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(7) ABSTRACT

A tunable high resolution spectral estimator is disclosed as
a method and apparatus for encoding and decoding signals,
signal analysis and synthesis, and for performing high
resolution spectral estimation. The invention is comprised of
an encoder coupled with either or both of a signal synthe-
sizer and a spectral analyzer. The encoder processes a frame
of a time-based input signal by passing it through a bank of
lower order filters and estimating a plurality of lower order
covariances from which a plurality of filter parameters may
be determined. Coupled to the encoder, through any appro-
priate data link or interface including telecommunication
links, is one or both of a signal synthesizer and a spectral
analyzer. The signal synthesizer includes a decocer for
processing the covariances and a parameter transformer. The
signal synthesizer includes a decoder for processing the
covariances and a parameter transformer for determining
filter parameters for an ARMA filter. An excitation signal is
processed through the ARMA filter to reproduce, or synthe-
size, a representation of the input filter. The spectral analyzer
also includes a decoder which processes the covariances for
input to a spectral plotter to detemine the power frequency
spectrum of the input signal. The invention may be used in
a myriad of applications including voice identification,
doppler-based radar speed estimation, time delay estimation,
and others.
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METHOD AND APPARATUS FOR A TUNABLE
HIGH-RESOLUTION SPECTRAL ESTIMATOR

BACKGROUND OF THE INVENTION

[0001] We disclose a new method and apparatus for
encoding and decoding signals and for performing high
resolution spectral estimation. Many devices used in com-
munications employ such devices for data compression, data
transmission and for the analysis and processing of signals.
The basic capabilities of the invention pertain to all areas of
signal processing, especially for spectral analysis based on
short data records or when increased resolution over desired
frequency bands is required. One such filter frequently used
in the art is the Linear Predictive Code (LPC) filter. Indeed,
the use of LPC filters in devices for digital signal processing
(see, e.g., U.S. Pat. Nos. 4,209,836 and 5,048,088 and D.
Quarmby, Signal Processing Chips, Prentice Hall, 1994, and
L. R. Rabiner, B. S. Atal, and J. L. Flanagan, Current
methods of digital speech processing, Selected Topics in
Signal Processing (S. Haykin, editor), Prentice Hall, 1989,
112-132) is pertinent prior art to the alternative which we
shall disclose.

[0002] We now describe this available art, the difference
between the disclosed invention and this prior art, and the
principal advantages of the disclosed invention. FIG. 1
depicts the power spectrum of a sample signal, plotted in
logarithmic scale.

[0003] We have used standard methods known to those of
ordinary skill in the art to develop a 4th order LPC filter from
a finite window of this signal. The power spectrum of this
LPC filter is depicted in FIG. 2.

[0004] One disadvantage of the prior art LPC filter is that
its power spectral density cannot match the “valleys,” or
“notches,” in a power spectrum, or in a periodogram. For
this reason encoding and decoding devices for signal trans-
mission and processing which utilize LPC filter design result
in a synthesized signal which is rather “flat,” reflecting the
fact that the LPC filter is an “all-pole model.” Indeed, in the
signal and speech processing literature it is widely appreci-
ated that regeneration of human speech requires the design
of filters having zeros, without which the speech will sound
flat or artificial; see, e.g., [C. G. Bell, H. Fujisaaki, J. M.
Heinz, K. N. Stevons and A. S. House, Reduction of Speech
Spectra by Analysis-by-Synthesis Techniques, J. Acoust.
Soc. Am. 33 (1961), page 1726], [J. D. Markel and A. H.
Gray, Linear Prediction of Speech, Springer Verlag, Berlin,
1976, pages 271-272], [L. R. Rabiner and R. W. Schafer,
Digital Processing of Speech Signals, Prentice-Hall, Engle-
wood Cliffs, N.J., 1978, pages 105, 76-78]. Indeed, while all
pole filters can reproduce much of human speech sounds, the
acoustic theory teaches that nasals and fricatives require
both zeros and poles [J. D. Markel and A. H. Gray, Linear
Prediction of Speech, Springer Verlag, Berlin, 1976, pages
271-272], [L. R. Rabiner and R. W. Schafer, Digital Pro-
cessing of Speech Signals, Prentice-Hall, Englewood Cliffs,
N.J., 1978, page 105]. This is related to the technical fact
that the LPC filter only has poles and has no transmission
zeros. To say that a filter has a transmission zero at a
frequency C is to say that the filter, or corresponding circuit,
will absorb damped periodic signals which oscillate at a
frequency equal to the phase of C and with a damping factor
equal to the modulus of €. This is the well-known blocking

Mar. 20, 2003

property of transmission zeros of circuits, see for example
[L. O. Chua, C. A. Desoer and E. S. Kuh, Linear and
Nonlinear Circuits, McGraw-Hill, 1989, page 659]. This is
reflected in the fact, illustrated in FIG. 2, that the power
spectral density of the estimated LPC filter will not match
the power spectrum at “notches,” that is, frequencies where
the observed signal is at its minimum power. Note that in the
same figure the true power spectrum is indicated by a dotted
line for comparison.

[0005] Another feature of linear predictive coding is that
the LPC filter reproduces a random signal with the same
statistical parameters (covariance sequence) estimated from
the finite window of observed data. For longer windows of
data this is an advantage of the LPC filter, but for short data
records relatively few of the terms of the covariance
sequence can be computed robustly. This is a limiting factor
of any filter which is designed to match a window of
covariance data. The method and apparatus we disclose here
incorporates two features which are improvements over
these prior art limitations: The ability to include “notches”
in the power spectrum of the filter, and the design of a filter
based instead on the more robust sequence of first covari-
ance coefficients obtained by passing the observed signal
through a bank of first order filters. The desired notches and
the sequence of (first-order) covariance data uniquely deter-
mine the filter parameters. We refer to such a filter as a
tunable high resolution estimator, or THREE filter, since the
desired notches and the natural frequencies of the bank of
first order filters are tunable. A choice of the natural fre-
quencies of the bank of filters correspond to the choice of a
band of frequencies within which one is most interested in
the power spectrum, and can also be automatically tuned.
FIG. 3 depicts the power spectrum estimated from a par-
ticular choice of 4th order THREE filter for the same data
used to generate the LPC estimate depicted in FIG. 2,
together with the true power spectrum, depicted in FIG. 1,
which is marked with a dotted line.

[0006] We expect that this invention will have application
as an alternative for the use of LPC filter design in other
areas of signal processing and statistical prediction. In
particular, many devices used in communications, radar,
sonar and geophysical seismology contain a signal process-
ing apparatus which embodies a method for estimating how
the total power of a signal, or (stationary) data sequence, is
distributed over frequency, given a finite record of the
sequence. One common type of apparatus embodies spectral
analysis methods which estimate or describe the signal as a
sum of harmonics in additive noise [P. Stoica and R. Moses,
Introduction to Spectral Analysis, Prentice-Hall, 1997, page
139]. Traditional methods for estimating such spectral lines
are designed for either white noise or no noise at all and can
illustrate the comparative effectiveness of THREE filters
with respect to both non-parametric and parametric based
spectral estimation methods for the problem of line spectral
estimation. FIG. 4 depicts five runs of a signal comprised of
the superposition of two sinusoids with colored noise, the
number of sample points for each being 300. FIG. 5 depicts
the five corresponding periodograms computed with state-
of-the-art windowing technology. The smooth curve repre-
sents the true power spectrum of the colored noise, and the
two vertical lines the position of the sinusoids.

[0007] FIG. 6 depicts the five corresponding power spec-
tra obtained through LPC filter design, while FIG. 7 depicts
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the corresponding power spectra obtained through the
THREE filter design. FIGS. 8, 9 and 10 show similar plots
for power spectra estimated using state-of-the-art peri-
odogram, LPC, and our invention, respectively. It is appar-
ent that the invention disclosed herein is capable of resolv-
ing the two sinusoids, clearly delineating their position by
the presence of two peaks. We also disclose that, even under
ideal noise conditions the periodogram cannot resolve these
two frequencies. In fact, the theory of spectral analysis [P.
Stoica and R. Moses, Infroduction to Spectral Analysis,
Prentice-Hall, 1997, page 33] teaches that the separation of
the sinusoids is smaller than the theoretically possible dis-
tance that can be resolved by the periodogram using a 300
point record under ideal noise conditions, conditions which
are not satisfied here. This example represents a typical
situation in applications.

[0008] The broader technology of the estimation of sinu-
soids in colored noise has been regarded as difficult [B.
Porat, Digital Processing of Random Signals, Prentice-Hall,
1994, pages 285-286]. The estimation of sinusoids in col-
ored noise using autoregressive moving-average filters, or
ARMA models, is desirable in the art. As an ARMA filter,
the THREE filter therefore possesses “super-resolution”
capabilities [P. Stoica and R. Moses, Introduction to Spectral
Analysis, Prentice-Hall, 1997, page 136].

[0009] We therefore disclose that the THREE filter design
leads to a method and apparatus, which can be readily
implemented in hardware or hardware/software with ordi-
nary skill in the art of electronics, for spectral estimation of
sinusoids in colored noise. This type of problem also
includes time delay estimation [M. A. Hasan and M. R.
Asimi-Sadjadi, Separation of multiple time delays in using
new spectral estimation schemes, IEEE Transactions on
Signal Processing 46 (1998), 2618-2630] and detection of
harmonic sets [M. Zeytinoglu and K. M. Wong, Detection of
harmonic sets, IEEE Transactions on Signal Processing 43
(1995), 2618-2630], such as in identification of submarines
and aerospace vehicles. Indeed, those applications where
tunable resolution of a THREE filter will be useful include
radar and sonar signal analysis, and identification of spectral
lines in doppler-based applications [P. Stoica and R. Moses,
Introduction to Spectral Analysis, Prentice-Hall, 1997, page
248]. Other areas of potential importance include identifi-
cation of formants in speech, data decimation [M. A. Hasan
and M. R. Azimi-Sadjadi, Separation of multiple time delays
using new spectral estimation schemes, IEEE Transactions
on Signal Processing 46 (1998), 2618-2630], and nuclear
magnetic resonance.

[0010] We also disclose that the basic invention could be
used as a part of any system for speech compression and
speech processing. In particular, in certain applications of
speech analysis, such as speaker verification and speech
recognition, high quality spectral analysis is needed [Joseph
P. Campbell, Jr., Speaker Recognition: A tutorial, Proceed-
ings of the IEEE 85 (1997), 1436-1463], [Jayant M. Naik,
Speaker Verification: A tutorial, IEEE Communications
Magazine, January 1990, 42-48], [Sadaoki Furui, Recent
advances in Speaker Recognition, Lecture Notes in Com-
puter Science 1206, 1997, 237-252], [Hiroaki Sakoe and
Seibi Chiba, Dynamic Programming Altorithm Optimization
for Spoken Word Recognition, IEEE Transactions on Acous-
tics, Speech and Signal Processing ASSP-26 (1978), 43-49].
The tuning capabilities of the device should prove especially
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suitable for such applications. The same holds for analysis of
biomedical signals such as EMG and EKG signals.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] FIG. 1 is a graphical representation of the power
spectrum of a sample signal;

[0012] FIG. 2 is a graphical representation of the spectral
estimate of the sample signal depicted in FIG. 1 as best
matched with an LPC filter;

[0013] FIG. 3 is a graphical representation of the spectral
estimate of the sample signal with true spectrum shown in
FIG. 1 (and marked with dotted line here for comparison),
as produced with the invention;

[0014] FIG. 4 is a graphical representation of five sample
signals comprised of the superposition of two sinusoids with
colored noise;

[0015] FIG. 5 is a graphical representation of the five
periodograms corresponding to the sample signals of FIG.
4

[0016] FIG. 6 is a graphical representation of the five
corresponding power spectra obtained through LPC filter
design for the five sample signals of FIG. 4;

[0017] FIG. 7 is a graphical representation of the five
corresponding power spectra obtained through the invention
filter design;

[0018] FIG. 8 is a graphical representation of a power
spectrum estimated from a time signal with two closely
spaced sinusoids (marked by vertical lines), using peri-
odogram;

[0019] FIG. 9 is a graphical representation of a power
spectrum estimated from a time signal with two closely
spaced sinusoids (marked by vertical lines), using LPC
design;

[0020] FIG. 10 is a graphical representation of a power
spectrum estimated from a time signal with two closely
spaced sinusoids (marked by vertical lines), using the inven-
tion;

[0021] FIG. 11 is a schematic representation of a lattice-
ladder filter in accordance with the present invention;

[0022] FIG. 12 is a block diagram of a signal encoder
portion of the present invention;

[0023] FIG. 13 is a block diagram of a signal synthesizer
portion of the present invention;

[0024] FIG. 14 is a block diagram of a spectral analyzer
portion of the present invention;

[0025] FIG. 15 is a block diagram of a bank of filters,
preferably first order filters, as utilized in the encoder portion
of the present invention;

[0026] FIG. 16 is a graphical representation of a unit
circle indicating the relative location of poles for one
embodiment of the present invention;

[0027] FIG. 17 is a block diagram depicting a speaker
verification enrollment embodiment of the present inven-
tion;
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[0028] FIG. 18 is a block diagram depicting a speaker
verification embodiment of the present invention;

[0029] FIG. 19 is a block diagram of a speaker identifi-
cation embodiment of the present invention;

[0030] FIG. 20 is a block diagram of a doppler-based
speed estimator embodiment of the present invention; and

[0031] FIG. 21 is a block diagram for a time delay
estimator embodiment of the present invention.

[0032] The present invention of a THREE filter design
retains two important advantages of linear predictive coding.
The specified parameters (specs) which appear as coeffi-
cients (linear prediction coefficients) in the mathematical
description (transfer function) of the LPC filter can be
computed by optimizing a (convex) entropy functional.
Moreover, the circuit, or integrated circuit device, which
implements the LPC filter is designed and fabricated using
ordinary skill in the art of electronics (see, e.g., U.S. Pat.
Nos. 4,209,836 and 5,048,088) on the basis of the specified
parameters (specs). For example, the expression of the
specified parameters (specs) is often conveniently displayed
in a lattice filter representation of the circuit, containing unit
delays z™!, summing junctions, and gains. The design of the
associated circuit is well within the ordinary skill of a
routineer in the art of electronics. In fact, this filter design
has been fabricated by Texas Instruments, starting from the
lattice filter representation (see, e.g., U.S. Pat. No. 4,344,
148), and is used in the LPC speech synthesizer chips TMS
5100, 5200, 5220 (sce e.g. D. Quarmby, Signal Processing
Chips, Prentice-Hall, 1994, pages 27-29).

[0033] In order to incorporate zeros as well as poles into
digital filter models, it is customary in the prior art to use
alternative architectures, for example the lattice-ladder
architecture [K. J. Astrém, Evaluation of quadratic loss
functions for linear systems, in Fundamentals of Discrete-
time systems: A tribute to Professor Eliahu 1. Jury, M.
Jamshidi, M. Mansour, and B.D.O. Anderson (editors),
IITSI Press, Albuquerque, N. Mex., 1993, pp. 45-56]
depicted in FIG. 11.

[0034] As for the lattice representation of the LPC filter,
the lattice-ladder filter consists of gains, which are the
parameter specs, unit delays z™*, and summing junctions and
therefore can be easily mapped onto a custom chip or onto
any programmable digital signal processor (e.g., the Intel
2920, the TMS 320, or the NEC 7720) using ordinary skill
in the art; see, e.g. D. Quarmby, Signal Processing Chips,
Prentice-Hall, 1994, pages 27-29. We observe that the
lattice-ladder filter representation is an enhancement of the
lattice filter representation, the difference being the incor-
poration of the spec parameters denoted by 8, which allow
for the incorporation of zeros into the filter design. In fact,
the lattice filter representation of an all-pole filter can be
designed from the lattice-ladder filter architecture by setting
the parameter specifications: Bo=r,7", f,;=f,=. . . =p,=0 and
a, =Y, for k=0, 1, . . ., n-1 . We note that, in general, the
parameters oy, O, . . . , 0., ; are not the reflection coeffi-
cients (PARCOR parameters).

[0035] As part of this disclosure, we disclose a method and
apparatus for determining the gains in a ladder-lattice
embodiment of THREE filter from a choice of notches in the
power spectrum and of natural frequencies for the bank of
filters, as well as a method of automatically tuning these
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notches and the natural frequencies of the filter bank from
the observed data. Similar to the case of LPC filter design,
the specs, or coefficients, of the THREE filter are also
computed by optimizing a (convex) generalized entropy
functional. One might consider an alternative design using
adaptive linear filters to tune the parameters in the lattice-
ladder filter embodiment of an autoregressive moving-aver-
age (ARMA) model of a measured input-output history, as
has been done in [M. G. Bellanger, Computational complex-
ity and accuracy issues in fast least squares algorithms for
adaptive filtering, Proc. 1988 IEEE International Sympo-
sium on Circuits and Systems, Espoo, Finland, Jun. 7-9,
1988] for either lattice or ladder filter tuning. However, one
should note that the input string which might generate the
observed output string is not necessarily known, nor is it
necessarily available, in all situations to which THREE filter
methods apply (e.g., speech synthesis). For this reason, one
might then consider developing a tuning method for the
lattice-ladder filter parameters using a system identification
scheme based on an autoregressive moving-average with
exogenous variables (ARMAX). However, the theory of
system identification teaches that these optimization
schemes are nonlinear but nonconvex [ T. Séderstrém and P.
Stoica, Systems Identification, Prentice-Hall, New York,
1989, page 333, equations (9.47), and page 334, equations
(9.48)]. Moreover, the theory teaches that there are examples
where global convergence of the associated algorithms may
fail depending on the choice of certain design parameters
(e.g., forgetting factors) in the standard algorithm [T. S6d-
erstrom and P. Stoica, op. cit., page 340, Example 9.6]—in
sharp contrast to the convex minimization scheme we dis-
close for the lattice-ladder parameters realizing a THREE
filter. In addition, ARMAX schemes will not necessarily
match the notches of the power spectrum. Finally, we
disclose here that our extensive experimentation with both
methods for problems of formant identification show that
ARMAX methods require significantly higher order filters to
begin to identify formants, and also lead to the introduction
of spurious formants, in cases where THREE filter methods
converge quite quickly and reliably.

[0036] We now disclose a new method and apparatus for
encoding and reproducing time signals, as well as for
spectral analysis of signals. The method and apparatus,
which we refer to as the Tunable High Resolution Estimator
(THREE), is especially suitable for processing and analyz-
ing short observation records.

[0037] The basic parts of the THREE are: the Encoder, the
Signal Synthesizer, and the Spectral Analyzer. The Encoder
samples and processes a time signal (e.g., speech, radar,
recordings, etc.) and produces a set of parameters which are
made available to the Signal Synthesizer and the Spectral
Analyzer. The Signal Synthesizer reproduces the time signal
from these parameters. From the same parameters, the
Spectral Analyzer generates the power spectrum of the
time-signal.

[0038] The design of each of these components is dis-
closed with both fixed-mode and tunable features. There-
fore, an essential property of the apparatus is that the
performance of the different components can be enhanced
for specific applications by tuning two sets of tunable
parameters, referred to as the filter-bank poles p=(po,
D1 - - - > Po) and the MA parameters r=(r;, 5, . . . , I,)

respectively. In this disclosure we shall teach how the value
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of these parameters can be (a) set to fixed “default” values,
and (b) tuned to give improved resolution at selected por-
tions of the power spectrum, based on a priori information
about the nature of the application, the time signal, and
statistical considerations. In both cases, we disclose what we
believe to be the preferred embodiments for either setting or
tuning the parameters.

[0039] As noted herein, the THREE filter is tunable.
However, in its simplest embodiment, the tunable feature of
the filter may be eliminated so that the invention incorpo-
rates in essence a high resolution estimator (HREE) filter. In
this embodiment the default settings, or a priori information,
is used to preselect the frequencies of interest. As can be
appreciated by those of ordinary skill in the art, in many
applications this a priori information is available and does
not detract from the effective operation of the invention.
Indeed the tunable feature is not needed for these applica-
tions. Another advantage of not utilizing the tunable aspect
of the invention is that faster operation is achieved. This
increased operational speed may be more important for
some applications, such as those which operate in real time,
rather than the increased accuracy of signal reproduction
expected with tuning. This speed advantage is expected to
become less important as the electronics available for imple-
mentation are further improved.

[0040] The intended use of the apparatus is to achieve one
or both of the following objectives: (1) a time signal is
analyzed by the Encoder and the set of parameters are
encoded, and transmitted or stored. Then the Signal Syn-
thesizer is used to reproduce the time signal; and/or (2) a
time signal is analyzed by the Encoder and the set of
parameters are encoded, and transmitted or stored. Then the
Spectral Analyzer is used to identify the power spectrum of
time signal over selected frequency bands.

[0041] These two objectives could be achieved in parallel,
and in fact, data produced in conjunction with (2) may be
used to obtain more accurate estimates of the MA param-
eters, and thereby improve the performance of the time
synthesizer in objective (1). Therefore, a method for updat-
ing the MA parameters on-line is also disclosed.

[0042] The Encoder. Long samples of data, as in speech
processing, are divided into windows or frames (in speech
typically a few 10 ms.), on which the process can be
regarded as being stationary. The procedure of doing this is
well-known in the art [T. P. Barnwell III, K. Nayebi and C.
H. Richardson, Speech Coding: A Computer Laboratory
Textbook, John Wiley & Sons, New York, 1996]. The time
signal in each frame is sampled, digitized, and de-trended
(ie., the mean value subtracted) to produce a (stationary)
finite time series

y©@.y@), - .., yN). (2.1)

[0043] This is done in the box designated as A/D in FIG.
12. This is standard in the art [T. P. Barnwell III, K. Nayebi
and C. H. Richardson, Speech Coding: A Computer Labo-
ratory Textbook, John Wiley & Sons, New York, 1996]. The
separation of window frames is decided by the Initializer/
Resetter, which is Component 3 in FIG. 12. The central
component of the Encoder is the Filter Bank, given as
component 1. This consists of a collection of n+1 low-order
filters, preferably first order filters, which process the
observed time series in parallel. The output of the Filter
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Bank consists of the individual outputs compiled into a time
sequence of vectors

uolto) ] [uolto +1) uo(N) (2.2)
urto) | | w(po+1) ui(N)
tn(to) | [ ta(to +1) n(N)

[0044] The choice of starting point t, will be discussed in
the description of Component 2.

[0045] As will be explained in the description of Compo-
nent 7, the Filter Bank is completely specified by a set p=(p,,
P1s - - - » Do) Of complex numbers. As mentioned above, these
numbers can either be set to default values, determined
automatically from the rules disclosed below, or tuned to
desired values, using an alternative set of rules which are
also disclosed below. Component 2 in FIG. 12, indicated as
Covariance Estimator, produces from the sequence u(t) in
(2.2) a set of n+1 complex numbers

W=(Wg, W, . .., Wg) 2.3)

[0046] which are coded and passed on via a suitable
interface to the Signal Synthesizer and the Spectral Ana-
lyzer. It should be noted that both sets p and w are self-
conjugate. Hence, for each of them, the information of their
actual values is carried by n+1 real numbers.

[0047] Two additional features which are optional, are
indicated in FIG. 12 by dashed lines. First, Component 5,
designated as Excitation Signal Selection, refers to a class of
procedures to be discussed below, which provide the mod-
eling filter (Component 9) of the signal Synthesizer with an
appropriate input signal. Second, Component 6, designated
as MA Parameters in FIG. 12, refers to a class of procedures
for determining n real numbers

Pty T ), 2.4

[0048] the so-called MA parameters, to be defined below.

[0049] The Signal Synthesizer. The core component of the
Signal Synthesizer is the Decoder, given as Component 7 in
FIG. 13, and described in detail below. This component can
be implemented in a variety of ways, and its purpose is to
integrate the values w, p and r into a set of n+l real
parameters

a=(g; 1, - - - ; ), 29

[0050] called the AR parameters. This set along with
parameters r are fed into Component 8, called Parameter
Transformer in FIG. 13, to determine suitable ARMA
parameters for Component 9, which is a standard modeling
filter to be described below. The modeling filter is driven by
an excitation signal produced by Component §'.

[0051] The Spectral Analyzer. The core component of the
Spectral Analyzer is again the Decoder, given as Component
7 in FIG. 14. The output of the Decoder is the set of AR
parameters used by the ARMA modeling filter (Component
10) for generating the power spectrum. Two optional fea-
tures are driven by the Component 10. Spectral estimates
can be used to identify suitable updates for the MA param-
eters and/or updates of the Filter Bank parameters. The latter
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option may be exercised when, for instance, increased
resolution is desired over an identified frequency band.

[0052] Components. Now described in detail are the key
components of the parts and their function. They are dis-

cussed in the same order as they have been enumerated in
FIGS. 12-14.

[0053] Bank of Filters. The core component of the
Encoder is a bank of n+1 filters with transfer functions

z
G(z) = ——,
<= P

k=0,1,2,...,

[0054] where the filter-bank poles pg, P1, - - - » Pn) are
available for tuning. The poles are taken to be distinct and
one of them, py, at the origin, i.e. po=0. As shown in FIG. 15,
these filters process in parallel the input time series (2.1),
each yielding an output U, satisfying the recursion

u(O)=pitt(t-1)+y (). (2.6)

[0055] Clearly, uy=y. If p, is a real number, this is a
standard first-order filter. If p,_ is complex,

1 (8):=Eye (D+iny(0)

[0056] can be obtained via the second order filter
&0 a =b[&t-1 1 (X))
molls % sl Lok
(D) b oa ||lm@-1 0

[0057] where p,=a+ib . Since complex filter-bank poles

occur in conjugate pairs a+ib, and since the filter with the
pole p;=a-ib produces the output

1 (8):=E (D)~ (0)

[0058] the same second order filter (2.7) replaces two
complex one-order filters. We also disclose that for tunabil-
ity of the apparatus to specific applications there may also be
switches at the input buffer so that one or more filters in the
bank can be turned off. The hardware implementation of
such a filter bank is standard in the art.

[0059] The key theoretical idea on which our design relies,
described in C. I. Byrnes, T. T. Georgiou, and A. Lindquist,
A new approach to Spectral Estimation: A tunable high-
resolution spectral estimator, preprint, is the following:
Given the unique proper rational function f(z) with all poles
in the unit disc {z||z]<1} such that

D(O):=f(O)+f(e™ ®), -n=0=n (2.8

[0060] is the power spectrum of y, it can be shown that

1 2.9
Fi = 30 - pDEM @R, 1210, )

[0061] where E{*} is mathematical expectation, provided
to is chosen large enough for the filters to have reached
steady state so that (2.2) is a stationary process; see C. L.
Byrnes, T. T. Georgiou, and A. Lindquist, A new approach

Mar. 20, 2003

to Spectral Estimation: A tunable high-resolution spectral
estimator, preprint. The idea is to estimate the variances
coluy):=E{u(t)*}, k=0, 1, . . . , n
[0062] from output data, as explained under point 2 below,
to yield interpolation conditions
F(Z=wy, k=0, 1, . . ., n where z=p, "
[0063] from which the function f(z), and hence the power
spectrum @ can be determined. The theory described in C.
I. Byrnes, T. T. Georgiou, and A. Lindquist, A new approach
to Spectral Estimation: A tunable high-resolution spectral
estimator, preprint teaches that there is not a unique such
f(z), and our procedure allows for making a choice which
fulfills other design specifications.

[0064] Covariance Estimator. Estimation of the variance
co():=E{v(H)” }

[0065] of a stationary stochastic process v(t) from an

observation record

Vo» V15 Voo -+ 5 VN
[0066] can be done in a variety of ways. The preferred
procedure is to evaluate

2.10)

1 N
Py —— 2
Gn=g +1Zr:0 v

[0067] over the available frame.

[0068] In the present application, the variances & (up), &,
(uy). . ., & (u,) are estimated and the numbers (2.3) are
formed as

1
Wy 1= 5(1 - Do), k=0,1,...,n

@.11)

[0069] Complex arithmetic is preferred, but, if real filter
parameters are desired, the output of the second-order filter
(2.7) can be processed by noting that

ol =co(Ei)=CoM)+2i covEroni),
[0070] where cov(E,M):=E{E(tM(D)} is estimated by a
mixed ergodic sum formed in analogy with (2.10).

[0071] Before delivering w=(w,, W,, . . . , w,) as the

output, check that the Pick matrix

Wi+ Wy "

1-pipi

k=0

[0072] is positive definite. If not, exchange w, for w,+A
fork=0, 1, ..., n, where A is larger than the absolute value
of the smallest eigenvalue of PP, where

[,
Py = —
L=piPilii,

[0073] Initializer/Resetter. The purpose of this component
is to identify and truncate portions of an incoming time
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series to produce windows of data (2.1), over which win-
dows the series is stationary. This is standard in the art [T.
P. Barnwell III, K. Nayebi and C. H. Richardson, Speech
Coding: A Computer Laboratory Textbook, John Wiley &
Sons, New York, 1996]. At the beginning of each window it
also initializes the states of the Filter Bank to zero, as well
as resets summation buffers in the Covariance Estimator
(Component 2).

