(12) STANDARD PATENT (11) Application No. AU 2017274407 B2
(19) AUSTRALIAN PATENT OFFICE

(54)

(51)

(21)
(87)
(30)

(31)

(74)

(56)

Title
Format-specific data processing operations

International Patent Classification(s)
GOG6F 9/44 (2006.01) GO6F 11/36 (2006.01)
GOG6F 9/445 (2006.01)

Application No: 2017274407 (22) Date of Filing: 2017.05.18
WIPO No: WO017/209969

Priority Data

Number (32) Date (33) Country
62/345,217 2016.06.03 us
15/433,467 2017.02.15 us
Publication Date: 2017.12.07

Accepted Journal Date: 2020.12.10

Applicant(s)
Ab Initio Technology LLC

Inventor(s)
Isman, Marshall A.;Joyce, John

Agent / Attorney
RnB IP Pty Ltd, PO Box 9530, Deakin, ACT, 2600, AU

Related Art

US 8949140 B2

US 20160124998 A1
US 20110307897 A1
US 20160012499 A1

wo 20177209969 A1 | 0K 00000 O T

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
07 December 2017 (07.12.2017)

(10) International Publication Number

WO 2017/209969 A1l

WIPO I PCT

(51) International Patent Classification:
GO6F 9/44 (2006.01) GO6F 9/445 (2006.01)
GO6F 11/36 (2006.01)

(21) International Application Number:
PCT/US2017/033285

(22) International Filing Date:
18 May 2017 (18.05.2017)

CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN, KP, KR,
KW,KZ, LA,LC,LK,LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(25) Filing Language: English (84) Designated States (unless otherwise indicated, for every
(26) Publication Language: English lgnMd, OKfE}:efE:iSéfj %ﬁﬁ;,ﬁfﬁgﬁf ng{;i?sg,?\g[z’,(;g:
(30) Priority Data: UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
62/345,217 03 June 2016 (03.06.2016) Us TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
15/433,467 15 February 2017 (15.02.2017) US EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
) MC, MK, MT, NL, NO, PL, PT, RO, RS, SF, SI, SK, SM,
1) Appllcgnt: AB INITIQ TECHNOLOGY LLC [US/US]; TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
201 Spring Street, Lexington, Massachusetts 02421 (US). KM, ML, MR, NE, SN, TD, TG).
(72) Imventors: ISMAN, Marshall A.; 11 Valleyspring Road,
Newton, Massachusetts 02158 (US). JOYCE, John; 503 Published:

Walnut Street, Newton, Massachusetts 02460 (US).

(74) Agent: DEVRIES, Gretchen A. et al.; Fish & Richardson
P.C., P.O. Box 1022, Minneapolis, Minnesota 55440-1022
(US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ,BA, BB, BG, BH, BN, BR, BW, BY, BZ,

with international search report (Art. 21(3))

(54) Title: FORMAT-SPECIFIC DATA PROCESSING OPERATIONS

Receive data having a particular format

400

Determine whether to analyze the graph for ability
to process the recsived dats

Az

Analyzegrapht itify format-specific

ts

204

Determineg which form

cific components are
ced

406

Define overlay specification for gach replacement
component
408
Compile graph using overlay specifications
410
FIG. 6

(57) Abstract: A method includes analyzing, by a processor, a first version of a computer
program, the analyzing including identifying a first process included in the first version of
the computer program, the first process configured to perform an operation on data having
a first format; and by a processor, generating a second version of at least a portion of the
computer program, including omitting the first process and including in the second version
of the at least portion of the computer program one or more second processes configured
to perform a second operation on data of a second format different from the first format,
wherein the second operation is based on the first operation.

10

15

20

25

WO 2017/209969 PCT/US2017/033285

FORMAT-SPECIFIC DATA PROCESSING OPERATIONS

CLAIM OF PRIORITY
This application claims priority to U.S. Provisional Application Serial No.
62/345,217, filed on June 3, 2016, and to U.S. Application Serial No. 15/433,467, filed
on February 15, 2017, the contents of both of which are incorporated here by reference in

their entirety.

BACKGROUND
Complex computations can often be expressed as a data flow through a directed
graph (called a “dataflow graph™), with components of the computation being associated
with the vertices of the graph and data flows between the components corresponding to
links (arcs, edges) of the graph. The components can include data processing
components that receive data at one or more input ports, process the data, and provide
data from one or more output ports, and dataset components that act as a source or sink of

the data flows.

SUMMARY

In an aspect, a method includes analyzing, by a processor, a first version of a
computer program, the analyzing including identifying a first process included in the first
version of the computer program, the first process configured to perform a first operation
on data of a first format; and by a processor, generating a second version of at least a
portion of the computer program, including omitting the first process and including in the
second version of the at least portion of computer program one or more second processes
configured to perform a second operation on data of a second format different from the
first format, wherein the second operation is based on the first operation.

Embodiments can include one or more of the following features.

Identifying a first process includes identifying a first process in which the first

operation is dependent on the format of the data.

10

15

20

25

30

WO 2017/209969 PCT/US2017/033285

Identifying a first process includes identifying a first process that is unable to
perform the first operation on data of the second format.

The method includes determining a format of data to be processed by the first
process. Identifying a first process includes identifying a first process that is unable to
perform the first operation on data having the format of the data to be processed by the
first process.

Identifying a first process includes identifying a first data processing element of
the computer program, the first data processing element configured to execute the first
process. Including the one or more second processes in the second version of the at least
portion of the computer program includes including one or more second data processing
elements in the second version of the at least portion of the computer program, the second
data processing element configured to execute the one or more second processes.

The first format includes a data type.

The first format includes a size of a data element.

The first process is configured to perform the first operation on data records of a
first record format and in which the one or more second processes are configured to
perform the second operation on data records of a second record format. The first record
format comprises a name of a field in the records.

The method includes presenting, in a user interface, an identifier of the first set of
one or more operations.

Generating the second version of at least a portion of the computer program
includes generating a copy of the portion of the computer program.

The method includes modifying the copy of the portion of the computer program
to omit the first process and to include the one or more second processes.

The method includes executing the second version of the computer program.

The one or more second processes are defined by an overlay specification.
Generating the second version of the computer program includes generating the second
version based on the first version of the computer program and the overlay specification.
The overlay specification identifies one or more of a process upstream of the first process
and a process downstream of the first process. The method includes identifying the first

process based on an analysis of executable code defining the first process.

10

15

20

25

30

WO 2017/209969 PCT/US2017/033285

The computer program comprises a graph. The first process is an executable
process represented by a first component of the graph and in which the one or more
second processes are executable processes represented by one or more second
components of the graph. The one or more second components are configured to receive
data records from an upstream component of the graph. The one or more second
components are configured to provide data records to a downstream component of the
graph.

In an aspect, a system includes means for analyzing, by a processor, a first version
of a computer program, the analyzing including identifying a first process included in the
first version of the computer program, the first process configured to perform a first
operation on data having a first format; and means for generating, by a processor, a
second version of at least a portion of the computer program, including omitting the first
process and including in the second version of the at least portion of the computer
program one or more second processes configured to perform a second operation on data
having a second format different from the first format, wherein the second operation is
based on the first operation.

In an aspect, a system includes a processor coupled to a memory, the processor
and memory configured to analyze a first version of a computer program, the analyzing
including identifying a first process included in the first version of the computer program,
the first process configured to perform a first operation on data having a first format; and
generate a second version of at least a portion of the computer program, including
omitting the first process and including in the second version of the at least portion of the
computer program one or more second processes configured to perform a second
operation on data having a second format different from the first format, wherein the
second operation is based on the first operation.

In an aspect, a non-transitory computer-readable medium stores instructions for
causing a computing system to analyze a first version of a computer program, the
analyzing including identifying a first process included in the first version of the
computer program, the first process configured to perform a first operation on data
having a first format; and generate a second version of at least a portion of the computer

program, including omitting the first process and including in the second version of the at

10

15

20

25

WO 2017/209969 PCT/US2017/033285

least portion of the computer program one or more second processes configured to
perform a second operation on data having a second format different from the first
format, wherein the second operation is based on the first operation.

Other features and advantages will become apparent from the following

description, and from the claims.

DESCRIPTION OF DRAWINGS
FIGS. 1-3 are examples of graphs.
FIG. 4 is an example of an overlay specification.
FIG. 5 is a block diagram.
FIG. 6 is a flow chart.
FIGS. 7-9 are block diagrams.
FIG. 10 is a flow chart.

