

(86) Date de dépôt PCT/PCT Filing Date: 2014/03/17
(87) Date publication PCT/PCT Publication Date: 2014/09/25
(45) Date de délivrance/Issue Date: 2023/10/17
(85) Entrée phase nationale/National Entry: 2015/09/16
(86) N° demande PCT/PCT Application No.: DK 2014/000015
(87) N° publication PCT/PCT Publication No.: 2014/146663
(30) Priorités/Priorities: 2013/03/18 (DK PA 2013 00155);
2013/12/11 (DK PA 2013 00684)

(51) Cl.Int./Int.Cl. C07K 14/295 (2006.01),
A61K 39/118 (2006.01)

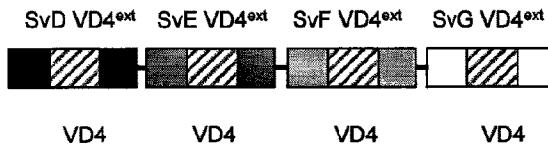
(72) Inventeurs/Inventors:

FOLLMANN, FRANK, DK;
ROSENKRANDS, IDA, DK;
OLSEN, ANJA, DK;
ANDERSEN, PETER LAWAETZ, DK

(73) Propriétaire/Owner:

STATENS SERUM INSTITUT, DK

(74) Agent: BORDEN LADNER GERVAIS LLP


(54) Titre : VACCINS CONTRE CHLAMYDIA SP.

(54) Title: VACCINES AGAINST CHLAMYDIA SP.

Homologous immuno-repeats

Heterologous immuno-repeats

(57) Abrégé/Abstract:

The present invention describes an efficient vaccine against a Chlamydia trachomatis (Ct). The vaccine is based on recombinant fusion molecules that are capable of generating a high titered neutralizing antibody response that is protective against various Ct serovars. Our invention furthermore describes the combination of these antibody promoting fragments with Ct antigens that are targets for T cells with the aim to provide a vaccine that activate both arms of the immune system.

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(10) International Publication Number

WO 2014/146663 A1

(43) International Publication Date
25 September 2014 (25.09.2014)(51) International Patent Classification:
C07K 14/295 (2006.01) *A61K 39/118* (2006.01)(21) International Application Number:
PCT/DK2014/000015(22) International Filing Date:
17 March 2014 (17.03.2014)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
PA 2013 00155 18 March 2013 (18.03.2013) DK
PA 2013 00684 11 December 2013 (11.12.2013) DK(71) Applicant: STATENS SERUM INSTITUT [DK/DK];
Artillerivej 5, DK-2300 Copenhagen S (DK).(72) Inventors: FOLLMANN, Frank; Mørkhøj Parkalle 8D,
DK-2860 Søborg (DK). ROSENKRANDS, Ida; Søndersø
Park 6, DK-3500 Værløse (DK). OLSEN, Anja; Jacob
Bulls Alle 121, DK-2860 Søborg (DK). ANDERSEN,
Peter, Lawætz; Sparresholmvej 47, DK-2700 Brønshøj
(DK).(74) Agent: TOFT, Lars; Statens Serum Institut, Corporate Af-
fairs, Artillerivej 5, DK-2300 Copenhagen S (DK).(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:

— with international search report (Art. 21(3))

[Continued on next page]

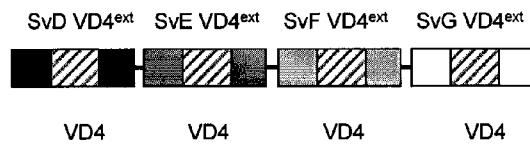

(54) Title: VACCINES AGAINST CHLAMYDIA SP.

Figure 4

Homologous immuno-repeats

Heterologous immuno-repeats

(57) Abstract: The present invention describes an efficient vaccine against a *Chlamydia trachomatis* (*Ct*). The vaccine is based on recombinant fusion molecules that are capable of generating a high titrated neutralizing antibody response that is protective against various *Ct* serovars. Our invention furthermore describe the combination of these antibody promoting fragments with *Ct* antigens that are targets for T cells with the aim to provide a vaccine that activate both arms of the immune system.

WO 2014/146663 A1

WO 2014/146663 A1

- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))
- with sequence listing part of description (Rule 5.2(a))

Vaccines against *Chlamydia* sp.

Field of invention

The present invention relates to polypeptides of repetitive units of immunogenic fragments of 5 surface exposed regions of outer membrane proteins of *Chlamydia* sp. and pharmaceutical compositions and vaccines comprising these fusion proteins.

General background

Chlamydiae are intracellular bacterial pathogens responsible for a variety of infections.

10 *Chlamydia pneumoniae* is responsible for human acute respiratory infection and believed to play a role in coronary heart disease. *Chlamydia trachomatis* is the causative agent of human sexually transmitted disease and eye infections (Trachoma). Also in animals, several infections with *Chlamydia* sp. are known, e.g. *Chlamydia Suis* infecting pigs, and *Chlamydiaphila abortus* which causes abortion in small ruminants (sheep and goats).

15 Worldwide, it is estimated that 92 million individuals become sexually infected with *Chlamydia trachomatis* (*Ct*)¹. Urogenital infections with *Ct* are of public health concern because of its high prevalence and the fact that it's a risk factor for ectopic pregnancy and infertility². In addition to this *Ct* infections have been shown to facilitate the transmission of 20 HIV³ and act as a co-factor in HPV-induced cervical carcinoma⁴. The duration of untreated genital *Ct* infection can be prolonged, and complete clearance is often not reached within the first 12 months⁵. From human studies it is known that some degree of protective immunity against genital re-infection develops, although it appears at best to be partial⁶. The infection is effectively controlled by antibiotic therapy; however the high prevalence of asymptomatic 25 cases suggests that sustainable disease control can only be envisaged if an effective *Chlamydia* vaccine is developed.

A vaccine against *Ct* needs to elicit protective T-cell and B-cell immunity in the genital tract mucosa⁷. Immune mechanisms of clearance of infection and resistance to re-infection have 30 been described in numerous studies. A variety of animal models and chlamydial species have been used in attempts to identify protective and damaging immune responses. A general consensus has emerged that, in mice, CD4+ Th1 cell mediated immune responses plays a major role in the resolution of *Ct* infection^{8, 9, 10}, whereas the role of humoral immunity

in protection has remained less well defined. In guinea pigs immunity to chlamydial infection is mediated at least partly by secretory IgA at the mucosal surface ^{11, 12} and also in the mouse model there is increasing evidence to support a role for antibodies in protective immunity ⁹. Data from animal models that has emerged over the last years clearly demonstrate that if 5 antibodies are formed after the infection is established they play a minimal role, whereas their presence at the time of infection (e.g. in a secondary response) promotes significant levels of protection, an effect that is however clearly amplified in the presence of Chlamydia specific CD4⁺ cells ^{9, 13, 14}. A strong cell mediated immune (CMI) response without antibodies may on the other hand control bacterial replication but can in the worst case exacerbate the 10 pathology associated with Chlamydia infection ^{15 16}. The importance of this interplay between cell mediated immunity and antibodies is also becoming increasingly clear to support a preferential role of neutralizing antibodies in the initial phase of infection, whereas CD4⁺ cells are the main effectors throughout the rest of the infection ^{17 18 19}. In summary balancing the immune effector mechanisms between antibodies and T cells seems to be crucial for disease 15 outcome.

We and others have identified a range of chlamydial antigens recognized during a natural infection in either humans or animal models ^{20, 21 22, 23 24 25, 26 27}. Especially the publishing of the genome sequence in 1998 and modern high throughput techniques have led to the 20 testing of almost the entire genome of 875 open reading frames ²⁸. Importantly, identifying proteins as antigenic during an infection do not necessarily mean they are protective as vaccines ²⁹ and despite the characterization of such a large number of antigens only very few of these have been demonstrated to mediate protection as vaccines in animal models ^{30 31, 32}. Furthermore for the majority of the vaccines recently reported the partial protection observed 25 is mediated by T cells with no neutralizing antibodies. Therefore there is a lack of vaccine candidates that generate neutralizing antibodies that can cope with the infection in the initial phase and creating a balanced immune response.

Until now there has only been convincing data on neutralizing antibodies with three surface 30 exposed antigens; PorB, which localized in the chlamydial outer membrane and functions as a porin ³³. Antibodies against this has been shown to neutralize chlamydial infectivity ³⁴, patent ref: US 7,105,171. Another more recent antigen is PmpD. This protein has been

shown to generate neutralizing antibodies *in vitro*, however the *in vivo* relevance of these antibodies have not yet been demonstrated³⁵.

MOMP is the classical target antigen for neutralizing antibodies and one of the first antigenic molecules described. It is a surface-exposed trans membrane protein which has structural

5 (porin) properties^{36, 37, 38}. MOMP is a 40 kDa protein making up roughly 60% of the protein in the *Ct* membrane and is a target for neutralizing antibodies with proven efficacy both *in vitro* and *in vivo*. MOMP consists of four variable surface exposed domains (VD-1 to VD-4) separated by five constant segments^{36 39} and it is the molecular basis of the serovar (~15) grouping of Chlamydia (Fig. 1). The *in vitro* and *in vivo* neutralizing antibody epitopes have 10 been mapped to these VDs^{40 41 42 43 44}. The distribution profile of *Ct* urogenital serovars has been described for regions worldwide, providing epidemiological data for the serovar coverage needed of a MOMP based vaccine. The most common serovar detected worldwide is E (22-49% of cases) followed by serovars F and D (17-22% and 9-19%, respectively)^{45 46} 15^{47 48 49 50}, meaning that a vaccine targeting serovars E, D and F would have a significant impact and cover more than 70% of the human population.

MOMP is highly immunogenic in humans and animals and has therefore been studied in great detail as a vaccine candidate, both as a natively purified protein, recombinantly and as DNA-vaccine. These vaccination attempts gave variable results^{17, 51, 52, 53, 54, 55, 56, 57}. The

20 reason for the relative inconsistency of MOMP as a vaccine is not fully understood, but the fact that the synthetic MOMP immunogens do not mimic the native structure of the protein has been the major concern⁵⁴. In this regard, the structure of this membrane bound cysteine rich molecule and refolding various products to achieve native protein structure has been extremely challenging and is not suitable for large scale vaccine production⁵⁸. Therefore, 25 although clearly with vaccine potential, full size MOMP has so far not been a feasible vaccine candidate and several attempts have therefore been made to construct a vaccine based on selected epitopes (such as the highly conserved TTLNPTIAG in VD4^{36, 59}) or based on selected regions rich in neutralizing target epitopes (such as the VD's) from MOMP (WO9406827, US6384206)^{60, 61 62, 63 64 51, 65 66}.

30 There has been special focus on VD1, VD2 and VD4 because neutralizing monoclonal antibodies used for serotyping has been shown to map to these regions. These VD regions are targeted by antibodies during natural infection and in line with this, these regions have

naturally been the focus of attempts to develop immuno-diagnostics. For example Mygind et al. constructed different polyantigens containing VD regions from different serovariants in the search for a diagnostic tool based on ELISA⁶⁷. This analysis revealed that by increasing the number of serovariants and include the species specific TTLNPTIAG into one recombinant 5 polyantigen, it was possible to increase the specificity and sensitivity of the assay compared to an assay based on a single serovariant antigen.

Mainly VD4 has attracted interest as an immunogen because this region was shown to contain the highly conserved species-specific epitope TTLNPTIAG embedded in the variable 10 region. Importantly, this conserved epitope in the VD4 region can elicit a broadly cross-reactive immune response, which is able to neutralize multiple serovars, among them the most prevalent D, E and F (Fig. 2). Peptides representing the VD4 region or the conserved epitope derived from this region have been used for immunization either alone, as chimeric peptides fused to other regions such as VD1 or mixed with T cell epitopes to potentiate the 15 antibody response^{60, 68 51, 65 64 69}. All these constructs generated antibodies with some functional capabilities of neutralizing the infection *in vitro* but in general these strategies suffer from a low immunogenicity and the titres did not translate into *in vivo* protective efficacy against genital chlamydial challenge.

20 Reasons for the lack of protection when using these peptide based constructs can be numerous; including route of administration, type of immune response elicited, challenge dose, but most likely reflects that the vaccine molecule is not sufficiently immunogenic for use as a vaccine. The VD4 based strategy furthermore suffers from the limitation that with the exception of the TTLNPTIAG epitope, these fragments as mentioned above are highly 25 specific for one or two serovariants and a vaccine would accordingly have to be composed of several components to cover the most frequent serovariants causing human disease.

In WO2012172042 it has previously been disclosed that B-cell epitopes within the VD regions, combined with defined T cell (Th1 and Th2) epitopes from non-variable domains of 30 MOMP, could function as a poly-epitope vaccine against *Chlamydia psittaci* serovar D in chickens; in the examples they describe the combination of up to three B-cell epitopes each derived from a VD region from different variable domains of the same serovariant together with several T-cell epitopes. The use of repeats of a variable domain of a surface exposed

region of MOMP and using different serovariants is not suggested and thus high titers and a broad response against different serovariants is not obtained.

The object of the current invention is to prepare recombinant fusion molecules that are
5 capable of generating a high titered neutralizing antibody response that is protective against various *Ct* serovars *in vivo*. Our invention furthermore describes the combination of these antibody promoting fragments with *Ct* antigens that are targets for T cells with the aim to provide a vaccine that activate both arms of the immune system.

10

Summary of the invention

The present invention discloses an efficient vaccine against a pathogen, e.g. *Chlamydia trachomatis* (*Ct*), that incorporates repeats of surface exposed fragments of *Ct* antigens (homologous immuno-repeats) for maximal antibody responses. In one embodiment of the
15 invention, these surface exposed fragments are extended to cover the flanking region of the surface exposed fragments that may contain T cell epitopes. One example is a defined large fragment representing an extended version of the VD1 or VD4 region from the *Ct* MOMP antigen and in the immuno-repeat format provides high levels of surface binding and neutralizing antibodies against *Ct*. In another important embodiment the immuno-repeat
20 technology is used to obtain high titers and a broad response against different serovariants by the fusion of fragments that contain variable B and T cell epitopes from different serovariants (heterologous immuno-repeats). In yet another embodiment of our invention these surface exposed repeats are recombinantly fused with fragments of other surface exposed antigens such as PMPs or OMPs. Finally our invention discloses combinations of
25 these immuno-repeat constructs with strong T cell antigens, such as MOMP(CT681), CT043 or CT004 from *Ct* that together form a very efficient vaccine against the different infectious stages of *Ct* infection.

30 **Detailed disclosure of the invention**

The invention discloses a polypeptide comprising

a) an amino acid sequence comprising one or more surface exposed fragments of the same outer membrane protein expressed in a serotype of *Chlamydia* sp.; and

b) two or more additional amino acid sequences which is either the same sequence as defined in a) or is the corresponding surface exposed fragments from a variant of said outer

5 membrane protein expressed in a serotype of *Chlamydia* sp., which is different from the serotype in a).

The invention thus discloses polypeptides comprising immuno-repeats, which is 3 or more such as 4 or more repeats of an amino acid sequence comprising an immunogenic portion of

10 a surface exposed region of an outer membrane protein of *Chlamydia* sp. Hence the invention can be described as a polypeptide comprising an amino acid sequence comprising one or more surface exposed fragments of the same outer membrane protein expressed in a serotype of *Chlamydia* sp. and two or more such as three or more additional amino acid sequences which is either the same sequence as defined in a) or is the corresponding

15 surface exposed fragments from a variant of said outer membrane protein expressed in a serotype of *Chlamydia* sp., which is different from the serotype in a).

In a preferred embodiment the polypeptide comprises 3 or more different amino acid sequences, where said amino acid sequences each comprises one or more surface exposed

20 fragments from different variants or isotypes of the same outer membrane protein that varies in different *Chlamydia* sp. serotypes, said amino acid sequences derived from different *Chlamydia* sp. serotypes (heterologous immuno-repeats in our terminology), but the invention also discloses a polypeptide comprising 3 or more repetitions of an amino acid sequence, where said amino acid sequence comprises one or more surface exposed

25 fragments of the same outer membrane protein that varies in different *Chlamydia* sp. serotypes, said amino acid sequences derived from the same *Chlamydia* sp. serotype (homologous immuno-repeats in our terminology).

The outer membrane protein is preferable the major outer membrane protein (MOMP) from

30 any *Chlamydia* sp. serotype and the surface exposed fragment is chosen from variable domain 1 (VD1), variable domain 2 (VD2), variable domain 3 (VD3) or variable domain 4 (VD4) of MOMP. The surface exposed fragment can optionally be linearized by substitution of cysteine in the amino acid sequence to prevent disulfide bonds.

A preferred embodiment of the invention is polypeptides comprising immuno-repeats with 3 or more repeats of the variable domain 4 (VD4) of MOMP from any of serovars D, E, F, G, Ia and J of *Chlamydia trachomatis*, where each variable domain consists of an amino acid sequence, which corresponds to the position of amino acid residues Nos. 309-338 in the amino acid sequence of MOMP of *Chlamydia trachomatis* serovar D (SvD) (SEQ ID NO.: 68) and where the variable domains in the immune-repeat is independently selected from the group consisting of the VD4 of serovar D, the VD4 of serovar E, the VD4 of serovar F, the VD4 of serovar G, the VD4 of serovar Ia and the VD4 of serovar J of *Chlamydia trachomatis* or has 80 % sequence identity herewith.

The amino acid sequence of VD4 from serovar D, E, F, G, Ia and J corresponds to SEQ ID NO 15-20 respectively. Each variable domain can additionally be flanked/extended on the N-terminal side by either

- 15 i) The amino acid sequence EWQASLALSYRLNMFTPYIGVKWSRASFDADTIRIAQPK (SEQ ID NO 21) or
- ii) A subsequence of the amino acid sequence in i) said subsequence comprising 1 or more amino acid residues,

On the C-terminal side the variable domain can additionally be flanked/extended by

- 20 iii) The amino acid sequence DTMQIVSLQLNKMKSRKSCGIAVGTTIVDA (SEQ ID NO 22)
- iv) A subsequence of the amino acid sequence in iv) said subsequence comprising 1 or more amino acid residues,

or an amino acid sequence which has at least 80 % sequence identity herewith.

25 Hence the preferred embodiment can be described as polypeptides comprising 2-8 different amino acid sequences each derived from MOMP from *Chlamydia trachomatis* which comprises an amino acid sequence defined in formula I:

$$xx_1\text{-VD4-}xx_2 \quad (\text{Formula I})$$

wherein

VD4 is independently selected from SEQ ID NO. 15-20 or an amino acid sequence which has at least 80 % sequence identity herewith,

and

xx₁ consists of

- 5 i) The amino acid sequence EWQASLALSYRLNMFTPYIGVKWSRASFDADTIRIAQPK (SEQ ID NO 21) or
 - ii) A subsequence of the amino acid sequence in i) said subsequence comprising 1-38 amino acid residues, starting with the C-terminal K in the amino acid sequence in i) and
- 10 xx₂ consists of
 - iii) The amino acid sequence DTMQIVSLQLNKMKSRKSCGIAVGTTIVDA (SEQ ID NO 22)
 - v) A subsequence of the amino acid sequence in iii) said subsequence comprising 1-29 amino acid residues, starting with the N-terminal D in the amino acid sequence in iii).
- 15

Examples of fusion proteins comprising immuno-repeats of VD4 of MOMP is indicated by SEQ ID NO 49-59 .

- 20 In another embodiment of the invention the polypeptide additionally comprises immuno-repeats of 3 or more variable domain 1 (VD1) of MOMP from any of serovars D, E, F, G, Ia and J of *Chlamydia trachomatis*, each variable domain consisting of an amino acid sequence, which corresponds to position of amino acid residues nos. 91-105 in the amino acid sequence of MOMP of *Chlamydia trachomatis* serovar D (SvD) (SEQ ID NO.: 68) and is independently selected from the group consisting of the VD1 of serovar D, the VD1 of serovar E, the VD1 of serovar F, the VD1 of serovar G, the VD1 of serovar Ia and the VD1 of serovar J of *Chlamydia trachomatis* or has 80 % sequence identity herewith.
- 25

The amino acid sequence of VD1 from serovar D, E, F, G, Ia and J corresponds to SEQ ID NO 1-6 respectively. Each variable domain can additionally be flanked/extended on the N-terminal side by either

- vi) The amino acid sequence SMRVGVYYGDFVFDRLKTDVNKEFQMG (SEQ ID NO 7)
- 5 vii) A subsequence of the amino acid sequence in v) said subsequence comprising 1 or more amino acid residues.

On the C-terminal side the variable domain can additionally be flanked/extended by

- viii) The amino acid sequence NPAYGRHMQDAEMFTNAACMALNIWD (SEQ ID NO 8)
- ix) A subsequence of the amino acid sequence in x) said subsequence comprising 1 or 10 more amino acid residues;

Or an amino acid sequence which has at least 80 % sequence identity herewith.

Hence another preferred embodiment can be described as polypeptides comprising 2-8 different amino acid sequences each derived from MOMP from *Chlamydia trachomatis* which 15 comprises an amino acid sequence defined in formula I and additionally comprising an amino acid sequence defined in formula II:

yy₁-VD1-yy₂ (Formula II)

wherein

VD1 is independently selected from SEQ ID NO. 1-6 or an amino acid sequence which has 20 at least 80 % sequence identity herewith,

and

yy₁ consists of

- v) The amino acid sequence DAISMRVGYYGDFVFDRLKTDVNKEFQMG (SEQ ID NO 7) or 25 vi) A subsequence of the amino acid sequence in v) said subsequence comprising 1-30 amino acid residues, starting with the C-terminal G in the amino acid sequence in v) and

yy₂ consists of

- vii) The amino acid sequence NPAYGRHMQDAEMFTNAA (SEQ ID NO 8) or

viii) A subsequence of the amino acid sequence in vii) said subsequence comprising 1-18 amino acid residues, starting with the N-terminal N in the amino acid sequence in vii).

Examples of polypeptides comprising immuno-repeats of VD1 is indicated by SEQ ID NO 9-14 and 45-48.

5 Further embodiments of the invention comprises additionally comprises a fragment comprising the variable domains 2 (VD2) and/or variable domains 3 (VD3) of MOMP respectively comprising an amino acid sequence defined in formula III and/or formula IV:

zz₁-VD2-zz₂ (Formula III)

10 qq₁-VD3-qq₂ (Formula IV)

wherein

VD2 is independently selected from SEQ ID NO. 29-34 or an amino acid sequence which has at least 80 % sequence identity herewith,

and

15 zz₁ consists of

ix) The amino acid sequence TLGATSGYLKGNSASFNLVGLFG (SEQ ID NO 35) or
x) A subsequence of the amino acid sequence in ix) said subsequence comprising 1-23 amino acid residues, starting with the C-terminal G in the amino acid sequence in ix)

and

20 zz₂ consists of

xi) The amino acid sequence VVELYTDTTFAWSVGARAALWE (SEQ ID NO 36) or
xii) A subsequence of the amino acid sequence in xi) said subsequence comprising 1-22 amino acid residues, starting with the N-terminal V in the amino acid sequence in xi).

And wherein wherein

25 VD3 is independently selected from SEQ ID NO. 37-42 or an amino acid sequence which has at least 80 % sequence identity herewith,

and

qq₁ consists of

xiii) The amino acid sequence ATLGASFQYAQSKPKVEELNVLCAAEEFTINKPKGYVG (SEQ ID NO 43) or

xiv) A subsequence of the amino acid sequence in xiii) said subsequence comprising 1-22 amino acid residues, starting with the C-terminal G in the amino acid sequence in xiii)

5 and

qq₂ consists of

xv) The amino acid sequence TGTDASIDYHEWQASLALSYRLNMFTPYIGVKWS (SEQ ID NO 44) or

xvi) A subsequence of the amino acid sequence in xv) said subsequence comprising 1-35 10 amino acid residues, starting with the N-terminal T in the amino acid sequence in xv).

The immuno-repeats can be heterologous, that is where the variable domain is derived from different serotypes or they can be homologous, that is where the variable domain is derived one serotype. The preferred number of repeats are 2, 3, 4, 5, 6, 7 or 8 repeats.

15 Furthermore the immuno-repeats in the polypeptides can be linearized, that is cysteine residues are replaced with serine.

The polypeptides comprising immuno-repeats can additionally comprise a moiety that facilitate export of the polypeptide whens produced recombinantly (e.g.signal peptides), a 20 moiety that facilitate purification of the polypeptide (e.g. his-tags) and/or a moiety which enhance the immunogenicity (e.g. a T cell antigen). The T-cell target can be chosen from a Ct antigen such as CT043, CT004, CT414, CT681 or part hereof. Examples of such fusion proteins are indicated by SEQ ID NO 60-67.

A polypeptide according to the invention having the following functional abilities:

25 a) neutralize *C. trachomatis* serovar D *in vitro* with a 50% neutralization titer of 10⁻³ or less, when tested in an experimental set-up comprising the administering a heterologous immuno-repeats ;

b) neutralize *C. trachomatis* serovar D *in vivo* in at least 50% of the mice at day 7 post infection when tested in a mouse model comprising administering a heterologous immuno-repeats

c) broaden the immune response to multiple serovars of *C. trachomatis* *in vitro* when administering heterologous immuno-repeats.

The present invention also discloses nucleic acids encoding above described polypeptides.

5

The disclosed polypeptides or nucleic acids are used for the preparation of a pharmaceutical composition such as a vaccine. The vaccine can additionally comprise a pharmacologically acceptable carrier (virus like particles), excipient, adjuvant (e.g. DDA/TDB or alum) or immune modulator. The pharmaceutical composition can be used for prophylactic or 10 therapeutic use against *Chlamydia* sp. Infections, including infections with *Chlamydia trachomatis* or *C.pneumoniae*.

A method for preventing, treating and/or reducing the incidence of *Chlamydia* sp. Infections, including infections with *Chlamydia trachomatis* or *C.pneumoniae*, by administering this 15 pharmaceutical composition is also disclosed.

In the following the invention will be described in more detail and exemplified.

The preferred outer membrane protein is MOMP but may also include other surface exposed antigens from Chlamydia species that are targets for humoral responses.

20

The immuno-repeat from a surface exposed region can be from the same serotype (homologous immuno-repeats) or represent fragments that contain variable epitopes and are derived from different serotypes (heterologous immuno-repeat). In a preferred embodiment the immuno-repeats contain an extended fragment that contains both a variable and a 25 conserved region known to be rich in T cell epitopes.

A preferred surface exposed region of an outer membrane protein is chosen from VD1, VD2, VD3 and VD4 from MOMP.

30 The amino acid sequences used for constructing the immuno-repeats described in the examples are chosen from table 1, 2 and 3.

The variable domain of VD4 of MOMP can be described as an amino acid sequences as defined as:

La1-Aa2-Aa1-Aa3-La2

wherein

5 Aa1 consists of the amino acid sequence TTLNPTIAG (which is conserved for all serovars); Aa2 is selected from the group consisting of: SATAIFDT (from serovar D and E), LVTPVVDI (from serovar F), LAKPVVDI (from serovar G) and LAEAILDV (from serovar Ia and J).

When Aa2 is the sequence from serovar D or E, then Aa3 is selected from the sequences set 10 forth in AGDVKTGAEGQLG (from serovar D) and AGDVKASAEGQLG (serovar E).

When Aa2 is the sequence from serovar F, then Aa3 is the sequence CGSVAGANTEGQIS (from serovar F).

15 When Aa2 is the sequence from serovar G, then Aa3 is the sequence CGSVVAANSEQQIS (from serovar G).

When Aa2 is the sequence from serovar Ia or J, then Aa3 is selected KGTVVSSAENELA (from serovar Ia) and KGTVVASGSENDLA (from serovar J)

20 The variable domain VD4 of MOMP is depicted in figure 2. The immuno-repeats preferably additionally comprises extensions on either sides which are also depicted in figure 2.

The N-terminal side of a VD4 domain can be flanked or extended by one or more amino 25 acids from the more conserved and T-cell epitope rich La1, where La1 is the part of VD4 of MOMP which is embedded in the membrane and has the amino acid sequence EWQASLALSYRLNMFTPYIGVKWSRASFDADTIRIAQPK or an amino acid sequence having 80 % sequence identity herewith.

30 The C-terminal side of a VD4 domain can correspondingly be flanked or extended by one or more amino acids from the more conserved and T-cell epitope rich La2, where La2 is the part of VD4 of MOMP which is embedded in the membrane on the C-terminal side and has

the amino acid sequence DTMQIVSLQLNKMKSRKSCGIAVGTTIVDA or an amino acid sequence having 80 % sequence identity herewith.

A similar illustration (see figure 1) can describe immuno-repeats comprising the variable 5 domain 1 (VD1) of MOMP with the variable domains (Aa2-Aa1-Aa3) of the various serovars are given by SEQ ID NO 1-6 in table 1. The corresponding N-terminal and C-terminal extensions (La1 and La2) have the respective amino acid sequences
SMRVGYYGDFVFDRVVLKTDVNKEFQMG (La1) and
NPAYGRHMQDAEMFTNAACMALNIWD (La2) which are given in table 2 by SEQ ID NO 7-8.

10

Immuno-repeats comprising VD2 and VD3 can in a similar manner be deduced from figure 1 and table 1.

Hence above example La1-Aa2-Aa1-Aa3-La2 defines one of the immune-repeat units. If 15 additionally e.g. VD1 is added to a VD4 unit, this can be described as adding one more sequence to make up a larger immune-repeat unit. Hence the polypeptide of the invention comprises 2, 3, 4, 5, 6, 7 or 8 repeats of immune-repeat units.

Definitions

20 *Outer membrane proteins*

The outer membrane of Chlamydia sp. can be isolated by treating intact, purified elementary bodies with detergent such as 2% Sarkosyl followed by ultracentrifugation (100,000 g for one hour) which will lead to a supernatant with cytosolic components and a pellet containing the outer membrane as previously described ⁷⁰. Outer membrane proteins can then be identified 25 by standard protein techniques, e.g. by mass spectrometry after SDS-PAGE.

