diphenyl phosphite and/or BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer
- 25 composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant based on the weight of the heat transfer composition, in a chiller.
- 30

The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant consisting essentially of a blend of three compounds, said blend consisting of:

about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane

5 (HFC-125), and about 42% by weight trifluoroiodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend;

and a stabilizer composition comprising farnesene and diphenyl phosphite and/or BHT

wherein the farnesene is provided in an amount of from about 0.001% by weight to about

5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate

10 is provided in an amount of from about 0.001% by weight to about 5% by weight based on

the weight of the heat transfer composition and the BHT is provided in an amount of from

about 0.001% by weight to about 5 % by weight based on the weight of heat transfer

composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant based on the weight of
the heat transfer composition, in a chiller.

15

The present invention therefore provides the use of a heat transfer composition comprising

a refrigerant, said refrigerant consisting of a blend of three compounds, said blend

consisting of:

about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane

20 (HFC-125), and about 42% by weight trifluoroiodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend;

and a stabilizer composition comprising farnesene and diphenyl phosphite and/or BHT

wherein the farnesene is provided in an amount of from about 0.001% by weight to about

5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate

25 is provided in an amount of from about 0.001% by weight to about 5% by weight based on

the weight of the heat transfer composition and the BHT is provided in an amount of from

about 0.001% by weight to about 5 % by weight based on the weight of heat transfer

composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant based on the weight of
the heat transfer composition, in a chiller.

30

For the purposes of this invention, the heat transfer composition as set out above is

provided for use in a chiller with an evaporating temperature in the range of about 0 to about

10°C. and a condensing temperature in the range of about 40 to about 70 °C. The chiller is

provided for use in air conditioning or refrigeration, preferably for refrigeration. The chiller is preferably a positive displacement chiller, more particularly an air cooled or water cooled direct expansion chiller, which is either modular or conventionally singularly packaged.

5 The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant comprising at least about 97% by weight of a blend of three compounds, said blend consisting of:

about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoroiodomethane (CF₃I)

10 wherein the percentages are based on the total weight of the three compounds in the blend; in stationary air conditioning, particularly residential air conditioning, industrial air conditioning or commercial air conditioning.

15 The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant comprising at least about 98.5% by weight of a blend of three compounds, said blend consisting of:

about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoroiodomethane (CF₃I)

20 wherein the percentages are based on the total weight of the three compounds in the blend; in stationary air conditioning, particularly residential air conditioning, industrial air conditioning or commercial air conditioning.

25 The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant comprising at least about 99.5% by weight of a blend of three compounds, said blend consisting of:

about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoroiodomethane (CF₃I)

30 wherein the percentages are based on the total weight of the three compounds in the blend; in stationary air conditioning, particularly residential air conditioning, industrial air conditioning or commercial air conditioning.

The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant consisting essentially of a blend of three compounds, said blend consisting of:

5 about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoroiodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend; in stationary air conditioning, particularly residential air conditioning, industrial air conditioning or commercial air conditioning.

10

The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant consisting of a blend of three compounds, said blend consisting of:

about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane
15 (HFC-125), and about 38.5% by weight trifluoroiodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend; in stationary air conditioning, particularly residential air conditioning, industrial air conditioning or commercial air conditioning.

20

The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant comprising at least about 97% by weight of a blend of three compounds, said blend consisting of:

about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoroiodomethane (CF₃I) wherein the percentages
25 are based on the total weight of the three compounds in the blend; in stationary air conditioning, particularly residential air conditioning, industrial air conditioning or commercial air conditioning.

30

The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant comprising at least about 98.5% by weight of a blend of three compounds, said blend consisting of:

about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoroiodomethane (CF₃I) wherein the percentages are based on the total weight of the three compounds in the blend; in stationary air conditioning, particularly residential air conditioning, industrial air conditioning or commercial air conditioning.

5 air conditioning.

The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant comprising at least about 99.5% by weight of a blend of three compounds, said blend consisting of:

10 about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoroiodomethane (CF₃I)
wherein the percentages are based on the total weight of the three compounds in the blend; in stationary air conditioning, particularly residential air conditioning, industrial air conditioning or commercial air conditioning.

15

The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant consisting essentially of a blend of three compounds, said blend consisting of:

about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane
20 (HFC-125), and about 42% by weight trifluoroiodomethane (CF₃I)
wherein the percentages are based on the total weight of the three compounds in the blend; in stationary air conditioning, particularly residential air conditioning, industrial air conditioning or commercial air conditioning.

25 The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant consisting of a blend of three compounds, said blend consisting of:

about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoroiodomethane (CF₃I)
30 wherein the percentages are based on the total weight of the three compounds in the blend; in stationary air conditioning, particularly residential air conditioning, industrial air conditioning or commercial air conditioning.

The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant comprising at least about 97% by weight of a blend of three compounds, said blend consisting of:

5 about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend; and from 10 to 60 wt.% of a polyol ester (POE) lubricant based on the weight of the heat transfer composition, in stationary air conditioning, particularly residential air conditioning,

10 industrial air conditioning or commercial air conditioning.

The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant comprising at least about 98.5% by weight of a blend of three compounds, said blend consisting of:

15 about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend; and from 10 to 60 wt.% of a polyol ester (POE) lubricant based on the weight of the heat transfer composition, in stationary air conditioning, particularly residential air conditioning,

20 industrial air conditioning or commercial air conditioning.

The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant comprising at least about 99.5% by weight of a blend of three compounds, said blend consisting of:

25 about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend; and from 10 to 60 wt.% of a polyol ester (POE) lubricant based on the weight of the heat transfer composition, in stationary air conditioning, particularly residential air conditioning,

30 industrial air conditioning or commercial air conditioning.

The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant consisting essentially of a blend of three compounds, said blend consisting of:

about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane

5 (HFC-125), and about 38.5% by weight trifluoroiodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend; and from 10 to 60 wt.% of a polyol ester (POE) lubricant based on the weight of the heat transfer composition, in stationary air conditioning, particularly residential air conditioning, industrial air conditioning or commercial air conditioning.

10

The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant consisting of a blend of three compounds, said blend consisting of:

about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane

15 (HFC-125), and about 38.5% by weight trifluoroiodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend; and from 10 to 60 wt.% of a polyol ester (POE) lubricant based on the weight of the heat transfer composition, in stationary air conditioning, particularly residential air conditioning, industrial air conditioning or commercial air conditioning.

20

The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant comprising at least about 97% by weight of a blend of three compounds, said blend consisting of:

about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane

25 (HFC-125), and about 42% by weight trifluoroiodomethane (CF₃I) wherein the percentages are based on the total weight of the three compounds in the blend and from 10 to 60 wt.% of a polyol ester (POE) lubricant; based on the weight of the heat transfer composition, in stationary air conditioning, particularly residential air conditioning, industrial air conditioning or commercial air conditioning.

30

The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant comprising at least about 98.5% by weight of a blend of three compounds, said blend consisting of:

about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoroiodomethane (CF₃I) wherein the percentages are based on the total weight of the three compounds in the blend; and from 10 to 60 wt.% of a polyol ester (POE) lubricant based on the weight of the heat transfer composition, in stationary air conditioning, particularly residential air conditioning, industrial air conditioning or commercial air conditioning.

10

The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant comprising at least about 99.5% by weight of a blend of three compounds, said blend consisting of:

about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoroiodomethane (CF₃I) wherein the percentages are based on the total weight of the three compounds in the blend; and from 10 to 60 wt.% of a polyol ester (POE) lubricant based on the weight of the heat transfer composition, in stationary air conditioning, particularly residential air conditioning, industrial air conditioning or commercial air conditioning.

15

The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant consisting essentially of a blend of three compounds, said blend consisting of:

about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoroiodomethane (CF₃I) wherein the percentages are based on the total weight of the three compounds in the blend; and from 10 to 60 wt.% of a polyol ester (POE) lubricant based on the weight of the heat transfer composition, in stationary air conditioning, particularly residential air conditioning, industrial air conditioning or commercial air conditioning.

20

The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant consisting of a blend of three compounds, said blend consisting of:

about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane

5 (HFC-125), and about 42% by weight trifluoroiodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend; and from 10 to 60 wt.% of a polyol ester (POE) lubricant based on the weight of the heat transfer composition, in stationary air conditioning, particularly residential air conditioning, industrial air conditioning or commercial air conditioning.

10

The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant comprising at least about 97% by weight of a blend of three compounds, said blend consisting of:

about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane

15 (HFC-125), and about 38.5% by weight trifluoroiodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend; and a stabilizer composition comprising farnesene and diphenyl phosphite and/or BHT

wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate

20 is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition, in stationary air conditioning, particularly residential air conditioning, industrial air conditioning or commercial air conditioning.

25

The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant comprising at least about 98.5% by weight of a blend of three compounds, said blend consisting of:

about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane

30 (HFC-125), and about 38.5% by weight trifluoroiodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend; and a stabilizer composition comprising farnesene and diphenyl phosphite and/or BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate 5 is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition in stationary air conditioning, particularly residential air conditioning, industrial air conditioning or commercial air conditioning.

10

The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant comprising at least about 99.5% by weight of a blend of three compounds, said blend consisting of:

about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane 15 (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend; and a stabilizer composition comprising farnesene and diphenyl phosphite and/or BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate 20 is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition in stationary air conditioning, particularly residential air conditioning, industrial air conditioning or commercial air conditioning.

25

The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant consisting essentially of a blend of three compounds, said blend consisting of:

about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane 30 (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend; and a stabilizer composition comprising farnesene and diphenyl phosphite and/or BHT

wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from 5 about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition in stationary air conditioning, particularly residential air conditioning, industrial air conditioning or commercial air conditioning.

10 The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant consisting of a blend of three compounds, said blend consisting of:

about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I)

15 wherein the percentages are based on the total weight of the three compounds in the blend; and a stabilizer composition comprising farnesene and diphenyl phosphite and/or BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate is provided in an amount of from 5 about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition in stationary air conditioning, particularly residential air conditioning, industrial air conditioning or commercial air conditioning.

20 The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant comprising at least about 97% by weight of a blend of three compounds, said blend consisting of:

25 about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoriodomethane (CF₃I) wherein the percentages are based on the total weight of the three compounds in the blend; and a stabilizer 30 composition comprising farnesene and diphenyl phosphite and/or BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate is provided in

an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition in stationary air conditioning, particularly residential air conditioning, industrial air conditioning

5 or commercial air conditioning.

The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant comprising at least about 98.5% by weight of a blend of three compounds, said blend consisting of:

10 about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoriodomethane (CF₃I) wherein the percentages are based on the total weight of the three compounds in the blend; and a stabilizer composition comprising farnesene and diphenyl phosphite and/or BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition in stationary air conditioning, particularly residential air conditioning, industrial air conditioning

15

20 or commercial air conditioning.

The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant comprising at least about 99.5% by weight of a blend of three compounds, said blend consisting of:

25 about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoriodomethane (CF₃I) wherein the percentages are based on the total weight of the three compounds in the blend; and a stabilizer composition comprising farnesene and diphenyl phosphite and/or BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about

30 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer

composition in stationary air conditioning, particularly residential air conditioning, industrial air conditioning or commercial air conditioning.

The present invention therefore provides the use of a heat transfer composition comprising

5 a refrigerant, said refrigerant consisting essentially of a blend of three compounds, said blend consisting of:

about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoroiodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend;

10 and a stabilizer composition comprising farnesene and diphenyl phosphite and/or BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from 15 about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition in stationary air conditioning, particularly residential air conditioning, industrial air conditioning or commercial air conditioning.

The present invention therefore provides the use of a heat transfer composition comprising

20 a refrigerant, said refrigerant consisting of a blend of three compounds, said blend consisting of:

about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoroiodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend;

25 and a stabilizer composition comprising farnesene and diphenyl phosphite and/or BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from 30 about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition in stationary air conditioning, particularly residential air conditioning, industrial air conditioning or commercial air conditioning.

The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant comprising at least about 97% by weight of a blend of three compounds, said blend consisting of:

about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane

5 (HFC-125), and about 38.5% by weight trifluoroiodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend; and a stabilizer composition comprising farnesene and diphenyl phosphite and/or BHT

wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate

10 is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition, in stationary air conditioning, particularly residential air

15 conditioning, industrial air conditioning or commercial air conditioning.

The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant comprising at least about 98.5% by weight of a blend of three compounds, said blend consisting of:

20 about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoroiodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend; and a stabilizer composition comprising farnesene and diphenyl phosphite and/or BHT

wherein the farnesene is provided in an amount of from about 0.001% by weight to about

25 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant based on the weight of the heat transfer composition, in stationary air conditioning, particularly residential air

30 conditioning, industrial air conditioning or commercial air conditioning.

The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant comprising at least about 99.5% by weight of a blend of three compounds, said blend consisting of:

about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane

5 (HFC-125), and about 38.5% by weight trifluoroiodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend; and a stabilizer composition comprising farnesene and diphenyl phosphite and/or BHT

wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate

10 is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer

composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant based on the weight of the heat transfer composition, in stationary air conditioning, particularly residential air

15 conditioning, industrial air conditioning or commercial air conditioning.

The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant consisting essentially of a blend of three compounds, said blend consisting of:

20 about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoroiodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend; and a stabilizer composition comprising farnesene and diphenyl phosphite and/or BHT

wherein the farnesene is provided in an amount of from about 0.001% by weight to about

25 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer

composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant based on the weight of

30 the heat transfer composition, in stationary air conditioning, particularly residential air conditioning, industrial air conditioning or commercial air conditioning.

The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant consisting of a blend of three compounds, said blend consisting of:

about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane

5 (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend; and a stabilizer composition comprising farnesene and diphenyl phosphite and/or BHT

wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate

10 is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer

composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant based on the weight of the heat transfer composition, in stationary air conditioning, particularly residential air

15 conditioning, industrial air conditioning or commercial air conditioning.

The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant comprising at least about 97% by weight of a blend of three compounds, said blend consisting of:

20 about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane

(HFC-125), and about 42% by weight trifluoriodomethane (CF₃I) wherein the percentages are based on the total weight of the three compounds in the blend; and a stabilizer

composition comprising farnesene and diphenyl phosphite and/or BHT wherein the

farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate is provided in

25 an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition and from

10 to 60 wt.% of a polyol ester (POE) lubricant based on the weight of the heat transfer

30 composition, in stationary air conditioning, particularly residential air conditioning, industrial air conditioning or commercial air conditioning.

The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant comprising at least about 98.5% by weight of a blend of three compounds, said blend consisting of:

about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane

5 (HFC-125), and about 42% by weight trifluoroiodomethane (CF₃I) wherein the percentages are based on the total weight of the three compounds in the blend; and a stabilizer composition comprising farnesene and diphenyl phosphite and/or BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate is provided in 10 an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant based on the weight of the heat transfer composition, in stationary air conditioning, particularly residential air conditioning, industrial air conditioning or commercial air conditioning.

The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant comprising at least about 99.5% by weight of a blend of three compounds, said blend consisting of:

20 about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoroiodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend; and a stabilizer composition comprising farnesene and diphenyl phosphite and/or BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer

25 composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant based on the weight of the heat transfer composition, in stationary air conditioning, particularly residential air conditioning, industrial air conditioning or commercial air conditioning.

The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant consisting essentially of a blend of three compounds, said blend consisting of:

about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane

5 (HFC-125), and about 42% by weight trifluoroiodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend;

and a stabilizer composition comprising farnesene and diphenyl phosphite and/or BHT

wherein the farnesene is provided in an amount of from about 0.001% by weight to about

5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate

10 is provided in an amount of from about 0.001% by weight to about 5% by weight based on

the weight of the heat transfer composition and the BHT is provided in an amount of from

about 0.001% by weight to about 5 % by weight based on the weight of heat transfer

composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant based on the weight of

the heat transfer composition, in stationary air conditioning, particularly residential air

15 conditioning, industrial air conditioning or commercial air conditioning.

The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant consisting of a blend of three compounds, said blend consisting of:

20 about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane

(HFC-125), and about 42% by weight trifluoroiodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend;

and a stabilizer composition comprising farnesene and diphenyl phosphite and/or BHT

wherein the farnesene is provided in an amount of from about 0.001% by weight to about

25 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate

is provided in an amount of from about 0.001% by weight to about 5% by weight based on

the weight of the heat transfer composition and the BHT is provided in an amount of from

about 0.001% by weight to about 5 % by weight based on the weight of heat transfer

composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant based on the weight of

30 the heat transfer composition, in stationary air conditioning, particularly residential air

conditioning, industrial air conditioning or commercial air conditioning.

The present invention further provides the use of a heat transfer composition comprising a refrigerant, said refrigerant comprising at least about 97% by weight of a blend of three compounds, said blend consisting of:

about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane

5 (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend; in commercial refrigeration, particularly in a commercial refrigerator, commercial freezer, an ice machine or a vending machine.

10 The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant comprising at least about 98.5% by weight of a blend of three compounds, said blend consisting of:

about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I)

15 wherein the percentages are based on the total weight of the three compounds in the blend; in commercial refrigeration, particularly in a commercial refrigerator, commercial freezer, an ice machine or a vending machine.

20 The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant comprising at least about 99.5% by weight of a blend of three compounds, said blend consisting of:

about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I)

25 wherein the percentages are based on the total weight of the three compounds in the blend; in commercial refrigeration, particularly in a commercial refrigerator, commercial freezer, an ice machine or a vending machine.

30 The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant consisting essentially of a blend of three compounds, said blend consisting of:

about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend; in commercial refrigeration, particularly in a commercial refrigerator, commercial freezer, an

5 ice machine or a vending machine.

The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant consisting of a blend of three compounds, said blend consisting of:

10 about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend; in commercial refrigeration, particularly in a commercial refrigerator, commercial freezer, an ice machine or a vending machine.