DESCRIPTION

An executable application, such as a graph, can include one or more processes
that are specific to a particular format or formats of data records to be processed by the
executable application. Such processes are able to perform operations on data only of the
particular format or formats, and attempting to execute these processes on data of a
different format may lead to errors or incorrect processing. We describe here an approach
to identifying processes of an executable application that are specific to a particular
format or formats of data. To enable the executable application to operate on data of a
different format, a second version of the executable application can be generated in which
those format-specific processes are omitted and one or more other processes are included.
These other processes, sometimes referred to asreplacement process, can perform an
operation that is based on the operation performed by the omitted format-specific
processes, but that is either specific to a different one or more formats of data or able to
perform operations on any format of data. The inclusion of a replacement process in a
second version of an executable application enables the executable application to process
data of a different format than the format for which the original version of the executable

application was configured.

10

15

20

25

30

WO 2017/209969 PCT/US2017/033285

Replacement processes can be defined by an overlay specification, which is a file
that is separate from the original executable application (sometimes also referred to as the
first application). The replacement processes defined in the overlay specification can be
added into the second version of the application (sometimes also referred to as the second
application) without becoming a part of the original application. For instance, when the
application is compiled, a compiler considers the overlay file and generates the second
application in which one or more processes are omitted and one or more corresponding
replacement processes are included. By omitted, we mean that a process that is included
in the first application is not included in the second application. The corresponding
replacement component is inserted into the second application, e.g., in the location at
which the omitted process was located in the first application.

Replacement processes are examples of insertions. Other examples of insertions
include test sources and probes, which can also be defined by an overlay specification. A
test source is a replacement data source that can provide data, such as test data, for
processing by the executable application. A probe is an alternative destination to which
data is written by the executable application. Insertions can be useful, e.g., for testing or
debugging an executable application, such as a graph. For instance, a tester or developer
may want to conduct testing using a particular set of input data to observe the effects of
changes to the application. By executing the application using a consistent set of input
data both before and after the change, the effect of that change on the data output by the
application can be monitored. In some examples, the tester may have a specific set of test
data that is to be used when testing the application, such as a set of test data that will
cause all of the functions of the application to be executed at least once. Similarly, the
tester may wish to write the data output by the application to a particular destination that
is different than the standard destination to which the application writes its output data.

In some examples, the insertions can be defined automatically based on an
automated analysis of the application. For instance, replacement components can be
defined automatically based on an automatic identification of format-specific processes in
the application. Test sources and probes can be defined automatically based on an

automatic identification of the data sources and output data sinks of the application.

10

15

20

25

30

WO 2017/209969 PCT/US2017/033285

In some examples, the executable application is a graph-based process. A graph-
based process includes one or more components, each representing an executable
process, connected by flows indicating a flow of data from one component to another.
Replacement processes are objects that are associated with a component in the graph-
based process. A replacement process (sometimes also called a replacement component)
can replace an existing component in a graph such that data that would have been
processed by the existing component is instead processed by the replacement component.
Test source and probe insertions are objects that are associated with a flow in the graph-
based process. A test source can replace data passing through a flow (e.g., upstream data)
with new data, such that upstream computations do not need to be rerun for each
execution of the graph. For instance, a test source can replace a data source such that test
data is provided to the graph from the test source rather than from the data source. A
probe can monitor data passing through a flow as the graph executes, and can cause the
data to be saved for later examination or reuse. For instance, a probe can receive data that
would otherwise have been saved to an output data sink, such as a database.

The insertions defined in the overlay specification can be added into the
application during execution without becoming a part of the original application. When
the application is compiled, a compiler considers the overlay file and generates an
executable application that includes the insertions. We sometimes refer to the original
application as the first version of the application and the application that includes the
insertions as the second version of the application. For instance, in the example of a
graph-based process, the executable graph can be visually represented as a second
version of the graph that includes the components of a first version of the graph
combined with the insertion objects defined in the overlay specification. In some
examples, the executable graph is a shell script and is not stored in a file. In some
examples, the executable graph and the graph are stored in separate files.

The incorporation of the insertions into the second version of the graph does not
modify the first version of the graph. Instead, the insertion definitions remain in a
separate file (e.g., the separate overlay specification) and can be turned into ordinary
graph components for inclusion in the modified graph at the beginning of the code

generation. As such, there is no risk of inadvertently breaking the original graph.

10

15

20

25

30

WO 2017/209969 PCT/US2017/033285

FIG. 1 shows an example of a graph 100. The graph 100 is a visual representation
of a computer program that includes data processing components connected by flows. A
flow connecting two components indicates that records output from the first component
are passed to the second component. A first component references a second component
when the first component is connected to a second component by a flow.

A data source 102, such as a database (as shown), a file, a queue, an executable
statement (e.g., a SQL statement) or another type of data source that is external to the
graph 100, includes one or more data records to be processed by the graph 100. By
external, we mean that the data of the data source 102 is not stored in the graph 100. The
data source 102 is connected to a filter component 103 by a flow. In general, a filter
component filters or removes records that do not meet predetermined criteria. In this
example, the filter component 103 passes data records of customers who live in Ohio and
rejects the other records. The filter component 103 is connected to a sort component 104
that sorts the filtered data records by zip code. The sort component 104 is connected to a
replicate component 106 that creates a copy of data records so that they can be processed
in two different ways. The replicate component is connected to a reformat component
108 and a filter by expression component 110. For example, one instance of data records
of customers who live in Ohio, which are sorted by zip code, is sent to the reformat
component 108, and another instance of the data records is sent to the filter by expression
component 110. The reformat component 108 changes the format of the data records to a
different data format, and the filter by expression component 110 removes data records
based on an expression associated with the data record. The reformat component 108 and
the filter by expression component 110 are connected to a gather component 112 that
combines the received data records, and the gather component is connected to an output
data sink component 114 that is external to the graph, such as a database (as shown), a
file, a queue, or a downstream processing component. By external, we mean that the data
of the output data sink 114 is not stored in the graph 100. While the graph 100 includes
many flows between components, a flow 116 between the data source 102 and the filter
component 103 (which we sometimes refer to as the source-filter flow 116) and a flow

118 between the gather component 112 and the output data sink 114 (which we

10

15

20

25

30

WO 2017/209969 PCT/US2017/033285

sometimes refer to as the gather-output flow 118) are of particular interest in this
example.

One or more of the components of a graph can be a format-specific component. A
format-specific component is a component that is able to process only data of one or
more particular formats. Data format is a characteristic of an individual item of data (e.g.,
a characteristic of a value in a field of a record) or a characteristic of a record (sometimes
referred to as record format). Examples of a characteristic of an individual item of data
include a number of bytes for the item of data, such as a size of the item of data (e.g.,
single-byte ASCII data items or multibyte data items), a type of the item of data (e.g.,
string, integer, Boolean, or another data type), or another characteristic of an individual
item of data. Examples of a a record format include the name of a field in a record, the
position of a field in a record, the number of fields in a record, a hierarchical record, an
array or repeating group of fields, a nested array, a sub-record, or another characteristic
of a record.

When a graph includes a component that is specific to a particular data format, the
graph may be able to process only data of the particular format. If the graph is used to
process data having a different format, an error may occur or the data may be processed
incorrectly. In order to enable the graph to process the data having the different format,
one or more of the format-specific components can be replaced by components that are
able to process the data of the different format. The replacement components can be
format-specific components that are specific to the different components or can be
components that can process data of any format (which we sometimes call format-
agnostic components).

For instance, in the example of Fig. 1, the sort component 104 sorts records by the
value in the zip code field. The sort component 104 in this example is a format-specific
component that is capable of processing only integers. An operator of the graph 100 may
want to use the graph 100 to process a new set of data in which the zip code field may
include alphanumeric strings.

Referring to Fig. 2, a second version 200 of the graph 100 is generated in which
the sort component 104 is omitted and a replacement sort component 204 is included.

The replacement sort component 204 is placed at the same location in the second version

10

15

20

25

30

WO 2017/209969 PCT/US2017/033285

200 of the graph as the sort component 104, and is able to sort alphanumeric strings. The
other components of the graph are unchanged. The second version 200 of the graph is
thus able to process the new set of data.

Some components may be able to receive and operate on data of any format but
may output data of a specific format. If data of a different format is desired as output
(e.g., to be provided as input into another application that specifies a particular format),
the graph may be unable to provide this data. In order to enable the graph to output data
of the desired format, one or more of the format-specific components can be replaced by
components that are able to output data of the desired format.