Surface exposed fragments or regions

Bacterial surface or membrane proteins comprises trans membrane proteins, secretory and 30 lipoproteins, and anchorless surface proteins. Surface exposed regions on intact bacteria are accessible to antibodies. Methods to identify surface exposed regions of proteins (the 'surfaceome' comprise e.g. biotinylation of the membrane proteins in intact bacteria, followed by isolation of the biotin-labelled fraction using streptavidin. The isolated proteins can then be identified by mass spectrometry. Another approach is to treat intact bacteria with a

protease, e.g. trypsin ('shaving') to cleave surface exposed peptides, followed by collection of the released peptides for identification by mass spectrometry.

Variants

5 Variants of outer membrane proteins provided herein describes proteins encoded by the same gene from different serotypes of Chlamydia sp. A variant protein shares significant homology with a reference polypeptide.

An isoform of protein

10 In the context of the present application an "isoform" of protein is understood as any of several different forms of the same protein e.g. a protein that has the same function but which is encoded by a different gene and may have small differences in its sequence or arises from either single nucleotide polymorphisms, differential splicing of mRNA, or post-translational modifications. Different serotypes of bacteria may have different isoforms of
15 certain proteins.

Chlamydia species

By the term "Chlamydia species" is understood a bacterium capable of causing the Chlamydia infection in an animal or in a human being. Examples are *C. trachomatis*, *C.*
20 *pneumoniae* and *C. muridarum*. Also in animals, several infections with *Chlamydia* sp. are known, e.g. *Chlamydia Suis* infecting pigs, and *Chlamydiaphila abortus* which causes abortion in small ruminants (sheep and goats).

Serovariants, serovars or serotypes

25 Based on the reactivity of specific mono clonal antibodies against and detailed sequence analysis of the MOMP variable regions *Ct* can be divided into 15 different serovariants and of these serovariants A, B, Ba and C causes Trachoma, D – K causes sexually transmitted disease (STD), L1 - L3 causes Lymphogranuloma venereum, and MoPn (*C. muridarum*)
infests mice. Serovariants are sometimes mentioned as serovars or serotypes with the same
30 meaning.

Immuno-repeats

By immuno-repeats is understood: repetitive units of one or more amino acid sequences comprising an immunogenic portion or fragment of an antigen. The units that are repeated can be described as one or more VD regions, that optionally can be extended as described above, that are repeated e.g. 4 examples with three repeats VD4-VD4-VD4, VD4-VD1-VD4-
5 VD1-VD4-VD1, VD4_D- VD4_D - VD4_D , VD4_D - VD4_F - VD4_G , VD4_D – VD3_E- VD4_D - VD3_E - VD4_D - VD3_E .

Homologous immuno-repeat

Repetitive units of one or more amino acid sequences comprising an immunogenic portion or
10 fragment of an antigen from one serovariant only (Fig. 4)

Heterologous immuno-repeat

Repetitive units of one or more amino acid sequences comprising an immunogenic portion or fragment encoding the same antigen derived from different serovariants (Fig. 4).

15

Heterologous challenge

Refers to the situation where the protein used for vaccination is derived from a different bacterial serovariant than the serovariant used for challenge.

20 *Homologous challenge*

Refers to the situation where the protein used for vaccination is derived from the same bacterial serovariant as the serovariant used for challenge.

MOMP

25 The Major Outer Membrane Protein (MOMP) of *Ct*, is expressed during all phases of the developmental life cycle of *Ct* and constitutes approximately 60% of the total protein content of the chlamydia outer membrane. MOMP can be divided into conserved domains interrupted by four highly variable domains (VD1-4 or VS1-4)⁵⁹ (FIG. 1)

30 *VD1*

Variable domain 1 (VD1) of MOMP as defined by Baehr et al (1988)³⁶ which corresponds to amino acids 91-105 and make up a highly variable region in MOMP from *Ct* (Seq no 1-6 VD1 from SvD, E, F, G, Ia and J respectively). The extended VD1 region (VD1^{ext})

corresponds to amino acids 57-115 and make-up said highly variable region flanked by highly conserved regions in MOMP from *Ct* (Seq no 9-14 VD1^{ext} from SvD, E, F, G, Ia and J respectively) (Fig. 3).

5 **VD4**

Variable domain 4 of MOMP as defined by Baehr et al (1988)³⁶ which corresponds to amino acids 309-338 and make up a highly variable region in MOMP from *Ct* (Seq no 15-20 VD4 from SvD, E, F, G, Ia and J respectively). The extended VD4 region (VD4^{ext}) corresponds to amino acids 282-349 and make-up said highly variable region flanked by highly conserved regions in MOMP from *Ct* (Seq no 23-28 VD4^{ext} from SvD, E, F, G, Ia and J respectively).

Linearized

The word "linearized" in the present invention refers to an amino acid chain of any length, including a full-length protein, oligopeptides, short peptides and fragments thereof, wherein 15 the amino acid cysteine has been substituted with serine in order to hinder the cysteine residues to form disulfide bonds.

Neutralizing epitope

Neutralizing epitope as used herein is intended an amino acid sequence that defines an 20 antigenic determinant which is bound by an antibody and, in the context of infection, reduces infectivity of a Chlamydial load, e.g. by blocking of the bacterial interaction with host cells, which is important in establishing bacterial infection and disease, facilitating bacterial clearance.

25 *Neutralization*

Neutralization is to encompass any biological activity of the bacteria, including reduction in the efficiency or ability of the bacterium to establish infection or cause disease or disease symptoms, inhibition of chlamydial EB formation.

30 *Neutralizing antibodies*

Antibodies which bind a neutralizing epitope as described above.

Polypeptides

The word "polypeptide" in the present invention should have its usual meaning. That is an amino acid chain of any length, including a full-length protein, oligopeptides, short peptides and fragments thereof, wherein the amino acid residues are linked by covalent peptide bonds.

5

IFN-γ

By the term "*IFN-γ*" is understood interferon-gamma. The measurement of *IFN-γ* is used as
10 an indication of an immunological T-cell response.

Comprise

Throughout this specification, unless the context requires otherwise, the word "comprise", or variations thereof such as "comprises" or "comprising", will be understood to imply the
15 inclusion of a stated element or integer or group of elements or integers but not the exclusion of any other element or integer or group of elements or integers.

Immunogenic portion or fragment

In a preferred embodiment of the invention, the polypeptide comprises an immunogenic
20 portion or fragment of the polypeptide, such as an epitope for a B-cell or T-cell.

The immunogenic portion or fragment of a polypeptide is a part of the polypeptide, which elicits an immune response in an animal or a human being, and/or in a biological sample determined by any of the biological assays described herein. The immunogenic portion or fragment of a polypeptide may be a T-cell epitope or a B-cell epitope. Immunogenic portions or fragments can be related to one or a few relatively small parts of the polypeptide, they can be scattered throughout the polypeptide sequence or be situated in specific parts of the polypeptide. For a few polypeptides epitopes have even been demonstrated to be scattered throughout the polypeptide covering the full sequence⁷¹.

In order to identify relevant T-cell epitopes which are recognised during an immune
30 response, it is possible to use a "brute force" method: Since T-cell epitopes are linear, deletion mutants of the polypeptide will, if constructed systematically, reveal what regions of the polypeptide are essential in immune recognition, e.g. by subjecting these deletion mutants e.g. to the IFN-γ assay described herein. Another method utilises overlapping

oligopeptides for the detection of MHC class II epitopes, preferably synthetic, having a length of e.g. 20 amino acid residues derived from the polypeptide. These peptides can be tested in biological assays (e.g. the IFN- γ assay as described herein) and some of these will give a positive response (and thereby be immunogenic) as evidence for the presence of a T cell
5 epitope in the peptide. For the detection of MHC class I epitopes it is possible to predict peptides that will bind ⁷² and hereafter produce these peptides synthetic and test them in relevant biological assays e.g. the IFN- γ assay as described herein. The peptides preferably having a length of e.g. 8 to 11 amino acid residues derived from the polypeptide. B-cell epitopes can be determined by analysing the B cell recognition to overlapping peptides
10 covering the polypeptide of interest as e.g. described in Harboe et al ⁷³.

Immunogenic

An immunogenic polypeptide is defined as a polypeptide that induces an immune response
15 in a biological sample or an individual currently or previously infected with a chlamydia.

Fusion proteins

By a fusion protein is understood two or more polypeptides linked together covalently. The fusion proteins can be produced with superior characteristics of the polypeptide. For
20 instance, fusion partners that facilitate export of the fusion protein when produced recombinantly (e.g. signal peptides), fusion partners that facilitate purification of the fusion protein (e.g. his-tags), and fusion partners which enhance the immunogenicity of the fusion protein are all interesting possibilities. The fusion partner can, in order to enhance immunogenicity, be another polypeptide derived from *C. trachomatis*, such as a polypeptide, a polypeptide
25 fragment or at least one T-cell epitope or B cell epitope.

Pharmaceutical composition

A pharmaceutical composition is defined as any vaccine (both therapeutic and prophylactic) or any diagnostic reagent.

30

Vaccine, protein

Another part of the invention pertains to a vaccine composition comprising a fusion protein or a nucleic acid encoding said fusion protein according to the invention. In order to ensure optimum performance of such a vaccine composition it is preferred that it comprises an immunologically and pharmaceutically acceptable carrier, vehicle or adjuvant.

5

An effective vaccine, wherein a fusion protein of the invention is recognized by a mammal including a human being, will decrease bacterial load in target organs, prolong survival times and/or diminish weight loss after challenge with virulent chlamydial bacteria, compared to non-vaccinated individuals.

10

Suitable carriers are selected from the group consisting of a polymer to which the polypeptide(s) is/are bound by hydrophobic non-covalent interaction, such as a plastic, e.g. polystyrene, or a polymer to which the polypeptide(s) is/are covalently bound, such as a polysaccharide, or a polypeptide, e.g. bovine serum albumin, ovalbumin or keyhole limpet haemocyanin. Suitable vehicles are selected from the group consisting of a diluent and a suspending agent. The adjuvant is preferably selected from the group consisting of dimethyl-dioctadecylammonium bromide (DDA), Quil A, poly I:C, aluminium hydroxide, Freund's incomplete adjuvant, IFN γ , IL-2, IL-12, monophosphoryl lipid A (MPL), Trehalose Dimycolate (TDM), Trehalose Dibephenate (TDB) and muramyl dipeptide (MDP), Monomycetyl glycerol (MMG) or a combination hereof. A preferred combination is a cationic liposome such as DDA combined with TDB and/or poly I:C.

25 Preparation of vaccines which contain peptide sequences as active ingredients is generally well understood in the art, as exemplified by U.S. Patents 4,608,251; 4,601,903; 4,599,231 and 4,599,230.

Therapeutic vaccine.

The invention also relates to the use of a polypeptide or nucleic acid of the invention for use as therapeutic vaccines as have been described in the literature exemplified by D. Lowry (Lowry et al 1999). Antigens with therapeutic properties may be identified based on their ability to diminish the severity of *Ct* infection in experimental animals or prevent reactivation of previous infection, when administered as a vaccine. The composition used for therapeutic vaccines can be prepared as described above for vaccines.

The present invention describes novel highly immunogenic vaccine antigens with broad antibody based neutralizing capacity that protects against different serovariants of *Chlamydia trachomatis*. We demonstrate that repetitive units of defined fragments from the MOMP 5 antigen provide highly immunogenic molecules which we refer to as immuno-repeats. Vaccination with homologous immuno-repeats containing VD4 extended fragments (covers the VD4 variable domain of MOMP and the adjacent conserved flanking regions) in different adjuvants provides very high antibody titers and we demonstrate that these constructs are much more efficient than immunizing with single units of the VD4 extended fragment. The 10 increased effect can be observed both as markedly increased titer, increased antibody targeting of the surface of the bacteria, increased neutralizing capacity, increased and broadened T cell response and increased protection against a challenge with the homologous strain. We furthermore demonstrate that the immuno-repeat technology can be utilized also to improve the protection against and neutralization of other serovariants by 15 constructing heterologous immuno-repeats based on VD4 extended fragments from different serovariants such as serovar D, E, F and G (Fig. 3).

SEQ ID NO	Variable domaines	Description
1	VD1_SvD	Serovar D variable domaine 1 of MOMP
2	VD1_SvE	Serovar E variable domaine 1 of MOMP
3	VD1_SvF	Serovar F variable domaine 1 of MOMP
4	VD1_SvG	Serovar G variable domaine 1 of MOMP
5	VD1_Svla	Serovar Ia variable domaine 1 of MOMP
6	VD1_SvJ	Serovar J variable domaine 1 of MOMP
7	VD1 N-terminal	VD1 N-terminal extension
8	VD1 C-terminal	VD1 C-terminal extension
9	VD1ext_SvD	Serovar D extended VD1 of MOMP
10	VD1ext_SvE	Serovar E extended VD1 of MOMP
11	VD1ext_SvF	Serovar F extended VD1 of MOMP
12	VD1ext_SvG	Serovar G extended VD1 of MOMP
13	VD1ext_Svla	Serovar Ia extended VD1 of MOMP
14	VD1ext_SvJ	Serovar J extended VD1 of MOMP
15	VD4_SvD	Serovar D variable domaine 4 of MOMP
16	VD4_SvE	Serovar E variable domaine 4 of MOMP
17	VD4_SvF	Serovar F variable domaine 4 of MOMP
18	VD4_SvG	Serovar G variable domaine 4 of MOMP
19	VD4_Svla	Serovar Ia variable domaine 4 of MOMP
20	VD4_SvJ	Serovar J variable domaine 4 of MOMP
21	VD4 N-terminal	VD4 N-terminal extension
22	VD4 C-terminal	VD4 C-terminal extension
23	VD4ext_SvD	Serovar D extended VD4 of MOMP
24	VD4ext_SvE	Serovar E extended VD4 of MOMP

25	VD4ext_SvF	Serovar F extended VD4 of MOMP
26	VD4ext_SvG	Serovar G extended VD4 of MOMP
27	VD4ext_Svla	Serovar la extended VD4 of MOMP
28	VD4ext_SvJ	Serovar J extended VD4 of MOMP
29	VD2_SvD	Serovar D variable domaine 2 of MOMP
30	VD2_SvE	Serovar E variable domaine 2 of MOMP
31	VD2_SvF	Serovar F variable domaine 2 of MOMP
32	VD2_SvG	Serovar G variable domaine 2 of MOMP
33	VD2_Svla	Serovar la variable domaine 2 of MOMP
34	VD2_SvJ	Serovar J variable domaine 2 of MOMP
35	VD2 N-terminal	VD2 N-terminal extension
36	VD2 C-terminal	VD2 C-terminal extension
37	VD3_SvD	Serovar D variable domaine 3 of MOMP
38	VD3_SvE	Serovar E variable domaine 3 of MOMP
39	VD3_SvF	Serovar F variable domaine 3 of MOMP
40	VD3_SvG	Serovar G variable domaine 3 of MOMP
41	VD3_Svla	Serovar la variable domaine 3 of MOMP
42	VD3_SvJ	Serovar J variable domaine 3 of MOMP
43	VD3 N-terminal	VD3 N-terminal extension
44	VD3 C-terminal	VD3 C-terminal extension

Table 1. Description of sequences used in constructing immuno-repeats

Heterologous immuno-repeats were highly immunogenic but in addition increased the breadth of the antibody responses which was associated with a broader fine specificity of the antibody response (measured by peptide scans) that targets a more diverse repertoire of linear epitopes within the VD4 region than the homologous immuno-repeats. We also demonstrate that highly immunogenic heterologous immuno-repeats can be based on even larger fragments that incorporate fusions of VD1 and VD4 extended fragments and we confirm that in animal models protection promoted by these heterologous immuno-repeats are mediated predominantly by antibodies. As there is a generally recognized need for a strong CMI component (e.g. a T-cell epitope) in an efficient protective immune response against *Ct*, we have also demonstrated that by fully extending the VD4 region N-terminally to include a T cell rich region, we can generate immune-repeats that combine the ability to generate high titered neutralizing antibodies with a strong T cell response clearing residual infection in one construct. We have also demonstrated that immune-repeats can be fused to or mixed with T-cell antigens with vaccine potential and that this combination provide both an early antibody mediated protection against *Ct* as well as an efficient CMI mediated clearance of residual organisms.

MOMP is an important protective antigen with a generally recognized potential in *Ct* vaccines. The MOMP antigen is however a very complicated antigen to target by vaccines because it has a complex structure with numerous internal disulfide bonds and where important neutralizing epitopes have been exceedingly difficult to expose in recombinant 5 molecules. Adding to this, the MOMP antigen is highly variable and is the basis for the majority of the serovariance found in different strains causing human disease. Any vaccine based on intact MOMP would therefore have to incorporate a number of different versions of the molecule (at least 4-5) to cover the major strains giving rise to disease in humans. As described above the MOMP antigen contains 4 variable regions (VD1-4) of which in 10 particular the VD1 and VD4 contain important neutralizing epitopes but vaccines based on fragments representing these regions have so far failed to induce sufficiently high titers of functional antibodies to have any *in vivo* effect in animal challenge studies^{51 74}.

The immuno-repeat technology of the present invention solves this problem: By repeating the 15 important variable VD1 and/or VD4 regions flanked by conserved sequences from the MOMP antigen we have obtained immunogens that promote extraordinary levels of functional antibodies. Surprisingly we also demonstrate that the improved immunogenicity can even be achieved in heterologous immuno-repeat constructs that employs variable regions from different serovars interspaced between conserved fragments and that this 20 strategy produces a broadly neutralizing antibody response that protect against different serovariants. Furthermore, do the immuno-repeat technology provide a large number of relevant T cell epitopes that promote T cells with direct effector function as well as the ability to promote accelerated recall responses to the adjacent B cell epitopes. Our invention therefore represents a breakthrough in developing efficient *Ct* vaccines with a 25 broad response and the ability to neutralize different serovars.

It is well known that antigens with a large number of repeats and organized structure are optimal for the activation of the B-cell receptor (BCR), leading to an increased humoral response and a decreased dependence on T-cell help. This was originally reported with 30 natural polysaccharide based antigens from various pathogens (Pneumococcal polysaccharide and *Salmonella* polymerized flagellin) where the repetitive nature of the antigen is assumed to trigger several BCR simultaneously thereby lowering the overall activation threshold which triggers antibody production from plasma B-cells without the need

for prior T-cell help. Such antigens are referred to as type 2 T-cell independent B-cell antigens and in artificial systems have been shown to depend on a large number of repeats (typically a minimum of 12-16⁷⁵), that constitute the minimal epitope and are closely located. This is clearly different from our repeat technology where large fragments (69 amino acids, 5 Mw > 7 kDa) are repeated and these fragments contain both B-cell and T-cell epitopes⁷⁶.

In contrast to previous observations⁷⁵, we observe an increase by just 4 repeats which is not further improved by 8 repeats. Importantly, the repetition of a conserved sequence with hypervariable domains inserted, amplify responses not only to the repeated conserved 10 element but importantly to the variable inserts. The molecular mechanism behind this surprising amplification is not completely clear but it most likely relates to the fact that many of the important epitopes are located in the overlap between variable and conserved regions which therefore may allow simultaneous triggering of different BCR's that all share some 15 recognition of the conserved part of the epitope. Although the mechanism is not completely clear the practical consequence is that the heterologous immune-repeat technology allows the synthesis of a multivalent immunogens that promote the generation of a diverse antibody response that targets different serovariants.

Our immuno-repeat constructs provide antigens of an extraordinary immunogenicity 20 compared to previous attempts to use the variable domains from *Ct* MOMP. All previous vaccines based on VDs of MOMP did, in spite of generating antibodies with some functional capabilities, fail to generate titres that translated into in vivo protection against genital chlamydial challenge^{51, 65 64}. In particular the heterologous immuno-repeat strategy solves a 25 very fundamental problem seen for many pathogens and that is how to promote diverse antibody responses to diverse and variable antigens.

SEQ ID NO	Polypeptide names	Description
45	CTH87 (CT681_VD1ext_VD4ext_SvD)	Fusion of VD1-VD4 of serovar D
46	CTH88 (CT681_lin_VD1ext_VD4ext_SvD_E_F)	Heterologous immune repeat of VD1-VD4
47	CTH88ext=CTH69 (CT681_lin_VD1ext_VD4ext_SvD_E_F_ext)	Same as SEQ ID NO 46 with longer flanking region.
48	CTH72 (CT681_lin_VD1ext_VD4ext_SvD_E_F_G_Ia_J_ext)	Same as seq id no 47 additionally with VD1ext and VD4ext from SvG, SvIa and SvJ
49	CTH89 (CT681_lin_VD4ext_SvD_E_F)	Heterologous immune repeat of VD4

50	CTH181 (CT681_VD4ext_SvE)	Same as SEQ ID NO 24
51	CTH182 (CT681_lin_VD4ext_F)	Same as SEQ ID NO 25 linearized
52	CTH183 (CT681_VD4ext_F)	Same as SEQ ID NO 25
53	CTH518 (CT681_Lin_VD4ext_D_E_F_G)	Heterologous immune repeat of VD4
54	CTH518ext=CTH70 (CT681_lin_VD4ext_SvD_E_F_G_ext)	Same as SEQ ID NO 53 with longer flanking regions
55	CTH71 (CT681_lin_VD4ext_SvD_E_F_G_la_J_ext)	Same as seq id no 54 additionally with VD1ext and VD4ext from SvIa and SvJ
56	CTH524 (CT681_lin_4_VD4ext_F)	Same as SEQ ID NO 59 linearized
57	CTH526 (CT681_8_VD4ext_SvE)	Homologous immune repeat of VD4 (8x)
58	CTH527 (CT681_4_VD4ext_SvE)	Homologous immune repeat of VD4 (4x)
59	CTH529 (CT681_4_VD4ext_F)	Homologous immune repeat of VD4 (4x)

Table 2. Immuno-repeats

SEQ ID NO	Fusions of immuno repeats with T-cell antigens (all his-tagged)
60	CTH91 (CT043-CT414p-CT681_lin_VD1ext_VD4ext_SvD_E_F)
61	CTH93 (CT043_CT414p_CT681_Lin_56-281_VD4ext_D)
62	CTH520 (CT681_56-281_VD4ext_D)
63	CTH521 (CT681_Lin_56-281_VD4ext_D)
64	CTH522 (CT681_lin_56-281_VD4ext_D_E_F_G)
65	CTH531 (CT414 CT043 CT043_681_lin_56-281_VD4ext_SvD_E_F_G)
66	CTH533 (CT043 CT043 CT681_lin_VD4ext_SvD_E_F_G)
67	CTH534 (CT043 CT043 CT004 CT681_lin_VD4ext_SvD_E_F_G)
68	CT681_SvD
69	CTH285 (VD4_lin_SvD,E,F,G)
70	CTH286 (VD4 classic+7_lin_SvD,E,F,G)

Table 3. Examples of immuno-repeats fused with T-cell antigens

5

VD4 serovar E peptides (20mers)	Amino acid sequence
CT681_25_SvE	DASIDYHEWQASLALSYRLN
CT681_26_SvE	ASLALSYRLNMFTPYIGVKW
CT681_27_SvE	MFTPYIGVKWSRASFDADTI
CT681_28_SvE	SRASFDADTIRIAQPKSATA
CT681_29_SvE	RTAQPKSATAIFDTTTLNPT
CT681_30_SvE	IFDTTTLNPTIAGAGDVKAS
CT681_31_SvE	IAGAGDVKASAEGQLGDTMQ
CT681_32_SvE	AEGQLGDTMQIVS1QLNKMK

Table 4. Overlapping peptides of VD4 from serovar E

10

Serovar F peptides (20mers)	Amino acid sequence
-----------------------------	---------------------

CT681_25_SvF	DASIDYHEWQASLSSL SYRLN
CT681_26_SvF	ASLSLSYRLNMFTPYIGVKW
CT681_27_SvF	MFTPYIGVKWSRASFDSDTI
CT681_28_SvF	SRASFDSDTIRIAQPRLVTP
CT681_29_SvF	RIAQPRLVTPVVDITTLNPT
CT681_30_SvF	VVDITTLNPTIAGCGSVAGA
CT681_31_SvF	IAGCGSVAGANTEGQISDTMQ
CT681_32_SvF	TEGQISDTMQIVSILQLNKMK

Table 5. Overlapping peptides of VD4 from serovar F

VD4 serovar D peptides (9mers)	Amino acid sequence	VD4 serovar D peptides (9mers)	Amino acid sequence
VD4_P1_SvD	SRASFDADT	VD4_P24_SvD	TTTLNPTIA
VD4_P2_SvD	RASFDADTI	VD4_P25_SvD	TTLNPTIAG
VD4_P3_SvD	ASFADADTIR	VD4_P26_SvD	TLNPTIAGA
VD4_P4_SvD	SFDADTIRI	VD4_P27_SvD	LNPTIAGAG
VD4_P5_SvD	FDADTIRIA	VD4_P28_SvD	NPTIAGAGD
VD4_P6_SvD	DADTIRIAQ	VD4_P29_SvD	PTIAGAGDV
VD4_P7_SvD	ADTIRIAQP	VD4_P30_SvD	TIAGAGDVK
VD4_P8_SvD	DTIRIAQPK	VD4_P31_SvD	IAGAGDVKT
VD4_P9_SvD	TIRIAQPKS	VD4_P32_SvD	AGAGDVKTG
VD4_P10_SvD	IRIAQPKSA	VD4_P33_SvD	GAGDVKTGA
VD4_P11_SvD	RIAQPKSAT	VD4_P34_SvD	ACDVKTCAE
VD4_P12_SvD	IAQPKSAT	VD4_P35_SvD	GDVKTGAEG
VD4_P13_SvD	AQPKSATAI	VD4_P36_SvD	DVKTGAEGQ
VD4_P14_SvD	QPKSATAI	VD4_P37_SvD	VKTGAEGQL
VD4_P15_SvD	PKSATAI	VD4_P38_SvD	KTGAEGQLG
VD4_P16_SvD	KSATAIFDT	VD4_P39_SvD	TGAEGQLGD
VD4_P17_SvD	SATAIFDTT	VD4_P40_SvD	GAEGQLGDT
VD4_P18_SvD	ATAIFDTTT	VD4_P41_SvD	AEGQLGDTM
VD4_P19_SvD	TAIFDTTTL	VD4_P42_SvD	EGQLGDTMQ
VD4_P20_SvD	AIFFDTTTLN	VD4_P43_SvD	GQLGDTMQI
VD4_P21_SvD	IFDTTTLNP	VD4_P44_SvD	QLGDTMQIV
VD4_P22_SvD	FDTTTLNPT	VD4_P45_SvD	LGDTMQIVS
VD4_P23_SvD	DTTTLNPTI		

Table 6. Overlapping peptides of VD4 from serovar D

VD4 serovar F peptides (9mers)	Amino acid sequence	VD4 serovar F peptides (9mers)	Amino acid sequence
VD4_P1_SvF	SRASFDSDT	VD4_P24_SvF	ITTLNPTIA
VD4_P2_SvF	RASFDSDTI	VD4_P25_SvF	TTLNPTIAG
VD4_P3_SvF	ASFDSDTIR	VD4_P26_SvF	TLNPTIAGC
VD4_P4_SvF	SFDSDTIRI	VD4_P27_SvF	LNPTIAGCG
VD4_P5_SvF	FDSDTIRIA	VD4_P28_SvF	NPTIAGCGS
VD4_P6_SvF	DSDTIRIAQ	VD4_P29_SvF	PTIAGCGSV
VD4_P7_SvF	SDTIRIAQP	VD4_P30_SvF	TIAGCGSVA
VD4_P8_SvF	DTIRIAQPR	VD4_P31_SvF	IAGCGSVAG
VD4_P9_SvF	TIRIAQPRI	VD4_P32_SvF	AGCGSVAGA
VD4_P10_SvF	IRIAQPRLV	VD4_P33_SvF	GCGSVAGAN

VD4_P11_SvF	RIAQPRLVT	VD4_P34_SvF	CGSVAGANT
VD4_P12_SvF	IAQPRLVTP	VD4_P35_SvF	GSVAGANTE
VD4_P13_SvF	AQPRLVTPV	VD4_P36_SvF	SVAGANTEG
VD4_P14_SvF	QPRLVTPVV	VD4_P37_SvF	VAGANTEGO
VD4_P15_SvF	PRLVTPVVD	VD4_P38_SvF	AGANTEGQI
VD4_P16_SvF	RLVTPVVDI	VD4_P39_SvF	GANTEGQIS
VD4_P17_SvF	LVTPVVDIT	VD4_P40_SvF	ANTEGQISD
VD4_P18_SvF	VTPVVDITT	VD4_P41_SvF	NTEGQISDT
VD4_P19_SvF	TPVVDITTL	VD4_P42_SvF	TEGQISDTM
VD4_P20_SvF	PVVDITTLN	VD4_P43_SvF	EGQISDTMQ
VD4_P21_SvF	VVDDITTLNP	VD4_P44_SvF	GQISDTMQI
VD4_P22_SvF	VDITTLNPT	VD4_P45_SvF	QISDTMQIV
VD4_P23_SvF	DITTLNPTI	VD4_P46_SvF	ISDTMQIVS

Table 7. Overlapping peptides of VD4 from serovar F

SEQ ID NO	Amino acid sequences of MOMP (CT681) from different serovars
68	CT681_SvD
71	CT681_SvE
72	CT681_SvF
73	CT681_SvG
74	CT681_Svla
75	CT681_SvJ

Table 8. CT681 amino acid sequences

5 The nucleic acid of the invention, that is nucleic acid encoding above mentioned fusion proteins, may be used for effecting in vivo expression of immunogenic polypeptides, i.e. the nucleic acid may be used in so-called DNA vaccines as reviewed in Ulmer et al 1993, which is included by reference.

10 In the construction and preparation of plasmid DNA encoding a fusion polypeptide to be used defined for DNA vaccination a host strain such as *E. coli* can be used. Plasmid DNA can then be prepared from overnight cultures of the host strain carrying the plasmid of interest, and purified using e.g. the Qiagen Giga -Plasmid column kit (Qiagen, Santa Clarita, CA, USA) including an endotoxin removal step. It is essential that plasmid DNA used for DNA

15 vaccination is endotoxin free.

Hence, the invention also relates to a vaccine comprising a nucleic acid according to the invention, the vaccine effecting in vivo expression of the immunogenic polypeptide by an animal, including a human being, to whom the vaccine has been administered, the amount of

expressed polypeptide being effective to confer substantially increased resistance to infections caused by virulent bacteria in an animal, including a human being.