15

The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant comprising at least about 97% by weight of a blend of three compounds, said blend consisting of:

about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane

20 (HFC-125), and about 42% by weight trifluoriodomethane (CF₃I) wherein the percentages are based on the total weight of the three compounds in the blend; in commercial refrigeration, particularly in a commercial refrigerator, commercial freezer, an ice machine or a vending machine.

25 The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant comprising at least about 98.5% by weight of a blend of three compounds, said blend consisting of:

about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoriodomethane (CF₃I) wherein the percentages

30 are based on the total weight of the three compounds in the blend in commercial

refrigeration, particularly in a commercial refrigerator, commercial freezer, an ice machine or a vending machine.

The present invention therefore provides the use of a heat transfer composition comprising

5 a refrigerant, said refrigerant comprising at least about 99.5% by weight of a blend of three compounds, said blend consisting of:

about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoroiodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend;

10 in commercial refrigeration, particularly in a commercial refrigerator, commercial freezer, an ice machine or a vending machine.

The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant consisting essentially of a blend of three compounds, said

15 blend consisting of:

about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoroiodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend;

15 in commercial refrigeration, particularly in a commercial refrigerator, commercial freezer, an ice machine or a vending machine.

The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant consisting of a blend of three compounds, said blend

consisting of:

25 about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoroiodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend;

in commercial refrigeration, particularly in a commercial refrigerator, commercial freezer, an ice machine or a vending machine.

The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant comprising at least about 97% by weight of a blend of three compounds, said blend consisting of:

about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane

5 (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend; and from 10 to 60 wt.% of a polyol ester (POE) lubricant based on the weight of the heat transfer composition, in commercial refrigeration, particularly in a commercial refrigerator, commercial freezer, an ice machine or a vending machine.

10

The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant comprising at least about 98.5% by weight of a blend of three compounds, said blend consisting of:

about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane

15 (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend; and from 10 to 60 wt.% of a polyol ester (POE) lubricant based on the weight of the heat transfer composition, in commercial refrigeration, particularly in a commercial refrigerator, commercial freezer, an ice machine or a vending machine.

20

The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant comprising at least about 99.5% by weight of a blend of three compounds, said blend consisting of:

about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane

25 (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend; and from 10 to 60 wt.% of a polyol ester (POE) lubricant based on the weight of the heat transfer composition, in commercial refrigeration, particularly in a commercial refrigerator, commercial freezer, an ice machine or a vending machine.

30

The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant consisting essentially of a blend of three compounds, said blend consisting of:

about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane

5 (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend; and from 10 to 60 wt.% of a polyol ester (POE) lubricant based on the weight of the heat transfer composition, in commercial refrigeration, particularly in a commercial refrigerator, commercial freezer, an ice machine or a vending machine.

10

The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant consisting of a blend of three compounds, said blend consisting of:

about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane

15 (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend; and from 10 to 60 wt.% of a polyol ester (POE) lubricant based on the weight of the heat transfer composition, in commercial refrigeration, particularly in a commercial refrigerator, commercial freezer, an ice machine or a vending machine.

20

The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant comprising at least about 97% by weight of a blend of three compounds, said blend consisting of:

about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane

25 (HFC-125), and about 42% by weight trifluoriodomethane (CF₃I) wherein the percentages are based on the total weight of the three compounds in the blend and from 10 to 60 wt.% of a polyol ester (POE) lubricant; based on the weight of the heat transfer composition, in commercial refrigeration, particularly in a commercial refrigerator, commercial freezer, an ice machine or a vending machine.

30

The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant comprising at least about 98.5% by weight of a blend of three compounds, said blend consisting of:

about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoroiodomethane (CF₃I) wherein the percentages are based on the total weight of the three compounds in the blend; and from 10 to 60 wt.% of a polyol ester (POE) lubricant based on the weight of the heat transfer composition, in commercial refrigeration, particularly in a commercial refrigerator, commercial freezer, an ice machine or a vending machine.

10

The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant comprising at least about 99.5% by weight of a blend of three compounds, said blend consisting of:

about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoroiodomethane (CF₃I) wherein the percentages are based on the total weight of the three compounds in the blend; and from 10 to 60 wt.% of a polyol ester (POE) lubricant based on the weight of the heat transfer composition, in commercial refrigeration, particularly in a commercial refrigerator, commercial freezer, an ice machine or a vending machine.

20

The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant consisting essentially of a blend of three compounds, said blend consisting of:

about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoroiodomethane (CF₃I) wherein the percentages are based on the total weight of the three compounds in the blend; and from 10 to 60 wt.% of a polyol ester (POE) lubricant based on the weight of the heat transfer composition, in commercial refrigeration, particularly in a commercial refrigerator, commercial freezer, an ice machine or a vending machine.

30

The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant consisting of a blend of three compounds, said blend consisting of:

about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoroiodomethane (CF₃I)
wherein the percentages are based on the total weight of the three compounds in the blend;
and from 10 to 60 wt.% of a polyol ester (POE) lubricant based on the weight of the heat
5 transfer composition, in commercial refrigeration, particularly in a commercial refrigerator,
commercial freezer, an ice machine or a vending machine.

The present invention therefore provides the use of a heat transfer composition comprising
a refrigerant, said refrigerant comprising at least about 97% by weight of a blend of three
10 compounds, said blend consisting of:

about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane
(HFC-125), and about 38.5% by weight trifluoroiodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend;
and a stabilizer composition comprising farnesene and diphenyl phosphite and/or BHT

15 wherein the farnesene is provided in an amount of from about 0.001% by weight to about
5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate
is provided in an amount of from about 0.001% by weight to about 5% by weight based on
the weight of the heat transfer composition and the BHT is provided in an amount of from
about 0.001% by weight to about 5 % by weight based on the weight of heat transfer
20 composition in commercial refrigeration, particularly in a commercial refrigerator,
commercial freezer, an ice machine or a vending machine.

The present invention therefore provides the use of a heat transfer composition comprising
a refrigerant, said refrigerant comprising at least about 98.5% by weight of a blend of three
25 compounds, said blend consisting of:

about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane
(HFC-125), and about 38.5% by weight trifluoroiodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend;
and a stabilizer composition comprising farnesene and diphenyl phosphite and/or BHT

30 wherein the farnesene is provided in an amount of from about 0.001% by weight to about
5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate
is provided in an amount of from about 0.001% by weight to about 5% by weight based on

the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition in commercial refrigeration, particularly in a commercial refrigerator, commercial freezer, an ice machine or a vending machine.

5

The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant comprising at least about 99.5% by weight of a blend of three compounds, said blend consisting of:

about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane 10 (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend; and a stabilizer composition comprising farnesene and diphenyl phosphite and/or BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate 15 is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition in commercial refrigeration, particularly in a commercial refrigerator, commercial freezer, an ice machine or a vending machine.

20

The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant consisting essentially of a blend of three compounds, said blend consisting of:

about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane 25 (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend; and a stabilizer composition comprising farnesene and diphenyl phosphite and/or BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate 30 is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer

composition in commercial refrigeration, particularly in a commercial refrigerator, commercial freezer, an ice machine or a vending machine.

The present invention therefore provides the use of a heat transfer composition comprising

5 a refrigerant, said refrigerant consisting of a blend of three compounds, said blend consisting of:

about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend;

10 and a stabilizer composition comprising farnesene and diphenyl phosphite and/or BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from 15 about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition in commercial refrigeration, particularly in a commercial refrigerator, commercial freezer, an ice machine or a vending machine.

The present invention therefore provides the use of a heat transfer composition comprising

20 a refrigerant, said refrigerant comprising at least about 97% by weight of a blend of three compounds, said blend consisting of:

about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoriodomethane (CF₃I) wherein the percentages are based on the total weight of the three compounds in the blend; and a stabilizer

25 composition comprising farnesene and diphenyl phosphite and/or BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% 30 by weight to about 5 % by weight based on the weight of heat transfer composition in commercial refrigeration, particularly in a commercial refrigerator, commercial freezer, an ice machine or a vending machine.

The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant comprising at least about 98.5% by weight of a blend of three compounds, said blend consisting of:

about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoroiodomethane (CF₃I) wherein the percentages are based on the total weight of the three compounds in the blend; and a stabilizer composition comprising farnesene and diphenyl phosphite and/or BHT wherein the

10 farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition in
15 commercial refrigeration, particularly in a commercial refrigerator, commercial freezer, an ice machine or a vending machine.

The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant comprising at least about 99.5% by weight of a blend of three compounds, said blend consisting of:

about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoroiodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend; and a stabilizer composition comprising farnesene and diphenyl phosphite and/or BHT

25 wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer
30 composition in commercial refrigeration, particularly in a commercial refrigerator, commercial freezer, an ice machine or a vending machine.

The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant consisting essentially of a blend of three compounds, said blend consisting of:

about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane

5 (HFC-125), and about 42% by weight trifluoroiodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend;

and a stabilizer composition comprising farnesene and diphenyl phosphite and/or BHT

wherein the farnesene is provided in an amount of from about 0.001% by weight to about

5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate

10 is provided in an amount of from about 0.001% by weight to about 5% by weight based on

the weight of the heat transfer composition and the BHT is provided in an amount of from

about 0.001% by weight to about 5 % by weight based on the weight of heat transfer

composition in commercial refrigeration, particularly in a commercial refrigerator,

commercial freezer, an ice machine or a vending machine.

15

The present invention therefore provides the use of a heat transfer composition comprising

a refrigerant, said refrigerant consisting of a blend of three compounds, said blend

consisting of:

about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane

20 (HFC-125), and about 42% by weight trifluoroiodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend;

and a stabilizer composition comprising farnesene and diphenyl phosphite and/or BHT

wherein the farnesene is provided in an amount of from about 0.001% by weight to about

5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate

25 is provided in an amount of from about 0.001% by weight to about 5% by weight based on

the weight of the heat transfer composition and the BHT is provided in an amount of from

about 0.001% by weight to about 5 % by weight based on the weight of heat transfer

composition in commercial refrigeration, particularly in a commercial refrigerator,

commercial freezer, an ice machine or a vending machine.

30

The present invention therefore provides the use of a heat transfer composition comprising

a refrigerant, said refrigerant comprising at least about 97% by weight of a blend of three

compounds, said blend consisting of:

about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend; and a stabilizer composition comprising farnesene and diphenyl phosphite and/or BHT

5 wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer
10 composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition, in commercial refrigeration, particularly in a commercial refrigerator, commercial freezer, an ice machine or a vending machine.

15 The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant comprising at least about 98.5% by weight of a blend of three compounds, said blend consisting of:

about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend;

20 and a stabilizer composition comprising farnesene and diphenyl phosphite and/or BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from
25 about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant based on the weight of the heat transfer composition, in commercial refrigeration, particularly in a commercial refrigerator, commercial freezer, an ice machine or a vending machine.

30 The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant comprising at least about 99.5% by weight of a blend of three compounds, said blend consisting of:

about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend; and a stabilizer composition comprising farnesene and diphenyl phosphite and/or BHT

5 wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer
10 composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant based on the weight of the heat transfer composition, in commercial refrigeration, particularly in a commercial refrigerator, commercial freezer, an ice machine or a vending machine.

The present invention therefore provides the use of a heat transfer composition comprising
15 a refrigerant, said refrigerant consisting essentially of a blend of three compounds, said blend consisting of:

about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend;

20 and a stabilizer composition comprising farnesene and diphenyl phosphite and/or BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from
25 about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant based on the weight of the heat transfer composition, in commercial refrigeration, particularly in a commercial refrigerator, commercial freezer, an ice machine or a vending machine.

30 The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant consisting of a blend of three compounds, said blend consisting of:

about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend; and a stabilizer composition comprising farnesene and diphenyl phosphite and/or BHT

5 wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer
10 composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant based on the weight of the heat transfer composition, in commercial refrigeration, particularly in a commercial refrigerator, commercial freezer, an ice machine or a vending machine.

15 The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant comprising at least about 97% by weight of a blend of three compounds, said blend consisting of:

about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoriodomethane (CF₃I) wherein the percentages are based on the total weight of the three compounds in the blend; and a stabilizer

20 composition comprising farnesene and diphenyl phosphite and/or BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001%
25 by weight to about 5 % by weight based on the weight of heat transfer composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant based on the weight of the heat transfer composition, in commercial refrigeration, particularly in a commercial refrigerator, commercial freezer, an ice machine or a vending machine.

30 The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant comprising at least about 98.5% by weight of a blend of three compounds, said blend consisting of:

about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoroiodomethane (CF₃I) wherein the percentages are based on the total weight of the three compounds in the blend; and a stabilizer composition comprising farnesene and diphenyl phosphite and/or BHT wherein the

5 farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition and from
10 10 to 60 wt.% of a polyol ester (POE) lubricant based on the weight of the heat transfer composition, in commercial refrigeration, particularly in a commercial refrigerator, commercial freezer, an ice machine or a vending machine.

The present invention therefore provides the use of a heat transfer composition comprising
15 a refrigerant, said refrigerant comprising at least about 99.5% by weight of a blend of three compounds, said blend consisting of:

about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoroiodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend;

20 and a stabilizer composition comprising farnesene and diphenyl phosphite and/or BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from
25 about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant based on the weight of the heat transfer composition, in commercial refrigeration, particularly in a commercial refrigerator, commercial freezer, an ice machine or a vending machine.

30 The present invention therefore provides the use of a heat transfer composition comprising a refrigerant, said refrigerant consisting essentially of a blend of three compounds, said blend consisting of:

about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoroiodomethane (CF₃I)
wherein the percentages are based on the total weight of the three compounds in the blend;
and a stabilizer composition comprising farnesene and diphenyl phosphite and/or BHT
5 wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer
10 composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant based on the weight of the heat transfer composition, in commercial refrigeration, particularly in a commercial refrigerator, commercial freezer, an ice machine or a vending machine.

The present invention therefore provides the use of a heat transfer composition comprising
15 a refrigerant, said refrigerant consisting of a blend of three compounds, said blend consisting of:

about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoroiodomethane (CF₃I)
wherein the percentages are based on the total weight of the three compounds in the blend;
20 and a stabilizer composition comprising farnesene and diphenyl phosphite and/or BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer
25 composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant based on the weight of the heat transfer composition, in commercial refrigeration, particularly in a commercial refrigerator, commercial freezer, an ice machine or a vending machine.

30

For the purposes of the uses set out above, the stabilizer composition can comprise farnesene, diphenyl phosphite and BHT. Alternatively, the stabilizer composition can comprise BHT. Preferably, the stabilizer composition consists essentially of farnesene,

diphenyl phosphite and BHT. Preferably, the stabilizer composition consists essentially of BHT. Preferably, the stabilizer composition consists of farnesene, diphenyl phosphite and BHT. Preferably, the stabilizer composition consists of BHT.

5 The heat transfer composition disclosed herein is provided as a low Global Warming (GWP) replacement for the refrigerant R-410A. The heat transfer composition therefore can be used in a method of retrofitting an existing heat transfer system designed to contain or containing R-410A refrigerant, without requiring substantial engineering modification of the existing system, particularly without modification of the condenser, the evaporator and/or the
10 expansion valve.

There is therefore provided a method of retrofitting an existing heat transfer system designed to contain or containing R-410A refrigerant or which is suitable for use with R-410A refrigerant, said method comprising replacing at least a portion of the existing R-410A refrigerant with a heat transfer composition or a refrigerant of the present invention.

15 Where the existing heat transfer system is suitable for use with R-410A, the method comprises removing any existing refrigerant (which can be but is not limited to R-410A) and introducing a heat transfer composition or a refrigerant of the present invention.

Alternatively, the heat transfer composition or refrigerant can be used in a method of retrofitting an existing heat transfer system designed to contain or containing R410A
20 refrigerant, wherein the system is modified for the refrigerant of the invention.

Alternatively, the heat transfer composition or refrigerant can be used in a heat transfer system which is suitable for use with R-410A refrigerant.

It will be appreciated that when the heat transfer composition is used as a low Global Warming replacement for R-410A or is used in a method of retrofitting an existing heat
25 transfer system designed to contain or containing R-410A refrigerant or is used in a heat transfer system which is suitable for use with R-410A refrigerant, the heat transfer composition may consist essentially of the refrigerant of the invention. Alternatively, the invention encompasses the use of the refrigerant of the invention as a low Global Warming replacement for R-410A or is used in a method of retrofitting an existing heat transfer
30 system designed to contain or containing R-410A refrigerant or is used in a heat transfer system which is suitable for use with R-410A refrigerant as described herein.

It will be appreciated by the skilled person that when the heat transfer composition is provided for use in a method of retrofitting an existing heat transfer system as described above.

As set out above, the method comprises removing at least a portion of the existing R-410A refrigerant from the system. Preferably, the method comprises removing at least about 5%, about 10%, about 25%, about 50% or about 75% by weight of the R-410A from the system and replacing it with the heat transfer compositions of the invention.

The compositions of the invention may be employed in systems which are used or are suitable for use with R-410A refrigerant, such as existing or new heat transfer systems.

10 The compositions of the present invention exhibit many of the desirable characteristics of R-410A but have a GWP that is substantially lower than that of R-410A while at the same time having operating characteristics i.e. capacity and/or efficiency (COP) that are substantially similar to or substantially match, and preferably are as high as or higher than R-410A. This allows the claimed compositions to replace R-410A in existing heat transfer systems without 15 requiring any significant system modification for example of the condenser, the evaporator and/or the expansion valve. The composition can therefore be used as a direct replacement in retrofitting heat exchange systems which have been used with or are suitable for use with R-410A.

20 The composition of the invention therefore preferably exhibit operating characteristics compared with R-410A wherein:

- the efficiency (COP) of the composition is from 95 to 105% of the efficiency of R-410A; and/or
- the capacity is from 95 to 105% of the capacity of R-410A.

25 in heat transfer systems, in which the compositions of the invention are to replace the R-410A refrigerant.