Referring again to Fig. 1, the reformat component 108 is a format-specific
component that outputs data of a particular format. For instance, the reformat component
108 may output data records having four fields: Name, Account num, Balance, and
Trans date. An operator of the graph 100 may want the graph 100 to generate output data
of a different format, for instance, so that the output data can be processed by another
application having specific requirements for the record format of its input data. In this
example, the desired format of the output data includes four fields: Cust name, Balance,
Account num, and Trans date. That is, the first field of the output data needs to be
renamed and the second and third fields need to be switched.

Referring to Fig. 3, a second version 300 of the graph 100 is generated in which
the reformat component 108 is omitted and a replacement reformat component 308 is
included. The replacement reformat component 308 is placed at the same location in the
second version 300 of the graph as the reformat component 108, and is able to generate
output data of the desired format. The other components of the graph are unchanged.

In some examples, other components of a graph can also be omitted, such as one
or more components upstream or downstream of a format-specific component. In some
cases, a replacement component can be included in place of one or more of the other
omitted components.

In some examples, a tester of the graph 100 may wish to debug the graph 100 in
order to verify its functionality. In some cases, a tester may want to verify data as it flows
from one component to another. In some cases, a tester may want to bypass upstream

components in a graph 100, and instead insert data at the locations of the bypassed

10

15

20

25

30

WO 2017/209969 PCT/US2017/033285

components. In some cases, a tester may want to test the operation of the graph 100 using
a consistent set of input data in order to monitor the effect of changing the graph on the
data output by the graph. In some cases, a tester may want to test the operation of the
graph 100 using a set of input data that the tester knows will cause all of the functions of
the graph to be executed at least once, thus enabling complete testing of the graph.

In debugging the graph 100, it may be desirable to refrain from modifying the
graph. For example, a tester may not want to risk breaking the functionality of the graph.
In some examples, a tester may have limited or no access to the graph (e.g., the tester
may lack the necessary permissions to edit the graph). In order to debug the graph 100
without modifying the graph, an overlay can be used to debug the graph. In some
examples, the overlay can be specified automatically, e.g., based on an automated
analysis of the graph. A second version of at least a portion of the graph 100 can be
generated based on the original graph 100 (sometimes called the first version of the
graph) and the overlay specification.

A probe collects or monitors data as it is passed through a flow between
components of the graph 100, e.g., along a flow from a first component to a second
component or along a flow to an output data sink. For example, data can be monitored,
saved for later examination, or saved for re-use when it passes through a flow as the
graph 100 executes. The overlay specification can define a probe that refers to a flow that
carries data that is to be collected or monitored. The probe specifies the flow through
which data is to be collected or monitored. The probe can be configured to report
particular values, or report when a particular value is within or outside of a predetermined
range. Data that is passed through the probe may be saved for later analysis or use, for
example, the data can be stored in a flat file or relational database.

In some examples, the probe can refer to a flow from a component of the graph
100 to an output data sink, such as a file or a database. By placing a probe along a flow to
a data sink during debugging of the graph 100, the probe receives the data output from
the graph 100. For instance, each time the graph 100 is executed in a debugging mode,
the output data can be received by a probe and written to a file so that the output data

from various graph executions can be compared or otherwise evaluated. In some

10

10

15

20

25

30

WO 2017/209969 PCT/US2017/033285

examples, an output data sink is automatically identified and an overlay is automatically
specified to define a probe for insertion prior to the identified output data sink.

In some examples, the probe can refer to a flow from an upstream component of
the graph 100 to a downstream component. By placing a probe along a flow to a
downstream component during debugging of the graph 100, the probe receives the data
that would otherwise have been received by the downstream component, thus preventing
the downstream component from executing. For instance, a tester may wish to monitor
the results of the graph processing prior to the downstream component. For instance, the
downstream component may have a functionality that has an effect external to the graph,
e.g., the downstream component may send a text message to each person whose credit
card record is processed by the downstream component. During debugging of the graph,
a tester may wish to disable such components that have an effect external to the graph.

A test source inserts data into the graph 100 at a particular flow between two
components of the graph 100. The overlay specification can define a test source that
refers to a flow that carries data that is to be replaced with data from the test source. In
some examples, the test source replaces data that would normally pass through a flow
with new data. In some scenarios, the test source can be configured to read previously
saved data, and pass the data to the downstream component. In some examples, a test
source inserts data into the graph 100 at a flow from a data source, such as a database or
file. The test source can insert data having the same format as the data that would
otherwise have been provided by the data source. In some examples, a data source is
automatically identified and an overlay is automatically specified to define a test source
to replace the identified data source.

In some examples, the results of the execution of the graph 100 up to a certain
point (e.g., up to a certain component) may have been previously verified. In other words,
upstream process functions may have been verified up to a certain point. In such cases, it
may be inefficient for upstream components to reprocess functions every time the graph
100 executes. The test source can insert data (e.g., the previously verified data) into the
graph at that certain point. In this manner, entire sections of a graph 100 that were

previously executed may be bypassed.

11

10

15

20

25

30

WO 2017/209969 PCT/US2017/033285

FIG. 4 shows an example of an overlay specification 200 that defines one or more
insertions. An insertion can be an object that is associated with a flow of a graph (e.g., the
graph 100), and can take the form of a probe, a test source, or a replacement component.
In the example of Fig. 4, the overlay specification 200 includes one test source definition
201 and one probe definition 213. The overlay specification 200 can be stored in a file,
such as a file that is separate from a file containing the specification for the graph 100.

The overlay specification 200 starts with a 3-line header that specifies the graph
that the insertion definitions can correspond to. The header is followed by the test source
definition 201, the probe definition 213, and a replacement component definition (not
shown).

The test source definition 201 includes a name 202, an upstream port 204, a
downstream port 206, an insertion type 208, a prototype path 210, and a layout parameter
212.

The upstream port 204 of the test source definition 201 references an output port
of the component that is directly upstream from the flow where the test source is to be
inserted into the graph 100. A component that is upstream from a flow is a component
from whose output port data is output onto the flow. In the example of FIG. 4, the
upstream port 204 of the test source definition 201 points to the output of the database
102. The downstream port 206 of the test source definition 201 references an input port
of the component that is directly downstream from the flow where the test source is to be
inserted into the graph 100. A component that is downstream from a flow is a component
at whose input port data is received from the flow. In the example of FIG. 4, the
downstream port 206 of the test source definition points to the input of the filter
component 103. The test source definition 201 in this example thus indicates that a test
source is to be placed in the flow between the output of the database 102 and the input of
the filter component 103 such that data provided by the test source can replace input data
from the database 102.

The insertion type 208 defines whether the insertion is a test source, a probe, or a
replacement component. In the example of Fig. 4, a value of “0” defines a test source, a

value of “1” defines a probe, and a value of “2” defines a replacement component. Other

12

10

15

20

25

30

WO 2017/209969 PCT/US2017/033285

values can also be used to define the type of the insertion. Because this insertion is a test
source, the value of the insertion type 208 is “0”.

The prototype path 210 indicates the type of the insertion. In this example,
because this insertion is a test source, the prototype path 210 specifies an input file
component. The prototype path 210 points to a file that contains the code that defines an
insertion of the particular type. A layout parameter 212 defines a location of a source file
that contains data that the test source will contain. In some examples, the location is a file
path. The data in the source file is to replace the data that would normally pass through
the flow defined by the upstream port 204 and the downstream port 206. That is, when
the test source is applied to the graph 100, the filter component 103 receives the data in
the source file rather than receiving data from the database 102.

The source file contains data having the same format as the data that would
otherwise be received by the component downstream of the test source. In some
examples, the data in the source file may be the same as the data in the data source (e.g.,
the database) that is upstream from the test source. For instance, data records from the
database 102 can be copied into the source file. In some examples, the data source
indicates an executable statement, such as a SQL query. In these examples, the SQL
query can be executed and the results of the query execution can be stored in the source
file. In some examples, the data in the source file can be obtained from somewhere other
than the data source. For instance, the data in the source file can be generated in order to
ensure that certain data (e.g., certain ranges of values) are processed for complete
debugging of the graph 100. In some examples, the data in the source file remains the
same even if the data in the data source changes, thus allowing debugging to continue
with a consistent set of input data.

In some examples, the data in the source file may be the same as the data that
would pass through the flow during normal execution of the graph 100, but by inserting
the data using a test source, upstream components can refrain from processing. For
example, an upstream component, such as the replicate component 106, may require
large amounts of system resources to process the data, or may take a relatively long time

to process the data compared to other components in the data flow graph 100. As such,

13

10

15

20

25

30

WO 2017/209969 PCT/US2017/033285

known data (e.g., the same data that would pass through the flow during normal
execution) can be inserted into the flow to save time or to conserve system resources.

The probe definition 213 includes a name 214, an upstream port 216, a
downstream port 218, an insertion type 220, and a prototype path 222.