[0074] Filter Bank Parameters. The theory described in C.
I. Byrnes, T. T. Georgiou, and A. Lindquist, A new approach
to Spectral Estimation: A tunable high-resolution spectral
estimator, preprint, requires that the pole of one of the filters
in the bank be at z=0 for normalization purposes; we take
this to be p,. The location of the poles of the other filters in
the bank represents a design trade-off. The presence of Filter
Bank poles close to a selected arc {¢™°|0<[6,, 0,]} of the unit
circle, allows for high resolution over the corresponding
frequency band. However, proximity of the poles to the unit
circle may be responsible for deterioration of the variability
of the covariance estimates obtained by Component 2.

[0075] There are two observations which are useful in
addressing the design trade-off. First, the size n of the data
bank is dictated by the quality of the desired reproduction of
the spectrum and the expected complexity of it. For instance,
if the spectrum is expected to have k spectral lines or
formants within the targeted frequency band, typically, a
filter of order n=2k+2 is required for reasonable reproduc-
tion of the characteristics.

[0076] Second, if N is the length of the window frame, a
useful rule of thumb is to place the poles within

10
Ipl < 107W.

[0077] This guarantees that the output of the filter bank
attains stationarity in about Vo of the length of the window
frame. Accordingly the Covariance Estimator may be acti-
vated to operate on the later 90% stationary portion of the
processed window frame. Hence, t, in (2.2) can be taken to
be the smallest integer larger than

N
10°

[0078] This typically gives a slight improvement as com-
pared to the Covariance Estimator processing the complete
processed window frame.

[0079] There is a variety of ways to take advantage of the
design trade-offs. We now disclose what we believe are the
best available rules to automatically determine a default
setting of the bank of filter poles, as well as to automatically
determine the setting of the bank of filter poles given a priori
information on a bandwidth of frequencies on which higher
resolution is desired.
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[0080] Default Values.
[0081] (a) One pole is chosen at the origin,
[0082] (b) choose one or two real poles at

B

[0083] (c) choose an even number of equally spaced
poles on the circumference of a circle with radius

10
100w,

[0084] in a Butterworth-like pattern with angles spanning
the range of frequencies where increased resolution is
desired.

[0085] The total number of elements in the filter bank
should be at least equal to the number suggested earlier, e.g.,
two times the number of formants expected in the signal plus
two.

[0086] In the tunable case, it may be necessary to switch
off one or more of the filters in the bank.

[0087] As an illustration, take the signal of two sinusoidal
components in colored noise depicted in FIG. 4. More
specifically, in this example,

y(£)=0.5 sin (0, t+¢)+0.5 sin (wt+¢,)+2(r=0,1,2, ...,

2(0)=0.8z(r-1)+0.5v()+0.25v(t-1)
[0088] with w,=0.42,0,=0.53, and ¢, ¢, and v(t) inde-
pendent N(0,1) random variables, i.e., with zero mean and
unit variance. The squares in FIG. 16 indicate suggested
position of filter bank poles in order to attain sufficient
resolution over the frequency band [0.4 0.5] so as to resolve
spectral lines situated there and indicated by 0. The position
of the poles on the circle |z]=0.9 is dictated by the length
N-~300 for the time series window.

[0089] A THREE filter is determined by the choice of
filter-bank poles and a choice of MA parameters. The
comparison of the original line spectra with the power
spectrum of the THREE filter determined by these filter-
bank poles and the default value of the MA parameters,
discussed below, is depicted in FIG. 7.

[0090] Excitation Signal Selection. An excitation signal is
needed in conjunction with the time synthesizer and is
marked as Component 5'. For some applications the generic
choice of white noise may be satisfactory, but in general, and
especially in speech it is a standard practice in vocoder
design to include a special excitation signal selection. This
is standard in the art [T. P. Barnwell III, K. Nayebi and C.
H. Richardson, Speech Coding: A Computer Laboratory
Textbook, John Wiley & Sons, New York, 1996, page 101
and pages 129-132] when applied to LPC filters and can also
be implemented for general digital filters. The general idea
adapted to our situation requires the following implemen-
tation.

[0091] Component 5 in FIG. 12 includes a copy of the
time synthesizer. That is, it receives as input the values w, p,
and r, along with the time series y. It generates the coeffi-
cients a of the ARMA model precisely as the decoding
section of the time synthesizer. Then it processes the time
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series through a filter which is the inverse of this ARMA
modeling filter. The “approximately whitened” signal is
compared to a collection of stored excitation signals. A code
identifying the optimal matching is transmitted to the time
synthesizer. This code is then used to retrieve the same
excitation signal to be used as an input to the modeling filter
(Component 9 in FIG. 13).

[0092] Excitation signal selection is not needed if only the
frequency synthesizer is used.

[0093] MA Parameter Selection. As for the filter-bank
poles, the MA parameters can either be directly tuned using
special knowledge of spectral zeros present in the particular
application or set to a default value. However, based on
available data (2.1), the MA parameter selection can also be
done on-line, as described in Appendix A.

[0094] There are several possible approaches to determin-
ing a default value. For example, the choice r,=r,=. .. =r =0
produces a purely autoregressive (AR) model which, how-
ever, is different from the LPC filter since it interpolates the
filter-bank data rather than matching the covariance lags of
the original process.

[0095] We now disclose what we believe is the best
available method for determining the default values of the
MA parameters. Choose 1y, I, . . ., I, SO that

24 2" 4r=(2-p)(Ep) -« - - (2P, (2.12)

[0096] which corresponds to the central solution,
described in Section 3. This setting is especially easily
implemented, as disclosed below.

[0097] Decoder. Given p, w, and 1, the Decoder determines
n+1 real numbers

Ag, 8y, Ay« - - 5 Apy (2.13)

[0098] with the property that the polynomial
az)i=aera " L L ey,

[0099] has all its roots less than one in absolute value. This
is done by solving a convex optimization problem via an
algorithm presented in papers C. . Byrnes, T. T. Georgiou,
and A. Lindquist, A generalized entropy criterion for Nevan-
linna-Pick interpolation: A convex optimization approach to
certain problems in systems and control, preprint, and C. 1.
Byrnes, T. T. Georgiou, and A. Lindquist, A new approach
to Spectral Estimation: A tunable high-resolution spectral
estimator, preprint. While our disclosure teaches how to
determine the THREE filter parameters on-line in the section
on the Decoder algorithms, an alternative method and appa-
ratus can be developed off-line by first producing a look-up
table. The on-line algorithm has been programmed in MAT-
LAB, and the code is enclosed in the Appendix B.

[0100] For the default choice (2.12) of MA-parameters, a
much simpler algorithm is available, and it is also presented
in the section on the Decoder algorithms. The MATLAB
code for this algorithm is also enclosed in the Appendix B.

[0101] Parameter Transformer. The purpose of Compo-
nent 8 in FIG. 13 is to compute the filter gains for a
modeling filter with transfer function
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R = z”n+rlz";il+...+rn ’ (2.14)
a P+ a7+ . +a,
[0102] where 1y, r,, . . . , r, are the MA parameters

delivered by Component 6 (as for the Signal Synthesizer) or
Component 6' (in the Spectral Analyzer) and ay, aj, ..., a,
delivered from the Decoder (Component 7) This can be done
in many different ways [L. A. Chua, C. A. Desoer and E. S.
Kuh, Linear and Nonlinear Circuits, McGraw-Hill, 1989],
depending on desired filter architecture.

[0103] A filter design which is especially suitable for an
apparatus with variable dimension is the lattice-ladder archi-
tecture depicted in FIG. 11. In this case, the gain parameters

Ogy Qs e oy Oy g and Bo, By - o o5 By
[0104] are chosen in the following way. For k=n,
n-1, ..., 1, solve the recursions
Qp—1,; = Qi + Q104> Onj = 0 (2.15)
223
Q-] = ——
ko

i1, = Tij = Bl j» Tnj = 1
ik

fi=

aro

[0105] for j=0, 1, ...,k, and set

Yoo
fo=—

aoo

[0106] This is a well-known procedure; see, e.g., K. J.
Astrtém, Introduction to stochastic realization theory, Aca-
demic Press, 1970; and K. J. Astrém, Evaluation of qua-
dratic loss functions of linear systems, in Fundamentals of
Discrete-time systems: A tribute fo Professor Eliahu I. Jury,
M. Jarnshidi, M. Mansour, and B. D. O. Anderson (editors),
IITSI Press, Albuquerque, N. Mex., 1993, pp. 45-56. The
algorithm is recursive, using only ordinary arithmetic opera-
tions, and can be implemented with an MAC mathematics
processing chip using ordinary skill in the art.

[0107] ARMA filter. An ARMA modeling filter consists of
gains, unit delays z ', and summing junctions, and can
therefore easily be mapped onto a custom chip or any
programmable digital signal processor using ordinary skill
in the art. The preferred filter design, which easily can be
adjusted to different values of the dimension n, is depicted
in FIG. 11. If the AR setting r,=r,=. . . =r,=0 of the MA
parameters has been selected, Bo=r,"", B;=p,=. . . =p,=0
and a, =y, for k=0, 1, . . ., n-1, where y,,k=0,1, . . . ,n-1,
are the first n PARCOR parameters and the algorithm (2.15)
reduces to the Levinson algorithm [B. Porat, digital Pro-
cessing of Random Signals, Prentice-Hall, 1994; and P.
Stoica and R. Moses, Introduction to Spectral Analysis,
Prentice-Hall, 1997].

[0108] Spectral plotter. The Spectral Plotter amounts to
numerical implementation of the evaluation @(e'):=
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[R(e™)|?, where R(z) is defined by (2.14), and 0 ranges over
the desired portion of the spectrum. This evaluation can be
efficiently computed using standard FFT transform [P. Stoica
and R. Moses, Introduction to Spectral Anqgalysis, Prentice-
Hall, 1997]. For instance, the evaluation of a polynomial
(3.4) over a frequency range z=¢'°, with 0€{0, A0, . . .,
27~A8} and A6=2w/M, can be conveniently computed by
obtaining the discrete Fourier transform of
(ag, . - .,28,,1,0,...,0).

[0109] This is the coefficient vector padded with M-n-1
zeros. The discrete Fourier transform can be implemented
using the FFT algorithm in standard form.

[0110] Decoder Algorithms. We now disclose the algo-
rithms used for the Decoder. The input data consists of

[0111] (i) the filter-bank poles p=(Pg, D1 - - - » Pu)»
which are represented as the roots of a polynomial

n 3.1
(@) = l_[ G-p) = +nd T2+ T
k=1

[0112] (ii) the MA parameters r=(ry, I, . . . , Ip),
which are real numbers such that the polynomial

P@)=2+r 2" L Ty (3.2)
[0113] has all its roots less than one in absolute value, and

[0114] (iii) the complex numbers

W=(Wg, Wi, . .., W)
[0115] determined as (2.11) in the Covariance Estimator.
[0116] The problem is to find AR parameters a=(a,

a;, . .., a)), real numbers with the property that the
polynomial
a(@)=agz™+a, 2" M+ . .. +ay zray (3.4
[0117] has allits roots less than one in absolute value,
such that
e’
w(eie)
[0118] is a good approximation of the power spectrum

®(e'®) of the process y in some desired part of the spectrum
64 —m,]. More precisely, we need to determine the function
f(z) in (2.8). Mathematically, this problem amounts to find-
ing a polynomial (3.4) and a corresponding polynomial

B(2)=boz+b, 2"+ . . . +b,_,z+b,, (3.5)
[0119] satisfying
@ Bz H=p@pE) (3.6)
[0120] such that the rational function
fo=22 G
a(z)
[0121] satisfies the interpolation condition

F@=wy, k=0, 1, . . ., n where z=p, > 3.8
P
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[0122] For this purpose the parameters p and r are avail-
able for tuning. If the choice of r corresponds to the default
value, =7, for k=1, 2, . . ., n (i.e., taking p(z)=1(2)), the
determination of the THREE filter parameters is consider-
ably simplified. The default option is disclosed in the next
subsection. The method for determining the THREE filter
parameters in the tunable case is disclosed in the subsection
following the next. Detailed theoretical descriptions of the
method, which is based on convex optimization, are given in
the papers [C. I. Byrnes, T. T. Georgiou, and A. Lindquist,
A generalized entropy criterion for Nevanlinna-Pick inter-
polation: A convex optimization approach fo certain prob-
lems in systems and control, preprint, and C. I. Byrnes, T. T.
Georgiou, and A. Lindquist, A new approach to Spectral
Estimation: A tunable high-resolution spectral estimator,
preprint].

[0123] The central solution algorithm for the default filter.
In the special case in which the MA parameters r=(r,,
I,,...,0,) are set equal to the coefficients of the polynomial
(3.1), i.e., when p(z)=1(z), a simpler algorithm is available.
Here we disclose such an algorithm which is particularly
suited to our application. Given the filter-bank parameters

Po> P1s - - - » P, and the interpolation values wg, Wy, .. ., W,
determine two sets of parameters s;, S,, . . . , s, and v,
Ve Vy defined as

S_l—Pk V_l_Wk/WO 12

k_1+p T Thw g T
[0124] and the coefficients 0;, O,, . . . , 0, of the polyno-
mial

O(s)=(s=5)(5=5) - . . (5=5)=s"+0,s" 1+ . . . +O,,.

[0125] We need a rational function

xS 4,

P = e T o,
[0126] such that
pls=vik=1,2,...,n,
[0127] and a realization p(z)=c(sI-A)~'b, where
—0p 03 = —Op) —Op
1 0 - 0 0
A=| O J O 0 0
0 0 1 0
¢e=[0 00 1]

[0128] and the n-vector b remains to be determined. To
this end, choose a (reindexed) subset s, s,, . . ., s, of the
parameters s,,S,, . . . , S, including one and only one s, from
each complex pair (s,,8,), and decompose the following
complex Vandermonde matrix and complex vector into their
real and imaginary parts:



US 2003/0055630 Al

vio(s1)
s | ot .
i =U, +iU;, . = u, + iuy;.
g2 1 V0 (Sim)

[0129] Then, remove all zero rows from u; and u; to obtain
U, and U,, respectively, and solve the nxn system

[0130] for the n-vector X with components X, X,, . . . , X,

n

Then, padding x with a zero entry to obtain the (n+1)-vector

[0131] the required b is obtained by removing the last
component of the (n+1)-vector

w2}

[0132] where R is the triangular (n+1)x(n+1)-matrix

1 oy
R= I o o
1 oy o - oy

[0133] where empty matrix entries denote zeros.

[0134] Next, with prime (') denoting transposition, solve
the Lyapunov equations

P A+A'P=c'c
(AP, 'SP +P (A-P, 'c'c)'=bb’
[0135]
N=(I-P,P) ™%,

[0136] and compute the (n+1)-vectors h®,h® h® and h™®
with components

which is a standard routine, form the matrix

[0137] h,P=1, h, P=cA**P_'Nc, k=1,2,...,n

[0138] h,®=0, h, P=cA*!N'b, k=1,2,...,n

[0139] h,®=0,h,®=-bP _A*'P,'Nc,k=1,2,...,
n

[0140] h, =1, h,®@=—bP_A*'Nb, k=1, 2, ..., n.
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[0141] Finally, compute the (n+1)-vectors
[0142] y®=TRh?, j=1,2,3,4

[0143] with components y,P, y,9, . ., y,®, j=1,2,34,
where T is the (n+1)x(n+1) matrix, the k: th column of which
is the vector of coefficients of the polynomial

(s+1)" *(s-1)¥, for k=0, 1, .. ., n,

[0144] starting with the coefficient of S™ and going down
to the constant term, and R is the matrix defined above. Now
form

1

WGP+ 3D + O + ¥y k=01, . n,

by =
V1-pu?
2 "o (3)_ (D) “4 _ @
B = ey = D+ =yl k=0,1, -, m,
(3 Tz —
where
¥

[0145] The (central) interpolant (3.7) is then given by

[0146] where a(z) and P(z) are the polynomials
A2)=02"+0, 2" M . . L +0y,
B)=Poz™ P2 M+ . . . +P,

[0147] However, to obtain the oz) which matches the MA
parameters r=T, 0(z) needs to be normalized by setting

L+ 4 dte
®(z)= ————————&(2).
2oy + 01 By + 8,

[0148] This is the output of the central solver.

[0149] Convex optimization algorithm for the tunable
filter. To initiate the algorithm, one needs to choose an initial
value for a, or, equivalently, for a(z), to be recursively
updated. We disclose two methods of initialization, which
can be used if no other guidelines, specific to the application,
are available.

[0150] Initialization method 1. Given the solution of the
Lyapunov equation

S=ASA+cc, 3.9
where
T =Ty v =Tyl —Tn (3.10)
1 0 0 0
A=| O 1 :
0 0 1 0
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-continued
c=[0 00 1], @3.11)
form
S 0 I
K=Yy [0 1})’ y=4,r

[0151] where ris the column vector having the coefficients
1,1, ...,r, of (3.2) as components and where

1 (3.12)

[0152] as initial value.

[0153] Initialization method 2. Take

l+r+...+r,
l+7 +...+7,

alz) =

[0154] where a(Z) is the a-polynomial obtained by first
running the algorithm for the central solution described
above.

[0155] Algorithm. Given the initial (3.4) and (3.1), solve
the linear system of equations

1 - Ty Tl Th 1l 7p 7 -+ 1,

Tp ot Tl T Lomp o Ty

T2 Ty + 1 Th-2

T, 1
S0 E+d+as+-+ad
51 aopay +aydy +ap_1ay,
52| = apay +ajas +ap,_2a,
Sn aoly,

[0156] for the column vector S with components s,
S, - - - » 8. Then, with the matrix L_ given by (3.12), solve
the linear system

L, h=s
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[0157] for the vector
I, (3.13)
[
h=| .
ho

[0158] The components of h are the Markov parameters
defined via the expansion

alz
40 = T(—Z; T S e S

(

(3.14)

where

o(2) =502 + 51271 e 45,

[0159] The vector (3.13) is the quantity on which itera-
tions are made in order to update a(z). More precisely, a
convex function J(q) presented in C. I. Byrnes, T. T. Geor-
giou, and A. Lindquist, A generalized entropy criterion for
Nevanlina-Pick interpolation: A convex optimization
approach to certain problems in systems and control, pre-
print, and C. I. Byrnes, T. T. Georgiou, and A. Lindquist, A
new approach fo spectral estimation: A tunable high-reso-
lution spectral estimator, preprint, is minimized recursively
over the region where

q(e®)+q(e™)>0, for -n=0=mn (3.15)

[0160] This is done by upholding condition (3.6) while
successively trying to satisfy the interpolation condition
(3.8) by reducing the errors

ex=wie-F(p ™), k=0,1, ..., n. (3.16)

[0161] Each iteration of the algorithm consists of two
steps. Before turning to these, some quantities, common to
each iteration and thus computed off-line, need to be evalu-
ated.

[0162] Given the MA parameter polynomial (3.2), let the
real numbers 7y, T4, . . . , T, can be defined via the expansion

P@PE )=, (47 )+, (42D + L L AT, (2.

[0163] Moreover, given a subset Py, Pa, - - - » Py Of the
filter-bank poles p,, ps, . - - , p, obtained by only including
one p, in each complex conjugate pair (p,,py), form the
corresponding Vandermonde matrix

Yt P (3.18)
B A o N TV
[ o R
[0164] together with its real part V, and imaginary part V,.

Moreover, given an arbitrary real polynomial

V(2D)=go ™+ + . . . +gm, (3.19)
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[0165] define the (n+1)x(m+1) matrix

M(y):= (3.20)
8 &1 & &nil " &m
g & v & &l &m
& & U & &l " &m

[0166] We compute off-line M(p), M(t*p) and M(tp),
where p and T are the polynomials (3.2) and (3.1) and ©*(z)
is the reversed polynomial

TH(2) =TTy 2% M L L Tz

[0167] Finally, we compute off-line L _, defined by (3.12),
as well as the submatrix L _;.

[0168] Step 1. In this step the search direction of the
optimization algorithm is determined. Given a(z), first find
the unique polynomial (3.5) satisfying (3.6). Identifying
coefficients of z, k=0, 1, . . . , n, this is seen to be a (regular)
system of n+1 linear equations in the n+1 unknown by,
bl, ..., b, namely

Qo - Op2 Qp-1 Gp ap ay ax - a4y bo 7o
ar vt Gpel G ay ar - ap1 ||| b1 k!
ay vt Gy + ay v an2 ||| b2 [=| 72
an g by Tn

[0169] where my, m,;, . . . , @, are given by (3.17). The
coefficient matrix is a sum of a Hankel and a Toeplitz matrix
and there are fast and efficient ways of solving such systems
[G. Heinig, P. Jankowski and K. Rost, Fast Inversion
Algorithms of Toeplitz-plus-Hankel Matrices, Numerische
Mathematik 52 (1988), 665-682]. Next, form the function

_B@
o=

[0170] This is a candidate for an approximation of the
positive real part of the power spectrum @ as in (2.8).

[0171] Next, we describe how to compute the gradient VJ.
Evaluate the interpolation errors (3.16), noting that e,=w,—
by/ay, and decompose the complex vector

(er —eo)T(pr")
(e2 — e)7(p3h) )
. =V, + iy

(en = e0)7(py)
[0172] into its real part v, and imaginary part v; Let V, and

V; be defined by (3.18). Remove all zero rows from V; and
v; to obtain V, and v,. Solve the system
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[0173] for the column vector x and form the gradient as

. 2[ SL;LX} (321

2ey

[0174] where S is the solution to the Lyapunov equation
(3.9) and L, _, is given by (3.12).

[0175] To obtain the search direction, using Newton’s
method, we need the Hessian. Next, we describe how it is
computed. Let the 2nx2n-matrix P be the solution to the
Lyapunov equation

P=A'PA+&¢,
[0176] where A is the companion matrix (formed analo-
gously to A in (3. 10)) of the polynomial oz)* and & is the

2n row vector (0,0, . . ., 0, 1) . Analogously, determine the
3nx3n -matrix P solving the Lyapunov equation

PAPA+EE,
[0177] where A is the companion matrix (formed analo-

gously to A in (3.10)) of the polynomial c(z)*©(z) and c is
the 3n row vector (0, 0, . . ., 0, 1). Then, the Hessian is

H=2H, + Hy + Hj (3.22)

where

Hy :szwL(wZ)"[g ? L) M(pY' L, G2

Hy =zﬂM<r*p>uw2r)’l[g ﬂuwzr)’l/w(rp)’iﬂ G2

[0178] where the precomputed matrices L, and L, are
given by (3.12) and by reversing the order of the rows in
(3.12), respectively. Also M(p), M(t*p) and M(tp) are
computed off-line, as in (3.20), whereas I(a*)™! and
I{c: )™ are computed in the following way:

[0179] For an arbitrary polynomial (3.19), determine k.,
his o ooy b, such that

Y A2+ 2™ L L A= 41(2),

[0180] where m(z) is a polynomial of at most degree m-1.
This yields m+1 linear equation for the m+1 unknowns A,

his - o o5 Ay, from which we obtain
An Al AO
» Aaet o Ao
Liy)y”" =| .
Ao
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[0181] Finally, the new search direction becomes
d=H"VI. (3.25)
[0182] Letd,, . ;0 denote the search direction d obtained
in the previous iteration. If this is the first iteration, initialize
by setting d 0
[0183] Step 2. In this step a line search in the search
direction d is performed. The basic elements are as follows.
Five constants c;,j=1,2,3,4,5, are specified with suggested
default values C,=10"%°, c,=1.5, C,;=1.5, c,=0.5, and
¢5=0.001. If this is the first iteration, set A=cs.
[0184] If [|d||l<colldprevions|l increase the value of a param-
eter A by a factor c;. Otherwise, retain the previous value of
). Using this A, determine
Prye=h—Ad. (3.26)

[0185] Then, an updated value for a is obtained by deter-
mining the polynomial (3.4) with all roots less than one in
absolute value, satisfying

a@)az )=o) )+o(z (z)
[0186] with o(z) being the updated polynomial (3.14)
given by

previous—

o(2)=1(2)q(2),
[0187] where the updated g(z) is given by

by,
qR)=c@l-A) g +h,g=] 1 |,
hy

[0188] withh ,h_ _,,...,h,beingthe componentsofh, .,
A and C given by (3.10). This is a standard polynomial
factorization problem for which there are several algorithms
[F. L. Bauer, Ein direktes Iterationsverfahren zur Hurwitz-
Zerlegung eines Polynoms, Arch. Elek. Ubertragung, 9
(1955), 285-290; Z. Vostry, New algorithm for polynomial
spectral factorization with quadratic convergence I, Kyber-
netika 77 (1975), 411-418], using only ordinary arithmetic
operations. Hence they can be implemented with an MAC
mathematics processing chip using ordinary skill in the art.
However, the preferred method is described below (see
explanation of routine q2a).

[0189] This factorization can be performed if and only if
q(z) satisfies condition (3.15). If this condition fails, this is
determined in the factorization procedure, and then the value
of . is scaled down by a factor of c,, and (3.26) is used to
compute a new value for h_ and then of q(z) successfully
until condition (3.15) is met.

[0190] The algorithm is terminated when the approxima-
tion error given in (3.16) becomes less than a tolerance level
specified by c,, e.g., when

Z(ek)2<01-
0

[0191] Otherwise, set h equal to b and return to Step 1.

[0192] Description of technical steps in the procedure. The
MATLAB code for this algorithm is given in Appendix B.
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As an alternative a state-space implementation presented in
C.I. Byrnes, T. T. Georgiou, and A. Lindquist, A generalized
entropy criterion for Nevanlinna-Pick interpolation: A con-
vex optimization approach to certain problems in systems
and control, preprint, and C. 1. Byrnes, T. T. Georgiou, and
A. Lindquist, A new approach to spectral estimation: A
tunable high-resolution spectral estimator, preprint, may
also be used. The steps are conveniently organized in four
routines:

[0193] (1) Routine pm, which computes the Pick
matrix from the given data p=(p,, py» - - . , p,) and
W=(W0’ Wi, ooy Wn)

[0194] (2) Routine g2a which is used to perform the
technical step of factorization described in Step 2.
More precisely, given q(z) we need to compute a
rational function a(z) such that

a@a(zH=q(2)+q™

[0195] for the minimum-phase solution a(z), in terms of
which a(z)=T(z)a(z). This is standard and is done by solving
the algebraic Riccati equation

P-APA'-(g-APC)(2hg—cPc') ™ (g-APc')=0,
[0196] for the stabilizing solution. This yields
a(2)=c(d-A) " (g-APc")V2hg—CPC+. VZhg—cPC.

[0197] This is a standard MATLAB routine [W. F. Arnold,
III and A. J. Laub, Generalized Eigenproblem Algorithms
and Software for Albebraic Riccati Equations, Proc. IEEE,
72 (1984), 1746-1754].

[0198] (3) Routine central, which computes the cen-
tral solution as described above.

[0199] (4) Routine decoder which integrates the
above and provides the complete function for the
decoder of the invention.

[0200] An application to speaker recognition. In automatic
speaker recognition a person’s identity is determined from a
voice sample. This class of problems come in two types,
namely speaker verification and speaker identification. In
speaker verification, the person to be identified claims an
identity, by for example presenting a personal smart card,
and then speaks into an apparatus that will confirm or deny
this claim. In speaker identification, on the other hand, the
person makes no claim about his identity, and the system
must decide the identity of the speaker, individually or as
part of a group of enrolled people, or decide whether to
classify the person as unknown.

[0201] Common for both applications is that each person
to be identified must first enroll into the system. The
enrollment (or training) is a procedure in which the person’s
voice is recorded and the characteristic features are extracted
and stored. A feature set which is commonly used is the LPC
coefficients for each frame of the speech signal, or some
(nonlinear) transformation of these [Jayant M. Naik,
Speaker Verification: A tutorial, IEEE Communications
Magazine, January 1990, page 43], [Joseph P. Campbell Jr.,
Speaker Recognition: A tutorial, Proceedings of the IEEE 85
(1997), 1436-1462], [Sadaoki Furui, recent advances in
Speaker Recognition, Lecture Notes in Computer Science
1206, 1997, page 239]. The motivation for using these is that
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the vocal tract can be modeled using a LPC filter and that
these coefficients are related to the anatomy of the speaker
and are thus speaker specific. The LPC model assumes a
vocal tract excited at a closed end, which is the situation only
for voiced speech. Hence it is common that the feature
selection only processes the voiced segments of the speech
[Joseph P. Campbell Jr., Speaker Recognition: A tutorial,
Proceedings of the IEEE 85 (1997), page 1455]. Since the
THREE filter is more general, other segments can also be
processed, thereby extracting more information about the
speaker.

[0202] Speaker recognition can further be divided into
text-dependent and text-independent methods. The distinc-
tion between these is that for text-dependent methods the
same text or code words are spoken for enrollment and for
recognition, whereas for text-independent methods the
words spoken are not specified.