Preferably, the composition of the invention preferably exhibit operating characteristics compared with R-410A wherein:

- the efficiency (COP) of the composition is from 100 to 105% of the efficiency of R-410A; and/or
- the capacity is from 98 to 105% of the capacity of R-410A.

in heat transfer systems, in which the compositions of the invention are to replace the R-410A refrigerant.

5 The term "COP" is a measure of energy efficiency and means the ratio of refrigeration or cooling capacity to the energy requirement of the refrigeration system, i.e. the energy to run the compressor, fans, etc. COP is the useful output of the refrigeration system, in this case the refrigeration capacity or how much cooling is provided, divided by how power it takes to get this output. Essentially, it is a measure of the efficiency of the system.

10 The term "capacity" is the amount of cooling provided, in BTUs/hr, by the refrigerant in the refrigeration system. This is experimentally determined by multiplying the change in enthalpy in BTU/lb, of the refrigerant as it passes through the evaporator by the mass flow rate of the refrigerant. The enthalpy can be determined from the measurement of the pressure and temperature of the refrigerant. The capacity of the refrigeration system relates to the ability to maintain an area to be cooled at a specific temperature.

15 The term "mass flow rate" is the amount "in pounds" of refrigerant passing through a conduit of a given size in a given amount of time.

In order to maintain reliability of the heat transfer system, it is preferred that the composition of the invention further exhibits the following characteristics compared with R-410A:

20 - the discharge temperature is not greater than 10°C higher than that of R-410A;
and/or
- the compressor pressure ratio is from 95 to 105% of the compressor pressure ratio of R-410A

in heat transfer systems, in which the composition of the invention is used to replace the R-410A refrigerant.

25 It will be appreciated that R-410A is an azeotrope-like composition. Thus, in order for the claimed compositions to be a good match for the operating characteristics of R-410A, the claimed compositions desirably show a low level of glide. Thus, the compositions of the claimed invention may provide an evaporator glide of less than 2°C, preferably less than 1.5 °C.

The existing heat transfer compositions used with R-410A are preferably air conditioning heat transfer systems including both mobile and stationary air conditioning systems. Thus, each of the heat transfer compositions as described herein can be used to replace R-410A in any one of:

5 - an air conditioning system including a mobile air conditioning system, particularly an automobile air conditioning system,
- a mobile heat pump, particularly an electric vehicle heat pump;
- a chiller, particularly a positive displacement chiller, more particularly an air cooled or water cooled direct expansion chiller, which is either modular or conventionally
10 singularly packaged,
- a residential air conditioning system, particularly a ducted split or a ductless split air conditioning system,
- a residential heat pump,
- a residential air to water heat pump/hydronic system,
15 - an industrial air conditioning system and
- a commercial air conditioning system particularly a packaged rooftop unit and a variable refrigerant flow (VRF) system;
- a commercial air source, water source or ground source heat pump system

20 The composition of the invention is alternatively provided to replace R410A in refrigeration systems. Thus, each of the heat transfer compositions as described herein can be used to replace R10A in any one of:
- a low temperature refrigeration system,
- a medium temperature refrigeration system,
25 - a commercial refrigerator,
- a commercial freezer,
- an ice machine,
- a vending machine,
- a transport refrigeration system,
30 - a domestic freezer,
- a domestic refrigerator,
- an industrial freezer,

- an industrial refrigerator and
- a chiller.

Each of the heat transfer compositions described herein is particularly provided to replace R-410A in a residential air-conditioning system (with an evaporator temperature in the range of about 0 to about 10°C, particularly about 7°C for cooling and/or in the range of about -20 to about 3°C or 30 to about 5°C, particularly about 0.5°C for heating). Alternatively, or additionally, each of the heat transfer compositions described herein is particularly provided to replace R-410A in a residential air conditioning system with a reciprocating, rotary (rolling-piston or rotary vane) or scroll compressor.

10 Each of the heat transfer compositions described herein is particularly provided to replace R-410A in an air cooled chiller (with an evaporator temperature in the range of about 0 to about 10°C, particularly about 4.5°C), particularly an air cooled chiller with a positive displacement compressor, more particular an air cooled chiller with a reciprocating scroll compressor.

15 Each of the heat transfer compositions described herein is particularly provided to replace R-410A in a residential air to water heat pump hydronic system (with an evaporator temperature in the range of about -20 to about 3°C or about -30 to about 5°C, particularly about 0.5°C).

20 Each of the heat transfer compositions described herein is particularly provided to replace R-410A in a medium temperature refrigeration system (with an evaporator temperature in the range of about -12 to about 0°C, particularly about -8°C).

Each of the heat transfer compositions described herein is particularly provided to replace R-410A in a low temperature refrigeration system (with an evaporator temperature in the range of about -40 to about -12°C, particularly about -23°C or preferably about -32°C).

25 There is therefore provided a method of retrofitting an existing heat transfer system designed to contain or containing R-410A refrigerant or which is suitable for use with R-410A refrigerant, said method comprising replacing at least a portion of the existing R-410A refrigerant with a heat transfer composition comprising a refrigerant, said refrigerant comprising at least about 97% by weight of a blend of three compounds, said blend consisting of:

about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoroiodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend;

and optionally a stabilizer composition comprising farnesene, diphenyl phosphite and BHT

5 wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer

10 composition.

There is therefore provided a method of retrofitting an existing heat transfer system

designed to contain or containing R-410A refrigerant or which is suitable for use with R-

410A refrigerant, said method comprising replacing at least a portion of the existing R-410A refrigerant with a heat transfer composition comprising a refrigerant, said refrigerant

15 comprising at least about 98.5% by weight of a blend of three compounds, said blend consisting of:

about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoroiodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend;

20 and optionally a stabilizer composition comprising farnesene, diphenyl phosphite and BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer

25 composition.

There is therefore provided a method of retrofitting an existing heat transfer system

designed to contain or containing R-410A refrigerant or which is suitable for use with R-

410A refrigerant, said method comprising replacing at least a portion of the existing R-410A refrigerant with a heat transfer composition comprising a refrigerant, said refrigerant

30

comprising at least about 99.5% by weight of a blend of three compounds, said blend consisting of:

about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I)

5 wherein the percentages are based on the total weight of the three compounds in the blend; and optionally a stabilizer composition comprising farnesene, diphenyl phosphite and BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate is provided in an amount of from about 0.001% by weight to about 5% by weight based on 10 the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

There is therefore provided a method of retrofitting an existing heat transfer system designed to contain or containing R-410A refrigerant or which is suitable for use with R-

15 410A refrigerant, said method comprising replacing at least a portion of the existing R-410A refrigerant with a heat transfer composition comprising a refrigerant, said refrigerant consisting essentially of a blend of three compounds, said blend consisting of:

about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I)

20 wherein the percentages are based on the total weight of the three compounds in the blend; and optionally a stabilizer composition comprising farnesene, diphenyl phosphite and BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate is provided in an amount of from about 0.001% by weight to about 5% by weight based on 25 the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

There is therefore provided a method of retrofitting an existing heat transfer system designed to contain or containing R-410A refrigerant or which is suitable for use with R-

30 410A refrigerant, said method comprising replacing at least a portion of the existing R-410A

refrigerant with a heat transfer composition comprising a refrigerant, said refrigerant consisting of a blend of three compounds, said blend consisting of:

about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I)

5 wherein the percentages are based on the total weight of the three compounds in the blend; and optionally a stabilizer composition comprising farnesene, diphenyl phosphite and BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate is provided in an amount of from about 0.001% by weight to about 5% by weight based on 10 the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

There is therefore provided a method of retrofitting an existing heat transfer system designed to contain or containing R-410A refrigerant or which is suitable for use with R-

15 410A refrigerant, said method comprising replacing at least a portion of the existing R-410A refrigerant with a heat transfer composition comprising a refrigerant, said refrigerant comprising at least about 97% by weight of a blend of three compounds, said blend consisting of:

about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane 20 (HFC-125), and about 42% by weight trifluoriodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend; and optionally a stabilizer composition comprising farnesene, diphenyl phosphite and BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate

25 is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

There is therefore provided a method of retrofitting an existing heat transfer system

30 designed to contain or containing R-410A refrigerant or which is suitable for use with R-410A refrigerant, said method comprising replacing at least a portion of the existing R-410A

refrigerant with a heat transfer composition comprising a refrigerant, said refrigerant comprising at least about 98.5% by weight of a blend of three compounds, said blend consisting of:

about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane

5 (HFC-125), and about 42% by weight trifluoroiodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend;

and optionally a stabilizer composition comprising farnesene, diphenyl phosphite and BHT

wherein the farnesene is provided in an amount of from about 0.001% by weight to about

5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate

10 is provided in an amount of from about 0.001% by weight to about 5% by weight based on

the weight of the heat transfer composition and the BHT is provided in an amount of from

about 0.001% by weight to about 5 % by weight based on the weight of heat transfer

composition.

15 There is therefore provided a method of retrofitting an existing heat transfer system
designed to contain or containing R-410A refrigerant or which is suitable for use with R-
410A refrigerant, said method comprising replacing at least a portion of the existing R-410A
refrigerant with a heat transfer composition comprising a refrigerant, said refrigerant
comprising at least about 99.5% by weight of a blend of three compounds, said blend
20 consisting of:

about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane
(HFC-125), and about 42% by weight trifluoroiodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend;

and optionally a stabilizer composition comprising farnesene, diphenyl phosphite and BHT

25 wherein the farnesene is provided in an amount of from about 0.001% by weight to about

5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate

is provided in an amount of from about 0.001% by weight to about 5% by weight based on

the weight of the heat transfer composition and the BHT is provided in an amount of from

about 0.001% by weight to about 5 % by weight based on the weight of heat transfer

30 composition.

There is therefore provided a method of retrofitting an existing heat transfer system designed to contain or containing R-410A refrigerant or which is suitable for use with R-410A refrigerant, said method comprising replacing at least a portion of the existing R-410A refrigerant with a heat transfer composition comprising a refrigerant, said refrigerant

5 consisting essentially of a blend of three compounds, said blend consisting of:

about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoroiodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend; and optionally a stabilizer composition comprising farnesene, diphenyl phosphite and BHT

10 wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer

15 composition.

There is therefore provided a method of retrofitting an existing heat transfer system designed to contain or containing R-410A refrigerant or which is suitable for use with R-410A refrigerant, said method comprising replacing at least a portion of the existing R-410A refrigerant with a heat transfer composition comprising a refrigerant, said refrigerant

20 consisting of a blend of three compounds, said blend consisting of:

about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoroiodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend; and optionally a stabilizer composition comprising farnesene, diphenyl phosphite and BHT

25 wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer

30 composition.

Alternatively, there is therefore provided a method of retrofitting an existing heat transfer system designed to contain or containing R-410A refrigerant or which is suitable for use with R-410A refrigerant, said method comprising replacing at least a portion of the existing R-410A refrigerant with a heat transfer composition comprising a refrigerant, said refrigerant comprising at least about 97% by weight of a blend of three compounds, said blend consisting of:

about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoroiodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend;

10 and optionally a stabilizer composition comprising BHT wherein the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

There is therefore provided a method of retrofitting an existing heat transfer system designed to contain or containing R-410A refrigerant or which is suitable for use with R-

15 410A refrigerant, said method comprising replacing at least a portion of the existing R-410A refrigerant with a heat transfer composition comprising a refrigerant, said refrigerant comprising at least about 98.5% by weight of a blend of three compounds, said blend consisting of:

about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoroiodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend; and optionally a stabilizer composition comprising BHT wherein the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

25 There is therefore provided a method of retrofitting an existing heat transfer system designed to contain or containing R-410A refrigerant or which is suitable for use with R-410A refrigerant, said method comprising replacing at least a portion of the existing R-410A refrigerant with a heat transfer composition comprising a refrigerant, said refrigerant comprising at least about 99.5% by weight of a blend of three compounds, said blend consisting of:

about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend; and optionally a stabilizer composition comprising BHT wherein the BHT is provided in an
5 amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

There is therefore provided a method of retrofitting an existing heat transfer system designed to contain or containing R-410A refrigerant or which is suitable for use with R-410A refrigerant, said method comprising replacing at least a portion of the existing R-410A
10 refrigerant with a heat transfer composition comprising a refrigerant, said refrigerant consisting essentially of a blend of three compounds, said blend consisting of:

about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend; and optionally a stabilizer composition comprising BHT wherein the BHT is provided in an
15 amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

There is therefore provided a method of retrofitting an existing heat transfer system designed to contain or containing R-410A refrigerant or which is suitable for use with R-410A refrigerant, said method comprising replacing at least a portion of the existing R-410A refrigerant with a heat transfer composition comprising a refrigerant, said refrigerant
20 consisting of a blend of three compounds, said blend consisting of:

about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I)

25 wherein the percentages are based on the total weight of the three compounds in the blend; and optionally a stabilizer composition comprising BHT wherein the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

There is therefore provided a method of retrofitting an existing heat transfer system
30 designed to contain or containing R-410A refrigerant or which is suitable for use with R-

410A refrigerant, said method comprising replacing at least a portion of the existing R-410A refrigerant with a heat transfer composition comprising a refrigerant, said refrigerant comprising at least about 97% by weight of a blend of three compounds, said blend consisting of:

5 about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoriodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend; and optionally a stabilizer composition comprising BHT wherein the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat 10 transfer composition.

There is therefore provided a method of retrofitting an existing heat transfer system designed to contain or containing R-410A refrigerant or which is suitable for use with R-410A refrigerant, said method comprising replacing at least a portion of the existing R-410A refrigerant with a heat transfer composition comprising a refrigerant, said refrigerant comprising at least about 98.5% by weight of a blend of three compounds, said blend 15 consisting of:

about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoriodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend; 20 and optionally a stabilizer composition comprising BHT wherein the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

There is therefore provided a method of retrofitting an existing heat transfer system 25 designed to contain or containing R-410A refrigerant or which is suitable for use with R-410A refrigerant, said method comprising replacing at least a portion of the existing R-410A refrigerant with a heat transfer composition comprising a refrigerant, said refrigerant comprising at least about 99.5% by weight of a blend of three compounds, said blend consisting of:

about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoroiodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend;

and optionally a stabilizer composition comprising BHT wherein the BHT is provided in an

5 amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

There is therefore provided a method of retrofitting an existing heat transfer system

designed to contain or containing R-410A refrigerant or which is suitable for use with R-

410A refrigerant, said method comprising replacing at least a portion of the existing R-410A

10 refrigerant with a heat transfer composition comprising a refrigerant, said refrigerant consisting essentially of a blend of three compounds, said blend consisting of:

about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoroiodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend;

15 and optionally a stabilizer composition comprising BHT wherein the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

There is therefore provided a method of retrofitting an existing heat transfer system

designed to contain or containing R-410A refrigerant or which is suitable for use with R-

20 410A refrigerant, said method comprising replacing at least a portion of the existing R-410A refrigerant with a heat transfer composition comprising a refrigerant, said refrigerant consisting of a blend of three compounds, said blend consisting of:

about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoroiodomethane (CF₃I)

25 wherein the percentages are based on the total weight of the three compounds in the blend; and optionally a stabilizer composition comprising BHT wherein the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition.

The invention further provides a heat transfer system comprising a compressor, a condenser and an evaporator in fluid communication, and a heat transfer composition in said system, said heat transfer composition comprising a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 97% by weight of a blend of three compounds, said blend consisting of:

about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend; and a stabilizer composition comprising farnesene and diphenyl phosphite and/or BHT

wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition, said condenser having an operating temperature of from +20°C to +70 °C and said evaporator having an operating temperature of from -40°C to +10 °C

The invention further provides a heat transfer system comprising a compressor, a condenser and an evaporator in fluid communication, and a heat transfer composition in said system, said heat transfer composition comprising a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 98.5% by weight of a blend of three compounds, said blend consisting of:

about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend; and a stabilizer composition comprising farnesene and diphenyl phosphite and/or BHT

wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate is provided in an amount of from about 0.001% by weight to about 5% by weight based on

the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition, said condenser having an operating temperature of from 5 +20°C to +70 °C and said evaporator having an operating temperature of from -40°C to +10 °C.

The invention further provides a heat transfer system comprising a compressor, a condenser and an evaporator in fluid communication, and a heat transfer composition in said system, said heat transfer composition comprising a refrigerant according to any one of 10 the refrigerants described here, but preferably those refrigerants comprising at least about 99.5% by weight of a blend of three compounds, said blend consisting of:

about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoroiodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend; 15 and a stabilizer composition comprising farnesene and diphenyl phosphite and/or BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from 20 about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition, said condenser having an operating temperature of from +20°C to +70 °C and said evaporator having an operating temperature of from -40°C to +10 °C

25

The invention further provides a heat transfer system comprising a compressor, a condenser and an evaporator in fluid communication, and a heat transfer composition in said system, said heat transfer composition comprising a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting essentially of a 30 blend of three compounds, said blend consisting of:

about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend; and a stabilizer composition comprising farnesene and diphenyl phosphite and/or BHT

5 wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer

10 composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition, said condenser having an operating temperature of from +20°C to +70 °C and said evaporator having an operating temperature of from -40°C to +10 °C

15 The invention further provides a heat transfer system comprising a compressor, a condenser and an evaporator in fluid communication, and a heat transfer composition in said system, said heat transfer composition comprising a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting of a blend of three compounds, said blend consisting of:

20 about 50% by weight difluoromethane (HFC-32), about 11.5% by weight pentafluoroethane (HFC-125), and about 38.5% by weight trifluoriodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend; and a stabilizer composition comprising farnesene and diphenyl phosphite and/or BHT

25 wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer

30 composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition, said condenser having an operating temperature of from

+20°C to +70 °C and said evaporator having an operating temperature of from -40°C to +10 °C

The invention further provides a heat transfer system comprising a compressor, a
5 condenser and an evaporator in fluid communication, and a heat transfer composition in
said system, said heat transfer composition comprising a refrigerant according to any one of
the refrigerants described here, but preferably those refrigerants comprising at least about
97% by weight of a blend of three compounds, said blend consisting of:

about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane
10 (HFC-125), and about 42% by weight trifluoroiodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend;
and a stabilizer composition comprising farnesene and diphenyl phosphite and/or BHT
wherein the farnesene is provided in an amount of from about 0.001% by weight to about
5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate
15 is provided in an amount of from about 0.001% by weight to about 5% by weight based on
the weight of the heat transfer composition and the BHT is provided in an amount of from
about 0.001% by weight to about 5 % by weight based on the weight of heat transfer
composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight
of the heat transfer composition, said condenser having an operating temperature of from
20 +20°C to +70 °C and said evaporator having an operating temperature of from -40°C to +10 °C

The invention further provides a heat transfer system comprising a compressor, a
condenser and an evaporator in fluid communication, and a heat transfer composition in
25 said system, said heat transfer composition comprising a refrigerant according to any one of
the refrigerants described here, but preferably those refrigerants comprising at least about
98.5% by weight of a blend of three compounds, said blend consisting of:

about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane
(HFC-125), and about 42% by weight trifluoroiodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend; and a stabilizer composition comprising farnesene and diphenyl phosphite and/or BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate 5 is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition, said condenser having an operating temperature of from 10 +20°C to +70 °C and said evaporator having an operating temperature of from -40°C to +10 °C.