The efficacy of such a DNA vaccine can possibly be enhanced by administering the gene 5 encoding the expression product together with a DNA fragment encoding a polypeptide which has the capability of modulating an immune response.

One possibility for effectively activating a cellular immune response can be achieved by expressing the relevant immunogenic polypeptide in a non-pathogenic microorganism or 10 virus. Well-known examples of such microorganisms are *Mycobacterium bovis* BCG, *Salmonella* and *Pseudomonas* and examples of viruses are *Vaccinia Virus* and *Adenovirus*.

Therefore, another important aspect of the present invention is an improvement of the live BCG vaccine presently available, wherein one or more copies of a DNA sequence encoding 15 one or more fusion polypeptides as defined above has been incorporated into the genome of the micro-organism in a manner allowing the micro-organism to express and secrete the fusion polypeptide. The incorporation of more than one copy of a nucleic acid sequence of the invention is contemplated to enhance the immune response.

20 Another possibility is to integrate the DNA encoding the fusion polypeptide according to the invention in an attenuated virus such as the *Vaccinia* virus or *Adenovirus* (Rolph et al 1997). The recombinant *vaccinia* virus is able to enter within the cytoplasma or nucleus of the infected host cell and the fusion polypeptide of interest can therefore induce an immune response, which is envisioned to induce protection against TB.

25 Although DNA vaccines were developed more than 16 years ago, clinical trials preceding stage I and II in humans are rare. Two veterinary DNA vaccines however, have been licensed; one for West Nile Virus (in horse) and a second for Infectious Hematopoietic Necrosis virus in Salmon. This demonstrates that DNA vaccines can have good protective 30 effects and that new DNA vaccines are not limited by the size of the animal or species. The great success with DNA vaccines observed for the murine model for first generation DNA vaccines did not translate well to humans, nonetheless; researchers have recently

demonstrated protective antibodies levels by a single dose of gene gun administrated HA DNA vaccine to humans.

“Nucleic acid immunization” or the commonly preferred name “DNA vaccines” are the inoculation of antigen encoding DNA or RNA as expression cassettes or expression vectors or incorporated into viral vectors with the purpose of inducing immunity to the gene product. Thus, in our definition of DNA vaccines we include all kinds of delivery systems for the antigen encoding DNA or RNA. The vaccine gene can be in form of circular plasmid or a linear expression cassette with just the key features necessary for expression (promotor, the vaccine gene and polyadenylation signal). Delivery systems may most often be naked DNA in buffer with or without adjuvant, DNA coupled to nanoparticles and/or formulated into adjuvant containing compounds or inserted into live viral or bacterial vectors such as Adenovirus, adeno associated virus, alphavirus, poxviruses, herpes virus etc. DNA vaccines hold great promise since they evoke both humoral and cell-mediated immunity, without the same dangers associated with live virus vaccines. In contrast to live attenuated virus vaccines DNA vaccines may be delivered to same or different tissue or cells than the live virus that has to bind to specific receptors. The production of antigens in their native forms improves the presentation of the antigens to the host immune system. Unlike live attenuated vaccines, DNA vaccines are not infectious and cannot revert to virulence.

20 DNA vaccines offer many advantages over conventional vaccines. It can be produced in high amounts in short time, abolishing the need for propagation in eggs, it is cost-effective, reproducible and the final product does not require cold storage conditions, because DNA is stable and resistant to the extremes of temperature. All currently licensed inactivated

25 vaccines are efficient at inducing humoral antibody responses but only live attenuated virus vaccines efficiently induce a cytotoxic cellular response as well. DNA vaccines also have this ability and the induced response therefore may better mimic the natural response to viral infection than inactivated vaccines in respect to specificity and antibodies isotypes.

30 DNA vaccines induce an immune response which is comparable to the response acquired by natural virus infection by activating both humoral and cell-mediated immunity. The broad response to DNA vaccines is a result of the encoded genes being expressed by the transfected host cell, inducing both a Th1 and Th2 immune responses. The production of

antigens in their native form improves the presentation of the antigens to the host immune system.

The two most common types of DNA vaccine administration are saline injection of naked

5 DNA and gene gun DNA inoculations (DNA coated on solid gold beads administrated with helium pressure). Saline intra muscular injections of DNA preferentially generates a Th1 IgG2a response while gene gun delivery tends to initiate a more Th2 IgG1 response.

Intramuscular injected plasmids are at risk of being degraded by extracellular

deoxygenases, however, the responses induced are often more long-lived than those

10 induced by the gene gun method. Vaccination by gene gun delivery of DNA, to the epidermis, has proven to be the most effective method of immunization, probably because the skin contains all the necessary cell types, including professional antigen presenting cells (APC), for eliciting both humoral and cytotoxic cellular immune responses (Langerhans and dendritic cells). Complete protection from a lethal dose of influenza virus has been obtained

15 with as little as 1 µg DNA in mice. The standard DNA vaccine vector consists of the gene of interest cloned into a bacterial plasmid engineered for optimal expression in eukaryotic cells.

Essential features include; an origin of replication allowing for production in bacteria, a

bacterial antibiotic resistance gene allowing for plasmid selection in bacterial culture, a strong constitutive promoter for optimal expression in mammalian cells (promoters derived from

20 cytomegalovirus (CMV) or simian virus provide the highest gene expression), a

polyadenylation sequence to stabilise the mRNA transcripts, such as bovine growth hormone (BHG) or simian virus polyadenylation, and a multiple cloning site for insertion of an antigen gene. An intron A sequence improves expression of genes remarkably. Many bacterial DNA vaccine vectors contain unmethylated cytidinephosphate- guanosine (CpG) dinucleotide

25 motifs that may elicit strong innate immune responses in the host. In recent years there have been several approaches to enhance and customise the immune response to DNA vaccine

constructs (2nd generation DNA vaccines). For instance dicistronic vectors or multiple

geneexpressing plasmids have been used to express two genes simultaneously. Specific promoters have been engineered that restrict gene expression to certain tissues, and

30 cytokine/antigen fusion genes have been constructed to enhance the immune response.

Furthermore, genes may be codon optimised for optimal gene expression in the host and naïve leader sequences may be substituted with optimised leaders increasing translation efficiency.

The administration of DNA vaccine can be by saline or buffered saline injection of naked DNA or RNA, or injection of DNA plasmid or linear gene expressing DNA fragments coupled to particles, or inoculated by gene gun or delivered by a viral vector (virus like particle) such 5 as Adenovirus, Modified vaccinia virus Ankara (MVA), Vaccinia, Adenoassociated virus (AAV), Alphavirus etc.

Figure legends:

Figure 1. Model of MOMP (Serovar D, strain: D/B-120) membrane topology adapted from 10 Findlay et al ⁷⁷. The VD1, VD2, VD3 and VD4 are marked by black lines in the AA sequence and in the linear model MOMP depicted interspaced with 5 constant segments (CS).

Figure 2. Alignment of amino acid sequence of *Ct* MOMP VD4^{ext} for serovars D, E, F, G, Ia 15 and J. The serovar D sequence is used as prototype, and conserved amino acids in other serovars are shown as “.”. The variable domain VD4 according to Baehr et al (PNAS, 1988) ³⁶ is shaded in gray and the conserved epitope TTLNPTIAG is boxed.

Figure 3. Model of MOMP (Serovar D, strain: D/B-120) membrane topology adapted from 20 Findlay et al. The VD1ext and VD4ext described in this invention are shown as shaded in the figure.

Figure 4. Illustration of the design of homologous and heterologous immuno-repeats. The immuno-repeats are fusion proteins of e.g. four VD4^{ext} regions, either from the same serovar, 25 homologous immuno-repeats, or from different serovars, heterologous immuno-repeats. The variable VD4 region within each VD4^{ext} region is illustrated as hatched.

Figure 5. Enhanced and broadened immune responses after immunization with homologous 30 immuno-repeats of VD4^{ext} compared with a monomeric VD4^{ext} unit. Figure 5A shows that Vaccination with a single VD4^{ext} unit (monomeric VD4^{ext}, CTH181) induced lower levels of VD4^{ext} specific antibodies compared to the level induced after immunization with homologous immuno-repeats composed of 4 VD4^{ext} repeats of (SvE VD4^{ext})⁴. Figure 5B shows that the higher antibody response seen after immunizing with (SvE VD4^{ext})⁴ resulted in a stronger recognition of the bacterial surface compared to serum isolated from (VD4^{ext})¹ immunized

mice. Figure 5C shows that the response to 20mer peptides with 10aa overlap spanning the extended VD4 region (Table 4) was also enhanced resulting in a broader epitope recognition pattern in the $(VD4^{ext})^4$ homologous immuno-repeat groups compared to the group of mice immunized with a monomeric $VD4^{ext}$ unit when tested in a 1:500 serum dilution.

5

Figure 6 shows that a construct composed of heterologous immuno-repeats from SvD, E, F and G induced a stronger response to multiple serovars compared to homologous immuno-repeats from SvF. The immunogenicity of the constructs was studied by ELISA against the bacterial surface of Serovar D, E and F.

10

Figure 7. Fine specificity of the antibody responses after immunization with a heterologous immuno-repeat of the extended VD4 units from SvD, E, and F (CTH89) compared to constructs composed of a homologous immuno-repeat from $(SvE^{ext}VD4)^4$ and from $(SvF^{ext}VD4)^4$. Figure 7A, 7B, and 7C show that in general antibodies generated by

15 homologous immuno-repeats were superior in recognizing their representative homologous VD4^{ext} region, whereas it was evident that when these constructs were tested against peptides covering a VD4^{ext} from a different serovar their epitope recognition repertoire was limited e.g. the recognition of serovar E VD4 region by serum from animals immunized with the construct $(SvF^{ext}VD4)^4$ (Fig. 7A and C) (and vice versa) (Fig. 7B and C). Figure 7D shows that a 17 AA peptide representing a central VD4 peptide FDTTTLNPTIAGAGDVK 20 could not completely eliminate the neutralizing capacity of the CTH89 specific serum.

Figure 8. Immunization with heterologous immuno-repeats of extended VD4's from SvD, SvE and SvF (CTH89) generates early T cell independent protection after a SvD challenge.

25 Figure 8A shows that depletion of the T cell subset eliminated the T cell response to CTH89. Figure 8B shows that CTH89 induced a strong antibody response. Figure 8C shows that this antibody response recognized the surface of serovar D. Figure 8D shows that this antibody response was able to neutralize the bacteria *in vitro* with a 50% neutralization titer of around 1: 10³. Figure 8E shows that there was no protection at day 3 post challenge in the T cell 30 depleted mice.

Figure 9. *In vivo* neutralization with CTH89 specific serum. This figure shows results of experiments in which depro-provera treated mice were then infected with 4×10^5 bacteria. Mice infected with SvD coated with CTH89 serum efficiently controlled bacterial replication compared to mice challenged with SvD coated with naive serum.

5

Figure 10. Coupling of heterologous immuno-repeats to recombinant MOMP. Figure 10A shows that antibodies generated after immunization with CT522 and CT518 recognized the VD4 region. Figure 10B shows results of antibody binding to MOMP. Figure 10C shows that antibodies generated after immunization with CT522 and CT518 recognized the bacterial surface. Figure 10 D shows that antibodies from CTH518 and CTH522 were able to neutralize a SvD infection at the same level and much higher than CTH521.

10

Figure 11. Vaccination with heterologous immuno-repeats of VD1-VD4's regions from SvD, SvE and SvF (CTH88) compared to vaccination with a single VD1-VD4 unit from SvD (CTH87). Figure 11A shows that antibodies from mice immunized with CTH87 recognized the bacterial surface of both SvD, SvE and SvF. Figure 11B shows that the monomeric VD1^{ext}-VD4^{ext} construct from serovar D only had minimal neutralizing capacity compared to the heterologous VD1-VD4 immuno-repeat construct with a neutralization titer of 1:2000. Figure 11C shows that vaccination with the heterologous VD1^{ext}-VD4^{ext} immuno-repeat construct very efficiently protected against a SvD challenge in a vaginal challenge model.

15

Figure 12. Coupling of T cell antigens to immuno-repeats of VD4. Figure 12A shows that antibodies generated after immunization with CTH91 and CTH88 recognized the VD4^{ext} region at similar levels. Figure 12B shows that serum isolated from both groups were able to neutralize a SvD infection. Figure 12C shows that compared to CTH88 immunized mice the T cell response to CTH91 was stronger with recognition of both CT414 and CT043. Figure 12D shows that This T and B cell response resulted in significant protection at day 3 post infection for both groups, but at day 7 and 10 post infection the group vaccinated with a fused T and B cell target (CTH91) induced higher levels of protection compared to CTH88.

20

Figure 13. Immunization with a cocktail of a heterologous VD4 immuno-repeat and a T cell antigen fusion molecule. Figure 13A depicts a hybrid composed of CT043, part of CT414 and

CT681 (CTH93) vs. CTH89. Figure 13B shows that antibodies generated after immunization with CTH89 or the mixture of CTH89 and CTH93 strongly recognized the VD4 regions. Figure 13C shows that these antibodies neutralized the bacteria with similar 50% neutralization titers. Figure 13D shows that Much reduced levels of VD4 recognition and neutralization were seen after vaccination with the T cell antigen fusion. Figure 13E shows that both the CTH89 and the cocktail of the CTH89 and CTH93 vaccines induced protection at day 3 post infection.

Figure 14. Comparison of CAF01 and Alum as adjuvant delivery system. This figures shows that both adjuvant systems induced a high antibody response against the surface of SvE when administered together with CTH527, and the antibodies from both groups were able to neutralize SvE *in vitro*.

Figure 15. Vaccination with heterologous immuno-repeats composed of reduced length of the VD4^{ext} regions from SvD, SvE, SvF and SvG. Figure 15A depicts heterologous immuno-repeat constructs composed of reduced length of the VD4 region (CTH285 SEQ ID NO 69 and CTH286 SEQ ID NO 70) compared to the CTH518 construct (CTH518 SEQ ID NO 53). Figure 15B shows T cell responses to overlapping peptides representing the VD4^{ext} region from splenocytes isolated from 4 mice /group. Figure 15C shows the capacity of the serum to neutralize a serovar D and F infection.

Figure 16. Vaccination with heterologous immuno-repeats composed of extended VD4^{ext} regions from SvD, SvE, SvF, SvG, SvIa and SvJ. Figure 16A depicts two constructs, CTH69 (SEQ ID NO 47) and CTH72 (SEQ ID NO 48). Figure 16B shows that CTH69 was similar to CTH88 but the VD4^{ext} regions from SvD, SvE and SvF was extended by 12aa N-terminally. Figure 16C shows that both of the extended constructs were still able to neutralize a serovar D infection *in vitro*. Figure 16D shows that CTH69 and CTH72 induced a significant level of protection at day7 post infection which could possibly be explained by the stronger T cell response induced by these vaccines compared to CTH88.

30

Material and Methods

Cultivation of *C. trachomatis*

Ct serovar D, E and F was propagated in Hela 229 cells (ATCC, Rockville, MD, USA). The cells were cultivated in RPMI 1640 (Gibco BRL, Grand Island, NY, USA) media containing 5 % fetal calf serum (Gibco BRL; heat inactivated), 1% v/v Hepes, 1% v/v L-glutamine, 1% v/v pyrovalate and 10 µg/ml gentamycine. Semiconfluent monolayers of Hela 229 cells in 6 well-
5 plates were infected with 1.5 inclusion forming unit per cell of *Ct* serovar E or F in 0.3 ml SPG-buffer/well. The plates were centrifuged 1 hour in a Heraeus Multifuge 3S at 750g and incubated on a plate rocker for 2 h at 35 °C. After 2 h 2 ml cultivation media supplemented with 5% glucose and 1 µg/ml cycloheximide were added pr. well and the cells were further incubated for 72 h at 37 °C in an atmosphere of 5% CO₂ in humidified air.

10

Harvesting of *Ct*

Chlamydiae were harvested 72 h post infection. The cells were dislodged from the wells with a cell scraper and centrifuged 30 minutes at 35.000 g and 4°C. The pellets were
15 resuspended in HBSS, sonicated on ice and centrifuged at 500g and 4°C for 15 minutes. The supernatant was collected and saved on ice and the pellet was resuspended to same volume as before and sonication and centrifugation were repeated. The two supernatants were pooled and centrifuged 30 minutes at 30000g and 4°C and the pellet resuspended with a needle and syringe in a SPG buffer (3 ml/Plate). After a brief sonication the suspension was
20 gently layered over a 30% Diatrizoate solution (50g Meglumine diatrizoate, 7.7g Sodium diatrizoate in 76ml H₂O) and centrifuged at 40,000g for 30 min. After centrifugation the pellet were resuspended in SPG buffer and stored at -70 °C. The IFU of the batches were quantified by titration on McCoy cells and the concentration of the batches was determined by BCA.

25

Antigen and fusion preparation methods

The genome of *C. trachomatis* serovar D, E, F and G are publicly available (NCBI - GenBank). Genes coding for *C. trachomatis* antigens and fusions were all obtained
30 synthetically for cloning into *E.coli* bacterial protein expression system (DNA2.0). The pET411 vector was used for expression of the recombinant *C. trachomatis* protein in *E. coli* with a Histidine affinity tag. The bacterial host was BL21-STAR™. *E. coli* was grown at 37°C to reach the logarithmic phase OD600 ~ 0.5 and protein expression was induced for 4 hours

and cells were harvested by centrifugation (6,000 g for 15 min.). *E. coli* were lysed using Bugbuster (Novagen) containing Benzonase, rLysozyme and Protease inhibitor Cocktail I (Calbiochem). Inclusion bodies were isolated by centrifugation (10,000 g for 10 min.) The pellet was dissolved in 50mM NaH2PO4, 0.4M NaCl, 8M Urea, 10mM Imidazole pH 7.5 and 5 loaded onto HisTrap HP column (Amersham Biosciences) and bound proteins were eluted by applying a gradient of 50 to 500mM imidazole. Depending on the antigen and fusions isoelectric point they were further purified by ion exchange chromatography. Protein concentrations was determined by BCA protein assay (Pierce).

10 Animals

Female B6C3F1 mice, 8-12 weeks of age, were obtained from Harlan Laboratories. Animals were housed under standard environmental conditions and provided standard food and water ad libitum. The use of mice is guided by the regulations set forward by the Danish Ministry of Justice (Lov om dyreforsøg, jvf lovbekendelser nr. 726 af 9. September 1993), and Animal 15 protection committees. A detailed description of the experiments was submitted to and approved by the regional ethical review board (2012-15-2934-00100) held by the applicant.

Immunization

Mice were immunized 3 times with 14 days between immunizations. The poly peptides were 20 emulsified in CAF01 and administered simultaneously by the subcutanous (sc) and intranasal (i.n) route. The vaccines given by both routes consisted of 5 ug of peptide (see above) emulsified in 250ug DDA and 100ug TDB. As a negative control, DDA/TDB alone, without peptide was injected.

25 Chlamydia-specific cellular responses

Blood lymfocytes or splenocytes were purified. Blood lymphocytes were pooled from 8 mice in each group and spenocytes were cultivated individually (n=4) and cultured in triplicate in round-bottomed microtiter plates (Nunc, Denmark) containing 2×10^5 cells/well in a volumen of 200 μ l RPMI-1640 supplemented with 5×10^{-5} M 2-mercaptoethanol, 1 mM glutamine, 1% 30 pyruvate, 1% penicillin-streptomycin, 1% HEPES and 10% fetal calf serum (FCS) (Invitrogen, Denmark). The cells were re-stimulated with individual antigens in 1-10 μ g/ml or VD1 and VD4 peptide pools (2 μ g/ml of each peptide) . Stimulation with Concanavalin A (5 μ g/ml) or media as positive control for cell viability and negative control, respectively. After 72h of

incubation at 37°C in 5% CO₂, supernatants were harvested and stored at -20°C before use. The amounts of secreted IFN- γ were determined by enzyme-linked immunosorbant assay (ELISA).

5 Serum antibodies

At different time points post last vaccination the mice were bled and serum isolated by centrifugation. Serum was tested by ELISA for reactivity against the Ct surface (SvD, SvE and SvF), against the SvE VD4 monomer, and against peptides (Table 4&5) spanning the VD4 region of SvD, SvE and SvF. Briefly, plates were coated with antigen (1 to 10 μ g/ml) at 10 4 °C in carbonate buffer overnight, blocked with BSA and washed. The plates were then incubated with pre-diluted samples at 4 °C overnight, washed and incubated with a peroxidase conjugated secondary antibody for 1 hr. Reactions were visualized by incubation with TMB substrate and the reaction stopped with sulphuric acid and read at 450 nm.

When ELISA reactivity against a 9mer overlapping peptide panel spanning the VD4 region of 15 SvD (SvE) (Table 6) and SvF (Table 7) was investigated minor changes were done. Briefly, plates were treated with streptavidin and coated with biotinylated peptides, blocked for 2 h at room temperature with skinned-milk powder and washed. The plates were then incubated with pre-diluted (1:100) serum samples for 2h at room temperature, washed and incubated with a peroxidase conjugated secondary antibody for 1 hr. Reactions were visualized by 20 incubation with TMB substrate and the reaction stopped with sulphuric acid and read at 450 nm.

Neutralization assay

HaK cells were grown to confluence in 96-well flat-bottom microtiter plates in RPMI 1640 25 media supplemented with 5% fetal calf serum (Gibco BRL; heat inactivated), 1% v/v Hepes, 1% v/v L-glutamine, 1% v/v pyrovate and 10 μ g/ml gentamycine.

The Chlamydia stocks were previously titrated and diluted to 3 x 10⁶ IFU/ml for SvE ,2 x 10⁶IFU/ml for SvD and 5 x 10⁶ IFU/ml for SvF. Serum (pooled) isolated from vaccinated mice was heat inactivated at 56°C for ½ h, diluted 2-4 times and 4-5 fold titrated. 80 μ l of the 30 bacteria suspension was mixed with 80 μ l of serum (+/- 20 μ g/ml peptide) and incubated for 30 min. at 37°C on a slowly rocking platform and 50 μ l of the suspension were then inoculated onto the previously prepared HaK cells in dublicates. To do this, the media was removed from the HaK monolayers and 100 μ l of the above media supplemented with 0.5%

glucose and 10 µg/ml cyclohexamide was added followed by 50 µl of the serum/bacteria suspension. Plates were incubated at 35°C on a slowly rocking platform, then inoculum was removed and 100 µl of the above media supplemented with 0.5% glucose and 10 µg/ml cycloheximide was added. The plates were then incubated for 24h at 37°C in an atmosphere 5 of 5% CO₂ in humidified air. After incubation the medium was removed and the monolayers were fixed with 96% ethanol for 10 min. Inclusions were visualized by staining with polyclonal rabbit anti-CT755 serum made in our laboratory, followed by FITC-conjugated swine anti-rabbit immunoglobulin (Dako). Background staining was done with propidium iodide (Invitrogen)

10

Vaginal challenge and vaginal chlamydial load

Ten and 3 days before *Ct* serovar D challenge, the oestrus cycle was synchronized by injection of 2.5 mg Medroxyprogesteronacetat (Depo-Provera; Pfizer). Six weeks after the 15 final vaccination the mice were challenged i.vag. with 4-8 x 10⁵ IFU of *Ct* serovar D in 10 µl SPG buffer. Vaginal swabs were obtained at 3, 7, 10 and 14 days after infection. Swabs were vortexed with glass-beads in 0.6 ml SPG buffer and stored at -80C until analysis. Infectious load was determined as described in ¹⁷. Briefly, McCoy cell monolayers were 20 infected with a titrated volume of the swab suspension in duplicates. The plates were centrifuged at 750 x g for 1 h at RT followed by incubation at 35C for 2 h. Infection-media was then replaced with fresh media and the cells incubated at 37C for 30 h. Inclusions were visualised by staining with polyclonal rabbit anti-CT681 serum made in our laboratory, 25 followed by a FITC conjugated swine anti-rabbit Ig (DAKO, Glostrup, Denmark). Background staining was done with propidium iodide (Invitrogen, Taastrup, Denmark). Inclusions were enumerated by fluorescence microscopy observing at least 20 individual fields of vision for each well.

Depletion of CD4⁺ and CD8⁺ T-cells

Monoclonal anti-mouse CD4 (clone GK1.5) and anti-mouse CD8 (clone YTS156 and YTS169 a gift from Stephen Cobbold) ^{78,79} was purified from hybridoma supernatants made in our lab, using HiTrap protein G HP columns (GE-Healthcare Life Sciences, Denmark). The 30 purified IgG was dialyzed against PBS, filtered through 0.22um filter and protein concentration was determined by OD 280nm. Mice were depleted of CD4⁺ or CD8⁺ T-cells by 4 injections of 250-300µg purified anti-CD4 or a mix of anti-CD8 antibodies at day -7, -4, -1

and +2 and +6 relative to the day of infection. The CD4⁺ and CD8⁺ T cell depletions were verified by FACS analysis on PBMCs at day 1 post infection using a FITC conjugated anti-CD4 antibody (clone RM4-4) and a PE-conjugated anti-CD8 antibody (clone 53-6) (BD Biosciences, Denmark).

5

In vivo depletion

The Chlamydia serovar D stock was previously titrated and diluted to 8×10^4 IFU/ μ l, mixed 1:1 with serum isolated from mice immunized with a heterologous VD4 immuno-repeat SvD-SvE-SvF (CTH89). Ten and 3 days before *Ct* serovar D challenge, the oestrus cycle was 10 synchronized by injection of 2.5 mg Medroxyprogesteronacetat (Depo-Provera; Pfizer). Mice were challenged i.vag. with 10 μ l of the above mix (4×10^5 IFU of *Ct* serovar D). Vaginal swabs were obtained at 3, 7 and 10 days after infection.

Statistical analysis

Statistical analysis was done using GraphPad Prism 4. Medians of vaginal *Chlamydia* load 15 were analyzed using Kruskall-Wallis followed by Dunn's post test or Mann-Whitney.

Example 1: Enhanced immune responses after immunization with homologous immuno-repeats of VD4^{ext} compared with a monomeric VD4^{ext} unit.

20 Introduction

Here we selected polypeptide units containing extended VD4 fragments of serovar E (for sequence see Fig. 2) (SvE VD4^{ext}). In order to potentiate the immune response against these domains we designed recombinant polypeptides where the SvEVD4^{ext} unit was presented in a repetitive manner. To investigate if a repetitive form of the construct could enhance the 25 antibody response compared to a monomeric form, we designed recombinant polypeptides where the units were presented either as a single unit or in a repetitive manner. For serovar E (SvE), a monomeric (SvE VD4^{ext})¹ (CTH181), four immuno-repeats (SvE VD4^{ext})⁴ (CTH527) and eight immuno-repeats (SvE VD4^{ext})⁸ (CTH526) of the extended VD4 unit were constructed. These homologous immuno-repeat constructs were formulated in the 30 adjuvant CAF01 and used to vaccinate mice; each mice was vaccinated with 2x5 μ g peptide so the amount of VD4 was the same. Immunogenicity of the constructs was studied by

ELISA against SvE VD4^{ext}, peptides covering SvE VD4^{ext} and the bacterial surface of chlamydia.

Results

5 Six mice/group were immunized 2 times with 14 days between immunizations. The vaccines (2x5 µg) were emulsified in CAF01 and administered simultaneously by the sc. and i.n routes. At certain time points post last vaccination blood was collected and antibody levels against the extended VD4 units from SvE and against the bacterial surface of SvE were measured by ELISA. Vaccination with a single VD4^{ext} unit (monomeric VD4^{ext}, CTH181)

10 induced lower levels of VD4^{ext} specific antibodies compared to the level induced after immunization with homologous immuno-repeats composed of 4 VD4^{ext} repeats of (SvE VD4^{ext})⁴ (Fig. 5A). The higher antibody response seen after immunizing with (SvE VD4^{ext})⁴ resulted in a stronger recognition of the bacterial surface compared to serum isolated from (VD4^{ext})¹ immunized mice (Fig. 5B). The response to 20mer peptides with 10aa overlap 15 spanning the extended VD4 region (Table 4) was also enhanced resulting in a broader epitope recognition pattern in the (VD4^{ext})⁴ homologous immuno-repeat groups compared to the group of mice immunized with a monomeric VD4^{ext} unit when tested in a 1:500 serum dilution (Fig 5C). In the group immunized with the monomeric construct the response was exclusively targeted to the central region containing the TTLNPTIAG epitope whereas 20 immunization with the homologous immuno-repeat exposed several B cell epitopes both up- and downstream of that epitope resulting in a diverse epitope recognition pattern of various epitopes. We continued by investigating if immuno-repeats of 8 (SvE VD4^{ext})⁸ (CTH526, seq no 30) were more immunogenic than immuno-repeats of 4 (SvE VD4^{ext})⁴. The two constructs induced similar levels of antibodies against the extended VD4 unit and against the 25 bacterial surface of SvE.

Conclusion

We demonstrated that by immunizing with immuno-repeats of extended VD4 units from Serovar E we can greatly enhance antibody response both measured as the titer (Fig.5A&B) 30 and the breadth of the response (Fig.5C) directed against the extended VD4 unit resulting in a strong reactivity towards the bacterial surface. We did not find enhanced antibody titers and neutralization titers by increasing the number of repeats from 4 to 8.

Example 2: A construct composed of heterologous immuno-repeats from SvD, E, F and G (CTH518) induced a stronger response to multiple serovars compared to homologous immuno-repeats from SvF

5

Introduction

We investigated if immunization with a heterologous immuno-repeat composed of extended VD4 units from SvD, SvE, SvF and SvG (CTH518), maintained the strong immunogenicity and was able to induce a broader antibody response recognizing the surface of multiple serovars compared to immunization with a homologous immuno-repeat composed of extended VD4 units from SvF ($SvF\ VD4^{ext})^*4$, (CTH529). These immuno-repeat constructs were formulated in the adjuvant CAF01 and used to vaccinate mice. The immunogenicity of the constructs was studied by ELISA against the bacterial surface of Serovar D, E and F.

15 Results

Heterologous immuno-repeats promoted an antibody response that recognized the surface of the serovar F strain at the same high level as the response seen with a homologous immuno-repeat from SvF. However, by immunization with the heterologous immuno-repeat containing extended VD4 regions from the four serotypes (SvD, SvE, SvF, SvG) we observed a markedly increased titer to the D and E serovariants compared to the homologous immuno-repeat from the serovar F (Fig. 6).