The upstream port 216 of the probe definition 213 references an output port of the
component that is directly upstream from the flow where the probe is to be inserted into
the graph 100. In the example of FIG. 4, the upstream port 216 of the probe definition
213 points to the output of the gather component 112. The downstream port 218 of the
probe definition 213 references an input port of the component that is directly
downstream from the flow where the probe is to be inserted into the graph 100. In the
example of FIG. 4, the downstream port 218 of the probe definition 213 points to the
output data sink component 114. The probe definition 213 in this example thus indicates
that a probe is to be placed in the flow between the output of the gather component 112
and the output data sink component 114 such that the probe receives data that would
otherwise have been written to the output data sink component.

The insertion type 220 of the probe definition 213 defines whether the insertion is
a test source, a probe, or a replacement component. Because this insertion is a probe, the
value of the insertion type 220 is “1”.

The prototype path 222 indicates the type of the insertion. In this example,
because this insertion is a probe, the prototype path 222 specifies an output file
component. The prototype path 222 points to a file that contains the code that defines an
insertion of the particular type.

In some examples, the data that is to be monitored by the probe is stored in a file
that is automatically created by the system. The file can be stored in a location that is
determined by the system. The probe monitors data that passes through the flow defined
by the upstream port 216 and the downstream port 218. That is, when the probe is applied
to the graph 100, the data that passes from the output of the gather component 112 to the
input of the output data sink component 114 is monitored and stored in the file that is
automatically created by the system. In some examples, the data can be monitored before

it is stored. The file is capable of receiving data of the same format that would have been

14

10

15

20

25

30

WO 2017/209969 PCT/US2017/033285

received by the component referenced by the probe definition (in this example, the
external data sink component 114).

In some examples, one or more probe or test source insertions can be defined by
the overlay specification as a result of an automated analysis of the graph 100. For
instance, an automated analysis of the graph 100 can be conducted to identify any data
sources, such as databases, files, or other types of data sources. One or more of the
identified data sources can be automatically replaced by a test source. By a replaced data
source, we mean that a test source is inserted into the flow directly downstream of the
data source such that data from the test source is provided to the downstream component
rather than data from the data source. Similarly, an automated analysis of the graph 100
can identify any output data sinks, such as databases, files, or other types of output data
sinks. One or more of the identified output data sinks can be automatically replaced by a
probe. By a replaced output data sink, we mean that a probe is inserted into the flow
directly upstream of the output data sink such that data from the upstream component is
received by the probe rather than by the output data sink. Automated analysis of the
graph 100 can also be used to identify other components, such as a particular type of
component (e.g., a particular type of component whose execution has an effect external to
the graph 100).

Further description of test sources and probes insertions is provided in U.S. Patent
Application Serial No. 14/715,807, the contents of which are incorporated here by
reference in their entirety.

The replacement component definition includes a name, an upstream port, a
downstream port, an insertion type, a prototype path, and a layout parameter. The
upstream port of the replacement component definition references an output port of the
component that is directly upstream of where the replacement component is to be inserted
into the graph 100. The downstream port of the replacement component definition
references an input port of the component that is directly downstream from where the
replacement component is to be inserted into the graph. Based on the upstream port and
the downstream port, the existing component in the graph 100 that is to be replaced by
the replacement component can be identified. The insertion type defines that the insertion

is a replacement component.

15

10

15

20

25

30

WO 2017/209969 PCT/US2017/033285

The prototype path indicates the type of the insertion. In this example, because
this insertion is a replacement component, the prototype path points to a file that contains
the code that defines the replacement component. The code that defines the replacement
component is based on the code defining the existing component that is to be replaced,
but able to process data of the desired format.

In some examples, one or more replacement components for a graph can be
defined by the overlay specification as a result of an automated analysis of the graph. For
instance, the specification of each component in the graph can be analyzed. The
specification for a component includes or points to code that defines the component, e.g.,
that defines the data processing operation(s) that are represented by the component. An
analysis of the code can reveal whether the data processing operation(s) represented by a
component are dependent on the format of the data.

A replacement component is defined for one or more of the identified format-
specific components. In some examples, the format-specific components that are to be
replaced are identified based on user input. For instance, a user may use his knowledge of
the format of the incoming data, the processes represented by each of the format-specific
components, or both, to determine which of the components are to be replaced. In some
examples, an automatic analysis of the format of incoming data relative to the format of
data previously processed by the graph can be performed to identify which of the format-
specific components are to be replaced.

In some examples, for computer programs that are not graph-based, one or more
format-specific processes in a computer program can be identified and replaced by one or
more other processes, e.g., processes that can operate on data of a specific format or
processes that can operate on data of any format.

Referring to FIG. 5, to insert test sources, probes, or both, an analysis engine 300
automatically analyzes the graph 100 to identify data sources 302 and output data sinks
304. For instance, the analysis engine 300 can access the parameters and connections for
each node of the graph 100 (we sometimes use the terms “node” and “component”
interchangeably). If a given node has no incoming connections, the analysis engine 300
identifies the node as a data source. Similarly, if a given node has no outgoing

connections, the analysis engine 300 identifies the node as an output data sink. To access

16

10

15

20

25

30

WO 2017/209969 PCT/US2017/033285

and analyze each node of a graph, the analysis engine “walks” along all of the
connections (we sometimes use the terms “connection” and “flow” interchangeably) of
the graph. In some examples, the graph 100 is not instantiated or parameterized until
runtime (e.g., when processing starts for debugging purposes). The analysis engine 300
can perform an automated analysis at runtime to identify data sources and output data
sinks in the graph 100.

The analysis engine 300 sends identifiers of the data sources 302 and output data
sinks 304 to an insertion engine 306, which determines which of the data sources and
output data sinks are to be replaced by test sources and probes, respectively. In some
examples, a tester 308 provides a list 310 of data sources and output data sinks that are to
be replaced by test sources and probes. The list 310 can be provided as a file, a database,
or in another format. For instance, the tester 308 might include on the list 310 any data
source that he expects to change frequently. By replacing such a data source with a test
source, the tester 308 can ensure that the graph can be tested using consistent input data.

The insertion engine 306 compares each identified data source 302 and output
data sink 304 with the data sources and output data sinks on the list 310. The insertion
engine creates an overlay specification 312 for any data source 302 or output data sink
304 that appears on the list 310. In some examples, parameters for the overlay
specification 312, such as upstream and downstream ports, is provided to the insertion
engine 306 by the analysis engine 300. In some examples, the insertion engine 306
accesses the graph 100 to obtain the relevant parameters.

To create an overlay specification 312 for a test source, the insertion engine 306
populates the source file with data. In some examples, the insertion engine 306 populates
the source file for a test source that will replace a particular data source 302 with data
copied from the data source 302. In some examples, the data source 302 includes an
executable expression, such as a SQL statement, and the insertion engine 306 executes
the executable expression and populates the source file with the results of the execution.
In some examples, the insertion engine 306 can prompt the tester 308 for data for the
source file through a user interface 314. For instance, the insertion engine 306 can present
a list of the identified data sources 302 to the tester 308 such that the tester 308 can select

which of the identified data sources 302 are to be replaced by a test source. The tester 308

17

10

15

20

25

30

WO 2017/209969 PCT/US2017/033285

can also specify the data to be included in the source file for the test source. In some
cases, the tester 308 can identify a location (e.g, a path) of a file that includes data for the
test source. In some cases, the tester 308 can instruct the insertion engine 308 to generate
a source file that is a copy of the data in the original data source 302. In some cases, the
tester 308 can instruct the insertion engine 308 to execute an executable expression, such
as a SQL statement, that is included or associated with the original data source 302. In
some cases, the tester 308 can cause data to be generated for the source file of the test
source. For instance, the tester 308 may provide a set of data, such as real data or
generated data, that will cause every function in the graph to execute at least once.

To create an overlay specification 312 for a probe, the insertion engine 308
determines the location of the file where the output data is to be stored. In some
examples, the location is set by default, e.g., by a system architect. In some examples, the
insertion engine 306 can prompt the tester 308 through the user interface 314 to specify a
location for the output data file.

To insert a replacement component, the analysis engine 300 analyzes the graph
100 to identify one or more format-specific components 305 in the graph. To analyze
each component of the graph, the analysis engine 300 “walks” along all of the
connections of the graph. In some examples, the analysis engine 300 may start at a
farthest upstream component of the graph and “walk” along each output flow from that
upstream component, thus eventually analyzing all of the components of the graph.
Conversely, the analysis engine 300 may start at a farthest downstream component of the
graph and “walk™ along each input flow to that downstream component, thus eventually
analyzing all of the components of the graph.