[0203] Depending on whether a text-dependent or text-
independent method is used, the pattern matching, the
procedure of comparing the sequence of feature vectors with
the corresponding one from the enrollment, is performed in
different ways. The procedures for performing the pattern
matching for text-dependent methods can be classified into
template models and stochastic models. In a template model
as the Dynamic Time Warping (DTW) [Hiroaki Sakoe and
Seibi Chiba, Dynamic Programming Algorithm Optimiza-
tion for Spoken Word Recognition, IEEE Transactions on
Acoustics, Speech and Signal Processing ASSP-26 (1978),
43-49] one assigns to each frame of speech to be tested a
corresponding frame from the enrollment. In a stochastic
model as the Hidden Markov Model (HMM) [L. R. Rabiner
and B. H. Juang, An Introduction to Hidden Markov Models,
IEEE ASSP Magazine, January 1986, 4-16] a stochastic
model is formed from the enrollment data, and the frames
are paired in such a way as to maximize the probability that
the feature sequence is generated by this model.

[0204] For text-independent speaker recognition the pro-
cedure can be used in a similar manner for speech-recogni-
tion-based methods and text-prompted recognition [ Sadaoki
Furui, Recent advances in Speaker Recognition, Lecture
Notes in Computer Science 1206, 1997, page 241f] where
the phonemes can be identified.

[0205] Speaker verification. FIG. 17 depicts an apparatus
for enrollment. An enrollment session in which certain code
words are spoken by a person later to be identified produces
via this apparatus a list of speech frames and their corre-
sponding MA parameters r and AR parameters a, and these
triplets are stored, for example, on a smart card, together
with the filter-bank parameters p used to produce them.
Hence, the information encoded on the smart card (or
equivalent) is speaker specific. When the identity of the
person in question needs to be verified, the person inserts his
smart card in a card reader and speaks the code words into
an apparatus as depicted in FIG. 18. Here, in Box 12, each
frame of the speech is identified. This is done by any of the
pattern matching methods mentioned above. These are stan-
dard procedures known in the literature [Joseph P. Campbell
Jr., Speaker Recognition: A tutorial, Proceedings of the
IEEE 85 (1997), pages 1452-1454]. From the smart card the
corresponding r, a and p are retrieved. The filter-bank poles
are transferred to the Bank of Filters and the Decoder.
(Another p could be used, but the same has to be used in both
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Box 1 and Box 7.) The parameters r and a are also trans-
ferred to the Decoder. The AR parameters a are used as
initial condition in the Decoder algorithm (unless the central
solution is used in which case no initial condition is needed).
Box 7 produces AR parameters 4 which hopefully are close
to a. The error &-a from each frame is compounded in a
measure of goodness-of-fit, and decision is finally made as
to whether to accept or reject the person.

[0206] Speaker identification. In speaker identification the
enrollment is carried out in a similar fashion as for speaker
verification except that the feature triplets are stored in a
database. FIG. 19 depicts an apparatus for speaker identi-
fication. It works like that in FIG. 17 except that there is a
frame identification box (Box 12) as in FIG. 18, the output
of which together with the MA parameters a and AR
parameters a are fed into a data base. The feature triplets are
compared to the corresponding triplets for the population of
the database and a matching score is given to each. On the
basis of the (weighted) sum of the matching scores of each
frame the identity of the speaker is decided.

[0207] Doppler-Based Applications and Measurement of
Time-Delays. In communications, radar, sonar and geo-
physical seismology a signal to be estimated or recon-
structed can often be described as a sum of harmonics in
additive noise [P. Stoica and Ro. Moses, Introduction to
Spectral Analysis, Prentice-Hall, 1997, page 139]. While
traditional methods are designed for either white noise or no
noise at all, estimation of sinusoids in colored noise has been
regarded as difficult problem [B. Porat, Digital Processing of
Random Signals, Prentice-Hall, 1994, pages 285-286].
THREE filter design is particularly suited for the colored
noise case, and as an ARMA method it offers “super-
resolution” capabilities [P. Stoica and Ro. Moses, Introduc-
tion to Spectral Analysis, Prentice-Hall, 1997, page 136]. As
an illustration, see the second example in the introduction.

[0208] Tunable high-resolution speed estimation by Dop-
pler radar. We disclose an apparatus based on THREE filter
design for determining the velocities of several moving
objects. If we track m targets moving with constant radial
velocities v,, v,, . . . , v, respectively, by a pulse-Doppler
radar emitting a signal of wave-length }., the backscattered
signal measured by the radar system after reflection of the
objects takes the form

Y0 = e + v,

k=1

[0209] where 8, 0,, ..., 8, are the Doppler frequencies,
v(t) is the measurement noise, and o, by, . . . , O, are
(complex) amplitudes. (See, e.g., B. Porat, Digital Process-
ing of Random Signals, Prentice-Hall, 1994, page 402] or [P.
Stoica and Ro. Moses, Introduction to Spectral Analysis,
Prentice-Hall, 1997, page 175].) The velocities can then be

determined as

v—&k—lz m
k= kb s m

[0210] where A is the pulse repetition interval, assuming
once-per-pulse coherent in-phase/quadrature sampling.
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[0211] FIG. 20 illustrates a Doppler radar environment for
our method, which is based on the Encoder and Spectral
Analyzer components of the THREE filter. To estimate the
velocities amounts to estimating the Doppler frequencies
which appear as spikes in the estimated spectrum, as illus-
trated in FIG. 7. The device is tuned to give high resolution
in the particular frequency band where the Doppler frequen-
cies are expected.

[0212] The only variation in combining the previously
disclosed Encoder and Spectral Estimator lies in the use of
dashed rather than solid communication links in FIG. 20.
The dashed communication links are optional. When no
sequence r of MA parameters is transmitted from Box 6 to
Box 7', Box 7' chooses the default values r=(t, T,, . . ., Tw) »
which are defined via (3.1) in terms of the sequence p of
filter-bank parameters, transmitted by Component 4 to Box
7'. In the default case, Box 7' also transmits the default
values r=t to Box 10. For those applications when it is
desirable to tune the MA parameters sequence r from the
observed data stream, as disclosed above, the dotted lines
can be replaced by solid (open) communication links, which
then transmit the tuned values of the MA parameter
sequence r from Box 6 to Box 7' and Box 10.

[0213] The same device can also be used for certain spatial
doppler-based applications [P. Stoica and Ro. Moses, Intro-
duction to Spectral Analysis, Prentice-Hall, 1997, page 248].

[0214] Tunable high-resolution time-delay estimator. The
use of THREE filter design in line spectra estimation also
applies to time delay estimation [M. A. Hasan and M. R.
Azimi-Sadjadi, Separation of multiple time delays using new
spectral estimation schemes, IEEE Transactions on Signal
Processing 46 (1998), 2618-2630][M. Zeytinoglu and K. M.
Wong, Detection of harmonic sets, IEEE Transactions on
Signal Processing 43 (1995), 2618-2630] in communication.
Indeed, the tunable resolution of THREE filters can be
applied to sonar signal analysis, for example the identifica-
tion of time-delays in underwater acoustics [M. A. Hasan
and M. R. Azimi-Sadjadi, Separation of multiple time delays
using new spectral estimation schemes, IEEE Transactions
on Signal Processing 46 (1998), 2618-2630].

[0215] FIG. 21 illustrates a possible time-delay estimator
environment for our method, which has precisely the same
THREE-filter structure as in FIG. 20 except for the prepro-
cessing of the signal. In fact, this adaptation of THREE filter
design is a consequence of Fourier analysis, which gives a
method of interchanging frequency and time. In more detail,
if x(t) is the emitted signal, the backscattered signal is of the
form

20 = ) @5 = 80 + (@),

k=1

[0216] where the first term is a sum of convolutions of
delayed copies of the emitted signal and v(t) represents
ambient noise and measurement noise. The convolution
kernels h, k=1, 2, . . ., m, represent effects of media or
reverberation [M. A. Hasan and M. R. Azimi-Sadjadi, Sepa-
ration of multiple time delays using new spectral estimation
schemes, IEEE Transactions on Signal Processing 46
(1998), 2618-2630], but they could also be d-functions with
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Fourier transforms H,(w)=1. Taking the Fourier transform,
the signal becomes

Z(@) = )" H(@)X @ +n(w),
k=1

[0217] where the Fourier transform X(w) of the original
signal is known and can be divided off.

[0218] 1t is standard in the art to obtain a frequency-
dependent signal from the time-dependent signal by fast
Fourier methods, e.g., FFT. Sampling the signal Z(w) at
frequencies w=twy, =0, 1, 2, . . . , N, and using our
knowledge of the power spectrum X(w) of the emitted
signal, we obtain an observation record

[0219]  ¥o,915 V2o - - 5 ¥N
[0220] of a time series

W= ) e i),

k=1

[0221] where 8, =0y, and v(T) is the corresponding noise.
To estimate spectral lines for this observation record is to
estimate 0, and hence §, for k=1, 2, . . . , m. The method
and apparatus described in FIG. 20 is then a THREE
line-spectra estimator as the one disclosed above and
described in FIG. 20 with the modifications described here.
In particular, the Transmitter/Receiver could be a sonar.

[0222] Other Areas of Application. The THREE filter
method and apparatus can be used in the encoding and
decoding of signals more broadly in applications of digital
signal processing. In addition to speaker identification and
verification, THREE filter design could be used as a part of
any system for speech compression and speech processing.
The use of THREE filter design line spectra estimation also
applies to detection of harmonic sets [M. Zeytinoglu and K.
M. Wong, Detection of harmonic sets, IEEE Transactions on
Signal Processing 43 (1995), 2618-2630]. Other areas of
potential importance include identification of formants in
speech and data decimation [M. A. Hasan and M. R.
Azimi-Sadjadi, Separation of multiple time delays using new
spectral estimation schemes, IEEE Transactions on Signal
Processing 46 (1998), 2618-2630]. Finally, we disclose that
the fixed-mode THREE filter, where the values of the MA
parameters are set at the default values determined by the
filter-bank poles also possesses a security feature because of
its fixed-mode feature: If both the sender and receiver share
a prearranged set of filter-bank parameters, then to encode,
transmit and decode a signal one need only encode and
transmit the parameters w generated by the bank of filters.
Even in a public domain broadcast, one would need knowl-
edge of the filter-bank poles to recover the transmitted
signal.

[0223] Various changes may be made to the invention as
would be apparent to those skilled in the art. However, the
invention is limited only to the scope of the claims appended
hereto, and their equivalents.
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APPENDIX A

Determination of Spectral Zeros

There are several alternatives for tuning the MA parameters
(2.4). First, using the Autocorrelation Method [T.P. Barnwell III,
K. Nayebi and C.H. Richardson, Speech Coding: A Computer Laboratory
Textbook, John Wiley & Sons, New York, 1996, pages 91-93], or some
version of Burg's algorithm [B. Porat, Digital Processing of Random
Signals, Prentice Hall, 1994, page 176], we first compute the PARCOR

coefficients (also called reflection coefficients)

yO:?ﬁ7."9}Gn+n

for some M Z N, and then we solve the Toeplitz system

Vm Ym-1 vt Vmel-n | N Vm+l
Y m+1 ym " Yma2-n | 12 YV m+2
. . . . 1= . (A.1)
|7 m+n-1 Ymtn-2 Ym %] | Y m+n
for the parameters¥,¥p, °",%,. If the polynomial

p(2)=z"+nz"+ 4

nt

has all its roots less than one in absolute value, we use F,Fp, ",%,

as MA parameters. If not, we take ]D(Z) to be the stable spectral

-1
factor of /7(2)/9(2 ), obtained by any of the factorization

algorithms in Step 2 in the Decoder algorithm, and normalized so that

the leading coefficient (that of Zn) is 1.

Alternative methods can be based on any of the procedures
described in [J.D. Markel and A.H. Gray, Linear Prediction of Speech,
Springer Verlag, Berlin, 1976, pages 271-275], including Prony's
method with constant term. These methods are not by themselves good
for producing, for example, synthetic speech, because they do not
satisfy the interpolation conditions. However, here we use only the
zero computation, the corresponding poles being determined by our
methods. Alternatively, the zercs can also be chosen by determining
the phase and the moduli of the zeros from the notches in an observed
spectrum, as represented by a pericdogram or as computed using Fast

Fourier Transforms (FFT). This is depicted in Figure 22 where a

51383464 .doc
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Figure 22: Invention: Selecting the zeros from a periodogram.
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APPENDIX B

ROUTINE PM

function Pick=pm(p,w)

e o Tt o et Tt e T A T oo doo ot oo oo oot P P o
%h

P42 function Pick=pm(p,w,option)

%h

%% Works with scalar data

Wh

W Ipl<t, win C

YA

%% It corresponds to:

wh

W p-——>w

Wh

%% Computes the Pick matrix for the corresponding Caratheodory problem
pA2

W Pick=[(wk+wj~*)/(1-pk*pj~*)]1_(k,J)

%% (the Pick matrix is unitarily equivalent to the one corresponding
%% to the assigmment p~(-1) --> w.)

%% NOTE: p’s must not be repeated
%% DEFAULT: If p_i is contain in p, the so is conj(p.i).

W If the conjugate values ARE NOT part of the array,
Wh then set OPTION to any nonzero value.

e et Tk Tt A LA A IR A DRI AR DA BAT LD
if length(p) =length(w), disp(’p,w ought to have the same size’), return, end
p=p(:); w=w(:); n=length(p);

if nargin==3,
for i=1:n,
if abs(imag(p(i)))>10%eps, p=[p; conj(p(i))]; w=[w; conj(w(id)];
elseif abs(imag(w(i)))>10%eps, disp(’ real p_i should correspond with real w.i?d,

disp(’ —— TERMINATED’),
else, p(i)=real(p(i)); w(i)=real(w(i));
end,
end,

end
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n=length(p);
Pick=((wxones(1,n)+ones(n,1)*w’))./(ones(n,n)-p*p’);

Gttt T o o o T T T th T e Tt o T b e oo T T Tl h Ao T T ek oo To oo 2o To T o o oo o oo o
% Last line of pm.m (August 30, 1998)

ROUTINE Q2A

function [a,flagl=q2a(tau,hq)

ettt vttt e ettt e Tt R At LR LRl I LN N RS LRl R bR bbb R UL DL Ts
A2
oA function [a,flagl=q2a(tau,h)
Wh
%% Contstructs a function a{z) from q(z) such that
%h
A qtq™* = a a"#
W
%% NOTE: q(z) must be strictly positive real.
hh
%% Representation convention: e.g., g=[compan(tau) bq; (0 ...0 1); dql
%% and h=flipud([bq;dql)’ is the row vector of Markov parameters,
W
%4 Needs
W control toolbox: DARE (sets parameter FLAG)
WA T I A A AT A A I AT T I AWMU D DI DI BT e e e te oo To o tete T lo Te o Yot
hg=flipud(hq(:));
dg=hq(1);
bg=hq; bq(1)=[1; bg=flipud(bq);

if bg==0,

if dg<0, flag=1; a=[]; return, end
flag=0;

da=sqrt(2*dq); ba=bq; ha=[da; flipud(ba)].’;
%%% hd2n
tau=tau(:).’;
ha=flipud(ha(:)).’;
a=conv(tau,ha);
a=a(l:length(tau));

return,

end
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A=compan(tau); c=[zeros(1,length(taw)-2) 11;

%%% SOLVING

% P-AxPxA’- (bq - AxPxc?)*(dg+dq’ - c*P*c’) -1 *(bg - A¥Pxc’)’
(P,L,G,flagl=dare(A’,c’ ,zeros(size(A)),~dg-dq’,-bg, 'report’);

% [X1,X2,L,flagl=dare(A’,c’ ,zeros(size(A)),-dq-dq’,-bq,’implicit’);

if abs(flag)>le~5, a=[]; return, end

da=sqrt{dq+dq’-c*P*c’);
ba=(bg-A*P*c’)*inv(da’);
ha=[ba; dal;

%hY% hd2n

tau=tau(:).’;

ha=flipud(ha(:)).’;

a=conv(tau,ha);

a=a(l:1length(taun));

U U e et T T A T A Tt I T T T Lt I T T et e e o b e,
% Last line of q2a.m (September 5, 1998).

ROUTINE CENTRAL

function [num,den]=central(p,w)

e U et e Tl Tt T s A N e T R R Bl T VRt o oAk ol
Wh

%% function [pum,den]=central(p,w)

Wh

%% Computes the central solution corresponding to interpolation data

W Z=[p"{-13(1); p~{-13(2); ... p~{-13 ()] and w={w(1); w(2); ... w(n)], where

W

Wh £(p(i)~{-1}) = w(i) NOTE: p’s are inside the unit disc

W and interpolation is required at their reflection as well
wh with the corresponding conjugate value.

Wh

%% The solution is provided in either

Wh (1) the form of a positive real function

FAA

W f (z)=num(z)/den(z)

YA

%% It assumes (1) that p(1) be 0; this a convenient normalization,

wh (2) that if pk is in p then pk™* is NOT in p, <<<<<<<<< IMPORTANT
W



US 2003/0055630 Al Mar. 20, 2003
20

e o S Al Lt T T Tl T T b s T Tt et A T T o o Tt oo T T e Tt T

%% Uses Matlab built-in: ss2tf, and tf2ss for transforming between

%% state-space [a,b,c,d] and transfer [num,den] representations.

%% This is standard and in the absence of ss2tf, tf2ss, one can use instead:

PAA -

% function [a,b,c,d]=tf_to_ss(num,den}

% a=compan{den);

% c=fliplr(eye(1,length(al));

% R=hankel (flipud(eye(length(den),1)) ,den);

% bd=inv(R)*[zeros(1,length(R)~length(num)) num]}’;

% b=bd; b(length(b))=[1;

% d=bd(length(bd));

% return

Wh

W

%, function [num,den)=ss_to_tf(a,b,c,d)

% den=poly(a);

% h=d;

% for k=1:length(a),

% h=[c*a~(k-1)*b; h];

% end

% R=hankel(flipud(eye(length{(den),1)),den);

% num=R+*h; num=num(:).?’;

% return

wh

e U ettt et e T Tt Tl o et ottt Tt BTt T e Tt T LTt Tt e T T e e T e L e de o e T e Yo e Yo T oo

Pick=pm(p,w,1); if min(real(eig(Pick)}})<=0,
disp(’The Pick matrix is not positive’), return,
end

if abs(p(1))<10*eps, p(1)=0; w(1l)=real(w(1)); wo=w(1);
else, disp(’p(1) is required to be 0’), return, end

p=p(:); w=w(:)/w0;

pn=p; pn(1)=[1;

wo=w; wn(1)=[];

n_temp=length(pn) ;

pnc=pn;

for i=1i:n_temp,
if abs(imag(pn(i)))>10*eps, pnc=[pnc; conj(pn(i))];
else, pn(i)=real(pnc(i)); pnc(i)=pn(i);
end,

end,
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n=length(pnc);
tau=poly(pnc);

vn=(ones(size(wn))-wn) ./(ones(size(wn))+wn) ;
sn=(ones (size(pn))-pn) ./ (ones(size(pn))+pn) ;

snc=(ones(size(pnc))~pnc)./(ones(size(pnc))+pnc);
tauhat=poly(-snc);

un=vn.*polyval(taubat,sn) ;
ur=real(un); ui=imag(un);

U=(1;
for i=1:n, U=[sn."(i-1) U]; end,
Ur=real(U); Ui=imag(U);
for i=n_temp:-1:1,
if ((abs(Ui(i,:))<le2*eps) & (abs(ui(i,:))<le2xeps)), Ui(i,:)=[1; wi(i,:)=[]; en
end

UU={Ur;Uil; uu=[ur;uil;
pibat=UU\uu; pihat=pihat(:).’;
[a,b,c,d]=tf2ss(pihat,tauhat);

Po=lyap(a’,~c’*c);
=a~-inv(Po)*c’%c;
Le=lyap(4,-b*b’);
N=inv(eye(size(Lc))+PoxLc) ;

[N1,D1}=ss2tf(a,inv(Po)*Nxc’, «c,1);

[N2,D2)=ss82tf(a,N’*Db, c,0);
[N3,D3)=ss52tf(a,inv(Po)*N*c’, -b’%Po,0);
[N4,D4)=ss2tf(a,N’*b, -b?*Po,1);
KIUAIRIARAIRAUGUAALAY C2D transformation matrix (denoted T’ in disclosure) %A4%
YAXAN YA NN AN YA A A numd/dend=c2d (numc/denc,n) , by setting s=(z-1)/(z+1)
Cc2p=[1;
for i=0:n,
row=1;
for j=i+1:n, row=conv(row,[1 -1]); end
for k=1:i, row=conv(row,[1 +1]); end

C2D=[C2D;rov];
end, clear row

numi=N1*C2D;
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num2=N2%C2D;
num3=N3%C2D;
num4=N4*C2D;
mu=-num?2 (1) /num1 (1) ;

ahat=(mu* (num3+numi) + (num4+num?2) ) /sqrt (1-mu~2) ;
bhat=w0* (mu* (num3-num1i) + (numé-num?2) ) /sqrt (1-mu~2) ;

den=sum{tau."2)/(2*ahat*bhat’)*ahat;
pum=sum(tau. "2)/ (2*ahat*bhat’)*bhat;

e et e e T et el R T et A A L T R A Tt T e T Tl el e et o oo oo T e o
% Last line of central.m (September 24, 1998)

ROUTINE DECODER

function [b,a] = decoder(p,w,r,Init,lambda)

Y At el ettt t et Tttt el Ll L T LA A LA bl b Lol AL A A AU AIT,
%%
%% function [b,a] = decoder(p,w,r,Init,lambda}

wh

%% Standing Assumptioms: (i) p_0=0,

wh (ii) If p_i is complex conj(p_i), then is not in p.
W

%% Init=1 or 2 (choice of initialization 1 or 2)

%% lambda = initial choice for correctiom scaling in updating h --> h - lambda*d
YAA (default: lambda=le-3, dynamically adjusted in subsequent steps).
T Tl Tl Tl Rl Il Il R Tl Rl LRt AN A IR AR T L AL LN DAL DIADRALDTT
%% NEEDS: pm.m, central.m

VYA R AN AN YA AN AN AN AN YN YN AN AN A A NS AN YA Y NN Y AN Y A AT AN AN YA VAN AN AN A S

ci=1le-10;
c2=1.5;
c¢3=1.5;
c4=.5;

Wh
if nargin<2, disp(’Less than 2 arguments —-- TERMINATED’), return, end
p=p(:); w=w(:); n=length(p)-1;
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pinitial=p; winitial=w;
if length(w) "=n+1, disp(’length(p) "=length(w) -- TERMINATED’), return, end
if abs(p(1))>10xeps, disp(’p(1) ought to be O —-— TERMINATED’), return, end

p(1)=0; w(L)=real(w(1));
for i=2:n+1,
if abs(imag(p(i)))>10%eps, p={p; conj(p(i))]1; w=[w; conj(w(id))];
elseif abs(imag(w(i)))>1000*eps, disp(’ real p_i should correspond with real w_i?)

disp(’ -— TERMINATED’), return,
else, p(i)=real(p(i)); w(i)=real(w(i));
end,
end,
nc=length(p)-1;
tau=poly(p); taulnc+2)={J;
if nargin<3, r=tau; r(1)=[}; Init=1; lambda=ie-3;

elseif nargin<4, r=r(:).’; Init=1; lambda=1e-3;
elseif nargin<5, lambda=le-3; end

if length(r)>nc, disp(’length(r)>length(w)-1 -- TERMINATED’), return,
else, r=[r zeros(l,nc-length(r))]; end

Pick=pm(p,w);

if min(real(eig(Pick)))<=0, disp(’The Pick matrix is not positive’),
eigPickEinv=eig( Pick/pm(p,ones(size(p))) J;
level=min(real(eigPickEinv));
disp(’ATTENTION: w_s will be raised by ’), rise=-level+le6*eps,

=w+rise*ones(size(w));

end

clear Pick eigPickEinv level rise

ettt et Tt o e e et et f e ettt T el T e R b AR LA KL R LAl T AT
%%% Central solution
if r==tau(2:nc+1), [b,al=central(p(i:n+1),w(1:n+1)); return, end

YALIALIRIAYIAY% STARTING COMPUTATIONS (off line computed once) AAAAAAAAAALLAANANARYG
VAN AAAAAAANAA AR Yy I A A AN AN Y YN AN Ay Y AN NN AN AN NN AN Y Y A AN AN AN A Y AN
wh

A=compan(tau); c=fliplr(eye(i,nc));

L=hankel (flipud(eye(nc+1,1)),tau);

S=dlyap(A’,c’*c); %A% Solving: S-A’xSkA-c’*c=0
tau_i=tau; tau_i{nc+1)=[1;

L_i=hankel (flipud(eye(nc,1)),tau_1);
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SLinv=8*inv(L_1);

%h% INITIALIZATION 1 (default) %Ahhhthhhhislts

if Init==1,

y=L\[1;x()]; %%% Also: y=nd2h([1 rl,tau)
kappa=y’*[S zeros(nc,1); zeros(l,nc) 1l*y;

a=sqrt (kappa/2/w(1))*tau;

%l INITIALIZATION 2 sttt tototstolololololetololololotstolete

else,

[numf ,a]=central (p(1:n+1),w(i:n+1)); a=axabs(i+sum(r))/abs(sum(tau));
end,

%i% Algorithm (DATA) UAUAWAUAAAUALARARGAIALAT

%%% h: markov parameters of initial q %UAUAAA%

a=[a zeros(1,length(tau)-length(a))]l;

ng=(a*hankel(a))/( hankel(tau)+toeplitz{tau,tau(i)*eye(1,length(tau))) J);

%%% nd2h

ng=nq(:}.’;

ng=[zeros(1,length(tau)-length(ng)) nqgl;
=deconv([nq zeros(1,length(taw)-1)],tau};

h=flipud(h(:));

%ih pis=tau rhostar + rho taustar LAAAAAALAAL
pis=(toeplitz(eye(nc+i,1),[1 r])*[1;xr(:)]).";

%%% Vandermonde matrix AAAALAGAAAAAAAAAAIALL
z12n=p(2:n+1) ."~1;

=ones(n,1); for i=1:nc-1, V={z12n.7i V]; end,
V_ri=[real (V) ;imag(V)];
tau_z12n=polyval(tau,z12n);

Wk MCgamma) AAALAAAARARAAUIIIIL LI LD RRLAAN AN
g=[1 r];
M_rho = toeplitz(eye(nc+1,1)*g(1), [g zeros(1,nc)]);

g=conv(fliplr(tau), {1 rl);
M_taus_rho= toeplitz(eye(nc+1,1)*g(1), [g zeros(i,nc)l);

g=conv(tau, [1 r]);
M_tau_rho = toeplitz(eye(nc+1,1)*g(1), [g zeros(1,nc)l);

clear Init S kappa numf s g nn V L_1 tau_i
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YL SL AL LAGLYL TTERATION Lottt et bt et ht LA R Il AT LRIl N LT T b T e o B T AT,
%%%%Z%%Z%X%%Z%Z%%%%%X%Z%%%Z%Z%X%%%%%%ZZ%ZZ%%Z%%%Z%Z%%%%%%Z%%Z%Z%%%%%%%%ZZ%%Z%%%%%
Y% AVAILABLE a,h (a: coefficients of alpha, h: markov parameters of qQ)

b = ( hankel(a)+fliplr(hankel(fliplr(a))) )\pis(:); b=b.’;
e0=w(1)-b(1)/a(1);
e=w(2:n+1) -polyval(b,z12n)./polyval(a,z12n);
approximation_error=norm([e0;el);

d_past=0;
desired_minimal_error=cl*norm(w);
while approximation_error>desired_minimal_error,

LAY AYIYs STEP & Uttt e ol T T LTl Bl T Tl AN T AT e o ts e e e e e T e
v=(e-e0*ones(size(e))) .*¥tau_z1i2n;
v_ri={real(v) ;imag(v)];
x=V_ri\v_ri;

grad=2+*[SLinv*x;2%e0] ;
clear x v.ri ve el b

a_2=conv(a,a); gamma_2=deconv(eye(1,2*length(a_2)-1),a_2);
a_2_tau=conv(a_2,tau); gamma_2_tau=deconv(eye(l,2+length(a_2_tau)-1),a_2_tau);

L_a2inv=hankel (fliplr (gamma_2));
L_a2tauinv=hankel (fliplr(gamma_2_tau));

Phat = dlyap( compan(a_2).’ , [zeros(2¥nc-1,2*nc); fliplr(eye(1,2#*nc))]);
Ptilde=dlyap( compan(a_2_tau).’, [zeros(3*nc-1,3*nc); fliplr(eye(i,3*nc))1);

H1=L*M_rho*L_a2inv*[Phat zeros(2#nc,1);zeros(1,2%nc) 1]*L_a2inv*M_rho.’*L;

HO=L*M_taus_rhotl_a2tauinv*[Ptilde zeros(3#nc,1);zeros(1,3%nc) 1]*L_a2tauinv+M_tau_rh
H=2*H1+H2+H2.?;

4 =H\grad;
L ULLALISLGUG STEP 2,3 Yol l el et leh ot T e T At T Tl TN Al LA LD AR LA TN e

YLUAALY R G%h% accelerating criterion (increasing "lambda")
if norm(d_past)<norm(d)*c2, lambda=min(lambda*c3,1); end
d_past=d;

YLGILGALA L LAY step possibly decreasing "lambda"
flag=1; lambda=lambda/c4;
while abs(flag)>ie-5,
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lambda=lambda*c4;
hnew=h-lambda*d;
[a,flag]l=q2a(taun,hnew);
end

h=hnew;

b = ( hankel(a)+fliplr(hankel(fliplr(a))) )\pis(:); b=b.’;
e0=w(1)-b(1)/a(1);
e=w(2:n+1) -polyval(b,z12n) ./polyval(a,z12n);
approximation_error=norm([e0;e]};

end

Y e e U et e et T T Rl T Rl Tl LK LRSS LT A L KA e
% Last line of decoder.m (September 21, 1998)
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APPENDIX C

A CONVEX OPTIMIZATION APPROACH TO THE RATIONAL
COVARIANCE EXTENSION PROBLEM*

CHRISTOPHER. 1. BYRNES{, SERGEI V. GUSEV{, AND ANDERS LINDQUISTS

Abstract. In this paper we present a convex optimization problem for solving the rational
covariance extension problern. Given a partial covariance sequence and the desired zeros of the
modeling filter, the poles are uniquely determined from the unique minimum of the corresponding
optimization problem. In this way we obtain am algorithm for solving the coverisnce extension
problem, as well a8 a constructive proof of Georgiou’s seminal existence result and his conjecture, a
stropger version of which we have resolved in [7].