Conclusion

Immunizing with the construct composed of immuno-repeats of heterologous extended VD4's induced a broader response recognizing the surface of multiple serovars (D, E and F) while maintaining the pronounced immunogenicity of the homologous immuno-repeat.

Example 3: The specificity of the antibody responses after immunization with a heterologous immuno-repeat of the extended VD4 units from serovar D, E, and F (CTH89) compared to constructs composed of a homologous immuno-repeat from ($SvE^{ext}\ VD4)^*4$, ($SvF^{ext}\ VD4)^*4$ and a previously published A8-VD4 peptide ⁶⁵.

Introduction

We investigated the specificity of the immune response after immunization with a heterologous repeat of extended VD4 domains from SvD, SvE, SvF (CTH89) compared to immunization 5 with homologous immuno-repeats composed of extended VD4 repeats from Serovar E (SvE^{ext}VD4)*4 (CTH527), SvF (SvF^{ext}VD4)*4 repeats (CTH524) and A8-VD4 peptide. These constructs were formulated in the adjuvant CAF01 and used to vaccinate mice. Immunogenicity of the constructs was studied by ELISA against a peptide panel (9 and 20 AA 10 long) spanning the VD4 region of D, E and F (Tables 4-7). Serum (from 6 to 8 mice) was tested and a response above background but below OD =1.0 is indicated by an open box, responses above 1.0 are marked by a filled box. The length of the box indicates the area recognized by antibodies.

Results

15 All constructs induced high antibody responses to the conserved TTLNPTIAG part of the VD4^{ext}, located in the variable domain (VD). In general antibodies generated by homologous immuno-repeats were superior in recognizing their representative homologous VD4^{ext} region, whereas it was evident that when these constructs were tested against peptides covering a VD4^{ext} from a different serovar their epitope recognition repertoire was limited e.g. 20 the recognition of serovar E VD4 region by serum from animals immunized with the construct (SvF^{ext}VD4)*4 (Fig. 7A and C) (and vice versa) (Fig. 7B and C). Antibodies generated after immunization with the heterologous immuno-repeats (CTH89), recognized a much broader epitope repertoire than serum from animals immunized with the homologous immuno-repeats and the A8-VD4 (7A, B, C and D). This construct was able to cover an epitope repertoire 25 covering both serovar E and F at the level (or better) than achieved by immunizing with homologous immuno-repeats.

To demonstrate whether a 17 AA peptide representing a central VD4 peptide FDTTLNPTIAGAGDVK was able to compete with *C. trachomatis* organisms for CTH89 specific antibody binding, a competitive neutralization assay was performed. Different 30 concentrations of CTH89 and A8-VD4 specific serum were mixed with the peptide in a concentration of 20 µg/ml (Fig. 7D). The results demonstrates that, in contrast to A8-VD4 specific serum, the peptide could not completely eliminate the neutralizing capacity of the

CTH89 specific serum, suggesting that this serum targets a broader repertoire of neutralizing epitopes.

Conclusion

5 Immunizing with immuno-repeats of heterologous extended VD4's induced a broad response recognizing both conserved and serovar specific parts of the VD4 region, translating into a broader repertoire of neutralizing epitopes.

Example 4: Immunization with heterologous immuno-repeats of extended VD4's from SvD, SvE and SvF (CTH89) generates early T cell independent protection after a SvD challenge.

10 Introduction

In order to study the effector mechanism responsible for the early protection seen after vaccination with the VD4 repetitive units, mice vaccinated with CTH89 were T cell depleted before challenge and the capacity to induce early protection was compared in depleted and non-depleted mice.

15

Results

Eight mice/group were immunized 3 times with 14 days between immunizations. The vaccine (2x5 µg) was emulsified in CAF01 and administered simultaneously by the sc. and i.n routes.

At certain time points post last vaccination the mice were bleed and antibody responses

20 against chlamydia, the neutralization titer, and *in vivo* protection with and without T cell depletion were measured. Depletion of the T cell subset eliminated the T cell response to CTH89 (Fig. 8A). CTH89 induced a strong antibody response (Fig. 8B) that recognized the surface of serovar D (Fig. 8C) and was able to neutralize the bacteria *in vitro* with a 50% neutralization titer of around 1: 10³ (Fig 8D). However, we still found significant protection at 25 day 3 post challenge in the T cell depleted mice (Fig. 8E) suggesting an *in vivo* role for antibodies recognizing the VD4 unit in early protection against Chlamydia. Finally we demonstrated that CTH89 serum was also able to neutralize a SvE and SvF infection with very high 50% neutralization titers at the level of that obtained with SvD (Fig. 8D).

30 Conclusions

Immuno-repeat generates T cell independent early protection against vaginal challenge with Serovar D suggesting an *in vivo* role of VD4 specific antibodies.

Example 5: *In vivo* neutralization with CTH89 specific serum

5 **Introduction**

In order to investigate if the *in vitro* neutralization could be translated to a protective effect mediated by serum *in vivo*, we next investigated if SvD bacteria coated with antibodies generated after CTH89 immunization could neutralize/inhibit the infection *in vivo* compared to serum from naive mice.

10

Results

SvD bacteria were mixed with serum isolated from CTH89 immunized mice or serum isolated from naive mice. Depro-provera treated mice were then infected with 4×10^5 bacteria. Mice infected with SvD coated with CTH89 serum efficiently controlled bacterial replication compared to mice challenged with SvD coated with naive serum. Six out of 8 mice were cleared at day 7 and 10 compared to 2 and 3 respectively, in the control group (Fig. 9).

15

Conclusion

Serum generated after immunization with heterologous VD4 immuno-repeat efficiently block 20 infection of mice with SvD compared to serum isolated from naive mice

25

Example 6. Fusion of recombinant MOMP with immuno-repeats of heterologous extended VD4's

30 **Introduction**

MOMP is the target of both humoral and cellular immune-responses but despite the relative success of refolded native MOMP vaccines in generating neutralizing antibodies and protect against infection^{54, 56}, experimental vaccines based on recombinant MOMP (rMOMP) have

failed. We designed a recombinant MOMP ranging from amino acid 56 to 349, including all variable domains (CTH521). We also selected polypeptide units containing extended VD4 fragments (covering the VD4 variable domain of MOMP and the adjacent conserved flanking regions) of serovar D,E, F and G (CT518) Finally a hybrid was constructed where CTH521
5 was fused to CT518 (CT522) (Fig. 10).

Results

Eight mice/group were immunized 3 times with 14 days between immunizations. The vaccines were emulsified in CAF01 and administered simultaneously by the sc. (5 µg) and
10 i.n. (5 µg) routes. Post vaccination blood samples were collected and antibodies against the VD4^{ext} unit, recombinant MOMP and against the bacterial surface were measured. Antibodies generated after immunization with CT522 and CT518 recognized the VD4 region (Fig.10A) and the bacterial surface (Fig. 10C) at a much higher level compared to serum
15 isolated after CTH521 immunization. Furthermore antibodies from CTH518 and CTH522 were able to neutralize a SvD infection at the same level and much higher than CTH521 (Fig.
10D).

Conclusion

Fusion of recombinant MOMP with immuno-repeats of heterologous extended VD4's results
20 in a molecule that elicits the same functional antibody response as the immune-repeat alone.

Example 7: Vaccination with heterologous immuno-repeats of VD1^{ext}-VD4^{ext}'s regions from SvD, SvE and SvF (CTH88) compared to vaccination with a single VD1-VD4 unit from SvD (CTH87).

25

Introduction

We next investigated if it was possible to fuse another VD region to the extended VD4 region and still maintain the capacity to induce neutralizing antibodies. Therefore constructs were designed where an extended version of the VD1 region was coupled to the extended VD4
30 region. We produced both a homologous unit composed of an extended unit of VD1 and VD4

from SvD (CTH87) and a heterologous immuno-repeat composed of extended units of VD1 and VD4 from different serovars (D, E and F; CTH88).

Results

5 12 mice/group were immunized 3 times with 14 days between immunizations. The vaccines were emulsified in CAF01 and administered simultaneously by the sc. (5 µg) and i.n. (5 µg) routes. Antibodies from mice immunized with CTH87 recognized the bacterial surface of both SvD, SvE and SvF (Fig. 11A); with the highest titers observed against the homologous SvD strain and the lowest titers against the most distant SvF. Immunizing with immuno-repeats of
10 heterologous VD1^{ext}-VD4^{ext} units resulted in significant higher levels of antibodies against the surface of the bacteria compared to the monomeric construct and broadened the response resulting in titers increasing 6-12 times against SvD and SvE and almost 25 times against SvF (Fig. 11A). The capacity of these antibodies to neutralize infection in an *in vitro* neutralizing assay was even more improved as serum from animals immunized with the
15 monomeric VD1^{ext}-VD4^{ext} construct from serovar D only had minimal neutralizing capacity compared to the heterologous VD1-VD4 immuno-repeat construct with a neutralization titer of 1:2000 (Fig. 11B). Finally, vaccination with the heterologous VD1^{ext}-VD4^{ext} immuno-repeat construct very efficiently protect against a SvD challenge in a vaginal challenge model (Fig. 11C).

20

Conclusion

We demonstrated that by immunizing with immuno-repeats of heterologous VD1^{ext}-VD4^{ext} units from serovar D, E and F, we can greatly enhance the antibody response directed against the bacterial surface of all three serovariants. Importantly we also show that by
25 vaccination with a heterologous immuno-repeat, we observe a selective higher increase in Serovar F surface recognition (25 times vs. 6-12 times for serovar D and E), suggesting that the heterologous immuno-repeats not only increase the antibody levels against shared epitopes but also against serovar F specific epitopes. We demonstrated that the antibodies induced with immuno-repeats of heterologous VD1-VD4 (CTH88) generated in vitro
30 neutralizing titers that resulted in early *in vivo* protection compared to the single VD1-VD4 unit from SvD (CTH87) (Fig. 11C).

Example 8: Coupling of T cell antigens to immuno-repeats of VD4

Introduction

As there is a generally recognized need for a CMI component in an efficient protective
5 immune response against *Chlamydia trachomatis*, we next investigated if the heterologous
immuno-repeats can be fused to T cell antigens with vaccine potential. Our aim was to
provide both an early antibody mediated protection against *Ct* as well as an efficient CMI
mediated clearance of residual organisms. A constructs composed of CT043, and part of
CT414 and CT681 was fused to immuno-repeats of heterologous VD1-VD4 (CTH91).

10

Results

12 mice/group were immunized 3 times with 14 days between immunizations. The vaccines
(2x5 µg) were emulsified in CAF01 and administered by the sc. and i.n. routes. At various
time points post last vaccination the mice were bleed and antibody responses and
15 neutralization titers were measured. Antibodies generated after immunization with CTH91
and CTH88 recognized the VD4^{ext} region at similar levels (Fig. 12A) and serum isolated from
both groups were able to neutralize a SvD infection (Fig. 12B). Compared to CTH88
immunized mice the T cell response to CTH91 was stronger with recognition of both CT414
and CT043 (Fig. 12C). This T and B cell response resulted in significant protection at day 3
20 post infection for both groups, but at day 7 and 10 post infection the group vaccinated with a
fused T and B cell target (CTH91) induced higher levels of protection compared to CTH88
(Fig 12D).

Conclusion

25 We were able to fuse T cell antigens with the repetitive VD regions and still maintain the
capacity to induce early protection and moreover these constructs induced an efficient CMI
mediated clearance of residual organisms leading to high levels of protection at day 7 post
infection.

30

Example 9: immunization with a cocktail of a heterologous VD4 immuno-repeat and a T cell antigen fusion molecule

5

Introduction

We next investigated if immuno-repeats can be mixed with T cell antigens with vaccine potential and still provide both an early antibody mediated protection against *Ct* as well as an efficient CMI mediated clearance of residual organisms. We therefore investigated if we 10 could mix a strong T cell hybrid composed of CT043, part of CT414 and CT681 (CTH93) with CTH89 (Fig 13A) and still maintain the capacity to neutralize the SvD bacteria *in vitro* and induce early protection against a vaginal challenge.

Results

15 12 mice/group were immunized 3 times with 14 days between immunizations. The vaccine (2x5 µg) were emulsified in CAF01 and administered simultaneously by the subcutaneous (sc) and intranasal (i.n) route (Fig. 13). Antibodies generated after immunization with CTH89 or the mixture of CTH89 and CTH93 strongly recognized the VD4 regions (Fig. 13B) and neutralized the bacteria with similar 50% neutralization titers (Fig. 13C). Much reduced levels 20 of VD4 recognition and neutralization was seen after vaccination with the T cell antigen fusion (CTH93, Fig 13D) although this molecules also contained MOMP (CT681) and therefore potentially the same neutralizing epitopes. This molecule also gave very low levels of recognition of the TTLNPTIAG epitope (data not shown). This clearly emphasizes the limitation of full-size recombinant MOMP as a vaccine antigen for the induction of neutralizing 25 antibodies as previously reported. Both the CTH89 and the cocktail of the CTH89 and CTH93 vaccines induced protection at day 3 post infection (Fig. 13E). This was in contrast to CTH93 vaccinated mice which induced no significant protection at day 3 post infection. At day 7 post infection both vaccines including the strong T cell target (CTH93) induced a significant level of protection (Fig. 13D&E).

30

Conclusions

We were able to mix the heterologous VD4 repeats with strong T cell antigens without the loss of *in vitro* neutralization and early *in vivo* protection against a Serovar D challenge. Moreover, the mix of B and T cell targets induced an efficient CMI mediated clearance of residual organisms leading to high levels of protection at day 7 post infection.

5

Example10: Testing the effect of different adjuvant systems

Introduction

10 In order to investigate if the high antibody response against heterologous immuno-repeats were only seen when the vaccine were administered in CAF01- we compared the antibody response and the neutralization titer after immunizing with CTH527 (SvE VD4^{ext})⁴ in CAF01 or Alum.

15 Results

Both adjuvant systems induced a high antibody response against the surface of SvE when administered together with CTH527, and the antibodies from both groups were able to neutralize SvE *in vitro* (Fig. 14).

20

Example 11: Vaccination with heterologous immuno-repeats composed of reduced length of the VD4^{ext} regions from SvD, SvE, SvF and SvG

Introduction

25 We next compared heterologous immuno-repeat constructs composed of reduced length of the VD4 region (CTH285 SEQ ID NO 69 and CTH286 SEQ ID NO 70) compared to the CTH518 construct (CTH518 SEQ ID NO 53) (Fig 15A).

Results

30 4 mice/group were immunized 3 times with 14 days between immunizations. The vaccines were emulsified in CAF01 and administered simultaneously by the subcutaneous (sc, 5 μ g) and intranasal (i.n, 5 μ g) routes. Splenocytes from 4 mice /group were isolated and the T cell responses to overlapping peptides representing the VD4^{ext} region (Fig 15B) and the capacity

of the serum to neutralize a serovar D and F infection (Fig. 15C) were investigated. Much reduced levels of VD4 T cell recognition, and neutralization was seen after vaccination with CTH285 where the VD4^{ext} regions from the different serovars were reduced with 38 aa. CTH286 on the other hand (each VD4^{ext} region reduced with 24 aa) induced similar levels of 5 T cell responses and had the same capacity to neutralize a serovar D infection as CTH518.

Conclusion

We demonstrated that by reducing the length of the VD4^{ext} regions with 38 aa we reduced both the T cell responses and the capacity to neutralize a serovar D and F infection.

10

Example 12: Vaccination with heterologous immuno-repeats composed of extended VD4^{ext} regions from SvD, SvE, SvF, SvG, SvIa and SvJ.

15 Introduction

We next investigated if we by extending the length of the VD4^{ext} region could enhance the T cell response to the immuno-repeat constructs. We designed two constructs CTH69 (SEQ ID NO 47) and CTH72 (SEQ ID NO 48). CTH69 was similar to CTH88 but the VD4^{ext} regions from SvD, SvE and SvF was extended by 12aa N-terminally (Fig. 16B). CTH72 also contained VD1 20 and VD4^{ext} regions from SvG, SvIa and SvJ.

Results

Mice were immunized 3 times with 14 days between immunizations. The vaccines were 25 emulsified in CAF01 and administered simultaneously by the subcutaneous (sc, 5 μ g) and intranasal (i.n, 5 μ g) routes. T cell responses to the antigen used for immunization and to peptide pools representing the VD1 and VD4 regions from the different serovars were investigated (Fig. 16). Extending the VD4^{ext} regions induced a significant higher T cell response (> 40.000 pg/ml) compared to the T cell response obtained with CTH88 (< 20.000 pg/ml) (Fig. 16B). Importantly, both of the extended constructs were still able to neutralize a 30 serovar D infection *in vitro* (Fig. 16C). Comparing the protective efficacy of the vaccines, CTH69 and CTH72 induced a significant level of protection at day7 post infection which

could possibly be explained by the stronger T cell response induced by these vaccines compared to CTH88 (Fig. 16D).

5

Conclusion

Extending the VD4^{ext} region enhanced the T cell response compared to CTH88 which led to enhanced protection at day7 post infection.

10

References:

1. WHO. Global Prevalence and Incidence of selected Curable Sexually Transmitted Infections: Overview and Estimates. *World Health Organization, Geneva, Switzerland*; 2001.
5. 2. Paavonen J, Eggert-Kruse W. Chlamydia trachomatis: impact on human reproduction. *Hum Reprod Update* 1999, **5**(5): 433-447.
10. 3. Plummer FA, Simonsen JN, Cameron DW, Ndinya-Achola JO, Kreiss JK, Gakinya MN, *et al.* Cofactors in male-female sexual transmission of human immunodeficiency virus type 1. *J Infect Dis* 1991, **163**(2): 233-239.
15. 4. Anttila T, Saikku P, Koskela P, Bloigu A, Dillner J, Ikaheimo I, *et al.* Serotypes of Chlamydia trachomatis and risk for development of cervical squamous cell carcinoma. *Jama* 2001, **285**(1): 47-51.
5. 5. Golden MR, Schillinger JA, Markowitz L, St Louis ME. Duration of untreated genital infections with chlamydia trachomatis: a review of the literature. *Sex Transm Dis* 2000, **27**(6): 329-337.
20. 6. Batteiger BE, Xu F, Johnson RE, Rekart ML. Protective immunity to Chlamydia trachomatis genital infection: evidence from human studies. *J Infect Dis*, **201 Suppl 2**: S178-189.
7. 7. Brunham RC, Rey-Ladino J. Immunology of Chlamydia infection: implications for a Chlamydia trachomatis vaccine. *Nat Rev Immunol* 2005, **5**(2): 149-161.
25. 8. Su H, Caldwell HD. CD4+ T cells play a significant role in adoptive immunity to Chlamydia trachomatis infection of the mouse genital tract. *Infect Immun* 1995, **63**(9): 3302-3308.
9. 9. Morrison SG, Su H, Caldwell HD, Morrison RP. Immunity to murine Chlamydia trachomatis genital tract reinfection involves B cells and CD4(+) T cells but not CD8(+) T cells. *Infect Immun* 2000, **68**(12): 6979-6987.
30. 10. Morrison RP, Caldwell HD. Immunity to murine chlamydial genital infection. *Infect Immun* 2002, **70**(6): 2741-2751.
11. 35. Rasmussen SJ. Chlamydia immunology. *Curr Opin Infect Dis* 1998, **11**(1): 37-41.
12. 40. Rank R. In: Chlamydia Intracellular Biology, Pathogenesis and Immunity. Washington DC. *ASM Press* 1999: Pp. 239-296.
13. 45. Morrison SG, Morrison RP. Resolution of secondary Chlamydia trachomatis genital tract infection in immune mice with depletion of both CD4+ and CD8+ T cells. *Infect Immun* 2001, **69**(4): 2643-2649.
14. 45. Moore T, Ekworomadu CO, Eko FO, MacMillan L, Ramey K, Ananaba GA, *et al.* Fc receptor-mediated antibody regulation of T cell immunity against intracellular pathogens. *J Infect Dis* 2003, **188**(4): 617-624.
15. 50. Pal S, Rangel J, Peterson EM, de la Maza LM. Immunogenic and protective ability of the two developmental forms of Chlamydiae in a mouse model of infertility. *Vaccine* 1999, **18**(7-8): 752-761.
16. Darville T, Hiltke TJ. Pathogenesis of genital tract disease due to Chlamydia trachomatis. *J Infect Dis* 2010, **201 Suppl 2**: S114-125.

17. Hansen J, Jensen KT, Follmann F, Agger EM, Theisen M, Andersen P. Liposome Delivery of Chlamydia muridarum Major Outer Membrane Protein Primes a Th1 Response That Protects against Genital Chlamydial Infection in a Mouse Model. *J Infect Dis* 2008, **198**(5): 758-767.

5 18. Olsen AW, Theisen M, Christensen D, Follmann F, Andersen P. Protection against Chlamydia promoted by a subunit vaccine (CTH1) compared with a primary intranasal infection in a mouse genital challenge model. *PLoS One*, **5**(5): e10768.

10 19. Li W, Murthy AK, Guentzel MN, Chambers JP, Forsthuber TG, Seshu J, *et al.* Immunization with a combination of integral chlamydial antigens and a defined secreted protein induces robust immunity against genital chlamydial challenge. *Infect Immun* 2010, **78**(9): 3942-3949.

15 20. Olsen AW, Follmann F, Højrup P, Leah R, Sand C, Andersen P, *et al.* Identification of human T-cell targets recognized during the Chlamydia trachomatis genital infection. *J Infect Dis* 2007, **196**: 1546-1552.

20 21. Olsen AW, Follmann F, Jensen K, Højrup P, Leah R, Sorensen H, *et al.* Identification of CT521 as a frequent target of Th1 cells in patients with urogenital Chlamydia trachomatis infection. *J Infect Dis* 2006, **194**(9): 1258-1266.

25 22. Follmann F, Olsen AW, Jensen KT, Hansen PR, Andersen P, Theisen M. Antigenic profiling of a Chlamydia trachomatis gene-expression library. *J Infect Dis* 2008, **197**: 897-905.

23. Sharma J, Zhong Y, Dong F, Piper JM, Wang G, Zhong G. Profiling of human antibody responses to Chlamydia trachomatis urogenital tract infection using microplates arrayed with 156 chlamydial fusion proteins. *Infect Immun* 2006, **74**(3): 1490-1499.

30 24. Coler RN, Bhatia A, Maisonneuve JF, Probst P, Barth B, Ovendale P, *et al.* Identification and characterization of novel recombinant vaccine antigens for immunization against genital Chlamydia trachomatis. *FEMS Immunol Med Microbiol* 2009, **55**(2): 258-270.

25 25. Karunakaran KP, Rey-Ladino J, Stoynov N, Berg K, Shen C, Jiang X, *et al.* Immunoproteomic discovery of novel T cell antigens from the obligate intracellular pathogen Chlamydia. *J Immunol* 2008, **180**(4): 2459-2465.

35 26. Yu H, Jiang X, Shen C, Karunakaran KP, Brunham RC. Novel Chlamydia muridarum T cell antigens induce protective immunity against lung and genital tract infection in murine models. *J Immunol* 2009, **182**(3): 1602-1608.

40 27. Molina DM, Pal S, Kayala MA, Teng A, Kim PJ, Baldi P, *et al.* Identification of immunodominant antigens of Chlamydia trachomatis using proteome microarrays. *Vaccine* 2010, **28**(17): 3014-3024.

28. Stephens RS, Kalman S, Lammel C, Fan J, Marathe R, Aravind L, *et al.* Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. *Science* 1998, **282**(5389): 754-759.

45 29. Sette A, Rappuoli R. Reverse vaccinology: developing vaccines in the era of genomics. *Immunity* 2010, **33**(4): 530-541.

30. Igietseme JU, Eko FO, Black CM. Chlamydia vaccines: recent developments and the role of adjuvants in future formulations. *Expert Rev Vaccines* 2011, **10**(11): 1585-1596.

50 31. Rockey DD, Wang J, Lei L, Zhong G. Chlamydia vaccine candidates and tools for chlamydial antigen discovery. *Expert Rev Vaccines* 2009, **8**(10): 1365-1377.

32. Farris CM, Morrison RP. Vaccination against Chlamydia genital infection utilizing the murine *C. muridarum* model. *Infect Immun* 2011, **79**(3): 986-996.

5 33. Kubo A, Stephens RS. Characterization and functional analysis of PorB, a Chlamydia porin and neutralizing target. *Mol Microbiol* 2000, **38**(4): 772-780.

10 34. Kawa DE, Schachter J, Stephens RS. Immune response to the Chlamydia trachomatis outer membrane protein PorB. *Vaccine* 2004, **22**(31-32): 4282-4286.

15 35. Crane DD, Carlson JH, Fischer ER, Bavoil P, Hsia RC, Tan C, *et al.* Chlamydia trachomatis polymorphic membrane protein D is a species-common pan-neutralizing antigen. *Proc Natl Acad Sci U S A* 2006, **103**(6): 1894-1899.

20 36. Baehr W, Zhang YX, Joseph T, Su H, Nano FE, Everett KD, *et al.* Mapping antigenic domains expressed by Chlamydia trachomatis major outer membrane protein genes. *Proc Natl Acad Sci USA* 1988, **85**(11): 4000-4004.

37. Bavoil P, Ohlin A, Schachter J. Role of disulfide bonding in outer membrane structure and permeability in Chlamydia trachomatis. *Infect Immun* 1984, **44**(2): 479-485.

25 38. Hatch TP, Allan I, Pearce JH. Structural and polypeptide differences between envelopes of infective and reproductive life cycle forms of Chlamydia spp. *J Bacteriol* 1984, **157**(1): 13-20.

39. Stephens RS, Sanchez-Pescador R, Wagar EA, Inouye C, Urdea MS. Diversity of Chlamydia trachomatis major outer membrane protein genes. *J Bacteriol* 1987, **169**(9): 3879-3885.

40. Caldwell HD, Perry LJ. Neutralization of Chlamydia trachomatis infectivity with antibodies to the major outer membrane protein. *Infect Immun* 1982, **38**(2): 745-754.

30 41. Peeling R, Maclean IW, Brunham RC. In vitro neutralization of Chlamydia trachomatis with monoclonal antibody to an epitope on the major outer membrane protein. *Infect Immun* 1984, **46**(2): 484-488.

42. Zhang YX, Stewart S, Joseph T, Taylor HR, Caldwell HD. Protective monoclonal antibodies recognize epitopes located on the major outer membrane protein of Chlamydia trachomatis. *J Immunol* 1987, **138**(2): 575-581.

35 43. Zhang YX, Stewart SJ, Caldwell HD. Protective monoclonal antibodies to Chlamydia trachomatis serovar- and serogroup-specific major outer membrane protein determinants. *Infect Immun* 1989, **57**(2): 636-638.

40 44. Cotter TW, Meng Q, Shen ZL, Zhang YX, Su H, Caldwell HD. Protective efficacy of major outer membrane protein-specific immunoglobulin A (IgA) and IgG monoclonal antibodies in a murine model of Chlamydia trachomatis genital tract infection. *Infect Immun* 1995, **63**(12): 4704-4714.

45 45. Bandea CI, Debattista J, Joseph K, Igietseme J, Timms P, Black CM. Chlamydia trachomatis serovars among strains isolated from members of rural indigenous communities and urban populations in Australia. *J Clin Microbiol* 2008, **46**(1): 355-356.

50 46. Hsu MC, Tsai PY, Chen KT, Li LH, Chiang CC, Tsai JJ, *et al.* Genotyping of Chlamydia trachomatis from clinical specimens in Taiwan. *J Med Microbiol* 2006, **55**(Pt 3): 301-308.

47. Jonsdottir K, Kristjansson M, Hjaltalin Olafsson J, Steingrimsson O. The molecular epidemiology of genital Chlamydia trachomatis in the greater Reykjavik area, Iceland. *Sex Transm Dis* 2003, **30**(3): 249-256.

5 48. Lysen M, Osterlund A, Rubin CJ, Persson T, Persson I, Herrmann B. Characterization of *ompA* genotypes by sequence analysis of DNA from all detected cases of Chlamydia trachomatis infections during 1 year of contact tracing in a Swedish County. *J Clin Microbiol* 2004, **42**(4): 1641-1647.

10 49. Millman K, Black CM, Johnson RE, Stamm WE, Jones RB, Hook EW, *et al.* Population-based genetic and evolutionary analysis of Chlamydia trachomatis urogenital strain variation in the United States. *J Bacteriol* 2004, **186**(8): 2457-2465.

15 50. Millman K, Black CM, Stamm WE, Jones RB, Hook EW, 3rd, Martin DH, *et al.* Population-based genetic epidemiologic analysis of Chlamydia trachomatis serotypes and lack of association between *ompA* polymorphisms and clinical phenotypes. *Microbes Infect* 2006, **8**(3): 604-611.

20 51. Su H, Parnell M, Caldwell HD. Protective efficacy of a parenterally administered MOMP-derived synthetic oligopeptide vaccine in a murine model of Chlamydia trachomatis genital tract infection: serum neutralizing IgG antibodies do not protect against chlamydial genital tract infection. *Vaccine* 1995, **13**(11): 1023-1032.

25 52. Pal S, Barnhart KM, Wei Q, Abai AM, Peterson EM, de la Maza LM. Vaccination of mice with DNA plasmids coding for the Chlamydia trachomatis major outer membrane protein elicits an immune response but fails to protect against a genital challenge. *Vaccine* 1999, **17**(5): 459-465.

53. Zhang DJ, Yang X, Shen C, Brunham RC. Characterization of immune responses following intramuscular DNA immunization with the MOMP gene of Chlamydia trachomatis mouse pneumonitis strain. *Immunology* 1999, **96**(2): 314-321.

30 54. Pal S, Theodor I, Peterson EM, de la Maza LM. Immunization with the Chlamydia trachomatis mouse pneumonitis major outer membrane protein can elicit a protective immune response against a genital challenge. *Infect Immun* 2001, **69**(10): 6240-6247.

55. Shaw J, Grund V, Durling L, Crane D, Caldwell HD. Dendritic cells pulsed with a recombinant chlamydial major outer membrane protein antigen elicit a CD4(+) type 2 rather than type 1 immune response that is not protective. *Infect Immun* 2002, **70**(3): 1097-1105.

