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(57) ABSTRACT 
A tunable high resolution Spectral estimator is disclosed as 
a method and apparatus for encoding and decoding Signals, 
Signal analysis and Synthesis, and for performing high 
resolution Spectral estimation. The invention is comprised of 
an encoder coupled with either or both of a signal Synthe 
sizer and a spectral analyzer. The encoder processes a frame 
of a time-based input Signal by passing it through a bank of 
lower order filters and estimating a plurality of lower order 
covariances from which a plurality of filter parameters may 
be determined. Coupled to the encoder, through any appro 
priate data link or interface including telecommunication 
links, is one or both of a Signal Synthesizer and a spectral 
analyzer. The Signal Synthesizer includes a decocer for 
processing the covariances and a parameter transformer. The 
Signal Synthesizer includes a decoder for processing the 
covariances and a parameter transformer for determining 
filter parameters for an ARMA filter. An excitation Signal is 
processed through the ARMA filter to reproduce, or synthe 
size, a representation of the input filter. The Spectral analyzer 
also includes a decoder which processes the covariances for 
input to a spectral plotter to detemine the power frequency 
Spectrum of the input Signal. The invention may be used in 
a myriad of applications including voice identification, 
doppler-based radar Speed estimation, time delay estimation, 
and others. 
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METHOD AND APPARATUS FOR ATUNABLE 
HIGH-RESOLUTION SPECTRAL ESTIMATOR 

BACKGROUND OF THE INVENTION 

0001 We disclose a new method and apparatus for 
encoding and decoding Signals and for performing high 
resolution spectral estimation. Many devices used in com 
munications employ Such devices for data compression, data 
transmission and for the analysis and processing of Signals. 
The basic capabilities of the invention pertain to all areas of 
Signal processing, especially for spectral analysis based on 
Short data records or when increased resolution over desired 
frequency bands is required. One Such filter frequently used 
in the art is the Linear Predictive Code (LPC) filter. Indeed, 
the use of LPC filters in devices for digital Signal processing 
(see, e.g., U.S. Pat. Nos. 4,209,836 and 5,048,088 and D. 
Quarmby, Signal Processing Chips, Prentice Hall, 1994, and 
L. R. Rabiner, B. S. Atal, and J. L. Flanagan, Current 
methods of digital Speech processing, Selected Topics in 
Signal Processing (S. Haykin, editor), Prentice Hall, 1989, 
112-132) is pertinent prior art to the alternative which we 
shall disclose. 

0002 We now describe this available art, the difference 
between the disclosed invention and this prior art, and the 
principal advantages of the disclosed invention. FIG. 1 
depicts the power spectrum of a Sample Signal, plotted in 
logarithmic Scale. 

0003) We have used standard methods known to those of 
ordinary skill in the art to develop a 4th order LPC filter from 
a finite window of this signal. The power spectrum of this 
LPC filter is depicted in FIG. 2. 
0004 One disadvantage of the prior art LPC filter is that 

its power spectral density cannot match the “valleys,” or 
“notches, in a power spectrum, or in a periodogram. For 
this reason encoding and decoding devices for Signal trans 
mission and processing which utilize LPC filter design result 
in a Synthesized signal which is rather “flat,” reflecting the 
fact that the LPC filter is an “all-pole model.” Indeed, in the 
Signal and Speech processing literature it is widely appreci 
ated that regeneration of human Speech requires the design 
of filters having Zeros, without which the speech will sound 
flat or artificial; see, e.g., C. G. Bell, H. Fujisaaki, J. M. 
Heinz, K. N. Stevons and A. S. House, Reduction of Speech 
Spectra by Analysis-by-Synthesis Techniques, J. Acoust. 
Soc. Am. 33 (1961), page 1726), J. D. Markel and A. H. 
Gray, Linear Prediction of Speech, Springer Verlag, Berlin, 
1976, pages 271-272), L. R. Rabiner and R. W. Schafer, 
Digital Processing of Speech Signals, Prentice-Hall, Engle 
wood Cliffs, N.J., 1978, pages 105,76-78). Indeed, while all 
pole filters can reproduce much of human speech Sounds, the 
acoustic theory teaches that nasals and fricatives require 
both Zeros and poles J. D. Markel and A. H. Gray, Linear 
Prediction of Speech, Springer Verlag, Berlin, 1976, pages 
271-272), L. R. Rabiner and R. W. Schafer, Digital Pro 
cessing of Speech Signals, Prentice-Hall, Englewood Cliffs, 
N.J., 1978, page 105). This is related to the technical fact 
that the LPC filter only has poles and has no transmission 
ZeroS. To Say that a filter has a transmission Zero at a 
frequency is to say that the filter, or corresponding circuit, 
will absorb damped periodic Signals which oscillate at a 
frequency equal to the phase of and with a damping factor 
equal to the modulus of . This is the well-known blocking 
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property of transmission ZeroS of circuits, See for example 
L. O. Chua, C. A. Desoer and E. S. Kuh, Linear and 
Nonlinear Circuits, McGraw-Hill, 1989, page 659). This is 
reflected in the fact, illustrated in FIG. 2, that the power 
spectral density of the estimated LPC filter will not match 
the power spectrum at “notches,” that is, frequencies where 
the observed signal is at its minimum power. Note that in the 
Same figure the true power spectrum is indicated by a dotted 
line for comparison. 
0005 Another feature of linear predictive coding is that 
the LPC filter reproduces a random signal with the same 
Statistical parameters (covariance Sequence) estimated from 
the finite window of observed data. For longer windows of 
data this is an advantage of the LPC filter, but for short data 
records relatively few of the terms of the covariance 
Sequence can be computed robustly. This is a limiting factor 
of any filter which is designed to match a window of 
covariance data. The method and apparatus we disclose here 
incorporates two features which are improvements over 
these prior art limitations: The ability to include “notches” 
in the power Spectrum of the filter, and the design of a filter 
based instead on the more robust Sequence of first covari 
ance coefficients obtained by passing the observed signal 
through a bank of first order filters. The desired notches and 
the Sequence of (first-order) covariance data uniquely deter 
mine the filter parameters. We refer to such a filter as a 
tunable high resolution estimator, or THREE filter, since the 
desired notches and the natural frequencies of the bank of 
first order filters are tunable. A choice of the natural fre 
quencies of the bank of filters correspond to the choice of a 
band of frequencies within which one is most interested in 
the power spectrum, and can also be automatically tuned. 
FIG. 3 depicts the power spectrum estimated from a par 
ticular choice of 4th order THREE filter for the same data 
used to generate the LPC estimate depicted in FIG. 2, 
together with the true power spectrum, depicted in FIG. 1, 
which is marked with a dotted line. 

0006 We expect that this invention will have application 
as an alternative for the use of LPC filter design in other 
areas of Signal processing and Statistical prediction. In 
particular, many devices used in communications, radar, 
Sonar and geophysical Seismology contain a signal proceSS 
ing apparatus which embodies a method for estimating how 
the total power of a signal, or (Stationary) data sequence, is 
distributed over frequency, given a finite record of the 
Sequence. One common type of apparatus embodies spectral 
analysis methods which estimate or describe the Signal as a 
sum of harmonics in additive noise P. Stoica and R. Moses, 
Introduction to Spectral Analysis, Prentice-Hall, 1997, page 
139). Traditional methods for estimating such spectral lines 
are designed for either white noise or no noise at all and can 
illustrate the comparative effectiveness of THREE filters 
with respect to both non-parametric and parametric based 
Spectral estimation methods for the problem of line Spectral 
estimation. FIG. 4 depicts five runs of a signal comprised of 
the Superposition of two sinusoids with colored noise, the 
number of sample points for each being 300. FIG. 5 depicts 
the five corresponding periodograms computed with State 
of-the-art windowing technology. The Smooth curve repre 
Sents the true power spectrum of the colored noise, and the 
two vertical lines the position of the Sinusoids. 
0007 FIG. 6 depicts the five corresponding power spec 
tra obtained through LPC filter design, while FIG. 7 depicts 
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the corresponding power Spectra obtained through the 
THREE filter design. FIGS. 8, 9 and 10 show similar plots 
for power Spectra estimated using State-of-the-art peri 
odogram, LPC, and our invention, respectively. It is appar 
ent that the invention disclosed herein is capable of resolv 
ing the two sinusoids, clearly delineating their position by 
the presence of two peaks. We also disclose that, even under 
ideal noise conditions the periodogram cannot resolve these 
two frequencies. In fact, the theory of spectral analysis P. 
Stoica and R. Moses, Introduction to Spectral Analysis, 
Prentice-Hall, 1997, page 33 teaches that the separation of 
the Sinusoids is Smaller than the theoretically possible dis 
tance that can be resolved by the periodogram using a 300 
point record under ideal noise conditions, conditions which 
are not Satisfied here. This example represents a typical 
Situation in applications. 
0008. The broader technology of the estimation of sinu 
Soids in colored noise has been regarded as difficult B. 
Porat, Digital Processing of Random Signals, Prentice-Hall, 
1994, pages 285-286). The estimation of sinusoids in col 
ored noise using autoregressive moving-average filters, or 
ARMA models, is desirable in the art. As an ARMA filter, 
the THREE filter therefore possesses “super-resolution” 
capabilities P. Stoica and R. Moses, Introduction to Spectral 
Analysis, Prentice-Hall, 1997, page 136). 
0009 We therefore disclose that the THREE filter design 
leads to a method and apparatus, which can be readily 
implemented in hardware or hardware/software with ordi 
nary skill in the art of electronics, for Spectral estimation of 
Sinusoids in colored noise. This type of problem also 
includes time delay estimation M. A. Hasan and M. R. 
ASimi-Sadadi, Separation of multiple time delays in using 
new spectral estimation Schemes, IEEE Transactions on 
Signal Processing 46 (1998), 2618-2630 and detection of 
harmonic sets M. Zeytinoglu and K. M. Wong, Detection of 
harmonic sets, IEEE Transactions on Signal Processing 43 
(1995), 2618-2630), such as in identification of Submarines 
and aerospace vehicles. Indeed, those applications where 
tunable resolution of a THREE filter will be useful include 
radar and Sonar Signal analysis, and identification of Spectral 
lines in doppler-based applications P. Stoica and R. Moses, 
Introduction to Spectral Analysis, Prentice-Hall, 1997, page 
248). Other areas of potential importance include identifi 
cation of formants in speech, data decimation M. A. Hasan 
and M. R. Azimi-Sadadi, Separation of multiple time delays 
using new spectral estimation Schemes, IEEE Transactions 
on Signal Processing 46 (1998), 2618-2630), and nuclear 
magnetic resonance. 

0.010 We also disclose that the basic invention could be 
used as a part of any System for Speech compression and 
Speech processing. In particular, in certain applications of 
Speech analysis, Such as Speaker verification and Speech 
recognition, high quality spectral analysis is needed Joseph 
P. Campbell, Jr., Speaker Recognition. A tutorial, Proceed 
ings of the IEEE 85 (1997), 1436-1463), Jayant M. Naik, 
Speaker Verification. A tutorial, IEEE Communications 
Magazine, January 1990, 42-48), Sadaoki Furui, Recent 
advances in Speaker Recognition, Lecture Notes in Com 
puter Science 1206, 1997, 237-252), Hiroaki Sakoe and 
Seibi Chiba, Dynamic Programming Aliorithm Optimization 
for Spoken Word Recognition, IEEE Transactions on Acous 
tics, Speech and Signal Processing ASSP-26 (1978), 43–49). 
The tuning capabilities of the device should prove especially 
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Suitable for Such applications. The same holds for analysis of 
biomedical Signals. Such as EMG and EKG signals. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0011 FIG. 1 is a graphical representation of the power 
Spectrum of a Sample Signal; 

0012 FIG. 2 is a graphical representation of the spectral 
estimate of the sample signal depicted in FIG. 1 as best 
matched with an LPC filter; 
0013 FIG. 3 is a graphical representation of the spectral 
estimate of the Sample Signal with true Spectrum shown in 
FIG. 1 (and marked with dotted line here for comparison), 
as produced with the invention; 
0014 FIG. 4 is a graphical representation of five sample 
Signals comprised of the Superposition of two sinusoids with 
colored noise; 

0015 FIG. 5 is a graphical representation of the five 
periodograms corresponding to the Sample signals of FIG. 
4; 
0016 FIG. 6 is a graphical representation of the five 
corresponding power spectra obtained through LPC filter 
design for the five sample signals of FIG. 4; 
0017 FIG. 7 is a graphical representation of the five 
corresponding power spectra obtained through the invention 
filter design; 
0.018 FIG. 8 is a graphical representation of a power 
Spectrum estimated from a time signal with two closely 
Spaced sinusoids (marked by vertical lines), using peri 
odogram; 

0019 FIG. 9 is a graphical representation of a power 
Spectrum estimated from a time signal with two closely 
Spaced sinusoids (marked by Vertical lines), using LPC 
design; 

0020 FIG. 10 is a graphical representation of a power 
Spectrum estimated from a time signal with two closely 
Spaced sinusoids (marked by vertical lines), using the inven 
tion; 

0021 FIG. 11 is a schematic representation of a lattice 
ladder filter in accordance with the present invention; 
0022 FIG. 12 is a block diagram of a signal encoder 
portion of the present invention; 
0023 FIG. 13 is a block diagram of a signal synthesizer 
portion of the present invention; 

0024 FIG. 14 is a block diagram of a spectral analyzer 
portion of the present invention; 

0025 FIG. 15 is a block diagram of a bank of filters, 
preferably first order filters, as utilized in the encoder portion 
of the present invention; 
0026 FIG. 16 is a graphical representation of a unit 
circle indicating the relative location of poles for one 
embodiment of the present invention; 
0027 FIG. 17 is a block diagram depicting a speaker 
Verification enrollment embodiment of the present inven 
tion; 
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0028 FIG. 18 is a block diagram depicting a speaker 
Verification embodiment of the present invention; 
0029 FIG. 19 is a block diagram of a speaker identifi 
cation embodiment of the present invention; 
0030 FIG. 20 is a block diagram of a doppler-based 
Speed estimator embodiment of the present invention; and 
0.031 FIG. 21 is a block diagram for a time delay 
estimator embodiment of the present invention. 
0032) The present invention of a THREE filter design 
retains two important advantages of linear predictive coding. 
The specified parameters (specs) which appear as coeffi 
cients (linear prediction coefficients) in the mathematical 
description (transfer function) of the LPC filter can be 
computed by optimizing a (convex) entropy functional. 
Moreover, the circuit, or integrated circuit device, which 
implements the LPC filter is designed and fabricated using 
ordinary skill in the art of electronics (see, e.g., U.S. Pat. 
Nos. 4,209,836 and 5,048,088) on the basis of the specified 
parameters (specs). For example, the expression of the 
Specified parameters (specs) is often conveniently displayed 
in a lattice filter representation of the circuit, containing unit 
delays Z', Summing junctions, and gains. The design of the 
asSociated circuit is well within the ordinary skill of a 
routineer in the art of electronics. In fact, this filter design 
has been fabricated by Texas Instruments, starting from the 
lattice filter representation (See, e.g., U.S. Pat. No. 4,344, 
148), and is used in the LPC speech synthesizer chips TMS 
5100, 5200, 5220 (see e.g. D. Quarmby, Signal Processing 
Chips, Prentice-Hall, 1994, pages 27-29). 
0033. In order to incorporate Zeros as well as poles into 
digital filter models, it is customary in the prior art to use 
alternative architectures, for example the lattice-ladder 
architecture K. J. Aström, Evaluation of quadratic loSS 
functions for linear Systems, in Fundamentals of Discrete 
time Systems. A tribute to Professor Eliahu I. Jury, M. 
Jamshidi, M. Mansour, and B.D.O. Anderson (editors), 
IITSI Press, Albuquerque, N. Mex., 1993, pp. 45-56 
depicted in FIG. 11. 
0034. As for the lattice representation of the LPC filter, 
the lattice-ladder filter consists of gains, which are the 
parameter specs, unit delays Z', and Summingjunctions and 
therefore can be easily mapped onto a custom chip or onto 
any programmable digital signal processor (e.g., the Intel 
2920, the TMS320, or the NEC 7720) using ordinary skill 
in the art, See, e.g. D. Quarmby, Signal Processing Chips, 
Prentice-Hall, 1994, pages 27-29. We observe that the 
lattice-ladder filter representation is an enhancement of the 
lattice filter representation, the difference being the incor 
poration of the Spec parameterS denoted by B, which allow 
for the incorporation of ZeroS into the filter design. In fact, 
the lattice filter representation of an all-pole filter can be 
designed from the lattice-ladder filter architecture by Setting 
the parameter specifications: fo=r,', f=f3=... = B =0 and 
C=Y for k=0, 1, ..., n-1. We note that, in general, the 
parameters Co., C., . . . , C, are not the reflection coeffi 
cients (PARCOR parameters). 
0035. As part of this disclosure, we disclose a method and 
apparatus for determining the gains in a ladder-lattice 
embodiment of THREE filter from a choice of notches in the 
power spectrum and of natural frequencies for the bank of 
filters, as well as a method of automatically tuning these 
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notches and the natural frequencies of the filter bank from 
the observed data. Similar to the case of LPC filter design, 
the specs, or coefficients, of the THREE filter are also 
computed by optimizing a (convex) generalized entropy 
functional. One might consider an alternative design using 
adaptive linear filters to tune the parameters in the lattice 
ladder filter embodiment of an autoregressive moving-aver 
age (ARMA) model of a measured input-output history, as 
has been done in M. G. Bellanger, Computational complex 
ity and accuracy issues in fast leaSt Squares algorithms for 
adaptive filtering, Proc. 1988 IEEE International Sympo 
sium on Circuits and Systems, Espoo, Finland, Jun. 7-9, 
1988 for either lattice or ladder filter tuning. However, one 
should note that the input String which might generate the 
observed output String is not necessarily known, nor is it 
necessarily available, in all situations to which THREE filter 
methods apply (e.g., speech Synthesis). For this reason, one 
might then consider developing a tuning method for the 
lattice-ladder filter parameters using a System identification 
Scheme based on an autoregressive moving-average with 
exogenous variables (ARMAX). However, the theory of 
System identification teaches that these optimization 
schemes are nonlinear but nonconvex T. Söderström and P. 
Stoica, Systems Identification, Prentice-Hall, New York, 
1989, page 333, equations (9.47), and page 334, equations 
(9.48)). Moreover, the theory teaches that there are examples 
where global convergence of the associated algorithms may 
fail depending on the choice of certain design parameters 
(e.g., forgetting factors) in the standard algorithm T. Söd 
erström and P. Stoica, op. cit., page 340, Example 9.6-in 
sharp contrast to the convex minimization Scheme we dis 
close for the lattice-ladder parameters realizing a THREE 
filter. In addition, ARMAX schemes will not necessarily 
match the notches of the power spectrum. Finally, we 
disclose here that our extensive experimentation with both 
methods for problems of formant identification show that 
ARMAX methods require significantly higher order filters to 
begin to identify formants, and also lead to the introduction 
of spurious formants, in cases where THREE filter methods 
converge quite quickly and reliably. 
0036 We now disclose a new method and apparatus for 
encoding and reproducing time signals, as well as for 
Spectral analysis of Signals. The method and apparatus, 
which we refer to as the Tunable High Resolution Estimator 
(THREE), is especially Suitable for processing and analyz 
ing Short observation records. 
0037. The basic parts of the THREE are: the Encoder, the 
Signal Synthesizer, and the Spectral Analyzer. The Encoder 
Samples and processes a time signal (e.g., Speech, radar, 
recordings, etc.) and produces a set of parameters which are 
made available to the Signal Synthesizer and the Spectral 
Analyzer. The Signal Synthesizer reproduces the time signal 
from these parameters. From the same parameters, the 
Spectral Analyzer generates the power Spectrum of the 
time-signal. 