The analysis engine 300 can access the specification of each component in the
graph 100. The specification for a component includes or points to code that defines the
component, e.g., that defines the data processing operation(s) that are represented by the
component. Based on an analysis of the code, the analysis engine 300 can determine
whether the data processing operation(s) are dependent on the format of the data. The
analysis engine 300 sends identifiers of the format-specific components to the insertion
engine 306, which determines which of the format-specific components is to omitted in

favor of a replacement component.

18

10

15

20

25

30

WO 2017/209969 PCT/US2017/033285

In some examples, the analysis engine 300 analyzes the graph 100 upon user
request. For instance, a user may want to use the graph 100 to process data of a different
format than the data usually processed by the graph. The user can request an analysis of
the graph 100 in order to ensure that the graph 100 is able to process the data of the
different format.

In some examples, the analysis engine 300 analyzes the graph 100 once, e.g.,
when the graph is first defined or when the graph is first instantiated or parameterized
(e.g., at the first runtime of the graph), in order to generate a list of all of the format-
specific components in the graph. The list of format-specific components in the graph can
be stored for future reference, e.g., to be used responsive to a user request to use the
graph 100 to process data of a different format.

In some examples, the analysis engine 300 automatically determines when to
analyze the graph. For instance, a specification of the graph may include a description of
the format of data previously processed by the graph. If the format of incoming data is
different from the format of previously processed data, the analysis engine may analyze
the graph to determine whether any components need to be replaced in order to process
the incoming data of the different format.

The insertion engine 306 determines which of the format-specific components
identified by the analysis engine 300 are to be omitted. The insertion engine 306 creates
an overlay specification that defines the replacement component for each of the
components to be omitted.

In some examples, the format-specific components that are to be omitted are
identified by a user. For instance, the insertion engine 306 can cause the list of identified
format-specific components to be displayed on the user interface 314, and a user selects
the components that are to be replaced. The user can indicate a component to be used as
the replacement component for each of the components that are to be replaced. For
instance, the user may use his knowledge of the format of the incoming data, the
processes represented by each of the format-specific components, or both, to determine
which of the components are to be omitted and which components are to be included as

replacement components. Based on user input identifying the components to be omitted,

19

10

15

20

25

30

WO 2017/209969 PCT/US2017/033285

identifying the replacement components, or both, the insertion engine 306 creates the
overlay specification.

In some examples, the insertion engine 306 can automatically determine which of
the format-specific components are to be omitted and which components are to be
included as replacement components. For instance, the insertion engine can analyze the
specification of each of the format-specific components to determine which components
are able or unable to process the incoming data. The insertion engine 306 can
automatically identify a replacement component, e.g., a replacement component that
represents the same data processing operation represented by the corresponding
component to be replaced, but capable of processing data of the format of the incoming
data. The insertion engine 306 creates the overlay specification for the automatically
identified replacement components. In some examples, user input is incorporated into the
automated determination. For instance, a user may be asked to approve the replacement
components identified by the insertion engine 306.

FIG. 6 shows a general approach to defining a replacement component for a
graph. A set of data having a particular format is received for processing by the graph
(400). A determination is made as to whether the graph is to be analyzed for its ability to
process the particular format of the received data (402). In some examples, a user can
provide an indication, e.g., through a user interface, that the graph is to be analyzed. For
instance, the user may know that the set of data has a different format than previous data
processed by the graph. In some examples, the determination can be made automatically.
For instance, the format of the received data can be determined and compared, e.g., to
information stored in the specification of the graph indicative of the format of data for
which the graph is configured. If the format of the received data does not match the
format of data for which the graph is configured, the graph is analyzed.

The graph is analyzed, e.g., by a processor, to identify one or more components of
the graph that are dependent on the format of data processed by the component (404). In
particular, the specification for each of one or more of the components of the graph is
analyzed to identify format-specific components in the graph. In some examples, the
graph is analyzed by a stepwise progression through the components of the graph. For

instance, each component is analyzed both to determine whether the component is a

20

10

15

20

25

30

WO 2017/209969 PCT/US2017/033285

format-specific component and to identify its incoming and outgoing flows. Each flow
from is followed to the adjacent component, and each of those components is analyzed to
determine whether the component is format-specific and to identify the incoming and
outgoing flows. In this way, all of the components of the graph can be analyzed. In some
examples, the analysis can be performed automatically at runtime, e.g., after the graph
has been parameterized. In some examples, the analysis can be performed automatically
and dynamically, e.g., while the graph is running. For instance, a dynamic analysis can be
performed when certain parameters are resolved during the execution of the graph. In
some examples, the graph is received into short-term memory, from where the graph is
analyzed by a processor to identify format-specific components.

One or more of the components identified as format-specific are evaluated to
determine whether the components are to be omitted and replacement components
included (406). For instance, a format-specific component may be omitted if the
component is unable to process data having the format of the received set of data. In
some examples, a list of the format-specific components is displayed on a user interface
and a user indicates which of the components is to be omitted. In some examples, the
specification of each of the format-specific components is evaluated to automatically
determine whether the components are capable of processing data having the format of
the received set of data. In some examples, all of the components identified as format-
specific are omitted.

An overlay specification is defined for a replacement component for each of one
or more of the format-specific components that are to be omitted (408). The specification
for a given replacement component is based on the specification of the corresponding
omitted format-specific component, but defines one or more data processing operations
that are able to be performed on data having the format of the received set of data. In
some examples, the replacement components can be format-specific to the format of the
received set of data. In some examples, the replacement components can be generic, e.g.,
able to process data of any format.

Prior to execution of the graph, a compiler may compile the graph into an
executable graph (410). As part of compilation, the compiler considers the overlay

specification 200 defining the replacement components. For example, the compiler may

21

10

15

20

25

30

WO 2017/209969 PCT/US2017/033285

accept the overlay specification 200 as an input. A second version of the graph is
generated, the format-specific components identified for replacement are removed, and
the one or more replacement components are inserted into the second version of the graph
as objects in place of the removed components. The replacement components may be
represented in the second version of the graph along with the data processing components
included in the first version of the graph 100 (other than the removed components). The
overlay specification 200, or the file that stores the overlay specification, remains
separate from a file containing the graph. That is, while the replacement components may
appear in the second version of the graph along with the data processing components
included in the first version of the graph, the file containing the first version of the graph
does not include the definitions of the replacement components.

Insertions, such as test sources, probes, or replacement components, defined in the
overlay specification can be executed using one of at least two modes: Single-Execution
Mode and Saved-State Mode.

FIG. 7 illustrates an example system for executing insertion definitions in Single-
Execution Mode. In this example, a client 602 generates or references a first version of a
graph 604 and an overlay file 606 (e.g., an overlay specification) that defines insertions.
For example, the overlay file 606 may be the overlay specification 200 of FIG. 4. The
graph 604 is then compiled by the compiler 608. The compiler 608 considers the overlay
file 606 and creates a second version of the graph. The second version of the graph is
executable and includes the insertions defined by the overlay file 606. The second version
of the graph can then be executed. In some examples, the compilation and the execution
occur concurrently. If the second version of the graph is to be executed again, this
process is repeated, including re-specifying, re-compiling the graph 604 and re-executing
second version of the graph. No information is saved from one execution of the
executable graph to the next.

FIG. 8 illustrates an example system for executing insertion definitions in Saved-
State Mode with a saved state manager 708. In this example, a client 702 generates or
references a graph 704 and an overlay file 706 (e.g., an overlay specification) that defines
insertions. For example, the overlay file 706 may be the overlay specification 200 of FIG.

4. The saved state repository 710 is managed by the saved state manager 708 and a

22

10

15

20

25

30

WO 2017/209969 PCT/US2017/033285

compiler 712. The saved state manager 708 can also identify where the saved state data is
located within the saved state repository 710. The graph 704 is compiled by the compiler
712. The compiler 712 considers the overlay file 706 and creates a second version of the
graph that includes the insertions defined by the overlay file 706. The second version of
the graph can then be executed. In some examples, the compilation and the execution
occur concurrently. Saved-State Mode differs from Single-Execution Mode in that
Saved-State Mode allows the executable graph to execute a number of times while saving
information between executions.

The saved state manager 708, which can reside in a saved state manager directory,
manages the saved state. Examples of information that can be saved in the saved state
repository 710 include information related to probe insertions, information related to test
source insertions, information related to replacement component insertions, information
related to the overlay file 706, and parameters (e.g., attributes) associated with graph
components, among other information.