35 56. Kari L, Whitmire WM, Crane DD, Reveneau N, Carlson JH, Goheen MM, *et al.* Chlamydia trachomatis native major outer membrane protein induces partial protection in nonhuman primates: implication for a trachoma transmission-blocking vaccine. *J Immunol* 2009, **182**(12): 8063-8070.

40 57. Carmichael JR, Pal S, Tifrea D, de la Maza LM. Induction of protection against vaginal shedding and infertility by a recombinant Chlamydia vaccine. *Vaccine* 2011, **29**(32): 5276-5283.

58. Yen TY, Pal S, de la Maza LM. Characterization of the disulfide bonds and free cysteine residues of the Chlamydia trachomatis mouse pneumonitis major outer membrane protein. *Biochemistry* 2005, **44**(16): 6250-6256.

45 59. Stephens RS, Wagar EA, Schoolnik GK. High-resolution mapping of serovar-specific and common antigenic determinants of the major outer membrane protein of Chlamydia trachomatis. *J Exp Med* 1988, **167**(3): 817-831.

60. Murdin AD, Su H, Klein MH, Caldwell HD. Poliovirus hybrids expressing neutralization epitopes from variable domains I and IV of the major outer membrane protein of Chlamydia trachomatis elicit broadly cross-reactive C. trachomatis-neutralizing antibodies. *Infect Immun* 1995, **63**(3): 1116-1121.

5 61. Murdin AD, Su H, Manning DS, Klein MH, Parnell MJ, Caldwell HD. A poliovirus hybrid expressing a neutralization epitope from the major outer membrane protein of Chlamydia trachomatis is highly immunogenic. *Infect Immun* 1993, **61**(10): 4406-4414.

10 62. Villeneuve A, Brossay L, Paradis G, Hebert J. Determination of neutralizing epitopes in variable domains I and IV of the major outer-membrane protein from Chlamydia trachomatis serovar K. *Microbiology* 1994, **140** (Pt 9): 2481-2487.

15 63. Villeneuve A, Brossay L, Paradis G, Hebert J. Characterization of the humoral response induced by a synthetic peptide of the major outer membrane protein of Chlamydia trachomatis serovar B. *Infect Immun* 1994, **62**(8): 3547-3549.

20 64. Motin VL, de la Maza LM, Peterson EM. Immunization with a peptide corresponding to chlamydial heat shock protein 60 increases the humoral immune response in C3H mice to a peptide representing variable domain 4 of the major outer membrane protein of Chlamydia trachomatis. *Clin Diagn Lab Immunol* 1999, **6**(3): 356-363.

25 65. Su H, Caldwell HD. Immunogenicity of a synthetic oligopeptide corresponding to antigenically common T-helper and B-cell neutralizing epitopes of the major outer membrane protein of Chlamydia trachomatis. *Vaccine* 1993, **11**(11): 1159-1166.

66. Toye B, Zhong GM, Peeling R, Brunham RC. Immunologic characterization of a cloned fragment containing the species-specific epitope from the major outer membrane protein of Chlamydia trachomatis. *Infect Immun* 1990, **58**(12): 3909-3913.

30 67. Mygind P, Christiansen G, Persson K, Birkelund S. Detection of Chlamydia trachomatis-specific antibodies in human sera by recombinant major outer-membrane protein polyantigens. *J Med Microbiol* 2000, **49**(5): 457-465.

35 68. Qu Z, Cheng X, de la Maza LM, Peterson EM. Analysis of the humoral response elicited in mice by a chimeric peptide representing variable segments I and IV of the major outer membrane protein of Chlamydia trachomatis. *Vaccine* 1994, **12**(6): 557-564.

69. Peterson EM, Cheng X, Qu Z, de la Maza LM. The effect of orientation within a chimeric peptide on the immunogenicity of Chlamydia trachomatis epitopes. *Mol Immunol* 1996, **33**(4-5): 335-339.

40 70. Caldwell HD, Kromhout J, Schachter J. Purification and partial characterization of the major outer membrane protein of Chlamydia trachomatis. *Infect Immun* 1981, **31**(3): 1161-1176.

71. Ravn P, Demissie A, Eguale T, Wondwossen H, Lein D, Amoudy HA, *et al.* Human T cell responses to the ESAT-6 antigen from *Mycobacterium tuberculosis*. *J Infect Dis* 1999, **179**(3): 637-645.

45 72. Stryhn A, Pedersen LO, Romme T, Holm CB, Holm A, Buus S. Peptide binding specificity of major histocompatibility complex class I resolved into an array of apparently independent subspecificities: quantitation by peptide libraries and improved prediction of binding. *Eur J Immunol* 1996, **26**(8): 1911-1918.

50 73. Harboe M, Oettinger T, Wiker HG, Rosenkrands I, Andersen P. Evidence for occurrence of the ESAT-6 protein in *Mycobacterium tuberculosis* and virulent *Mycobacterium bovis* and for its absence in *Mycobacterium bovis* BCG. *Infect Immun* 1996, **64**(1): 16-22.

74. Volp K, Mathews S, Timms P, Hafner L. Peptide immunization of guinea pigs against Chlamydia psittaci (GPIC agent) infection induces good vaginal secretion antibody response, in vitro neutralization and partial protection against live challenge. *Immunol Cell Biol* 2001, **79**(3): 245-250.

5 75. Hinton HJ, Jegerlehner A, Bachmann MF. Pattern recognition by B cells: the role of antigen repetitiveness versus Toll-like receptors. *Current topics in microbiology and immunology* 2008, **319**: 1-15.

10 76. Kim SK, DeMars R. Epitope clusters in the major outer membrane protein of Chlamydia trachomatis. *Curr Opin Immunol* 2001, **13**(4): 429-436.

15 77. Findlay HE, McClafferty H, Ashley RH. Surface expression, single-channel analysis and membrane topology of recombinant Chlamydia trachomatis Major Outer Membrane Protein. *BMC Microbiol* 2005, **5**: 5.

78. Cobbold SP, Jayasuriya A, Nash A, Prospero TD, Waldmann H. Therapy with monoclonal antibodies by elimination of T-cell subsets in vivo. *Nature* 1984, **312**(5994): 548-551.

20 79. Qin S, Cobbold S, Tighe H, Benjamin R, Waldmann H. CD4 monoclonal antibody pairs for immunosuppression and tolerance induction. *Eur J Immunol* 1987, **17**(8): 1159-1165.

CLAIMS:

1. A polypeptide comprising
 - a) an amino acid sequence comprising one or more surface exposed fragments of major outer membrane protein (MOMP) expressed in a serotype of *Chlamydia* sp.; and
 - b) two or more additional amino acid sequences which are either the same sequence as defined in a) or are the corresponding surface exposed fragments from a variant of said MOMP expressed in a serotype of *Chlamydia* sp., which is different from the serotype in a);
wherein the polypeptide comprises one or more of the variable domains 1 (VD1), 2 (VD2), 3 (VD3), 4 (VD4) of MOMP,
for use in treatment or prophylaxis against *Chlamydia* sp. infections, including infections with *Chlamydia trachomatis* or *C. pneumoniae*.
2. The polypeptide for the use according to claim 1, comprising 3 or more different amino acid sequences, where said amino acid sequences each comprises one or more surface exposed fragments from different variants of the MOMP that varies in different *Chlamydia* sp. serotypes, said amino acid sequences being derived from different *Chlamydia* sp. serotypes.
3. The polypeptide for the use according to claim 1, comprising 3 or more repetitions of an amino acid sequence, where said amino acid sequence comprises one or more surface exposed fragments of the MOMP that varies in different *Chlamydia* sp. serotypes, said amino acid sequences being derived from the same *Chlamydia* sp. serotype.
4. The polypeptide for the use according to any one of claims 1 to 3, wherein the outer membrane protein is MOMP from serotype D, E, F, G, Ia or J of *Chlamydia trachomatis*.

5. The polypeptide for the use according to any one of claims 1 to 4, where the amino acid sequences are linearized.
6. The polypeptide for the use according to claim 4 or 5, which comprises VD4 of MOMP, which are placed next to each other or are spaced with a linker.
7. The polypeptide for the use according to claim 6, comprising the amino acid sequence defined in formula I:

xx₁-VD4-xx₂ I

wherein

VD4 is independently selected from the group consisting of SEQ ID NO: 15-20 and an amino acid sequence which has at least 80 % sequence identity herewith

and

xx₁ consists of

i) the amino acid sequence

EWQASLALSYRLNMFTPYIGVKWSRASFADTIRIAQPK SEQ ID NO: 21

or

ii) a subsequence of the amino acid sequence in i) said subsequence comprising 1-38 amino acid residues and comprising the C-terminal K in the amino acid sequence in i)

and

xx₂ consists of

iii) the amino acid sequence

DTMQIVSLQLNKMKSRSKSCGIAVGTTIVDA SEQ ID NO: 22 or

iv) a subsequence of the amino acid sequence in iii) said subsequence comprising 1-29 amino acid residues, starting with the N-terminal D in the amino acid sequence in iii).

8. The polypeptide for the use according to any one of claims 1 to 7, additionally comprising VD1 of MOMP and wherein amino acid sequences comprising VD1 of MOMP are placed next to each other or are spaced with a linker.
9. The polypeptide for the use according to claim 8 comprising the amino acid sequence defined in formula II:

yy₁-VD1-yy₂ II

wherein

VD1 is independently selected from the group consisting of SEQ ID NO: 1-6 and an amino acid sequence which has at least 80 % sequence identity herewith

and

yy₁ consists of

v) the amino acid sequence

DAISMRVGYYGDFVFDRVVLKTDVNKEFQMG SEQ ID NO: 7 or

vi) a subsequence of the amino acid sequence in v) said subsequence comprising 1-30 amino acid residues, starting with the C-terminal G in the amino acid sequence in v)

and

yy₂ consists of

vii) the amino acid sequence

NPAYGRHMQDAEMFTNAA SEQ ID NO: 8 or

viii) a subsequence of the amino acid sequence in vii) said subsequence comprising 1-18 amino acid residues, starting with the N-terminal N in the amino acid sequence in vii).

10. The polypeptide for the use according to any one of claims 6-9, which comprises an amino acid sequence selected from the group consisting of SEQ ID NO: 9-14, 23-28, 45-59, 69, and 70.

11. The polypeptide for the use according to any one of claims 1 to 10, additionally comprising VD2 of MOMP and wherein amino acid sequences comprising VD2 of MOMP are placed next to each other or are spaced with a linker.
12. The polypeptide for the use according to claim 11 comprising the amino acid sequence defined in formula III:

zz₁-VD2-zz₂ III

wherein

VD2 is independently selected from the group consisting of SEQ ID NO: 29-34 and an amino acid sequence which has at least 80 % sequence identity herewith,

and

zz₁ consists of

ix) the amino acid sequence

TLGATSGYLKGNSASFNLVGLFG SEQ ID NO: 35 or

x) a subsequence of the amino acid sequence in ix) said subsequence comprising 1-23 amino acid residues, starting with the C-terminal G in the amino acid sequence in ix)

and

zz₂ consists of

xi) the amino acid sequence

VVELYTDTTFAWSVGARAALWE SEQ ID NO: 36 or

xii) a subsequence of the amino acid sequence in xi) said subsequence comprising 1-22 amino acid residues, starting with the N-terminal V in the amino acid sequence in xi).

13. The polypeptide for the use according to any one of claims 1 to 12, additionally comprising VD3 of MOMP and wherein amino acid sequences comprising VD3 of MOMP are placed next to each other or are spaced with a linker.

14. The polypeptide for the use according to claim 13 comprising the amino acid sequence defined in formula IV:

qq₁-VD3-qq₂ IV

wherein

VD3 is independently selected from the group consisting of SEQ ID NO: 37-42 and an amino acid sequence which has at least 80 % sequence identity herewith,

and

qq₁ consists of

xiii) the amino acid sequence

ATLGASFQYAQSKPKVEELNVLCNAAEFTINKPKGYVG SEQ ID NO: 43

or

xiv) a subsequence of the amino acid sequence in xiii) said subsequence comprising 1-22 amino acid residues, starting with the C-terminal G in the amino acid sequence in xiii)

and

qq₂ consists of

xv) the amino acid sequence

TGTDASIDYHEWQASLALSYRLNMFTPYIGVKWS SEQ ID NO: 44 or

xvi) a subsequence of the amino acid sequence in xv) said subsequence comprising 1-35 amino acid residues, starting with the N-terminal T in the amino acid sequence in xv).

15. The polypeptide for the use according to any one of claims 1 to 14, additionally comprising a moiety that facilitates export of the polypeptide when produced recombinantly, a moiety that facilitates purification of the fusion protein and/or a moiety which enhances the immunogenicity, wherein the enhancer of immunogenicity is an additional T-cell target which is selected from the group consisting of a Ct antigen of the group CT043, CT004, CT414, CT681, and a part of said Ct antigen.

16. The polypeptide for the use according to claim 15, which comprises an amino acid sequence selected from the group consisting of SEQ ID NO: 60-68.
17. A pharmaceutical composition that comprises the polypeptide as defined in any one of claims 1-16 or a nucleic acid encoding said polypeptide, additionally comprising an adjuvant or immune modulator.
18. The pharmaceutical composition according to claim 17, wherein the adjuvant is cationic dimethyldioctadecylammonium (DDA)/trehalose 6,6,9-dibehenate liposome (TDB) or alum.
19. The pharmaceutical composition according to claim 17, which comprises a carrier in the form of a virus like particle.
20. Use of a polypeptide comprising
 - a) an amino acid sequence comprising one or more surface exposed fragments of major outer membrane protein (MOMP) expressed in a serotype of *Chlamydia* sp.; and
 - b) two or more additional amino acid sequences which are either the same sequence as defined in a) or are the corresponding surface exposed fragments from a variant of said MOMP expressed in a serotype of *Chlamydia* sp., which is different from the serotype in a);
wherein the polypeptide comprises one or more of the variable domains 1, 2, 3, 4 of MOMP,
for the preparation of a pharmaceutical composition for treatment or prophylaxis against *Chlamydia* sp. infections, including infections with *Chlamydia trachomatis* or *C. pneumoniae*.
21. The use according to claim 20, wherein the polypeptide comprises 3 or more different amino acid sequences, where said amino acid sequences each comprises one or more surface exposed fragments from different variants of the

same MOMP that varies in different *Chlamydia* sp. serotypes, said amino acid sequences being derived from different *Chlamydia* sp. serotypes.

22. The use according to claim 20, wherein the polypeptide comprises 3 or more repetitions of one amino acid sequence, which comprises one or more surface exposed fragments of the same MOMP that varies in different *Chlamydia* sp. serotypes, said amino acid sequences being derived from the same *Chlamydia* sp. serotype.
23. The use according to any one of claims 20-22, wherein the outer membrane protein is MOMP from serotype D, E, F, G, Ia or J of *Chlamydia trachomatis*.
24. The use according to any one of claims 20-23, where the amino acid sequences are linearized.
25. The use according to claim 23 or 24, wherein the polypeptide comprises amino acid sequences comprising the variable domains 4 (VD4) of MOMP, which are placed next to each other or are spaced with a linker.
26. The use according to claim 25, wherein the polypeptide comprises the amino acid sequence defined in formula I:

xx₁-VD4-xx₂ I

wherein

VD4 is independently selected from the group consisting of SEQ ID NO: 15-20 and an amino acid sequence which has at least 80 % sequence identity herewith

and

xx₁ consists of

i) the amino acid sequence

EWQASLALSYRLNMFTPYIGVKWSRASFADTIRIAQPK SEQ ID NO: 21

or

ii) a subsequence of the amino acid sequence in i) said subsequence comprising 1-38 amino acid residues, starting with the C-terminal K in the amino acid sequence in i)
and
xx₂ consists of
iii) the amino acid sequence
DTMQIVSLQLNKMKSRKSCGIAVGTTIVDA SEQ ID NO: 22 or
iv) a subsequence of the amino acid sequence in iii) said subsequence comprising 1-29 amino acid residues, starting with the N-terminal D in the amino acid sequence in iii).

27. The use according to any one of claims 20-26, wherein the polypeptide additionally comprises VD1 of MOMP and wherein amino acid sequences comprising VD1 of MOMP are placed next to each other or are spaced with a linker.

28. The use according to claim 27, wherein the polypeptide comprises the amino acid sequence defined in formula II:

yy₁-VD1-yy₂ II

wherein
VD1 is independently selected from the group consisting of SEQ ID NO: 1-6 and an amino acid sequence which has at least 80 % sequence identity herewith
and
yy₁ consists of
v) the amino acid sequence
DAISMRVGYYGDFVFDRVVLKTDVNKEFQMG (SEQ ID NO: 7) or
vi) a subsequence of the amino acid sequence in v) said subsequence comprising 1-30 amino acid residues, starting with the C-terminal G in the amino acid sequence in v)

and

yy₂ consists of

vii) the amino acid sequence

NPAYGRHMQDAEMFTNAA SEQ ID NO: 8 or

viii) a subsequence of the amino acid sequence in vii) said subsequence comprising 1-18 amino acid residues, starting with the N-terminal N in the amino acid sequence in vii).

29. The use according to any one of claims 25-28, which comprises an amino acid sequence selected from the group consisting of SEQ ID NO: 9-14, 23-28, 45-59, 69, and 70.

30. The use according to any one of claims 20-29, additionally comprising VD2 of MOMP and wherein amino acid sequences comprising VD2 of MOMP are placed next to each other or are spaced with a linker.

31. The use according to claim 30 comprising the amino acid sequence defined in formula III:

zz₁-VD2-zz₂ III

wherein

VD2 is independently selected from the group consisting of SEQ ID NO: 29-34 and an amino acid sequence which has at least 80 % sequence identity herewith,

and

zz₁ consists of

ix) the amino acid sequence

TLGATSGYLKGNSASFNLVGLFG SEQ ID NO: 35 or

x) a subsequence of the amino acid sequence in ix) said subsequence comprising 1-23 amino acid residues, starting with the C-terminal G in the amino acid sequence in ix)

and

zz_2 consists of

xi) the amino acid sequence

VVELYTDTTFAWSVGARAALWE SEQ ID NO: 36 or

xii) a subsequence of the amino acid sequence in xi) said subsequence comprising 1-22 amino acid residues, starting with the N-terminal V in the amino acid sequence in xi).

32. The use according to any one of claims 20-31, additionally comprising VD3 of MOMP and wherein amino acid sequences comprising VD3 of MOMP are placed next to each other or are spaced with a linker.

33. The use according to claim 32 comprising the amino acid sequence defined in formula IV:

$qq_1\text{-}VD3\text{-}qq_2$ IV

wherein

VD3 is independently selected from the group consisting of SEQ ID NO: 37-42 and an amino acid sequence which has at least 80 % sequence identity herewith,

and

qq_1 consists of

xiii) the amino acid sequence

ATLGASFQYAQSKPKVEELNVLCNAAEFTINKPKGYVG SEQ ID NO: 43

or

xiv) a subsequence of the amino acid sequence in xiii) said subsequence comprising 1-22 amino acid residues, starting with the C-terminal G in the amino acid sequence in xiii)

and

qq_2 consists of

xv) the amino acid sequence

TGTDASIDYHEWQASLALSYRLNMFTPYIGVKWS SEQ ID NO: 44 or
xvi) a subsequence of the amino acid sequence in xv) said
subsequence comprising 1-35 amino acid residues, starting with the N-
terminal T in the amino acid sequence in xv).

34. The use according to any one claims 20-33, additionally comprising a moiety that facilitates export of the polypeptide when produced recombinantly, a moiety that facilitates purification of the fusion protein and/or a moiety which enhances the immunogenicity, wherein the enhancer of immunogenicity is an additional T-cell target which is a Ct antigen.
35. The use according to claim 34, wherein the Ct antigen is selected from the group consisting of CT043, CT004, CT414, CT681, and a part of said Ct antigen.
36. The use according to claim 34 or 35, wherein the polypeptide comprises an amino acid sequence selected from the group consisting of SEQ ID NO: 60-68.
37. A use of a polypeptide comprising
 - a) an amino acid sequence comprising one or more surface exposed fragments of major outer membrane protein (MOMP) expressed in a serotype of *Chlamydia sp.*; and
 - b) two or more additional amino acid sequences which are either the same sequence as defined in a) or are the corresponding surface exposed fragments from a variant of said MOMP expressed in a serotype of *Chlamydia sp.*, which is different from the serotype in a);
wherein the polypeptide comprises one or more of the variable domains 1, 2, 3, 4 of MOMP,
for treatment or prophylaxis against *Chlamydia sp.* infections, including infections with *Chlamydia trachomatis* or *C. pneumoniae*.

38. The use according to claim 37, wherein the polypeptide comprises 3 or more different amino acid sequences, where said amino acid sequences each comprises one or more surface exposed fragments from different variants of the same MOMP that varies in different *Chlamydia* sp. serotypes, said amino acid sequences being derived from different *Chlamydia* sp. serotypes.
39. The use according to claim 37, wherein the polypeptide comprises 3 or more repetitions of one amino acid sequence, where said amino acid sequence comprises one or more surface exposed fragments of the same MOMP that varies in different *Chlamydia* sp. serotypes, said amino acid sequences being derived from the same *Chlamydia* sp. serotype.
40. The use according to any one of claim 37 to 39, wherein the outer membrane protein is MOMP from serotype D, E, F, G, Ia or J of *Chlamydia trachomatis*.
41. The use according to any one of claims 37-40, where the amino acid sequences are linearized.
42. The use according to claim 40 or 41, wherein the polypeptide comprises amino acid sequences comprising the variable domains 4 (VD4) of MOMP, which are placed next to each other or are spaced with a linker.
43. The use according to claim 42, wherein the polypeptide comprises the amino acid sequence defined in formula I:

xx₁-VD4-xx₂ I

wherein

VD4 is independently selected from the group consisting of SEQ ID NO: 15-20 and an amino acid sequence which has at least 80 % sequence identity herewith

and

xx₁ consists of

- i) the amino acid sequence
EWQASLALSYRLNMFTPYIGVKWSRASFADTIRIAQPK SEQ ID NO: 21
or
- ii) a subsequence of the amino acid sequence in i) said
subsequence comprising 1-38 amino acid residues, starting with the C-
terminal K in the amino acid sequence in i)
and
xx₂ consists of
- iii) the amino acid sequence
DTMQIVSLQLNKMKSRKSCGIAVGTTIVDA SEQ ID NO: 22 or
- iv) a subsequence of the amino acid sequence in iii) said
subsequence comprising 1-29 amino acid residues, starting with the N-
terminal D in the amino acid sequence in iii).

44. The use according to any one of claims 37 to 43, wherein the polypeptide
additionally comprises VD1 of MOMP and wherein amino acid sequences
comprising VD1 of MOMP are placed next to each other or are spaced with a
linker.

45. The use according to claim 44, wherein the polypeptide comprises the amino
acid sequence defined in formula II:

wherein
VD1 is independently selected from the group consisting of SEQ ID NO: 1-
6 and an amino acid sequence which has at least 80 % sequence identity
herewith

and

yy₁ consists of

v) the amino acid sequence

DAISMRVGYYGDFVFDRVLTVDVNKEFQMG SEQ ID NO: 7 or

vi) a subsequence of the amino acid sequence in v) said subsequence comprising 1-30 amino acid residues, starting with the C-terminal G in the amino acid sequence in v)

and

yy₂ consists of

vii) the amino acid sequence

NPAYGRHMQDAEMFTNAA SEQ ID NO: 8 or

viii) a subsequence of the amino acid sequence in vii) said subsequence comprising 1-18 amino acid residues, starting with the N-terminal N in the amino acid sequence in vii).

46. The use according to any one of claims 42 to 45, wherein the polypeptide comprises an amino acid sequence selected from the group consisting of SEQ ID NO: 9-14, 23-28, 45-59, 69, and 70.

47. The use according to any one of claims 37 to 46, additionally comprising VD2 of MOMP and wherein amino acid sequences comprising VD2 of MOMP are placed next to each other or are spaced with a linker.

48. The use according to claim 47 comprising the amino acid sequence defined in formula III:

zz₁-VD2-zz₂ III

wherein

VD2 is independently selected from the group consisting of SEQ ID NO: 29-34 and an amino acid sequence which has at least 80 % sequence identity herewith,

and

zz₁ consists of

ix) the amino acid sequence

TLGATSGYLKGNSASFNLVGLFG SEQ ID NO: 35 or

x) a subsequence of the amino acid sequence in ix) said subsequence comprising 1-23 amino acid residues, starting with the C-terminal G in the amino acid sequence in ix)

and

zz₂ consists of

xi) the amino acid sequence

VVELYTDTTFAWSVGARAALWE SEQ ID NO: 36 or

xii) a subsequence of the amino acid sequence in xi) said subsequence comprising 1-22 amino acid residues, starting with the N-terminal V in the amino acid sequence in xi).

49. The use according to any one of claims 37 to 48, additionally comprising VD3 of MOMP and wherein amino acid sequences comprising VD3 of MOMP are placed next to each other or are spaced with a linker.

50. The use according to claim 49 comprising the amino acid sequence defined in formula IV:

qq₁-VD3-qq₂ IV

wherein

VD3 is independently selected from the group consisting of SEQ ID NO: 37-42 and an amino acid sequence which has at least 80 % sequence identity herewith,

and

qq₁ consists of

xiii) the amino acid sequence

ATLGASFQYAQSKPKVEELNVLCNAAEFTINKPKGYVG SEQ ID NO: 43

or

xiv) a subsequence of the amino acid sequence in xiii) said subsequence comprising 1-22 amino acid residues, starting with the C-terminal G in the amino acid sequence in xiii)

and

qq₂ consists of

xv) the amino acid sequence

TGTDASIDYHEWQASLALSYRLNMFTPYIGVKWS SEQ ID NO: 44 or

xvi) a subsequence of the amino acid sequence in xv) said

subsequence comprising 1-35 amino acid residues, starting with the N-terminal T in the amino acid sequence in xv).

51. The use according to any one of claims 37-50, additionally comprising a moiety that facilitates export of the polypeptide when produced recombinantly, a moiety that facilitates purification of the fusion protein and/or a moiety which enhances the immunogenicity, wherein the enhancer of immunogenicity is an additional T-cell target which is a Ct antigen.
52. The use of claim 51, wherein the Ct antigen is selected from the group consisting of CT043, CT004, CT414, CT681, and a part of said Ct antigen.
53. The use according to claim 51, where the polypeptide comprises an amino acid sequence selected from the group consisting of SEQ ID NO: 60-68.