0038. The design of each of these components is dis 
closed with both fixed-mode and tunable features. There 
fore, an essential property of the apparatus is that the 
performance of the different components can be enhanced 
for Specific applications by tuning two sets of tunable 
parameters, referred to as the filter-bank poles p=(po, 
p1, . . . , p,) and the MA parameters r=(r1, r2, . . . , r) 
respectively. In this disclosure we shall teach how the value 
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of these parameters can be (a) set to fixed “default values, 
and (b) tuned to give improved resolution at Selected por 
tions of the power Spectrum, based on a priori information 
about the nature of the application, the time signal, and 
Statistical considerations. In both cases, we disclose what we 
believe to be the preferred embodiments for either setting or 
tuning the parameters. 

0039. As noted herein, the THREE filter is tunable. 
However, in its simplest embodiment, the tunable feature of 
the filter may be eliminated So that the invention incorpo 
rates in essence a high resolution estimator (HREE) filter. In 
this embodiment the default Settings, or a priori information, 
is used to preselect the frequencies of interest. AS can be 
appreciated by those of ordinary skill in the art, in many 
applications this a priori information is available and does 
not detract from the effective operation of the invention. 
Indeed the tunable feature is not needed for these applica 
tions. Another advantage of not utilizing the tunable aspect 
of the invention is that faster operation is achieved. This 
increased operational Speed may be more important for 
Some applications, Such as those which operate in real time, 
rather than the increased accuracy of Signal reproduction 
expected with tuning. This speed advantage is expected to 
become leSS important as the electronics available for imple 
mentation are further improved. 

0040. The intended use of the apparatus is to achieve one 
or both of the following objectives: (1) a time signal is 
analyzed by the Encoder and the Set of parameters are 
encoded, and transmitted or Stored. Then the Signal Syn 
thesizer is used to reproduce the time signal; and/or (2) a 
time Signal is analyzed by the Encoder and the Set of 
parameters are encoded, and transmitted or Stored. Then the 
Spectral Analyzer is used to identify the power spectrum of 
time signal over Selected frequency bands. 

0041. These two objectives could be achieved in parallel, 
and in fact, data produced in conjunction with (2) may be 
used to obtain more accurate estimates of the MA param 
eters, and thereby improve the performance of the time 
synthesizer in objective (1). Therefore, a method for updat 
ing the MA parameters on-line is also disclosed. 

0042. The Encoder. Long samples of data, as in speech 
processing, are divided into windows or frames (in Speech 
typically a few 10 ms.), on which the process can be 
regarded as being Stationary. The procedure of doing this is 
well-known in the art T. P. Barnwell III, K. Nayebi and C. 
H. Richardson, Speech Coding: A Computer Laboratory 
Textbook, John Wiley & Sons, New York, 1996). The time 
Signal in each frame is Sampled, digitized, and de-trended 
(i.e., the mean value Subtracted) to produce a (stationary) 
finite time Series 

y(0),y(1), . . . , y(N). (2.1) 

0043. This is done in the box designated as A/D in FIG. 
12. This is standard in the art T. P. Barnwell III, K. Nayebi 
and C. H. Richardson, Speech Coding: A Computer Labo 
ratory Textbook, John Wiley & Sons, New York, 1996). The 
separation of window frames is decided by the Initializer/ 
Resetter, which is Component 3 in FIG. 12. The central 
component of the Encoder is the Filter Bank, given as 
component 1. This consists of a collection of n+1 low-order 
filters, preferably first order filters, which process the 
observed time series in parallel. The output of the Filter 
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Bank consists of the individual outputs compiled into a time 
Sequence of Vectors 

u0(to) uto (to + 1) tio (N) (2.2) 
u1 (to) u1 (to + 1) it (N) 

u, (to) u, (to + 1) it, (N) 

0044) The choice of starting point to will be discussed in 
the description of Component 2. 

0045. As will be explained in the description of Compo 
nent 7, the Filter Bank is completely specified by a set p=(po, 
p1, ...,p) of complex numbers. AS mentioned above, these 
numbers can either be set to default values, determined 
automatically from the rules disclosed below, or tuned to 
desired values, using an alternative Set of rules which are 
also disclosed below. Component 2 in FIG. 12, indicated as 
Covariance Estimator, produces from the sequence u(t) in 
(2.2) a set of n+1 complex numbers 

W=(wo W1, . . . , W) (2.3) 

0046 which are coded and passed on via a suitable 
interface to the Signal Synthesizer and the Spectral Ana 
lyzer. It should be noted that both sets p and w are self 
conjugate. Hence, for each of them, the information of their 
actual values is carried by n+1 real numbers. 

0047. Two additional features which are optional, are 
indicated in FIG. 12 by dashed lines. First, Component 5, 
designated as Excitation Signal Selection, refers to a class of 
procedures to be discussed below, which provide the mod 
eling filter (Component 9) of the signal Synthesizer with an 
appropriate input signal. Second, Component 6, designated 
as MAParameters in FIG. 12, refers to a class of procedures 
for determining n real numbers 

I=(r1, r2, . . . . In), (2.4) 

0048 the so-called MA parameters, to be defined below. 
0049. The Signal Synthesizer. The core component of the 
Signal Synthesizer is the Decoder, given as Component 7 in 
FIG. 13, and described in detail below. This component can 
be implemented in a variety of ways, and its purpose is to 
integrate the values w, p and r into a set of n+1 real 
parameters 

a=(ao a1, . . . . an), (2.5) 

0050 called the AR parameters. This set along with 
parameters r are fed into Component 8, called Parameter 
Transformer in FIG. 13, to determine Suitable ARMA 
parameters for Component 9, which is a Standard modeling 
filter to be described below. The modeling filter is driven by 
an excitation Signal produced by Component 5". 

0051. The Spectral Analyzer. The core component of the 
Spectral Analyzer is again the Decoder, given as Component 
7 in FIG. 14. The output of the Decoder is the set of AR 
parameters used by the ARMA modeling filter (Component 
10) for generating the power spectrum. Two optional fea 
tures are driven by the Component 10. Spectral estimates 
can be used to identify suitable updates for the MA param 
eters and/or updates of the Filter Bank parameters. The latter 
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option may be exercised when, for instance, increased 
resolution is desired over an identified frequency band. 

0.052 Components. Now described in detail are the key 
components of the parts and their function. They are dis 
cussed in the same order as they have been enumerated in 
FIGS. 12-14. 

0053 Bank of Filters. The core component of the 
Encoder is a bank of n+1 filters with transfer functions 

G(z) = , k = 0, 1, 2, ... , 
2- p. 

0.054 where the filter-bank poles po, p, . . . , p) are 
available for tuning. The poles are taken to be distinct and 
one of them, po at the origin, i.e. po-0. AS shown in FIG. 15, 
these filters process in parallel the input time Series (2.1), 
each yielding an output U. Satisfying the recursion 

0.055 Clearly, u=y. If p is a real number, this is a 
Standard first-order filter. If p is complex, 

0056 can be obtained via the second order filter 

i(t) a -b (i-1) 1 (2,7) E=, E-bit), nk (t) b a Ink (t–1) O 

0057 where p=a+ib . Since complex filter-bank poles 
occur in conjugate pairs atib, and Since the filter with the 
pole p=a-ib produces the output 

0.058 the same second order filter (2.7) replaces two 
complex one-order filters. We also disclose that for tunabil 
ity of the apparatus to specific applications there may also be 
Switches at the input buffer so that one or more filters in the 
bank can be turned off. The hardware implementation of 
Such a filter bank is Standard in the art. 

0059. The key theoretical idea on which our design relies, 
described in C. I. Byrnes, T. T. Georgiou, and A. Lindquist, 
A new approach to Spectral Estimation. A tunable high 
resolution Spectral estimator, preprint, is the following: 
Given the unique proper rational function f(Z) with all poles 
in the unit disc ZZK1} such that 

0060) is the power spectrum of y, it can be shown that 

1 2.9 f(p) = (1-pi)Eu ()), t > to, (2.9) 

0061 where E{} is mathematical expectation, provided 
to is chosen large enough for the filters to have reached 
Steady State So that (2.2) is a stationary process; see C. I. 
Byrnes, T. T. Georgiou, and A. Lindquist, A new approach 
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to Spectral Estimation. A tunable high-resolution spectral 
estimator, preprint. The idea is to estimate the variances 

co(u):=E{u:(t)}, k=0, 1,..., n 
0062 from output data, as explained under point 2 below, 
to yield interpolation conditions 

0063 from which the function f(z), and hence the power 
spectrum db can be determined. The theory described in C. 
I. Byrnes, T. T. Georgiou, and A. Lindquist, A new approach 
to Spectral Estimation. A tunable high-resolution spectral 
estimator, preprint teaches that there is not a unique Such 
f(Z), and our procedure allows for making a choice which 
fulfills other design specifications. 
0064 Covariance Estimator. Estimation of the variance 

co(v):=E{v(t)? 
0065 of a stationary stochastic process V(t) from an 
observation record 

Wo W1, W2 . . . . WN 

0066 can be done in a variety of ways. The preferred 
procedure is to evaluate 

(2.10) 1 W 
r 2 

eo(v):=w 12. V. 

0067 over the available frame. 
0068. In the present application, the variances & (uo), ?o 
(u). . . , ?o (u) are estimated and the numbers (2.3) are 
formed as 

1 2va (2.11) wk := 5 (1 -pi)eo(u), k = 0, 1,..., n. 

0069 Complex arithmetic is preferred, but, if real filter 
parameters are desired, the output of the Second-order filter 
(2.7) can be processed by noting that 

Co(uk):=Co(S)-Co(nk)+2i COV(Skink), 
0070 where cov(Sm):=E{S(t)m.(t)} is estimated by a 
mixed ergodic Sum formed in analogy with (2.10). 
0071. Before delivering w(wo, w, . . . , w) as the 
output, check that the Pick matrix 

wi + wik P = 
1 - pip, 

0072) is positive definite. If not, exchange w for w). 
for k=0, 1,..., n, where 2 is larger than the absolute value 
of the smallest eigenvalue of PP' where 

P = 
1 - PiP lo 

0073. Initializer/Resetter. The purpose of this component 
is to identify and truncate portions of an incoming time 
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Series to produce windows of data (2.1), over which win 
dows the series is stationary. This is standard in the art T. 
P. Barnwell III, K. Nayebi and C. H. Richardson, Speech 
Coding: A Computer Laboratory Textbook, John Wiley & 
Sons, New York, 1996). At the beginning of each window it 
also initializes the states of the Filter Bank to zero, as well 
as resets Summation buffers in the Covariance Estimator 
(Component 2). 

0074 Filter Bank Parameters. The theory described in C. 
I. Byrnes, T. T. Georgiou, and A. Lindquist, A new approach 
to Spectral Estimation. A tunable high-resolution spectral 
estimator, preprint, requires that the pole of one of the filters 
in the bank be at Z=0 for normalization purposes, we take 
this to be po. The location of the poles of the other filters in 
the bank represents a design trade-off. The presence of Filter 
Bank poles close to a selected arc {e'06.0, 0)} of the unit 
circle, allows for high resolution over the corresponding 
frequency band. However, proximity of the poles to the unit 
circle may be responsible for deterioration of the variability 
of the covariance estimates obtained by Component 2. 

0075. There are two observations which are useful in 
addressing the design trade-off. First, the size n of the data 
bank is dictated by the quality of the desired reproduction of 
the Spectrum and the expected complexity of it. For instance, 
if the spectrum is expected to have k spectral lines or 
formants within the targeted frequency band, typically, a 
filter of order n=2k+2 is required for reasonable reproduc 
tion of the characteristics. 

0.076 Second, if N is the length of the window frame, a 
useful rule of thumb is to place the poles within 

O 
p| < 10 N. 

0077. This guarantees that the output of the filter bank 
attains stationarity in about 1/10 of the length of the window 
frame. Accordingly the Covariance Estimator may be acti 
vated to operate on the later 90% stationary portion of the 
processed window frame. Hence, to in (2.2) can be taken to 
be the Smallest integer larger than 

0078. This typically gives a slight improvement as com 
pared to the Covariance Estimator processing the complete 
processed window frame. 

0079 There is a variety of ways to take advantage of the 
design trade-offs. We now disclose what we believe are the 
best available rules to automatically determine a default 
Setting of the bank of filter poles, as well as to automatically 
determine the Setting of the bank of filter poles given a priori 
information on a bandwidth of frequencies on which higher 
resolution is desired. 
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0080 Default Values. 
0081 (a) One pole is chosen at the origin, 
0082 (b) choose one or two real poles at 

19 

0083 (c) choose an even number of equally spaced 
poles on the circumference of a circle with radius 

0084 in a Butterworth-like pattern with angles spanning 
the range of frequencies where increased resolution is 
desired. 

0085. The total number of elements in the filter bank 
should be at least equal to the number Suggested earlier, e.g., 
two times the number of formants expected in the Signal plus 
tWO. 

0086. In the tunable case, it may be necessary to Switch 
off one or more of the filters in the bank. 

0087 As an illustration, take the signal of two sinusoidal 
components in colored noise depicted in FIG. 4. More 
Specifically, in this example, 

y(t)=0.5 sin (ot--p)+0.5 sin (ot--p)+z(t)t=0,1,2,..., 
z(t)=0.82(t–1)+0.5v(t)+0.25 v(t–1) 

0088 with (t)=0.42,0)=0.53, and (p, q) and v(t) inde 
pendent N(0,1) random variables, i.e., with Zero mean and 
unit variance. The Squares in FIG. 16 indicate Suggested 
position of filter bank poles in order to attain Sufficient 
resolution over the frequency band 0.40.5 so as to resolve 
Spectral lines situated there and indicated by 0. The position 
of the poles on the circle z=0.9 is dictated by the length 
N-300 for the time Series window. 

0089. A THREE filter is determined by the choice of 
filter-bank poles and a choice of MA parameters. The 
comparison of the original line spectra with the power 
spectrum of the THREE filter determined by these filter 
bank poles and the default value of the MA parameters, 
discussed below, is depicted in FIG. 7. 
0090 Excitation Signal Selection. An excitation signal is 
needed in conjunction with the time Synthesizer and is 
marked as Component 5". For Some applications the generic 
choice of white noise may be Satisfactory, but in general, and 
especially in Speech it is a Standard practice in Vocoder 
design to include a special excitation Signal Selection. This 
is standard in the art T. P. Barnwell III, K. Nayebi and C. 
H. Richardson, Speech Coding: A Computer Laboratory 
Textbook, John Wiley & Sons, New York, 1996, page 101 
and pages 129-132 when applied to LPC filters and can also 
be implemented for general digital filters. The general idea 
adapted to our Situation requires the following implemen 
tation. 

0091 Component 5 in FIG. 12 includes a copy of the 
time Synthesizer. That is, it receives as input the values w, p, 
and r, along with the time Series y. It generates the coeffi 
cients a of the ARMA model precisely as the decoding 
Section of the time Synthesizer. Then it processes the time 
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series through a filter which is the inverse of this ARMA 
modeling filter. The “approximately whitened' Signal is 
compared to a collection of Stored excitation Signals. A code 
identifying the optimal matching is transmitted to the time 
Synthesizer. This code is then used to retrieve the same 
excitation Signal to be used as an input to the modeling filter 
(Component 9 in FIG. 13). 

0092 Excitation signal selection is not needed if only the 
frequency Synthesizer is used. 

0093 MA Parameter Selection. As for the filter-bank 
poles, the MA parameters can either be directly tuned using 
Special knowledge of Spectral ZeroS present in the particular 
application or Set to a default value. However, based on 
available data (2.1), the MA parameter Selection can also be 
done on-line, as described in Appendix A. 

0094. There are several possible approaches to determin 
ing a default value. For example, the choice r=r=... =r=0 
produces a purely autoregressive (AR) model which, how 
ever, is different from the LPC filter since it interpolates the 
filter-bank data rather than matching the covariance lags of 
the original process. 

0.095 We now disclose what we believe is the best 
available method for determining the default values of the 
MA parameters. Choose r, r2, ..., r. So that 

0.096 which corresponds to the central solution, 
described in Section 3. This Setting is especially easily 
implemented, as disclosed below. 

0097 Decoder. Given p, w, and r, the Decoder determines 
n+1 real numbers 

80 a1, a2, . . . . an (2.13) 

0.098 with the property that the polynomial 

0099 has all its roots less than one in absolute value. This 
is done by Solving a convex optimization problem via an 
algorithm presented in papers C. I. Byrnes, T. T. Georgiou, 
and A. Lindquist, A generalized entropy criterion for Nevan 
linna-Pick interpolation. A convex Optimization approach to 
certain problems in Systems and control, preprint, and C. I. 
Byrnes, T. T. Georgiou, and A. Lindquist, A new approach 
to Spectral Estimation. A tunable high-resolution spectral 
estimator, preprint. While our disclosure teaches how to 
determine the THREE filter parameters on-line in the section 
on the Decoder algorithms, an alternative method and appa 
ratus can be developed off-line by first producing a look-up 
table. The on-line algorithm has been programmed in MAT 
LAB, and the code is enclosed in the Appendix B. 

0100 For the default choice (2.12) of MA-parameters, a 
much simpler algorithm is available, and it is also presented 
in the section on the Decoder algorithms. The MATLAB 
code for this algorithm is also enclosed in the Appendix B. 