The invention further provides a heat transfer system comprising a compressor, a condenser and an evaporator in fluid communication, and a heat transfer composition in said system, said heat transfer composition comprising a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants comprising at least about 15 99.5% by weight of a blend of three compounds, said blend consisting of:

about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoroiodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend; 20 and a stabilizer composition comprising farnesene and diphenyl phosphite and/or BHT wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from 25 about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition, said condenser having an operating temperature of from +20°C to +70 °C and said evaporator having an operating temperature of from -40°C to +10 °C

The invention further provides a heat transfer system comprising a compressor, a condenser and an evaporator in fluid communication, and a heat transfer composition in said system, said heat transfer composition comprising a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting essentially of a blend of three compounds, said blend consisting of:

about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoroiodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend; and a stabilizer composition comprising farnesene and diphenyl phosphite and/or BHT

wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant, based on the weight of the heat transfer composition, said condenser having an operating temperature of from +20°C to +70 °C and said evaporator having an operating temperature of from -40°C to +10 °C

The invention further provides a heat transfer system comprising a compressor, a condenser and an evaporator in fluid communication, and a heat transfer composition in said system, said heat transfer composition comprising a refrigerant according to any one of the refrigerants described here, but preferably those refrigerants consisting of a blend of three compounds, said blend consisting of:

about 46% by weight difluoromethane (HFC-32), about 12% by weight pentafluoroethane (HFC-125), and about 42% by weight trifluoroiodomethane (CF₃I)

wherein the percentages are based on the total weight of the three compounds in the blend; and a stabilizer composition comprising farnesene and diphenyl phosphite and/or BHT

wherein the farnesene is provided in an amount of from about 0.001% by weight to about 5% by weight based on the weight of the heat transfer composition, the diphenyl phosphate is provided in an amount of from about 0.001% by weight to about 5% by weight

based on the weight of the heat transfer composition and the BHT is provided in an amount of from about 0.001% by weight to about 5 % by weight based on the weight of heat transfer composition and from 10 to 60 wt.% of a polyol ester (POE) lubricant based on the weight of the heat transfer composition, said condenser having an operating temperature of 5 from +20°C to +70 °C and said evaporator having an operating temperature of from -40°C to +10 °C. The heat transfer system is preferably an air conditioning system such as a mobile air conditioning system, particularly an automobile air conditioning system, a mobile heat pump, particularly an electric vehicle heat pump, a chiller, particularly a positive displacement chiller, more particularly an air-cooled or water-cooled direct expansion 10 chiller, which can be modular or conventionally singularly packaged, a residential air conditioning system, particularly a ducted split and a ductless split air conditioning system, a residential heat pump, a residential air to water heat pump/hydronic system, an industrial air conditioning systems, a commercial air conditioning system particularly a packaged rooftop and a variable refrigerant flow (VRF) system and a commercial air-source, water- 15 source or ground-source heat pump system.

Particularly, the heat transfer system is a residential air-conditioning system (with an evaporator temperature in the range of about 0 to about 10°C, particularly about 7°C for cooling and/or in the range of about -20 to about 3°C or about -30 to about 5°C, particularly 20 about 0.5°C for heating).

Particularly, the heat transfer system is an air cooled chiller (with an evaporator temperature in the range of about 0 to about 10°C, particularly about 4.5°C), particularly an air cooled chiller with a positive displacement compressor, more particular an air cooled chiller with a reciprocating or scroll compressor.

25 Particularly, the heat transfer system is a residential air to water heat pump hydronic system (with an evaporator temperature in the range of about -20 to about 3°C or about -30 to about 5°C, particularly about 0.5°C).

The heat transfer system can be a refrigeration system, such as a low temperature refrigeration system, a medium temperature refrigeration system, a commercial refrigerator, 30 a commercial freezer, an ice machine, a vending machine, a transport refrigeration system, a domestic freezer, a domestic refrigerator, an industrial freezer, an industrial refrigerator and a chiller.

Particularly, the heat transfer system is a medium temperature refrigeration system (with an evaporator temperature in the range of about -12 to about 0°C, particularly about -8°C).

Particularly, the heat transfer system is a low temperature refrigeration system (with an evaporator temperature in the range of about -40 to about -12°C, particularly about -23°C or 5 preferably about -32°C).

The ability of the refrigerant compositions of this invention to match the operating conditions of R-410A is illustrated by the following non-limiting examples:

EXAMPLES

10 The following refrigerant compositions were evaluated for their performance in a number of refrigeration systems.

Each composition was subjected to thermodynamic analysis to determine its ability to match the operating characteristics of R-410A in various refrigeration systems. The analysis was performed using experimental data collected for properties of the binary pairs. The vapour liquid equilibrium behavior of CF₃I was studied in a series of binary pairs with HFC-32 and 15 HFC-125. The composition was varied over from 0% to 100% for each binary pair in the experimental evaluation. Mixture parameters for each binary pair were regressed to the experimentally obtained data and the parameters were also incorporated into the National Institute of Science and Technology (NIST) Reference Fluid Thermodynamic and Transport Properties Database (Refprop 9.1 NIST Std Database, 2013). The standard mixing 20 parameters already available in Refprop 9.1 were used for other binary pairs. The assumptions used to conduct the analysis are the following: Same compressor displacement for all refrigerants, same operating conditions for all refrigerants, same compressor isentropic and volumetric efficiency for all refrigerants.

Table 1: Refrigerant evaluated for Performance Examples

Refrigerant	R32 (wt.%)	R125 (wt.%)	CF3I (wt.%)
1	48%	11%	41%
2	50%	11.5%	38.5%

Table 2: Properties of Refrigerant 1 and 2

Refrigerant	GWP	Capacity (% of R-410A)	COP (% of R-410A)	Evap Glide (°C)	Flammability	OEL
1	709	97%	102%	1.25	Non Flammable	508
2	740	98%	102%	1.01	Non Flammable	530

Example 1. Residential Air-Conditioning System (Cooling)

Description:

5 Residential air-conditioning systems are used to supply cool air (about 12°C) to buildings in the summer. Typical system types are split, mini-split, and window air-conditioning system. The system usually has an air-to-refrigerant evaporator (indoor coil), a compressor, an air-to-refrigerant condenser (outdoor coil), and an expansion valve. The evaporator and condenser is usually round tube plate fin or microchannel heat exchanger.

10 The compressor is usually reciprocating or rotary (rolling-piston or scroll) compressor. The expansion valve is usually thermal or electronic expansion valve. The refrigerant evaporating temperature is in the range of about 0 to about 10°C, while the condensing temperature is in the range of about 40 to about 70 °C.

Operating conditions:

15 1. Condensing temperature= 46°C, Corresponding outdoor ambient temperature= 35°C
 2. Condenser sub-cooling= 5.5°C
 3. Evaporating temperature= 7°C, Corresponding indoor ambient temperature= 26.7°C
 4. Evaporator Superheat= 5.5°C
 5. Isentropic Efficiency= 70%
 6. Volumetric Efficiency= 100%
 7. Temperature Rise in Suction Line=5.5°C

Table 3. Performance in Residential Air-Conditioning System (Cooling)

Refrigerant	Capacity	Efficiency	Pressure ratio	Discharge Pressure [kPa]	Discharge Temperature Difference [°C]	Evaporator Glide [°C]
R-410A	100%	100%	100%	100%	0	0.08
1	97%	102%	99%	94%	7.8	1.25
2	98%	102%	99%	95%	7.9	1.01

- Table 3 shows the thermodynamic performance of a residential air-conditioning system compared to R-410A system.
- Compositions 1 and 2 show 95% or higher capacity (considering $\pm 2\%$ uncertainty) and matched efficiency compared to R-410A. This indicates the system performance is similar to R-410A.
- Compositions 1 and 2 show 99% pressure ratio compared to R-410A. This indicates the compressor efficiencies are similar to R-410A, and no changes on R-410A compressor are needed.
- Compositions 1 and 2 show discharge temperature rise within 10°C compared to R-410A. This indicates good compressor reliability and there is no risk of oil breakdown or motor burn-out.
- Compositions 1 and 2 show evaporator glide less than 2°C . This indicates the evaporator glide does not affect system performance.

15 **Example 2. Residential Heat pump System (Heating)**

Description:

Residential heat pump systems are used to supply warm air (about 21°C) to buildings in the winter. It is usually the same system as the residential air-conditioning system, however, when the system in the heat pump mode the refrigerant flow is reversed and the indoor coil becomes condenser and the outdoor coil becomes evaporator. Typical system types are split and mini-split heat pump system. The evaporator and condenser is usually round tube plate fin or microchannel heat exchanger. The compressor is usually reciprocating or rotary (rolling-piston or scroll) compressor. The expansion valve is usually thermal or electronic expansion valve. The refrigerant evaporating temperature is in the

range of about -20 to about 3°C, while the condensing temperature is in the range of about 35 to about 50 °C.

Operating conditions:

1. Condensing temperature= 41°C, Corresponding indoor ambient temperature= 21.1°C
- 5 2. Condenser sub-cooling= 5.5°C
3. Evaporating temperature= 0.5°C, Corresponding outdoor ambient temperature= 8.3°C
- 10 4. Evaporator Superheat= 5.5°C
5. Isentropic Efficiency= 70%
6. Volumetric Efficiency= 100%
7. Temperature Rise in Suction Line=5.5°C

Table 4. Performance in Residential Heat pump System (Heating)

Refrigerant	Heating Capacity	Heating Efficiency	Pressure ratio	Discharge Pressure [kPa]	Discharge Temperature Difference [°C]	Evaporator Glide [°C]
R-410A	100%	100%	100%	100%	0	0.08
1	97%	101%	99%	94%	8.4	1.20
2	98%	101%	99%	95%	8.5	0.95

➤ Table 4 shows the thermodynamic performance of a residential heat pump system compared to R-410A system.

15 ➤ Compositions 1 and 2 show 95% capacity (considering $\pm 2\%$ uncertainty) and matched efficiency compared to R-410A. This indicates the system performance is similar to R-410A.

20 ➤ Compositions 1 and 2 show 99% pressure ratio compared to R-410A. This indicates the compressor efficiencies are similar to R-410A, and no changes on R410A compressor are needed.

➤ Compositions 1 and 2 show discharge temperature rise within 10°C compared to R-410A. This indicates good compressor reliability and there is no risk of oil breakdown or motor burn-out.

➤ Compositions 1 and 2 show evaporator glide less than 2°C. This indicates the evaporator glide does not affect system performance.

Example 3. Commercial Air-Conditioning System – Chiller

Description:

5 Commercial air-conditioning systems (chillers) are used to supply chilled water (about 7°C) to large buildings such as offices, hospitals, etc. Depending on the application, the chiller system may be running all year long. The chiller system may be air-cooled or water-cooled. The air-cooled chiller usually has a plate or shell-and-tube evaporator to supply chilled water, a reciprocating or scroll compressor, a round tube plate fin or
10 microchannel condenser to exchange heat with ambient air, and a thermal or electronic expansion valve. The water-cooled system usually has a shell-and-tube evaporator to supply chilled water, a reciprocating or scroll compressor, a shell-and-tube condenser to exchange heat with water from cooling tower or lake, sea and other natural resources, and a thermal or electronic expansion valve. The refrigerant evaporating temperature is in the range of about 0 to about 10°C, while the condensing temperature is in the range of about
15 40 to about 70 °C.

Operating conditions:

1. Condensing temperature= 46°C, Corresponding outdoor ambient temperature= 35°C
2. Condenser sub-cooling= 5.5°C
- 20 3. Evaporating temperature= 4.5°C, Corresponding chilled leaving water temperature= 7°C
4. Evaporator Superheat= 5.5°C
5. Isentropic Efficiency= 70%
6. Volumetric Efficiency= 100%
- 25 7. Temperature Rise in Suction Line=2°C

Table 5. Performance in Commercial Air-Conditioning System – Air-Cooled Chiller

Refrigerant	Capacity	Efficiency	Pressure ratio	Discharge Pressure [kPa]	Discharge Temperature Difference [°C]	Evaporator Glide [°C]
R-410A	100%	100%	100%	100%	0	0.08
1	98%	102%	99%	94%	8.2	1.22
2	99%	102%	99%	95%	8.3	0.98

- Table 5 shows the thermodynamic performance of a commercial air-cooled chiller system compared to R-410A system.
- Compositions 1 and 2 show 95% or higher capacity (considering $\pm 2\%$ uncertainty) and matched efficiency compared to R-410A. This indicates the system performance is similar to R-410A.
- Compositions 1 and 2 show 99% pressure ratio compared to R-410A. This indicates the compressor efficiencies are similar to R-410A, and no changes on R-410A compressor are needed.
- Compositions 1 and 2 show discharge temperature rise within 10°C compared to R-410A. This indicates good compressor reliability and there is no risk of oil breakdown or motor burn-out.
- Compositions 1 and 2 show evaporator glide less than 2°C . This indicates the evaporator glide does not affect system performance.

15 **Example 4. Residential Air-to-Water Heat Pump Hydronic System**

Description:

Residential air-to-water heat pump hydronic systems are used to supply hot water (about 50°C) to buildings for floor heating or similar applications in the winter. The hydronic system usually has a round tube plate fin or microchannel evaporator to exchange heat with ambient air, a reciprocating or rotary compressor, a plate condenser to heat the water, and a thermal or electronic expansion valve. The refrigerant evaporating temperature is in the range of about -20 to about 3°C , while the condensing temperature is in the range of about 50 to about 90°C .

Operating conditions:

1. Condensing temperature= 60°C, Corresponding indoor leaving water temperature= 50°C
2. Condenser sub-cooling= 5.5°C
- 5 3. Evaporating temperature= 0.5°C, Corresponding outdoor ambient temperature= 8.3°C
4. Evaporator Superheat= 5.5°C
5. Isentropic Efficiency= 70%
6. Volumetric Efficiency= 100%
- 10 7. Temperature Rise in Suction Line=2°C

Table 6. Performance in Residential Air-to-Water Heat Pump Hydronic System

Refrigerant	Heating Capacity	Heating Efficiency	Pressure ratio	Discharge Pressure [kPa]	Discharge Temperature Difference [°C]	Evaporator Glide [°C]
R-410A	100%	100%	100%	100%	0	0.06
1	99%	103%	98%	94%	11.6	1.08
2	100%	103%	98%	95%	11.9	0.85

- Table 6 shows the thermodynamic performance of a residential air-to-water heat pump hydronic system compared to R-410A system.
- Compositions 1 and 2 show 95% or higher capacity and matched efficiency compared to R410A. This indicates the system performance is similar to R-410A.
- 15 ➤ Compositions 1 and 2 show 98% - 99% pressure ratio compared to R-410A. This indicates the compressor efficiencies are similar to R-410A, and no changes on R-410A compressor are needed.
- Compositions 1 and 2 show discharge temperature rise close to 10°C compared to R-410A. This indicates good compressor reliability and there is no risk of oil breakdown or motor burn-out.
- 20 ➤ Compositions 1 and 2 show evaporator glide less than 2°C. This indicates the evaporator glide does not affect system performance.

Example 5. Medium Temperature Refrigeration System

Description:

Medium temperature refrigeration systems are used to chill food or beverages such as in a refrigerator and bottle cooler. The system usually has an air-to-refrigerant evaporator to chill the food or beverage, a reciprocating or rotary compressor, an air-to-refrigerant condenser to exchange heat with the ambient air, and a thermal or electronic expansion valve. The refrigerant evaporating temperature is in the range of about -12 to about 0°C, while the condensing temperature is in the range of about 40 to about 70 °C.

Operating conditions:

- 10 1. Condensing temperature= 45°C, Corresponding outdoor ambient temperature= 35°C
- 2. Condenser sub-cooling= 5.5°C
- 3. Evaporating temperature= -8°C, Corresponding box temperature= 1.7°C
- 4. Evaporator Superheat= 5.5°C
- 5. Isentropic Efficiency= 65%
- 15 6. Volumetric Efficiency= 100%
- 7. Temperature Rise in Suction Line=10°C

Table 7. Performance in Medium Temperature Refrigeration System

Refrigerant	Capacity	Efficiency	Pressure ratio	Discharge Pressure [kPa]	Discharge Temperature Difference [°C]	Evaporator Glide [°C]
R-410A	100%	100%	100%	100%	0	0.07
1	99%	102%	98%	94%	12.5	1.07
2	100%	102%	98%	95%	12.8	0.83

➤Table 7 shows the thermodynamic performance of a medium temperature refrigeration system compared to R-410A system.

- 20 ➤Compositions 1 and 2 show 95% or higher capacity and matched efficiency compared to R-410A. This indicates the system performance is similar to R-410A.
- Compositions 1 and 2 show 98% - 99% pressure ratio compared to R-410A. This indicates the compressor efficiencies are similar to R-410A, and no changes on R-410A compressor are needed.