Key words. rational coveriance extension, partial stochastic realization, trigonometric moment
problem, spectral estimation, speech processing, stochastic modeling

AMS subject classifications. 30E05, 60G35, 62M15, 93A30, 93E12

1. Introduction

In [7] a solution to the problem of parameterizing all rational extensions of a given
window of covariance data has been given. This problem has a long history, with
antecedents going back to potentisl theory in the work of Carathéodory, Toeplitz and
Schur [9, 10, 31, 30}, and continuing in the work of Kalman, Georgiou, Kimura and
others [18, 14, 21]. It has been of more recent interest due to its significant interface
with problems of in signal processing and ‘speech processing [11, 8, 25, 20] and in
stochastic realization theory and system identification [2, 32, 22]. Indeed, the recent
solution to this problem, which extended a result by Georgiou and answered a conjec-
ture by him [13, 14] in the affirmative, has shed some light on the stochastic (partial)
realization problem through the development of an associated Riccuti-type equation,
whose unique positive semi-definite solution has as its rank the minimum dimension
of a stochastic linear realization of the given rational covariance extension [6]. In both
its form as a complete parameterization of rational extensions to a given covariance
sequence and es an indefinite Riccati-type equation, one of the principal problems
which remains open is that of developing effective computational methods for the
approximate solution of this problem. In this paper, motivated by the effectiveness of
interior point methods for solving nonlinear convex optimization problems, we recast
the fundamental problem as such an optimization problem.

# This research was supported in part by grants from AFOSR, NSF, TFR, the Géran Gustafsson
Foundsation, the Royal Swedish Academy of Sciances, and Southwegtern Bell.
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2 C. I. BYRNES, 8. V. GUSEV, AND A. LINDQUIST

In Section 2 we describe the principal results about the rational covariance exten-
sion problem, while setting notation we shall need throughout. The only sclution
to this problem for which there has been simple computational procedures is the so
called mazimum entropy solution, which is the particular solution that maximizes the
entropy gain. In Section 3 we demonstrate that the infinite-dimensional optimization
problem for determining this solution has a simple finite-dimensional dual. This mo-
tivates the introduction in Section 4 of a nonlinear, strictly convex functional defined
on a closed convex set naturally related to the covariance extension problem. We
first show that any solution of the rational covariance extension problem lies in the
interior of this convex set and that, conversely, an interior minimum of this convex
functional will correspond to the unique solution of the covariance extension problem.
Our interest in this convex optimization problem is, therefore, twofold: as a starting
point for the computation of an explicit solution, and as a means of providing an
alternative proof of the rational covariance extension theorem.

Concerning the existence of a minimum, we show that this functional is proper
and bounded below, i.e., that the sublevel sets of this functional are compact. From
this, it follows that there exists a minimum. Since uniqueness follows from strict
convexity of the functional, the central issue which needs to be addressed in order to
solve the rational covariance extension problem is whether, in fact, this minimum is
an interior point. Indeed, our formulation of the convex functional, which contains
a barrier-like term, was inspired by interior point methods, However, in contrast
to interior point methods, the barrier function we have introduced does not become
infinite on the boundary of our closed convex set. Nonetheless, we are able to show
that the gradient, rather than the value, of the convex functional becomes infinite on
the boundary. The existence of an interior point which minimizes the functional then
follows from this observetion.

In Section 5, we apply these convex minimization techmiques to the rational co-
variance extension problem, noting that, as hinted above, we obtain a new proof of
Georgiou’s conjecture. Morsover, this proof, unlike our previous proof [7] and the
existence proof of Georgiou [14], is constructive. Consequently, we have also obtained
an algorithmic procedure for solving the rational covariance extension problem. In
Section 6 we report some computational results and present some simulations.

2. The rational covariance extension problem

It is well-known that the spectral density ®(z) of a purely nondeterministic stationary
random process {y(t)} is given by the Fourier expausion

[~ ]

D) =D cpe® (2.1)

—en

on the unit circle, where the covariance lags

Cy & E{'yt.).kyg} k= 0, 1, 2, .- (2.2)
play the role of the Fourier coefficients

_i_ " ikB 1 1 i8
ek = 27;-/ e H(e)ds. (2.3)

—_—T
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CONVEX OPTIMIZATION FOR RATIONAL COVARIANCE EXTENSIONS 3

In spectral estimation [8), identification [2, 22, 32], speech processing [11, 25, 24, 29]
and several other applications in signsl processing and systems and control, one is
faced with the inverse problem of finding a spectral demsity, which is coercive, ie.,
positive on the unit circle, given only

c= (CO,CI,...,Cn), (24)
which is a partiel covariance sequence positive in the sense that

L
€1 G - Cpet

L=1|. . .. . |>0q (2.5)
Cin Cp—1 -  Co

ie., the Toeplitz matrix T}, is positive definite.
In fact, the covariance lags (2.2) are usually estirnated from an spproximation

1 =3

L YirkYe
ST
of the ergodic limit

T
o = lim % Zoynkym
since only a finite string
Yo, Y1, U2, Y31+ - YN
of observations of the process {y(¢}} is available, and therefore we can only estimate
a finite partial covariance (2.4) where n << N.

The corresponding inverse problem is the left with & version of the trigonometric
moment problem: Given a sequence (2.4) of real numbers satisfying the positivity
condition (2.5), find a coercive spectral density ®(z) such that (2.3) is satisfied for

=0,1,2,...,n. Of course there are infinitely many such solutions, and we shall
shortly specify some additional properties which we would like the solution to have.

The trigonometric moment problem, as stated above, is equivalent to the Carathéo-
dory extension problem to determine an exteénsion

‘ Cnt1s Cn+2 Cndds - - - (2.6)
with the property that the function
v(z) = %co +ezrt ez 24 (2.7

is strictly positive real, ie., is analytic on and outside the unit circle (so that the
Laurent expansion (2.7) holds for all |z| > 1) and satisfies

v(z) +v(z”') > 0 on the unit circle. (2.8)
In fact, given such a v(z), .
B(2) = v(z) + v(z™Y) (2.9)

is & solution to the trigonometric moment problem. Conversely, any coercive spectral
density ®(2) uniquely defines a strictly positive real function v(z) via (2.9).
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4 C. 1. BYRNES, §. V. GUSEV, AND A. LINDQUIST

These problems are classical and go back to Carathéodory [9, 10], Toeplitz [31]
and Schur [30]. In fact, Schur parameterized all solutions in terms of what is now
known as the Schur parameters, or, which is more common in the circuits and systems
literature, reflection coefficients, and which are easily determined from the covariance
lags via the Levinson algorithm [27]. More precisely, modulo the choice of cp, there is

a one-to-one correspondence between infinite covariance sequences Co, 1,2, - - - and
Schur parameters g, 71,..- such that
|7l <1 for t+=0,1,2, ... (2.10)

under which partial sequences (2.4) corresponds to pertial sequences o, 71, - - -, Yn—1 ©f
Schur parameters. Therefore, covariance extension (2.6) amounts precisely to finding
a continuation

T Yoty 7ﬂ+27i‘ . (211)

of Schur parameters satisfying (2.10). Each such solution is only guaranteed to yield
& v(z) which is meromorphic.

In circuits and systems theory, however, one is generally only interested in solu-
tions which yield a rational v(z) of at most degree n, or, which is equivalent, a ra-
tional spectral density ®(z) of at most degree 2n. Then, the unique rational, stable,
minimum-phase function w(z) having same degree as v(z) and satisfying

w(z)w(z!) = &(=2) (2.12)

is the transfer function of a modeling filter, which shapes white noise into a random
process with the first n + 1 covariance lags given by (2.4); see e.g. [7, 6] for more
details.

Setting all free Schur parameters (2.11) equal to zero, which clearly satisfies the
condition (2.10), yields a rational solution

(D(Z) = ;(';—)-:—(;:_—1), (2.13)

where a(z) is a polynomial z

a(z) = apz” + a12" 1+ .-+ an (ag>0), (2.14)

which is easily computed via the Levinson algolrithm [27). This so called mazimum

entropy solution is an all-pole or AR solution, aind the corresponding modeling filter
="

w(z) = () (2.15)

has all its zeras at the origin. |

However, in many applications a wider variety in the choice of zeros are required
in the spectral density $(z). To illustrate this p‘pint, consider in Figure 2.1 a spectral
density in the form of a periodogram determined from a speech signal sampled over
20 ms (in which time interval it represents a|stationary process) together with a
maximum entropy solution corresponding to n = 6. As can be seen the latter yields
a rather flat spectrum which is unable to approximate the valleys or the " notches” in
the speech spectrumn, and therefore in speech sydthesis the maximum entropy solution
results in artificial speech which sound quite ﬂagt. This is a manifestation of the fact
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Figure 2.1: Spectral envelope of 8 maximum entropy solution.
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6 C. I. BYRNES, S. V. GUSEV, AND A. LINDQUIST

a corollery of a more general theorem on complementary foliations of the space of all
rational positive real functions of degree at most n.

Theorem 2.1 ({7]). Given any partial covarionce sequence (2.4) and Schur poly-
nomial (2.17), there ezists a unigue Schur polynomial (2.14) such that (2.16) is a
minimaum-phase spectral factor of a spectral density $(z) satisfying

&(z) = co+ Z ex(z® + 27F),

k=1
where
ép=cx for i=1,2,...,n

In particular, the solutions of the rational positive ertension problem are in one-one
correspondence with self-conjugate sets of n points (counted with multiplicity) bying in
the open unit disc, i.e. with all possible zero structures of modeling filiers. Moreover,
this correspondence is bianalytic.

Consequently, we not only proved Georgiou’s conjecture that the family of all ra-
tional covariance extensions of (2.4) of degree at most n is completely parameterized
in terms of the zeros of the corresponding modeling filters w(z), but alsoc that the
modeling filter w(z) depends analytically on the coveriance data and the choice of
zeros, a strong form of well-posedness mcreasing the likelihood of finding a numerical
algorithm.

In fact, both Georgiou’s existence proof and our proof of Theorem 2.1 are noncon-
structive. However, in this paper we present for the first time an algorithm which,
given the partial covarisnce sequence (2.4) and the desired zero polynomial (2.17),
computes the unique pole-polynomial (2.14). This is done via the convex optimization
problem to minimize the value of the function  : R**! — R, defined by

(g0, 91, .- -, ¢n) = codo + c1gy + -+ Cagn
_ -21? log Q(e"®) | (%) |2d6, (2.18)
over all gg, qy,...,4n such that

Q(e“’) =go+¢1cos8d+qucos28 + -+ +g,cosnd >0 for all 8. (2.19)

In Sections 4 and 5 we show this problem has » unique minimum. In this way we
shall also provide a new and constructive proof of the weaker form of Theorem 2.1
conjectured by Georgiou.

Using this convex optimization problem; a sixth degree modeling filter with zeros
at the appropriate frequencies can be constracted for the speech segment represented
by the periodogram of Figure 2.1. In fact, Fxgure 2.2 illustrates the same periodogram
together with the spectral density of such a. ﬁlter As can be seen this filter yields &
much better description of the notches than does the meximum entropy filter.
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Figure 2.2: Spectral envelope obtained with appropriate choice of zeros.
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We begin by setting up the appropriate spaces. Recall from classical realization
theory that a rationsal function

otz 27+ L.

[V

v(z) =
of degree n has a representation
& =HFlg E=1,2,3,...

for some choice of (F, g, h) € R*** x R™ x R". Therefore, if in addition v(z) is strictly
positive real, implying that all eigenvalues of F are less than one in modulus, & tends
exponentially to zero as & — co. Hence, in particular,

c:i= (éﬂsél:azv"-)

must belong to £;. Moreover, the requirement that (3.1) be a coercive spectral density
adds another constreint namely that é belongs to the set

Fi={e€t |+ &l(e* +e™*) >0} (3.4)
k=1
Now, Jet
(&) = _% log [eo + > ale™ + e—i“)] ds, (3.5)
- k=1

be a functional ¥ — R, and consider the infinite-dimensional convex constrained
optimizetion problem to minimize (&) over F given the finite number of constraints

(3.2). Thus we have relaxed the optimization problem to allow also for nonrational
spectral densities.

Since the optimization problem is convex, the Lagrange function

T
L(&,2) = (&) + > Al —er) (3.6)
k=0
has & saddle point [26, p. 458] provided the stationary point lie in the interior of ¥,
and, in this case, the optimal Lagrange vector A = (Mg, Ay, ..., Aq) € R™? can be
determined by solving the dual problem to mafcimize

p(A) = min L{&, ). (3.7

To this end, first note that

8L 17 ke ~ikBy gy =1 18 |

B t a8 . fork=0,1,2,... 3.8

aak o _’r(ﬁ +e )q) (E )i + AL or k Oa s Ly 3 T ( )
and theat

§£ = -1 W(e”‘g + e_iw)é’l(eiojdﬂ fork=n+1,n+42 (3.9

8¢ 27 S ! ’ U i

: i
Then, setting the gradient equal to zero, we obtein from (3.9)

1 [, . : 7
o (e + e *) @ 1(*)df =0 for |k| > n,

Mar. 20, 2003
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from which it follows that @~ must be a pseudo polynomial
Q(2) = qo + 3quz+277) + -+ + Ygu(2" + 277) (3.10)
of degree at most n, i.e.,
P-1(z) = Q(=2), (3.11)

yielding a spectral density ® which is rationel of at most degree 2n and thus belonging
to the originel (nonrelaxed) class of spectral densities. Likewise we obtain from (3.8)

M= [ (¥ 4 e*9) 51 (c9)dg (3.12)
2w J o
for k=0,1,2,...,n, which together with (3.11) yields
A= Q! for' =0,1,2,...,n (3.13)
But, the minimizing é is g1ven by j
& = 271_ (el* +e7*)Q(e*)1d8 (3.14)
and consequently
T
> s = / Q)R do = 1. (3.15)
-7

k=0 ,
To determine the optimal (saddl%a poi
problem. In view of (8.11), (3.18) and (

nt) L
3.15)

g Qe

where ¢ € R"t! is the vestor with componen
problem is equivalent to minimizing

pgrange multipliers we turn to the dusl
the dual function is

T
lc

-

|
1 ;
Pla) =3 | ?)d8 + 1~ g,

bs co, C1, - - -, - Consequently, the dual

i
£i 1 il {
wlg) =clg—5- ﬂ log Q(*)da (8.16)
over all ¢ € R**! such that the pse!udo poly:: omial (3.10) is nonnegative on the unit
circle, i.e., } !
Q(T‘“) >0 for all 6, (3.17)

and, if the dual problem has an eptimal s ution satisfying (3.17), the optimal Q

solves the primal problem when inserted in
The dusl problem to minimize (3.16) gi

optimization problem, which is simpler than
it is a special case of the optimization pr 3

lo(e®)|2 = 1 s required for the maxim
typical cost function ¢ in the case n =

optimuim in an interior point so that the sp‘

(3.11).

n (3.17) is a finite-dimensional convex
the original (primal) problem. Clearly
lem (2.18)—(2.19), obtained by setting
entropy solution. Figurc 3.1 depicts a
| As seen it is convex end attains jts
ectral density ® has all its poles in the

open unit disc as required. That this is the case in general will be proven in Section 5.
We stress again that the purpose of this, section is not primarily to derive an al-

gorithm for the maximum entropy solution,

(for which we already have the simple
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Figure 3.1: A typical cost function @(g) in the cage n =1,
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so the problem is reduced to determining the variables
do
g= %] erin (4.5)
dn
in the pseudo-polynomial
Q) =g +3nG+z ) +in(@@ +272) +- T iz +277) (4-6)
go that the conditions (4.3) and
Qe*) >0 forall §e[—w, 7] (4.7
are sé,tisﬁed.
Now, consider the convex functional ¢(g) : R™*! — R defined by
1" g i
ola) = da— 5= [ 1og Qo (e)ao. (4.8)

Our motivation in defining ((g) comes in part from the desire to introduce a barrier-
like term, as is done in interior point methods, and in part from our enalysis of the
maxirnum entropy method in the previous section. As it turns out, by a theorem
of Szegd the logarithmic integrand is in fact integrable for nonzero ) having zeros
on the boundery of the unit circle, so that ¢(g) does not become infinite on the
boundary of the convex set. On the other hand, ¢(g) is a2 natural generalization of
the functional (3.16) in Section 3, since it specializes to (3.16) when |o(e®)[> =1 as
for the maximum entropy solution. As we shall see, minimizing (4.8) yields precisely
via (4.4) the unique a(z) which corresponds to o(2).
It is clear that if g € D)} where

Df = {g e R™* | Q(z) >0 for |2] = 1}, (4.9)

then w(g) is finite. Moreover, ((g) is also finite when Q(z) has finitely many zeros on
the unit circle, as can be seen from the following lemma.

Lemma 4.1. The functional w(g) is finite and continuous at any q € DF except at
zero. The functional is infinite, but continuous, at ¢ = 0. Moreover, ¢ 48 a C%
function on D}

Proof. We want to prove that ©(g) is finite, when g ¢ 0. Then the rest follows by
inspection. Clearly, ¢(g) cannot take the value —oo; hence it remains to prove that
p(q) < co. Since g # 0, '

poi= m;a.xQ(ei”) > 0.
Then, setting P(z) := pu~1Q(2), '
log P(ef":) <0 (4.10)
and

o1 U T o o
wlg) =cqg— —iglogﬂf fo(e*®)2d8 — o | logP(e Yo (e*)|?d8,
— . —r
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and hence the question of whether (g) < co is reduced to determining whether

— log P(€)|o(e”)|?d8 < oo

-

But, since |o(e*)}2 < M for some bound M, this follows from

/ log P(£%)d8 > —o0, (4.11)
-

which is the well-known Szegd condition: (4.11) is a necessary and sufficient condition
for P(e*) to have a stable spectral factor [17]. But, since P(z) is a symmetric pseudo-
polynomial which is nonnegative on the unit circle, there is a polynomial m(z) such
that 7(z)w(z~!) = P(z). But then w(z) = lz(,—f)- is a stable spectral tactor, and hence
(4.11) holds. OJ

Lemma 4.2. The functional w(g) is strictly convez and defined on a closed, convez
domasin.

Proof. We first note that g = 0 is an extreme point, but it can never be & minimum
of ¢ since (0} is infinite. In particular, in order to check the strict inequality

g™ £ (1= 2)g®) < Ap(g™) + (1 - A)p(g?), (412)

where one of the arguments is zero, one need only consider the case that one of ¢ or
g‘? is zero, in which case the strict inequality holds. We can now assume that none
of the arguments is zero, in which case the strict inequality in (4.12) follows from
the strict concavity of the logarithm. Finally, it is clear that D7 is a closed convex
subset. O ‘

Lemma 4.3. Let ¢ € DY, and suppose g 7 0. Then dg > 0.

Proof. Consider an arbitrary covariance extel:;nsion of c such as, for example, the max-
imum entropy extension, and let ®(z) be the corresponding spectral density (2.9).
Then ¢ is given by (2.3), which may also be, written

_ 1 T ke k0N oA0Y 20 -
=g |5+ NINB k=01,
Therefore, in view of (4.6), ‘
' dg= % Q™)@ (&) do, (4.13)

which is positive whenever Q(z) > 0 on thefunit circle and g #£ 0. O

Proposition 4.4. For all: r € R, ¢~ (—ocq, 7] is compact. Thus y is proper (i.e.,
w~1(K) is compact whenever K is compact)| and bounded from below.

1
Proef. Suppose ¢ is a séquence in M, := p~}(—oo,7]. It suffices to show that g
hes a convergent subsequénce. Each Q" mhy be factored as

Q®(z) = 2a® ()2 (271) = MQ®(2),

where ), is positive and ;am (2) is = monic ﬁolynomial all of whose roots lie in the
closed unit disc. The corresponding sequence of the (unordered) set of n roots of
i .

i
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each @3%)(z) has a convergent subsequence, since all (unordered) sets of roots lie in
the closed unit disc. Denote by a(z) the monic polynomial of degree n which vanishes
at this limit set of roots. By reordering the sequence if necessary, we may assume
the sequence a(*)(z) tends to @(z). Therefore the seguence g™®) has a convergent
subsequence if and only if the sequence A, does, which will be the case provided the
sequence A4 is bounded from above and from below away from zero. Before proving
this, we note that the sequences ¢’ ¥, where g is the vector corresponding to the
pseudo-polynomial Q) and

% /_ 7; log O (e2) | () *d6 (4.14)

are both bounded from above and from below respectively away from zero and —co.
The upper bounds come fram the fact that {@*¥)(2)} are Schur pelynomials and hence
have their coefficients in the bounded Schur region. As for the lower bound of ¢/gi*?,
note that ¢g® > 0 for all k (Lemma 4.3) and ¢/§*) — o > 0. In fact, Q¥ () —
|a(e*)|2, where a(z) has all its zeros in the closed unit disc, and hence it follows from
(4.13) that & > 0. Then, since ¢(g) < co for all ¢ € D except ¢ = 0 (Lemma 4.1),
(4.14) is bounded away from —oo. Next, observe that

" T
‘P(‘Z(k)) = Aed'g® — 1 log Ak lo(e®)|?de — i log Q® (GM)IU(EW)Fde‘
I o 2r J_,

From this we can see that if a subsequence of Ay were to tend to gero, then (g™ )
would exceed r. Likewise, if a subsequence ¢f Az were to tend to infinity, ¢ would
exceed r, since linear growth dominates logarithmic growth. O

5. Interior critical points and solutions of the rational covariance extension
problem ;

In the previous section, we showed that ¢ hals compact sublevel sets in D, so that
@ achieves a minimum. Moreover, since ¢ is strictly convex and D} is convex, such
2 minimum is unique. We record these obsen;ations in following statement.

Proposition 5.1. For each partial covariance sequence ¢ and each Schur polynomial
a(z), the functional @ has o unigue minimum on DF.

In this paper we consider a question which lis of independent. interest, the question
of whether ¢ achieves its minimum at an intetior point. The next result describes an
interesting systems-theoretic consequence of the existence of such interior minima.

Theorem 5.2. Fiz o partial covariance seq;uence ¢ end a Schur polynomial o(z). If
g € D is a minimum for ¢, then '

i
Q) = alz)a(="™), (5.1)
where a(z) is the solution of the rational caz!)q'r*iance extension problem.

Proof. Suppose that § € D} is & minimum f;of w. Then

gT"’(q) =0 for k,f; 0,1,2,...,n, (5.2)

1
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Differentiating inside the integral, Which; is a.lflc wed due to uniform convergence, (5.2)
yields

i8y12{
ck—i (‘ka+e“'k”)|a(e R dd =0 fork=0,1,...,n
. -2 Q(e*) |
where Q(z) is the pseudo-polynomial (4.6) cor;eaponding to §, or, equivalently,
T 0|2
cr = l/ e*"ﬂl—",—(?!_—)'—de  for k=0,1,...,n, (5.3)
2w J Q(e’)

which is precisely the interpolation condition ;4.3)—(4.4), provided (5.1) holds. O

As a corollary of this theorem we have that the gradient of ¢ at any ¢ € D} is
given by

By, L
a—qk(Q) = ck|— & (5-4)
where
LAY
a,,=3-/ ) aCu |y S P, (5.5)
PY N Q(e®)
is the partial covariance sequence corresponding to a process with spectral density
@(eia): ol
C Q -eiﬂ) ’

where Q(z) is the pseudo-polynomial corresponding to §. The gradient is thus the
difference between the true and calculated partial covariance sequence.

‘We now state the converse result, underscormg our interest in this particular convex
optimization problem.

Theorem 5.3. For each partial covariance sequence ¢ and each Schur polynomial
o(z), suppose that a(z) gives a solution.to the rational covariance eztension problem.

Is

. Q@) =alz)az™), (5.6)
then the corresponding (n i 1)-vector § lies i D} and is a unigue minimum for .

Proof. Let a(z) be the soiutxon of the: ratlonal covariance extension problem corre-
sponding to ¢ and a{z), a.md let Q(z) be given by (5.6). Then c satisfies the interpo-
lation condition (5.3), which is equivalent to; (p.2), as seen from the proof of Theorem
5.2. But, since a(z) is a Schur polynorma.l Q(z) > 0 on the unit circle, and thus
g € DF. Since ¢ is strictly convex on D (5 '3) implies that § is 2 unique minimum

for . O i

Since the existence of a\ solution to t’he mt ional covariance extension problem has
been established in [14] (see also [7]), one dpes in fact know the existence of interior
minima for this convex optumza.tlon prob] em. On the other hand, we know from
Proposition 5.1 that ¢ hds & minimum for|some § € D, 86 to show that ¢ has a
minimum in the interior ‘J?* it remains to prove the followmg lemma.

Lemna 5.4. The functional ¢ never attainsta minirmum on the boundary aDt.
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i

Proof. Denoting by nga(q) the dJrectxm,nal derivative of ¢ at g in the direction p, it
is easy to see that !

Dyplg) = lim "pikq ha qi) — #{g) (5.7)
| ! ™ i .
o B, (5.8)

[l

where P(z) is the pseudo«ﬁolynomial i

P(z) = po + 3p1(z + 271) + ?;Epz(z?-{»— 2+ 3pa (2t + 2™

corresponding to the vector p € R, I'n fac't
X — l

log(Q + €P) —logQ PhJg [(1 +E_);§} P

— Q)

€ iQ Q

Q
as € — +0, and hence (5.7) follows by dominaged convergence.
Now, let ¢ € D and § € 8D; bega.rbltra.ry Then the corresponding pseudo-
polynomials Q a.nd Q ha.ve the prcpertﬂes ! ;

Q(c"’) >0 lfor aillﬁ € [=m, )

asnd . ( i
Q(e®) >0 forall d and Qde'a°) = 0 for some 8.
Since gx =g+ Alg—g) € Df for A € (b ,m}e also have for A € (0,1] that
Q) = Q) + M) | L Q(e‘ )1 >0, forall 6 e [—m ],
and we may form the directional denva&we
Dyg—gp(ga) = €@ — g) + / ha(6)d8, (5.9)
1 —
where () L»- .
Q(et) — (), soyp2
ba(f) = ——F -T2 1%
A( ) QZ(E’P)‘, IO’(E )l
Now, dg(
{Q(eiﬂ. - “1'9)]2 612
—_— = 2 >
dAhi(g) QA(GM 2 la(e )] 20,
and hence hy(6) is & monotonely nondecreasing function of A for ell 8 € [—m, 7]
Consequently h, tends pointwise to hgias A j 0. Therefore,
f ha(8)d8 1~ +58 a5 X — 0. (5.10)
In fact, if
[ ha(8)d6 - @i B as A — 0, (5.11)
then {h,} is a Cauchy sequence in Ll(Lw, 7r) and hence kias & limit in L}(=m, @) which
must equal ho a.e. But hy, having po]esiaﬁ%—ﬂ' @], is not summable and hence, as
claimed, (5.11) cannot hold. .
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Consequently, by virtue of (5.9),

Da—gplan) — +
for all ¢ € D} and § € 8D, end hence, in vi

smooth. Then it follows from Theorem 26.
empty on the boundary of D

"I

Thus we have proven the following result.

Theorem 5.5. For each partial covariance
o(z), there ezists an (n+ 1)-vector § in DF |

Consequently, by virtue of Theorem 5.2, t;
covariance extension problem for each partial

C. I. BYRNES, 8. V. GUSEV,

+ and therefore

i
AND A. LINDQUIST

o a8 A —0

iw of Lemma 26.2 in [28)], p is essentially
3 in [28] that the subdifferential of ¢ is
¢ canpot have a minimum there. [J

sequence ¢ and gach Schur polynomial
lwh.ich 48 © minimum for .

here does exist a sclution to the rational
covariance sequence and zero polynomial

a(z), and, in view of Theorem 5.3, this solution is unique.

These theorems have the following coroll-;

Corollary 5.6 (Georgiou’s Conjecture)!
. and each Schur polynomial a(z), there is a|

(4.1) and (4.2) hold.

Hence, we have given an independent prq

For each partial covariance sequence ¢
unigue Schur pelynomial a(z) such that

of of the weaker version of Theorem 2.1

conjectured by Georgiou, but not of the strgnger version of [7] which states that the
problem is well-posed in the sense that the one-one correspondence between o(z) and

a{z) is a diffeomorphism.