0101 Parameter Transformer. The purpose of Compo 
nent 8 in FIG. 13 is to compute the filter gains for a 
modeling filter with transfer function 
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R(z) = in it. (2.14) 
a03' + a13' +...+ a 

0102 where r, r, . . . , r, are the MA parameters 
delivered by Component 6 (as for the Signal Synthesizer) or 
Component 6' (in the Spectral Analyzer) and ao, a, . . . , a 
delivered from the Decoder (Component 7) This can be done 
in many different ways L. A. Chua, C. A. Desoer and E. S. 
Kuh, Linear and Nonlinear Circuits, McGraw-Hill, 1989), 
depending on desired filter architecture. 
0103) A filter design which is especially suitable for an 
apparatus with variable dimension is the lattice-ladder archi 
tecture depicted in FIG. 11. In this case, the gain parameters 

Co C-1. . . . . Cln-1 and ?o f1 . . . . Bn 
0.104) are chosen in the following way. For k=n, 
n-1, . . . , 1, Solve the recursions 

(k-1 i F (ki + (k-1 (ikk-i, dini di (2.15) 
?ikk 

at 1 = -- 
?iko 

?iko 

0105 for j=0, 1,..., k, and set 

00 
fo 

(00 

0106 This is a well-known procedure; see, e.g., K. J. 
AStrtöm, Introduction to Stochastic realization theory, Aca 
demic Press, 1970; and K. J. Aström, Evaluation of qua 
dratic loss functions of linear Systems, in Fundamentals of 
Discrete-time Systems. A tribute to Professor Eliahu I. Jury, 
M. Jarnshidi, M. Mansour, and B. D. O. Anderson (editors), 
IITSI Press, Albuquerque, N. Mex., 1993, pp. 45-56. The 
algorithm is recursive, using only ordinary arithmetic opera 
tions, and can be implemented with an MAC mathematics 
processing chip using ordinary skill in the art. 

0107 ARMA filter. An ARMA modeling filter consists of 
gains, unit delays Z', and Summing junctions, and can 
therefore easily be mapped onto a custom chip or any 
programmable digital Signal processor using ordinary skill 
in the art. The preferred filter design, which easily can be 
adjusted to different values of the dimension n, is depicted 
in FIG. 11. If the AR setting r=r=. . . =r=0 of the MA 
parameters has been selected, fo=r,”, f=f32=. . . =f3,-0 
and C=Y for k=0, 1, . . . , n-1, where Yk=0,1, . . . ,n-1, 
are the first n PARCOR parameters and the algorithm (2.15) 
reduces to the Levinson algorithm B. Porat, digital Pro 
cessing of Random Signals, Prentice-Hall, 1994; and P. 
Stoica and R. Moses, Introduction to Spectral Analysis, 
Prentice-Hall, 1997). 
0108) Spectral plotter. The Spectral Plotter amounts to 
numerical implementation of the evaluation d(e):= 
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|R(e"), where R(z) is defined by (2.14), and 0 ranges over 
the desired portion of the Spectrum. This evaluation can be 
efficiently computed using standard FFT transform P. Stoica 
and R. Moses, Introduction to Spectral Anqalysis, Prentice 
Hall, 1997). For instance, the evaluation of a polynomial 
(3.4) over a frequency range z=e', with 06{0, A6, . . . . 
2L-A0} and A0=2L/M, can be conveniently computed by 
obtaining the discrete Fourier transform of 

(an . . . . a 1:1, 0, . . . . 0). 
0109) This is the coefficient vector padded with M-n-1 
ZeroS. The discrete Fourier transform can be implemented 
using the FFT algorithm in standard form. 
0110 Decoder Algorithms. We now disclose the algo 
rithms used for the Decoder. The input data consists of 

0111 (i) the filter-bank poles p=(po, p, . . . , p), 
which are represented as the roots of a polynomial 

(3.1) 
(3): = (3-pi) = z + 1z" +...+t, 13+ 1, 

k=1 

0112 (ii) the MA parameters r=(r1, r2, . . . , r), 
which are real numberS Such that the polynomial 

p(z)=z"+rz"'+...+rt2+r, (3.2) 

0113 has all its roots less than one in absolute value, and 
0114 (iii) the complex numbers 
W=(Wo W1. . . . . W.) 

0115 determined as (2.11) in the Covariance Estimator. 
0116. The problem is to find AR parameters a-(ao, 
a, . . . , a), real numbers with the property that the 
polynomial 

C.(z)=aoz"+a12"'+...+a, 12+a, (3.4) 
0117 has all its roots less than one in absolute value, 
Such that 

p(e) 
a(e) 

0118 is a good approximation of the power spectrum 
d(e") of the processy in some desired part of the spectrum 
06-71, t). More precisely, we need to determine the function 
f(z) in (2.8). Mathematically, this problem amounts to find 
ing a polynomial (3.4) and a corresponding polynomial 

f(z)=boz"+bz"'+...+b2+b, (3.5) 
0119) satisfying 

C.(z)|B(z)+B(z)C (z)=p(z)p(z) (3.6) 
0120 such that the rational function 

f(z)= A (3.7) 
a(3) 

0121 satisfies the interpolation condition 
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0.122 For this purpose the parameters p and r are avail 
able for tuning. If the choice of r corresponds to the default 
Value, r=t for k=1, 2, ..., n (i.e., taking p(Z)=t(Z)), the 
determination of the THREE filter parameters is consider 
ably simplified. The default option is disclosed in the next 
Subsection. The method for determining the THREE filter 
parameters in the tunable case is disclosed in the SubSection 
following the next. Detailed theoretical descriptions of the 
method, which is based on convex optimization, are given in 
the papers C. I. Byrnes, T. T. Georgiou, and A. Lindquist, 
A generalized entropy criterion for Nevanlinna-Pick inter 
polation. A convex Optimization approach to certain prob 
lems in Systems and control, preprint, and C. I. Byrnes, T. T. 
Georgiou, and A. Lindquist, A new approach to Spectral 
Estimation. A tunable high-resolution spectral estimator, 
preprint. 

0123 The central solution algorithm for the default filter. 
In the special case in which the MA parameters r=(r, 
ra, . . . , r) are set equal to the coefficients of the polynomial 
(3.1), i.e., when p(z)=t(Z), a simpler algorithm is available. 
Here we disclose Such an algorithm which is particularly 
Suited to our application. Given the filter-bank parameters 
po, p1, ... , p, and the interpolation Values Wo, W1, ..., W. 
determine two Sets of parameters S1, S2, . . . , S, and V1, 
V. . . . , Vn defined as 

1 - p. 1 - wif wo 
Si 1 + p. and v = 1 + wif wo k = 1, 2, . . . . in 

0.124 and the coefficients O, O, ..., O, of the polyno 
mial 

0125 We need a rational function 

xis' + ... + x, 
p(s): = , , i.i. 

0126 such that 
p(s)=Vikk=1,2,..., n, 

0127) and a realization p(z)=c(sI-A)'b, where 

- O -O2 . . . - O - O 

1 O . . . O O 

A = 0 1 . . . O O 

O O 1 O 

C = 0 () ... O 1 

0128 and the n-vector b remains to be determined. To 
this end, choose a (reindexed) Subset S, S., . . . , s of the 
parameters SS2, ..., S., including one and only one S from 
each complex pair (S,S), and decompose the following 
complex Vandermonde matrix and complex vector into their 
real and imaginary parts: 
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si- s-2 1 V1 O(S1) 
s:- s: 2 1 V2O(S2) 

= U + iO, = it-- it. 

s', S' ... 1 Vn O(Sn) 

0129. Then, remove all Zero rows from u and u to obtain 
U and U, respectively, and Solve the nxn System 

0.130 for the n-vector X with components x1, x2, ..., X. 
Then, padding X with a Zero entry to obtain the (n+1)-vector 

0131 the required b is obtained by removing the last 
component of the (n+1)-vector 

r 
0132 where R is the triangular (n+1)×(n+1)-matrix 

1 O1 
R= 1 O O2 

1 O1 O2 ... O 

0.133 where empty matrix entries denote Zeros. 
0134) Next, with prime () denoting transposition, solve 
the Lyapunov equations 

0136) and compute the (n+1)-vectorsh'',h'’.h' and h'' 
with components 

which is a Standard routine, form the matrix 

0137 h=1, h-cAP.Nc', k=1,2,..., n 
0138 ha)=0, h-cAN'b, k=1,2,..., n 
0139 h=0, h--b'PAP.Nc', k=1,2,..., 

0140 h. ('-1, h--b'PAN'b, k=1,2,..., n. 
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0141 Finally, compute the (n+1)-vectors 
0142) y=TRh', j=1,2,3,4 

0143) with components yo", y, , . . , y, , j=1,2,3,4, 
where T is the (n+1)×(n+1) matrix, the k: th column of which 
is the vector of coefficients of the polynomial 

(s+1)"*(s-1), for k=0, 1,..., n, 
0144) starting with the coefficient of S" and going down 
to the constant term, and R is the matrix defined above. Now 
form 

1 3 1) (4) (2) Ó k = Lacy' +y") + (y'+ y)), k = 0, 1, ..., n, 
w1 -pu? 

r wo (3) (1) (4) (2) f3 = It(y'-y') + (y'-y'), k = 0, 1, . . . , n, 
R 12 

where 

y 

0145 The (central) interpolant (3.7) is then given by 

0146 where d(z) and f(z) are the polynomials 

0147 However, to obtain the C(z) which matches the MA 
parameters r=t, d(Z) needs to be normalized by setting 

0.148. This is the output of the central solver. 
0149 Convex optimization algorithm for the tunable 

filter. To initiate the algorithm, one needs to choose an initial 
value for a, or, equivalently, for O(Z), to be recursively 
updated. We disclose two methods of initialization, which 
can be used if no other guidelines, Specific to the application, 
are available. 

0150. Initialization method 1. Given the solution of the 
Lyapunov equation 

S = ASA + c'c, (3.9) 
where 

- 1 - 2 - - - - - - (3.10) 

1 O ... O O 

A = 0 1 

O O 1 O 
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-continued 

C = 0 () ... O 1), (3.11) 
form 

p S O Ll x-y by = L'r, 

0151 where r is the column vector having the coefficients 
1, r1, ..., r of (3.2) as components and where 

1 (3.12) 

1 
L = 1 2 

1 t2 . . . . 

Then take 

K 

a(z) = 2wo (3) 

0152 as initial value. 

0153. Initialization method 2. Take 

1 + rj + ... + r. 
a(z) = 1 + . . . . . ac(3) 

0154 where C(Z) is the C-polynomial obtained by first 
running the algorithm for the central Solution described 
above. 

0155 Algorithm. Given the initial (3.4) and (3.1), solve 
the linear System of equations 

1 in-2 in-1 in 1 1 2 . . . . 
- 1 1 in 

2 -- 1 in-2 

1 

S0 a+a+ ai+...+ a 
Sl dod - did? Ci-d 

S2 F (002 - d.163 - d. 2d 

Sn (0(i. 

0156 for the column vector S with components so, 
S, ..., S. Then, with the matrix L., given by (3.12), Solve 
the linear System 
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O157 for the vector 

h (3.13) 
hi-1 

h = 
ho 

0158. The components of h are the Markov parameters 
defined via the expansion 

g(z) = 1 = b + h; +h: + h; + r. (3.14) 
(3) 

where 

0159. The vector (3.13) is the quantity on which itera 
tions are made in order to update C (Z). More precisely, a 
convex function J(q) presented in C. I. Byrnes, T. T. Geor 
giou, and A. Lindquist, A generalized entropy criterion for 
Nevanlina-Pick interpolation. A convex optimization 
approach to certain problems in Systems and control, pre 
print, and C. I. Byrnes, T. T. Georgiou, and A. Lindquist, A 
new approach to spectral estimation. A tunable high-reSO 
lution spectral estimator, preprint, is minimized recursively 
over the region where 

q(e)+q(e)>0, for-Tsesat (3.15) 

0160 This is done by upholding condition (3.6) while 
Successively trying to Satisfy the interpolation condition 
(3.8) by reducing the errors 

e=wk-f(pk'), k=0, 1,..., n. (3.16) 

0.161 Each iteration of the algorithm consists of two 
StepS. Before turning to these, Some quantities, common to 
each iteration and thus computed off-line, need to be evalu 
ated. 

0162 Given the MA parameter polynomial (3.2), let the 
real numbers to, IL, ..., IL, can be defined via the expansion 

0163 Moreover, given a Subset p, p, . . . , p, of the 
filter-bank poles p, p, . . . , p, obtained by only including 
one p in each complex conjugate pair (pp), form the 
corresponding Vandermonde matrix 

p, p 2 ... p. 1 (3.18) 

| P:"" P." P.' I 
p-1) p. 2) ... p. 1 

0.164 together with its real part V, and imaginary part V. 
Moreover, given an arbitrary real polynomial 



US 2003/0055630 A1 

0165 define the (n+1)x(m+1) matrix 

0166 We compute off-line M(p), M(tip) and M(tp), 
where p and t are the polynomials (3.2) and (3.1) and t(z) 
is the reversed polynomial 

0167 Finally, we compute off-line L, defined by (3.12), 
as well as the Submatrix L. 
0168 Step 1. In this step the search direction of the 
optimization algorithm is determined. Given C (Z), first find 
the unique polynomial (3.5) satisfying (3.6). Identifying 
coefficients of Z', k=0,1,..., n, this is seen to be a (regular) 
System of n+1 linear equations in the n+1 unknown bo, 
b., . . . , b, namely 1. 

(0 (in-2 (in-1 (in do oil d2 (in bo to 

d (in-1 (in do oil an 1 lb 7 

d2 (in -- do a 2 b2 = 72, 

(in (0 b, 

0169 where to, L., . . . , , are given by (3.17). The 
coefficient matrix is a Sum of a Hankel and a Toeplitz matrix 
and there are fast and efficient ways of Solving Such Systems 
G. Heinig, P. Jankowski and K. Rost, Fast Inversion 
Algorithms of Toeplitz-plus-Hankel Matrices, Numerische 
Mathematik 52 (1988), 665-682). Next, form the function 

0170 This is a candidate for an approximation of the 
positive real part of the power spectrum db as in (2.8). 
0171 Next, we describe how to compute the gradient V.J. 
Evaluate the interpolation errors (3.16), noting that e=wo 
bo/ao, and decompose the complex vector 

(ei - eo) (pl.) 
(e2 - eo) (p.') 

= y + iv.; 

0172 into its real part v, and imaginary part v. Let V, and 
V be defined by (3.18). Remove all Zero rows from V, and 
vi to obtain V, and v. Solve the system 

11 
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(3.21) 

0.174 where S is the solution to the Lyapunov equation 
(3.9) and L is given by (3.12). 
0.175 To obtain the search direction, using Newton's 
method, we need the Hessian. Next, we describe how it is 
computed. Let the 2nx2n-matrix P be the solution to the 
Lyapunov equation 

(0176) where A is the companion matrix (formed analo 
gously to A in (3. 10)) of the polynomial O(z) and e is the 
2n row vector (0, 0,..., 0, 1). Analogously, determine the 
3nx3n -matrix P solving the Lyapunov equation 

P=APA+c'd, 

0177) where A is the companion matrix (formed analo 
gously to A in (3.10)) of the polynomial C(z) T(z) and c is 
the 3n row vector (0, 0,..., 0, 1). Then, the Hessian is 

H = 2H + H2 + H2. (3.22) 
where 

f () 3.23 H = LM (p)L(a) | O 1 L(a) 'M(p) L (3.23) 

(3.24) H = L.M. Lor Loir's to L. 

0178 where the precomputed matrices L and L are 
given by (3.12) and by reversing the order of the rows in 
(3.12), respectively. Also M(p), M(tip) and M(tp) are 
computed off-line, as in (320), whereas L(c) and L(C. t.) are computed in the following way: 
0179 For an arbitrary polynomial (3.19), determine Jo, 
21, . . . , ). Such that 

0180 where T(z) is a polynomial of at most degree m-1. 
This yields m+1 linear equation for the m+1 unknowns 2, 
2, . . . , ), from which we obtain 

lo 

An-1 lo L(y) = | 

lo 
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0181 Finally, the new search direction becomes 
d=HVJ. (3.25) 

0182) Let devious denote the search direction d obtained 
in the previous iteration. If this is the first iteration, initialize 
by Setting dprevious=0 
0183 Step 2. In this step a line search in the search 
direction d is performed. The basic elements are as follows. 
Five constants cij=1,2,3,4,5, are specified with Suggested 
default values C=10", c=1.5, C=1.5, c=0.5, and 
cs=0.001. If this is the first iteration, set ) =cs. 
0184). If Ild|<calldevil, increase the value of a param 
eter) by a factor ca. Otherwise, retain the previous value of 
2. Using this ), determine 

hew=h-wd. (3.26) 
0185. Then, an updated value for a is obtained by deter 
mining the polynomial (3.4) with all roots less than one in 
absolute value, Satisfying 

C.(z)C.(z)=o(z)T(z)+O(z)T(z) 
0186 with O(z) being the updated polynomial (3.14) 
given by 

o(z)=T(z)q(z), 
0187 where the updated q(z) is given by 

h 

g(z) = c(zi-A) g + ho, g = | : , 
h 

0188 with h., h, , ...,ho being the components of h, 
A and C given by (3.10). This is a standard polynomial 
factorization problem for which there are Several algorithms 
F. L. Bauer, Ein direktes Iterationsverfahren zur Hurwitz 
Zerlegung eines Polynoms, Arch. Elek. Ubertragung, 9 
(1955), 285-290; Z. Vostry, New algorithm for polynomial 
Spectral factorization with quadratic convergence I, Kyber 
netika 77 (1975), 411-418), using only ordinary arithmetic 
operations. Hence they can be implemented with an MAC 
mathematics processing chip using ordinary skill in the art. 
However, the preferred method is described below (see 
explanation of routine q2a). 
0189 This factorization can be performed if and only if 
q(z) satisfies condition (3.15). If this condition fails, this is 
determined in the factorization procedure, and then the value 
of 2 is Scaled down by a factor of ca, and (3.26) is used to 
compute a new value for h, and then of q(Z) Successfully 
until condition (3.15) is met. 
0190. The algorithm is terminated when the approxima 
tion error given in (3.16) becomes less than a tolerance level 
Specified by c, e.g., when 

0191). Otherwise, set h equal to h, and return to Step 1. 
0.192 Description of technical steps in the procedure. The 
MATLAB code for this algorithm is given in Appendix B. 
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AS an alternative a State-space implementation presented in 
C. I. Byrnes, T. T. Georgiou, and A. Lindquist, A generalized 
entropy criterion for Nevanlinna-Pick interpolation. A con 
vex optimization approach to certain problems in Systems 
and control, preprint, and C. I. Byrnes, T. T. Georgiou, and 
A. Lindquist, A new approach to Spectral estimation. A 
tunable high-resolution spectral estimator, preprint, may 
also be used. The StepS are conveniently organized in four 
routines: 

0193 (1) Routine pm, which computes the Pick 
matrix from the given data p=(po, p1, . . . , p,) and 
W=(Wo, W1. . . . . W.) 

0194 (2) Routine q2a which is used to perform the 
technical Step of factorization described in Step 2. 
More precisely, given q(Z) we need to compute a 
rational function a(z) Such that 

0195 for the minimum-phase solution a(z), in terms of 
which C(z)=t(Z)a(z). This is standard and is done by Solving 
the algebraic Riccati equation 

P-APA'-(g-APc')(2ho-cPc') '(g-APc')=0, 

0196) for the stabilizing solution. This yields 
a(z)=c(zi-A) (g-APe')/v2h-cPe'+. v2h-cPe. 

0197) This is a standard MATLAB routine W. F. Arnold, 
III and A. J. Laub, Generalized Eigenproblem Algorithms 
and Software for Albebraic Riccati Equations, Proc. IEEE, 
72 (1984), 1746-1754). 