- Compositions 1 and 2 show discharge temperature rise close to 10°C compared to R-410A. This indicates good compressor reliability and there is no risk of oil breakdown or motor burn-out.
- Compositions 1 and 2 show evaporator glide less than 2°C. This indicates the evaporator glide does not affect system performance.

5

Example 6. Low Temperature Refrigeration System

Description:

Low temperature refrigeration systems are used to freeze food such as in an ice cream machine and a freezer. The system usually has an air-to-refrigerant evaporator to chill the food or beverage, a reciprocating or rotary compressor, an air-to-refrigerant condenser to exchange heat with the ambient air, and a thermal or electronic expansion valve. The refrigerant evaporating temperature is in the range of about -40 to about -12°C, while the condensing temperature is in the range of about 40 to about 70 °C.

Operating conditions:

15 1. Condensing temperature= 55°C, Corresponding outdoor ambient temperature= 35°C
 2. Condenser sub-cooling= 5°C
 3. Evaporating temperature= -23°C, Corresponding box temperature= 1.7°C
 4. Evaporator Superheat= 5.5°C
 5. Isentropic Efficiency= 60%
 20 6. Volumetric Efficiency= 100%
 7. Temperature Rise in Suction Line=1°C

Table 8. Performance in Low Temperature Refrigeration System

Refrigerant	Capacity	Efficiency	Pressure ratio	Discharge Pressure [kPa]	Discharge Temperature Difference [°C]	Evaporator Glide [°C]
R-410A	100%	100%	100%	100%	0	0.05
1	103%	105%	97%	94%	20.1	0.82
2	104%	105%	97%	95%	20.7	0.61

- Table 8 shows the thermodynamic performance of a low temperature refrigeration system compared to R-410A system.
- Compositions 1 and 2 show 98% or higher capacity and matched efficiency compared to R-410A. This indicates the system performance is similar to R-410A.
- 5 ➤ Compositions 1 and 2 show 97% - 98% pressure ratio compared to R-410A. This indicates the compressor efficiencies are similar to R-410A, and no changes on R-410A compressor are needed.
- Compositions 1 and 2 show evaporator glide less than 2°C. This indicates the evaporator glide does not affect system performance.

10 **Example 7 - Stabilizers for Refrigerant/Lubricant Thermal Stability Example**

Description:

The use of additives such as stabilizers ensures that the composition of the refrigerant and lubricant are effectively unchanged through the normal operation of the equipment to which it is charged. Refrigerants and lubricants are typically tested against ASHRAE Standard 97

15 – “Sealed Glass Tube Method to Test the Chemical Stability of Materials for Use within Refrigerant Systems” to simulate accelerated aging. After testing, the level of halides is used to judge refrigerant stability and the total acid number (TAN) is used to judge lubricant stability. In addition, the lubricant should be clear and colorless, the metals should be shiny (unchanged), and there should be no solids present.

20

The following experiment is carried out to show the effect of the addition of a stabilizer on a refrigerant/lubricant composition.

Sealed Tube Test Conditions:

25

1. Sealed tubes contain 50% refrigerant and 50% lubricant by weight
2. Refrigerant is as set out in table 9 below
3. Lubricant is an ISO 68 POE
4. Refrigerant and Lubricant have been degassed
- 30 5. Refrigerant contains <10 ppm moisture
6. Lubricant contains <30 ppm moisture
7. Sealed tubes contain coupons of steel, copper and aluminum

8. Sealed tubes are placed in oven at 175 °C for 14 days

Table 9 – Composition of refrigerant

Refrigerant	HFC-32 (wt.%)	HFC-125 (wt.%)	CF ₃ I (wt.%)
1	50%	11.5%	38.5%

5

Table 10. Summary of desired outcome of experiment

The aim of the experiment is to obtain the following results:

Lubricant visual	Metals visual	Solids present?	Halides [ppm]	TAN [mgKOH/g]
Clear, colorless	shiny	no	< 300	< 3.0

10

Table 11. Analysis of Refrigerant and Lubricant after Sealed Tube Testing

Comp.	Additives	Lubricant visual	Metals visual	Solids present?	Halides [ppm]	TAN [mgKOH/g]
1	None	Opaque, black	dull	yes	> 400	> 10
2	2% Farnesene + 2% Diphenylphosphite	Clear, colorless	shiny	no	< 300	< 3.0
3	0.75% Farnesene + 0.75% Diphenylphosphite	Clear, colorless	shiny	no	< 300	< 3.0

- Sealed tube testing is carried out at 175 °C for 14 days
- No thermal stability conditions are met with no stabilizer present

- With 0.75wt% or 2 wt.% each of Farnesene and Diphenylphosphite all test conditions are met. This combination of refrigerant, lubricant and stabilizer is of similar thermal stability to other commercial refrigerants such as R-410A.

Table 12: Refrigerant evaluated for Performance Examples

Refrigerant	R32 (wt.%)	R125 (wt.%)	CF3I (wt.%)
1	48%	11%	41%
2	46%	12%	42%

5

Table 13: Properties of Refrigerant 1 and 2

Refrigerant	GWP	Capacity (% of R- 410A)	COP (% of R- 410A)	Evap Glide (°C)	Flammability	OEL
1	709	97%	102%	1.25	Non Flammable	508
2	731	97%	102%	1.41	Non Flammable	497

Example 8. Residential Air-Conditioning System (Cooling)

Description:

10 Residential air-conditioning systems are used to supply cool air (about 12°C) to buildings in the summer. Typical system types are ducted split, ductless split, window and portable air-conditioning system. The system usually has an air-to-refrigerant evaporator (indoor coil), a compressor, an air-to-refrigerant condenser (outdoor coil), and an expansion device. The evaporator and condenser are usually finned tube or microchannel heat exchangers. The compressor is usually reciprocating, rotary (rolling-piston or rotary valve) or scroll compressor. The expansion device is usually a capillary tube, a thermal or electronic expansion valve. The refrigerant evaporating temperature is in the range of about 0 to about 10°C, while the condensing temperature is in the range of about 40 to about 70 °C.

15

Operating conditions:

8. Condensing temperature= 46°C, Corresponding outdoor ambient temperature= 35°C
9. Condenser sub-cooling= 5.5°C
10. Evaporating temperature= 7°C, Corresponding indoor ambient temperature= 26.7°C
- 5 11. Evaporator Superheat= 5.5°C
12. Isentropic Efficiency= 70%
13. Volumetric Efficiency= 100%
14. Temperature Rise in Suction Line=5.5°C

Table 14. Performance in Residential Air-Conditioning System (Cooling)

Refrigerant	Capacity	Efficiency	Pressure ratio	Discharge Pressure [kPa]	Discharge Temperature Difference [°C]	Evaporator Glide [°C]
R-410A	100%	100%	100%	100%	0	0.08
1	97%	102%	99%	94%	7.8	1.25
2	97%	102%	99%	94%	7.2	1.41

10 ➤ Table 14 shows the thermodynamic performance of a residential air-conditioning system compared to R-410A system.

➤ Compositions 1 and 2 show 95% or higher capacity (considering ±2% uncertainty) and matched efficiency compared to R-410A. This indicates the system performance is similar to R-410A.

15 ➤ Compositions 1 and 2 show 99% pressure ratio compared to R-410A. This indicates the compressor efficiencies are similar to R-410A, and no changes on R-410A compressor are needed.

➤ Compositions 1 and 2 show discharge temperature rise within 10°C compared to R-410A. This indicates good compressor reliability and there is no risk of oil breakdown or motor burn-out.

20 ➤ Compositions 1 and 2 show evaporator glide less than 2°C. This indicates the evaporator glide does not affect system performance.

Example 9. Residential Heat pump System (Heating)

Description:

Residential heat pump systems are used to supply warm air (about 21°C) to buildings in the winter. It is usually the same system as the residential air-conditioning system, however, when the system in the heat pump mode the refrigerant flow is reversed and the indoor coil becomes condenser and the outdoor coil becomes evaporator. Typical system types are ducted split and ductless split heat pump system. The evaporator and condenser are usually finned tube or microchannel heat exchangers. The compressor is usually a reciprocating or rotary (rolling-piston or rotary vane) or scroll compressor. The expansion device is usually a capillary tube, a thermal or electronic expansion valve. The refrigerant evaporating temperature is in the range of about -30 to about 5°C, while the condensing temperature is in the range of about 35 to about 50 °C.

Operating conditions:

8. Condensing temperature= 41°C, Corresponding indoor ambient temperature= 21.1°C
9. Condenser sub-cooling= 5.5°C
10. Evaporating temperature= 0.5°C, Corresponding outdoor ambient temperature= 8.3°C
11. Evaporator Superheat= 5.5°C
12. Isentropic Efficiency= 70%
13. Volumetric Efficiency= 100%
14. Temperature Rise in Suction Line=5.5°C

Table 15. Performance in Residential Heat pump System (Heating)

Refrigerant	Heating Capacity	Heating Efficiency	Pressure ratio	Discharge Pressure [kPa]	Discharge Temperature Difference [°C]	Evaporator Glide [°C]
R-410A	100%	100%	100%	100%	0	0.08
1	97%	101%	99%	94%	8.4	1.20
2	97%	101%	99%	93%	7.8	1.36

➤ Table 15 shows the thermodynamic performance of a residential heat pump system compared to R-410A system.

➤ Compositions 1 and 2 show 95% capacity (considering $\pm 2\%$ uncertainty) and matched efficiency compared to R-410A. This indicates the system performance is similar to R-410A.

5 ➤ Compositions 1 and 2 show 99% pressure ratio compared to R-410A. This indicates the compressor efficiencies are similar to R-410A, and no changes on R-410A compressor are needed.

10 ➤ Compositions 1 and 2 show discharge temperature rise within 10°C compared to R-410A. This indicates good compressor reliability and there is no risk of oil breakdown or motor burn-out.

 ➤ Compositions 1 and 2 show evaporator glide less than 2°C . This indicates the evaporator glide does not affect system performance.

Example 10. Commercial Air-Conditioning System – Chiller

15 Description:

Commercial air-conditioning systems (chillers) are used to supply chilled water (about 7°C) to large buildings such as offices, hospitals, etc. Depending on the application, the chiller system may be running all year long. The chiller system may be air-cooled or water-cooled. The air-cooled chiller usually has a plate, tube-in-tube or shell-and-tube evaporator to supply chilled water, a reciprocating or scroll compressor, a round tube plate fin or microchannel condenser to exchange heat with ambient air, and a thermal or electronic expansion valve. The water-cooled system usually has a shell-and-tube evaporator to supply chilled water, a reciprocating or scroll compressor, a shell-and-tube condenser to exchange heat with water from cooling tower or lake, sea and other natural 20 recourses, and a thermal or electronic expansion valve. The refrigerant evaporating temperature is in the range of about 0 to about 10°C , while the condensing temperature is in 25 the range of about 40 to about 70°C .

Operating conditions:

- 30 8. Condensing temperature= 46°C , Corresponding outdoor ambient temperature= 35°C
9. Condenser sub-cooling= 5.5°C
10. Evaporating temperature= 4.5°C , Corresponding chilled leaving water temperature= 7°C

11. Evaporator Superheat= 5.5°C
12. Isentropic Efficiency= 70%
13. Volumetric Efficiency= 100%
14. Temperature Rise in Suction Line=2°C

5 **Table 16. Performance in Commercial Air-Conditioning System – Air-Cooled Chiller**

Refrigerant	Capacity	Efficiency	Pressure ratio	Discharge Pressure [kPa]	Discharge Temperature Difference [°C]	Evaporator Glide [°C]
R-410A	100%	100%	100%	100%	0	0.08
1	98%	102%	99%	94%	8.2	1.22
2	97%	102%	99%	94%	7.6	1.38

- Table 16 shows the thermodynamic performance of a commercial air-cooled chiller system compared to R-410A system.
- Compositions 1 and 2 show 95% or higher capacity (considering $\pm 2\%$ uncertainty) and matched efficiency compared to R-410A. This indicates the system performance is similar to R-410A.
- Compositions 1 and 2 show 99% pressure ratio compared to R-410A. This indicates the compressor efficiencies are similar to R-410A, and no changes on R-410A compressor are needed.
- Compositions 1 and 2 show discharge temperature rise within 10°C compared to R-410A. This indicates good compressor reliability and there is no risk of oil breakdown or motor burn-out.
- Compositions 1 and 2 show evaporator glide less than 2°C. This indicates the evaporator glide does not affect system performance.

Example 11. Residential Air-to-Water Heat Pump Hydronic System

20 Description:

Residential air-to-water heat pump hydronic systems are used to supply hot water (about 55°C) to buildings for floor heating or similar applications in the winter. The hydronic system usually has a finned tube or microchannel evaporator to exchange heat with ambient air, a reciprocating, rotary or scroll compressor, a plate, tube-in-tube or shell-and-tube

condenser to heat the water, and a thermal or electronic expansion valve. The refrigerant evaporating temperature is in the range of about -30 to about 5°C, while the condensing temperature is in the range of about 50 to about 90 °C.

Operating conditions:

5 8. Condensing temperature= 60°C, Corresponding indoor leaving water temperature= 50°C
 9. Condenser sub-cooling= 5.5°C
 10. Evaporating temperature= 0.5°C, Corresponding outdoor ambient temperature= 8.3°C
 10 11. Evaporator Superheat= 5.5°C
 12. Isentropic Efficiency= 70%
 13. Volumetric Efficiency= 100%
 14. Temperature Rise in Suction Line=2°C

Table 17. Performance in Residential Air-to-Water Heat Pump Hydronic System

Refrigerant	Heating Capacity	Heating Efficiency	Pressure ratio	Discharge Pressure [kPa]	Discharge Temperature Difference [°C]	Evaporator Glide [°C]
R-410A	100%	100%	100%	100%	0	0.06
1	99%	103%	98%	94%	11.6	1.08
2	98%	102%	98%	93%	10.7	1.23

15 ➤Table 17 shows the thermodynamic performance of a residential air-to-water heat pump hydronic system compared to R-410A system.
 ➤Compositions 1 and 2 show 95% or higher capacity and matched efficiency compared to R-410A. This indicates the system performance is similar to R-410A.
 ➤Compositions 1 and 2 show 98% - 99% pressure ratio compared to R-410A. This indicates the compressor efficiencies are similar to R-410A, and no changes on R-410A compressor are needed.
 ➤Compositions 1 and 2 show discharge temperature rise close to 10°C compared to R-410A. This indicates good compressor reliability and there is no risk of oil breakdown or motor burn-out.

- Compositions 1 and 2 show evaporator glide less than 2°C. This indicates the evaporator glide does not affect system performance.

Example 12. Medium Temperature Refrigeration System

Description:

5 Medium temperature refrigeration systems are used to chill food or beverages such as in a refrigerator and bottle cooler. The system usually has an air-to-refrigerant evaporator to chill the food or beverage, a reciprocating, scroll or screwcompressor, an air-to-refrigerant condenser to exchange heat with the ambient air, and a thermal or electronic expansion valve. The refrigerant evaporating temperature is in the range of about -12 to about 0°C,
 10 while the condensing temperature is in the range of about 20 to about 70 °C.

Operating conditions:

8. Condensing temperature= 45°C, Corresponding outdoor ambient temperature= 35°C
9. Condenser sub-cooling= 5.5°C
10. Evaporating temperature= -8°C, Corresponding box temperature= 1.7°C
- 15 11. Evaporator Superheat= 5.5°C
12. Isentropic Efficiency= 65%
13. Volumetric Efficiency= 100%
14. Temperature Rise in Suction Line=10°C

Table 18. Performance in Medium Temperature Refrigeration System

Refrigerant	Capacity	Efficiency	Pressure ratio	Discharge Pressure [kPa]	Discharge Temperature Difference [°C]	Evaporator Glide [°C]
R-410A	100%	100%	100%	100%	0	0.07
1	99%	102%	98%	94%	12.5	1.07
2	98%	102%	98%	94%	11.5	1.22

20 ➤ Table 18 shows the thermodynamic performance of a medium temperature refrigeration system compared to R-410A system.

➤ Compositions 1 and 2 show 95% or higher capacity and matched efficiency compared to R-410A. This indicates the system performance is similar to R-410A.

- Compositions 1 and 2 show 98% - 99% pressure ratio compared to R-410A. This indicates the compressor efficiencies are similar to R-410A, and no changes on R-410A compressor are needed.
- Compositions 1 and 2 show discharge temperature rise close to 10°C compared to R-410A. This indicates good compressor reliability and there is no risk of oil breakdown or motor burn-out.
- Compositions 1 and 2 show evaporator glide less than 2°C. This indicates the evaporator glide does not affect system performance.

Example 13. Low Temperature Refrigeration System

10 Description:

Low temperature refrigeration systems are used to freeze food such as in an ice cream machine and a freezer. The system usually has an air-to-refrigerant evaporator, a reciprocating, scroll or screwcompressor, an air-to-refrigerant condenser to exchange heat with the ambient air, and a thermal or electronic expansion valve. The refrigerant evaporating temperature is in the range of about -40 to about -12°C, while the condensing temperature is in the range of about 20 to about 70 °C.

15 Operating conditions:

8. Condensing temperature= 55°C, Corresponding outdoor ambient temperature= 35°C
9. Condenser sub-cooling= 5°C
10. Evaporating temperature= -23°C, Corresponding box temperature= 1.7°C
11. Evaporator Superheat= 5.5°C
12. Isentropic Efficiency= 60%
13. Volumetric Efficiency= 100%
14. Temperature Rise in Suction Line=1°C

20
25

Table 19. Performance in Low Temperature Refrigeration System

Refrigerant	Capacity	Efficiency	Pressure ratio	Discharge Pressure [kPa]	Discharge Temperature Difference [°C]	Evaporator Glide [°C]
R-410A	100%	100%	100%	100%	0	0.05
1	103%	105%	97%	94%	20.1	0.82
2	102%	104%	97%	93%	18.4	0.97

- Table 19 shows the thermodynamic performance of a low temperature refrigeration system compared to R-410A system.
- Compositions 1 and 2 show 98% or higher capacity and matched efficiency compared to R-410A. This indicates the system performance is similar to R-410A.
- Compositions 1 and 2 show 97% - 98% pressure ratio compared to R-410A. This indicates the compressor efficiencies are similar to R-410A, and no changes on R-410A compressor are needed.
- Compositions 1 and 2 show evaporator glide less than 2°C. This indicates the evaporator glide does not affect system performance.