Figure 1

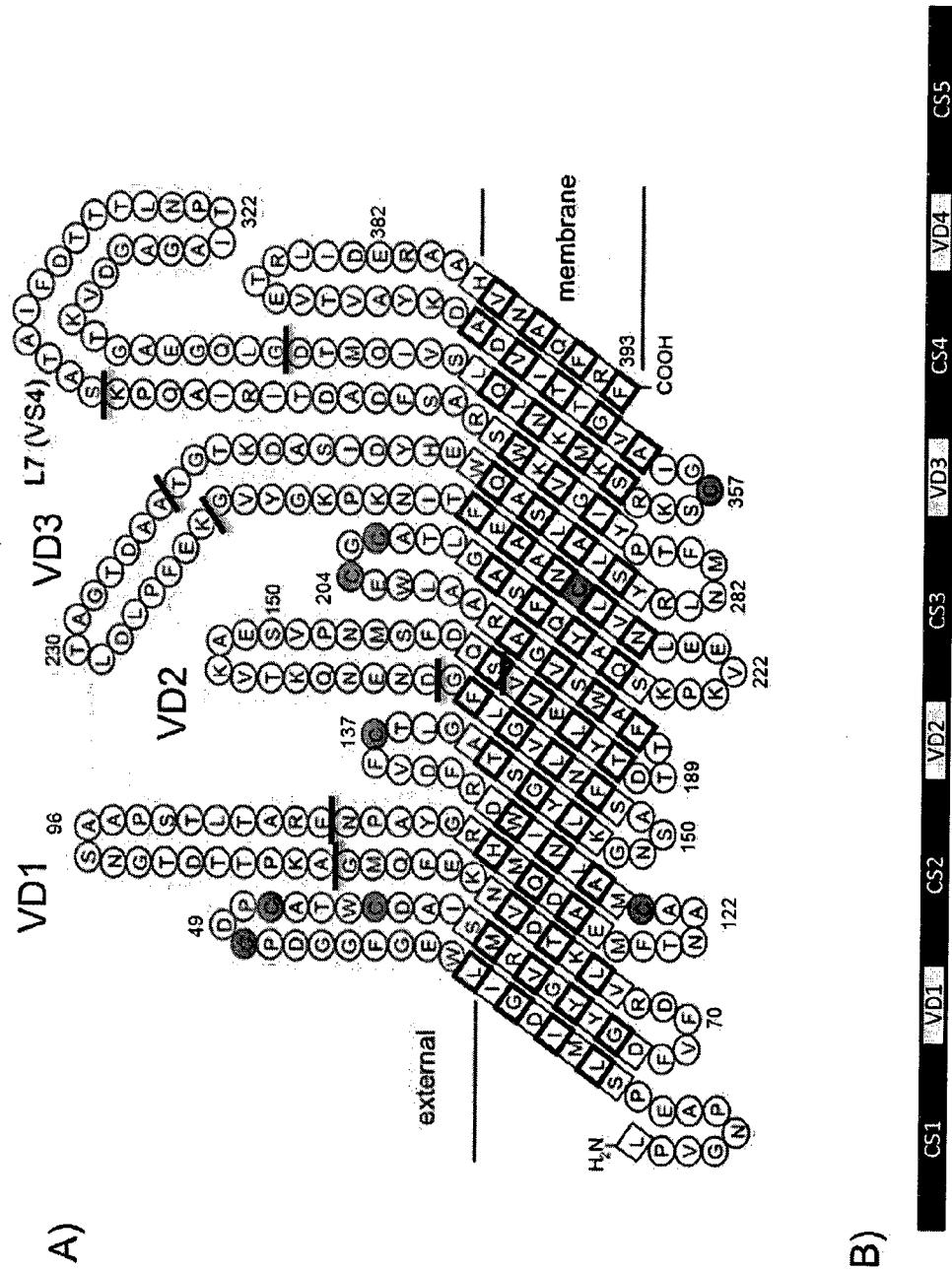


Figure 2

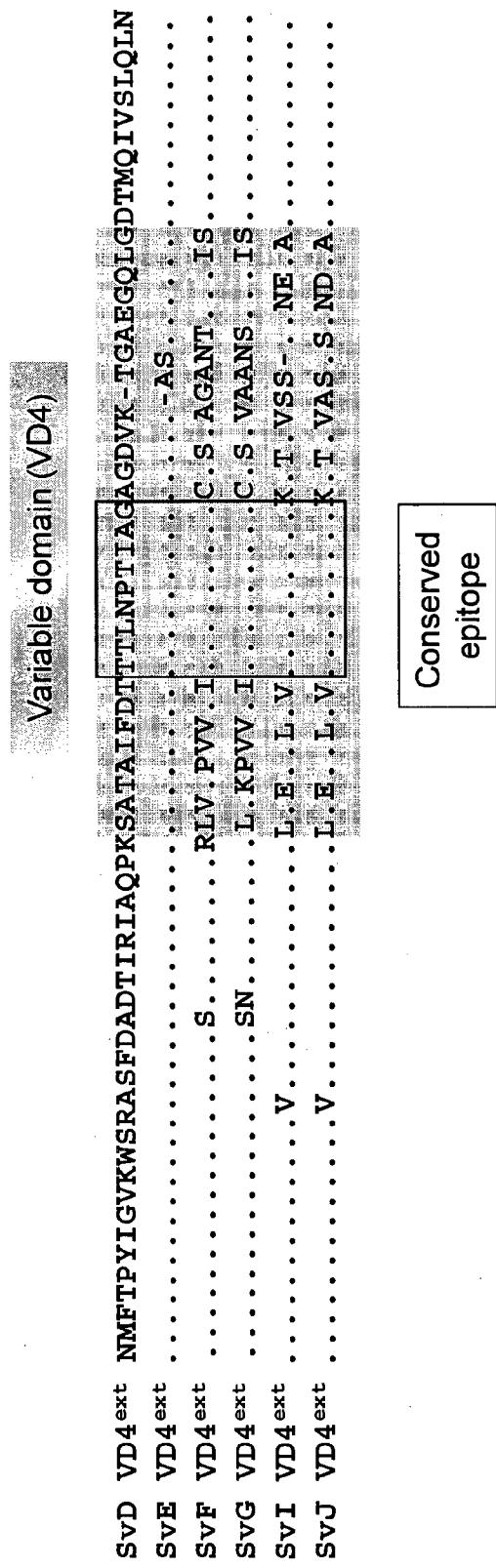
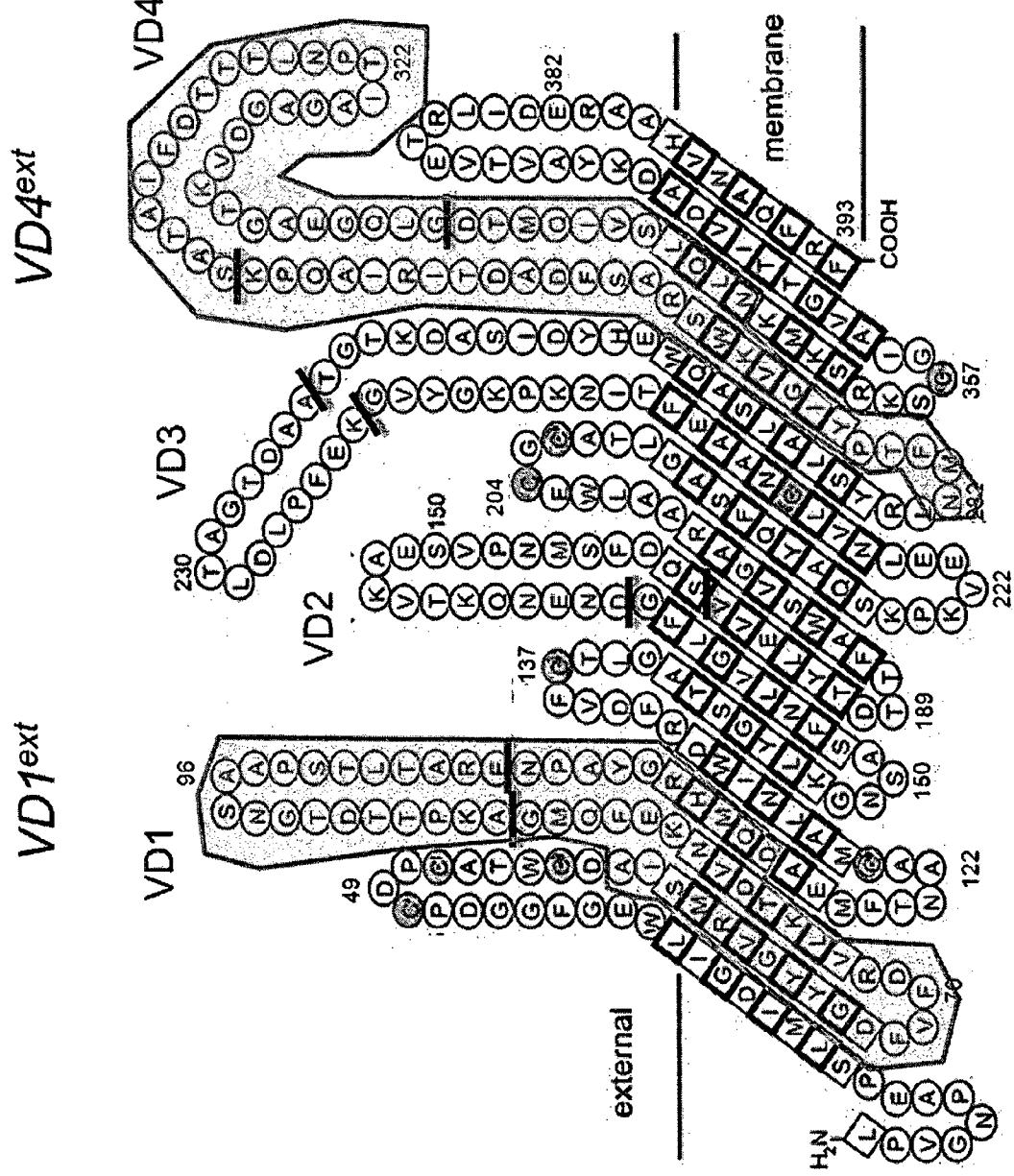
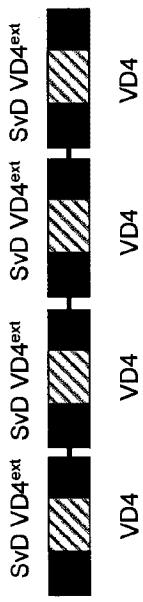
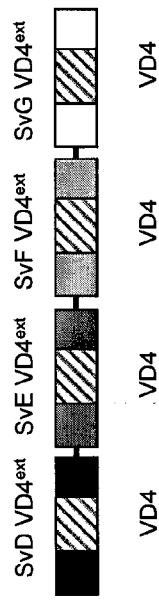





Figure 3

Figure 4**Homologous immuno-repeats****Heterologous immuno-repeats**

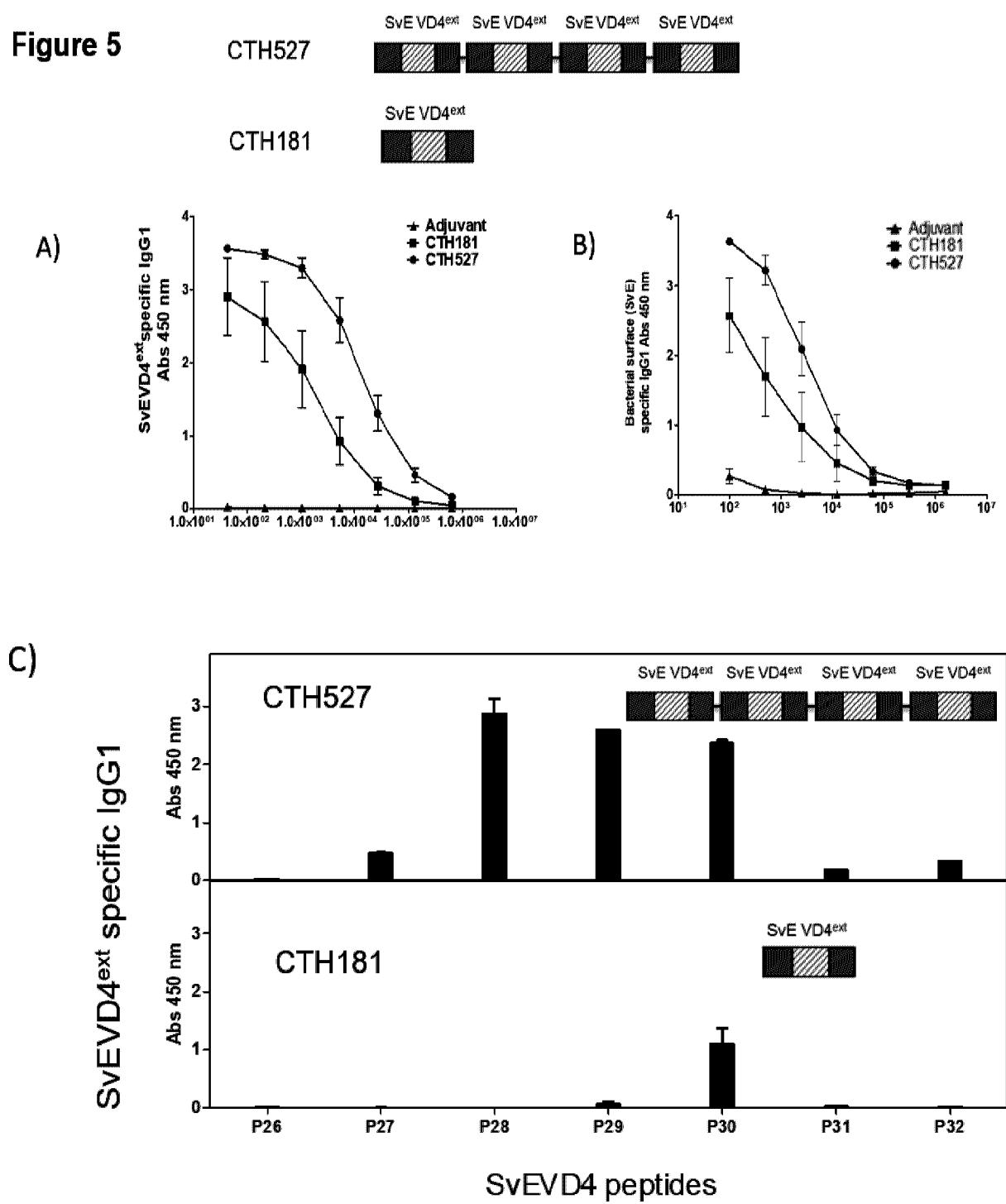

Figure 5

Figure 6

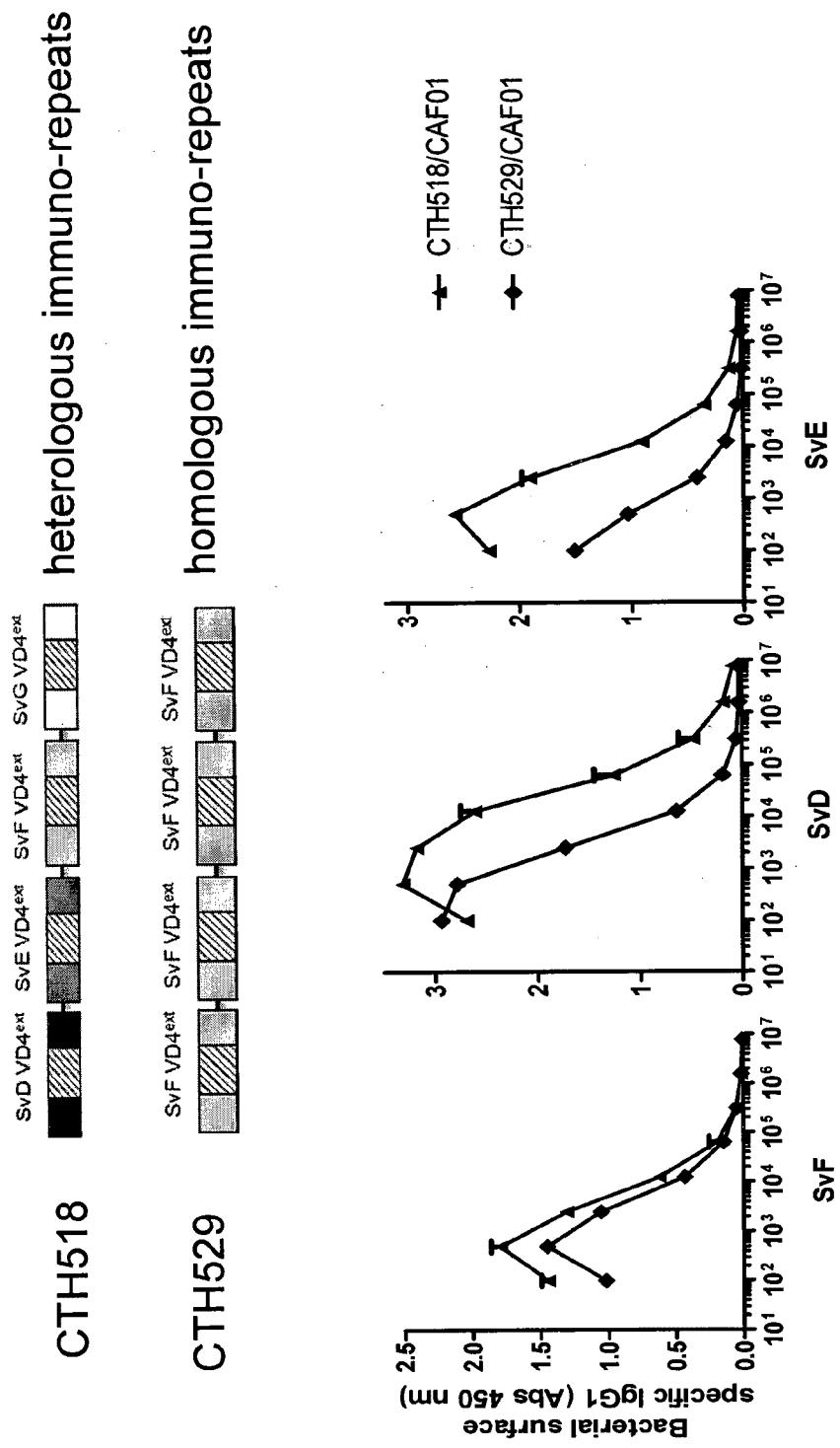
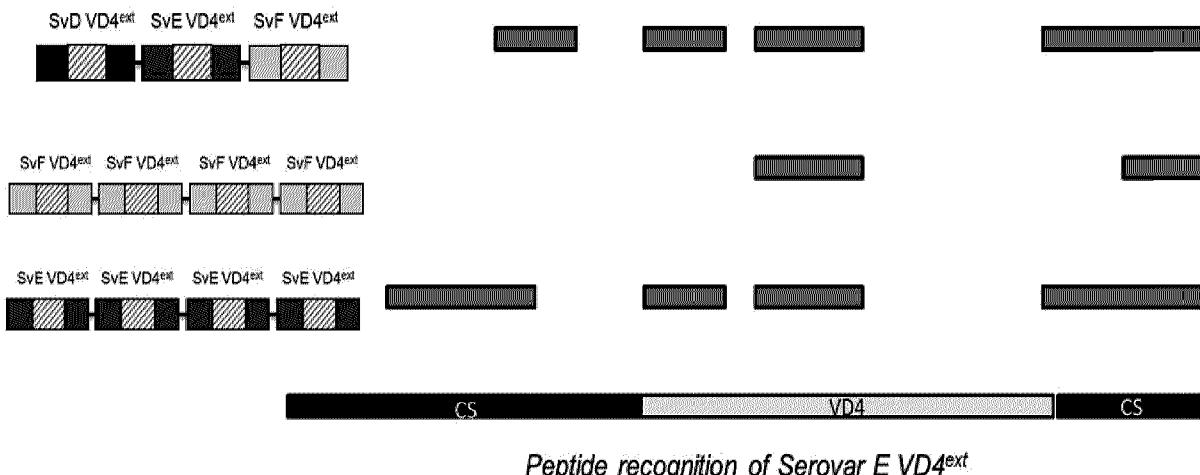
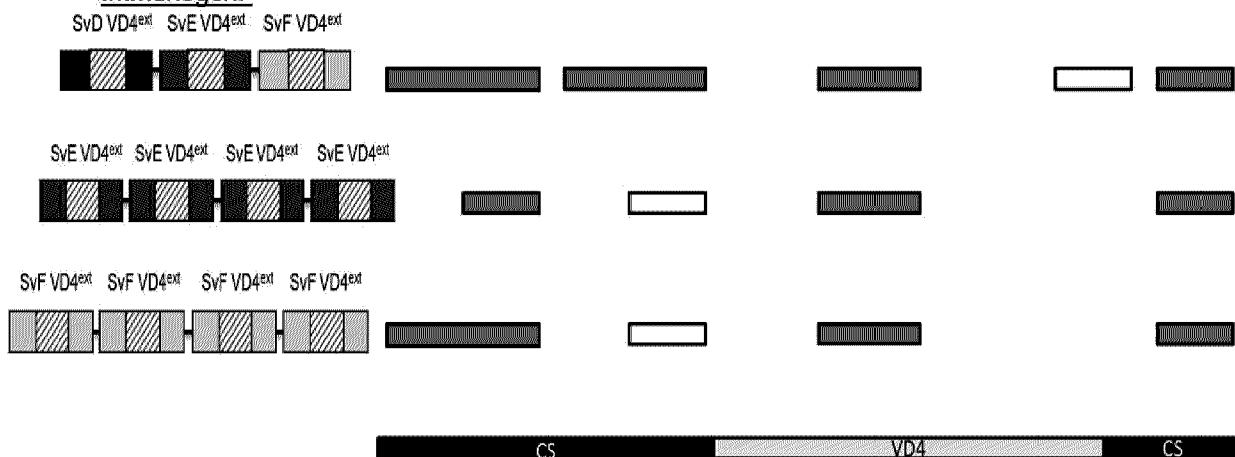




Figure 7 A)

Immunogen:

Serovar E VD4^{ext} NMFTPYIGVKWSRASF DADTIRIAQPKSATAIFDTTTLNPTIAGAGDVK-ASAEGQLGDTMQIVSLQLN
 Serovar F VD4^{ext} S RLV.PVV.I S . S . AGANT . . . IS

Figure 7 B)

Immunogen:

Serovar E VD4^{ext} NMFTPYIGVKWSRASF DADTIRIAQPKSATAIFDTTTLNPTIAGAGDVK-ASAEGQLGDTMQIVSLQLN
 Serovar F VD4^{ext} S RLV.PVV.I S . S . AGANT . . . IS

Figure 7 C)

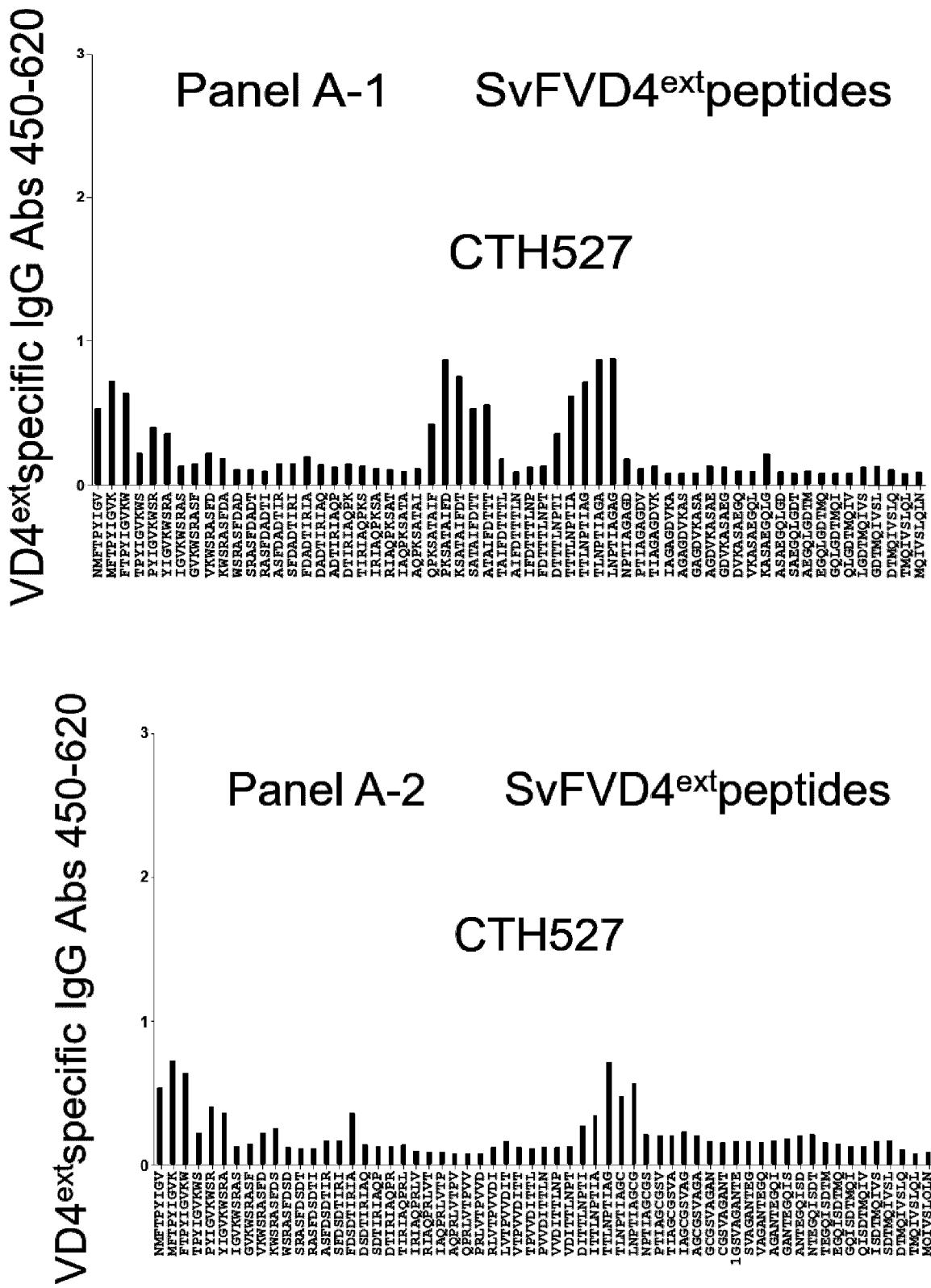


Figure 7 C) cont.

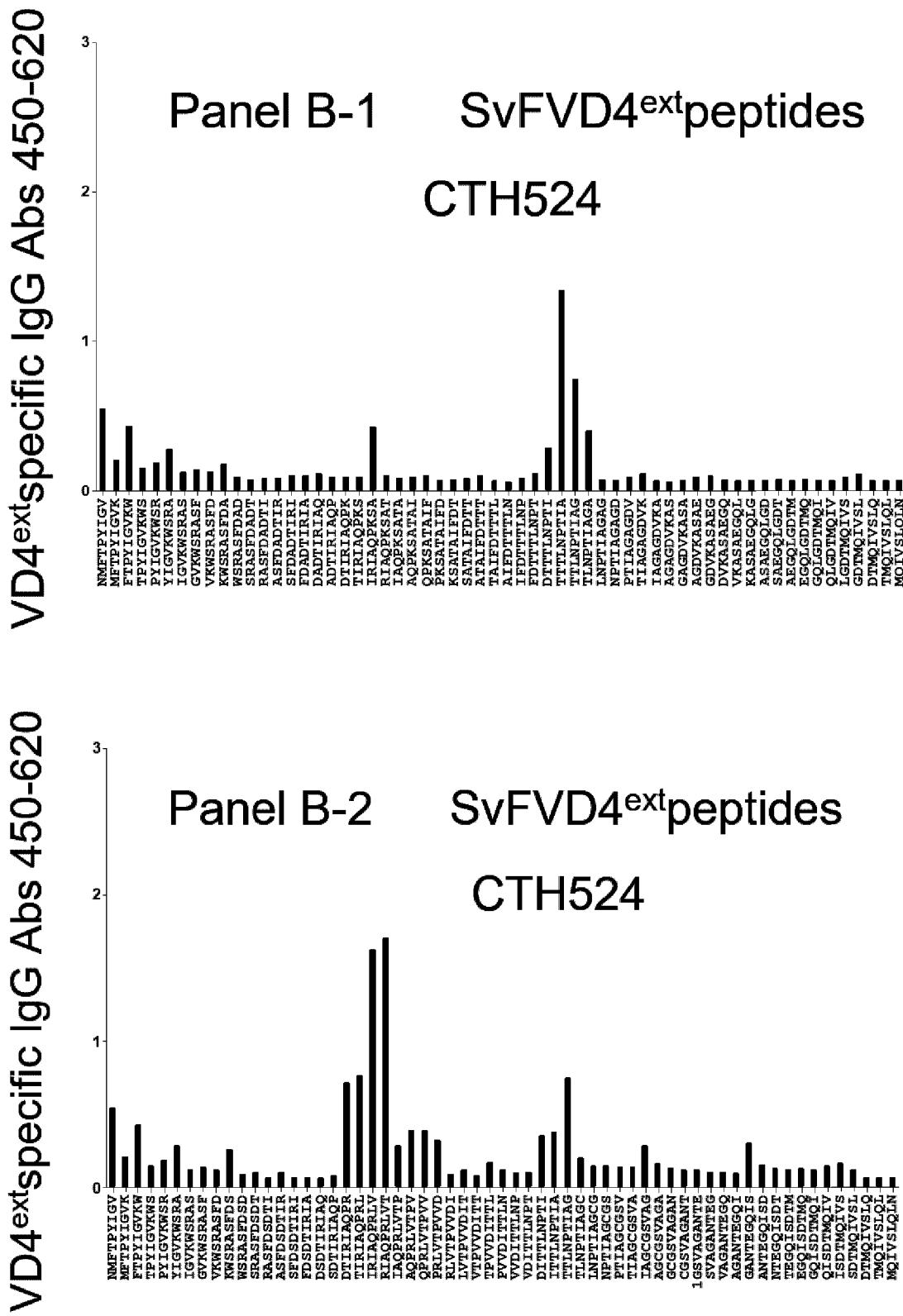


Figure 7 C) cont.

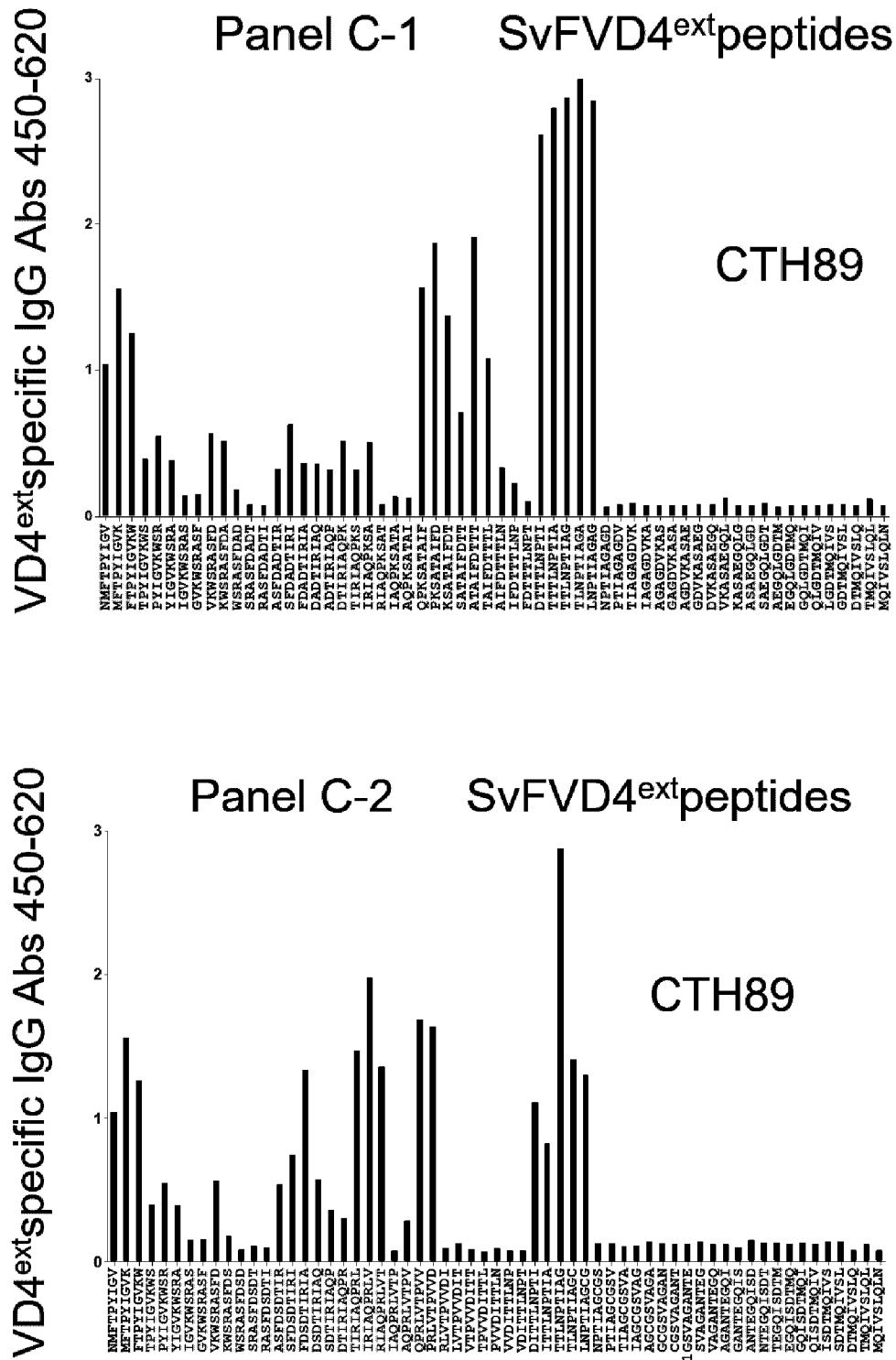


Figure 7D

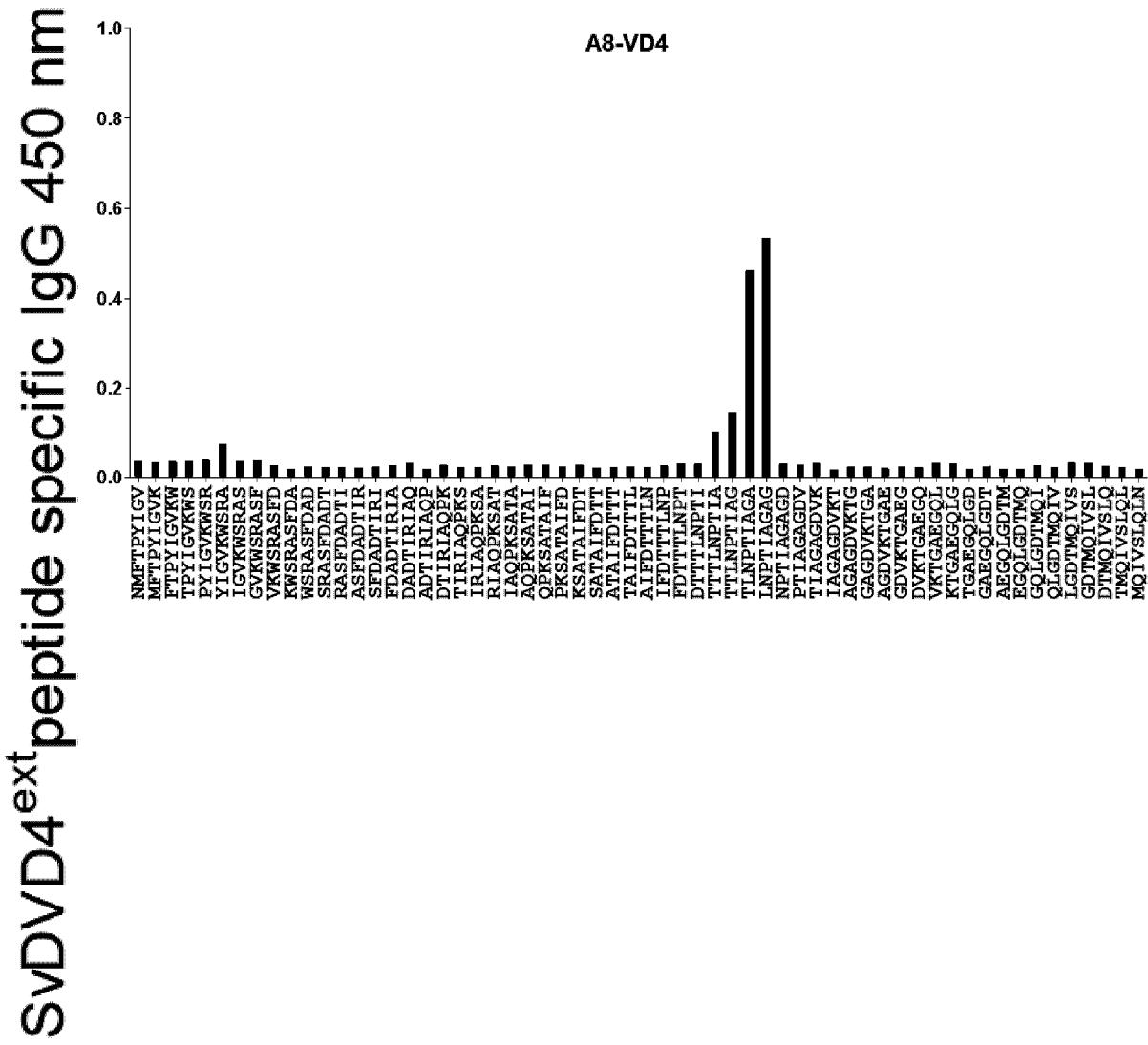


Figure 7D cont.