0198 (3) Routine central, which computes the cen 
tral Solution as described above. 

0199 (4) Routine decoder which integrates the 
above and provides the complete function for the 
decoder of the invention. 

0200. An application to speaker recognition. In automatic 
Speaker recognition a person's identity is determined from a 
Voice Sample. This class of problems come in two types, 
namely speaker Verification and Speaker identification. In 
Speaker verification, the person to be identified claims an 
identity, by for example presenting a personal Smart card, 
and then Speaks into an apparatus that will confirm or deny 
this claim. In Speaker identification, on the other hand, the 
perSon makes no claim about his identity, and the System 
must decide the identity of the Speaker, individually or as 
part of a group of enrolled people, or decide whether to 
classify the perSon as unknown. 

0201 Common for both applications is that each person 
to be identified must first enroll into the system. The 
enrollment (or training) is a procedure in which the person's 
Voice is recorded and the characteristic features are extracted 
and stored. A feature set which is commonly used is the LPC 
coefficients for each frame of the Speech Signal, or Some 
(nonlinear) transformation of these Jayant M. Naik, 
Speaker Verification. A tutorial, IEEE Communications 
Magazine, January 1990, page 43), Joseph P. Campbell Jr., 
Speaker Recognition. A tutorial, Proceedings of the IEEE 85 
(1997), 1436-1462), Sadaoki Furui, recent advances in 
Speaker Recognition, Lecture Notes in Computer Science 
1206, 1997, page 239). The motivation for using these is that 
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the vocal tract can be modeled using a LPC filter and that 
these coefficients are related to the anatomy of the Speaker 
and are thus speaker Specific. The LPC model assumes a 
Vocal tract excited at a closed end, which is the Situation only 
for voiced speech. Hence it is common that the feature 
Selection only processes the Voiced Segments of the Speech 
Joseph P. Campbell Jr., Speaker Recognition. A tutorial, 
Proceedings of the IEEE 85 (1997), page 1455). Since the 
THREE filter is more general, other segments can also be 
processed, thereby extracting more information about the 
Speaker. 

0202 Speaker recognition can further be divided into 
text-dependent and text-independent methods. The distinc 
tion between these is that for text-dependent methods the 
Same text or code words are spoken for enrollment and for 
recognition, whereas for text-independent methods the 
words Spoken are not specified. 

0203 Depending on whether a text-dependent or text 
independent method is used, the pattern matching, the 
procedure of comparing the Sequence of feature vectors with 
the corresponding one from the enrollment, is performed in 
different ways. The procedures for performing the pattern 
matching for text-dependent methods can be classified into 
template models and Stochastic models. In a template model 
as the Dynamic Time Warping (DTW) Hiroaki Sakoe and 
Seibi Chiba, Dynamic Programming Algorithm Optimiza 
tion for Spoken Word Recognition, IEEE Transactions on 
Acoustics, Speech and Signal Processing ASSP-26 (1978), 
43-49 one assigns to each frame of speech to be tested a 
corresponding frame from the enrollment. In a Stochastic 
model as the Hidden Markov Model (HMM) L. R. Rabiner 
and B. H. Juang, An Introduction to Hidden Markov Models, 
IEEE ASSP Magazine, January 1986, 4-16 a stochastic 
model is formed from the enrollment data, and the frames 
are paired in Such a way as to maximize the probability that 
the feature Sequence is generated by this model. 
0204 For text-independent speaker recognition the pro 
cedure can be used in a similar manner for Speech-recogni 
tion-based methods and text-prompted recognition Sadaoki 
Furui, Recent advances in Speaker Recognition, Lecture 
Notes in Computer Science 1206, 1997, page 241f where 
the phonemes can be identified. 

0205 Speaker verification. FIG. 17 depicts an apparatus 
for enrollment. An enrollment Session in which certain code 
words are spoken by a perSon later to be identified produces 
via this apparatus a list of Speech frames and their corre 
sponding MA parameters r and AR parameters a, and these 
triplets are Stored, for example, on a Smart card, together 
with the filter-bank parameters p used to produce them. 
Hence, the information encoded on the Smart card (or 
equivalent) is speaker specific. When the identity of the 
perSon in question needs to be verified, the perSon inserts his 
Smart card in a card reader and Speaks the code words into 
an apparatus as depicted in FIG. 18. Here, in Box 12, each 
frame of the speech is identified. This is done by any of the 
pattern matching methods mentioned above. These are stan 
dard procedures known in the literature Joseph P. Campbell 
Jr., Speaker Recognition. A tutorial, Proceedings of the 
IEEE 85 (1997), pages 1452-1454). From the smart card the 
corresponding r, a and p are retrieved. The filter-bank poles 
are transferred to the Bank of Filters and the Decoder. 
(Another p could be used, but the same has to be used in both 
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Box 1 and Box 7.) The parameters r and a are also trans 
ferred to the Decoder. The AR parameters a are used as 
initial condition in the Decoder algorithm (unless the central 
Solution is used in which case no initial condition is needed). 
Box 7 produces AR parameters a which hopefully are close 
to a. The error a-a from each frame is compounded in a 
measure of goodneSS-of-fit, and decision is finally made as 
to whether to accept or reject the perSon. 
0206 Speaker identification. In speaker identification the 
enrollment is carried out in a similar fashion as for Speaker 
Verification except that the feature triplets are Stored in a 
database. FIG. 19 depicts an apparatus for speaker identi 
fication. It works like that in FIG. 17 except that there is a 
frame identification box (Box 12) as in FIG. 18, the output 
of which together with the MA parameters a and AR 
parameters a are fed into a database. The feature triplets are 
compared to the corresponding triplets for the population of 
the database and a matching Score is given to each. On the 
basis of the (weighted) Sum of the matching scores of each 
frame the identity of the Speaker is decided. 
0207 Doppler-Based Applications and Measurement of 
Time-DelayS. In communications, radar, Sonar and geo 
physical Seismology a Signal to be estimated or recon 
Structed can often be described as a Sum of harmonics in 
additive noise P. Stoica and Ro. Moses, Introduction to 
Spectral Analysis, Prentice-Hall, 1997, page 139). While 
traditional methods are designed for either white noise or no 
noise at all, estimation of Sinusoids in colored noise has been 
regarded as difficult problem B. Porat, Digital Processing of 
Random Signals, Prentice-Hall, 1994, pages 285-286. 
THREE filter design is particularly Suited for the colored 
noise case, and as an ARMA method it offerS “Super 
resolution” capabilities P. Stoica and Ro. Moses, Introduc 
tion to Spectral Analysis, Prentice-Hall, 1997, page 136). As 
an illustration, See the Second example in the introduction. 
0208 Tunable high-resolution speed estimation by Dop 
pler radar. We disclose an apparatus based on THREE filter 
design for determining the Velocities of Several moving 
objects. If we track m targets moving with constant radial 
Velocities V,V2,..., V, respectively, by a pulse-Doppler 
radar emitting a signal of wave-length 2, the backScattered 
Signal measured by the radar System after reflection of the 
objects takes the form 

0209 where 0, 0,..., 0, are the Doppler frequencies, 
V(t) is the measurement noise, and C1, C2, . . . , C, are 
(complex) amplitudes. (See, e.g., B. Porat, Digital ProceSS 
ing of Random Signals, Prentice-Hall, 1994, page 402 or P. 
Stoica and Ro. Moses, Introduction to Spectral Analysis, 
Prentice-Hall, 1997, page 175).) The velocities can then be 
determined as 

y = k = 1.2 i k = 4A = 1, 2, ... it, 

0210 where A is the pulse repetition interval, assuming 
once-per-pulse coherent in-phase/quadrature Sampling. 
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0211 FIG.20 illustrates a Doppler radar environment for 
our method, which is based on the Encoder and Spectral 
Analyzer components of the THREE filter. To estimate the 
Velocities amounts to estimating the Doppler frequencies 
which appear as Spikes in the estimated Spectrum, as illus 
trated in FIG. 7. The device is tuned to give high resolution 
in the particular frequency band where the Doppler frequen 
cies are expected. 
0212. The only variation in combining the previously 
disclosed Encoder and Spectral Estimator lies in the use of 
dashed rather than Solid communication links in FIG. 20. 
The dashed communication links are optional. When no 
sequence r of MA parameters is transmitted from Box 6 to 
Box 7", Box 7' chooses the default values r=(t, T.,..., T,), 
which are defined via (3.1) in terms of the Sequence p of 
filter-bank parameters, transmitted by Component 4 to Box 
7". In the default case, Box 7" also transmits the default 
values r=t to Box 10. For those applications when it is 
desirable to tune the MA parameterS Sequence r from the 
observed data Stream, as disclosed above, the dotted lines 
can be replaced by Solid (open) communication links, which 
then transmit the tuned values of the MA parameter 
sequence r from Box 6 to Box 7" and Box 10. 
0213 The same device can also be used for certain spatial 
doppler-based applications P. Stoica and Ro. Moses, Intro 
duction to Spectral Analysis, Prentice-Hall, 1997, page 248). 
0214 Tunable high-resolution time-delay estimator. The 
use of THREE filter design in line spectra estimation also 
applies to time delay estimation M. A. Hasan and M. R. 
Azimi-Sadadi, Separation of multiple time delays using new 
Spectral estimation Schemes, IEEE Transactions on Signal 
Processing 46 (1998), 2618-2630M. Zeytinoglu and K. M. 
Wong, Detection of harmonic sets, IEEE Transactions on 
Signal Processing 43 (1995), 2618-2630 in communication. 
Indeed, the tunable resolution of THREE filters can be 
applied to Sonar Signal analysis, for example the identifica 
tion of time-delays in underwater acoustics M. A. Hasan 
and M. R. Azimi-Sadadi, Separation of multiple time delays 
using new spectral estimation Schemes, IEEE Transactions 
on Signal Processing 46 (1998), 2618-2630). 
0215 FIG. 21 illustrates a possible time-delay estimator 
environment for Our method, which has precisely the same 
THREE-filter structure as in FIG. 20 except for the prepro 
cessing of the signal. In fact, this adaptation of THREE filter 
design is a consequence of Fourier analysis, which gives a 
method of interchanging frequency and time. In more detail, 
if x(t) is the emitted signal, the backscattered signal is of the 
form 

0216 where the first term is a sum of convolutions of 
delayed copies of the emitted signal and V(t) represents 
ambient noise and measurement noise. The convolution 
kernels h, k=1, 2, . . . , m, represent effects of media or 
reverberation M. A. Hasan and M. R. Azimi-Sadadi, Sepa 
ration of multiple time delayS using new spectral estimation 
Schemes, IEEE Transactions on Signal Processing 46 
(1998), 2618-2630), but they could also be 8-functions with 
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Fourier transforms H(c))=1. Taking the Fourier transform, 
the Signal becomes 

0217 where the Fourier transform X(()) of the original 
Signal is known and can be divided off. 
0218. It is standard in the art to obtain a frequency 
dependent signal from the time-dependent Signal by fast 
Fourier methods, e.g., FFT. Sampling the signal Z(w) at 
frequencies (t)=too, T=0, 1, 2, . . . , N, and using our 
knowledge of the power spectrum X(CO) of the emitted 
Signal, we obtain an observation record 

0219) yoy1, y2. . . , y N. 

0220 of a time series 

0221 where 0=(ooo and v(t) is the corresponding noise. 
To estimate spectral lines for this observation record is to 
estimate 0, and hence Ös for k=1, 2, . . . , m. The method 
and apparatus described in FIG. 20 is then a THREE 
line-spectra estimator as the one disclosed above and 
described in FIG. 20 with the modifications described here. 
In particular, the Transmitter/Receiver could be a Sonar. 

0222. Other Areas of Application. The THREE filter 
method and apparatus can be used in the encoding and 
decoding of Signals more broadly in applications of digital 
Signal processing. In addition to Speaker identification and 
verification, THREE filter design could be used as a part of 
any System for Speech compression and Speech processing. 
The use of THREE filter design line spectra estimation also 
applies to detection of harmonic sets M. Zeytinoglu and K. 
M. Wong, Detection of harmonic sets, IEEE Transactions on 
Signal Processing 43 (1995), 2618-2630). Other areas of 
potential importance include identification of formants in 
speech and data decimation M. A. Hasan and M. R. 
Azimi-Sadadi, Separation of multiple time delays using new 
spectral estimation Schemes, IEEE Transactions on Signal 
Processing 46 (1998), 2618-2630). Finally, we disclose that 
the fixed-mode THREE filter, where the values of the MA 
parameters are Set at the default values determined by the 
filter-bank poles also possesses a Security feature because of 
its fixed-mode feature: If both the Sender and receiver share 
a prearranged set of filter-bank parameters, then to encode, 
transmit and decode a Signal one need only encode and 
transmit the parameters W generated by the bank of filters. 
Even in a public domain broadcast, one would need knowl 
edge of the filter-bank poles to recover the transmitted 
Signal. 

0223 Various changes may be made to the invention as 
would be apparent to those skilled in the art. However, the 
invention is limited only to the Scope of the claims appended 
hereto, and their equivalents. 
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APPENDIX A 

Determination of Spectral Zeros 

There are several alternatives for tuning the MA parameters 

(2.4). First, using the Autocorrelation Method LT. P. Barnwell III, 
K. Nayebi and C. H. Richardson, Speech Coding: A Computer Laboratory 
Textbook, John Wiley & Sons, New York, 1996, pages 91-93), or some 
version of Burg's algorithm B. Porat, Digital Processing of Random 
Signals, Prentice Hall, 1994, page 176), we first Compute the PARCOR 
coefficients (also callied reflection coefficients) 

Wo: 1. m+n 
for some in 2 in , and then we Solve the Toeplitz system 

9m m-1 n+1-n || 1 m+1 

m+1 ym m+2-n + 2 m+2 
d = - (A. l.) 

Ym+n-1 m+n-2 ''' m n m+n 

for the parameters 1, 2, , , . If the polynomial 

p(z) = 2" + rz"+ ... + r. f 

has all its roots less than one in absolute value, we use , 2,' ' ', 

as MA parameters. If not, we take p(z) to be the stable spectral 

-1 
factor of p(z)p(z ), obtained by any of the factorization 

algorithms in Step 2 in the Decoder aligorithm, and normalized so that 

the leading coefficient (that of z' is 1. 

Alternative methods can be based on any of the procedures 
described in J. D. Markel and A. H. Gray, Linear Prediction of Speech, 
Springer Verlag, Berlin, 1976, pages 271-275), including Prony's 
method with constant term. These IIaethods are not by themselves good 
for producing, for example, Synthetic speech, because they do not 

satisfy the interpolation conditions. However, here we use only the 
zero computation, the corresponding poles being determined by our 

Inethods. Alternatively, the zeros can also be chosen by determining 
the phase and the moduli of the zeros from the notches in an observed 
spectrum, as represented by a periodogram or as Computed using Fast 

Fourier Transforms (FFT). This is depicted in Figure 22 where a 

513834 64 doc 
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Figure 22: Invention: Selecting the zeros from a periodogram. 
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APPENDIX B 

ROUTINE PM 

function Pick=pm (p, w) 

'''''''''''''''''''''''''''''''''''''AAAA%. 

%, function Pick=pm (p, w, option) 
%, 
% Works with scalar data 

%% p! (1, W in C 
. 

7%. It corresponds to: 

%. p --> w 

7%. Computes the Pick matrix for the corresponding Caratheodory problem 

%% (the Pick matrix is unitarily equivalent to the one corresponding 
% to the assignment p (-1) --> w.) 

%, NOTE: p's must not be repeated 
, 

%2, DEFAULT: If p-i is contain in p, the so is conj (p-i). 

%% If the conjugate values ARE NOT part of the array, 
.. then set OPTION to any nonzero value. 

t 
A%.47%.7%%.77%%.4% 

if length (P) =length (w), disp (p,w ought to have the same size), return, end 
p=p(:); w=w (: ); n=length(p); 

if nargin==3, 
for i=1:n, 
if abs (imag (p (i))) >10-keps, p=p; conj Cp (i)); w w; conj (w (i))); 
elseif abs (imag (w (i)))>10*eps, dispC real p-i should correspond with real wii), 

disp (' -- TERMINATED), 
else, p (i) =real (p(i)); w (i) =real (w (i)); 
end, 

end, 
end 
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A=compan (tau); c= zeros (1, length (tau) -2) 1); 
'%', SOLVING 
% P-A::PskA - (bq - AxPxc)x (dq+dq - ci-P+c) -1 k (bq - AskPkc') 
(P,L, G, flag)=dare (A, c', zeros (size (A)), -dq-dq, -ba, report'); 

% (X1,X2, L, flag)=dare (A’, c', zeros (size (A)), -dq-dq, -ba, implicit); 
if abs (flag)>1e-5, as ); return, end 

tau=tau (:) . ; 
ha=flipud (ha ( :)) . ; 
a=conv (tau, ha); 
a Fa(1:length (tau)); 
44%.A.Y.E.7%%%.7%%%%%%%%.'''''', 

%. Last line of q2a.m. (September 5, 1998). 

ROUTINE CENTRAL 

function (num, dens central (p, w) 

%% function num, den) =central (p, w) 

7. Computes the central solution corresponding to interpolation data 
% Z=p^{-1}(1); p-(-1}(2); ... p-(-1}(n) and w=w (1); w (2); ... wOn)), where 
%, 

f(p(i) {-1}) = w (i) NOTE: p’s are inside the unit disc 
and interpolation is required at their reflection as well 

%, with the corresponding conjugate value. 
%, 
4. The solution is provided in either 

(i) the form of a positive real function 

... It assumes (1) that p (1) be 0; this a convenient normalization, 
''. (2) that if pk is in p then pk* is NOT in p, <<<<<<<<< IMPORTANT 

. 
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ahat=(muk (num3+num1)+(num4+num2))/sqrt (1-mu2); 
bhatswok (muk (num3-num1)+(num4-num2))/sqrt (1-mu2); 

den-sum(tau. 2)/(2-kahatibhat) kahat; 
num=sum(tau. 2) f(2kahatibhat) kbhat; 

%27.7%%%%%.7%777.7%%.77%%%.4%.77%%.7%%.77%.7%%.7%%%%.7%%%%.77%%.7%%, 
%. Last line of central.m (September 24, 1998) 

ROUTINE DECODER 

function b, a = decoder (p, w,r, Init, lambda) 

''''''''''''''''''''''''''''''''''''', 
. 
% function (b,a) = decoder (p,w,r, Init, lambda) 
'. 
%. Standing Assumptions: (i) p-0=0, 

(ii) If p-i is complex conj(p-i), then is not in p. 