Example 7 - Stabilizers for Refrigerant/Lubricant Thermal Stability Example

Description:

The use of additives such as stabilizers ensures that the composition of the refrigerant and lubricant are effectively unchanged through the normal operation of the equipment to which it is charged. Refrigerants and lubricants are typically tested against ASHRAE Standard 97 – “Sealed Glass Tube Method to Test the Chemical Stability of Materials for Use within Refrigerant Systems” to simulate accelerated aging. After testing, the level of halides is used to judge refrigerant stability and the total acid number (TAN) is used to judge lubricant stability. In addition, the lubricant should be clear and colorless, the metals should be shiny (unchanged), and there should be no solids present.

The following experiment is carried out to show the effect of the addition of a stabilizer on a refrigerant/lubricant composition.

Sealed Tube Test Conditions:

5 1. Sealed tubes contain 50% refrigerant and 50% lubricant by weight
2. Refrigerant is as set out in table 9 below
3. Lubricant is an ISO 68 POE
4. Refrigerant and Lubricant have been degassed
5. Refrigerant contains <10 ppm moisture
6. Lubricant contains <30 ppm moisture
7. Sealed tubes contain coupons of steel, copper and aluminum
10 8. Sealed tubes are placed in oven at 175 °C for 14 days

Table 20 – Composition of refrigerant

Refrigerant	HFC-32 (wt.%)	HFC-125 (wt.%)	CF ₃ I (wt.%)
1	46%	12%	42%

Table 21. Summary of desired outcome of experiment

15 The aim of the experiment is to obtain the following results:

Lubricant visual	Metals visual	Solids present?	Halides [ppm]	ΔTAN [mgKOH/g]
Clear, colorless	shiny	no	< 300	< 3.0

Table 22. Analysis of Refrigerant and Lubricant after Sealed Tube Testing

Comp.	Additives	Lubricant visual	Metals visual	Solids present?	Halides [ppm]	ΔTAN [mgKOH/g]
1	None	Opaque, black	dull	yes	> 400	> 10
2	0.75% Farnesene + 0.75% Diphenylphosphite	Clear, colorless	shiny	no	< 300	< 3.0

- Sealed tube testing is carried out at 175 °C for 14 days
- No thermal stability conditions are met with no stabilizer present
- With 2 wt.% each of Farnesene and Diphenylphosphite all test conditions are met. This combination of refrigerant, lubricant and stabilizer is of similar thermal stability

5 to other commercial refrigerants such as R-410A.

Example 15 – Miscibility with POE oil.

POE oil is widely used in air-conditioning and refrigeration systems.

As set out in table 23 below and as illustrated in figure 1, R-410A is immiscible with POE oil below -22 °C.

10 R-410A cannot therefore be used in low temperature refrigeration

applications as POE oil will stay and accumulate in the evaporator.

Furthermore, R-410A is immiscible with POE oil above 50°C, which will cause problems in the condenser and liquid line (e.g. the separated POE oil will be trapped and accumulated) when R-410A is used in high ambient conditions.

Conversely, a refrigerant consisting of

15 about 46% by weight difluoromethane (HFC-32),

about 12% by weight pentafluoroethane (HFC-125), and

about 42% by weight trifluoriodomethane (CF₃I) according to the present invention is fully miscible with POE oil across a temperature range of -40°C to 80°C, as set out in table 23 below:

20

Table 23: Miscibility of refrigerant with POE-32 Oil

Liquid Refrigerant Mass Fraction in the Refrigerant and Oil Mixture (g/g)	R-410A Miscibility Temperature Range		Refrigerant of the invention
	Lower Limit	Upper Limit	
60%	-26°C	N/A	Fully Miscible
70%	-23°C	55°C	Fully Miscible
80%	-22°C	48°C	Fully Miscible
90%	-31°C	50°C	Fully Miscible

Although the invention has been described with reference to preferred embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt to a particular situation or material to 5 the teachings of the invention with departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiments disclosed, but that the invention will include all embodiments falling within the scope of the appended claims or any claims added later.

10

CLAIMS

1. A refrigerant comprising at least about 97% by weight of a blend of three compounds, said blend consisting of:
 - 5 from 42% by weight to 48% by weight difluoromethane (HFC-32),
from 6.5% by weight to 12.5% by weight pentafluoroethane (HFC-125), and
from 39.5% by weight to 45.5% by weight trifluoriodomethane (CF₃I).
wherein the percentages are based on the total weight of the three compounds in the blend.
- 10 2. The refrigerant as claimed in claim 1, said blend consisting of:
from about 43.5% by weight to about 48% by weight difluoromethane (HFC-32),
from about 10% by weight to about 12.5% by weight pentafluoroethane (HFC-125), and
from about 40% by weight to about 44% by weight trifluoriodomethane (CF₃I).
wherein the percentages are based on the total weight of the three compounds in the blend.
- 15 3. The refrigerant as claimed in claim 1 or claim 2, said blend consisting of:
about 46% by weight difluoromethane (HFC-32),
about 12% by weight pentafluoroethane (HFC-125), and
20 about 42% by weight trifluoriodomethane (CF₃I).
wherein the percentages are based on the total weight of the three compounds in the blend.
4. A refrigerant comprising at least about 97% by weight of a blend of three compounds, said blend consisting of:
 - 25 from 43% by weight to 51% by weight difluoromethane (HFC-32),
from 3.5% by weight to 11.5% by weight pentafluoroethane (HFC-125), and
from 37.5% by weight to 45.5% by weight trifluoriodomethane (CF₃I)
wherein the percentages are based on the total weight of the three compounds in the blend.
- 30 5. The refrigerant as claimed in claim 4, said blend consisting of:
from about 48% by weight to about 51% by weight difluoromethane (HFC-32),
from about 9.5% by weight to about 11.5% by weight pentafluoroethane (HFC-125), and
from about 36.5% by weight to about 40.5% by weight trifluoriodomethane (CF₃I).
wherein the percentages are based on the total weight of the three compounds in the blend.

6. The refrigerant as claimed in claim 4 or claim 5, said blend consisting of:
about 50% by weight difluoromethane (HFC-32),
about 11.5% by weight pentafluoroethane (HFC-125), and
5 about 38.5% by weight trifluoriodomethane (CF₃I).

wherein the percentages are based on the total weight of the three compounds in the blend.

7. The refrigerant of any one of claims 1 to 6 wherein the refrigerant comprises at least
10 about 98.5% by weight of said blend.

8. The refrigerant of any one of claims 1 to 6 wherein the refrigerant comprises at least
about 99.5% by weight of said blend.

15 9. The refrigerant of any one of claims 1 to 6 wherein the refrigerant consists
essentially of said blend.

10. The refrigerant of any one of claims 1 to 6 wherein the refrigerant consists of said
blend.

20 11. A heat transfer composition comprising a refrigerant as claimed in any one of claims
1 to 10.

12. The heat transfer composition as claimed in claim 11, wherein the refrigerant
25 comprises greater than 40% by weight of the heat transfer composition.

13. The heat transfer composition of claim 11 or claim 12 further comprising a stabilizer
selected from a diene based compound, or a diene based compound and a phosphorous
compound, and/or a nitrogen compound and/or a phenol compound

30 14. The heat transfer composition of claim 13 wherein the diene based compound is a
terpene selected from the group consisting of terebene, retinal, geraniol, terpinene, delta-3
carene, terpinolene, phellandrene, fenchene, myrcene, farnesene, pinene, nerol, citral,

camphor, menthol, limonene, nerolidol, phytol, carnosic acid and vitamin A₁, preferably, farnesene.

15. The heat transfer composition of claim 13 or claim 14 wherein the diene based
5 compound is provided in the heat transfer composition in an amount of from about from
about 0.001% by weight to about 5 % by weight, preferably about 0.01% by weight to about
2% by weight, more preferably from about 0.1 to 1% by weight.

16. The heat transfer composition of claim 13 wherein the stabilizer composition
10 comprises a diene based as claimed in any one of claims 14 or 15 and a phosphorous
compound wherein said phosphorous compound is a phosphite compound selected from
diaryl phosphite, dialkyl phosphite, triaryl phosphite and/or trialkyl phosphite, in particular
one or more compounds selected from hindered phosphites, tris-(di-tert-
15 butylphenyl)phosphite, di-n-octyl phosphite, iso-decyl diphenyl phosphite and diphenyl
phosphite, particularly diphenyl phosphite and/or a phosphate compound selected from
triaryl phosphate, trialkyl phosphate, alkyl mono acid phosphate, aryl diacid phosphate,
amine phosphate, preferably triaryl phosphate and/or a trialkyl phosphate, particularly tri-n-
butyl phosphate.

20 17. The heat transfer composition of claim 16 wherein the phosphorous compound is a
phosphite compound selected from the group consisting of hindered phosphites, tris-(di-tert-
butylphenyl)phosphite, di-n-octyl phosphite, iso-decyl diphenyl phosphite and diphenyl
phosphite.

25 18. The heat transfer composition of any one of claim 13 to 17 wherein the phosphorous
compound is present in the heat transfer composition in an amount of from about 0.001% by
weight to about 5 % by weight, preferably about 0.001% by weight to about 2% by weight,
more preferably from about 0.1 to 1% by weight.

30 19. The heat transfer composition of any one of claims 13 to 18 wherein the stabilizer
composition comprises farnesene and diphenyl phosphite.

20. The heat transfer composition of any one of claims 13 to 19, wherein the nitrogen
compound is one or more compounds selected from dinitrobenzene, nitrobenzene,

nitromethane, nitrosobenzene, and TEMPO [(2,2,6,6-tetramethylpiperidin-1-yl)oxyl], preferably dinitrobenzene.

21. The heat transfer composition of any one of claims 13 to 19, wherein the nitrogen

5 compound is one or more compounds selected from dinitrobenzene, nitrobenzene, nitromethane, nitrosobenzene, and TEMPO [(2,2,6,6-tetramethylpiperidin-1-yl)oxyl]; a secondary or tertiary amine selected from diphenylamine, p-phenylenediamine, triethylamine, tributylamine, diisopropylamine, triisopropylamine and triisobutylamine; an amine antioxidant such as a substituted piperidine compound, i.e. a derivative of an alkyl 10 substituted piperidyl, piperidinyl, piperazinone, or alkyoxypiperidinyl, selected from 2,2,6,6-tetramethyl-4-piperidone, 2,2,6,6-tetramethyl-4-piperidinol; bis-(1,2,2,6,6-pentamethylpiperidyl)sebacate; di(2,2,6,6-tetramethyl-4-piperidyl)sebacate, poly(N-hydroxyethyl-2,2,6,6-tetramethyl-4-hydroxy-piperidyl succinate; alkylated 15 paraphenylenediamines such as N-phenyl-N'-(1,3-dimethyl-butyl)-p-phenylenediamine or N,N'-di-sec-butyl-p-phenylenediamine and hydroxylamines such as tallow amines, methyl bis tallow amine and bis tallow amine, or phenol-alpha-naphthylamine or Tinuvin ® 765 20 (Ciba), BLS ® 1944 (Mayzo Inc) and BLS ® 1770 (Mayzo Inc); an alkylidiphenyl amine such as bis (nonylphenyl amine), a dialkylamine such as (N-(1-methylethyl)-2-propylamine, or phenyl-alpha-naphthyl amine (PANA), alkyl-phenyl-alpha-naphthyl-amine (APANA) and bis (nonylphenyl) amine, preferably phenyl-alpha-naphthyl amine (PANA).

22. The heat transfer composition of any one of claims 13 to 21 wherein the nitrogen

compound is provided in the heat transfer composition in an amount of from about 0.001% by weight to about 5 % by weight, preferably about 0.01% by weight to about 2% by weight, 25 more preferably from about 0.1 to 1% by weight.

23. The heat transfer composition of any one of claims 13 to 22 wherein the phenol

compound is one or more compounds selected from 4,4'-methylenebis(2,6-di-tert-butylphenol); 4,4'-bis(2,6-di-tert-butylphenol); 2,2- or 4,4-biphenyldiols, including 4,4'-bis(2-

30 methyl-6-tert-butylphenol); derivatives of 2,2- or 4,4-biphenyldiols; 2,2'-methylenebis(4-ethyl-6-tertbutylphenol); 2,2'-methylenebis(4-methyl-6-tert-butylphenol); 4,4-butyldenebis(3-methyl-6-tert-butylphenol); 4,4-isopropylidenebis(2,6-di-tert-butylphenol); 2,2'-methylenebis(4-methyl-6-nonylphenol); 2,2'-isobutyldenebis(4,6-dimethylphenol); 2,2'-methylenebis(4-methyl-6-cyclohexylphenol); 2,6-di-tert-butyl-4-methylphenol (BHT); 2,6-di-

tert-butyl-4-ethylphenol; 2,4-dimethyl-6-tert-butylphenol; 2,6-di-tert-alpha-dimethylamino-p-cresol; 2,6-di-tert-butyl-4(N,N'-dimethylaminomethylphenol); 4,4'-thiobis(2-methyl-6-tert-butylphenol); 4,4'-thiobis(3-methyl-6-tert-butylphenol); 2,2'-thiobis(4-methyl-6-tert-butylphenol); bis(3-methyl-4-hydroxy-5-tert-butylbenzyl) sulfide; bis (3,5-di-tert-butyl-4-hydroxybenzyl)sulfide, tocopherol, hydroquinone, 2,2'6,6'-tetra-tert-butyl-4,4'-methylenediphenol and t-butyl hydroquinone, preferably BHT.

5 5 hydroxybenzyl)sulfide, tocopherol, hydroquinone, 2,2'6,6'-tetra-tert-butyl-4,4'-methylenediphenol and t-butyl hydroquinone, preferably BHT.

24. A heat transfer composition comprising a refrigerant as claimed in any one of claims 1 to 10 and a stabilizer composition, wherein the stabilizer composition comprises BHT in an 10 amount of from about 0.001% by weight to about 5 % by weight of the heat transfer composition.

25. A heat transfer composition comprising a refrigerant as claimed in any one of claims 1 to 10 and a stabilizer composition, wherein the stabilizer composition consists of BHT in 15 an amount of from about 0.001% by weight to about 5 % by weight.

26. The heat transfer composition of any one of claims 13 to 25 wherein the phenol compound is provided in the heat transfer composition in an amount of from about 0.001% by weight to about 5 % by weight, preferably about 0.01% by weight to about 2% by weight, 20 more preferably from about 0.1 to 1% by weight.

27. A heat transfer composition comprising a refrigerant as claimed in any one of claims 1 to 10 and a stabilizer composition, wherein the stabilizer composition comprises farnesene, diphenyl phosphite and BHT.

25

28. A heat transfer composition comprising a refrigerant as claimed in any one of claims 1 to 10 and a stabilizer composition, wherein the stabilizer composition consists of farnesene, diphenyl phosphite and BHT.

30 29. The heat transfer composition of any one of claims 11 to 28 further comprising a lubricant selected from the group consisting of polyol esters (POEs), polyalkylene glycols (PAGs), PAG oils, silicone oils, mineral oil, alkylbenzenes (ABs), polyvinyl ethers (PVE) and poly(alpha-olefin) (PAO).

30. The heat transfer composition of claim 29 wherein the lubricant is selected from polyol esters (POEs), polyalkylene glycols (PAGs), mineral oil, alkylbenzenes (ABs) and polyvinyl ethers (PVE).

5 31. The heat transfer composition of claim 29 wherein the lubricant is selected from polyol esters (POEs), mineral oil, alkylbenzenes (ABs) and polyvinyl ethers (PVE).

32. The heat transfer composition of claim 29 wherein the lubricant is selected from polyol esters (POEs), mineral oil and alkylbenzenes (ABs).

10 33. The heat transfer composition of claim 29 wherein the lubricant is a polyol ester (POE).

15 34. The heat transfer composition of any one of claims 29 to 33 wherein the lubricant is present in the heat transfer composition in an amount of from about 10 to about 60 % by weight, preferably in an amount of from about 30 to about 50 % by weight based on the weight of the heat transfer composition.

20 35. The heat transfer composition of claim 11 wherein the heat transfer composition consists essentially of the refrigerant as claimed in any one of claims 1 to 10.

36. The heat transfer composition of any one of claims 11 to 35 wherein the heat transfer composition consists essentially of the refrigerant as claimed in any one of claims 1 to 10 and the stabilizer composition as claimed in any one of claims 13 to 28.

25 37. The heat transfer composition of any one of claims 11 to 35 wherein the heat transfer composition consists essentially of the refrigerant as claimed in any one of claims 1 to 10, the stabilizer composition as claimed in any one of claims 13 to 28 and the lubricant as claimed in any one of claims 29 to 34.

30 38. The heat transfer composition of any one of claims 11 to 37 having a Global Warming Potential (GWP) of not greater than 750.

39. The heat transfer composition of any one of claims 11 to 38 having an Ozone Depletion Potential (ODP) of not greater than 0.05, preferably 0.02, more preferably about zero.

5 40. The heat transfer composition of any one of claims 11 to 34 and 37 to 39 wherein the POE lubricant is present in an amount of 5 wt.% relative to the total amount of refrigerant and lubricant, and the mixture has one liquid phase at least one temperature in the range of from -40°C to 80°C.

10 41. The heat transfer composition of any one of claims 11 to 34 and 37 to 39 wherein the POE lubricant is present in an amount of 20 wt.% relative to the total amount of refrigerant and lubricant, and the mixture has one liquid phase at at least one temperature in the range of from -40°C to 80°C.