In some examples, when an executable graph is executed, only particular portions
of the graph are executed. That is, only particular components of the graph are executed.
In some examples, fewer than all of the components of the graph are executed. The
executable graph may only execute components that will impact an insertion. In some
examples, the second version of the graph is a second version of the entire original graph.
In some examples, the second version of the graph is a second version of only a portion
of the entire original graph, e.g., a second version of only those portions of the graph that
are relevant for the defined insertions. For example, components that are upstream from
the most upstream replacement component may be executed by the first version of the
graph, and components starting at the most upstream replacement component may be
executed by the second version of the graph.

FIG. 9 shows an example data processing system 800 in which the replacement
component techniques described here can be used. The system 800 includes a data source
802 that may include one or more sources of data such as storage devices or connections
to online data streams, each of which may store or provide data in any of a variety of
formats (e.g., database tables, spreadsheet files, flat text files, or a native format used by a

mainframe). An execution environment 804 and development environment 818 may be

23

10

15

20

25

30

WO 2017/209969 PCT/US2017/033285

hosted, for example, on one or more general-purpose computers under the control of a
suitable operating system, such as a version of the UNIX operating system. For example,
the execution environment 804 can include a multiple-node parallel computing
environment including a configuration of computer systems using multiple central
processing units (CPUs) or processor cores, either local (e.g., multiprocessor systems
such as symmetric multi-processing (SMP) computers), or locally distributed (e.g.,
multiple processors coupled as clusters or massively parallel processing (MPP) systems,
or remote, or remotely distributed (e.g., multiple processors coupled via a local area
network (LAN) and/or wide-area network (WAN)), or any combination thereof.

The execution environment 804 reads data from the data source 802 and generates
output data. Storage devices providing the data source 802 may be local to the execution
environment 804, for example, being stored on a storage medium connected to a
computer hosting the execution environment 804 (e.g., hard drive 808), or may be remote
to the execution environment 804, for example, being hosted on a remote system (e.g.,
mainframe 810) in communication with a computer hosting the execution environment
804, over a remote connection (e.g., provided by a cloud computing infrastructure). The
data source 802 may contain the data that is defined in a test source definition (e.g., the
test source definition 201 of FIG. 4). That is, the layout parameter 212 of the test source
definition 201 may point to a location of a source file in the data source 802.

The output data may be stored back in the data source 802 or in a data storage
system 816 accessible to the execution environment 804, or otherwise used. The data
storage system 816 is also accessible to the development environment 818 in which a
developer 820 is able to develop, debug, and test graphs. The development environment
818 is, in some implementations, a system for developing applications as graphs that
include vertices (representing data processing components or datasets) connected by
directed flows (representing flows of work elements, i.e., data) between the vertices. For
example, such an environment is described in more detail in U.S. Publication No.
2007/0011668, titled “Managing Parameters for Graph-Based Applications,”
incorporated herein by reference. A system for executing such graph-based computations
is described in U.S. Patent 5,966,072, titled “EXECUTING COMPUTATIONS
EXPRESSED AS GRAPHS,” incorporated herein by reference. Graphs made in

24

10

15

20

25

30

WO 2017/209969 PCT/US2017/033285

accordance with this system provide methods for getting information into and out of
individual processes represented by graph components, for moving information between
the processes, and for defining a running order for the processes. This system includes
algorithms that choose interprocess communication methods from any available methods
(for example, communication paths according to the flows of the graph can use TCP/IP
or UNIX domain sockets, or use shared memory to pass data between the processes).

The development environment 818 includes a code repository 822 for storing
source code. In some examples, the source code and overlay specifications (e.g., the
overlay specification 220 of FIG. 4) may be developed by a developer 820 who has
access to the development environment, for example, through a user interface. In some
examples, the source code and overlay specifications are determined automatically, e.g.,
by the analysis engine 300 and insertion engine 306 described above. In some examples,
graphs and overlay specifications can be stored in the code repository 822. In some
examples, graphs are stored in the code repository 822, and overlay specifications are
stored in a separate overlay repository 824.

One or both of the code repository 822 and the overlay repository 824 may be in
communication with a compiler 826. The compiler 826 can compile a first version of a
graph and an overlay specification (e.g., the overlay specification 200 of FIG. 4) into an
executable second version of the graph 828. For example, the compiler may accept the
overlay specification as an input. One or more insertions are processed and inserted into
the graph in the form of objects that each corresponds to an insertion definition contained
in the overlay specification. The second version of the graph 828 can be visually
represented by a modified graph. The insertion objects may be represented in the second
version of the graph 500.

The development environment 818 can include an execution environment 830 for
executing the second version of the graph 828. For example, once a graph is compiled by
the compiler 826, the second version of the graph 828 can be executed. Executing the
second version of the graph 828 can include executing computations associated with the
components, insertions (e.g., test sources, probes, replacement components, or a
combination of any two or more of them), and directed flows of the second version of the

graph 828 as data (e.g., work elements or data records) flows between components. In

25

10

15

20

25

30

WO 2017/209969 PCT/US2017/033285

some examples, the execution environment 830 executes the second version of the graph
828 without modifying the source code of the first version graph that is stored in the code
repository 822 or the source code stored in the overlay repository 824. The execution
environment 830 may be accessible through an interface of the development environment
818, or may have its own interface. The interface can be configured to display
information related to the executions. The interface can also be configured to display
information related to the insertions (e.g., the data being monitored and saved by a probe,
the data being inserted by a test source, information about a replacement component, or
other information). The execution environment 830 may allow the developer 820 to
execute the second version of the graph 828 multiple times and modify aspects of the
second version of the graph 828 in between executions.

In some examples, a developer directs the insertions and compiling of the graph.
For instance, a developer 820 selects, from the code repository 822, the first version of
the graph 100 of FIG. 1. The developer 820 also selects, from the overlay repository 824,
the overlay specification 200 of FIG. 4. In some examples, instead of selecting the
overlay specification 200, the developer 820 may select insertion definitions from various
overlay specification in the overlay repository 824. The developer 820 instructs the
compiler 826 to compile the second version of the graph 828 based on the first version of
the graph 100 and the overlay specification 200.

In some examples, the insertions are inserted automatically. For instance, as
described above, one or more data sources, output data sinks, or format-specific
components in the graph 100 are automatically identified, e.g., by identifying
components that have no incoming connections or no outgoing connections or by
analyzing the specification of components in the graph 100. The identified data sources
and output data sinks can be automatically compared to a list of data sources and output
data sinks that are to be replaced by insertions during debugging of the graph 100. For
instance, the list can be provided by the developer 820. Format-specific components can
be analyzed to determine whether the components are capable of processing data of a
particular format, such as the format of an incoming set of data. A list of format-specific
components that are not capable of processing the data is generated. In some examples,

the list can be provided by the developer 820. Overlay specifications are automatically

26

10

15

20

25

30

WO 2017/209969 PCT/US2017/033285

created for the data sources, output data sinks, or format-specific components of the
graph 100 according to the list. The second version of the graph is then compiled
automatically.

In some examples, overlay specifications are not permanently stored as files in a
code repository 822 or an overlay repository 824, Rather, the information that would
typically be included in the overlay file (e.g., insertion definitions) is developed by the
developer 820 (e.g., through the user interface) or determined automatically by the
analysis engine 300 and insertion engine 306 and temporarily stored in memory. The
overlay information is then passed to the compiler (e.g., 608 of FIG. 8) or the saved state
manager (e.g., 708 of FIG. 9).

Referring to FIG. 10, in an example process, a first version of a graph (e.g., the
graph 100 of FIG. 1) is received (902). For instance, the first version of the graph can be
received into a short-term memory that is accessible by a processor. The first version of
the graph 100 includes components and flows. The components represent operations
performed on data records, and the flows represent flows of data records between
components.

An overlay specification that defines one or more insertions is received (904). In
some examples, the overlay specification is received from a developer or tester. In some
examples, the overlay specification is defined automatically, e.g., as described above.
The overlay specification may be the overlay specification 200 shown in FIG. 4. The
overlay specification can include one or more insertion definitions (e.g., one or more test
source definitions, one or more probe definitions, or one or more replacement component
definitions). An insertion definition can include a name, an upstream port, a downstream
port, an insertion type, a prototype path, and a layout parameter (for test source
definitions). Each of the defined test sources and probes can be associated with a flow of
the graph 100. Each of the defined replacement components can be associated with a
component of the graph 100.

One or more objects are generated that each corresponds to one of the defined
insertions (906). The objects may be components of a graph, such as test sources, probes,

or replacement components.