6. Some numerical examples

Given an arbitrary pa.rtml covariance sequ
polynomial o(z), the constructive proof of
mic procedures for computing the correspa
based on the convex optimization problem t
go, 1, - - - , Gn, such that (2 19) holds.

In general such procedures will be ba.sedt
which, s we saw in Section 5, is given by

bnee ¢g,¢,-..,¢, and an arbitrary zero
eorgiou’s conjecture provides slgorith-
ndmg unique modeling filter, which are
0 minimize the functional (2 18) over all

bn the gradient of the cost functional ¢,

6 5 .
5;%(%, @) = — & (6.1)
where
s 1 [T aelale AL
& = 2«] e'*? ) 49 for k=0,1,2,...,n (6.2)
are the covariances corresponding to a proq.ss with spectral density
a(ew 2 _ !'I‘ o
_ 13(;,21— =2+ 1D & cos(k). (6.3)
-~ 1:._1 |

The gradient is thus the difference betwe
g, -
ables go, 41, . .., ¢, at which the gradient is ¢
this difference is zero.

| the glven—partial covariance sequence

-1 Cn and the partial covariance seq enna?:orrespond;ng to the choice of vari-
r:n.\a,ted The minimum is attained when

i
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APPENDIX D

A GENERALIZED ENTROPY CRITERION FOR NEVANLINNA-PICK
INTERPOLATION: A CONVEX OPTIMIZATION APPROACH TO
CERTAIN PROBLEMS IN SYSTEMS AND CONTROL*

CHRISTOPHER 1. BYRNESt, TRYPHON T. GEORGIOU§, AND ANDERS LINDQUIST}

June 29, 1998

ABSTRACT. In this paper we present a generalized entropy critierion for solving
the rational Nevanlinna-Pick problem with degree constraint for n + 1 interpolating
conditions. We also show that the primal problem of maximizing this entropy gain
has a very well-behaved dual problem resulting in convex optimization scheme, gen-
eralizing that of [10], for finding all solutions of the Nevanlinna-Pick interpolation
problem which are positve real, and rational of degree less than or equal to n. This
criterion is defined in a form parameterized by an arbitrary choice of a monic Schur
polynomial as suggested in (25, 26] and recently verified in [9, 10, 11] for the ratio-
nal covariance extension problem and [27] for Nevanlinna-Pick interpolation. Our
interest in this convex optimization problem is therefore twofold: as a starting point
for the computation of explicit solutions to the rational Nevanlinna-Pick problem
in terms of a design parameter, and as a means of providing & variational proof of
the recent complete parameterization of all solutions of this problem in terms of
Schur polynomials. From the optimization problem we design an algorithm which
is implemented in state space form and applied to several problems in systems and
control, such as sensitivity minimization in H{* control, maximal power transfer,
simultaneous stabilization and spectral estimation.

1. Introduction

A general interpolation problem consists of developing conditions for the existence of,
as well as a parameterization of, meromorphic solutions to the following interpolation
problem: Given n + 1 points 2, for £ = 0,1,...,n located in a specified region of the
complex plane and n + 1 desired complex values wy, find all meromorphic functions
f in a given class which satisfy

flz) = wp for k=0,1,..,n. (1.1)

While Lagrange interpolation gives a particular solution to this problem, there has
been a remarkable literature developed to solve this problem within special classes
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of functions having certain positivity properties. In particular, seminal contributions
of Carathéodory, Nevanlinna, Pick, Toeplitz, Schur and others have given solutions
within the classes of meromorphic functions which map, for example, the unit disc (or
its complement) into the closed left-half plane. These Nevanlinna-Pick interpolation
problems have also been reinterpreted, and vastly extended, in an operator theoretic
setting; see, e.g., [46, 33, 3, 21]. Indeed, the research developed for interpolation prob-
lems of this kind has had substantial impact on classical function theory, harmonic
analysis, potential theory, probability, and operator theory.

The same classes of functions, known in the circuit and systems literature as positive
real, or bounded real, have long played a fundamental role in describing the impedance
of RLC circuits, in formalizing the underlying stability mechanisms relating to the
dissipation of energy in circuits and quite general linear and nonlinear systems, and
in formulating the positivity of probability measures in stochastic systems theory.
For these reasons, problems involving interpolation by positive real functions play
an important role in circuit theory [52, 16, 33], robust stabilization and control [48,
49, 54, 39, 37, 28, 18], signal processing [25], speech synthesis [17, 9, 10, 11}, and
stochastic systems theory [35, 8, 7).

In these contexts, then, the essence of Nevanlinna-Pick theory is directly applicable.
However, it is also important that the interpolating function be rational, and this
presents some new challenges which need to be incorporated systematically into any
useful enhancement of the classical theory. While the Nevanlinna recursion algorithm,
and the resulting parameterization of all positive real interpolants in terms of a “free”
function, can be used to generate certain rational solutions, it is also important to
parameterize all rational solutions of a given degree, for example, n. It will, of course,
be crucial in applications to have an effective computational scheme to generate the
rational, positive real interpolants of degree at most n. To this end, in this paper
we derive a generalized entropy criterion for the problem of rational Nevanlinna-Pick
interpolation. As a primal problem, one is led to an optimization problem in infinitely
many variables, a problem which has, however, a dual problem which is convex in
finitely many variables and for which the interior minimum corresponds precisely to
a solution of the Nevanlinna-Pick problem with degree constraints. Moreover, the
entropy integral incorporates an arbitrary choice of n points inside the unit disc as
“free” parameters, in a natural systems-theoretic fashion as in [25, 26], so that through
convex optimization we are able to obtain all solutions of the Nevanlinna-Pick with
degree constraints as a function of the zeros inside the unit circle of an associated
density function of degree n.

In Section 2 we describe the principal results about the Nevanlinna-Pick problem
with degree constraints, and in Section 3 we are setting notation which we shall
need throughout. The main results of the paper are then stated in Section 4, in
which we define a maximum entropy criterion, generalized to incorporate the data in
the rational Nevanlinna-Pick problem. We demonstrate that the infinite-dimensional
optimization problem for determining this solution has a simple finite-dimensional
dual, which in turn is a generalization of the optimization problem in [10]. The
proof of these theorems are given in Section 5 together with an analysis of the dual
problem. In fact, the dual problem amounts to minimizing a nonlinear, strictly convex
functional, defined on a closed convex set naturally related to the Nevanlinna-Pick
problem with degree constraints.
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Along similar lines as in [10], we first show that any solution to this problem lies in
the interior of this convex set and that, conversely, an interior minimum of this convex
functional will correspond to the unique solution of the Nevanlinna-Pick problem.
Concerning the existence of a minimum, we show that this functional is proper and
bounded below, i.e., that the sublevel sets of this functional are compact. From this,
it follows that there exists a minimum. Since uniqueness follows from strict convexity
of the functional, the central issue which needs to be addressed in order to solve the
rational Nevanlinna-Pick problem turns out to be whether, in fact, this minimum is
an interior point. Indeed, the dual problem contains a barrier-like term, as is the
case in interior point methods. However, in contrast to interior point methods, the
barrier function considered here does not become infinite on the boundary of our
closed convex set. Nonetheless, we are able to show that the gradient, rather than the
value, of the convex functional in the dual problem becomes infinite on the boundary.
The existence of an interior point which minimizes the functional then follows from
this observation.

In Section 6 we outline a computational procedure for solving the dual problem,
and hence the Nevanlinna-Pick interpolation with degree constraints. In the special
case of real interpolants, in Section 7 we develop a state-space procedure, which has
the potential to allow extensions to the multivariable case.

Finally, in Section 8, the algorithm is applied to several problems in systems
and control, such as sensitivity minimization in H* control, maximal power trans-
fer,simultaneous stabilization and spectral estimation.

2. The Nevanlinna-Pick interpolation problem with degree constraint

Given two sets of n+ 1 points in D° := {z | |2| > 1} and C respectively,
Z:={z|k=0,1,...,n} and W:={w|k=0,1,...,n},

we seek a parameterization of all functions f(z) satisfying

(i) the interpolation conditions

flze) =wy fork=0,1,...,n, (2.1)

(i) being analytic and having nonnegative real part in D¢, i.e., being positive real,
and
(iii) being rational of at most (McMillan) degree n.

Moreover, we require a constructive procedure for computing specific such solutions.
This problem will be referred to as the Nevanlinna-Pick problem with degree con-
straint. For future reference, the class of functions satisfying condition (ii), also
known as Carathéodory functions, will be denoted by €. Moreover, we denote by Co
the subclass of strictly positive real functions, whose domain of analyticity includes
the unit circle and have positive real part.

Requiring only condition (i) amounts to standard Lagrange interpolation, the so-
lution of which is well-known. Adding condition (ii) yields a classical problem in
complex analysis, namely the Nevanlinna-Pick interpolation problem. This prob-
lem plays a central role in H{* control, simultaneous stabilization, power transfer
in circuit theory, model reduction and signal processing. The McMillan degree of
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the interpolant relates to the dimension of a corresponding dynamical system, and
therefore condition (iii) becomes important.

For the classical Nevanlinna-Pick problem, there exists a solution if and only if an
associated Pick matriz is positive semidefinite {51, 46]. In case all 2;’s are distinct

the Pick matrix is given by
we+We |"
P = {F_T_—l} .
2k 2y Jgg=0

If points in 2 are not distinct, the interpolation conditions involve derivatives of f(2).

For example, if 2 = z (k= 2,... ,j), then these conditions become (k—ll)! FEN(z) =
wy, where f~1(z) denotes the (k —1)th derivative. In the special case where all the
points z, k = 0,1,...,n coincide, the Pick matrix has the Toeplitz structure
wy -+ Wo w1 e W,
P wy w()-f-’lf)g Wy—1 ’
W Wp1 ... Wo+ o

and the problem reduces to the rational covariance extension problem [35, 24, 25, 38,
9,8, 7,10, 11].

If the Pick matrix is singular, the solution is unique, rational and of degree <
n, while if P > 0 all solutions can be described by means of a linear fractional
transformation of a “free” parameter function which itself should be positive real
[1, 51]. The particular solution obtained by setting the free parameter function equal
to one, yields a solution which has degree at most n, thus it also satisfies condition
(iii). This is often referred to as the central or mazimum eniropy solution. However,
the linear fractional transformation is of no help in describing or constructing any
other solution to (i)—(iii), because of the complex way in which the free parameter
function determines the degree of the interpolant.

The goal of this paper is two-fold. The first is to parameterize all solutions to
the Nevanlinna-Pick problem with degree constraint, starting from a generalized no-
tion of entropy for such problems. The second is to provide, through the use of
convex optimization, the computational underpinnings for the effective solution of
Nevanlinna-Pick problems.

For simplicity, in this paper we shall only consider the case where the interpolation
points in Z are distinct. The general case works similarly. Moreover, we assume that
the Pick matrix is positive definite; otherwise there is just one solution. Also, for
convenience, we shall normalize the problem so that 2z, = 0o and f(oco) is real. This
is done without loss of generality since, first, the transformation z — lguz sends an
arbitrary zo to infinity and is a bianalytic map from D* into itself, and, secondly, we
can subtract the same imaginary constant from all values wy without altering the
problem.

Now, condition (ii) requires that

f(z)+ f*(2) >0 on the unit circle,
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where f*(z) := f(z71). Therefore, if the rational function f is represented as

f@=§%

where, for the moment, we take a(z) and b(z) to be polynomials, then

f@+f@=a%%5 (2.2

where the pseudo-polynomial ¥ defined by
¥(z) = a(2)b*(2) + a*(2)b(2) (2.3)

is nonnegative on the unit circle and hence has a unique stable spectral factor o(z2),
i.e., a unique polynomial solution of

a(z)o*(z) = ¥(2)

having all its zeros in the closed unit disc D. The functions a(z), b(z) and o(z) can
also be rational functions, and this is the formulation that we prefer in this paper.
In fact, we shall represent them in a particular space of rational functions having the
reciprocals of the points in Z as their poles. This space will be defined in Section 3.

In this paper we shall device a constructive procedure, akin to that in [10], to
show that there is a complete parameterization of all solutions of the Nevanlinna-
Pick problem with degree constraint in terms of the zeros of o, so that for any choice
of n zeros in D, there is one and only one solution f. This constructive procedure
will provide us with an algorithm to determine the unique solution corresponding to
any choice of zeros. The zeros can thus be used as the free parameters, and hence as
a design tool.

This problem has a long history. In [26], it was shown, for any point sequence Z
and any value sequence W satisfying the Pick condition, that to each choice of ¥
there corresponded at least one a(z) so that f = % is a solution to the Nevanlinna-
Pick problem with degree constraint, and hence that the map G from the space of
solutions of this problem to the space of monic Schur polynomials, sending f to o, is
surjective. In [26], the question is raised as to whether G is also injective, so that the
solutions would be completely parameterized by the choice of zeros of o. The proof of
existence was by means of degree theory and hence nonconstructive. It followed closely
the arguments used in [25] to solve an important special case, the rational covariance
extension problem. In this setting, ¢ coincides with the choice of numerator in a
shaping filter which will shape white noise into a stationary process with the given
covariance sequence. The assertion that G is surjective is then the assertion that
the choice of a numerator of such a shaping filter can be made arbitrarily, while
the injectivity of G, conjectured in [25], would assert that the choice of numerator
completely determines the choice of denominator in the shaping filter.

This conjecture, for the rational covariance extension problem, was recently estab-
lished in a stronger form in [9], where it is shown that solutions are unique and depend
analytically on the problem data. In other words, the rational covariance extension
problem is well-posed as an analytic problem. Subsequently, & simpler proof of bijec-
tivity of the parameterization by real Schur polynomials was given in [11] in a form
which has been adapted to the rational Nevanlinna-Pick problem in [27], proving that
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G indeed provides a complete parameterization of all solutions in terms of the choice
of zeros: However, as already mentioned, the proofs developed in [25, 26, 9, 11, 27]
are nonconstructive and the question of effectively computing such solutions has re-
mained open. For the rational covariance extension problem, this has been recently
addressed in [10] through the development of a convex minimization problem. While
the optimization problem of [10] occurs as a special case when specialized to the ra-
tional covariance extension problem, our approach to the rational Nevanlinna-Pick
problem differs from that in [10] in that we derive a convex optimization scheme as
a consequence of a generalized maximum entropy criterion involving the data of the
interpolation problem. This criterion is developed in the Sections 4 and 5, where we
shall describe a method for computing these solutions, as well as for providing a new,
and simple, proof of the parameterization theorem for the rational Nevanlinna-Pick
problem using convex optimization methods.

3. Notation and preliminaries

Denote by L, the space of functions which are square-integrable on the unit circle.
This is a Hilbert space with inner product

(f.9) = % _ﬂ (e g* (e¥)d8.

Moreover, for an f € Ly, let

f(ei9)= Z fke—ike

k=—00

be its Fourier representation. In this notation,

(o) =D fudw

k=—co

Next, let H, be the standard Hardy space of all functions which are analytic in the
esterior of the unit disc, D¢, and have square-integrable limits on the boundary
1 6,2
rl—l»rillﬂ _ﬂlf(re )|°df < 0.
As usual, H, is identified with the subspace of L, with vanishing negative Fourier
coefficients. More precisely, for f € Hy,

f(2)=fo+f12—l+f2z—2+'--~

Now, consider the data Z and W with the standing assumption that zq = oo. It is
a well-known consequence Beurling’s Theorem [32] that the kernel of the evaluation
map E : Hy — C**! defined via
f Ezog
flz
E(f ) = . ?

)
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is given by
) ker(E) = BH,,
where B(z) is the Blaschke product
1 Z— 2
H 1 -2z
Now, let H(B) be the orthogonal complement of BH, in Hs,y, ie., the subspace
satisfying
Hy = BH, @ H(B),
which will be referred to as the coinvariant subspace corresponding to B, since BH;

is invariant under the shift z=1. Then H(B) is spanned by the (conjugate) Cauchy

kernels )
-1—_-_1—1— 1+§ +2‘2z2+...

for k= 0,1,...,n. For any f = > 72, fiz™3 € 3, we have

Gy(z) =

(£, Gr) Zf]zk = f(z), | (3.1)

which, of course, is Cauchy’s formula. While Gy, k=10,1,...,n, do form a basis in
H(B), we prefer to work in a basis, go, 91, - - - ; gn, for which gg = G = 1 is orthogonal
to the rest of the base elements. Thus we choose

g(z) = Galz) =1 = —

2Zp — 1’
For future reference, we list the four identities

(fa 90) = f(OO)
(f:gk> = f(Zk)—f(OO) k=1,2,...,'ﬂ
<f*7 gO> = f(OO)
{(fyg¢) = 0 k=12,...,n, (3.2)
which hold for all f € H,. In fact, they follow readily from (3.1), ( f*,Gi) = f(c0)

and the corresponding conjugated identities. We also remark that there is a natural
basis for I, obtained by extending {go, g1,- - -, gn} by choosing

k=1,2,...,n.

ge(2) = 2""VFB(2) fork=n+1n+2,....
Any element p € H(B) is of the form

where

7(2) = H z—z1) (3.3)
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and 7(2) = mp2" +m2" 1+ - 4, is also a polynomial of degree at most n. Finally,
any rational function of degree at most n can be written as

b(z)

f(z)= —OE—)— where a, b € H(B).
Throughout the paper we shall use such representations for rational functions, and
in particular the functions a(z), b(z) and ¢(2), introduced in Section 2 will belong to
H(B). Hence, ¥(z), defined by (2.3) will be a symmetric pseudo-polynomial in the
basis elements of H(B) and H(B)*. In general, the space of pseudo-polynomials in
this basis will be denoted by 8, and is defined by

$ = H(B)VH(B)* =span{g,,..., 91,90, 01, --» In}- (3.4)

In particular, ¥ € 8, and so are ab* and a*b.

4. A generalized entropy criterion for Nevanlinna-Pick interpolation

Given a rational positive real function f(z) we consider the generalized entropy gain

1 [ . -
Lu(f) = o~ log[®(e)] W (e¥)do (4.1)
where ¥(2) is a specified spectral density function in & which is positive on the unit
circle, and

O(z) = f(z) + f*(2)- (4.2)

In fact, ¥(2) can be factored as
¥(z) = o(z)a’(2), (4.3)

where 0 € H(B) has no zeros in the closure of D¢, ie., ¢(2) is a minimum-phase
spectral factor of U(z).

Entropy integrals such as (4.1) have, of course, a long history. In particular, one
might compare this particular generalized entropy integral with that developed in
[42] for > control. While Nevanlinna-Pick interpolation is quite relevant in H>
control, the entropy formula (4.1) is defined on H* and does not involve the L* gain
of a system. Indeed, it is closer to the entropy expression used to derive the maximal
entropy filters in signal processing (see, e.g., [31, 36]).

We are interested in solutions to the Nevanlinna-Pick problem with degree con-
straint presented in Section 2. It turns out that there is a unique solution f(z) which
maximizes the above entropy functional. Moreover, this solution satisfies

o(2)o*(2)
a(z)a"(z)’

where 0, a € H(B) and o0* = ¥. Hence the entropy maximization forces a preselected
spectral zero structure for the interpolating function. In fact, it will be shown below
that this provides a complete parameterization of all such rational solutions of at most
degree n.

[+ (2) = (4.4)
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Theorem 4.1. Assume that Z and W define an interpolation problem for which the
Pick matriz P is positive definite. Given a ¥ € 8 which is positive on the unit circle,
there ezists a unique solution to the constrained optimization problem

max [ 4.5
fEGg \Il(f) ( )
Subject to the constraints

flz) =w, fork=0,1,...,n (4.6)
Moreover, this solution is of the form

flz)= Z%% a,b € H(B), (4.7)

and hence of degree at most n, and
a(2)b*(2) + b(2)a*(2) = ¥(2). (4.8)

Conversely, if f € €y satisfies conditions (4.6), (4.7) and (4.8), i is the unique
solution of (4.5).

The proof of this theorem will be deferred to the next section.
In the special case where ¥ = 1,

() = e [ 1Bl + 7 (e (49)

corresponds to the standard entropy criterion which is maximized by the central
solution mentioned in Section 2. It is clear that, in general, maximization of Ly(f)
is unaffected by scaling ¥ by any positive constant factor. Theorem 4.1 provides a
complete parameterization of all strictly positive real solutions to the Nevanlinna-Pick
problem with degree constraint in terms of properly scaled spectral densities ¥ € §,
or, in other words, in terms of the zeros of the minimum-phase spectral density o(z).

Corollary 4.2 (Spectral Zero Assignability Theorem). There is a bijective cor-
respondence between solutions f € Cq to the Nevanlinna-Pick problem with degree
constraint and the set

{¥ € 8| ¥ >0 for all 6; %/ U(e)do = 1},

or, equivalently, the set of n points in the open unit disc, these being the zeros of the
minimum-phase spectral factor o(z).

Problem (4.5) is an infinite-dimensional optimization problem. However, since there
are only finitely many interpolation constraints, there is a dual problem with finitely
many variables.

Returning to conditions (4.7) and (4.8), we see that

¥(z)

fR)+17(2) = oG
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where Q(z) = a(z)a*(2) € 8, and Q(z) > 0 on the unit circle. In terms of the basis
introduced in Section 2,

Q(2) = Gngp(2) + ... + G197(2) + qogo(2) + @191(2) + ... + qngn(2).  (4.10)

Since go(2) = 1, ¢o = (@, 90y = [ Q(e"¥)df. Therefore, since Q is positive on
the circle, qq is real and positive. Hence, we may identify @ with the vector ¢ :=
(g0, g1, - - - » gn) of coeflicients belonging to the set

Q:={geRxC"|Q(e®) >0 forall 6}.

As we shall see shortly the g-parameters will essentially be the Lagrange multipliers
for the dual problem.
Consider the Lagrange function

L{f, %) = Ta(f) + do{ws — f(2)) + 2Re {Z Aufuw - f(zkn} 1)

k=1

Since the primal problem amounts to maximizing a strictly concave function over a
convex region, the Lagrange function has a saddle point [41, p.458] provided there
is a stationary point in G, and, in this case, the optimal Lagrange vector A =

(Ags My .-+ 5 An) € €L can be determined by solving the dual problem to minimize
PO = max L(f, 3. (412)

Proposition 4.3. Given a vector A = (Ag,A1,...,Ar) of Lagrange multipliers, the
unique mazimizing function f in problem (4.12) satisfies
_ Y(z)

Q=)'

where the coefficients of Q@ are related to the Lagrange multipliers as follows:

@) +7(2)

n
o = %)\0+R62Aj
j=1
g=X fork=12,...,n

Proof. We note that Gy C H?, and we consider the representation
[>.9]
f(2) =" fi9:(2). (4.13)
j=0

Based on our standing assumptions on f(z), and our choice of the basis {gx(2); k =
0,1,2,...}, we have fo = f(o0) is real, while fi, K = 1,2,..., are allowed to be
complex. Thus, we identify f(z) with the vector of coefficients f := (fy, f1,...), and
define the set

F={fecl|fo€R fi,fo €C; Y figi(z) € Co}. (4.14)

=0
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Since B(z;,) = 0for k=0,1,2,...,n, we have g;(2;) = 0 for j > n, and consequently
Fla) = fi95(z)- (4.15)
§=0

In what follows, it will be convenient to use complex partial differential operators
acting on smooth, but not necessarily complex analytic, functions. In particular, if
we write the complex vector fi = Ty + 4yx, as a sum of real and imaginary parts, this
defines the differential operators

2103 ) 8 100
Ofc 2 \8zr O dfy 2 \ Oz« Zayk

which operate on smooth functions. Indeed, the second operator is the Cauchy-
Riemann operator which characterizes the analytic functions F' of f; via

oF
—=0.
Afk
And, for example, while conjugation, viewed as the function defined by fe = Tp — Y,
is of course not analytic, it is smooth and satisfies
8fs 3fx
—=0 and =1
Of Ofx
Returning to the maximization problem (4.12), we set % = 0 for all k. Since f; is
real and go = 1, we then have

OL -1 [™ 1 v o n
08 o VT (19Yd0 — No — S =0. .
o 2 /_ch ()T (€)df — Ao 2Re{k=l )\k} 0 (4.16)

Furthermore, recalling (4.15), we obtain

oL 1 [T 0\ —1/ 19 i@ __n—, N
T 5 /_ﬂ gr(e)P ™ ()T (e”)df 'E=1 Aigi(z) =0 (4.17)
fork=1,2,...,n, and
oL 1 (7 0\ —1( pi0 0\ g
AT /;"gk(e YO ()W (e”)df =0 (4.18)

fork=n+1,n+2,.... Now, let Q(z) :== & }(2)¥(z), and note that Q*(z) = Q(2).
From (4.18),
(Q,9r) =0=(Q,qz) fork=n+1n+2,....

Hence Q € 8. Therefore there is a representation (4.10) with go € R and qy,...,g, €
C. Moreover, @(e*) > 0 for all 6.
From (4.16), we immediately see that

=1
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Next, taking the conjugate of (4.17) we obtain

Q. 9x) = Z/\jgk(zj) (4.20)
j=1
for k=1,2,...,n. On the other hand,
(@, 9%) qugj 2r). (4.21)
Since gi(Z;) = g;(2x), by (4.20) and (4.21),
gi1(=1) g2(z1) -+ gn(zl) A — a1
g1 (122) 92(:22) " gn(:zQ) Az — % —0. (4.22)
gl(zn) 92(271) T gn(zn) An = Gn
Now, it is easy to see that the coeflicient matrix
——1_—1 n
o=|-Z2 } , (423)
of the linear system (4.22) is nonsingular, and therefore
M=qe fork=1,2,...,n. (4.24)

In fact, G = $Z*PZ, where Z is the diagonal matrix diag(z7%,...,2;!) and P is
the Pick matrlx for Z = {z1,...,2,} and W= {1,...,1}. Consequently, since this
interpolation problem has 1nﬁn1te1y many solutions, by the Pick condition, P must
be positive definite. This concludes the proof of the proposition. O

It turns out to be more convenient to use the ¢’s as dual variables.
Proposition 4.4. The dual functional (4.12) is

p(A(g)) = ¢(g) + <,

where ¢ is a constant, and

©(q) = 2wogo + 2Re {Z(wk - wo)Qk} - = / log[Q(e®)]W(e?)df  (4.25)

k=1

Proof. As we have just seen, the Lagrange multipliers are linear functions of the
g := (g0, @1, - - - @n). The dual functional (4. 12) becomes

Kig

pN@) =~ [ Togle (e a0 + 5 [ ol w(@(e)a0
+ (2(]0 —2Re {Xn:qj}) (wo ~ fo) +2Re {Z gilw f(ZJ)]}-
i=1 (4.26)
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In this expression the sum of the two last terms turns out to be linear in ¢. To see
this and eliminate the dependence of f’s on the ¢’s, consider the following:

1 i6 29 1,9
= [ vt - /Q 15 (e)do

= qo{f + ", 90) + 2Re {Z a(f + f*,gj>}

i=1
= 2qofo + 2Re {Z 3;(f(z) — fo)} -
=1
Using this last expression, the dual function becomes

pN@) = - [ TorlQ(e (a0 + [ togtw(ew (e

-

b / \Il(e‘e df + 2gowp + 2Re {Z gi(w wo)} (4.27)

j=1

In this expression, define ¢ to be the sum of the second and third terms. Then, the
proposition follows. 0O

We are now in a position to formulate the dual version of Theorem 4.1, the proof
of which will also be deferred to the next section.

Theorem 4.5. Assume that Z and W define an interpolation problem for which the
Pick matriz P is positive definite. Given a U € 8 which is positive on the unit circle,
there exists a unigue solution to the dual problem

min ©(q)- (4.28)
Moreover, for the minimizing q,
U(z) «
OAAEAS (4.29)

with f € Cy. Moreover, this function f satisfies conditions (4.6), (4.7) and (4.8) in
Theorem 4.1, namely

flzg) =wp fork=0,1,...,n, (4.30)
f(z)= (( )> a,b e H(B), (4.31)
T(z) = al2)b*(2) + (2" (2). (432)

Conversely, any f € Co which satisfies these conditions can be constructed from the
unique solution of (4.28) via (4.29).

We conclude by noting that if the problem data is real or self-conjugate, and ¥ is
real, then both the function f(z) constructed above, and the function f(Z), satisfy
the conditions of Theorems 4.1 and 4.5 so that, by uniqueness, they must coincide.
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Corollary 4.6. Assume that the the sets Z and W are self-conjugate and that wy =
w; whenever z, = Zj, and that ¥ 1is real. Then, the optimizing functions f,Q in
Theorems 4.1 and 4.5 have real coefficients. In particular, there is a unique pair of
real functions a(z) and b(z) in H(B), devoid of zeros in closure of D*, such that
U(z) = a(2)b(z7") + a(z7")b(z)
b(z)

=——¢€C
f(Z) a(z) 0
flz) =w, fork=0,1,..,n.

We shall return to the special case covered in Corollary 4.6 in Section 7, and we
shall refer to it as the self-conjugate case.