15 42. The heat transfer composition of any one of claims 11 to 34 and 37 to 39 wherein the POE lubricant is present in an amount of 50 wt.% relative to the total amount of refrigerant and lubricant, and the mixture has one liquid phase at at least one temperature in the range of from -40°C to 80°C.

20 43. The heat transfer composition of any one of claims 11 to 34 and 37 to 39 wherein when wherein the POE lubricant is present in an amount of 5 wt.% relative to the total amount of refrigerant and lubricant, and the mixture has one liquid phase over the entire temperature range of from -40°C to 80°C

25 44. The heat transfer composition of any one of claims 11 to 34 and 37 to 39 wherein the POE lubricant is present in an amount of 20 wt.% relative to the total amount of refrigerant and lubricant, and the mixture has one liquid phase over the entire temperature range of from -40°C to 80°C

30 45. The heat transfer composition of any one of claims 11 to 34 and 37 to 39 wherein the POE lubricant is present in an amount of 50 wt.% relative to the total amount of refrigerant and lubricant, and the mixture has one liquid phase over the entire temperature range of from -40°C to 80°C.

46. The heat transfer composition of any one of claims 11 to 34 and 37 to 39 wherein the POE lubricant is present in an amount of 5 wt.% relative to the total amount of refrigerant and lubricant, and the mixture has one liquid phase at at least one temperature in the range of from -40°C to -25°C and/or from +40°C to 80°C.

5

47. The heat transfer composition of any one of claims 11 to 34 and 37 to 39 wherein the POE lubricant is present in an amount of 20 wt.% relative to the total amount of refrigerant and lubricant, and the mixture has one liquid phase at at least one temperature in the range of from -40 °C to -25 °C and/or from +40 °C to 80 °C.

10

48. The heat transfer composition of any one of claims 11 to 34 and 37 to 39 wherein the POE lubricant is present in an amount of 50 wt.% relative to the total amount of refrigerant and lubricant, and the mixture has one liquid phase at at least one temperature in the range of from --40°C to -25°C and/or from +40°C to 80°C.

15

49. The heat transfer composition of any one of claims 11 to 34 and 37 to 39 wherein the POE lubricant is present in an amount of 5 wt.% relative to the total amount of refrigerant and lubricant, and the mixture has one liquid phase over the entire temperature range of from -40°C to -25°C and/or from +40°C to 80°C.

20

50. The heat transfer composition of any one of claims 11 to 34 and 37 to 39 wherein the POE lubricant is present in an amount of 20 wt.% relative to the total amount of refrigerant and lubricant, and the mixture has one liquid phase over the entire temperature range of from -40°C to -25°C and/or from +40°C to 80°C.

25

51. The heat transfer composition of any one of claims 11 to 34 and 37 to 39 wherein the POE lubricant is present in an amount of 50 wt.% relative to the total amount of refrigerant and lubricant, and the mixture has one liquid phase over the entire temperature range of from -40 °C to -25 °C and/or from +40 °C to 80 °C.

30

52. A method of cooling in a heat transfer system comprising an evaporator, a condenser and a compressor, the process comprising the steps of i) condensing a heat transfer composition as claimed in any one of claims 11 to 51 and ii) evaporating the composition in the vicinity of body or article to be cooled; wherein the evaporator

temperature of the heat transfer system is in the range of from about – 40°C to about – 10°C.

53. A method of heating in a heat transfer system comprising an evaporator, a
5 condenser and a compressor, the process comprising the steps of i) condensing a heat
transfer composition as claimed in any one of claims 11 to 51, in the vicinity of a body or
article to be heated and ii) evaporating the composition; wherein the evaporator temperature
of the heat transfer system is in the range of about -30°C to about 5°C.

10 54. The method as claimed in claim 52 or claim 53 wherein the heat transfer system is
an air conditioning system.

15 55. The method as claimed in claim 54 wherein the air conditioning system is a mobile
air conditioning system, particularly an automobile air conditioning system, a mobile heat
pump, particularly an electric vehicle heat pump, a chiller, particularly a positive
displacement chiller, more particularly an air cooled or water cooled direct expansion chiller,
a residential air conditioning system, particularly a ducted split or ductless split air
conditioning system, a residential heat pump, a residential air to water heat pump/hydronic
system an industrial air conditioning system, a commercial air conditioning system,
20 particularly a packaged rooftop unit or a variable refrigerant flow (VRF) system, and a
commercial air source, water source or ground source heat pump system.

25 56. The method as claimed in claim 54 wherein the air conditioning system is a
residential air-conditioning system (with an evaporator temperature in the range of about 0
5°C, particularly about 7°C for cooling and/or in the range of about -30 to about
5°C, particularly about 0.5°C for heating), particularly a residential air conditioning system
with a reciprocating, rotary (rolling piston or rotary valve) or scroll compressor.

30 57. The method as claimed in claim 54 wherein the air conditioning system is an air
cooled chiller (with an evaporator temperature in the range of about 0 to about 10°C,
particularly about 4.5°C), particularly an air cooled chiller with a positive displacement
compressor, more particular an air cooled chiller with a reciprocating or scroll compressor.

58. The method as claimed in claim 54 wherein the air conditioning system is a residential air to water heat pump hydronic system (with an evaporator temperature in the range of about -20 to about 3°C, particularly about 0.5°C).

5 59. The method as claimed in claim 54 wherein the air conditioning system is a residential air to water heat pump hydronic system (with an evaporator temperature in the range of about -30 to about 5°C, particularly about 0.5°C).

10 60. The method as claimed in claim 54 wherein the air conditioning system is a medium temperature refrigeration system (with an evaporator temperature in the range of about -12 to about 0°C, particularly about -8°C).

61 The method as claimed in claim 54 wherein the air conditioning system is a low temperature refrigeration system (with an evaporator temperature in the range of about -40 to about -12°C, particularly about -23°C or preferably about -32°C).

15 62 The method as claimed in claim 54 wherein the air conditioning system is a residential air conditioning system (with an evaporator temperature in the range of about 0 to 10°C).

20 63 The method as claimed in claim 54 wherein the air conditioning system is a residential heat pump system (with an evaporator temperature in the range of about -20 to about 3°C or about -30 to about 5°C).

64 The method as claimed in claim 54 wherein the air conditioning system is a commercial air-conditioning system (with an evaporator temperature in the range of about 0 to about 10°C).

25 65. A method of replacing an existing refrigerant contained in a heat transfer system comprising removing at least a portion of said existing refrigerant from said system, said existing refrigerant being R-410A and replacing at least a portion of said existing refrigerant by introducing into said system, a refrigerant as claimed in any one of claims 1 to 8 or a heat transfer composition as claimed in any one of claims 11 to 51.

30 66. The method of claim 65 wherein the heat transfer system is an air conditioning system selected from the group consisting of a mobile air conditioning system, particularly an automobile air conditioning system, a mobile heat pump, particularly an electric vehicle

heat pump, a chiller, particularly a positive displacement chiller, more particularly an air cooled or water cooled direct expansion chiller, a residential air conditioning system, particularly a ducted split or ductless split air conditioning system, a residential heat pump, a residential air to water heat pump/hydronic system an industrial air conditioning system, a commercial air conditioning system, particularly a packaged rooftop unit or a variable refrigerant flow (VRF) system, and a commercial air source, water source or ground source heat pump system.

67. A heat transfer system comprising a compressor, a condenser and an evaporator in fluid communication, and a heat transfer composition as claimed in any one of claims 11 to 51 in said system, said condenser having an operating temperature of from about +20°C to about +70 °C and said evaporator having an operating temperature of from about -40°C to about +10 °C.

68. The heat transfer system of claim 67 wherein the heat transfer system is an air conditioning system, a mobile air conditioning system, particularly an automobile air conditioning system, a mobile heat pump, particularly an electric vehicle heat pump, a chiller, particularly a positive displacement chiller, more particularly an air cooled or water cooled direct expansion chiller, a residential air conditioning system particularly a ducted split or ductless split air conditioning system, a residential heat pump, a residential air to water heat pump/hydronic system an industrial air conditioning system and a commercial air conditioning system, particularly a packaged rooftop unit or a variable refrigerant flow (VRF) system, and a commercial air source, water source or ground source heat pump system.

69. The heat transfer system of claim 67 or claim 68 wherein the heat transfer system is a residential air-conditioning system (with an evaporator temperature in the range of about 0 to about 10°C, particularly about 7°C for cooling and/or in the range of about -30 to about 5°C, particularly about 0.5°C for heating).

70. The heat transfer system of claim 67 or claim 68 wherein the heat transfer system is an air cooled chiller (with an evaporator temperature in the range of about 0 to about 10°C, particularly about 4.5°C), particularly an air cooled chiller with a positive displacement compressor, more particular an air cooled chiller with a reciprocating or scroll compressor.

71. The heat transfer system of claim 67 or claim 68 wherein the heat transfer system is a residential air to water heat pump hydronic system (with an evaporator temperature in the range of about -20 to about 3°C, particularly about 0.5°C).

5

72. The heat transfer system of claim 67 or claim 68 wherein the heat transfer system is a residential air to water heat pump hydronic system (with an evaporator temperature in the range of about -30 to about 5°C, particularly about 0.5°C).

10 73 The heat transfer system of claim 67 or claim 68 wherein the heat transfer system is a medium temperature refrigeration system (with an evaporator temperature in the range of about -12 to about 0°C, particularly about -8°C).

15 74 The heat transfer system of claim 67 or claim 68 wherein the heat transfer system is a low temperature refrigeration system (with an evaporator temperature in the range of about -40 to about -12°C, particularly about -23°C or preferably about -32°C).

75 The heat transfer system of claim 67 or claim 68 wherein the heat transfer system is a residential air conditioning system (with an evaporator temperature in the range of about 0 to 10°C).

20 76 The heat transfer system of claim 67 or claim 68 wherein the heat transfer system is a residential heat pump system (with an evaporator temperature in the range of about -20 to about 3°C or about -30 to about 5°C).

77 The heat transfer system of claim 67 or claim 68 wherein the heat transfer system is a commercial air-conditioning system (with an evaporator temperature in the range of about 0 to about 10°C).

25

78. A use of a heat transfer composition as claimed in any one of claims 11 to 51, in a chiller.

30 79. A use of a heat transfer composition as claimed in any one of claims 11 to 51, in a positive displacement chiller.

80. A use of a heat transfer composition as claimed in any one of claims 11 to 51, in an air cooled chiller.

81. A use of a heat transfer composition as claimed in any one of claims 11 to 51, in a
5 water cooled direct expansion chiller.

82. A use of a heat transfer composition as claimed in any one of claims 11 to 51 in stationary air conditioning.

10 83. A use of a heat transfer composition as claimed in any one of claims 11 to 51 in residential air conditioning.

84. A use of a heat transfer composition as claimed in any one of claims 11 to 51 in industrial air conditioning.

15 85. A use of a heat transfer composition as claimed in any one of claims 11 to 51 in commercial air conditioning.

20 86. A use of a heat transfer composition as claimed in any one of claims 11 to 51 in commercial refrigeration.

87. A use of a heat transfer composition as claimed in any one of claims 11 to 51 in a commercial refrigerator.

25 88. A use of a heat transfer composition as claimed in any one of claims 11 to 51 in a commercial freezer.

89. A use of a heat transfer composition as claimed in any one of claims 11 to 51 in a vending machine.

30 90. A refrigerant as claimed in any one of claims 1 to 9, wherein said refrigerant
(a) has an efficiency (COP) from about 95% to about 105% of the efficiency of R410A in said system and/or used in said method; and

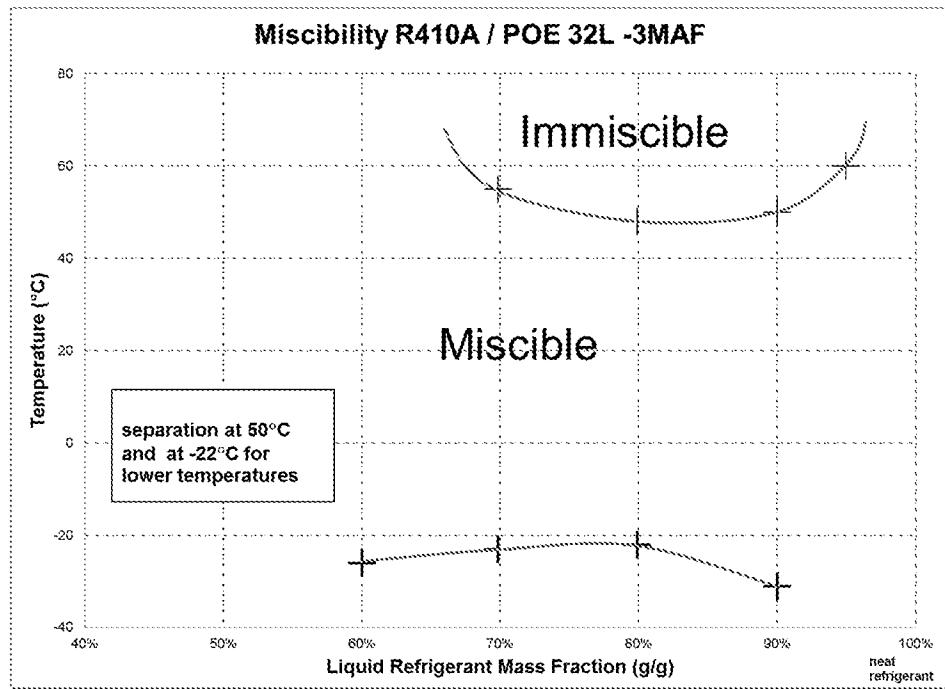
(b) is non-flammable as determined in accordance with ASTM E681-2009 test procedure as required in ASHRAE Standard 34-2013 and described in Appendix B1 to ASHRAE Standard 34-2013.

5 97. The refrigerant of claim 90 wherein said refrigerant

- a) has an efficiency (COP) from about 95% to about 105% of the efficiency of R410A in said system and/or used in said method;
- (b) has a capacity from about 95% to about 105% of the capacity of R410A in said system and/or used in said method; and

10 10 (c) is non-flammable as determined in accordance with ASTM E681-2009 test procedure as required in ASHRAE Standard 34-2013 and described in Appendix B1 to ASHRAE Standard 34-2013.

92. The refrigerant of any one of claims 90 or 91, wherein said refrigerant


15 (a) has an efficiency (COP) from about 95% to about 105% of the efficiency of R410A in said system and/or used in said method;

- (b) has a capacity from about 95% to about 105% of the capacity of R410A in said system and/or used in said method; and
- (c) is non-flammable as determined in accordance with ASTM E681-2009 test procedure as

20 required in ASHRAE Standard 34-2013 and described in Appendix B1 to ASHRAE Standard 34-2013

- (d) produces in the system and/or the methods a compressor discharge temperature that is not greater than 10°C higher than that of R-410A; and
- (e) produces in the system and/or the methods a compressor pressure ratio that is from

25 about 95% to about 105% of the compressor pressure ratio of R-410A.

Figure 1: R410A Miscibility with POE-32 Oil

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US2017/044182

A. CLASSIFICATION OF SUBJECT MATTER

C09K 5/04(2006.01)i, F25B 9/00(2006.01)i, B60H 1/32(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
C09K 5/04; F25D 31/00; A62D 1/00; C09K 3/30; F25B 9/00; B60H 1/32Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility modelsElectronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords: refrigerant, difluoromethane, pentafluoroethane, trifluoriodomethane


C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 2010-0044619 A1 (HULSE, RYAN et al.) 25 February 2010 See paragraphs [0074]-[0076], [0085]; and table 1.	1-6
A	US 2012-0204594 A1 (SINGH, RAJIV R. et al.) 16 August 2012 See the whole document.	1-6
A	US 2014-0048737 A1 (HONEYWELL INTERNATIONAL INC.) 20 February 2014 See the whole document.	1-6
A	US 5605647 A (NIMITZ, JONATHAN S. et al.) 25 February 1997 See the whole document.	1-6
A	WO 2008-061079 A2 (HONEYWELL INTERNATIONAL INC.) 22 May 2008 See the whole document.	1-6

 Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 "&" document member of the same patent family

Date of the actual completion of the international search
21 November 2017 (21.11.2017)Date of mailing of the international search report
22 November 2017 (22.11.2017)Name and mailing address of the ISA/KR
International Application Division
Korean Intellectual Property Office
189 Cheongsa-ro, Seo-gu, Daejeon, 35208, Republic of Korea
Facsimile No. +82-42-481-8578Authorized officer
HEO, Joo Hyung
Telephone No. +82-42-481-8150

INTERNATIONAL SEARCH REPORTInternational application No.
PCT/US2017/044182**Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)**

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.: 12, 14, 17, 30-33, 55-64, 66, 68, 91 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
Claims 12, 14, 17, 30-33, 55-64, 66, 68, and 91 refer to multiple dependent claims which do not comply with PCT Rule 6.4(a).

3. Claims Nos.: 7-11, 13, 15-16, 18-29, 34-54, 65, 67, 69-90, 92 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fees, this Authority did not invite payment of any additional fees.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.

The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.