%. Init=1 or 2 (choice of initialization 1 or 2) 
%% lambda = initial choice for correction scaling in updating h --> h - lambdakd 

(default: lambda=1e-3, dynamically adjusted in subsequent steps). 
2.44%.I.A.A.A.A.A.A.A.A.A., 

% NEEDS: pm.m., central.m 
%.7%%%%.4%%.4%, 

%%%%%%%%%.7%%, BEGINNING CHECKS and SETTING UP DATA (p, w, n,nc, taur) 7%%%%%% 

if narging2, disp(Less than 2 arguments -- TERMINATED), return, end 
p=p(:); W=w (: ); n=length (p)-1; 









US 2003/0055630 A1 Mar. 20, 2003 
26 

lambda=lambdak C4; 
hnew=h-lambda-kd; 
(a, flag)=q2a(tau,hnew); 
end 

b = ( hankel (a)+fliplr (hankel (fliplr (a))) ) \pis (: ); b=b. ; 
e0=w (1)-b (1)/a (1); 
e=w (2:n+1)-polyval (b,z12n). Wpolyval (a,z12n); 
approximation error=norm Ce(); e)); 

end 

''''''''''''''''''''''''''''''''''''''''', 
Last line of decoder.m. (September 21, 1998) 
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APPENDIX C 

A CONVEX OPTIMIZATION APPROACH TO THE RATIONAL 
COVARIANCE EXTENSION PROBLEM 

CHRISTOPHER. I. BYRNES, SERGEI V. GUSEVE, AND ANDERS LINDQUISTS 

Abstract. In this paper we present a convex optimization problem for solving the rational 
covariance extension problern. Given a partial covariance sequence and the desired zeros of the 
modeling filter, the poles are uniquely determined from the unique minimum of the corresponding 
optimization problem. In this way we obtain an algorithm for solving the covalance extension 
problem, as well as a constructive proof of Georgiou's seminal existence result and his conjecture, a 
stronger version of which we have resolved in 7. 
Key words. rational covariance extension, partial stochastic realization, trigonometric nonent 

problem, spectral estimation, speech processing, stochastic nodeling 

AMS subject classifications. 30E05, 60G35, 62M15, 93A30, 93E12 

1. Introduction 

In 7 a solution to the problem of parameterizing all rational extensions of a given 
window of covariance data has been given. This problenn has a long history, with 
antecedents going back to potential theory in the work of Carathéodory, Toeplitz and 
Schur 9, 10, 31 30, and continuing in the work of Kalman, Georgiou, Kimura, and 
others 18, 14, 21. It has been of more recent interest due to its significant interface 
with problems of in signal processing and speech processing 11, 8, 25, 20 and in 
stochastic realization theory and system identification 2, 32, 22. Indeed, the recent 
solution to this problem, which extended a result by Georgiou and answered a conjec 
ture by him, 13, 14 in the affirmative, has shed some light on the stochastic (partial) 
realization problem through the development of an associated Riccati-type equation, 
whose unique positive semi-definite solution has as its rank the mininum dimension 
of a stochastic linear realization of the given rational covariance extension (6). In both 
its form as a complete parameterization of rational extensions to a given covariance 
sequence and as an indefinite Riccati-type equation, one of the principal problems 
which renains open is that of developing effective computational methods for the 
approximate solution of this problern. In this paper, Laotivated by the effectiveness of 
interior point methods for solving nonlinear convex optimization Problems, we recast 
the fundamental problem as such an optinization problen. 

a This research was supported in part by grants from AFOSR, NSF, TFR, the Göran Gustafsson 
Foundation, the Royal Swedish Academy of Sciences, and Southwestern Bell. 

Department of Systems Science and Mathematics, Washington University, St. Louis, Missouri 
63130, USA (chrisby reads eas.wustl.edu). w 

Department of Mathematics and Mechanics, St. Petersburg University, St. Petersburg 198904, 
Russia (sergeiegues ev.I.iinn, spb., su). 

S Division of Optimization and Systerns Theory, Royal Institute of Technology, 100 44 Stockholm, 
Sweden Calgamath.kth..se). 
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In Section 2 we describe the principal results about the rational covariance exten 
sion problen, while setting notation we shall need throughout. The only solution 
to this problem for which there has been simple computational procedures is the so 
called inarimum entropy solution, which is the particular solution that Inaximizes the 
entropy gain. In Section 3 we demonstrate that the infinite-dimensional optimization 
problern for determining this solution has a simple finite-dimensional dual. This no 
tivates the introduction in Section 4 of a nonlinear, strictly convex functional defined 
on a closed convex set naturally related to the covariance extension problem. We 
first show that any Solution of the rational covariance extension problem lies in the 
interior of this convex set and that, conversely, an interior mininuin of this convex 
functional will correspond to the unique solution of the covariance extension problem. 
Our interest in this convex optimization problem is, therefore, twofold: as a starting 
point for the Computation of an explicit solution, and as a means of providing an 
alternative proof of the rational covariance extension theorem. 

Concerning the existence of a Dinimum, we show that this functional is proper 
and bounded below, i.e., that the sublevel sets of this functional are compact. Fron 
this, it follows that there exists a minimum, Since uniqueness follows fron strict 
convexity of the functional, the central issue which needs to be addressed in order to 
solve the rational covariance extension problem is whether, in fact, this Ininimum is 
an interior point. Indeed, our formulation of the convex functional, which contains 
a barrier-like term, was inspired by interior peint methods. However, in contrast 
to interior point Inethods, the barrier function we have introduced does not become 
infinite on the boundary of our closed convex set. Nonetheless, we are able to show 
that the gradient, rather than the value, of the convex functional becomes infinite on 
the boundary. The existence of an interior point which minimizes the functional then 
follows from this observation, 

In Section 5, we apply these convex minimization techniques to the rational co 
variance extension problem, noting that, as hinted above, we obtain a new proof of 
Georgiou's conjecture. Moreover, this proof, unlike our previous proof 7 and the 
existence Proof of Georgiou (14, is constructive. Consequently, we have also obtained 
an algorithmic procedure for solving the rational covariance extension problem. In 
Section 6 we report some computational results and present some simulations. 

2. The rational covariance extension problem 
It is well-known that the spectral density c(z) of a Purely nondeterministic stationary 
randon process y(t)} is given by the Foulier expansion 

s 

d(e)=Xce' (2.1) 
arra 

on the unit circle, where the covariance lags 
C = EU-ky) k = 0, l, 2, (2.2) 

play the role of the Fourier coefficients 
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In spectral estimation (8), identification (2,22,32), speech Processing 11, 25, 24, 29 
and several other applications in signal processing and systems and control, one is 
faced with the inverse problem of finding a spectral density, which is coercive, i.e., 
positive on the unit circle, given only 

c = (co, C1, ..., C.), (2.4) 
which is a partial covariance sequence positive in the sense that 

Co di C. 
c Co C-1 T - "'> 0, (2.5) 
C. Cr- Co 

i.e., the Toeplitz Inatrix T is positive definite. 
In fact, the covariance lags (2.2) are usually estinated from an approximation 

1 - 
wa--ms ?t-kye N-k+12 

of the ergodic limit 
T 

l 
ck in X very, 

since only a finite string 
90, I, 22, 23 . . . .2/N 

of observations of the process y(t)} is available, and therefore we can only estinate 
a finite partial covariance (2.4) where n << N. 
The corresponding inverse problem is the left with a version of the trigonometric 

norrent problem: Given a sequence (2.4) of real numbers satisfying the positivity 
condition (2.5), find a coercive spectral density d(a) such that (2.3) is satisfied for 
= 0, 1,2,..., n. Of course there are infinitely many such solutions, and we shall 

shortly specify sonne additional properties which we would like the solution to have 
The trigonometric Inonent Problem, as stated above, is equivalent to the Catathéo 

dory eatension problem to determine an extension 
on--1 Cr--2, C-3; - - - (2.6) 

with the property that the function 

u(z) = co + c2 + cz +... (2.7) 
is strictly positive real, i.e., is analytic on and outside the unit circle (so that the 
Laurent expansion (2.7) holds for all z > 1) and satisfies 

v(z) + w(z) > 0 on the unit circle. (2.8) 
In fact, given such a v(z), 

g(z) = u(z) + w(z) (2.9) 
is a solution to the trigonometric nonent problern. Conversely, any coercive spectral 
density (2) uniquely defines a strictly positive real function v(z) via (2.9). 
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These problems are classical and go back to Carathéodory 9, 10), Toeplitz 31) 
and Schur (30). In fact, Schur parameterized all solutions in terrns of what is now 
known as the Schur parameters, or, which is more common in the circuits and systerns 
literature, reflection coefficients, and which are easily deter nined from the covariance 
lags via the Levinson algorithm (27. More precisely, modulo the choice of Co, there is 
a one-to-one correspondence between infinite covariance sequences co, C1, C2, ... end 
Schur parameters to, y1,... such that 

| < 1 for t=0,1,2,... (2.10) 
under which partial sequences (2.4) corresponds to partial sequences no, r1, ..., n-1 of 
Schur parameters. Therefore, covariance extension (2.6) amounts precisely to finding 
a continuation 

in 1-1 (n+2. (2.11) 
of Schur paratnetters satisfying (2.10). Each such solution is only guaranteed to yield 
a v(z) which is meromorphic. 

In circuits and systems theory, however, one is generally only interested in solu 
tions which yield a rational v(z) of at most degree n, or, which is equivalent, a ra 
tional spectral density f(z) of at most degree 2n. Then, the unique rational, stable, 
minimum-phase function u(z) having same degree as v(2) and satisfying 

w(z)w(z) = f(z) (2.12) 
is the transfer function of a modeling filter, which shapes white noise into a random 
process with the first n + 1 covariance lags given by (2.4); see e.g. 7, 6) for more 
details. 

Setting all free Schur parameters (2.11) equal to zero, which clearly satisfies the 
condition (2.10), yields a rational solution 

at-i-5. (2.13) 
where a (2) is a polynomial 

a(z) = az"+ a12" + . . ...+ a (ao > 0), (2.14) 
which is easily computed via the Levinson algorithin 27). This so called nazimurn 
entropy solution is an all-pole or AR solution, and the corresponding modeling filter 

f 
u(z) = a(z) (2.15) 

has all its zeros at the origin. 
However, in many applications a wider variety in the choice of zeros are required 

in the spectral density P(z). To illustrate this point, consider in Figure 2.1 a spectral 
density in the form of a periodogram determined from a speech signal sampled over 
20 ns (in which time interval it represents a stationary process) together with a 
maximum entropy solution corresponding to n. F 6. As can be seen the latter yields 
a rather flat spectrum which is unable to approximate the valleys or the "notches” in 
the speech spectrum, and therefore in speech synthesis the maximum entropy solution 
results in artificial speech which sound quite flat. This is a manifestation of the fact 
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Figure 2.1: Spectral envelope of a maximum entropy solution. 
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a corollary of a, Inore general theoren on complementary foliations of the space of all 
rational positive real functions of degree at Inost n. 

Theorem 2.1 (7). Giver any partial covariance sequence (2.4) and Schut poly 
nomial (2.17), there eatists a unique Schur polynomial (2.14) such that (2.16) is a 
minimum-phase spectral factor of a spectral density (2) satisfying 

d(z) = c +X 6-(z+ 2), 
s 

auhere 

?k = c jot i = 1,2,..., n 

In particular, the solutions of the rational positive entension problen ate in one-one 
correspondence with self-conjugate sets of n points (counted with multiplicity) lying in 
the open unit disc, i.e. upith all possible zero structures of modeling filters. Moreover, 
this correspondence is bianalytic. 

Consequently, we not only proved Georgiou's conjecture that the family of all ra 
tional covariance extensions of (2.4) of degree at most n is conpletely parameterized 
in terms of the zeros of the corresponding modeling filters u(z), but also that the 
modeling filter w(2) depends analytically on the covariance data and the choice of 
Zeros, a strong form of well-posedness increasing the likelihood of finding a numerical 
algorithm. 

In fact, both Georgiou's existence proof and our proof of Theorem 2.1 are noncon 
structive. However, in this paper we present for the first time an algorithm which, 
given the partial covariance sequence (2.4) and the desired zero polynomial (2.17), 
computes the unique pole-polynomial (2.14). This is done via the convex optimization 
problem to IIlininize the value of the function (2 : R* - R, defined by 

sp(go, gi,...,g) - Cogo -- c1gi - - - - -- c.g. 

flog Q(e")e(e")'de, (2.18) 
2r - 

over all go, g1, ...,g such that 

Q(e') = go + qi cos 0-- gy cos 26 -- . . . . g cosne > 0 for all 8. (2.19) 

In Sections 4 and 5 we show this problem has a unique minimum. In this way we 
shall also provide a new and constructive proof of the weaker form of Theorem 2.1 
conjectured by Georgiou. 
Using this convex optimization problem, a sixth degree Inodeling filter with zeros 

at the appropriate frequencies can be constricted for the speech segment represented 
by the periodogram of Figure 2.1. In fact, Figure 2.2 illustrates the same periodogram 
together with the spectral density of such a filter. As can be seen this filter yields a 
much better description of the notches than does the maximurn entropy filter. 
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Figure 2.2: Spectral envelope obtained with appropriate choice of zeros. 

  



US 2003/0055630 A1 Mar. 20, 2003 
34 

S C. I. BYRNES, S. V. GUSEV, AND A. LLNDCRUIST 

We begin by setting up the appropriate spaces. Recall fron classical realization 
theory that a rational function 

&o + &z' + 82 + ... i u(z) = 
of degree n has a representation 

& = h"F"g k = 1,2,3,... 
for some choice of (F, g, h) e R* x IR" x R". Therefore, if in addition u(z) is strictly 
positive real, implying that all eigenvalues of F are less than one in modulus, ?t tends 
exponentially to zero as k - co. Hence, in particular, 

C := (éo, 61, 62, ...) 
must belong to 6. Moreover, the requirement that (3.1) be a coercive spectral density 
adds another constraint namely that ?belongs to the set 

g = {ee e, a +Xe(e" + e") > 0}. (3.4) 
si 

Now, let 

b(c) = - log +Xe(e" + cal d6, (3.5) 
re- =l 

be a functional 3 - R, and consider the infinite-dimensional convex constrained 
optimization problem to mininize b(e) over 3 given the finite number of constraints 
(3.2). Thus we have relaxed the optimization problem to allow also for nonrational 
spectral densities. 

Since the optimization problen is convex, the Lagrange function 

L(e,x) = h(e) + XX (é - c.) (3.6) 
k=0 

has a saddle point (26, p. 458 provided the stationary point lie in the interior of 3, 
and, in this case, the optinal Lagrange vector X = (Ao X1, ... A.) e R” can be 
deter nined by solving the dual problem to maximize 

p(x) = Lé, A). (3.7) 
To this end, first aote that 

6L f"rike -ikaya,-1 flievi rrn are - 69 for k = 0,1,2,... 3.8 ba 27 (e -- e ). (e ) -- A. or ki O, a? , ( ) 

and that 

8L. -- "(eice -- e-k)4-(e)ag for k = n -- 17, -- 2 (3.9) 
Öek 2nt J. s - - - - a 

Then, setting the gradient equal to zero, we obtain from (3.9) 
1 / 2 (e'+ e )sp (e'jda = 0 for |t| > n, 
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fron which it follows that p' must be a pseudo polynomial 

Q(z) = go + qi (2 + 2) + . . . + kg (2" + 2") (3.10) 
of degree at nost n, i.e., 

d'(z) = Q(2), (3.ll) 
yielding a spectral density of which is rational of at most degree 2n and thus belonging 
to the original (nonrelaxed) class of spectral densities. Likewise we obtain from (3.8) 

1 f" . . 
x = (e' --ek) is (e")da (3.12) 27T - 

for k = 0,1,2,...,n, which together with (3.11) yields 
A = ge: for k = 0,1,2,..., n. (3.13) 

But, the ninimizing 6 is given by 
n 1 f" 1.-led , -ke if y-l 

it - - de y * 21 (er" + e-")Q(e") (3.14) 
and Consequently 

7. i - 

a?k F ; I Q(ef) Q(e") d6 = 1. (3.15) 27 J 
To determine the optinal (saddle poist) Lagrange multipliers we turn to the dual 

problem. In view of (3.11), (3.13) and (3.15) the dual function is 
p(a) - Q(t')d6 - 1 - c'g, 

-1A 

where c e IR"t is the vector with bompone s co, c1, ... --, c. Consequently, the dual 
problem is equivalent to rninimizing 

1. ta(q) = ca - Llog Q(e")de (3.16) 
over all ge. R"t such that the pseudo polynomial (3.10) is nonnegative on the unit 
circle, i.e., 

Qc") > 0 for all 6, (3.17) 
and if the dual problen has an diptimal s ution satisfying (3.17), the optimal Q 
solves the Prinal problem when inserted inte (3.ll). 
The dual problem to minimize (3,16) given (3.17) is a finite-dimensional convex 

optimization problem, which is simpler than the original (prinal) problen. Clearly 
it is a special case of the optimization problem (2.18)-(2.19), obtained by setting 
o(e') = 1 as required for the maximum entropy solution. Figurc 3.1 dcpicts a 
typical cost function p in the case n = As seen it is convex and attains its 
optimurn in an interior point so that the spectral density is has all its poles in the 
open unit disc as required. That this is the case in general will be proven in Section 5. 
We stress again that the purpose of this section is not primarily to derive an al 

gorithin for the Inaximum entropy solution, for which we already have the simple 
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Figure 3.1: A typical cost function p(a) in the case n =l, 
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so the problem is reduced to determining the variables 
go 

q = e R+1 (4.5) 
g 

in the pseudo-polynomial 

Q(z) = go + qi (2 + z') + g(z” +z) + - - - + gn(z" + 2) (4.6) 
so that the conditions (4.3) and 

Q(e) > 0 for all 8 e -71, 7t (4.7) 
are satisfied. 
Now, consider the convex functional (p(g) : R -) IR defined by 

e(a) = ea - flog Q(e")|ace")Pde. (4.8) 
Our motivation in defining p(g) comes in part from the desire to introduce a barrier 
like term, as is done in interior point methods, and in part from our analysis of the 
maximum entropy Inethod in the previous section. As it turns out, by a theorem 
of Szegö the logarithmic integrand is in fact integrable for nonzero Q having zeros 
on the boundary of the unit circle, so that p(g) does not become infinite on the 
boundary of the convex set. On the other hand, p(g) is a natural generalization of 
the functional (3.16) in Section 3, since it specializes to (3.16) when a (e') = 1 as 
for the maxinurn entropy solution. As we shall see, minimizing (4.8) yields precisely 
via (4.4) the unique a(z) which corresponds to a (2). 