5. The convex optimization problem

In this section, we shall analyze the functional ¢(g), constructed in the previous sec-
tion. We shall show that it has a unique minimum in Q, and this will be instrumental
in proving Theorem 4.1 and Theorem 4.5, which will be done at the end of the section.
To this end, we shall extend ¢(g) to the closure Q of Q, and consider

¢0:9— RU{oo}.

Proposition 5.1. The functional ¢(g) is a C* function on Q and has a continuous
extension to the boundary that s finite for all ¢ # 0. Moreover, ¢ is strictly convez,
and Q is a closed and convez set.

This proposition, along with Propositions 5.2 and 5.4 below, are analogous to re-
lated results in [10], developed for the covariance extension problem. Their proofs
are similar, mutatis mutandis, to those developed in [10], except for Lemma 5.3 be-
low. The complete proofs are adapted to the present framework and included in the
appendix for the convenience of the reader.

In order to ensure that ¢ achieves a minimum on Q, it is important to know whether
 is proper, i.e., whether ¢~!(K) is compact whenever K is compact. In this case, of
course, & unique minimum will exist.

Proposition 5.2. For all r € R, ¢~ Y(—o0,r] is compact. Thus ¢ is proper (i.e.,
@ YK) is compact whenever K is compact) and bounded from below.

The proof of this proposition, given in the appendix, relies on the analysis of the
growth of ¢, which entails a comparison of linear and logarithmic growth. To this
end, the following lemma is especially important. We note that its proof is the only
point in our construction and argument in which we use the Pick condition in an
essential way.
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Lemma 5.3. Suppose that the Pick matriz P is positive definite. Let ¢1(q) be the
linear part of ©(g), i.e.,

w1(q) := 2woqo + 2Re {Z(wk - wo)‘ik}

k=1
= 2woqo + Z(’wk — W)k + Z(?Dk — Wo ) Q- (5.1)
k=1 k=1
Then ¢1(q) > 0 for each nonzero g € Q.

Proof. Since P > 0, there exists a strictly positive real interpolant of the interpolation
sequence (zx, wi); k = 0,1,...,n. Choose an arbitrary such interpolant, and denote
it by f. Then, recalling that 2g = oo, (3.2) yields

2u0 = {f + /", 90) = 5= / (€) + £1(eM)]g5(e®)do

and

wy —wo={f+ " 0) = / (F(e®) + f*(e)]gx(e)db

fork=1,2,...,n. For any ¢ in Q,., we compute

oila) = 5= [ [+ 1 (E)QH)a 2 0
and ¢1(g) =0ifand only if Q =0. O

Finally, we need to exclude the possibility that the minimum occurs on the bound-
ary. This is the content of the following proposition, also proved in the appendix.

Proposition 5.4. If ¥ is positive on the unit circle, the functional ¢ never attains a
minimum on the boundary 0Q.

Hence we have established that ¢(g) is strictly convex, has compact sublevel sets
and the minimum does not occur on the boundary of Q. Consequently, it has a
unique minimum, which occurs in the open set Q. Clearly, this minimum point will
be a stationary point with vanishing gradient. As the following lemma shows, the
gradient becomes zero precisely when the interpolation conditions are satisfied, and
in fact the value of the gradient depends only on the mismatch at the interpolation
points.

Lemma 5.5. At any point g € Q the gradient of ¢ is given by
oy

P 2fwo — f(20)], (5.2)
%2 = - fa) - - f)l, frE=12..m (53
dk
where f is the Gy function satisfying
FD)+ F(0) = 2 (5.4

Q(z)
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with Q(z) € 8 correspond to g as in (4.10).
Proof. The existence of a function f as claimed in the statement is obvious by virtue

of the fact that 3%3 is bounded and greater than zero on the unit circle. Recalling
that

O
—_— = O’
i
for k£ > 0 we have
Oy 1 [ Qi(eio) 0
9w —wy) — — | Ly
o (wx — wo) 5 ) Qe (e*)d8

= (we — wo) = {f + f7, 9x),

which, in view of (3.2) and the fact that zp = co, is the same as (5.3). For the case
k = 0 we need to take the real derivative:

I _ 1" go(e”)
0 " m )_, Q®)
= 2wy — <f + f*:90>;

which, again using (3.2), yields (5.2). O

U(e)do

We are now prepared for the proof of our main results.

Proof of Theorem 4.5. Propositions 5.1, 5.2 and 5.4 establish the existence of a unique
minimum in ¢ € Q. Then Lemma 5.5 shows that the interpolation conditions are
met for the corresponding €y-function f satisfying (5.4). The construction of such a
function proceeds as follows. Since @ € 8 and is positive and bounded on the unit
circle, it admits a rational spectral factorization Q(z) = a(2)a*(z), where a(2) = -;'%1
with a(z) a stable polynomial of degree at most n. Hence, ¢ € H(B). Then, we
solve the linear equation a(z)b*(2) 4+ b(z)a*(z) = ¥(z) for b. This linear equation has
always a unique solution because @ has no roots in D% cf. the discussion in [12]. Then
f(z)= %, and all conditions of the theorem are satisfied.

Conversely, given an f € @, satisfying (4.31) and (4.32), a unique ¢ € Q can be
obtained from (5.4). Finally, in view of Lemma 5.5, the interpolation conditions (4.30)
imply that the gradient of ¢ for the corresponding ¢ is zero. Thus it is the unique
minimizing ¢. O

Proof of Theorem 4.1. The fact that the minimizing ¢ in Theorem 4.5 belongs Q is
equivalent to having the corresponding f in Co. Since both Q and €y are open they do
not impose binding constrains on the primal and dual problems. Hence, by standard
duality theory [41, p. 458], the Lagrangian (4.11) has a saddle point. Consequently,
the is a direct correspondence between the primal and dual problems which translates
the statements of Theorem 4.5 to the corresponding ones of Theorem 4.1. [
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6. Computational procedure

An interesting, and useful, aspect of the dual functional ¢(q) is that it contains a
barrier-like term, as used in interior point methods. However, as we have seen in
Section 5, by a theorem of Szegd, the logarithmic integrand is in fact integrable for
nonzero Q having zeros on the boundary of the unit circle, and hence ¢(q) does not
become infinite on the entire boundary 9Q of Q. For this reason it is not a barrier
term in the traditional sense. Nonetheless, ¢(g) has the very interesting barrier-
type property described in the following proposition, which is a simple corollary to
Proposition 5.1 and Proposition 5.4.

Proposition 6.1. Although the dual functional @(q) is finite in each nonzero point
on the boundary 09, it has an infinite gradient there.

Next, let us turn to the computational procedure. Given U(z), define the class P

of (strictly) positive real functions

50 = 2, abes(B)

having the property that
a(2)b*(2) + b(2)a*(z) = ¥(z). (6.1)

We want to determine the unique function in P which also satisfies the interpolation
conditions. To this end, we shall construct a sequence of functions,

f(O),f(l),f@)’ e P

which converges to this interpolant.
As before, we may write (6.1) as

() = L2)
f(2)+ [ (z) = o)’ (6.2)
where @ € § satisfies
a(z)a*(z) = Q(2). (6.3)
It is easy to see that this defines a bijection
J:9-P: Q[ (6.4)
To see this, note that
_of2) _ B(=) _ d(z,2z71)
a(z) = TFTZ—)’ b(z) = ;(z_) and ¥(2)= —_T(z)r*(z)’

where a(z) and 3(z) are Schur polynomials of at most degree n and d(z,z7!) is a
pseudo-polynomial, also of at most degree n. Then, determine a(z) via a stable
polynomial factorization

a(z)a’(z) = 7(2)7*(2)Q(2), (6.5)

and solve the linear system

a(2)B"(2) + B(2)a(2)* = d(z,27") (6.6)
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for B. In fact, (6.6) is a linear (Hankel + Toeplitz) system S(a)8 = d in the coefficients
of the polynomials, which is nonsingular since a(z) is a Schur polynomial; see, e.g.,
[12]. Then

B(z)

&A=y

Given an f € P we can determine the corresponding gradient of ¢{q) by means of
Lemma 5.5. The following lemma gives the equations for the (n+1) X (n+1) Hessian

matrix
0% ]n
Hq) = . 6.7
©= |seae (6.7

Lemma 6.2. Let h(z) be the unique positive real function such that

h(z) + h*(2) = QE((Z—Z))?

and h(zo) is real. Then the Hessian (6.7) is given by

(6.8)

(2 h(z) + 2 h(ze) + h(z)  for k# £k,0> 0

—zih'(z) — h(z) + h(20) fork=£>0

Hieq) = < h{zg) — h(z) fork>0,=0 (6.9)
h(ze) — h(z) fork=0,£>0

LZh(zO) fork=£=0,
where h'(2) is the derivative of h(z).
Proof. For k,£=0,1,...,n we have
¢ L[ i0 iy Y (€¥)
= e gy (€9)=——5d0 6.10
Fon o ) N g (6:10)
= ((h+h")gz, 9r)- (6.11)

For £ = 0 this becomes (k, g¢) -+ {h*, gi), Which, in view of (3.2), becomes h(z) — h(20)
if k> 0 and 2h(z) if k = 0. For k,£ > 0, we have (h*g;,gx) = 0 and therefore

d%p L[ ) iy xfi0\p 0
m = o _ng(e Vgz (e )h(e )d9~

There are two cases. First, suppose k # £. Then a simple calculation yields

¥4 Zp

* * — k * %
GG = —2—gile) + i (2)
and hence 5
@ 2k 2¢
= h’ + h’ )
0qk0q; 2z — 2k< 9] 2k — Zz< %)

which, by (3.2), yields those elements of the Hessian for which k # ¢ and k,£ > 0.
Secondly, suppose that k£ = £. Since
2k

. z
9i(2) 2 — 2 zp— 2
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we obtain

6

5 1 [T ze
Z¥ - _(n — | =y
82@{: < 7gk> + o / ( 2

e (e®)db. (6.12)

To compute the second term in (6.12), differentiate h(z), which is given, as above, by
the Cauchy formula

h(z) ~ h(z) = 1/ ezeh(ew)dg
Then

W(z) = —o / ez9)2h(ei‘9)d9
which, together with (6.12) and (3.2), proves the remaining part of the lemma. O

Next, we turn to the computational procedure, which will be based on Newton’s
method [40, 41]. We need an f® € P, and a corresponding Q® determined via (6.2),
as an initial condition. For this we may choose the “central solution” (see Section 4)
for which there is a simple algorithm. Each iteration in our procedure consists of four
steps and updates the pair f,Q to F,Q, in the following way:

Step 1. Given f, let Vio(q) be the gradient defined by (5.2) and (5.3).

Step 2. Determine the unique positive real function s satisfying (6.8), which is a
linear problem of the same type as the one used to determine f from Q. In fact,
exchanging a(z) for a(z)? and d(z,z7") for v(z,z7') = 7(2)7*(2)d(2,27") in (6.6) we
obtain

h(z) = —z% where 8 = S{a?)v.

The Hessian H(g) is then determined from £ as in Lemma 6.2.

Step 3. Update Q(z) by applying Newton’s method to the function ¢. A Newton
step yields

§d=q— XH(q) 'Velg),

where A € (0, 1] needs to chosen so that

Q(ew) >0 forall 6. (6.13)
This positivity condition is tested in Step 4.

Step 4. Factor @ as in (6.3). This is also a test for condition (6.13). If the test fails,
return to Step 3 and decrease the step size A\. Otherwise, use the linear procedure
above to determine the next iterate f. Check if f is suiﬁc1ent1y close to f. If so, stop;
otherwise, set f := f and return to Step 1.
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7. State space formulas

The computations of the previous section can be carried out quite efficiently using
state space descriptions. In this section we return to the self-conjugate case, where
both Z and ‘W are self-conjugate and wy, = ®; whenever z, = Z;, and ¥(z) is real.
(See Corollary 4.6.) In particular, we shall develop the steps of the algorithm so as
to avoid complex arithmetic.

It is easy to see that, in this case,

7(z) = H(z — 2,:1) ="+ Ty (7.1)
k=1

is a real polynomial and

_ —17'*(2)
B(z) ==z o) (7.2)
is a real function, where 7.(2) = 14+ 71z + -+ + 7,2" is the reverse polynomial.

Throughout this section, we shall be concerned with real interpolation functions.
Any real function h € H(B) admits a state space representation of the form

h(z) = ho + c(zI — A)7*h, (7.3)
where (A, h, ¢) are taken in the observer canonical form
0 1 ... 0 hy
A=| P b T he|™ 7.4
1o o ... 1 IR E (74)
“~Th —Tpn—-1 --- —T1 hn
c=[L,0,...,0],

hi,hs, ..., h, being the Markov parameters in the Taylor expansion
h(z)=ho+hzt+ o+ bz "+

about infinity. We shall use the compact notation

2

for this representation, and keep A and c fixed when representing real functions in
H(B). Since the function (7.3) is completely determined by the Markov parameters
ho, h, we shall refer to them as the Markov coordinates of the function (7.3). Alter-
natively, h(z) can also be represented with respect to the standard basis in H(B)
as

n
h(z)=ho+ Y _ 19i(2), (7.5)
j=1
where, of course, 71,...,7, are complex numbers. Finally, any h € H(B) can be

uniquely identified by its values at Z,

{h(z0), h(z1), ..., M(2a) }.
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The correspondence between these three alternative representations is the content of
the following lemma.

Lemma 7.1. Let G := [gx(2;);x be the matriz (4.23), and define the Vandermonde
matriz V := [.°];x. Then, for any h € H(B),

h=Vn,
where = (M1, M2, - - -, ) is defined via (7.5), and
h(z1) — ho
h(zz):— ho o
h(z.) — ho

Moreover, G and V' are invertible.

Proof. The first correspondence follows immediately from (7.5) and the expansion
g(z) = E 2 ke 4 g %

The second correspondence also follows from (7.5). Finally, we already established

invertibility of G in the proof of Proposition 4.3, and the Vandermonde matrix V' is
invertible since the points in Z are distinct. [

We now reformulate the steps of the algorithm given in Section 6 in terms of the

real Markov coordinates of the relevant functions. We shall consistently work with
functions in H(B). Therefore, as f ¢ H(B), we form

~

[ = amy fs

where Ilgyp) denotes orthogonal projection onto }(B). Since f=Ff+Bgfora
suitable g € H?, it follows that

flzx) = f(z) fork=0,1,...,n.
Next, define w(z) to be the unique function in H(B) such that
w(z)=w, fork=0,1,...,n

The gradient of ¢ in Lemma 5.5 can then be expressed in terms of the “error function”

r(z) == w(z) — ey f(2), (7.6)
which also belongs to H(B). In fact,
7(z) 1= wi — f(2x)- (7.7)

Moreover, we introduce an H(B)-representation for any Q € 8 and any given ¥ € 8
by writing

Q2) = q(2) + ¢*(2), ¥(2) = P(2) +¥*(2),
where g,7 € H(B) are positive real. Finally, we represent ¢ and 1 by their respec-

tive Markov coordinates (z,zo) and (y, o), respectively, in the standard state-space
representation described above, i.e.,

- [4] o [24]
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We begin with the state-space implementation of Step 1 in Section 6. In this
context; we have the following version of Lemma 5.5.

Proposition 7.2. Let G and V be defined as in Lemma 7.1. Given an f € P, let
g be the positive real part of @ = J7'f, where J is defined as in (6.4). Moreover,
let r(z) be given by (7.6), and denote by (2o, ) and (ro,7) the Markov coordinates of
q(2) and r(z) respectively. Then

Oy
_— 4
81)0 7o,
dp

Y _T
ox "

where T := (V*)"'GV ! is a real matriz.

Proof. Since qo = 2z and wy — f(20) = 7(20) = 7o, the derivative with respect to zg
follows immediately from (5.2). Next, applying Lemma 7.1, we see that

%
8Qk k=1 ’

and that r(2;) — 1o is the k:th entry in GV ~'r. Moreover, by (7.7), we have
r(zk) = 70 = [wy — f(21)] = [wo — f(20)]
for k= 1,2,...,n. Finally, using equation (5.3) and defining q := (41, G2, ..., qn)’, We

obtain )
8(,0 _ oz - 8()0 _ *\—1 -1
e ([—Gq’] ) ———aq = (V*)"'GV~'r

establishing the rest of the proposition. O

It remains to determine the projection f= Hge)f. We present the construction
in two steps. Note that, since the points in Z are assumed to be distinct, z = 0 is a
simple pole of B(z2).

Proposition 7.3. Assume that B(z) = z7'Bq(z) with Bo(co) # 0, and let f(2) =
fo+ 27 fo(2) € Ha, with fr.(2) € Hy. Then

M) f = fo+ 27 Moz f(2).
Proof. First note that, for any f € H,,
f :=Tsmf = BI_B'f,

where II_ is the orthogonal projection onto the 3y, the orthogonal complement of

H, in Ly, In fact, f = f—}— Bgq for some g € Hs, and hence I1_B*f = B*f. Then,
since Bizfo € Hy,

f=2"'Bll_Bgz(fo + 271 f,)
= fo+ 2 ' Boll_B}f.,

from which the proposition immediately follows. O
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The second step given below deals with Ilgp,)fr. Note that, while B is not in
H(B), By is. Therefore, By has a state space representation with A and ¢ given by
(7.4). However, f,. & H(B), so we must use other A and c matrices for f,.

Proposition 7.4. Assume that By € H, is a rational Blaschke product which s
nonzero at infinity, and let

| AlDb A b
BO—[——‘»C d} and f_[cl dl].
Then the Sylvester equation

—(A=bd 1) X + XA +bd e =0, (7.8)

has a unique solution X, and f,. := Iy (o) fr has the state-space representation

s | A | b(d_ —dld;) — Xb
f.,- - |: P I dd_ 9 (79)
where
d_ = —d te(A — bd7 ') H(bd Ny + Xby). (7.10)

Proof. We first note that Bg(z) has the state-space description

Ag i bg
B =
= oot
with Ag = A —bd e, by = bd™1, ¢ = —d~c and dy = d~* and with A, having all its
eigenvalues outside the unit dlSC Consider the Lyapunov equation

X — AF'XA; — A7'boc = 0,

which has a unique solution since both A; and A, ' have eigenvalues inside the unit
disc [23]. But then so does

—A()X + X.Al + boCl = 0,

which is the same as (7.8). Using standard manipulations (see, e.g., [22, p.IX]), it
follows that Bjf, has the state space form

Ag 0 body + Xby
Bif.=| 0 A by
co docy — coX | dod;

Next, consider f(z) := II_B?f,, which has the representation

{ Ag ‘ bod; + X by
€o | d_

? = :I 3 d_ = COAal(bOdl + -Xbl):
where the nontrivial d-term is due to the fact that f(z) being in H# must vanish at
the origin. The final step needed to obtain a canonical realization for fr = By f, is

standard and involves cancellation of the unobservable modes at the poles of 7. Note
that these poles coincide with the zeros of By. O
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The state-space version of Step 2 in Section 6 is developed along the same lines as
in Step-1 by instead representing relevant functions in H(B?). Then a Newton step
is taken as described in Step 3. Alternatively, a gradient method is used, in which
case Step 2 can be deleted.

Finally, Step 4, i.e., determining f from ¢, amounts to solving a matrix Riccati
equation and a Lyapunov equation, as seen from the following proposition.

Proposition 7.5. Suppose that ¢,y € H(B) are strictly positive real with Markov pa-
rameters (z,To) and (y,Yo), respectively. Let P be the unique solution to the algebraic
Riccati equation

P = APA + (z — APE)(2z0 — cPd) ' (z — APCY, (7.11)
dy := (2z9 — cP)Y?,
by = (z — APC)d;?,
having the property that
I:=A-bd'c (7.12)
is stable, and let X be the unique solution of the Lyapunov equation
X =TXT' +yyp'y' — (v — bidi '9o)ys (¥ — badi ' wo), (7.13)
dp := 3(yo — eX)di ™,
by == [(y — Azc’) — bidg)di "
Then f = 3(q + q*), defined as in (6.4), has the state-space representation

g [T |bididy—b
T —dile]  di'dy ’

Proof. Observe that determining a(z) from ¢+ ¢* = aa* is a standard spectral factor-
ization problem [2, 20] with the unique minimum-phase solution given by

- [42]

Then b(z) is determined from the linear equation
¥ =1 +¢" =ab" +ba*

which, in the state-space formulation, becomes (7.13). Since I' is stable, it has a
unique solution X. Finally, the state space description of f = a~!b is obtained by
direct computation, using the formalism in, e.g., [22, p.IX]. O

8. Applications

In this section we describe a number of application for which our theory appears to
be especially relevant. We touch upon problems in robust control, in circuit theory
and in modeling of stochastic processes. The examples chosen are simple and basic
since our aim is only to indicate the spectrum of potential applications of our theory.
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Figure 8.1: Feedback system.
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Therefore, for any o > aqpt, there are admissible sensitivity functions S such that

3(z) = éS(z)

maps the exterior of the disc into the unit disc. Such a function, which has its zeros
outside the unit disc as required, will be called bounded real.

In the context of classical control, it is then very convenient to formulate this as a
Nevanlinna-Pick interpolation problem, since one could also formulate the Nevanlinna-
Pick theory for bounded real functions. In fact, since the linear fractional transfor-
mation § = % maps the unit disc into the right half plane, one is lead to finding
positive real rational functions

_a+8(z)
f(Z) - o — S(Z)
of degree at most n := r + £ — 1, which satisfy the interpolation conditions
1
fo)=1 j=12....¢ and f(z)= z—f_“—l i=1,2...r

To satisfy additional design specifications, by the Spectral Zero Assignability Theorem
(Corollary 4.2), we may then choose the zeros of

a? — 8(2)5*(2) (8.3)

arbitrarily in the open unit disc.

For example, in weighted sensitivity optimization, low sensitivity is required for

certain frequencies, and, to account for this in the design, S is replaced by WS for
some rational shaping filter W (z). (cf. [22, Chapter 9], [55, Chapter 8]). This results
in an increase in the complexity of the problem and an increase in the dimension of
the relevant feedback operators by an amount equal to the dimension of the shaping
filter. An alternative approach, as suggested above, is to tune the free parameters
of our parameterization (i.e., the spectral zeros) to shape the appropriate frequency
curve of the system (i.e., loop shape, sensitivity function, etc.). This idea is illustrated
in the following example.
Example 1. Consider the discrete-time linear system, shown in Figure 8.1, where
P(z) = 15, and C(2) is a suitable stabilizing controller such that the sensitivity
function (8.1) is first-order and high-pass. The transfer function P(z) has one pole
and one zero outside the unit disc, namely a pole at 2 and a zero at co. Following
notation in previous sections, we set g = o0 and z; = 2. The sensitivity function
S(z) must satisfy the interpolation conditions S{z) = 1 and § (z) = 0. It can be
shown that o = 2, so we take oo = 2.5.

The standard approach is to choose a weighting filter W (z) describing the in-
verse of the desired shape for S(z) and considering the new sensitivity function
S(z) :== W(2)S(z). The central solution 8(z) to the Nevanlinna-Pick problem with
new interpolation conditions S(zp) = W(oo) and 5(z) = 0 is then solved, after which
S = W18 is reconstructed. While this strategy allows for direct control of the shape
of S, it causes its dimension to be enlarged accordingly. In particular, in this example
the dimension of S will generically equal the dimension of W(s) plus one. However,
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Thus, the problem of maximizing the transducer power gain amounts to minimizing
the Ho norm of p(s) subject to the constraints (8.6).

Since the transducer power gain is rarely required to be uniform across frequencies,
the usual approach to the problem is to specify a desired transducer power gain shape
and then to determine whether a solution is feasible. (See [15, Chapter 4]. Also see
Helton [34] for an alternative formulation generalizing Youla’s theory.) However, in
the context of the theory developed in the present paper, we may instead select the
zeros of

G(s) =1 - p(s)p(~s),

i.e., the zeros of the power gain.

Example 2. Consider a passive load with impedance

1+ R,Cs Ry + Ls

14+ (1+R)Cs 1+ Ry+1Ls’

where Ry = 0.5, Ry = 0.1Q), L = 0.5H, and C = 0.01F. (This is a cascade
connection of two filters, which are the parallel connections of a resistor R = 1 with
a lossy capacitor and a lossy inductor respectively.) The transmission zeros of Zg(s)

are computed as the zeros of Z,(s) + Z;(—s) to be £81.6429, £1.6249. The Blaschke
factor

Zo(s)

(14 Ry — Ls)(1 = (1 + R;)Cs)
(1+ Ry + Ls)(1+ (1+ R;)Cs)

evaluated at the transmission zeros provides the interpolation data
p(81.6429) = 0.0957, p(1.6249) = 0.1432.

As mentioned in the previous example, the theory of the paper applies to any class of
functions which is conformally equivalent to positive real functions. Thus we begin by
translating the problem to the “discrete-time setting” via the conformal mapping s =
%, which maps the right-half-plane bijectively onto the complement of the unit disc.
Then a function g in the example corresponds, via the transformation §(z) := g(}—:ﬁ),
to a function § in the new setting. In this representation, the transducer power gain
relates to the magnitude of a suitable bounded real function via

G(e) =1 - |p(e®)I>.
Translating the interpolation data to the z domain we obtain
p(—1.0248) = 0.0957, p(—4.2003) = 0.1432.

| Next, the conformal mapping

B(s) =

1—p(z
#(z) = LA
1+ p(2)
transforms the bounded real function p to to the positive real function 7. Thus, we
seek a positive real function 7 such that

#(—1.0248) = 1.2116 #(—4.2003) = 1.3342.

It is important to note that the zeros of #-+7* are identical to the zeros of 1—pp*. These
are usually called spectral zeros. Finally, it remains to move the point 25 = —1.0248 to

oo. This is done via the linear fractional transformation z — %22%%, thus defining
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defined by the coprime factorizations

No(2)
Dy(z)

where Ni, Di, k = 0,1, are stable, proper rational functions. Then the problem at
hand is to find a compensator

_ i)
Dl(z)’

Py(z) = and Pi(z)

O(z) = , (8.7)

which simultaneously stabilizes not only these two plants but the one-parameter fam-

ily

_AN(z)+ (1 - A)No(2)
AD1(z) + (1 — A)Do(2)’

of plants. It is easy to see that the compensator (8.7) stabilizes Py for all A € [0,1] if

and only if there are stable, minimum-phase transfer functions Ag and A; such that

(i) the factors N, D, satisfy the equations

Du(2)Du(2) — Ne(2)No(2) = Du(2) k=0,1 (8.8)

P AE [0, ].]

(ii) the rational function
AAL+ (1= A) Ao
is stable and minimum-phase for all A € [0,1].
Starting with condition (i), we solve the system (8.8) for N, D. to obtain

N = NogDy — A1 Dy D — AoNy — ANy
" NiDg— NoD;" ¢ NiDo— NoD;y'
Suppose that Ny Do — NoD; has zeros at 2o,21,..., 2 outside the unit disc, and set
Di(z) _ Ni(z)
Wy = = , k=0,1,...,n. 8.9
7 Do(z)  No(z) (8.9)
Then, for D, and N, to be stable as required, 29,21, .- ., 2, Must also be zeros of
AoD; — A1 Dy and AgN; — Ay Np, which happens if and only if
A (zx)
= E=0,1,..., .
Aolzr) W, , 1, n (8.10)
Next, condition (ii) requires that AA;(z) + (1 — A)Aq(z) # 0 for all z € Df, or
equivalently
AI(Z) A—1
et A D* .
e #—— r€b1, zeD, (8.11)

which excludes the whole negative real line.
Consequently, the problem is reduced to finding a rational function

= 5
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mapping D into the complex plane minus the negative real line and satisfying the
interpolation conditions (8.10). Then

_ Dl(z) - F(Z)DQ(Z)

Ni(z) — F(2)No(2)
is an admissible compensator. However, f(z) := (F(z))/? maps D into the open right
half plane and is therefore positive real. Hence, we may instead apply the methods of

this paper to determine a positive real function f of degree at most n satisfying the
interpolation conditions

C(z)

flz) = (wk)l/Q, k=0,1,...,n,

and then take F'(z) = f(2)%. The different solutions are parameterizes by the spectral
zeros of f, i.e., the zeros of f + f™.

9. Conclusions

In this paper, we have given a method for finding all solutions to the scalar, rational
Nevanlinna-Pick interpolation problem, having degree less than or equal to n, in
terms of the minima of a parameterized family of convex optimization problems.
While the problem has been posed for positive real interpolants, as would arise for
the control of discrete-time systems, standard linear fractional transformations can
adapt this generalized entropy criterion approach to positive real, or bounded-real,
transfer functions for both continuous and discrete-time linear systems.

Appendix A. Proofs of Propositions 5.1, 5.2 and 5.4

Proof of Proposition 5.1. We want to prove that ¢(g) is finite when ¢ # 0. Then the
rest follows by inspection. Clearly, ¢(g) cannot take the value —oo; hence it remains
to prove that ¢(g) < co. Since g # 0,

ju = max Q(e*) > 0.
Then, setting P(z) := pu1Q(2),
log P(e?) < 0 (A.1)
and 1 . L
ola) = eala) — 5 Togn [ W0 - - [ loglP(e) W )b

-

and hence the question of whether ¢(g) < oo is reduced to determining whether

_ / " log[P(e?)] ¥ (67)d6 < oo.