No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/US2017/044182

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US 2010-0044619 A1	25/02/2010	AU 2003-215368 A1 AU 2003-215368 B2 AU 2003-284352 A1 AU 2003-286685 A1 AU 2003-286685 C1 AU 2005-238537 A1 AU 2005-241031 A1 AU 2005-241031 B2 AU 2005-241031 C1 AU 2005-241046 A1 AU 2005-241046 B2 AU 2006-261816 A1 AU 2006-261816 B2 AU 2006-262036 A1 AU 2006-262036 B2 AU 2010-245671 A1 AU 2010-245671 B2 AU 2010-246160 A1 AU 2011-248123 A1 AU 2011-248123 B2 AU 2012-250863 A1 AU 2013-221829 A1 AU 2013-221829 B2 CA 2503125 A1 CA 2503125 C CA 2503421 A1 CA 2503421 C CA 2557873 A1 CA 2557873 C CA 2564768 A1 CA 2564768 C CA 2564897 A1 CA 2564897 C CA 2564903 A1 CA 2564903 C CA 2564991 A1 CA 2564991 C CA 2608327 A1 CA 2608327 C CA 2608675 A1 CA 2608675 C CA 2612986 A1 CA 2613090 A1 CA 2613092 A1 CA 2628446 A1 CA 2628446 C CA 2628463 A1 CA 2628463 C CA 2635806 A1	25/05/2004 11/02/2010 13/05/2004 13/05/2004 23/05/2013 10/11/2005 17/11/2005 15/01/2009 03/09/2009 17/11/2005 17/07/2008 04/01/2007 19/05/2011 04/01/2007 26/02/2009 01/12/2011 29/01/2015 11/11/2010 10/11/2011 22/01/2015 14/11/2013 28/08/2014 26/05/2016 13/05/2004 30/04/2013 06/05/2004 06/01/2015 10/11/2005 25/11/2014 17/11/2005 02/07/2013 17/11/2005 27/11/2012 17/11/2005 04/12/2012 17/11/2005 19/03/2013 27/04/2008 14/04/2015 27/04/2008 31/03/2015 04/01/2007 04/01/2007 04/01/2007 18/05/2007 24/01/2017 18/05/2007 08/07/2014 12/07/2007

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/US2017/044182

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
		CA 2635806 C	31/03/2015
		CA 2635917 A1	12/07/2007
		CA 2646990 A1	27/09/2007
		CA 2674256 A1	30/01/2010
		CA 2706774 A1	28/05/2009
		CA 2711861 A1	16/07/2009
		CA 2718131 A1	24/09/2009
		CA 2718131 C	06/06/2017
		CA 2742000 A1	03/06/2010
		CA 2745762 A1	10/06/2010
		CA 2761418 A1	11/11/2010
		CA 2761478 A1	11/11/2010
		CA 2770673 A1	17/02/2011
		CA 2776375 A1	07/04/2011
		CA 2795778 A1	17/05/2013
		CA 2798620 A1	10/11/2011
		CA 2805928 A1	02/02/2012
		CA 2822739 A1	04/01/2007
		CA 2826532 A1	10/11/2005
		CA 2826545 A1	06/05/2004
		CA 2834894 A1	08/11/2012
		CA 2863552 A1	22/08/2013
		CA 2875315 A1	08/01/2009
		CN 101014680 A	08/08/2007
		CN 101014680 B	03/09/2014
		CN 101175479 A	07/05/2008
		CN 101177378 A	14/05/2008
		CN 101177378 B	09/04/2014
		CN 101182280 A	21/05/2008
		CN 101182280 B	27/06/2012
		CN 101248153 A	20/08/2008
		CN 101248153 B	24/07/2013
		CN 101260021 A	10/09/2008
		CN 101260021 B	06/08/2014
		CN 101283071 A	08/10/2008
		CN 101283071 B	24/07/2013
		CN 101351426 A	21/01/2009
		CN 101351426 B	08/05/2013
		CN 101351427 A	21/01/2009
		CN 101351427 B	21/08/2013
		CN 101351430 A	21/01/2009
		CN 101356143 A	28/01/2009
		CN 101395108 A	25/03/2009
		CN 101395108 B	13/03/2013
		CN 101395109 A	25/03/2009
		CN 101395109 B	18/09/2013
		CN 101440017 A	27/05/2009
		CN 101440017 B	20/11/2013
		CN 101448913 A	03/06/2009
		CN 101468323 A	01/07/2009

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/US2017/044182

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
		CN 101492342 A	29/07/2009
		CN 101495431 A	29/07/2009
		CN 101553453 A	07/10/2009
		CN 101553453 B	29/05/2013
		CN 101555191 A	14/10/2009
		CN 101555191 B	26/03/2014
		CN 101597209 A	09/12/2009
		CN 101653946 A	24/02/2010
		CN 101653946 B	20/03/2013
		CN 101665403 A	10/03/2010
		CN 101665403 B	01/06/2016
		CN 101665404 A	10/03/2010
		CN 101665404 B	25/03/2015
		CN 101665405 A	10/03/2010
		CN 101665405 B	24/05/2017
		CN 101665681 A	10/03/2010
		CN 101665681 B	25/06/2014
		CN 101687737 A	31/03/2010
		CN 101687737 B	30/10/2013
		CN 101796154 A	04/08/2010
		CN 101796155 A	04/08/2010
		CN 101815693 A	25/08/2010
		CN 101815693 B	25/06/2014
		CN 101835729 A	15/09/2010
		CN 101925644 A	22/12/2010
		CN 102015050 A	13/04/2011
		CN 102015050 B	02/07/2014
		CN 102026944 A	20/04/2011
		CN 102112421 A	29/06/2011
		CN 102112421 B	26/11/2014
		CN 102140329 A	03/08/2011
		CN 102140329 B	21/12/2016
		CN 102264860 A	30/11/2011
		CN 102264860 B	17/06/2015
		CN 102264861 A	30/11/2011
		CN 102264861 B	12/08/2015
		CN 102281932 A	14/12/2011
		CN 102281932 B	06/01/2016
		CN 102307965 A	04/01/2012
		CN 102307965 B	06/01/2016
		CN 102439108 A	02/05/2012
		CN 102575045 A	11/07/2012
		CN 102575045 B	09/11/2016
		CN 102596869 A	18/07/2012
		CN 102782077 A	14/11/2012
		CN 102782077 B	17/08/2016
		CN 102803427 A	28/11/2012
		CN 102933535 A	13/02/2013
		CN 102971394 A	13/03/2013
		CN 102971394 B	20/04/2016

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/US2017/044182

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
		CN 103052614 A	17/04/2013
		CN 103101061 A	15/05/2013
		CN 103101061 B	29/06/2016
		CN 103108937 A	15/05/2013
		CN 103108937 B	03/05/2017
		CN 103131392 A	05/06/2013
		CN 103146348 A	12/06/2013
		CN 103146348 B	13/01/2016
		CN 103172488 A	26/06/2013
		CN 103172488 B	21/10/2015
		CN 103193584 A	10/07/2013
		CN 103193584 B	01/07/2015
		CN 103215013 A	24/07/2013
		CN 103274895 A	04/09/2013
		CN 103274895 B	15/06/2016
		CN 103328423 A	25/09/2013
		CN 103351273 A	16/10/2013
		CN 103396766 A	20/11/2013
		CN 103396766 B	10/08/2016
		CN 103462894 A	25/12/2013
		CN 103467241 A	25/12/2013
		CN 103497351 A	08/01/2014
		CN 103497351 B	12/04/2017
		CN 103497738 A	08/01/2014
		CN 103497738 B	26/04/2017
		CN 103627019 A	12/03/2014
		CN 103635558 A	12/03/2014
		CN 103642461 A	19/03/2014
		CN 103642461 B	18/01/2017
		CN 103923610 A	16/07/2014
		CN 103923611 A	16/07/2014
		CN 103923723 A	16/07/2014
		CN 103923723 B	14/09/2016
		CN 103946193 A	23/07/2014
		CN 103946193 B	25/11/2015
		CN 103946194 A	23/07/2014
		CN 103946195 A	23/07/2014
		CN 103946195 B	28/12/2016
		CN 104003837 A	27/08/2014
		CN 104003837 B	04/01/2017
		CN 104045848 A	17/09/2014
		CN 104045849 A	17/09/2014
		CN 104045850 A	17/09/2014
		CN 104046332 A	17/09/2014
		CN 104059613 A	24/09/2014
		CN 104093811 A	08/10/2014
		CN 104114820 A	22/10/2014
		CN 104114820 B	09/11/2016
		CN 104164215 A	26/11/2014
		CN 104164216 A	26/11/2014

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/US2017/044182

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
		CN 104164217 A	26/11/2014
		CN 104169245 A	26/11/2014
		CN 104169245 B	21/09/2016
		CN 104178089 A	03/12/2014
		CN 104178090 A	03/12/2014
		CN 104194726 A	10/12/2014
		CN 104194727 A	10/12/2014
		CN 104194728 A	10/12/2014
		CN 104194729 A	10/12/2014
		CN 104817999 A	05/08/2015
		CN 104845588 A	19/08/2015
		CN 105037080 A	11/11/2015
		CN 105111491 A	02/12/2015
		CN 105111492 A	02/12/2015
		CN 105132209 A	09/12/2015
		CN 105176494 A	23/12/2015
		CN 105176496 A	23/12/2015
		CN 105189689 A	23/12/2015
		CN 105462562 A	06/04/2016
		CN 105567172 A	11/05/2016
		CN 105623615 A	01/06/2016
		CN 105733015 A	06/07/2016
		CN 105733513 A	06/07/2016
		CN 105753630 A	13/07/2016
		CN 105754553 A	13/07/2016
		CN 105885799 A	24/08/2016
		CN 105885800 A	24/08/2016
		CN 106085361 A	09/11/2016
		CN 106085362 A	09/11/2016
		CN 106118603 A	16/11/2016
		CN 106147717 A	23/11/2016
		CN 106190037 A	07/12/2016
		CN 106278803 A	04/01/2017
		CN 106278804 A	04/01/2017
		CN 106397103 A	15/02/2017
		CN 106590536 A	26/04/2017
		CN 1732243 A	08/02/2006
		CN 1852880 A	25/10/2006
		CN 1852880 B	15/06/2011
		CN 1898353 A	17/01/2007
		CN 1898353 B	07/05/2014
		CN 1902152 A	24/01/2007
		CN 1902152 B	13/10/2010
		CN 1968915 A	23/05/2007
		CN 1968915 B	03/08/2011
		CN 1972887 A	30/05/2007
		CN 1972887 B	13/10/2010
		CN 1973016 A	30/05/2007
		CN 1973016 B	06/05/2015
		CN 1976885 A	06/06/2007

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/US2017/044182

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
		CN 1976885 B	26/05/2010
		CN 1977025 A	06/06/2007
		CN 1977025 B	16/03/2016
		EP 1560593 A1	10/08/2005
		EP 1560593 B1	20/04/2016
		EP 1563032 A2	17/08/2005
		EP 1563032 B1	02/05/2012
		EP 1578883 A2	28/09/2005
		EP 1658252 A2	24/05/2006
		EP 1658252 B1	04/01/2012
		EP 1678106 A2	12/07/2006
		EP 1678106 B1	04/01/2012
		EP 1716216 A2	02/11/2006
		EP 1716216 B1	18/11/2009
		EP 1716216 B9	10/03/2010
		EP 1725628 A1	29/11/2006
		EP 1725628 B1	30/05/2012
		EP 1740518 A1	10/01/2007
		EP 1740520 A1	10/01/2007
		EP 1740520 B1	12/11/2014
		EP 1740521 A1	10/01/2007
		EP 1740521 B1	20/05/2015
		EP 1743010 A1	17/01/2007
		EP 1743010 B1	29/06/2016
		EP 1751245 A1	14/02/2007
		EP 1751245 B1	21/01/2015
		EP 1858485 A2	28/11/2007
		EP 1858485 B1	11/09/2013
		EP 1893714 A2	05/03/2008
		EP 1893714 B1	05/11/2014
		EP 1893715 A2	05/03/2008
		EP 1896234 A2	12/03/2008
		EP 1916231 A2	30/04/2008
		EP 1916231 A3	23/12/2009
		EP 1916231 B1	09/03/2016
		EP 1916232 A1	30/04/2008
		EP 1916232 B1	15/01/2014
		EP 1918269 A1	07/05/2008
		EP 1918269 B1	03/11/2010
		EP 1943202 A1	16/07/2008
		EP 1943202 B1	17/12/2014
		EP 1943203 A1	16/07/2008
		EP 1943203 B1	19/12/2012
		EP 1943204 A1	16/07/2008
		EP 1943204 B1	02/01/2013
		EP 1954661 A1	13/08/2008
		EP 1954661 B1	19/10/2016
		EP 1954663 A1	13/08/2008
		EP 1968922 A2	17/09/2008
		EP 1968922 B1	22/04/2015

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/US2017/044182

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
		EP 1996668 A2	03/12/2008
		EP 2009075 A2	31/12/2008
		EP 2009075 A3	11/03/2009
		EP 2009075 B1	27/05/2015
		EP 2036943 A2	18/03/2009
		EP 2036943 A3	22/07/2009
		EP 2036943 B1	13/07/2011
		EP 2036943 B2	21/12/2016
		EP 2062866 A1	27/05/2009
		EP 2062866 B1	28/03/2012
		EP 2075066 A2	01/07/2009
US 2012-0204594 A1	16/08/2012	AT 417085 T	15/12/2008
		AU 2005-236036 A1	03/11/2005
		AU 2005-236036 B2	02/10/2008
		AU 2005-236038 A1	03/11/2005
		AU 2005-236038 B2	02/10/2008
		AU 2005-236039 A1	03/11/2005
		AU 2005-236039 B2	21/08/2008
		CA 2564023 A1	03/11/2005
		CA 2564023 C	17/07/2012
		CN 101124288 A	13/02/2008
		CN 101636466 A	27/01/2010
		CN 101636466 B	13/06/2012
		CN 102876295 A	16/01/2013
		CN 102876295 B	17/08/2016
		CN 1965049 A	16/05/2007
		CN 1969027 A	23/05/2007
		CN 1969028 A	23/05/2007
		CN 1969028 B	16/05/2012
		CN 1977023 A	06/06/2007
		CN 1977023 B	06/05/2015
		EP 1735397 A1	27/12/2006
		EP 1735398 A1	27/12/2006
		EP 1735398 B1	27/06/2012
		EP 1735398 B2	17/08/2016
		EP 1735399 A1	27/12/2006
		EP 1735400 A1	27/12/2006
		EP 1735401 A1	27/12/2006
		EP 1737922 A2	03/01/2007
		EP 1737922 B1	10/12/2008
		EP 1920024 A1	14/05/2008
		EP 2017320 A1	21/01/2009
		EP 2272936 A1	12/01/2011
		EP 2292715 A1	09/03/2011
		EP 2292715 B1	22/08/2012
		EP 2336266 A1	22/06/2011
		EP 2336266 B1	22/08/2012
		ES 2389260 T3	24/10/2012
		ES 2389260 T5	16/02/2017

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/US2017/044182

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
		ES 2392327 T3	07/12/2012
		ES 2392333 T3	07/12/2012
		JP 2007-532766 A	15/11/2007
		JP 2007-532767 A	15/11/2007
		JP 2008-504373 A	14/02/2008
		JP 2008-504374 A	14/02/2008
		JP 2008-505989 A	28/02/2008
		JP 2008-506793 A	06/03/2008
		JP 2012-067308 A	05/04/2012
		JP 2012-067309 A	05/04/2012
		JP 2012-067310 A	05/04/2012
		JP 5122944 B2	16/01/2013
		JP 5122945 B2	16/01/2013
		JP 5189358 B2	24/04/2013
		JP 5662294 B2	28/01/2015
		KR 10-1150177 B1	29/05/2012
		KR 10-1222878 B1	17/01/2013
		KR 10-1265537 B1	21/05/2013
		KR 10-1331778 B1	21/11/2013
		KR 10-2006-0134214 A	27/12/2006
		KR 10-2006-0134215 A	27/12/2006
		KR 10-2007-0002093 A	04/01/2007
		KR 10-2007-0004099 A	05/01/2007
		KR 10-2007-0007366 A	15/01/2007
		KR 10-2007-0007935 A	16/01/2007
		KR 10-2013-0018376 A	20/02/2013
		TW 200606245 A	16/02/2006
		TW I374183 B	11/10/2012
		US 2005-0233923 A1	20/10/2005
		US 2005-0233931 A1	20/10/2005
		US 2005-0233932 A1	20/10/2005
		US 2005-0233933 A1	20/10/2005
		US 2005-0233934 A1	20/10/2005
		US 2006-0019857 A1	26/01/2006
		US 2006-0022166 A1	02/02/2006
		US 2006-0025322 A1	02/02/2006
		US 2006-0033071 A1	16/02/2006
		US 2006-0033072 A1	16/02/2006
		US 2006-0043330 A1	02/03/2006
		US 2006-0116310 A1	01/06/2006
		US 2009-0092556 A1	09/04/2009
		US 6969701 B2	29/11/2005
		US 7074751 B2	11/07/2006
		US 7098176 B2	29/08/2006
		US 7341984 B2	11/03/2008
		US 7413674 B2	19/08/2008
		US 7465698 B2	16/12/2008
		US 7479477 B2	20/01/2009
		US 7605117 B2	20/10/2009
		US 7622435 B2	24/11/2009

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/US2017/044182

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
		US 8163689 B2 US 8492327 B2 WO 2005-103187 A1 WO 2005-103188 A1 WO 2005-103189 A1 WO 2005-103190 A1 WO 2005-103191 A2 WO 2005-103191 A3 WO 2005-103192 A1 WO 2006-112881 A1	24/04/2012 23/07/2013 03/11/2005 03/11/2005 03/11/2005 03/11/2005 03/11/2005 22/02/2007 03/11/2005 26/10/2006
US 2014-0048737 A1	20/02/2014	US 2010-0176331 A1 US 8598107 B2 US 8809254 B2	15/07/2010 03/12/2013 19/08/2014
US 5605647 A	25/02/1997	CA 2157567 A1 CA 2157567 C CN 1052031 C CN 1122606 A EP 0687287 A1 EP 0687287 B1 JP 08-507524 A KR 10-1996-0701169 A US 5444102 A US 5562861 A US 5611210 A US 5674451 A US 5685915 A US 5695688 A US 5716549 A US 7083742 B1 WO 94-20588 A1	15/09/1994 30/11/2004 03/05/2000 15/05/1996 20/12/1995 14/06/2000 13/08/1996 24/02/1996 22/08/1995 08/10/1996 18/03/1997 07/10/1997 11/11/1997 09/12/1997 10/02/1998 01/08/2006 15/09/1994
WO 2008-061079 A2	22/05/2008	JP 2010-509488 A US 2008-0157023 A1 WO 2008-061079 A3 WO 2008-061079 A9	25/03/2010 03/07/2008 09/10/2008 31/07/2008