It is clear that if g e T where 
T = {(g e IR" (Q(z) > 0 for z = 1), (4.9) 

then p(g) is finite. Moreover, p(q) is also finite when Q(z) has finitely Inany zeros on 
the unit circle, as can be seen from the following lemma. 
Lemma 4.l. The functional (p(g) is finite and continuous at any q e TD eccept at 
zero. The functional is infinite, but continuous, at g = 0. Moreover, a is a C 
function on 2. 
Proof. We want to prove that p(q) is finite when g 740. Then the rest follows by 
inspection. Clearly, p(g) cannot take the value-co; hence it remains to prove that 
(p(g) < Co. Since g 74 0, 

pi := max Q(e") > 0. 
Then, setting P(z) := u Q(2), 

log P(ei) 30 (4.10) 
and 

v 1. - i 7 - 

p(q) = c q - log u ? le(e")Pae - I log P(e")le(e)I'ds, 
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and hence the question of whether p(g) < Co is reduced to deternining whether 

- I log P(e)a(e) de < co. 
- 

But, since a (e') g M for some bound M, this follows from 
I log P(e").d6 > -oo, (4.11) 
-?t 

which is the well-known Szeg? condition: (4.11) is a necessary and sufficient condition 
for P(e) to have a stable spectral factor 17. But, since P(2) is a symmetric pseudo 
polynomial which is nonnegative on the unit circle, there is a polynomial T(z) such 
that T(z)7t(z) = P(z). But then w(z) = 2. is a stable spectral factor, and hence 
(4.11) holds. D 
Lemma 4.2. The functional p(q) is strictly convez and defined on a closed, corveat 
domain. 

Proof. We first note that g = 0 is an extreme point, but it can never be a mininnun 
of a since p(0) is infinite. In particular, in order to check the strict inequality 

se(Xg + (1-X)g) < xp(g) + (1 - A)p(q), (4.12) 
where one of the arguments is zero, one need only consider the case that one of g() or 
g is zero, in which case the strict inequality holds. We can now assume that none 
of the arguinents is zero, in which case the strict inequality in (4.12) follows from 
the strict concavity of the logarithm. Finally, it is clear that TD, is a closed convex 
subset. f 

Lemma 4.3. Let g e Di, and suppose g 70. Then cq > 0. 
Proof. Consider an arbitrary covariance extension of C such as, for example, the Inax 
imum entropy extension, and let P(z) be the corresponding spectral density (2.9). 
Then c is given by (2.3), which may also be written 

m l 7t l ise -Eld . c. = i. 1;(e"+e")4(e")do, k - 0, 1,...,n. 
Therefore, in view of (4.6), 

l 6 9 
e - s d cq - Loc") (e")do, (4.13) -n. 

which is positive whenever Q(z) > 0 on the tunit circle and g 740. O 
Proposition 4.4. For ali t e R, e- (-oi, T is compact. Thus p is proper (i.e., 
p(K) is compact whenever K is compact) and bounded from below. 
Proof Suppose g is a sequence in M = p(-oo, r). It suffices to show that g() 
has a convergent subsequence. Each Q may be factored as 

where Xk is positive and a() (2) is a nonic polynomial all of whose roots lie in the 
closed unit disc. The corresponding sequence of the (unordered) set of n roots of 
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each a ()(z) has a convergent subsequence, since all (unordered) sets of roots lie in 
the closed unit disc. Denote by a (z) the Inonic polynomial of degree 7 which vanishes 
at this limit set of roots. By reordering the sequence if necessay, we may assurne 
the sequence a(z) tends to a(z). Therefore the sequence g has a convergent 
subsequence if and only if the sequence X does, which will be the case Provided the 
sequence X is bounded from above and from below away from zero. Before proving 
this, we note that the sequences c'g'', where g is the vector corresponding to the 
pseudo-polynomial Q, and 

I log Q(e")|ace")'de (4.14) 
are both bounded from above and from below respectively away fron zero and -co. 
The upper bounds cone from the fact that {a (2)} are Schur polynomials and hence 
have their coefficients in the bounded Schur region. As for the lower bound of ca, 
note that ca() > 0 for all k (Lemma 4.3) and ca) - a > 0. In fact, Q(e) - 
|a(e"), where a(z) has all its zeros in the closed unit disc, and hence it follows fron 
(4.13) that a > 0. Then, since p(q) < co for all g e TD except g = 0 (Lemma 4.1), 
(4.14) is bounded away from -oo. Next, observe that 

(k)) = x ca) - - - X p(q) = xkc'g log I 
am 

From this we can see that if a subsequence of X were to tend to zero, then p(g) 
would exceed r. Likewise, if a subsequence of X were to tend to infinity, p would 
exceed r, since linear growth dominates logarithmic growth. 

5. Interior critical points and solutions of the rational covariance extension 
problenn i 

In the previous section, we showed that a has compact sublevel sets in 2;, so that 
a achieves a minimum. Moreover, since p is strictly convex and Ti is convex, such 
a minimum is unique. We record these observations in following statement. 
Proposition 5.1. For each portial covariancé sequence c and each Schur polynomial 
a(z), the functional p has a unique minimum on TD;. 

In this paper we consider a question which k of independent interest, the question 
of whether (p achieves its nininun at an interior point. The next result describes an 
interesting systems-theoretic consequence of the existence of such interior minima. 
Theorem 5.2. Fia: a partial covariance sequence c and a Schur polynomial a(z). If 
ge TD is a minimurn for p, then 

Q(z) = a(z)di(z), (5.1) 
where a(z) is the solution of the rational coytriance eatension problem. 
Proof. Suppose that ge. 2 is a mininuin for p. Then 

E() = 0 for 0,1,2,..., n, (5.2) 
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Differentiating inside the integral, which is allowed due to uniform convergence, (5.2) 
yields 

- e 

C - l (eite.-- e-iko) la --d6 = 0 
a 27T J-2 aff 

where d(z) is the pseudo-polynomial (4.6) cor 

Y2 
) for k = 0, l, , , -, n, 

responding to g, or, equivalently, 
t 2. 

C. F 'kille de for k = 0, 1,..., n., (5.3) 

As a corollary of this theorem we have thet the gradient of to at any a e TD is 
given by 

6p : - 
aar- 5-4 i;() c-c. (5-4) 

where 

1 f" alo (e") = - I e -d6 k = 0,1,2,..., 5.5 C. 2T - Q(e) k 7, (5.5) 

is the partial covariance sequence corresponding to a process with spectral density 

steel lac") b( ). Qe?e) 
where d(2) is the pseudo-polynonial correspading to di. The gladient is thus the 
difference between the true and calculated partial covariance sequence. 
We now state the converse result, underscoring our interest in this particular convex 

optimization problen. 
Theorea 5.3. For each partial covariance sequence c and each Schur polynomial 
o(z), suppose that d(z) gives a solution, to the rational covariance eatension problem. 
If 

G(z) = a(z) (), (5.6) 
then the corresponding (n+1)-vector a lies iri Ti and is a unique minimum for p. 
Proof. Let acz) be the solution of the ratical covariance extension problen corre 
sponding to c and a(z), and let G(z) be giver by (5.6). Then c satisfies the interpo 
lation condition (5.3), which is equivalent to. (5.2), as seen from the proof of Theorem 
5.2. But, since a(z) is a Schur polynomial (z) > 0 on the unit circle, and thus 
ge D. Since p is strictly convex on D., (53) implies that g is a unique minimum 
for p. O 

Since the existence of al solution to the rational covariance extension problem has 
been established in 14 (see also 7), qne dp in fact know the existence of interior 
Ininina for this convex optimization problern. On the other hand, we know from 
Proposition 5.1 that p has a minimum for shrine ge TD, so to show that p has a 
ninimurn in the interior T: it remains to prove the following lemma. 
Lenna 5-4. The functional p never attairs a minimum on the boundary 82di. 
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Proof. Denoting by De?a) the directional derivative of p at q in the direction p, it 
is easy to see that 

D. p(a) = in (p(g -- g - p(g) (5.7) 
! r" Ptele). . . = ep-?iece")Pad, (5.8) 

where P(z) is the pseudo-polynomial 
P(z) = po+ pi(z + z) + p2(z+ z) -- - - - + p., (z" + z") 

corresponding to the vector p e R*. In fact, 
log(Q+ eP) -log Q P. P }s P --------------- is re- -- E) - - - - 

e tale Let 3) Q 
as E - +0, and hence (5.7) follows by dorminated convergence. 
Now, let g e TD, and g e 61D, be arbitrary. Then the corresponding pseudo 

polynomials Q and Q have the properties 

Q(e") > 0 for alie e (-7t, tr. 
; and 

O(e") > 0 for all 6 and d("e) = 0 for some 6o. 
Since g := -- (g - G) e P. for X e (b, 1,ive also have for X e (0,1) that 

Qa(e) := Q(e) -- XQ (e) G(e. ) > 0, for all 6 e -71, Tr), 
and we may form the directional derivative 

D-p(ga) = c(a - 4) + I ha(G).d6, (5.9) 
: - 

where Q( ') b ie) e') - ge' 6.2 
9 A. - - - - a( ) pace; a(e ) 

h(9) e (Q(e" (")?Or 3)? a(e) > 0 
and hence ha(8) is a monotonely nonecte 
Consequently h tends pointwise to hoias X 

Now, 

function of X for all 8 e -at, Tr. 
0. Therefore, 

as X - 0. (5.10) 

In fact, if 

ha(6)de -- a 
ser 

then {ha is a Cauchy sequence in Lice, 
must equal ho a.e. But hib, having poles i 
claimed, (5.11) cannot hold. 

as X --> 0, (5.11) 

d hence has a limit in L(-7t, 7t) which 
7t, 7, is not summable and hence, as 

4 
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Consequently, by virtue of (59), 
D-p(a)- +c as x - 0 

for all g e T and a e 8Ti, and hence, in view of Lenna, 26.2 in 28, p is essentially 
Smooth. Then it follows fron Theorem 26.3 in 28 that the subdifferential of p is 
empty on the boundary of TD, and therefor (a cannot have a Lnini. Illum there. 

Theorem 5.5. For each partial covariance sequence C and each Schuit polyrotnial 
a(z), there eLists an (n + 1)-vector g in TD, which is a minimurn for p. 

Thus we have proven the following result. 

Consequently, by virtue of Theorem 5.2, there does exist a solution to the rational 
covariance extension problen for each Prior sequence and zero polynomial 
a(z), and, in view of Theorem 5.3, this solution is unique. 
These theorems have the following corolley. 

For each partial covariance sequence c. 
unique Schur polynomial a(z) such that 

Corollary 5.6 (Georgiou's Conjecture): 
and each Schur polynomial da), there is a 
(4.1) and (4.2) hold. 

Hence, we have given an independent Proof of the weaker version of Theorema 2.1 
conjectured by Georgiou, but not of the stringer version of 7 which states that the 
problem is well-posed in the sense that the dine-one correspondence between a(z) and 
a(z) is a diffeomorphism, 

6. Some numerical examples 
Given an arbitrary partial covariance sequence co, c1, ..., c, and an arbitrary zero 
polynomial o (2), the constructive proof of eorgiou's conjecture provides algorith 
raic procedures for computing the corresponding unique modeling filter, which are 
based on the convex optimization problem to Laininize the functional (2.18) over all 
go, g1, ..., a such that (2.19) holds. 

In general such procedures will be based on the gradient of the cost functional p, 
which, as we saw in Section 5, is given by 

6 
Scae, . . . . . ...) set c - c. (6.l.) 

where 

1 f" alace")' . . - ?e O(ele) for k is 0,1,2,..., ra (6.2) 
are the covariances corresponding to a process with spectral density 

io 
X5 cos(k6). (6.3) 
I-1 

the given partial covariance sequence The gradient is thus the difference betwe 
co, C. . . . ca and the partial covariance seq eace corresponding to the choice of vari 
ables go, g1, ..., g at which the gradient is i. The minimum is attained when this difference is zero. 
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APPENDIX D 

A GENERALIZED ENTROPY CRITERION FOR NEVANLINNA-PICK 
INTERPOLATION: A CONVEX OPTIMIZATION APPROACH TO 

CERTAIN PROBLEMS IN SYSTEMS AND CONTROL 

CHRISTOPHER I. BYRNES, TRYPHON T. GEORGIOUS, AND ANDERS LINDQUISTi. 

June 29, 1998 

ABSTRACT. In this paper we present a generalized entropy critierion for solving 
the rational Nevanlinna-Pick problem with degree constraint for n + 1 interpolating 
conditions. We also show that the primal problem of maximizing this entropy gain 
has a very well-behaved dual problem resulting in convex optimization scheme, gen 
eralizing that of 10, for finding all solutions of the Nevanlinna-Pick interpolation 
problem which are positive real, and rational of degree less than or equal to n. This 
criterion is defined in a form parameterized by an arbitrary choice of a monic Schur 
polynomial as suggested in 25, 26 and recently verified in 9, 10, 11) for the ratio 
nal covariance extension problem and 27 for Nevanlinna-Pick interpolation. Our 
interest in this convex optimization problem is therefore twofold: as a starting point 
for the computation of explicit solutions to the rational Nevanlinna-Pick problem 
in terms of a design parameter, and as a means of providing a variational proof of 
the recent complete parameterization of all solutions of this problem in terms of 
Schur polynomials. From the optimization problem we design an algorithm which 
is implemented in state space form and applied to several problems in systems and 
control, such as sensitivity minimization in control, maximal power transfer, 
simultaneous stabilization and spectral estimation. 

1. Introduction 

A general interpolation problem consists of developing conditions for the existence of, 
as well as a parameterization of, meromorphic solutions to the following interpolation 
problem: Given n + 1 points 2, for k = 0, 1,..., n located in a specified region of the 
complex plane and n + 1 desired complex values wit, find all meromorphic functions 
f in a given class which satisfy 

f(2k) = w for k = 0, 1,..., n. (1.1) 
While Lagrange interpolation gives a particular solution to this problem, there has 

been a remarkable literature developed to solve this problem within special classes 
sk This research was supported in part by grants from AFOSR, NSF, TFR, the Göran Gustafsson 

Foundation, and Southwestern Bell. 
it Department of Systems Science and Mathematics, Washington University, St. Louis, Missouri 

63130, USA 
8 Department of Electrical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, 

USA 
i Division of Optimization and Systems Theory, Royal Institute of Technology, 100 44 Stockholm, 

Sweden 
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of functions having certain positivity properties. In particular, seminal Contributions 
of Carathéodory, Nevanlinna, Pick, Toeplitz, Schur and others have given solutions 
within the classes of meromorphic functions which map, for example, the unit disc (or 
its complement) into the closed left-half plane. These Nevanlinna-Pick interpolation 
problems have also been reinterpreted, and vastly extended, in an Operator theoretic 
setting; see, e.g., 46,33, 3, 21). Indeed, the research developed for interpolation prob 
lems of this kind has had substantial impact on classical function theory, harmonic 
analysis, potential theory, probability, and Operator theory. 
The same classes of functions, known in the circuit and systems literature as positive 

real, or bounded real, have long played a fundamental role in describing the impedance 
of RLC circuits, in formalizing the underlying stability mechanisms relating to the 
dissipation of energy in circuits and quite general linear and nonlinear systems, and 
in formulating the positivity of probability measures in stochastic systems theory. 
For these reasons, problems involving interpolation by positive real functions play 
an important role in circuit theory 52, 16, 33, robust stabilization and control 48, 
49, 54, 39, 37, 28, 18, signal processing 25), speech synthesis 17, 9, 10, 11, and 
stochastic systems theory 35, 8, 7. 

In these contexts, then, the essence of Nevanlinna-Pick theory is directly applicable. 
However, it is also important that the interpolating function be rational, and this 
presents some new challenges which need to be incorporated systematically into any 
useful enhancement of the classical theory. While the Nevanlinna recursion algorithm, 
and the resulting parameterization of all positive real interpolants in terms of a "free” 
function, can be used to generate certain rational solutions, it is also important to 
parameterize all rational solutions of a given degree, for example, n. It will, of course, 
be crucial in applications to have an effective computational Scheme to generate the 
rational, positive real interpolants of degree at most n. To this end, in this paper 
we derive a generalized entropy criterion for the problem of rational Nevanlinna-Pick 
interpolation. As a primal problem, one is led to an optimization problem in infinitely 
many variables, a problem which has, however, a dual problem which is convex in 
finitely many variables and for which the interior minimum corresponds precisely to 
a solution of the Nevanlinna-Pick problem with degree constraints. Moreover, the 
entropy integral incorporates an arbitrary choice of n points inside the unit disc as 
“free” parameters, in a natural systems-theoretic fashion as in 25, 26, so that through 
convex optimization we are able to obtain all solutions of the Nevanlinna-Pick with 
degree constraints as a function of the Zeros inside the unit circle of an associated 
density function of degree n. 

In Section 2 we describe the principal results about the Nevanlinna-Pick problem 
with degree constraints, and in Section 3 we are setting notation which we shall 
need throughout. The main results of the paper are then stated in Section 4, in 
which we define a maximum entropy criterion, generalized to incorporate the data in 
the rational Nevanlinna-Pick problem. We demonstrate that the infinite-dimensional 
optimization problem for determining this solution has a simple finite-dimensional 
dual, which in turn is a generalization of the optimization problem in 10. The 
proof of these theorems are given in Section 5 together with an analysis of the dual 
problem. In fact, the dual problem amounts to minimizing a nonlinear, strictly convex 
functional, defined on a closed convex set naturally related to the Nevanlinna-Pick 
problem with degree constraints. 
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Along similar lines as in 10, we first show that any solution to this problem lies in 
the interior of this convex set and that, conversely, an interior minimum of this convex 
functional will correspond to the unique solution of the Nevanlinna-Pick problem. 
Concerning the existence of a minimum, we show that this functional is proper and 
bounded below, i.e., that the sublevel sets of this functional are compact. From this, 
it follows that there exists a minimum. Since uniqueness follows from strict convexity 
of the functional, the central issue which needs to be addressed in order to solve the 
rational Nevanlinna-Pick problem turns out to be whether, in fact, this minimum is 
an interior point. Indeed, the dual problem contains a barrier-like term, as is the 
case in interior point methods. However, in contrast to interior point methods, the 
barrier function considered here does not become infinite on the boundary of our 
closed convex set. Nonetheless, we are able to show that the gradient, rather than the 
value, of the convex functional in the dual problem becomes infinite on the boundary. 
The existence of an interior point which minimizes the functional then follows from 
this observation. 

In Section 6 we outline a computational procedure for Solving the dual problem, 
and hence the Nevanlinna-Pick interpolation with degree constraints. In the special 
case of real interpolants, in Section 7 we develop a state-space procedure, which has 
the potential to allow extensions to the multivariable case. 

Finally, in Section 8, the algorithm is applied to several problems in systems 
and control, such as sensitivity minimization in C control, maximal power trans 
fer, simultaneous stabilization and spectral estimation. 

2. The Nevanlinna-Pick interpolation problem with degree constraint 
Given two sets of n + 1 points in D := {2 2 > 1) and C respectively, 

2 := {z k = 0, 1,..., n} and W:= {wk k = 0, 1,..., n}, 
we seek a parameterization of all functions f(2) satisfying 

(i) the interpolation conditions 

f(2k) F Uk for k = 0, 1,..., n, (2.1) 

(ii) being analytic and having nonnegative real part in D, i.e., being positive real, 
and 

(iii) being rational of at most (McMillan) degree n. 
Moreover, we require a constructive procedure for computing specific such solutions. 
This problem will be referred to as the Nevanlinna-Pick problem with degree con 
straint. For future reference, the class of functions satisfying condition (ii), also 
known as Carathéodory functions, will be denoted by C. Moreover, we denote by Co 
the subclass of Strictly positive real functions, whose domain of analyticity includes 
the unit circle and have positive real part. 