-7

But, since ¥(e¥) < M for some bound M, this follows from

/ log P(¢)d6 > —oc, (A.2)
which is the well-known Szegd condition: (A.2) is a necessary and sufficient condition
for P(e*®) to have a stable spectral factor [29]. But, since the rational function P(2)
belongs to §, satisfies P(z) = P*(z) and is nonnegative on the unit circle, there is a
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function 7(z) € H(B) such that 7(2)n*(2) = P(z). But then 7(2) is a stable spectral
factor of P(z), and hence (A.2) holds. 1

Proof of Proposition 5.2. Suppose ¢*® is a sequence in M, := ¢ 1(—o0,r]. It suffices
to show that ¢*) has a convergent subsequence. The sequence ¢ defines a sequence
of unordered n-tuples of zeros lying in the the unit disc, and a sequence of scalar
multipliers. We wish to prove that both of these sequences cluster. To this end, each
Q™ may be factored as

QW (2) = Max(2)ak(z) = MAP(2),

where A is positive and az(2) is a function in H(B) which is normalized so that
ag(o0) = 1.

We shall first show that the sequence of zeros clusters. The corresponding sequence
of the (unordered) set of n zeros of each ai(z) has a convergent subsequence, since
all (unordered) sets of zeros lie in the closed unit disc. Denote by a(z) the function
in H(B) which vanishes at this limit set of zeros and which is normalized so that
a(oo) = 1. By reordering the sequence if necessary, we may assume the sequence
ax(z) tends to a(z). Therefore the sequence ¢* has a convergent subsequence if and
only if the sequence A; does.

We now show that the sequence of multipliers, Ag, clusters. It suffices to prove that
the sequence Ay is bounded from above and from below away from zero. This will
follow by analyzing the linear and the logarithmic growth in

g T
0(@™) = p1(§W) - 2i log A / ()d0 — - / log[@™® ()] W ()6
T - 2 f .
with respect to the sequence A;. Here ¢1(g) is the linear term (5.1) of ©(g). We first
note that the sequence ¢;(4*)), where §* is the vector corresponding to the pseudo-
polynomial Q%) is bounded from above because the normalized functions ay (2) lie in
a bounded set. Similarly, by the proof of Lemma 5.3, the sequence ;(§®) is bounded
from below, away from zero. In particular, the coefficient of A\ in the first term for
this expression for ¢(g™™) is bounded away from 0 and away from co. We also note
that the coefficient of log )\, in this expression for p(g‘*)) is independent of k. Next,
the term

= log{0® ()] W (¢)d8 (A.3)

in this expression for ¢(q®)) is independent of A, and we claim that it remains
bounded as a function of k. Indeed, are both bounded from above and from below
respectively away from zero and —oc. The upper bounds come from the fact that
Re{w+1,§*)) are Schur polynomials and hence have their coefficients in the bounded
Schur region. In fact,

QW) — |a(e)|* = Q(2)
where a(z) has all its zeros in the closed unit disc. In particular, if ¢ in Q,, corresponds

to g, then the third term in the expression for ©(g*)) converges to ¢(g), which is finite
since a is not identically zero.
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Finally, observe that if a subsequence of A, were to tend to zero, then (¢*¥)) would
exceed . Likewise, if a subsequence of Ay, were to tend to infinity, ¢ would exceed r,
since linear growth dominates logarithmic growth. O

Proof of Proposition 5.4. Denoting by D,p(g) the directional derivative of ¢ at ¢ in
the direction p, it is easy to see that

Dyp(g) :=lim (g + ep) — »(9)

e—0 €

T 6
) -5 [ SCAuE, (A9

where P(z) is the pseudo-polynomial
P(2) = fngi(2) + - . + P15 (2) + Pogo(2) + p191(2) + .- + Pngn(2)
corresponding to the vector p € C**'. In fact,
log(Q +¢eP) —logQ P [ P lg:l P
=—log|(l+e=)?P| — —
€ Q e | Q) Q
as € — +0, and hence (A.4) follows by dominated convergence.

Now, let ¢ € Q and § € 0Q be arbitrary. Then the corresponding pseudo-
polynomials @ and @ have the properties

Q(e®) >0 for all § € [, 7]

“and 3 ;
O(ei®) > 0 for all § and Q(e®) = 0 for some 0.
Since gy := §+ Mg —§) € Q for A € (0, 1], we also have for A € (0,1] that
Qx(€?) := Q(e”) + A[Q(e”) — Q(e)] > 0, for all 8 € [~ 7],

and we may form the directional derivative

Dy_qo(qy) = e1(d—a) + % /_7r hA(6)d8, (A.5)
where ( '6) ~( .9)
_ _Q e’) — Qe i0
ha(6) = ___—Q,\(em) U(e).
Now,
i0 A (812
&)= LI Mgy 20,

d)\ Qx(ei9)2
and hence hy(#) is a monotonely nondecreasing function of A for all § € [—m, ).
Consequently b, tends pointwise to hg as A — 0. Therefore,

-;; / ha(8)d6 — 400 85 A — 0. (A6)
In fact, if

%/ ha(8)df — o < 00 as A — 0, (A7)
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then {&,} is a Cauchy sequence in L}(—, 7) and hence has a limit in L' (~m, 7) which
must equal hg a.e. But hg, having poles in [—m, ], is not summable and hence, as
claimed, (A.7) cannot hold.

Consequently, by virtue of (A.5),

Dq_zp(gp) — +00 as A —0

for all g € Q and § € 8Q, and hence, in view of Lemma 26.2 in [44], ¢ is essentially
smooth. Then it follows from Theorem 26.3 in [44] that the subdifferential of ¢ is
empty on the boundary of Q, and therefore ¢ cannot have a minimum there. [
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A NEW APPROACH TO SPECTRAL ESTIMATION:
A TUNABLE HIGH-RESOLUTION SPECTRAL ESTIMATOR*

CHRISTOPHER 1. BYRNESt, TRYPHON T. GEORGIOUS§, AND ANDERS LINDQUISTY

August 17, 1998

ABSTRACT. Traditional maximum entropy spectral estimation determines a power
spectrum from covariance estimates. The approach presented here is based on the
use of general filter banks as a means of obtaining spectral interpolation data. Such
data encompass standard covariance estimates. A constructive approach for ob-
taining suitable pole-zero (ARMA) models from such data is presented. The choice
of the zeros (MA-part) of the model is completely arbitrary. By suitably choices
of filter-bank poles and spectral zeros the estimator can be tuned to exhibit high
resclution in targeted regions of the spectrum.

1. Introduction

In this paper we present a novel approach to spectral estimation. The paper is a
companion publication to [11] where the mathematical aspects of our theory have
been worked out, and is the culmination of efforts by the authors over a number of
years [3]-[11], and [17}-{20].

The approach leads to a Tunable High REsolution Estimator (THREE), based
on three elements, namely (i) a bank of filters, (ii) a theory for parameterizing the
complete set of spectra which are consistent with the “filter measurements” and have
bounded complexity, and (iii) a convex-optimization approach for constructing spectra
described in (ii).

The bank of filters is used to process, in parallel, the observation record and obtain
estimates of the power spectrum at desired points. These points relate to the filter-
bank poles and can be selected to give increased resolution over desired frequency
bands. The theory in (ii) implies that a second set of tunable parameters are given
by so-called spectral zeros which determine the Moving-Average (MA) parts of the
solutions. The solutions turn out to be spectra of Auto-Regressive/Moving-Average

~ (ARMA) filters of complexity at most equal to the dimension of the filter bank.
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Foundation, and Southwestern Bell.

{ Department of Systems Science and Mathematics, ‘Washington University, St. Louis, Missouri
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THREE is especially suitable for being applied to short observation records. We
demonstrate the applicability of the approach by several case studies, including iden-
tifying spectral lines and estimating power spectra with steep variations.

The structure of the paper is as follows. In Section 2 we introduce the bank of fil-
ters, and discuss how the covariances of their outputs provide estimates of the power
spectrum at the reflected pole positions. The variability of such statistical estimates
and how they are affected by the position of the poles is briefly considered. The
section concludes with a motivating example which present a simulation study com-
paring THREE with traditional AR filtering and with periodogram analysis. Section
3 presents the basic elements of analytic interpolation that are relevant to the current
problem. The classical results are reviewed first, and then our recent theory of ana-
lytic interpolation with degree constraint is explained. This is continued in Section 4,
where the convex optimization approach is presented. This is based on a generalized
concept of entropy and leads to state-space formulae for the bounded-complexity in-
terpolants. We conclude the section with a derivation of the special (linear) case of
the central interpolant of the classical theory. Section 5 contains several case studies.
Certain mathematical facts are discussed in the appendix.

2. Framework for spectral estimation

Let

{wit) | t=...,-1,0,1,...}
denote a real-valued, zero-mean, stationary (Gaussian) stochastic process with power
spectral density ®,(e) for 6 € [—m,7]. Throughout this work we assume that y
is a scalar process. The vector-case will be the subject of a future study. We shall

consider the basic problem of estimating the spectrum @, based on finite observation
records

{yovyl)y%' e ,?;'N} (2.1)
of the process.

Traditional modern spectral estimation techniques rely on estimates of a number
of covariance lags

€0,C1,C2, - -+ 3 Cny where ¢, := E{y(t)y(t + k)}, (2.2)

and E{-} denotes mathematical expectation. Typically, these are estimated either

by suitable averaging over time of the products y:y:+x, or through estimating the

partial autocorrelation coefficients first, by different averaging schemes such as Burg

algorithm. In either case, the statistical reliability of such estimates decreases for

higher order lags due to the fact that averaging takes place over a shorter list of such
. cross. products. .

The primal object of this paper is the function
1 T ; z+ e—i@
ho) = o /_ () s, (2.3)

about which much is known. It is analytic in |2| > 1 and has positive real part there
— such functions are called positive-real. In fact, the spectral density is

@,(e”) = Re{fy(¢”)}, (2.4)
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Figure 1: First-order filter.
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Figure 2: Bank of filters.
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2.4. The Pick matrix. A central object in analytic interpolation theory is the so-
called Pick matriz. This matrix arises naturally in the context of our filter bank as
the covariance of the output vector-valued process

Uo(t)
uy(t
u(t) == 1_( )
Un(t)
In fact,
wy g wo+101 wo-tby
l-pao 1l-pop1 ~°° 1l—popn
w1 +Wo wo+10] wg Wy
— 1-p1px 1—=pnp: e 1—-pop
Po=E{u@u(y} = | 7H% Tm T e (2.11)
Wy "’l"II}Q WntW wn—.l- Wy
l-pnpo 1-pnpr ~°° 1-popn

where, as usual,

we = fylpr') k=0,1,...n.
Thus, an alternative way to estimate fy(p,:l) is through estimates of P, as a sample
covariance of u(t).

In this paper we only consider distinct points po,p1,-.-,Pn- The general case will
be presented elsewhere [12]. For example, the usual Toeplitz matrix

g € ... Cn

c1 Co .- Cne
R e (2.12)
Cn Cr-1 -0 Qo
formed from the partial covariance sequence (2.2) is the Pick matrix for the case in
which pg = p1 = - -+ = p, = 0, and hence the filters in our bank are chosen as
Giz)=2"% k=0,1,...,n (2.13)

This is the case considered in usual AR modeling from covariance data.

2.5. Statistical considerations. This brings us to the statistical reasons for our
new approach. In fact, for AR modeling from covariance estimates we need to estimate
the Toeplitz matrix (2.12) from the data record (2.1). If this is done via

N Ye
~ 1 Yt—1
T = b —1y * " — b
n N——n; : (yz Y1 U n)
7 yt-—n

where ~ denotes “the sample estimate of”, then a significant portion of the data has
not been fully utilized in estimating lower order covariances due to the large time-lag
of some of the filters. Moreover, T;, is not in general a Toeplitz matrix. If, instead,
we use the covariance estimate

~

1 N
Cp = m Z Ytlt—k,
t=k
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the corresponding Toeplitz matrix may not be positive definite, something that may
be rectified by dividing by N + 1 rather than N — k, by windowing or, by using
Burg’s algorithm. In any case, any of these methods suffers from the drawback that
reliability of the estimate & of the covariance lag cj decreases considerably as k grows,
especially for relatively short time series [27).

By way of contrast, our method requires only estimating the zeroth covariance lag,
or possibly the first covariance lag, in the complex case. It is known the sample
variance of covariance estimate

1 N
“ 2
C°'"N+1;yt

is given by
2 = 2
N+1 k:

k=-00

var(&) =

(See [27, Section 48.1, Equation (48.6)].) But, using Parseval’s theorem, this can be
expressed in terms of the spectral density ®, (%) as follows:

1 X3
var(ép) = ——— ®,(e%)|%d6.
@) = =g | %)
Therefore, for the moment ignoring any transient effects and assuming that the
output process u of a filter G(z) driven by y is stationary, the sample variance of the

-

estimate
N
. 1 2
éolu) == Nl ;ut (2.14)
becomes
" 1 i i
var(Co(u)) = AN+ ) |G(°)|@, (%) 2. (2.15)

This quantifies the effect of the frequency response of G(z) = ;% on the variance of
statistical estimators for f,(p™!) when estimated by (2.14). In the simple case where
®,(e?) is constant,

. 2 1
var(co (u)) = —m m

In general, the shape of |G(e¥)| and its relation to |®,(e®)| has a direct effect on
var(Z(u)) as shown in (2.15). The general conclusion, however, is that choosing the
filter poles too close to the unit circle may produce larger errors. Such a strategy will
also produce more accentuated transients and is therefore not without cost.

2.6. A motivating example. We conclude this section with a motivating example,
which shows that an appropriate choice of filter poles, will considerably increase the
resolution of the estimated spectral density for a targeted part of the spectrum when
identifying periodic components of a signal from short observation records.
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Figure 3: Resolution of spectral lines.



US 2003/0055630 Al Mar. 20, 2003
93

8 C. I. BYRNES, T. T. GEORGIOU, AND A. LINDQUIST

the periodogram, while subplots (2,2) and (3,2) show the respective spectra obtained
using methods (ii} and (iii) respectively. In each case, lines marking the frequencies of
the sinusoids were drawn for comparison. Finally, subplot (3,1) shows the frequencies
of the sinusoids (marked by “o” on the unit circle) along with the selected poles for
the filter bank (marked by “ ”). The superiority of our method is quite evident.

In conclusion, the bank of filters is one of the three basic elements in our method
for spectral estimation and filtering. The next fundamental ingredient is a complete
parameterization of all positive-real functions of a degree at most n which satisfy
n such interpolation constraints. This is a Nevanlinna-Pick problem with degree
constraint. The constraint makes the problem nonlinear in general and the selection of
particular solutions requires the third ingredient of our theory, a convex optimization
approach based on the concept of generalized entropy, which is explained in Section
4. The next two sections contain the relevant facts.

3. Nevanlinna-Pick interpolation

Analytic interpolation theory has its roots in classical mathematics going back to
the end of the last century, on approximate integration, quadrature formulae and the
moment problem. The foundations, of what were to become known as the Nevanlinna-
Pick problem were laid out by C. Carathéodory, I. Schur, R. Nevanlinna, G. Pick, G.
Szegd in the beginning of this century; see, e.g., [22, 34]. The subject evolved into &
rich topic in operator theory [31, 29, 16}.

3.1. The classical theory. The basic question of the Nevanlinna-Pick problem is
as follows: Given a set of pairs (zx,ws), £ =0,1,2,...,n, with 2’s distinct and with
|2] > 1, is it possible to construct a positive-real function f(z) such that

f(zk)=wk k=0,1,...,n?

In case a solution exists, the problem consists in parameterizing all solutions.
The solvability condition is expressed in terms of the so-called Pick matriz

Wy + Wy "
" 1-% ‘% . k=0

In particular, the Nevanlinna-Pick problem admits a solution if and only if £, is non-
negative definite. In case P, > 0 but singular the solution is unique. In case P, >0,
the complete set of solutions is given by a linear fractional transformation, which is
constructed from the interpolation data, acting on a “free” parameter function which
is only required to have certain analytic properties, e.g., to be positive-real. A detailed
exposition can be found in [34].

A generalization of the problem known as the Carathéodory-Fejér problem, allows
for the possibility that f(z) is specified both in terms of values and derivatives up to
some order at points z; outside the disc. Again, the solvability condition is expressed
in terms of a suitable (generalized) Pick matrix and all solutions are parameterized by
a linear fractional transformation. We refer the reader to the standard mathematics
literature [34, 22, 31, 29] for details.



US 2003/0055630 Al Mar. 20, 2003

94

A NEW APPROACH TO SPECTRAL ESTIMATION 9

3.2. Interpolation with a degree constraint. While the classical results are quite
elegant, the parameterization of all solutions to the interpolation problem includes
functions which may have very high degree or even be nonrational. In engineering
applications, the interpolant f(z) needed to be of bounded degree. In fact, it may be
the transfer function of a finite-dimensional dynamical system, e.g., the driving point
impedance of a network 35}, or relate to a Gauss-Markov model for a process (see
Appendix A). Such considerations raised the question of identifying minimal degree
solutions to analytic interpolation problems ([35] and later in [25)).

When solutions exist, then there is a particular one which has degree < n, namely
the so-called central solution corresponding to a trivial choice for the free parameter.
However, for all practical purposes, the question of determining the minimal degree
interpolants is still open [17, 7).

However, the question of identifying and parameterizing all solution of degree < n
is more fruitful and has led to a rich theory, [3]-[11] and [17]-{20], which provides us
with the following complete parameterization of all such solutions.

Theorem 3.1. Given a set of interpolation points zg, 21, .-, 2n outside the unit circle,
and a set of corresponding values wo, W1, .. ., Wa such that the Pick matriz P, in (3.1)
is positive definite and an arbitrary pseudo-polynomial

dz) = dn2® + -+ diz+ 1+ dizt + .. dn2 ™ (3.2)

which is non-negative on the unit circle , i.e., for z = ¢, then there exists a unique
pair of polynomials

a(z) = ap2™ + a12" - +a, and b(z)=be2" + b1z L+ 4 by,

of degree at most n and without roots in |z| > 1, such that

d(z) = a(z7")b(z) + bz )a(2), (3.3)
ZL(?S =: f(z) is a positive-real function, and (3.4)
flzx) = we k=0,1,...,n (3.5)

This theorem also holds in the more general case where the interpolation data are
of the Carathéodory-Féjer type, i.e., include constraints on the derivative of f(z),
and was first discussed in the special (Carathéodory) case with a single multiple
interpolation point at z = 00, the so-called rational covariance extension problem.
Existence was first proven in this context in (17, 19] and uniqueness, as well as well-
posedness, in [6]; see (10, 8, 9] for alternative proofs. Existence for the distinct point
Pick-Nevaninna problem was proven in [18] and uniqueness in [20] and, for strictly
positive real functions, in [11]. The theorem extends to interpolation of matrix-
valued functions (see [17] where existence of solutions were shown in the context of
Caratheodory interpolation). An approach generalizing this result to the context of
the commutant-lifting theory is the subject of [12].

An additional point to be noted is that in case the set of interpolation pairs is closed
under complex conjugation, and d has real coefficients, then f (z) is a real function
[11]. In fact, this is the case of interest in the current paper. In subsequent sections,
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without loss of generality, we will make an additional simplifying assumption, namely
that

zZp = 00,
This is done for notational convenience and is often dictated by practical considera-
tions in the application of the theory. For example, in the context of Section 2, the
trivial filter Go(z) = 1 is a natural first choice.

The requirement that the degree of the interpolant be at most n imposes a non-
linear constraint on the class of solutions. Theorem 3.1 states that each choice of a
nonnegative trigonometric polynomials (3.2) corresponds to exactly one solution to
this nonlinear Nevanlinna-Pick problem and that it is defined by (3.4)-(3.5) and the
degree constraint. Moreover all such solution is generated in this way.

We have seen in Section 2 how positive-real functions relate to the power spectrum
of a stochastic process and how interpolation data can be obtained by covariance es-
timates of the output of a filter bank. The choice of the spectral zeros of the process,
i.e., the roots of d(z) located in the unit disc, is an important design variable. For
instance, in lack of specific information, one may be looking for an all-pole model (i.e.,
AR-model) for the process, which corresponds to d(z) = 1. Nevertheless, even in this
case, for general interpolation data (i.e., which are not necessarily at co), traditional
techniques based on the Levinson algorithm are not applicable. This is due to the fact
that the interpolation data are no longer in the form of a partial covariance sequence.
Furthermore, the classical Nevanlinna-Pick theory and the linear-fractional transfor-
mation parameterizing all solutions, is not applicable either. The reason being that
the transformation does not allow inference about the degree of the interpolant, ex-
cept in the special case of the central solution. However, the central solution does not

produce an AR model but a model with spectral zeros precisely at the interpolation
. ~1
points 2,7,

4. Generalized entropy and convex optimization

In this section we describe how an arbitrary solution of the Nevanlinna-Pick inter-
polation problem, as described in Theorem 3.1, can be obtained from a convex op-
timization problem, and we summarize the steps of a numerical algorithm based on
this optimization problem. The complete theory has been developed in [11].
As in Theorem 3.1, we we start with
(i) a set of distinct interpolation points zq, 21, - . . , 2, such that |2¢| > 1 and a set
of corresponding set of interpolation points zy, 2,...,2, such that the Pick
matrix (3.1) is positive definite. Throughout we assume that zg = co.
(ii) d(z) a non-negative trigonometric polynomial (3.2) of degree n.
The assumption that z; = oo is without loss of generality. It is a convenient nor-
malization which, in subsequent applications of the theory, represents an appropriate
choice.
We need some additional notation and basic facts which we now review.

4.1. Notation and basic facts. Given the interpolation points zg, 21, . . . , Z,, define
the polynomial

7(2) = H(z — 5 N=2"4 12" b T2+ T, (4.1)
k=1
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and consider the all-pass function
) 14Tzt F T2+ T2 Tz
B(Z) =y 1 1 - n—1 n — IL, (42)
P R ST SEERI o PO P Y 7(2)

where 7*(2) := 7(2™1). Such an all-pass function is called a (finite) Blasckhe product.
Next define

H(B) := Hy © BH,,

where H, denotes the Hardy space of functions which are analytic outside the unit
disc and have square-integrable radial limits. Functions in H; are precisely the
Fourier transforms of square-integrable discrete-time functions which vanish for neg-
ative times. Next, let L, denote the Hilbert space of functions which are square-
integrable on the unit circle, and as usual, H, is identified with a subspace of Lo. Tt
is easy to prove that the space H(B) is of dimension n + 1. Indeed, the elements of
the filter bank of Section 2.3,

Gi(2) = z—_z; with p, = 2,  for k=0,1,...,n,

1

can be shown to form a basis for H(B). These basis elements are also known as
Cauchy kernels and satisfy the Cauchy formulae:

(f,Gr) = 51%- _w Gr(e ) f(e¥)d8 = f(z), f € Ha, (4.3)
(f,Gx) = f(o0), (4.4)

where {-,-) denotes the standard inner product in L. It follows that any function
a(z) € H(B) is of the form

a(x) = 3 aGilz) = ﬁ‘ﬂ;(—z)f—“ﬁ (4.5)
i=0

Finally, define the space of quasi-polynomials

k3

S:={Q|Q(z) = Z(Qka + &G1)}

k=0
and the convex subset of (strictly) positive ones:
S:.:={Q|QeS and Q(e¥)>0forall b€ (—m]} CS.

4.2. Entropy functionals and convex optimization. Now, given the polynomial
(4.1) and the pseudo-polynomial (3.2), define the function

d(z)
= 4.6
Y= ) (4.6
Then, for any positive real function f, the functional
v(f) = (log(f + 7), ¥), (4.7)

represents a generalized entropy gain which plays a key role in our theory. In fact, in
[11, Theorem 4.1} we have the following result.



US 2003/0055630 Al Mar. 20, 2003

97

12 C. 1. BYRNES, T. T. GEORGIOU, AND A. LINDQUIST

Theorem 4.1. Given any ¥ € S, there exists a unigue solution to the constrained
optimization problem

max{ (f) | f is positive-real, f(z)=wi fork=0,1,... , T} (4.8)

Furthermore, this solution is of the form

flz) = Zi(?) o.be H(B), (4.9)
and
o (2)b(2) + b (2)alz) = U(2). (4.10)

Conversely, if f is positive-real, satisfies the interpolation conditions, and the above
two equations (4.9)—(4.10), then it is the unigue solution to (4.8).

Note that (4.9) is equivalent to requiring that f is of degree at most n. The
choice U = 1 yields the central solution of the Nevanlinna-Pick theory which is also
known as the “maximum entropy” solution. All other interpolants of degree < n can
be obtained by choosing the corresponding ¥ and solving the “generalized entropy”
maximization problem given above. However, this optimization problem is infinite-
dimensional, and hence not easy to solve. As it turns out, it has a dual with finitely
many variables, and next we shall turn to this problem.

To this end, let w(z) be a function, analytic in {z | |2| > €} for some € € (0,1),
satisfying the interpolation condition

w(zk) =w, k=0, 1,...,n, (4~11)
and define for each function @ € S, the functional
(@) = (Q,w+w*) — (log @, 7). (4.12)

It can be shown that the linear term (Q,w + w*) does not depend on the particular
choice of w but only on the interpolation data. In fact, if Q(z) = a(z)a’(z) with
a(z) € H(B) as in (4.5), then

(Q,w+w*) = (0p...an)P ( : ) \ (4.13)

Qn

with P being the Pick matrix defined by (3.1). For reasons which will become clear
shortly, we now fix w to be the unique function in H (B) satisfying (4.11). This w is
given by

T2 4 T

w(z) = wo + )
where 71,79, ..., T, satisfies the Vandermonde system
270 2 L 1) [m (wy — wo)T(21)
DA SR B I (w2 — wo)7(22)

a1 lmed Lwa — wo)r(z)

n
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Since the points zg, 21,..., 2, are distinct, this system has a unique solution. Note

that w is not positive real in general, and therefore cannot be used as an interpolant,
but it will play an important role in the sequel.

Using duality theory, the maximization problem of Theorem 4.1 can be seen to be
equivalent to the following convex optimization problem; see [11, Theorem 4.5].

Theorem 4.2. Given ® and w as above, there exists a unigue solution to the following
problem:

min{ ¢(Q) | @ € S1}. (4.14)

Moreover, for the minimizing @, there is a unique positive real function f satisfying
the interpolation condition f(zx) = wy for k=10,1,...,n such that
Wo(2)
Q(2)

(4.9) and (4.10) hold. Conversely, any positive-real function with these properties
arises as the unique solution of (4.14).

= f(2) + f*(2),

Theorem 4.1 and Theorem 4.2 each imply Theorem 3.1 in the case where ¥ has
no roots on the circle. (The part of Theorem 3.1 pertaining to ¥ having roots on
the circle is proved in [20] by a nonconstructive argument.) The advantage with the
present proof is that it is constructive and therefore yields an algorithm for computing
an arbitrary interpolant of degree at most n. Since @ is determined by n+- 1 variables
Qs 1, - - 1 qn, Theorem 4.2, it is a finite-dimensional optimization problem.

The proofs of Theorem 4.1 and Theorem 4.2, which are very nontrivial, are given
in [11]. Since y is a strictly convex function on a convex set S, the minimization
problem of Theorem 4.2 is a convex optimization problem. Therefore, if there is a
minimum in the the open set S;, this minimum is unique and occurs at a stationary
point, i.e., at a point where the gradient is zero. It is proved in [11] that this is indeed
the case. It is then quite straight-forward to show that the optimal @ defines a unique
interpolant f with the required properties. Since this is quite instructive, we give an
alternative proof of this, tailored to our present exposure in Appendix B. Elements
for this from will be needed to derive the gradient of y needed to solve the convex
optimization problem.

4.3. Computations in state-space. We now outline the algorithm provided by
Theorem 4.2 in the context of state-space representations. A gradient method is used
to obtain the minimum of ¢(Q).

Any function a(2) € H(B) can be completely specified by its values at any set of
n + 1 distinet points in the domain of analyticity (i.e., in {z : |z| > 1}). It is also
specified by its value, and the value of its first n derivatives at oc. This gives rise to
the following alternative representations:

n
2™+ ... +ay
0@) = Y aiils) - Bt
i=0
hot+hiz Y4+ ...+ hpz " +... (4.15)
= d+c(zI - A)7'b,
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where
" -—T1 —T2 —Tn-1 —Tn hn -1
1 0o ... 0 0 |
Alb 0 1 e 0 0 hnﬂg
[T‘T} = |- &19)
0 o ... 1 0 hy
0 0 ... 0 1 ho |

The last representation is especially convenient, and hence we adopt this notation
with (4, ¢) universal for all elements in H(B), and the vector of Markov coordinates

by
[ba — |
da] R
ho

then completely determines a(z) € H(B). We write a(z) ~ (ba, d,) to denote this
correspondence. Elements in S can be represented by their analytic part which
belongs to H(B), e.g., if @ € Sy then @ =g+ ¢" with g € H{B).

Applying a gradient method, or, if needed, Newton’s method, to the convex op-
timization problem of Theorem 4.2, we obtain a recursive algorithm. In particular,
start with a positive real ¢ € H(B), e.g., ¢ = 1. Then iterate through the following
steps.