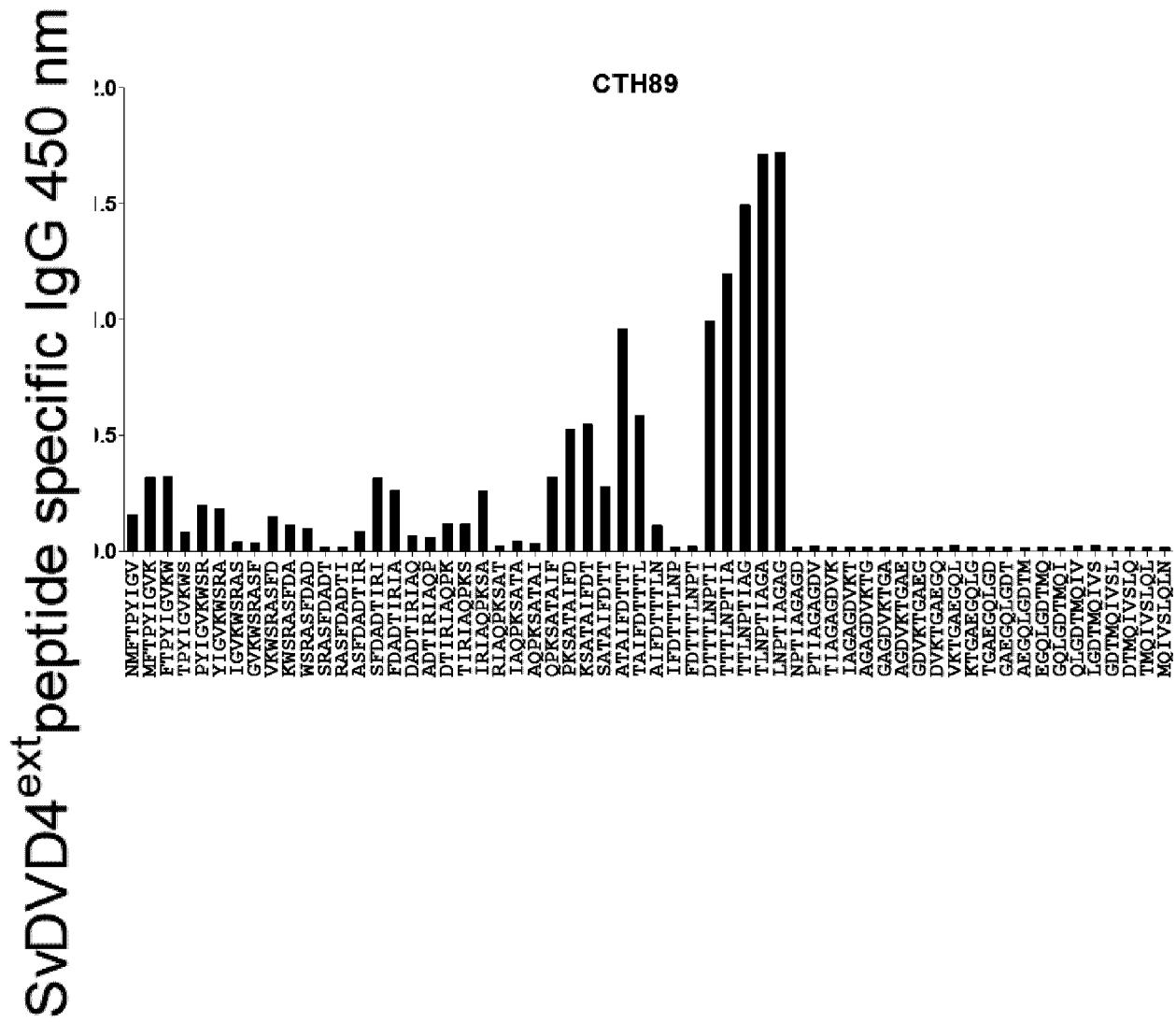


Figure 7D cont.

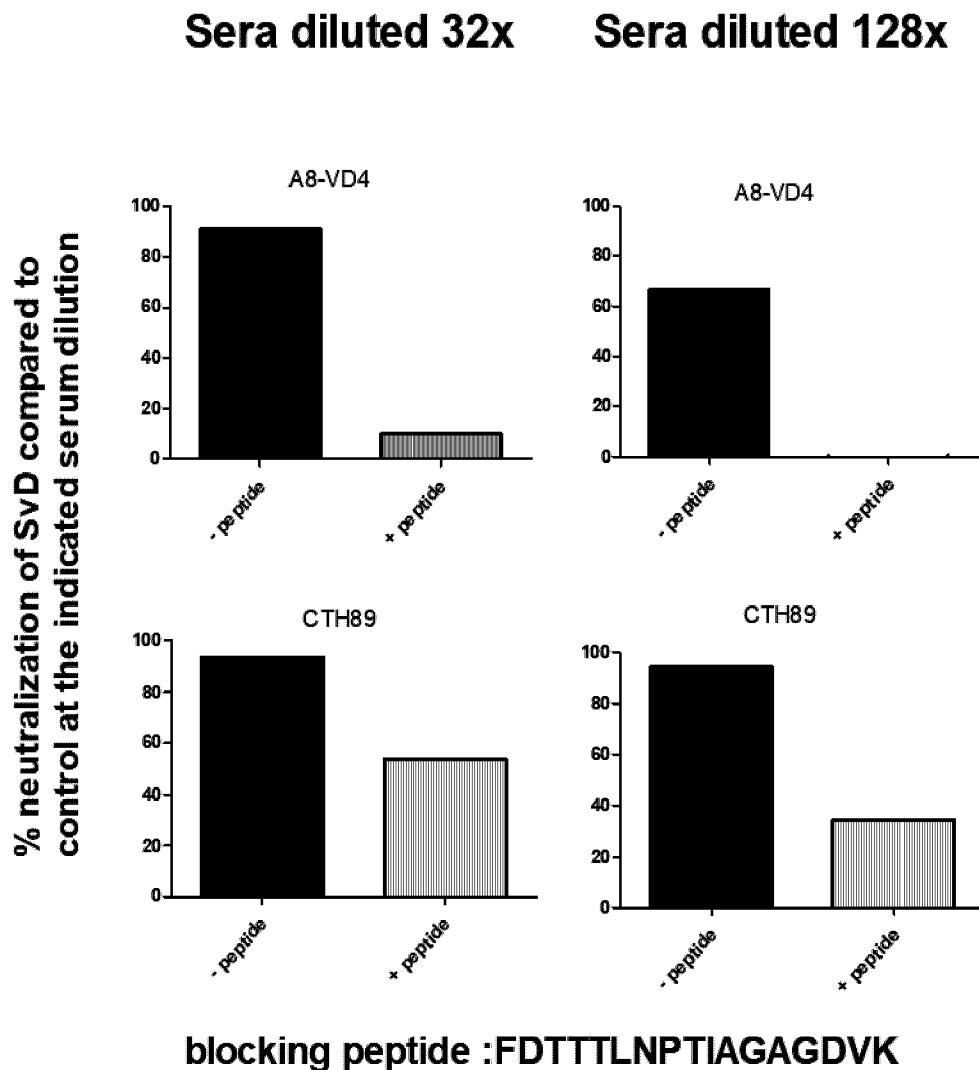


Figure 8

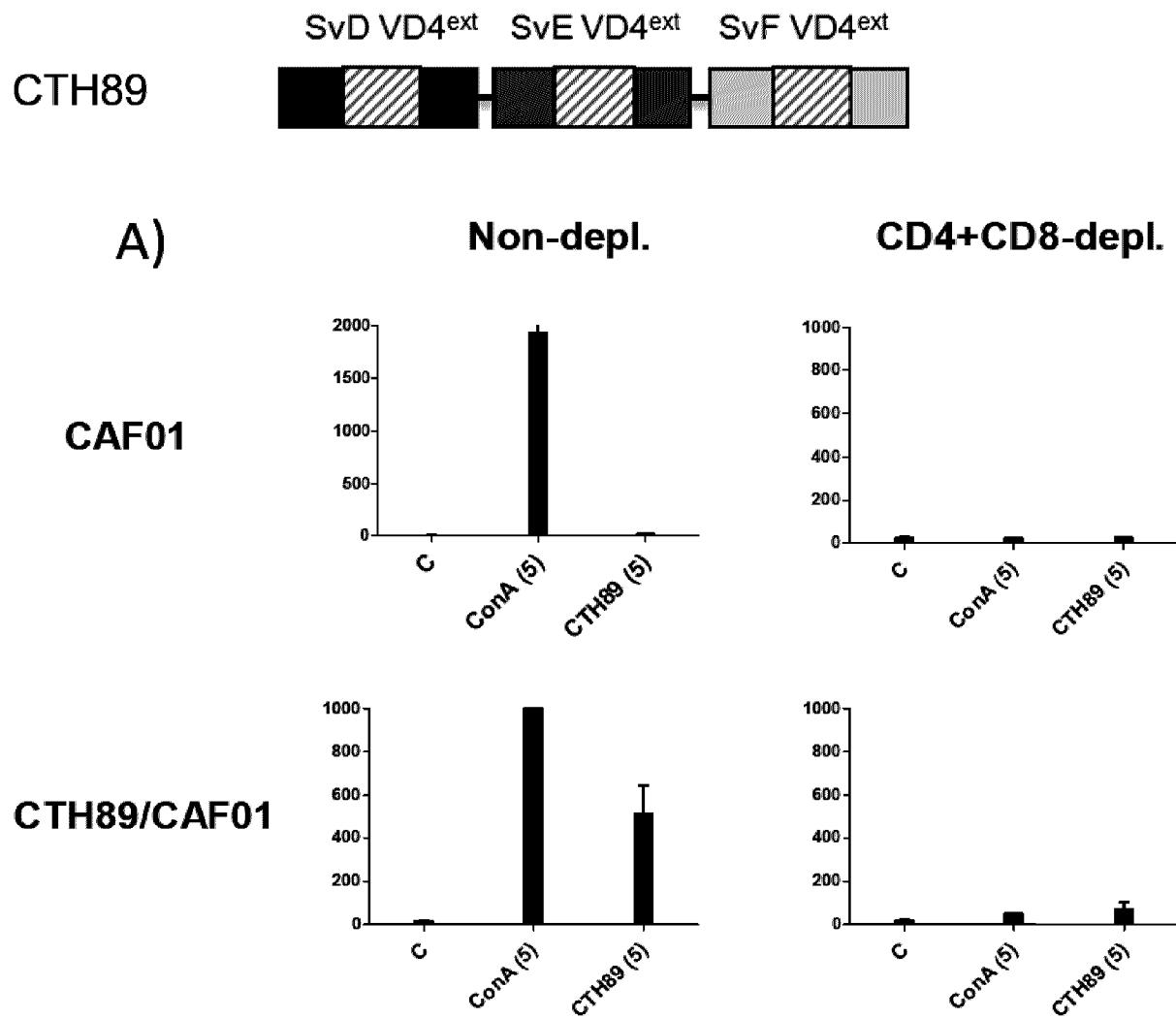


Figure 8 cont.

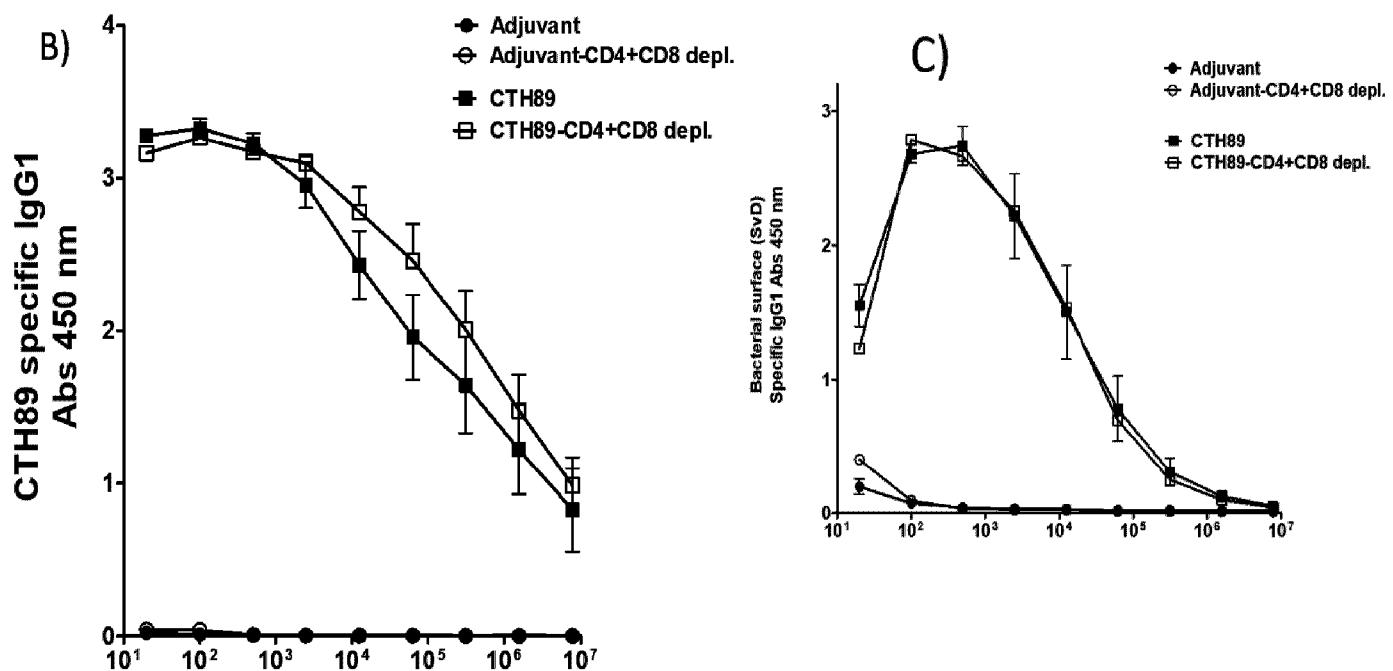
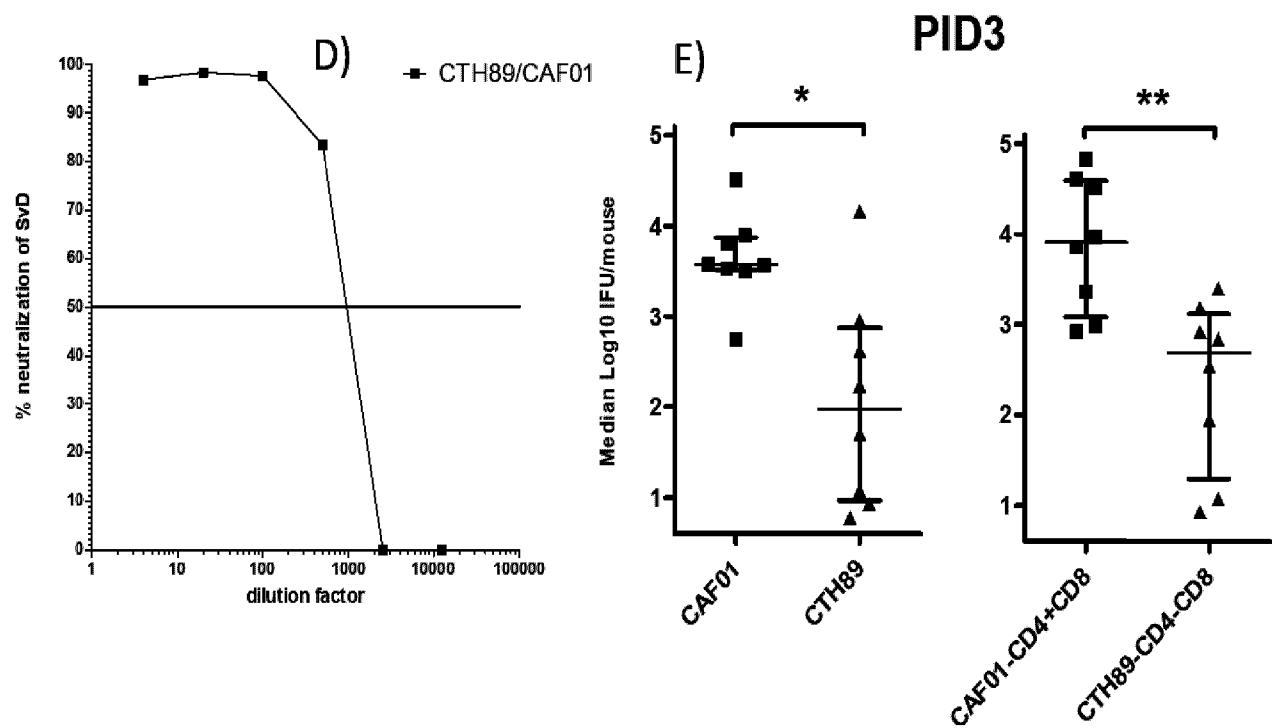



Figure 8 cont.

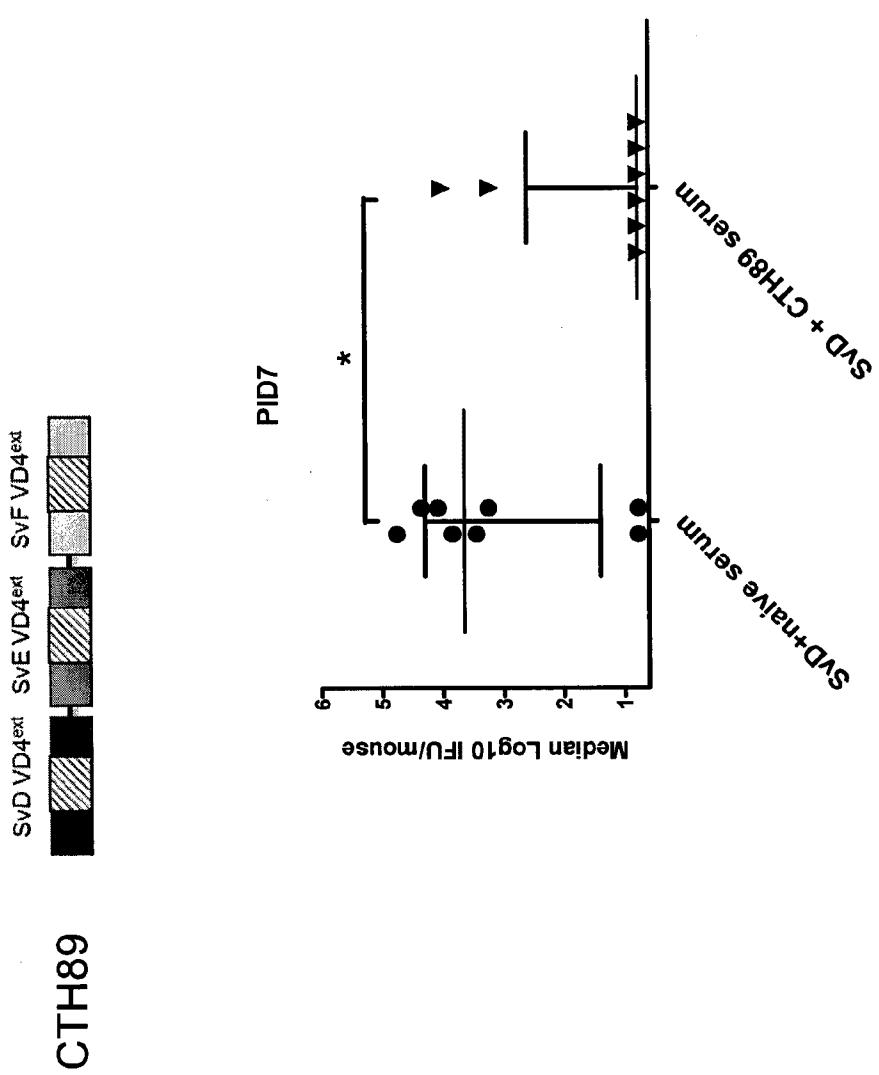
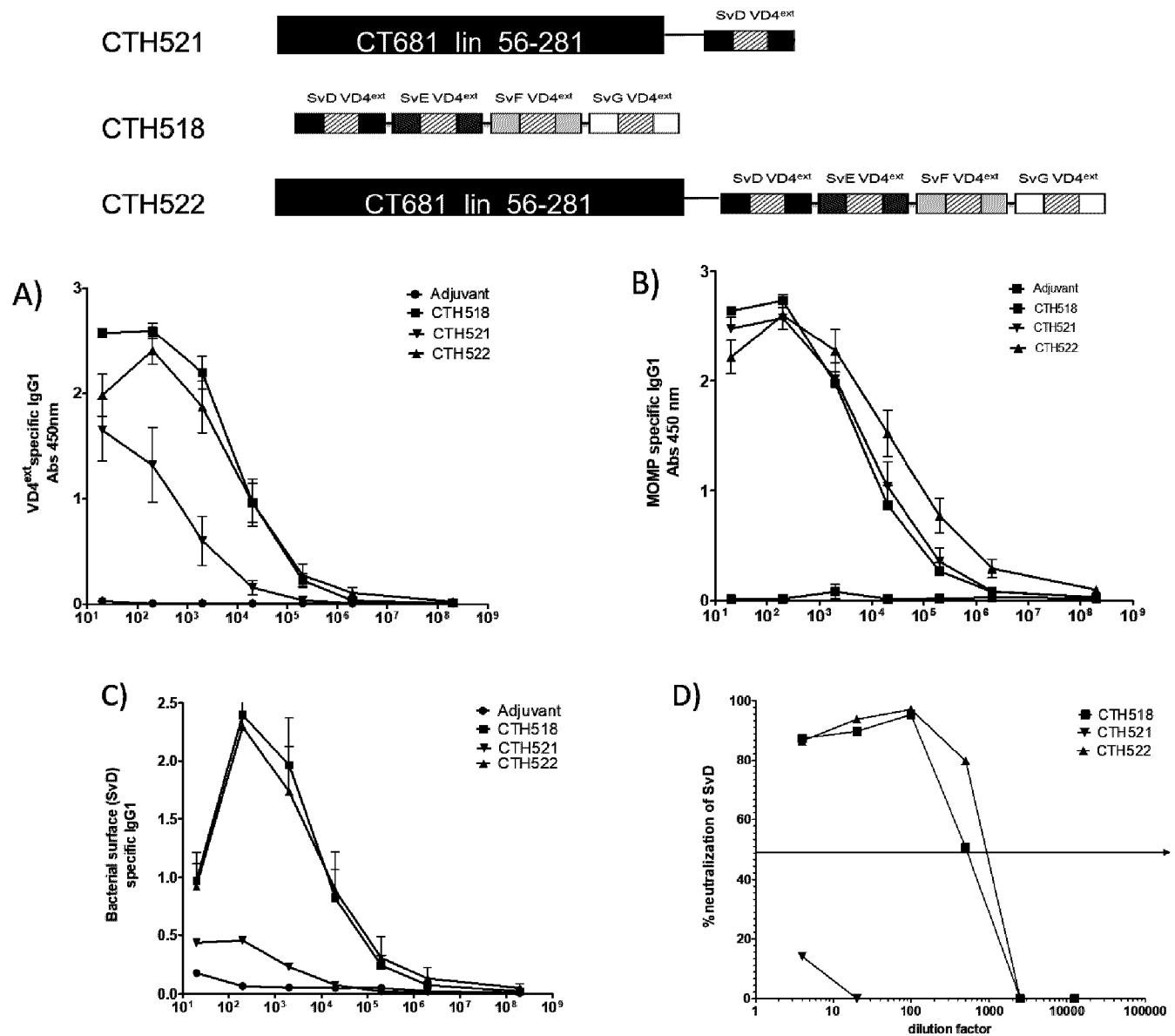


Figure 9

Figure 10

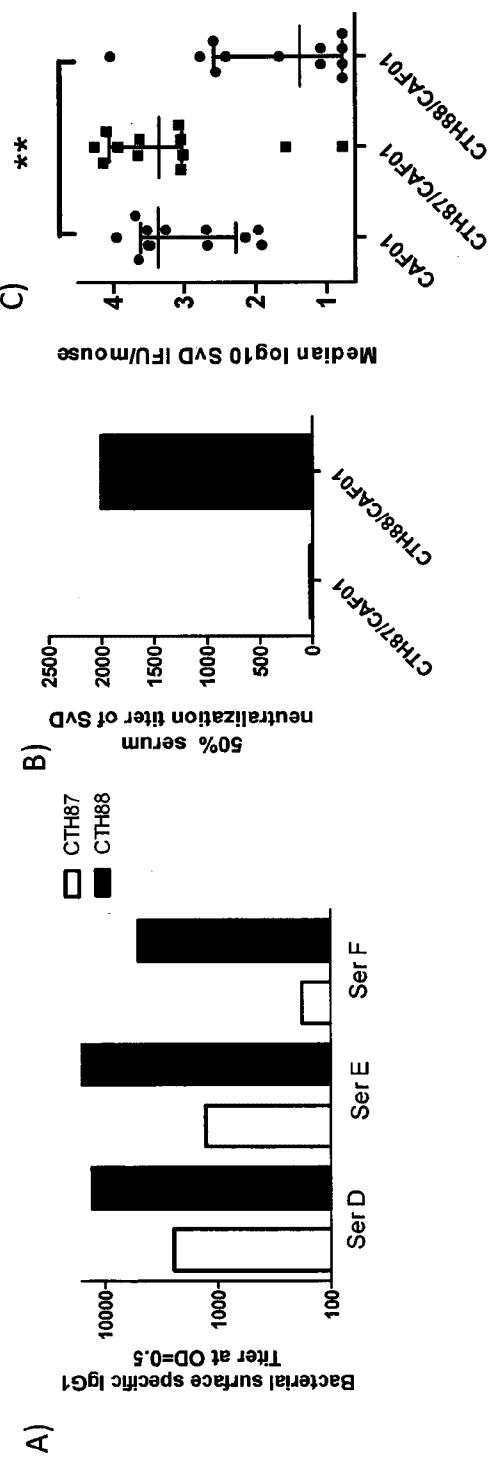
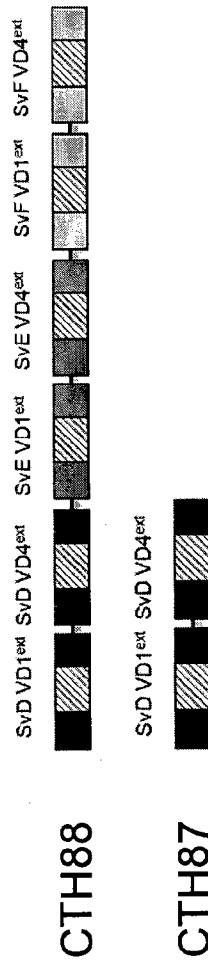
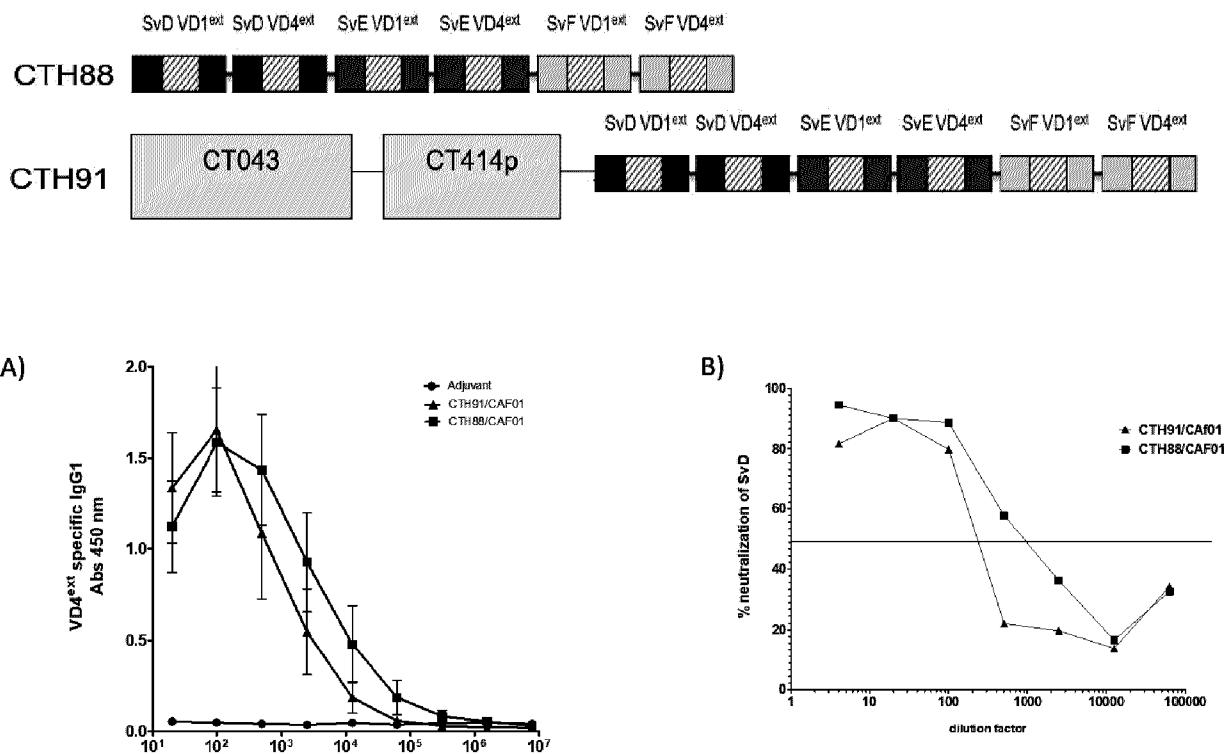
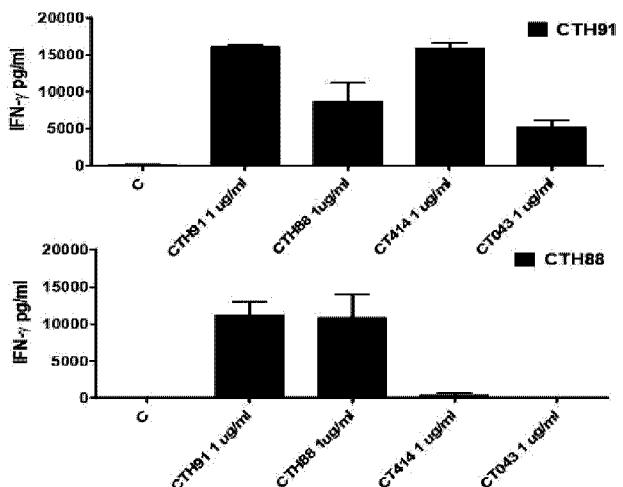




Figure 11

Figure 12

C)

Figure 12 contd.