27

10

15

20

25

30

WO 2017/209969 PCT/US2017/033285

A second version of at least a portion of the graph is generated that includes at
least some of the components and flows of the portion of the graph 100 as well as the one
or more generated objects (908). In some examples, the second version of the graph is a
copy of the original graph 100 that is modified to include at least some of the components
and flows of the portion of the graph 100 as well as the one or more generated objects.
The second version of the graph can be visually represented by a modified graph (e.g.,
the second version of the graph 200 of FIG. 2 or the third version of the graph 300 of
FIG. 3). Each object is inserted at the flow associated with the defined insertion that
corresponds to the object (for test sources or probes), or in place of the component
associated with the defined replacement component that corresponds to the object. While
the generated insertion objects may appear in the second version of the graph along with
the data processing components of the graph 100, the first version of the graph 100 (or
the file containing the first version of the graph 100) is not modified.

While we described a compiler (e.g., compiler 608 of FIG. 7 and compiler 712 of
FIG. 8) that can compile the graph and the overlay specification to create second version
of the graph that includes the insertions defined by the overlay file, in some
embodiments, the graph and the overlay specification are not compiled. For example, the
graph and the overlay specification can be executed directly without being compiled. An
interpreter can execute the graph and the overlay specification directly by translating each
statement into a sequence of one or more subroutines that are already compiled into
machine code.

While we have described insertions in the form of probes, test sources, and
replacement components, in some embodiments, insertions can take on other forms.
Insertions can broadly be used to inject data at a given point of a graph and pull data from
a given point of a graph. For example, an insertion can be designed to monitor the quality
of data passing through a flow of a graph. If data quality falls below a threshold, a user
can receive an automated alert. Further description of insertions can be found in U.S.
Application Serial No. 14/715,904, the contents of which are incorporated here by
reference in their entirety.

Furthermore, while we have described insertions in the context of graphs, in some

embodiments, insertions can be used in conjunction with other executable applications.

28

10

15

20

25

30

WO 2017/209969 PCT/US2017/033285

For instance, data sources, output data sinks, or format-specific processes for a generic
executable application can be identified through an automated analysis of the application.
One or more of the identified data sources, output data sinks, or format-specific processes
can be replaced by an appropriate test source, probe, or replacement process,
respectively. In this way, the executable application can process data from a test source
and output data to a probe or can be made able to process data of a different format. This
configuration can be useful for testing or debugging the executable application.

The approaches described above can be implemented using a computing system
executing suitable software. For example, the software may include procedures in one or
more computer programs that execute on one or more programmed or programmable
computing system (which may be of various architectures such as distributed,
client/server, or grid) each including at least one processor, at least one data storage
system (including volatile and/or non-volatile memory and/or storage elements), at least
one user interface (for receiving input using at least one input device or port, and for
providing output using at least one output device or port). The software may include one
or more modules of a larger program, for example, that provides services related to the
design, configuration, and execution of graphs. The modules of the program (e.g.,
elements of a graph) can be implemented as data structures or other organized data
conforming to a data model stored in a data repository.

The software may be provided on a tangible, non-transitory medium, such as a
CD-ROM or other computer-readable medium (e.g., readable by a general or special
purpose computing system or device), or delivered (e.g., encoded in a propagated signal)
over a communication medium of a network to a tangible, non-transitory medium of a
computing system where it is executed. Some or all of the processing may be performed
on a special purpose computer, or using special-purpose hardware, such as coprocessors
or field-programmable gate arrays (FPGAs) or dedicated, application-specific integrated
circuits (ASICs). The processing may be implemented in a distributed manner in which
different parts of the computation specified by the software are performed by different
computing elements. Each such computer program is preferably stored on or downloaded
to a computer-readable storage medium (e.g., solid state memory or media, or magnetic

or optical media) of a storage device accessible by a general or special purpose

29

10

WO 2017/209969 PCT/US2017/033285

programmable computer, for configuring and operating the computer when the storage
device medium is read by the computer to perform the processing described herein. The
inventive system may also be considered to be implemented as a tangible, non-transitory
medium, configured with a computer program, where the medium so configured causes a
computer to operate in a specific and predefined manner to perform one or more of the
processing steps described herein.

A number of embodiments have been described. Nevertheless, it is to be
understood that the foregoing description is intended to illustrate and not to limit the
scope of the invention, which is defined by the scope of the following claims.
Accordingly, other embodiments are also within the scope of the following claims. For
example, various modifications may be made without departing from the scope of the
invention. Additionally, some of the steps described above may be order independent,

and thus can be performed in an order different from that described.

30

10 Nov 2020

2017274407

What is claimed is:

1. A method including:

analyzing, by one or more processors, a first version of a computer program, the
analyzing including identifying a first process included in the first version of the
computer program, the first process corresponding to and configured to perform a
first operation on data of a first format;

wherein the first process is defined by a first specification, wherein the first specification
identifies the first format of data;

defining, based on the analysis, a second specification based on the first specification,
wherein the second specification identifies a second format of data different from
the first format;

wherein the second specification defines one or more second processes that are
configured to perform a second operation on data of the second format, wherein
the second operation is based on the first operation; and

by one or more processors, generating a second version of at least a portion of the
computer program based on the first version of the computer program and using
the second specification, including:
omitting the first process from the second version, and
including, in the second version of the at least portion of the computer program,

the one or more second processes defined by the second specification.

2. The method of claim 1, in which:

(a) identifying the first process includes identifying a process in which the first operation
is dependent on a format of the data; and/or

(b) identifying the first process includes identifying a process that is unable to perform
the first operation on data of the second format; and/or

(c) identifying the first process includes identifying a first data processing element of the
computer program, the first data processing element configured to execute the first process;

and/or

31

10 Nov 2020

2017274407

(d) the first format comprises a data type; and/or

(e) the first format includes a size of a data element; and/or

(f) the first process is configured to perform the first operation on data records of a first
record format and in which the one or more second processes are configured to perform the
second operation on data records of a second record format; and/or

(g) generating the second version of at least a portion of the computer program includes
generating a copy of the portion of the computer program; and/or

(h) the second specification is an overlay specification;

(1) the computer program comprises a graph.

3. The method of claim 1, including;:
(a) determining a format of data to be processed by the first process; and/or
(b) presenting, in a user interface, an identifier of the first operation; and/or

(c) executing the second version of the computer program.

4. The method of claim 3, in which identifying the first process includes identifying a
process that is unable to perform the first operation on data having the format of the data to be

processed by the first process.

5. The method of claim 2, in which:

(a) including the one or more second processes in the computer program includes
including one or more second data processing elements in the second version of the at least
portion of the computer program, the second data processing element configured to execute the
one or more second processes; and/or

(b) the first record format comprises a name of a field in the records; and/or

(c) generating the second version of the computer program includes generating the
second version based on the first version of the computer program and using the overlay
specification; and/or

(d) the overlay specification identifies one or more of a process upstream of the first

process and a process downstream of the first process; and/or

32

10 Nov 2020

2017274407

(e) the first process is an executable process represented by a first component of the
graph and in which the one or more second processes are executable processes represented by

one or more second components of the graph.

6. The method of claim 2, including;:

(a) modifying the copy of the portion of the computer program to omit the first process
and to include the one or more second processes; and/or

(b) identifying the first process based on an analysis of executable code defining the first

process

7. The method of claim 5, in which:

(a) the one or more second components are configured to receive data records from an
upstream component of the graph; and/or

(b) the one or more second components are configured to provide data records to a

downstream component of the graph.

8. A system including;:

means for analyzing, by a processor, a first version of a computer program, the analyzing
including identifying a first process included in the first version of the computer
program, the first process corresponding to and configured to perform a first
operation on data of a first format;

wherein the first process is defined by a first specification, wherein the first specification
identifies the first format of data;

means for defining, based on the analysis, a second specification based on the first
specification, wherein the second specification identifies a second format of data
different from the first format;

wherein the second specification defines one or more second processes that are
configured to perform a second operation on data of the second format, wherein

the second operation is based on the first operation; and

33

10 Nov 2020

2017274407

means for generating, by a processor, a second version of at least a portion of the
computer program based on the first version of the computer program and using
the second specification, the generating including:
omitting the first process from the second version, and
including, in the second version of the at least portion of the computer program,

the one or more second processes defined by the second specification.