Requiring only condition (i) amounts to standard Lagrange interpolation, the so 
lution of which is well-known. Adding condition (ii) yields a classical problem in 
complex analysis, namely the Nevanlinna-Pick interpolation problem. This prob 
len plays a central role in JC control, simultaneous stabilization, power transfer 
in circuit theory, model reduction and signal processing. The McMillan degree of 
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the interpolant relates to the dimension of a corresponding dynamical system, and 
therefore condition (iii) becomes important. 

For the classical Nevanlinna-Pick problem, there exists a solution if and only if an 
associated Pick matria is positive semidefinite 51, 46. In case all 2k's are distinct 
the Pick matrix is given by 

P- 'Uk -- up at-l-l 
1 - 2'2. k8=0 

If points in 2, are not distinct, the interpolation conditions involve derivatives of f(z). 
For example, if 2k = 21 (k = 2, ..., ii), then these conditions become (h). f(k-1)(z) = 
wk, where f'(z) denotes the (k-1)th derivative. In the special case where all the 
points 2, k = 0, 1,..., n coincide, the Pick matrix has the Toeplitz structure 

upo -- Do D1 e w Dr. 

P = U1 ujo to . . . un-1 

U Un-1 0 0 to -- lo 

and the problem reduces to the rational covariance extension problem 35, 24, 25, 38, 
9, 8, 7, 10, 11. 

If the Pick matrix is singular, the solution is unique, rational and of degree a 
n, while if P > 0 all solutions can be described by means of a linear fractional 
transformation of a "free” parameter function which itself should be positive real 
1, 51). The particular solution obtained by setting the free parameter function equal 
to one, yields a solution which has degree at most n, thus it also satisfies condition 
(iii). This is often referred to as the central or macimum entropy solution. However, 
the linear fractional transformation is of no help in describing or constructing any 
other solution to (i)-(iii), because of the complex way in which the free parameter 
function determines the degree of the interpolant. 
The goal of this paper is two-fold. The first is to parameterize all solutions to 

the Nevanlinna-Pick problem with degree constraint, starting from a generalized no 
tion of entropy for such problems. The second is to provide, through the use of 
convex optimization, the computational underpinnings for the effective solution of 
Nevanlinna-Pick problems. 

For simplicity, in this paper we shall only consider the case where the interpolation 
points in 2, are distinct. The general case works similarly. Moreover, we assume that 
the Pick matrix is positive definite; otherwise there is just one solution. Also, for 
convenience, we shall normalize the problem so that 20 = CO and f(co) is real. This 
is done without loss of generality since, first, the transformation 2 - f sends an 
arbitrary 20 to infinity and is a bianalytic map from ID into itself, and, secondly, we 
can subtract the same imaginary constant from all values we without altering the 
problem. 
Now, condition (ii) requires that 

f(2) + f'(z) > 0 on the unit circle, 
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where f*(z) = f(z). Therefore, if the rational function f is represented as 
b(2) 

f(2) - a(z) 

where, for the moment, we take a (2) and b(2) to be polynomials, then 
sk U(2. f(s) + f(a)-. (2.2) 

where the pseudo-polynomial U defined by 
W(z) = a(z)b'(z) + a' (2)b(z) (2.3) 

is nonnegative on the unit circle and hence has a unique stable spectral factor O(2), 
i.e., a unique polynomial solution of 

having all its zeros in the closed unit disc D. The functions a (2), b(2) and o (2) can 
also be rational functions, and this is the formulation that we prefer in this paper. 
In fact, we shall represent them in a particular space of rational functions having the 
reciprocals of the points in 2, as their poles. This space will be defined in Section 3. 

In this paper we shall device a constructive procedure, akin to that in 10, to 
show that there is a complete parameterization of all solutions of the Nevanlinna 
Pick problem with degree constraint in terms of the zeros of O, so that for any choice 
of n zeros in D, there is one and only one solution f. This constructive procedure 
will provide us with an algorithm to determine the unique solution corresponding to 
any choice of zeros. The zeros can thus be used as the free parameters, and hence as 
a design tool. 

This problem has a long history. In 26, it was shown, for any point sequence 2. 
and any value sequence W satisfying the Pick condition, that to each choice of 
there corresponded at least one a(z) so that f = i is a solution to the Nevanlinna 
Pick problem with degree constraint, and hence that the map G from the space of 
solutions of this problem to the space of monic Schur polynomials, sending f to O, is 
surjective. In 26, the question is raised as to whether G is also injective, so that the 
solutions would be completely parameterized by the choice of zeros of O. The proof of 
existence was by means of degree theory and hence nonconstructive. It followed closely 
the arguments used in 25 to Solve an important special case, the rational covariance 
extension problem. In this setting, O coincides with the choice of numerator in a 
shaping filter which will shape white noise into a stationary process with the given 
covariance sequence. The assertion that G is surjective is then the assertion that 
the choice of a numerator of such a shaping filter can be made arbitrarily, while 
the injectivity of G, conjectured in 25), would assert that the choice of numerator 
completely determines the choice of denominator in the shaping filter. 

This conjecture, for the rational covariance extension problem, was recently estab 
lished in a stronger form in 9), where it is shown that solutions are unique and depend 
analytically on the problem data. In other words, the rational covariance extension 
problem is well-posed as an analytic problem. Subsequently, a simpler proof of bijec 
tivity of the parameterization by real Schur polynomials was given in 11 in a form 
which has been adapted to the rational Nevanlinna-Pick problem in 27, proving that 
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G indeed provides a complete parameterization of all solutions in terms of the choice 
of zeros. However, as already mentioned, the proofs developed in 25, 26, 9, 11, 27 
are nonconstructive and the question of effectively computing Such solutions has re 
mained open. For the rational covariance extension problem, this has been recently 
addressed in 10 through the development of a convex minimization problem. While 
the optimization problem of 10 occurs as a special case when specialized to the ra 
tional covariance extension problem, our approach to the rational Nevanlinna-Pick 
problem differs from that in 10 in that we derive a convex optimization scheme as 
a consequence of a generalized maximum entropy criterion involving the data of the 
interpolation problem. This criterion is developed in the Sections 4 and 5, where we 
shall describe a method for computing these solutions, as well as for providing a new, 
and simple, proof of the parameterization theorem for the rational Nevanlinna-Pick 
problem using convex optimization methods. 

3. Notation and preliminaries 
Denote by 2 the space of functions which are square-integrable on the unit circle. 
This is a Hilbert space with inner product 

Moreover, for an if € 12, let 

f(e) R y fe-k 

be its Fourier representation. In this notation, 

Next, let JC2 be the standard Hardy space of all functions which are analytic in the 
eacterior of the unit disc, D, and have square-integrable limits on the boundary 

1 f" i6 y2 
i, 2. f(re ) d6 < co. 

As usual, JC2 is identified with the subspace of 2 with vanishing negative Fourier 
coefficients. More precisely, for fe (2, 

f(z) = fo + f2 + f2' +.... 
Now, consider the data 2, and W with the standing assumption that 20 = co. It is 

a well-known consequence Beurling's Theorem 32 that the kernel of the evaluation 
map E: JC2 - C't defined via 



US 2003/0055630 A1 Mar. 20, 2003 
53 

A GENERALIZED ENTROPY CRITERION FOR. RATIONAL INTERPOLATION 7 

is given by 
ker(E) = BJC2, 

where B (2) is the Blaschke product 
--- 2 2. B(z) = z: (2) 2 I 1 - 22 

k=1 

Now, let C(B) be the orthogonal complement of BJC2 in C2, i.e., the subspace 
satisfying 

UC BHC €B 3C(B), 
which will be referred to as the coinvariant subspace corresponding to B, since BC2 
is invariant under the shift 2'. Then HC(B) is spanned by the (conjugate) Cauchy 
kernels 

G. (2) = 1 i = 1 + z. z + 292-2+... 
k 

for k = 0, 1,..., n. For any f =X of 2-e JC2, we have 

(f, Ge) =X fi2 = f(z), (3.1) 
j=0 

which, of course, is Cauchy's formula. While G, k = 0, 1,..., n., do form a basis in 
H(B), we prefer to work in a basis, go, g1, ...,g, for which go = Go = 1 is orthogonal 
to the rest of the base elements. Thus we choose 

1. 
R awn ol g = 1,2,..., n. ge (2) G. (2) 1. 22. - 1 k l, in 

For future reference, we list the four identities 
(f, go) f(co) 
(f,g) = f(2k) - f(CO) k = 1,2,..., n. 

(f", go) - f(co) 
(f", gk) = 0 k = 1,2,..., n, (3.2) 

which hold for all fe (2. In fact, they follow readily from (3.1), (f, G) = f(co) 
and the corresponding conjugated identities. We also remark that there is a natural 
basis for JC2 obtained by extending (go, g1, ...,gn} by choosing 

g(z) = z' B(z) for k = n + 1, n + 2, .... 
Any element p e JC(B) is of the form 

p(2) = 23. 
where 

T(x) = II(2 - 2' (3.3) 
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and T(2) = To2" + T12" + . . . + T is also a polynomial of degree at most n. Finally, 
any rational function of degree at most in can be written as 

f(z) = b(2) where a, be JC(B). a(2) 
Throughout the paper we shall use such representations for rational functions, and 
in particular the functions a (2), b(2) and O(2), introduced in Section 2 will belong to 
JC(B). Hence, V(2), defined by (2.3) will be a symmetric pseudo-polynomial in the 
basis elements of JC(B) and JC(B). In general, the space of pseudo-polynomials in 
this basis will be denoted by 8, and is defined by 

S = C(B) V3C(B) = Spang,...,g, go, g1,..., ga}. (3.4) 

In particular, e S, and so are ab" and a "b. 

4. A generalized entropy criterion for Nevanlinna-Pick interpolation 
Given a rational positive real function f(z) we consider the generalized entropy gain 

I(f) = i I log(h(e") (e")de (4.1) 
where (2) is a specified spectral density function in S which is positive on the unit 
circle, and 

d(2) := f(z) + f(z). (4.2) 

In fact, (2) can be factored as 
J(z) = o(z)a'(z), (4.3) 

where o e C(B) has no zeros in the closure of D, i.e., O (2) is a minimum-phase 
spectral factor of U(2). 

Entropy integrals such as (4.1) have, of course, a long history. In particular, one 
might compare this particular generalized entropy integral with that developed in 
42 for JC control. While Nevanlinna-Pick interpolation is quite relevant in JC 
control, the entropy formula (4.1) is defined on JC and does not involve the ?”gain 
of a system. Indeed, it is closer to the entropy expression used to derive the maximal 
entropy filters in signal processing (see, e.g., 31, 36). 
We are interested in solutions to the Nevanlinna-Pick problem with degree con 

straint presented in Section 2. It turns out that there is a unique solution f(z) which 
maximizes the above entropy functional. Moreover, this solution satisfies 

xir o (2)o (2) - 4.4 f(s) + f'(z) = iri, (4.4) 
whereo, a e HC(B) and OO = I. Hence the entropy maximization forces a preselected 
spectral Zero structure for the interpolating function. In fact, it will be shown below 
that this provides a complete parameterization of all such rational solutions of at most 
degree n. 
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Theorem 4.1. Assume that 2, and W define an interpolation problem for which the 
Pick matric P is positive definite. Given a U e S which is positive on the unit circle, 
there eacists a unique solution to the constrained optimization problem 

haly(?) (4.5) 
subject to the constraints 

f(2k) = wk for k = 0, 1,..., n. (4.6) 
Moreover, this solution is of the form 

f(z) =E, a,b e H(B), (4.7) 
and hence of degree at most n, and 

a(z)b"(2) + b(2)a'(z) = U(2). (4.8) 
Conversely, if f e Co satisfies conditions (4.6), (4.7) and (4.8), it is the unique 
solution of (4.5). 
The proof of this theorem will be deferred to the next section. 
In the special case where 1 = 1, 

I,(f) = log(f(e") + r(e")de (4.9) 
corresponds to the standard entropy criterion which is maximized by the central 
solution mentioned in Section 2. It is clear that, in general, maximization of Iy (f) 
is unaffected by scaling by any positive constant factor. Theorem 4.1 provides a 
complete parameterization of all strictly positive real solutions to the Nevanlinna-Pick 
problem with degree constraint in terms of properly scaled spectral densities I e S, 
or, in other words, in terms of the zeros of the minimum-phase spectral density O(2). 
Corollary 4.2 (Spectral Zero Assignability Theorem). There is a bijective cor 
respondence between solutions f e Co to the Nevanlinna-Pick problem with degree 
constraint and the set 

or, equivalently, the set of n points in the open unit disc, these being the 2eros of the 
minimum-phase spectral factor O(2). 

Problem (4.5) is an infinite-dimensional optimization problem. However, since there 
are only finitely many interpolation constraints, there is a dual problem with finitely 
many variables. 

Returning to conditions (4.7) and (4.8), we see that 

f(s) + r(s) = i 
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where Q(z) = a(z)a' (2) e S, and Q(z) > 0 on the unit circle. In terms of the basis 
introduced in Section 2, 

Q(z) = q.g. (2) + ... + qigi(z) + gogo (2) + gig1(2) + ... + gagn(2). (4.10) 

Since go(z) = 1, go = (Q, go) = Q(e")dd. Therefore, since Q is positive on 
the circle, go is real and positive. Hence, we may identify Q with the vector q := 
(qo, g1, ...,g) of coefficients belonging to the set 

Q = q e Rx C" | Q(e") > 0 for all 6}. 
As we shall see shortly the q-parameters will essentially be the Lagrange multipliers 
for the dual problem. 

Consider the Lagrange function 

L(f, X) = li(f) + Xo(wo - f(zo)) + 2Re (). Ak?uk - f(s)} . (4.11) 
Since the primal problem amounts to maximizing a strictly concave function over a 
convex region, the Lagrange function has a saddle point 41, p.458 provided there 
is a stationary point in Co., and, in this case, the optimal Lagrange vector X = 
(Xo, X1, ..., X) e C't can be determined by solving the dual problem to minimize 

p(x) = pa L(f,x). (4.12) 
Proposition 4.3. Given a vector X = (x0, x1,..., X) of Lagrange multipliers, the 
unique macimizing function f in problem (4.12) satisfies 

W(z) 
Q(2) 

where the coefficients of Q are related to the Lagrange multipliers as follous: 

(To = iXo -- ReX Wi 
isl 

q = \k for k = 1,2,..., n. 

Proof. We note that (to C C, and we consider the representation 
X 

f(z) =X fig;(z). (4.13) 
i=0 

Based on our standing assumptions on f(z), and our choice of the basis g(z); k = 
0,1,2,...}, we have fo = f(co) is real, while f, k = 1,2,..., are allowed to be 
complex. Thus, we identify f(z) with the vector of coefficients f := (fo, f,...), and 
define the set 

g = {fe £2 foe R; f, f, e C; X Jig, (2) e Co}. (4.14) 
j=0 
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Since B (2) = 0 for k = 0,1,2,..., n, we have g(z) = 0 for i > m, and consequently 

f(z) =X fig;(z). (4.15) 
=0 

In what follows, it will be convenient to use complex partial differential operators 
acting on smooth, but not necessarily complex analytic, functions. In particular, if 
we write the complex vector f = a + iy as a Sum of real and imaginary parts, this 
defines the differential operators 

3 -i(-) and it - (+ of T 2 Vör dy of T 2 V8ack dy 
which operate on Smooth functions. Indeed, the second operator is the Cauchy 
Riemann operator which characterizes the analytic functions F off via 

8F 
-- = 0. 
Öf 

And, for example, while conjugation, viewed as the function defined by f = a- iy, 
is of course not analytic, it is Smooth and satisfies 

2 = 0 and 21 = 1 
Returning to the maximization problem (4.12), we set {{ = 0 for all k. Since fo is 

real and go = 1, we then have 

0 and 

6L 1 f" Y - - 
- - - 2- d(e) u(e) de - X-2Re U. Öfo 27T J- (e") J (e) O {S. a} O (4.16) 

Furthermore, recalling (4.15), we obtain 
3L 1 f" i69 yar-1 fi i - 
af T2 f g(e) d(e) J (e')de - 2.9 G.) = 0 (4.17) 

for k = 1,2,..., n., and 

of T 27t 9(e )d (e") J (e") de = 0 (4.18) 

for k = n + 1, n + 2, .... Now, let Q(z) := db (a)(2), and note that Q'(z) = Q(2). 
From (4.18), 

(Q, g) = 0 = (Q, g) for k = n + 1, n + 2, .... 
Hence Q e S. Therefore there is a representation (4.10) with go e IR and q1..., ge 
C. Moreover, Q(e) > 0 for all 0. 
From (4.16), we immediately see that 

i-1 
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Next, taking the conjugate of (4.17) we obtain 

(Q, 9.) =XX;5 (2.) (4.20) 
j=1 

for k = 1,2,..., n. On the other hand, 

(Q, g) = X 4:9, (2). (4.21) 
j=1 

Since g(z) = g (2), by (4.20) and (4.21), 
gi (21) g2(21) 9 (21) A1 - q1 
9. (9) ots) g(s) A2 02 = 0. (4.22) 
91 (2n) 92(2n) gn (2n) Lyn - gn 

Now, it is easy to see that the coefficient matrix 
z.2.1 G = - R - 4.23 --- 3. k,2-1 (4.23) 

of the linear system (4.22) is nonsingular, and therefore 
A = qk for k = 1,2,..., n. (4.24) 

In fact, G = Z PZ , where Z is the diagonal matrix diag(2,..., 2,) and P is 
the Pick matrix for 2. = {21,..., 2, and W = {1,..., 1}. Consequently, since this 
interpolation problem has infinitely Inany solutions, by the Pick condition, P must 
be positive definite. This concludes the proof of the proposition. O 

It turns out to be more convenient to use the g’s as dual variables. 

Proposition 4.4. The dual functional (4.12) is 

where c is a constant, and 

p(q) = 2wo go + 2 Re (St. - w)) - i. |7t log(Q(e') J(e) d6 (4.25) 
k=1 -7 

Proof. As we have just seen, the Lagrange multipliers are linear functions of the 
q := (go, g1,..., qi). The dual functional (4.12) becomes 

7 

p(X(g)) = f7 log Q(e') J (e').d6+ i logy(e)(e').d6 

-- ( - 2Re (). a}) (wo - fo) + 2Re (). q, w; - f(s)} - j= i=1 (4.26) 
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In this expression the sum of the two last terms turns out to be linear in q. To see 
this and eliminate the dependence of f's On the g’s, consider the following: 

= go (f + f", go) + 2Re (Stif) 
=l 

= 2gofo +2Re (S. di (f(zi) - f} al 
j=1 

Using this last expression, the dual function becomes 

p(X(g)) = I log Q(e) u(e) d6 -- i r logy(e)))/(e) d6 

t I u(e).de +2gowo +2Re (Sue - w} (4.27) 
In this expression, define c to be the sum of the second and third terms. Then, the 
proposition follows. O 
We are now in a position to formulate the dual version of Theorem 4.1, the proof 

of which will also be deferred to the next section. 