[0. Given a positive-real function g € H(B): |
1. Compute a “minimum-phase” a € H(B) such that aa® =g + g*.
2. Compute b € H(B) such that a*b+ b*a = V.

3. Compute f = b/a.
4. Evaluate the gradient V, .
5. If [V, vl is greater than a prespecified threshold,
then update ¢ — guew = ¢ — €V, ¢ and return to Step 1.

The choice g(z) = 1 can always be taken as a starting point in H (B). The value
¢ > 0 should be selected small enough for gnew to be positive-real. The algorithm
can be modified to include the Hessian matrix V4, v, the update in last step can be
performed by, e.g., Newton’s method.

We now outline the algorithmic steps using state-space representations.

Step 1. Given g(z) ~ (by, dy), the spectral factorization aa”™ = ¢+¢ is standard (cf.
[11]), and can be computed by solving the (discrete-time) algebraic Riccati equation:

P~ APA' — (b, — APE)(2d, — cPd) ! (bg — APC) = 0.

Then a(z) ~ (bg, d,), the minimum-phase spectral factor in H (B)of @=q+¢", is
given by

do = +/2dy—cPc

be = (by— APC)/d,.

Mar. 20, 2003
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Step 2. Given a(2) ~ (b, ds) and ¥(2) =: ¥(2) + ¥*(z) with (by,dy) ~ ¥ € H(B),
solving a*b + b*a = ¥ with ¥ € Sy for b(2) is equivalent to solving a set of linear
equations. It is shown in [11] that this amounts to solving the Lyapunov equation

P — AP A =@

where
A = A-Dbec
by = bafds
by = by/(2dy)

Q1 = 2dy[beby — (b2 — b1)(b2 — br)’);
to obtain b(z) ~ (by,dp) via
dy = (dy— icPic)/da
bb = (b¢ ol APlc' - badb) /da.

Step 3. Given a(z) ~ (bg, da) and b(z) ~ (by, dp), both in H(B), the fraction f = b/a
is no longer in H(B). However, since a(z) is minimum-phase, i.e., has no roots outside
the disc, f(2) is analytic outside the disc. The important thing in this step is to cancel
the common denominators of a and b, and standard algebraic manipulations yield the

realization
I [Af | b ] _ {A—bac/da | —ba + bk ]

c 1 2

of the same order as the common degree of a and b. Because f ¢ H(B), Ay differs
from A.

Step 4. Since f ¢ H(B), we begin by projecting f onto H(B) to obtain an orthogonal
projection of the form

f(2) = f(z0) + -o—(i), where 0(2) = 012" ' + -+ 4 On.
7(2)
This is done geometrically in [11], but, since f (2) = f(2) + B(2)g(2) for some g € Hy
(see [11]), we have

f(zk) = f(Zk) k= 0, 1, ey Yy

and consequently we can use the same procedure as on page 12 to determining the
unique solution oy, 03, ...,0, of the Vandermonde system

2L 1 o] [f(m) - F) (=)
a7 47 1 (o) | [f(z) — Szl T(z)
ot a2 1) low) Lif(z) - Fl) (o)

Then, given f~ (bf,df) and w ~ (by,dy), the gradient, represented as a column
vector, is

[P 0] [bw—b;
oy ma B oY) arm
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where P, is the unique solution to the Lyapunov equation
Po=APA+ C’C,

and “0” denotes a suitable row or column of zeros. The proof of this is given in
Appendix B.

Step 5. The step € should be sufficiently small so that ¢ — ¢V, ¢ is positive real.
Following our convention of using Markov coordinates for representing functions in

H(B),
b P2 0 bw_bf
Q—evq\y'\'[dﬂ—%[o 2} [dw_df

This corresponds to a positive real function if Step 1 above produces a positive definite
P. A rule of thumb is to choose € so that the change in the values of the Markov
parameters of ¢ initially is less than 1%. Testing how close the roots of a(z) are
from to unit circle can be used to increase/decrease € in successive steps. The loop
is completed by returning to Step 1, after testing whether ||V, ¢f| is still large. For
instance, we may be chose to terminate the algorithm, if, say, the change is less than
0.01%.

4.4. Central solution. The special case when ¥ = 1 in Theorem 4.1 is much sim-
pler, and is the only case for which there has been computational procedures so far.
Although it can be obtained using the computational approach of Section 4.3, the
problem is in fact linear. Therefore the solution can be derived by direct algebraic
computations. For the purposes of our present paper we include in Appendix C an
outline of the relevant theory, in a slightly new form, and summarize below the formula
for this so-called central interpolant f(z).

Let B := TT((?)Z" , and let 1(z) be the unique function in H(B) which interpolates

W(zk) = wr/wy for k=1,2,... n. (4.18)

(Note the that B(z) differs from our earlier B(z) by a factor of z~! for reasons
explained in Appendix C. Also the expression for elements in H (é) given above
differs from a similar expression for elements in H(B) used earlier.) Equation (4.18)
gives rise to n linear equations in the coefficients of #(z), analogous to the ones on
page 12. Compute a state-space realization (a, b, ¢, d) for

@ Bl _ .
[0 0]—c(z] a) b +d.

Let P be the solution of (C.3) obtained by iterating (C.5). Perform a singular value
decomposition of M given in (C.4), let U be the matrix of singular vectors as in (C.6),

and determine ¢y, d, by multiplying the first two columns of U with :}; E __11] on
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the right. Then, define ay, by, ¢r, dr, to be as in (C.7}), and set

z o= — ([1, ~1)d H) / ([1, —1]dg [_11D
b b, [Hﬂ’ do = dj, Bﬁ-m}

T
a = [1, 0lcy, c2:=10, ler
dl = [17 O]do, dz = [O, I]do

Finally, then,

[af|b_f]=[all—b0d—lch|1: ]
cr | dy ca—For | P

1

is the required state-space representation of f(z).

5. Case studies

First we discuss certain low order examples. We compare standard covariance-based
AR filtering, with AR or ARMA filtering based on generalized interpolation as to how
well they approximate a given spectrum. Next, we consider a high-order example
and repeat a similar analysis. Finally, we study, by simulation, the reliability of
covariance as well as general interpolation estimates, and their effect on the spectrum.
This complements our earlier simulation study which was presented as a motivating
example in Section 2.

5.1. Low order example. The process y is generated by a “nominal” ARMA(2,1)
filter driven by unit variance white noise. The filter has zeros/poles at

Zeros | Poles
96:{: = 'geﬂ:iw/3 .3e:hi7r/3.5

Accordingly, the nominal positive real function is computed as

4 0.79012° + 0.41842% 4 0.3487z — 0.0729
4 1.274128 + 1.236722 — 0.38402 + 0.0729°

f,(2) = 0.55692

Subplots (1,1) and (2,1) in Figure 4 show the pole-zero pattern for the nominal spec-
trum and the spectral density function ®,(e®), respectively. The first four covariance
lags are computed as follows:

Covariance values
cg = 1.1138, ¢; = 0.2696, ¢y = —0.1123, ¢35 = —0.0683, ¢, = 0.0741.

The AR model for y, corresponding to these covariance samples, has poles (marked
“x”) shown in subplot (1, 2) and spectral density function shown in subplot (2, 2).
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Figure 4: AR spectra based on covariance data and interpolation data vs. the exact spectrum.
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Figure 6: ARMA modeling from interpolation data.
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The quantities used to produce the plots shown in Figure 7 are as follows:
z— '961:71'/3.2 2
Hz:l(z - pk)

with pg, p1, ..., pa taking the values 0.9¢/3, 0.3¢7/35 0.1e¥*/11 0.1¢/12, and 0.1e*"/13,
respectively. The points pr = 2z, where f,(z) is evaluated are taken to be at 0,
0.6e* 7, and .6etl 5

The three positive real functions f,(2), far(2), and f(z), where f,(2) is the nominal
one, far(z) is the one corresponding to an AR-model matching the first five covariance
samples, and f(z) is the one corresponding an AR-model but matching the values of
fu(z ") (k=10,1,...,4) instead, were computed to have poles/zeros tabulated below:

By (") = |

fu(2) at 00 far(z) at oo f(z) at 0o

0.5409 0.5409 0.5408
poles ZEeros poles ZEeros poles Zeros
4500 + 77947 | .4995 4= .67461 0426 £ .4767¢ | —.2665 = .33374 || .0386 + .6287: | —.3752 £+ .51334¢
870 +.23457 | 0242 & 26174 —.4583 .5504 .3877 4775 1 .18904
—.0749 + .0663¢ | —.0657 & 03661 || .1419 1484 —.6932

—.0959 £ .0282¢ | —.0566 == .0713¢
—.0866 + .0500% | —.0747
4279

|

5.3. Simulation results. In order to demonstrate typical tradeoffs between differ-
ent choices of interpolation points, variability and resolution of estimated spectrum,
we present results from a simulation study. A Gaussian stochastic process with power
spectrum

Y

22— 24 81
&, (z) = 2
&) = s T = s o7

having spectral zeros at .9e*"™/3-2 and stable poles at .9e¥™/3, 3e**"/35 was simulated
in Matlab. We ran the simulation 30 times. Each time, we generated N = 200 values
of the process, and out of those values we estimated the power spectrum in the
following two ways:

(a) The first five covariance lags and the corresponding AR spectrum was esti-
mated.

(b) The covariances at the output of a filter bank and the ARMA spectral estimate
corresponding to the central solution was determined. The poles of the filter-
bank were chosen at {0, .5et?, 5eti/15)

The tuning of the filter bank was dictated by the desire to obtain better resolution in
the vicinity of the spectral peak. Thus, the poles were “approximately clustered” in
the neighborhood of the targeted “ark”. Their distance from the circle was selected
so that the variance of the estimated values was “reasonable”.

The subplots in Figure 8 display the following:
1

1

(1,1) Poles (x), spectral zeros (o), and the choice of filter-bank poles pr = z
k=0,1,...,5, marked with “ ”.

(1,2) Mean values (¢), and the one-standard-deviation interval from the mean, for
each of the first five covariance samples &, k= 0,1, ..., 5, for the process.
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Figure 8: Simulation study.
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(iii) A convex-optimization approach for computing any arbitrary solution described
the theory in (ii). The algorithmic steps are given in state-space form.

THREE can be tuned to give improved resolution at selected portions of the spec-
trum. More specifically, we have demonstrated that selection of the filter-bank poles
in the vicinity of any arc of the unit circle results in improved reproduction of the
power spectrum in the corresponding frequency band, as compared to, e.g., traditional
AR filtering. Another tunable set of parameters are given by the spectral zeros which
determines the MA part of the resulting ARMA spectra. According to (ii), these are
completely arbitrary, when only a finite set of interpolation values are known, such
as finitely many covariance samples. Practical rules for selection of such parameters,
in absence of prior information about the process, need to be worked out. In cases
where spectral zeros of the nominal power spectrum are known a prieri or can be
estimated from longer data records, these same zeros can be enforced to coincide with
the spectral zeros of the estimates of the power spectrum, without unduly increasing
the complexity of the filters.

Appendix A. Positive real functions and ARMA models

When the power spectrum ®,(z) of the process y is rational, it decomposes into a
sum
q)y(z) = q)nondet(z) + (I)determ(z)

of a positive-real function ®ponget(#) With no poles on |z| = 1, and a second positive-
real term Pgererm(2) with (simple) poles on the unit circle and a real part which is
zero a.e. on the circle. Then, @ onger(2) Telates to the “non-deterministic part” of y
and Pyeterm(2) to the “deterministic part”.

More specifically, let ®,(z) = (z) where a, b are co-prime polynomials, and Re{®,(e*)} =
[Z%T[r" where 7(z) is a stable polynomlal such that

b(zalz) +alz)b(z) = iz )n(2).

Let €, k = 1,...,k, denote the roots of a(z) on the circle, and g, corresponding
residues so that

+
<I>y( ) = nondet(z) + Z,Dkz Ek.

Given that ®,onget(2) has only roots in |z| < 1, since all roots on the circle were
absorbed in the second term, it is easy to show that f,(2) is positive-real if and only
if ®,onaet(2) Is positive real and p; > 0 for all k. The last condition is equivalent to
requiring that the second term, denoted by faeerm(2), is positive-real with zero real
part on the boundary (a.e.).

Now, y can be modeled as y; +y», where y; is a non-deterministic process generated
as the output of an ARMA filter with unit variance white noise input and transfer

function Zgzg (with possible common factors between the two polynomials removed),

and y» is a deterministic process given, for instance, by y.(t) = > ;. 1frkek with
7, having zero-mean and variance p,. Thus, the deterministic component can be
expressed as a sum of sinusoidal components with frequencies dictated by the angle
of the poles of ®,(z) which lie on the circle. The common roots between n and a can



US 2003/0055630 Al Mar. 20, 2003
109

24 C. L. BYRNES, T. T. GEORGIOU, AND A. LINDQUIST

also be thought as uncontrollable modes of a Markovian model which, started from
suitable random initial condition, generate sinusoidal components at the output.

It is straightforward to show that the corresponding spectral densities of v1 and y,
are Pnondet(2) and Pgeterm(2), respectively.

Appendix B. Determining the gradient
To any @ € S, there is a unique positive real function f satisfying
¥(2)
Q(2)
In fact, the left member is positive on the unit circle, and hence it can be split into a
sum of an analytic function f(z) and its conjugate f*(z). Clearly f is positive real.
In this appendix we first prove that if Q@ € S, is optimal for the problem to minimize

g the function f defined by (B.1) is an interpolant. For this, and for later analysis,
we need the directional derivative

= f(2) + f*(2). (B.1)

§ 4(Q;6Q) = lim ‘I’(Q'*'E‘Si?)— \p(Q),

where 6Q) is a symmetric pseudo-polynomial such that Q + €6Q € 8. for sufficiently
small € > 0. Performing the differentiation, we have

5 w(Q;6Q) = (6Q,w +w* — %x (B.2)

which, in view of (B.1), yields
6 w(@;8Q) = (Pw+w*)y — (P, [+ f*). (B.3)
Now, suppose @ is the unique minimizing function. Then, § ¥(@;6Q) = 0 for all
directions 6@). In particular, using
6Q(2) = H{a +iB)Gr(2) + 3o — iB)Gi(2),
we obtain via (4.3) and (4.4)

6 w(Q;6Q) = aRe{wy +wo} + Alm{wi} — aRe{ f(2) + f(20)} + BIm{f(z)} = 0,

which holds for all real o, 8 and £k = 0,1,...,n. Successively choosing a or 8 equal
to zero and k= 0,1,...,n, we obtain the interpolation constraints for f, as claimed.
Moreover, (B.1) implies that f(z) has as spectral zeros the roots of ¥. The fact that
both ¥ and @ are in S, insures that f has degree at most n.

Next, to derive an expression (4.17) for the gradient of w, we shall need the
following lemma.

Lemma B.1. Let g;, g, € H(B) be real functions with minimal realizations
A | b1 A l b2
[ C dl ] and { c d2 ] )

(92,91) = Vi Pby+dids (B.4)
{92,97) didz, (B.5)

Then

f
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where P is the unique solution of the Lyapunov equation
P=APA+ e,

i.e., the observability gramian.

Proof. First note that
(2F,2%) =0 for k + ¢.
Therefore, since
gz i=c(zl —A) o +d=d+chbz' +cAbz2+... forz>1,
and g*(z) = g(z~1), (B.5) follows directly by orthogonality. For the same reason,

(92, 1) = (92 — d2, 91 — &) + drdy.
But
1 m

(g2 —da, g1 — dh) = - (e7I — A') (e — A)~1db,

which is precisely the observability gramian P. Hence (B.4) follows. O

Let 6q(z) € H(B) be real function with the property that 6Q(e®®) := &g(e¥) +
8q*(e®) > 0 for 6 € [—m, 7], and consider the directional derivative at Q € Sy in the
direction 6Q. From (B.3) we see that

6 w(@;6Q) = (6q+8g",w+w*)— (6g+8¢", f + F*)
= 2(bg,w) +2(5q,w") — 2(6q, f) — 2(8q, f*),

where f is obtain by projecting f orthogonally onto H(B) and is computed as in
Step 4 in Subsection 4.3. Consequently, it follows directly from Lemma B.1 that

bw —b; P 0 b
w f
where w ~ (b, dyy) and 8q ~ (bs,ds). But, by definition,

(@50 =2v, 4 [

which establishes the expression (4.17) for the gradient V,, y, as required.

Mar. 20, 2003
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Appendix C. The central Nevanlinna-Pick interpolant

Following our earlier notation,

{(20,w0), (21,w1),..., (2n, wn)} (C.1)

is a set of interpolation data, closed under conjugation, with zyp = 0o and |z;| > 1 for
J=1,...,n, having a positive definite Pick matrix (3.1). Without loss of generality
we assume that wg = 1. (If this is not the case, we scale all values wy, ~ ¥k and after
we obtain an expression for the interpolating functions with this new set of data, we
scale back by multiplying with wo.) We let 7(z) := [Tz =z 1), as before, and
define

- T*(2)2"

B(z) :=

and @(z) to be the unique function in H(B) which interpolates

W(z;)=w; and j=12,...,n.

Note that B(z) differs from our earlier Blasckhe product B(z) by a factor of z, and
that w(z) is not required to satisfy 1W(co) = wp. The reason for this departure from
our earlier notation is that we solve the interpolation problem in two steps. We first
consider the Nevanlinna-Pick problem with data

{(21,'w1),..., (zmwn)} (CQ)

and then modify the solution to account for the interpolation at infinity. The reason
will become apparent when we compare the entropy of the various interpolants.

We first follow the steps of the Ball-Helton theory [1], see also [15, Section 8.3] where
the Nehari problem is solved in a similar manner. This is an alternative approach to
the standard Schur algorithm for constructing a linear fractional transformation that
generates all solutions to such an interpolation problem.

Define
J:[gﬂ am.é@%=bé)B&J’

and let L(2)G,(z) denote a J-inner /outer factorization of G(z), i.e.,
8(z) = L(2)Go(2)

where L(z), Go(z) and Go(2)! are analytic in |z] > 1 and
L*2)JL(z) = J.

It turns out that a function f(z) is positive real and satisfies f(z;) = wj for j =
1,2,... ,nif and only if

b a(2)] _ 5 [14Y(2)

-3 = [13] - [
and Y(z) analytic in |2| > 1 with modulus bounded by one (i.e., bounded real).
Briefly, this is due to the fact that the interpolation conditions are satisfied if and
only if the “graph” of f(z), thought of as a multiplication operator, is in the range of
G(2). In turn, the range of G(z) coincides with the range of L(z) since they only differ
by a right “outer” factor. Finally, positive-realness amounts to a(z) + b(z) having an
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analytic inverse, and the graph symbol (a(2), b(z))’ being “positive” with respect to
the indefinite J-inner product, i.e., that

[a*(2), b (2)] J [Zgﬂ >0, forlz|=1

The latter condition is guaranteed by the fact that

[1+Y°(), 1-V*(2)]J [} fiﬁéiﬂ — 21— |Y(2)P) 20, forld =1,

and the fact that L(z) is J-unitary. In fact, el ACIEPIPY general representation for a
1+Y(2)

positive real function. The proof that a(z) + b(z) has an analytic inverse is analogous
to [15, Section 8.3, Lemma 4].

The J-inner/outer factorization of G(2) can be constructed in a variety of ways.
One approach is to obtain first a canonical factorization of

1 1[0 1171 0] A,y .n
[0 B*} {1 0] [w B] = Go(2)JCol2)

where G,(2) is outer, i.e., both G,(2) as well as Go(2)" are analytic in |z] > 1. To
this end, note that

1 @] fo 1]t 0] _[er 0] [o B
o B*||1 ol|lw B| ™ |B* 0 0 0]’
assume 2 state-space realization
@ Bl _ . 4
[O 0}—c(z1 a)'b+d,
and consider the Riccati equation

P—dPa—(d—dPb(d+d —bPb)'(c—bPa)=0. (C.3)

Tt turns out that (C.3) has a unique solution P such that with c4, d defined by
cy _|P—dPa < —dPb |
|:dl+] J[C+7 d+]— [C-——b’Pa d+d'-—b'Pb —'M’ (04)

such that the matrix a — bd;’cy has all its eigenvalues in |z| < 1. For this choice of
¢y, dy, it follows that
Go(2) = c(z] —a) by +dy

is the required outer factor. In fact P can be obtained as

P = lim B

k—o0

with P, equal to the identity matrix I and

Piyy = a'Pra+ (¢ — &' Bib)(d + d — V' Pib) ™' (c — b Pra). (C.5)
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Then, c.,d; can be obtained by first obtaining a singular value /vector decomposition

1 00
0 -1 0

M=Ulg o0 .. |V (C.6)
R

cr] L1 1

de| “ 21 -1

to be equal to the first two columns of U. Having obtained G,(z) we determine
- 1 0} -
L(Z) = LI) é] GO—I(Z) = CL(ZI - aL)”lbL +dr

via standard algebraic manipulations. It turns out that

ar, bL . bd;10+ ‘ bd;l
[ Cr, dL ] - l: c— dd:_16+ ‘ dd:_l ) (07)
We now complete one last step which is used to enforce the interpolation at co. We
first consider the real number z for which

(1+2
[, —1]ds p—z] ~0.

and taking

It can be shown that |z| < 1. Next we define

1 f1+z 0 ]

Rm:_—l—xz_ 0 1—zl

This is a constant “J-unitary” matrix. Right multiplication of L(2) by R, causes a
«J-rotation” such that

7 Lll -2112]
L(z) == L(2)R; = "
() = £(2) [Lﬂ i

L(c0) m =) m (C.8)

for some A # 0. Now, consider the class  of functions f such that

_ b(2) a(z) 1+Y(2)

f(Z)— CL(Z)’ [b(z) —L(Z) 1—Y(Z)

where Y (2) is analytic and |[Y(z)] < 1in |z| > 1, and Y (00) = 0. Then, it is easy
to see that this is the set of all positive real 1nterpolants of the complete set of data
(C.2). To see this note that any f € F interpolates (C.2) since its graph is in the

range of L(z), which is the same as the range of L(z). In view of the normalization

(C.8), the restriction Y (co) = 0 is necessary and sufficient for f (00) = wp (which was
assumed to be 1).

Finally, we show that the choice Y (z) = 0 gives the interpolant which maximizes
the expression for the entropy with ¥(z) = 1.

satisfies

Mar. 20, 2003
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We need the following fact. If g(2) is outer, i.e. analytic with analytic inverse in
|z| > 1, then

= / 10 (lg(e)]) d6 = log (Ig(e0))-

This is a direct consequence of Szegd’s theorem [24, p. 19, and also p. 125]. We now
compute, for any f € F, that
a*(2)b(z) + b*(z)a(z)

log (f(a) + 1) 1) = (og =28 T i)

= (log(a*(2)b(2) + b*(2)a(2)), 1) — (loga’(z)a(2), 1)

= (log(1-Y"(2)Y(2)), 1) — 2log (|a(c0)])
where in the last step we exploit the fact that a*(2)b(2) + b*(2)a(z) = 1 - Y*(2)Y (z)
which follows from L{(z) being J-unitary, and the fact that a(z) is outer. Since

a{00) = L11(00)+ L12(00) is independent of Y (z), the choice of Y (z) which maximizes
the expression for the entropy is clearly Y(z)=0.
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What is claimed is:

1. A signal encoder for determining a plurality of filter
parameters from an input signal for later reproduction of
said signal, said encoder comprising a bank of first order
filters, each of said filters being tuned to a preselected
frequency, and a covariance estimator connected to the
output of said filter bank for estimating covariances from
which filter parameters may be calculated for a filter to
reproduce said signal.

2. The signal encoder of claim 1 wherein said filter
parameters comprise specification of filter poles and filter
ZEros.

3. The signal encoder of claim 2 wherein said filters
comprising said bank of filters are adjustable to permit their
being tuned to a desired frequency based on a priori infor-
mation.

4. The signal encoder of claim 2 wherein said filters
comprising said bank of filters are adjustable to permit their
being tuned to a desired frequency based on properties of
said input signal.

5. The signal encoder of claim 4 wherein said properties
are measured frequencies of said input signal.

6. The signal encoder of claim 3 wherein the number of
filters comprising said filter bank are adjustable.

7. The signal encoder of claim 6 wherein said filter
parameters at least partially define an ARMA filter, and
wherein one or more filter zeros are preselected to further
define said ARMA filter.

8. The signal encoder of claim 7 wherein said ARMA filter
is of lattice-ladder architecture.

9. The signal encoder of claim 1 further comprising a
signal synthesizer coupled to said signal encoder.

10. The signal encoder/signal synthesizer of claim 9
wherein said signal synthesizer further comprises a decoder
for receiving the covariances from said signal encoder and
produce a plurality of filter parameters in response thereto,
a parameter transformer coupled to said decoder, and an
ARMA filter coupled to said parameter transformer, said
ARMA filter being adjustable to effect reproduction of said
input signal through processing of a preselected excitation
signal.

11. The signal encoder/signal synthesizer of claim 10
wherein said ARMA filter is adjustable in response to said
parameter transformer output.

12. The signal encoder/signal synthesizer of claim 11
wherein said excitation signal is preselected.

13. The signal encoder/signal synthesizer of claim 12
wherein said excitation signal is determined by said signal
encoder and communicated to said signal synthesizer for
excitation of said ARMA filter.

14. The signal encoder/signal synthesizer of claim 13
wherein said ARMA filter includes filter zeros, and wherein
said filter zeros are preselected.

15. The signal encoder/signal synthesizer of claim 13
wherein said ARMA filter includes filter zeros, and wherein
said filter zeros are specified by a set of MA parameters
generated by said signal encoder, said set of MA parameters
being adjustable in response to said input signal.

16. The signal encoder of claim 1 further comprising a
spectral analyzer coupled to said signal encoder, said spec-
tral analyzer determining the power frequency spectrum of
said input signal in response to the output of said signal
encoder.
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17. The signal encoder/spectral analyzer of claim 16
wherein said spectral analyzer includes a decoder for pro-
ducing a set of filter parameters, and a spectral plotter for
producing a response reflective of the power frequency
spectrum of the input signal.

18. A device for verifying the identity of a speaker based
on his spoken speech, said device comprising a voice input
device for receiving a speaker’s voice and processing it for
further comparison, a bank of first order filters coupled to
said voice input device, each of said filters being tuned to a
preselected frequency, a covariance estimator coupled to
said filter bank for estimating filter covariances, a decoder
coupled to said covariance estimator for producing a plu-
rality of filter parameters, and a comparator for comparing
said produced filter parameters with prerecorded speaker
input filter parameters and thereby verifying the speaker’s
identity or not.

19. The device of claim 18 further comprising a memory
coupled to said comparator for storing said prerecorded
speaker input filter parameters.

20. The device of claim 18 further comprising an input
device coupled to said comparator to allow for the contem-
poraneous input of pre-recorded speaker filter parameters by
a user.

21. A Doppler-based speed estimator comprising a pulse-
Doppler radar for producing an output of Doppler frequen-
cies, a HREE filter coupled to said radar, and a spectral
plotter coupled to said HREE filter for determining the
power frequency spectrum of said radar output, said power
frequency spectrum thereby specifying the speed of any
objects sensed by said radar.

22. A device for estimating the delay between any two
signals, said device including a sensing device for producing
a time based output reflective of any delay desired to be
estimated, a Fourier transformer for converting said time
based output to a frequency based output, a HREE filter
coupled to said transformer, and a spectral plotter coupled to
said HREE filter for determining the power frequency
spectrum of said time based signal, said power frequency
spectrum thereby specifying said delay.

23. A method for analyzing a signal comprising the steps
of passing said signal through a bank of lower order filters,
each of said filters being tuned to a preselected frequency,
and estimating a plurality of covariances from the output of
said filter bank, said covariances being sufficient for calcu-
lating a plurality of filter parameters for a HREE filter, said
HREE filter thereby being capable of reproducing said
signal.

24. The method of claim 23 further comprising the step of
calculating the HREE filter parameters from said covari-
ances, and adjusting a HREE filter in accordance with said
calculated filter parameters for reproduction of said signal.

25. The method of claim 24 further comprising the step of
adjusting said filter parameters based on the input signal.

26. A method of verifying the identity of a speaker based
on his spoken speech, said method comprising the steps of
receiving a speaker’s voice, processing said voice input for
further comparison by passing it through a bank of lower
order filters, each of said filters being tuned to a preselected
frequency, estimating a plurality of filter covariances from
said filter outputs, producing a plurality of filter parameters
from said filter covariances, and comparing said filter
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parameters with prerecorded speaker input filter parameters
and thereby verifying the speaker’s identity or not.

27. A method of estimating a speed of an object with a
Doppler-based radar comprising the steps of producing an
output of Doppler frequencies with said Doppler-based
radar, passing said frequencies through a HREE filter, and
determining the power frequency spectrum of said frequen-
cies to thereby specity the speed of said object.
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28. A method for estimating the delay between any two
signals, said method comprising the steps of producing a
time based output reflective of any delay desired to be
estimated, converting said time based output to a frequency
based output by taking its Fourier transform, and determin-
ing the power frequency spectrum of said frequency based
signal to thereby specify said delay.
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