A system including:
one or more processors coupled to a memory, the one or more processors and memory
configured to:
analyze a first version of a computer program, the analyzing including identifying
a first process included in the first version of the computer program, the
first process corresponding to and configured to perform a first operation
on data of a first format;
wherein the first process is defined by a first specification, wherein the first
specification identifies the first format of data;
define, based on the analysis, a second specification based on the first
specification, wherein the second specification identifies a second format
of data different from the first format;
wherein the second specification defines one or more second processes that are
configured to perform a second operation on data of the second format,
wherein the second operation is based on the first operation; and
generate a second version of at least a portion of the computer program, based on
the first version of the computer program and using the second, including:
omitting the first process from the second version, and
including, in the second version of the at least portion of the computer
program, one or more second processes corresponding to the
omitted first process, the one or more second processes defined by

the second specification.

34

10 Nov 2020

2017274407

10. A non-transitory computer-readable medium storing instructions for causing a computing
system to:
analyze a first version of a computer program, the analyzing including identifying a first
process included in the first version of the computer program, the first process
corresponding to and configured to perform a first operation on data of a first
format;
wherein the first process is defined by a first specification, wherein the first specification
identifies the first format of data;
define, based on the analysis, a second specification based on the first specification,
wherein the second specification identifies a second format of data different from
the first format;
wherein the second specification defines one or more second processes that are
configured to perform a second operation on data of the second format, wherein
the second operation is based on the first operation; and
generate a second version of at least a portion of the computer program based on
the first version of the computer program and using the second specification, including:
omitting the first process from the second version, and
including, in the second version of the at least portion of the computer program,

the one or more second processes defined by the second specification.

11. The system of claim 9, or the non-transitory computer-readable medium of claim 10, in
which:

(a) identifying the first process includes identifying a process in which the first operation
is dependent on a format of the data; and/or

(b) identifying the first process includes identifying a process that is unable to perform
the first operation on data of the second format; and/or

(c) identifying the first process includes identifying a first data processing element of the
computer program, the first data processing element configured to execute the first process;

and/or

35

10 Nov 2020

2017274407

(d) the first process is configured to perform the first operation on data records of a first
record format and in which the one or more second processes are configured to perform the
second operation on data records of a second record format; and/or

(e) generating the second version of at least a portion of the computer program includes
generating a copy of the portion of the computer program; and/or

(f) the computer program comprises a graph.

12. The system of claim 9, the one or more processors and memory configured to determine a

format of data to be processed by the first process.

13. The non-transitory computer-readable medium of claim 10, the instructions causing the

computing system to determine a format of data to be processed by the first process.

14. The system of claim 12, or non-transitory computer-readable medium of claim 13, in
which identifying the first process includes identifying a process that is unable to perform the

first operation on data having the format of the data to be processed by the first process.

15. The system or the non-transitory computer-readable medium of claim 11, in which:

(a) including the one or more second processes in the computer program includes
including one or more second data processing elements in the second version of the at least
portion of the computer program, the second data processing element configured to execute the
one or more second processes; and/or

(b) the first process is an executable process represented by a first component of the
graph and in which the one or more second processes are executable processes represented by

one or more second components of the graph.
16. The non-transitory computer-readable medium of claim 11, the instructions causing the

computing system to modify the copy of the portion of the computer program to omit the first

process and to include the one or more second processes.

36

10 Nov 2020

2017274407

17. The non-transitory computer-readable medium of claim 10, the instructions causing the

computing system to execute the second version of the computer program.

18. The system of claim 9, or the non-transitory computer-readable medium of claim 10,

wherein the second specification is an overlay specification.

19. The system or the non-transitory computer-readable medium of claim 18, in which
generating the second version of the computer program includes generating the second version

based on the first version of the computer program and using the overlay specification.

20. The non-transitory computer-readable medium of claim 18, the instructions causing the
computing system to identify the first process based on an analysis of executable code defining

the first process.
21. The system of claim 11, the one or more processors and memory configured to modify
the copy of the portion of the computer program to omit the first process and to include the one

or more second Processcs.

22. The system of claim 9, the one or more processors and memory configured to execute the

second version of the computer program.

23. The system of claim 18, the one or more processors and memory configured to identify

the first process based on an analysis of executable code defining the first process.

37

PCT/US2017/033285

WO 2017/209969
1/10

100

114

Cutput data
sink

103
Filter
118
194
Sort 108
Reformat
Gather
i0e
Replicate

130

Filter by Expression

FIG. 1

WO 2017/209969

2/10
200
115
103
Filter
L |
}
| 204 i
I Sort f
b (Replacement) : 108
! Reformat
U
106
Replicate
110

Filter by Expression

PCT/US2017/033285

114

Cutput data
sink

118

Gather p—

FIG. 2

WO 2017/209969 PCT/US2017/033285
3/10

300

114

Cutput data
sink

118

i 308
Reformat
i {Replacement) |

(¥4l
¢ ia
A 1

Gather p—

106
Replicate

1ig
Filter by Expression

FIG. 3

PCT/US2017/033285

WO 2017/209969

4/10

e ——> opuraliy INAING/ASEQERC/SINENOJNOD €V$||[$4d|gred odiojoud;
siojowered Jo smogqwinu /|

S324N0S 15981 40} Ajuo {patoub paypow st/ ¢

panmbar st/ g

Uesd St/ 0

agod ﬁm mmﬁﬁml S1 \a

0l mg@wmm B m“wm Ee& z\ M

uod &m@bv% 1B oqunu sousnbas /7 g

124 > 1od wrensumop // woamoserinding

ate > wod weansdn // no/myien

e —> UORIaSUI 8f} JO Buiey ;m@.mimﬁ
UOIMasUl PUoI9s JO mgmczmmmm ‘UOILIBSUL }SJ1) JO pUd //

AN > jepojeorpdor 10) 201m0s 1891/ TYINES TVE:eng|||$moiey

0L ———— opwrery mduj/eseqere(/SINANOINGD gvs|||sid|ged adioioad;
siojeurered Jo Joquinu // 7

pagIpot st/ ()
sagotd 10§ Ajuo (paisoubs paanbar st/ |
saqoad 10} Ajuo Ipasoub) uesp s \
saqoud J0j Ajuo mm.mmﬁmm oqoad “opiy soseyd s1 /g
saqotd Joy Ajuo pasouby sqoid oy jedo] m:\g

80¢ > 804n0s 1893 & 831 0qoxd s1// ¢
wod weansdn g Jequny souonbos // g

902 > 10d weansumop // U193 L
y0OC > uod wreonsdn // nogeseqeieq

207 ——> UOCIM3SU} 8} JO BLIBU // JBP'20MOS | sul

uoasul 1s4y jo Buiuuibaqg Lispeay Jo puay

SJLIA TO SUOTLIOSUT ISpIo// |

0

padde ag M suoiuasul asayy ydesb ayy // dwrydesd spdumxa/diN 1V$
mowwmu\w .\.\ i

JBPesy aul-¢ B YHM SLIB1S 31y ABliaAao yoely/

¥ Ol

> CLe

> L0¢

002

SUBSTITUTE SHEET (RULE 26)

PCT/US2017/033285

WO 2017/209969

5/10

FAAS

Ore

SOE 2UIBUD UOILIBSUY

YIE adBpI3IU J95N

)

5Dl

001 Yaeig

"yog)

00§ auidua sisAjeuy

WO 2017/209969 PCT/US2017/033285
6/10

Receive data having a particular format

400

Determine whether to analyze the graph for ability
1o process the received data

402

Analyze graph to identify format-specific
components

404

Determine which format-specific components are
to be replaced

406

Define overlay specification for each replacement
component

408

Compile graph using overlay specifications

410

FIG. 6

WO 2017/209969

7/10

Compiler

=<

g
Graph

PCT/US2017/033285

FIG. 7

PCT/US2017/033285

WO 2017/209969

8/10

Bpdwon
[4vA

Asoysoday
31815 panes

0tz

8 5l

8067
BEY:=1VIIRY
31815 panes

3l
ABLBAD

507

WO 2017/209969
9/10

800 Z&

PCT/US2017/033285

828

/

820

DEVELOPMENT ENVIRONMENT / 18

SSS——

Executable
Graph

Compiler
X
LA N

Y

o ~
826 < S 2
Code : Qverlay |
Repository i Repository ;
. .. -

v

Teast Execution
Enviornment

822 824

816

~N
i - 804

~—

DATA STORAGE

814

// 802

810

i1

808 EXECUTION
' E B ENVIRONMENT

i

FIG. 9

830

WO 2017/209969 PCT/US2017/033285
10/10

902

Receive a first version of a graph

v

Receive an overlay specification that defines one or
more inserions

'

Generate one or more objects that each correspond to

904

306

one of the defined insertions

$ 308

Generate a second version of at least a portion of the
graph that includes at least some of the components
and flows of the graph and the one or more
generated objects

FIG. 10

	Bibliographic Page
	Abstract
	Description
	Claims
	Drawings