D)

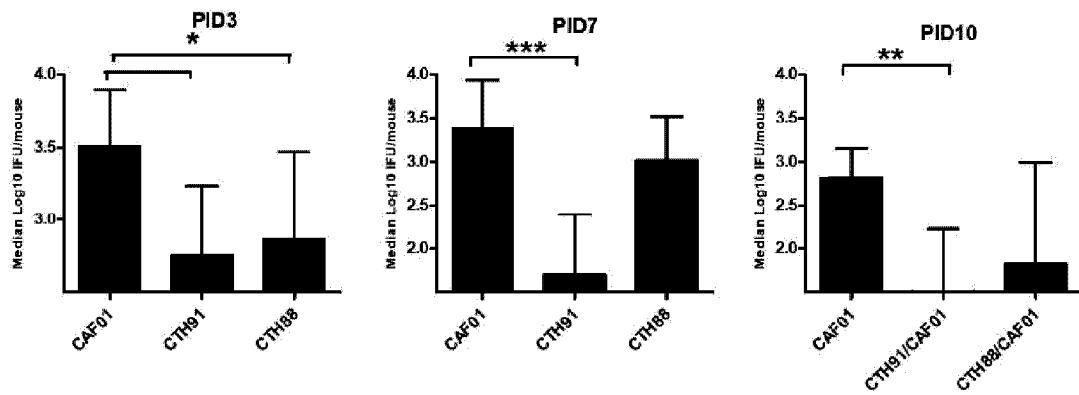


Figure 13

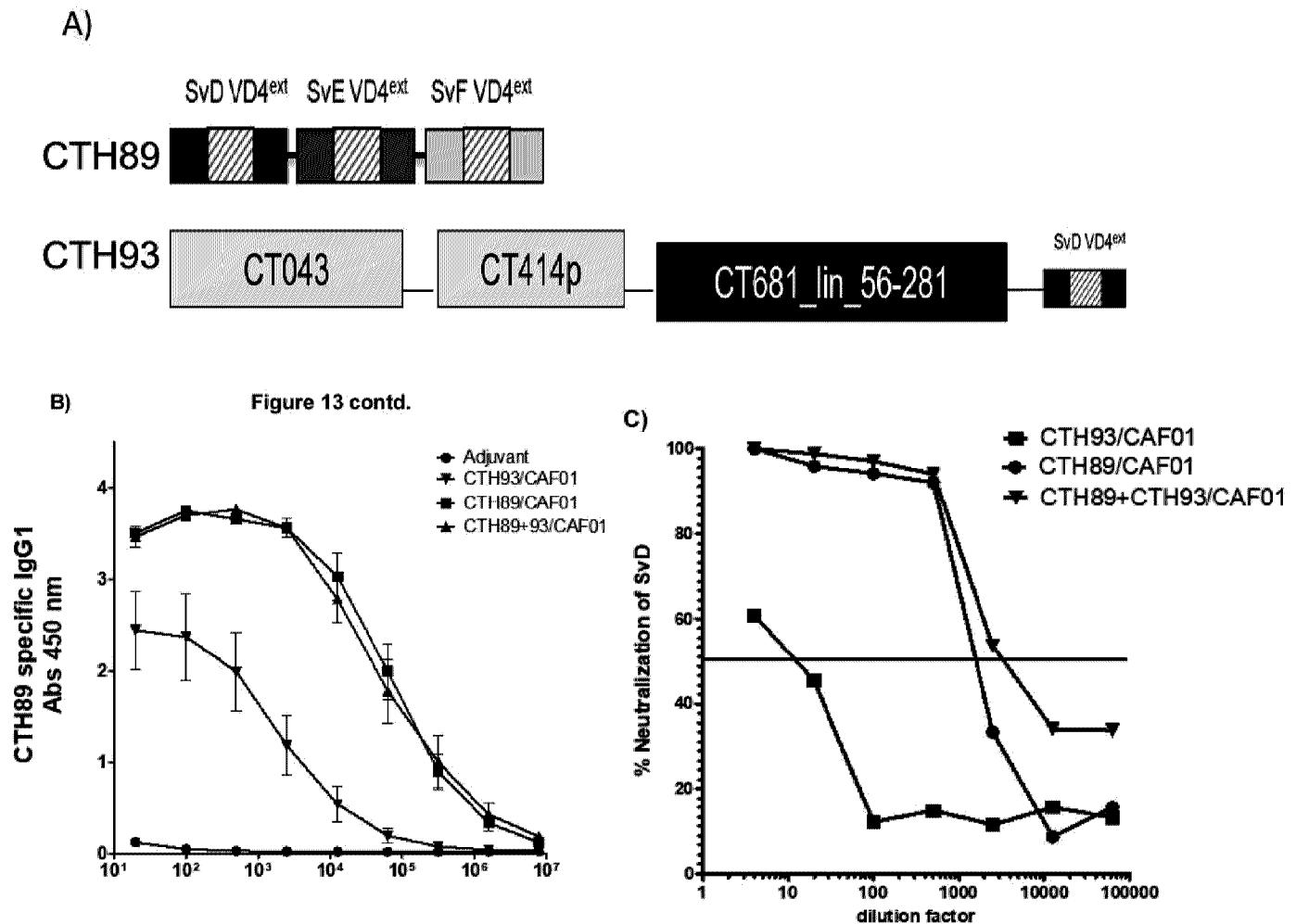


Figure 13 contd.

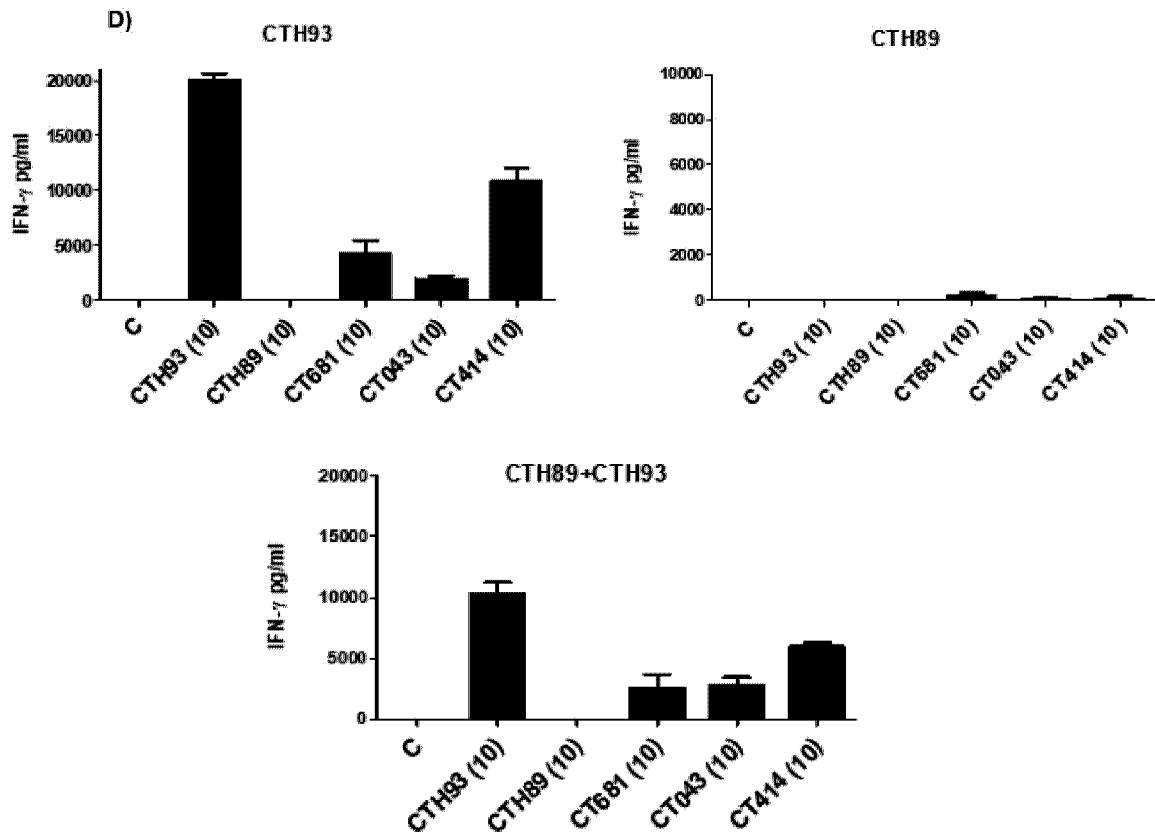
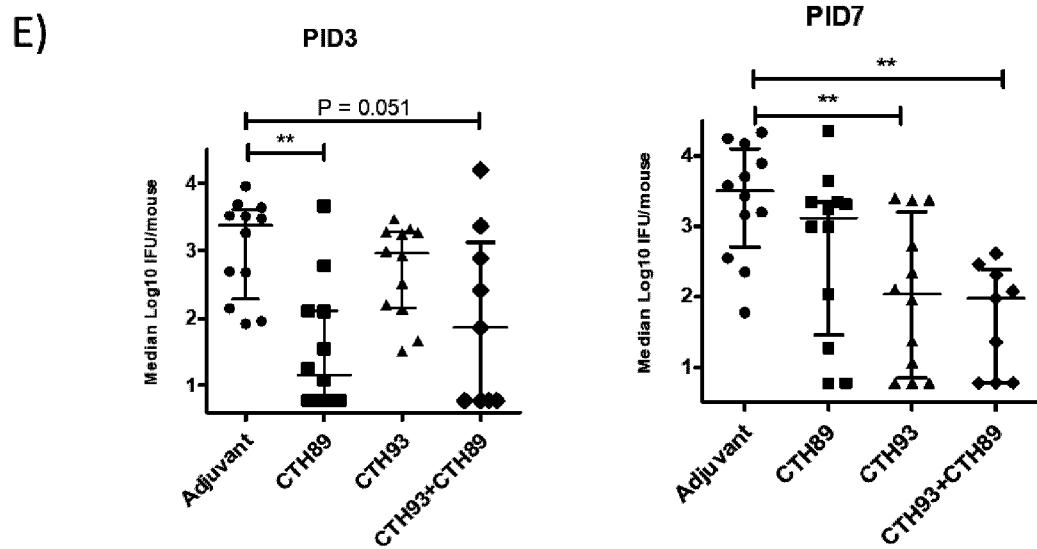



Figure 13 contd.

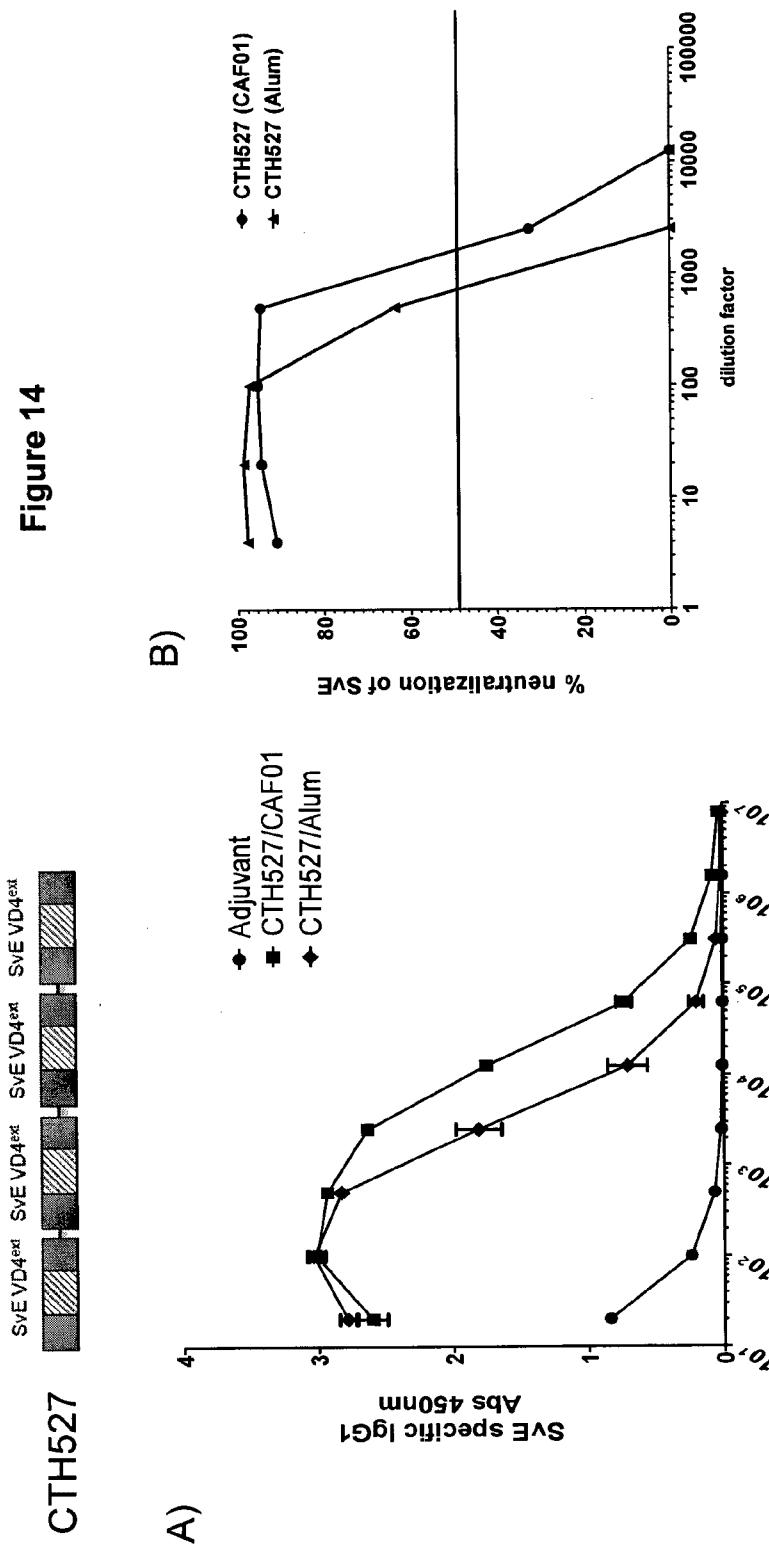

Figure 14

Figure 15

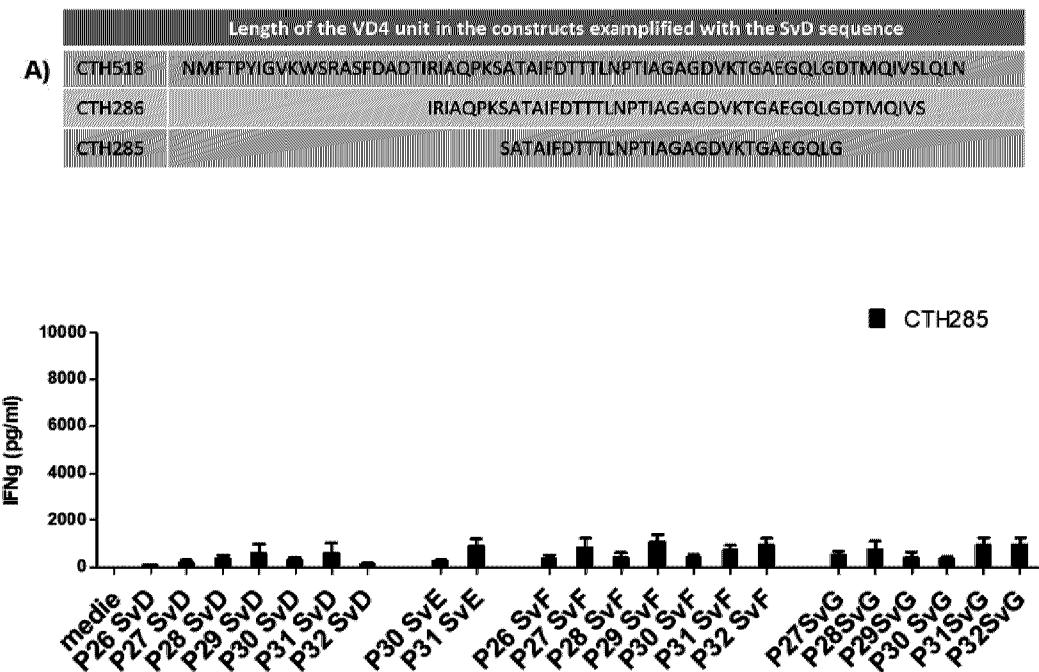


Figure 15 B) contd.

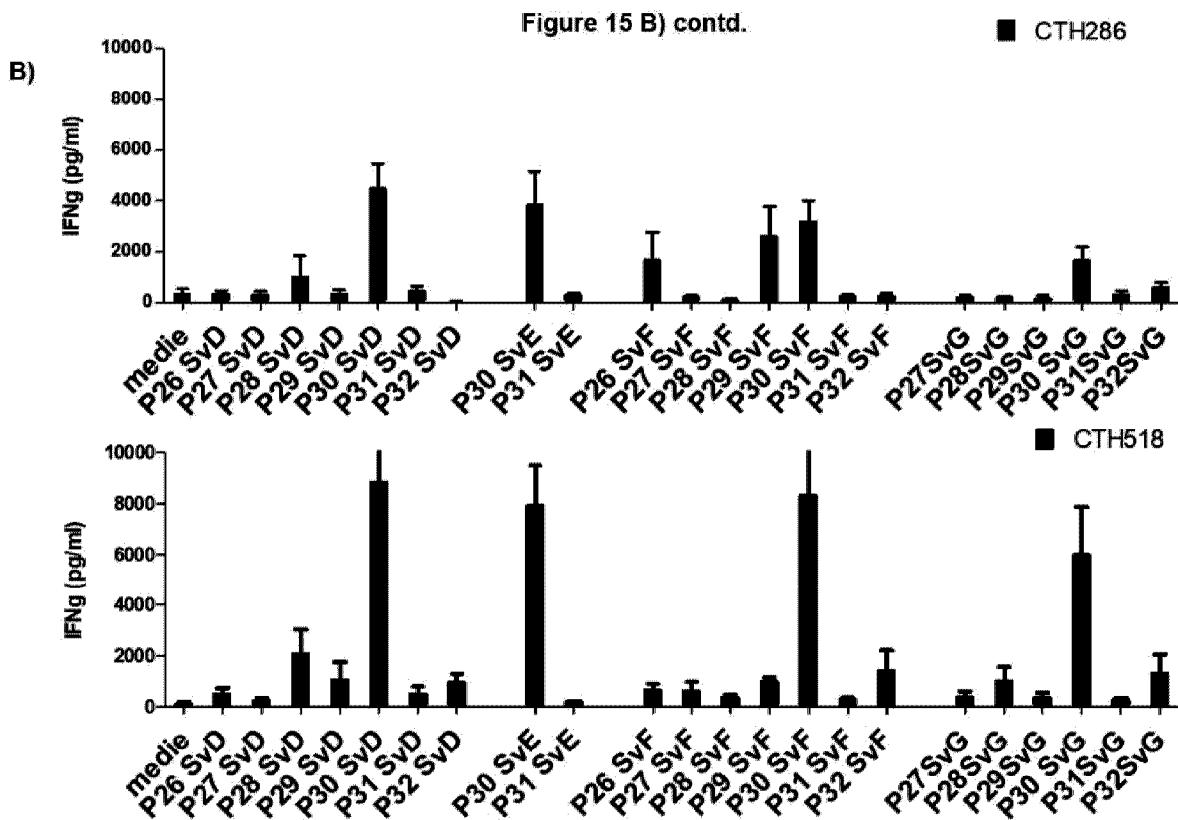
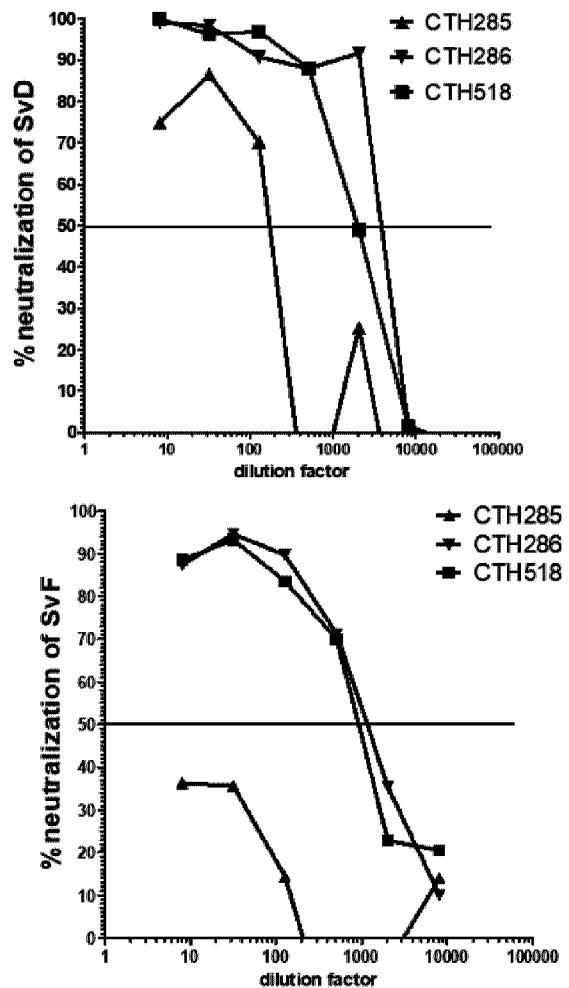



Figure 15 contd.

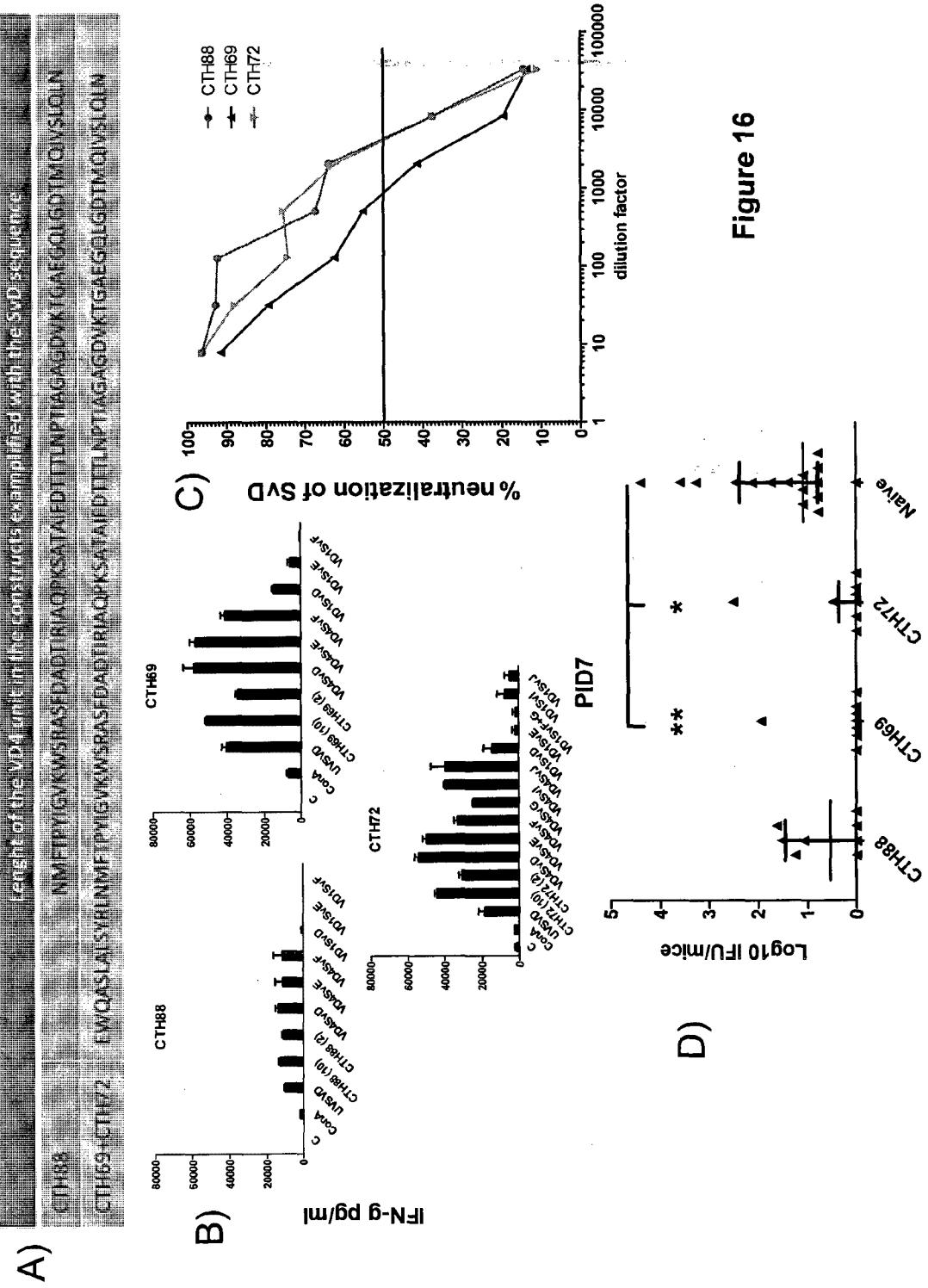
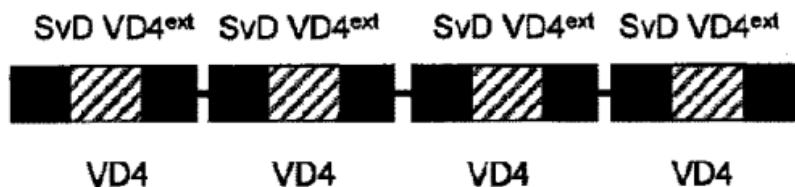
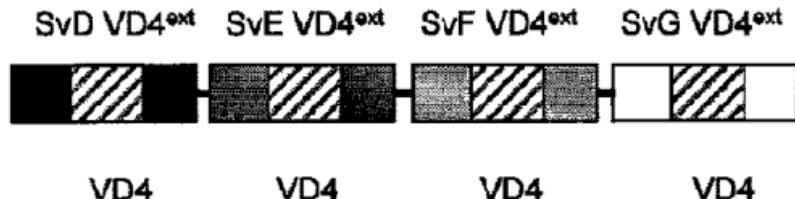




Figure 16

Homologous immuno-repeats

Heterologous immuno-repeats