Theorem 4.5. Assume that 2, and W define an interpolation problem for which the 
Pick matria. P is positive definite. Given a e S which is positive on the unit circle, 
there eacists a unique solution to the dual problem 

min p(q). (4.28) 
ge. 

Moreover, for the minimizing q, 

(2) ck 

with fe Co. Moreover, this function f satisfies conditions (4.6), (4.7) and (4.8) in 
Theorem 4.1, namely 

f(z) = wi: for k = 0, 1,..., n., (4.30) 

f(z) = 3. a,b e H(B), (4.31) 
J(z) = a(z) b'(z) + b(z)a(z). (4.32) 

Conversely, any fle Co which satisfies these conditions can be constructed from the 
unique solution of (4.28) via (4.29). 
We conclude by noting that if the problem data is real or self-conjugate, and J is 

real, then both the function f(z) constructed above, and the function f(z), satisfy 
the conditions of Theorems 4.1 and 4.5 so that, by uniqueness, they must coincide. 
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Corollary 4.6. Assume that the the sets 2, and W are self-conjugate and that w = 
vii; whenever z = zi, and that J is real. Then, the optimizing functions f, Q in 
Theorems 4.1 and 4.5 have real coefficients. In particular, there is a unique pair of 
real functions a(z) and b(z) in C(B), devoid of zeros in closure of D, such that 

f(2k) = w for k = 0, 1,..., n. 

We shall return to the special case covered in Corollary 4.6 in Section 7, and we 
shall refer to it as the self-conjugate case. 

5. The convex optimization problem 
In this section, we shall analyze the functional p(q), constructed in the previous sec 
tion. We shall show that it has a unique minimum in Q, and this will be instrumental 
in proving Theorem 4.1 and Theorem 4.5, which will be done at the end of the section. 
To this end, we shall extend p(q) to the closure Q of Q, and consider 

Proposition 5.1. The functional p(q) is a C function on Q and has a continuous 
eactension to the boundary that is finite for all q 7 O. Moreover, p is strictly conver, 
and O is a closed and convec Set. 

This proposition, along with Propositions 5.2 and 5.4 below, are analogous to re 
lated results in 10, developed for the covariance extension problem. Their proofs 
are similar, mutatis mutandis, to those developed in 10, except for Lemma 5.3 be 
low. The complete proofs are adapted to the present framework and included in the 
appendix for the convenience of the reader. 

In order to ensure that p achieves a minimum on O, it is important to know whether 
p is proper, i.e., whether p(K) is compact whenever K is compact. In this case, of 
course, a unique minimum will exist. 

Proposition 5.2. For all r e R, p'(-oo, r is compact. Thus p is proper (i.e., 
p(K) is compact whenever K is compact) and bounded from below. 

The proof of this proposition, given in the appendix, relies on the analysis of the 
growth of p, which entails a comparison of linear and logarithmic growth. To this 
end, the following lemma is especially important. We note that its proof is the only 
point in our construction and argument in which we use the Pick condition in an 
essential way. 
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Lemma 5.3. Suppose that the Pick matric P is positive definite. Let p1 (q) be the 
linear part of p(g), i.e., 

p1 (q) = 2wogo + 2 Re (So. -- v)} 
k=1 

= 2wogo + X (wk - wo) is +X (als - wo)ge. (5.1) 
k= k-1 

Then p1 (q) > 0 for each nonzero ge. 
Proof. Since Pad 0, there exists a strictly positive real interpolant of the interpolation 
sequence (2, w); k = 0, 1,..., n. Choose an arbitrary such interpolant, and denote 
it by f. Then, recalling that 20 = co, (3.2) yields 

2u = (1 + f,g)= IIf(e") + f'(e"). (e")de 
and 

27T J. 
for k = 1,2,..., n. For any q in O, we compute 

27 J 
and p(q) = 0 if and only if Q E 0. O 

Finally, we need to exclude the possibility that the minimum occurs on the bound 
ary. This is the content of the following proposition, also proved in the appendix. 
Proposition 5.4. If u is positive on the unit circle, the functional p never attains a 
minimum on the boundary 69. 
Hence we have established that p(q) is strictly convex, has compact sublevel sets 

and the minimum does not occur on the boundary of Q. Consequently, it has a 
unique minimum, which occurs in the open set O. Clearly, this minimum point will 
be a stationary point with vanishing gradient. As the following lemma shows, the 
gradient becomes zero precisely when the interpolation conditions are satisfied, and 
in fact the value of the gradient depends only on the mismatch at the interpolation 
points. 
Lemma 5.5. At any point q e O the gradient of p is given by 

Öp - ago - 2wo f(zo), (5.2) 

f = (ws - f(z) - two-f(z), for k=1,2,...,n, (5.3) (k 

where f is the Co function satisfying 

f(s) + f'(z) = 2 (5.4) 
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with Q(2) e S correspond to g as in (4.10). 

Proof. The existence of a function f as claimed in the statement is obvious by virtue 
of the fact that . is bounded and greater than Zero on the unit circle. Recalling 
that 

Öq. 
= 0, Öd. 

for k > 0 we have 

6 7t g(e) i8 
a- or - -- r----- (e' Öqi (wk - wo) 27T J Q(e) (e")de 

= (wt - wo) - (f -- f', ge), 

which, in view of (3.2) and the fact that 20 = co, is the same as (5.3). For the case 
k = 0 we need to take the real derivative: 

6p 1 f" go (e) 
Öqo = 2.00 27 J Q(e) 

= 2wo - (f -- f", go), 

which, again using (3.2), yields (5.2). O 

J(e)de 

We are now prepared for the proof of our main results. 

Proof of Theorem, 4.5. Propositions 5.1, 5.2 and 5.4 establish the existence of a unique 
minimum in q e Q. Then Lemma 5.5 shows that the interpolation conditions are 
met for the corresponding Co-function f satisfying (5.4). The construction of such a 
function proceeds as follows. Since Q e S and is positive and bounded on the unit 
circle, it admits a rational spectral factorization Q(z) = a (2)a'(z), where a (2) = 2: 
with O(2) a stable polynomial of degree at most n. Hence, a e HC(B). Then, we 
solve the linear equation a (2) b” (2) + b(2)a(2) = (2) for b. This linear equation has 
always a unique solution because a has no roots in D; cf. the discussion in 12. Then 
f(z) = 23, and all conditions of the theorem are satisfied. 

Conversely, given an fle Co satisfying (4.31) and (4.32), a unique q e O can be 
obtained from (5.4). Finally, in view of Lemma 5.5, the interpolation conditions (4.30) 
imply that the gradient of p for the corresponding q is zero. Thus it is the unique 
minimizing g. O 

Proof of Theorem, 4.1. The fact that the minimizing q in Theorem 4.5 belongs O is 
equivalent to having the corresponding fin Co. Since both Q and Co are open they do 
not impose binding constrains on the primal and dual problems. Hence, by standard 
duality theory 41, p. 458, the Lagrangian (4.11) has a saddle point. Consequently, 
the is a direct correspondence between the primal and dual problems which translates 
the statements of Theorem 4.5 to the corresponding ones of Theorem 4.1. O 



US 2003/0055630 A1 Mar. 20, 2003 
63 

A GENERALIZED ENTROPY CRITERION FOR RATIONAL INTERPOLATION 17 

6. Computational procedure 
An interesting, and useful, aspect of the dual functional p(q) is that it contains a 
barrier-like term, as used in interior point methods. However, as we have seen in 
Section 5, by a theorem of Szeg?, the logarithmic integrand is in fact integrable for 
nonzero Q having zeros on the boundary of the unit circle, and hence p(q) does not 
become infinite on the entire boundary 89 of Q. For this reason it is not a barrier 
term in the traditional sense. Nonetheless, p(g) has the very interesting barrier 
type property described in the following proposition, which is a simple corollary to 
Proposition 5.1 and Proposition 5.4. 
Proposition 6.1. Although the dual functional p(q) is finite in each nonzero point 
on the boundary 69, it has an infinite gradient there. 

Next, let us turn to the computational procedure. Given J. (2), define the class P 
of (strictly) positive real functions 

f(z) = E. a, be 9C(B) 
having the property that 

a(z)b'(z) + b(2)a'(z) = U(2). (6.1) 
We want to determine the unique function in P which also satisfies the interpolation 
conditions. To this end, we shall construct a sequence of functions, 

f(0), f(1), f(2), ... ep 
which converges to this interpolant. 
As before, we may write (6.1) as 

... - (2) 

where Q e S satisfies 
a(2)a"(2) = Q(2). (6.3) 

It is easy to see that this defines a bijection 
J. : Q - P : Q - f. (6.4) 

To see this, note that 
o (2) 6(2) d(2, 2-1) 

a(z) - T(2) b(2) - t(2) and U(2) -- t(e)(2) 

where o (2) and 6(z) are Schur polynomials of at most degree n and d(2, 2) is a 
pseudo-polynomial, also of at most degree n. Then, determine O(2) via a stable 
polynomial factorization 

cy(2)o'(z) = T(2)T(2)Q(2), (6.5) 
and solve the linear system 

o (2)6(2) + (3(2)a(z) = d(2, 2) (6.6) 
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for 3. In fact, (6.6) is a linear (Hankel + Toeplitz) system S(a)(3 = d in the coefficients 
of the polynomials, which is nonsingular since O(2) is a Schur polynomial; see, e.g., 
12. Then 

8(2) f(z) = i 
Given an if e P we can determine the corresponding gradient of p(q) by means of 

Lemma 5.5. The following lemma gives the equations for the (n+1) x (n+1) Hessian 
matrix 

8°p (6.7) H(a)-..., k,8=0 

Lemma 6.2. Let h(z) be the unique positive real function such that 
U(2) 
Q(z)? 

and h(zo) is real. Then the Hessian (6.7) is given by 

h(z) + h'(z) (6.8) 

th(z) + is,h(z)+h(zo) for k z (; k, e > 0 
-2th'(z) - h (2) + h(zo) for k = ( > 0 

He (q) h(2) h(zo) for k > 0, 8 = 0 (6.9) 
h (2) - h(zo) for k = 0, e > 0 
2h (20) for k = 0 = 0, 

where h'(z) is the derivative of h(z). 
Proof. Fork, ( = 0, 1,..., n we have 

6°p 1. T skri ski (ei) a = 2, 19:(e")9(e") ga?, 
= ((h+ h")g, g). (6.11) 

For e = 0 this becomes (h, g) + (h", gi), which, in view of (3.2), becomes h(z)-h(zo) 
if k > 0 and 2h(zo) if k = 0. Fork, ( > 0, we have (h"g, g) = 0 and therefore 

6°p 1 ?t 

d0 (6.10) 

There are two cases. First, suppose k 7: 8. Then a simple calculation yields 
2k 2g 

g(2)9(2) = 2 - 9:(2) -- 2 9 (2), 

and hence 32 
a 2k. 2. t h, -- h, ge), Öq6de 2 - . 9k) 2k 3, ge) 

which, by (3.2), yields those elements of the Hessian for which k z é and k, e > 0. 
Secondly, suppose that k = 8. Since 

k 2 2k. -1 g(2) 2 - 2 +. 
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we obtain 

622 1. 7. ze" t 
--- - --- -- I - rh?e').d6. 6.1 Og (h, ge) -- 27t I. (2k ed)? (e ) ( 2) 

To compute the second term in (6.12), differentiate h(2), which is given, as above, by 
the Cauchy formula 

1. t e? 

h(z) - h(zo) = | a 
Then 

h'(z) = - 7 tache")d 27 J. (2 - ei6)2 
which, together with (6.12) and (3.2), proves the remaining part of the lemma. O 

Next, we turn to the computational procedure, which will be based on Newton's 
method 40, 41). We need an f() e P, and a corresponding Q determined via (6.2), 
as an initial condition. For this we may choose the “central Solution” (see Section 4) 
for which there is a simple algorithm. Each iteration in Our procedure consists of four 
steps and updates the pair f, Q to f, Q, in the following way: 

Step 1. Given f, let V (p(q) be the gradient defined by (5.2) and (5.3). 
Step 2. Determine the unique positive real function h satisfying (6.8), which is a 
linear problem of the same type as the one used to determine f from Q. In fact, 
exchanging cy(z) for a (2)” and d(2, 2) for U(2,2) = T(z) T(z)d(2,2') in (6.6) we 
obtain 

h(z) = E. where 6 = S(O) v. 

The Hessian H(q) is then determined from h as in Lemma 6.2. 
Step 3. Update Q(2) by applying Newton's method to the function p. A Newton 
step yields 

g = q - XH(q) Vp(g), 

where X e (0, 1 needs to chosen so that 

Q(e) > 0 for all 6. (6.13) 

This positivity condition is tested in Step 4. 

Step 4. Factor Q as in (6.3). This is also a test for condition (6.13). If the test fails, 
return to Step 3 and decrease the step size X. Otherwise, use the linear procedure 
above to determine the next iterate f. Check if f is sufficiently close to f. If so, stop; 
otherwise, set f := f and return to Step 1. 
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7. State space formulas 
The computations of the previous section can be carried out quite efficiently using 
state space descriptions. In this section we return to the self-conjugate case, where 
both 2, and W are self-conjugate and w = 0; whenever z = zi, and (2) is real. 
(See Corollary 4.6.) In particular, we shall develop the steps of the algorithm so as 
to avoid complex arithmetic. 

It is easy to see that, in this case, 

T(z) := II(2. - z) = 2" + 1 12" + . . . + T (7.1) 
k-l 

is a real polynomial and 
- Will T.(2) B(z) = 2 T(2) (7.2) 

is a real function, where T. (2) := 1 + T 12 + . . . + T2" is the reverse polynomial. 
Throughout this section, we shall be concerned with real interpolation functions. 
Any real function he hC(B) admits a state space representation of the form 

h(z) = ho + c(z I - A) h, (7.3) 
where (A, h, c) are taken in the observer canonical form 

O 1. ... O h1 
: . h2 

A = o h = (7.4) 
O O ... 1 : 

T T-1 . . . T1 hn 

c = 1, 0,...,0), 
h1, h2,..., h, being the Markov parameters in the Taylor expansion 

h(z) = ho + hi2 + . . . + ha" +... 
about infinity. We shall use the compact notation 

for this representation, and keep A and c fixed when representing real functions in 
JC(B). Since the function (7.3) is completely determined by the Markov parameters 
ho, h, we shall refer to them as the Markov coordinates of the function (7.3). Alter 
natively, h(z) can also be represented with respect to the standard basis in JC(B) 
3S 

h(z) = ho + X th9; (2), (7.5) 
i-rl 

where, of course, m1, ...,n are complex numbers. Finally, any he 3C(B) can be 
uniquely identified by its values at 2, 

{h(zo), h(21),...,h(2)}. 
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The correspondence between these three alternative representations is the content of 
the following lemma. 

Lemma 7.1. Let G := g(z)) be the matria (4.23), and define the Vandermonde 
matria; V = ze. Then, for any he JC(B), 

h = Vn, 

where n = (n1, m2,..., n)' is defined via (7.5), and 
h (21) - ho 
his)- ho = Gm. 
h(z) - ho 

Moreover, G and V are invertible. 
Proof. The first correspondence follows immediately from (7.5) and the expansion 

g(z) = 2, 2 + 2*2+ z. z +.... 
The second correspondence also follows from (7.5). Finally, we already established 
invertibility of G in the proof of Proposition 4.3, and the Vandermonde matrix V is 
invertible since the points in 2, are distinct. D 
We now reformulate the steps of the algorithm given in Section 6 in terms of the 

real Markov coordinates of the relevant functions. We shall consistently work with 
functions in JC(B). Therefore, as if 2 OC(B), we form 

A. 

where lice denotes orthogonal projection onto JC(B). Since f = f + Bg for a 
suitable ge. JC’, it follows that 

f(z) = f(z) for k = 0, 1,..., n. 
Next, define w(2) to be the unique function in JC(B) such that 

w(2) = w for k = 0, 1,..., n. 
The gradient of p in Lemma 5.5 can then be expressed in terms of the "error function” 

r(2) := u(2) - IlgacB)f(z), (7.6) 
which also belongs to C(B). In fact, 

r(2k) := w - f(2k). (7.7) 
Moreover, we introduce an OC(B)-representation for any Qe S and any given e S 
by writing 

Q(z) = g(2) + g” (2), U(2) = b(2) + p" (2), 
where q, he JC(B) are positive real. Finally, we represent g and b by their respec 
tive Markov coordinates (ac, aco) and (y, yo), respectively, in the standard state-space 
representation described above, i.e., 

q = , and v = 
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We begin with the state-space implementation of Step 1 in Section 6. In this 
context, we have the following version of Lemma 5.5. 
Proposition 7.2. Let G and V be defined as in Lemma 7.1. Given an if e P, let 
q be the positive real part of Q := 0 f, where J is defined as in (6.4). Moreover, 
let r (z) be given by (7.6), and denote by (aco, ac) and (ro, r) the Markov coordinates of 
q(2) and r(2) respectively. Then 

-- = 4 daco 70 
Öp 
- - - T 0. r, 

where T := (V) GV is a real matria. 
Proof. Since go = 2aco and wo - f(20) = r(20) = ro, the derivative with respect to aco 
follows immediately from (5.2). Next, applying Lemma 7.1, we see that 

3. i,k=1 = V, 
and that T(z) - ro is the kith entry in GV'r. Moreover, by (7.7), we have 

r(2) - ro = w - f(z) - (wo - f(zo) 
for k = 1,2,..., n. Finally, using equation (5.3) and defining q := (q1, q2, ..., qi)', we 
obtain f 

92 (or Yoavy-at-1 :-( , ) i = (V)'GV-'r 
establishing the rest of the proposition. O 

It remains to determine the projection f := Ig(B) f. We present the construction 
in two steps. Note that, since the points in 2, are assumed to be distinct, 2 = 0 is a 
simple pole of B(2). 
Proposition 7.3. Assume that B(z) = z' Bo (2) with Bo (co) 7, 0, and let f(z) = 
fo + 2 f(z) e JC2, with f(2) e JC2. Then 

Ilict B) f = fo + 2*IIg(B).f. (2). 
Proof. First note that, for any fe (2. 

a 

f := IIce) f = BII-B"f, 
where II - is the orthogonal projection onto the J(;, the orthogonal complement of 
JC2 in f2. In fact, f = f -- Bg for some q e OC2, and hence II-B f = B* f. Then, 
since B2 foe (, 

f = 2'BoII-B2(fo + 2. f.) 
= fo + 2 'BoII-Bif, 

from which the proposition immediately follows. O 
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The second step given below deals with II:(Bf. Note that, while B is not in 
C(B), Bo is. Therefore, Bo has a state space representation with A and c given by 

(7.4). However, f. 2 JC(B), so we must use other A and c matrices for f. 
Proposition 7.4. Assume that Bo e JC2 is a rational Blaschke product which is 
non2ero at infinity, and let 

Ab A1b1 B = A and f = ||. 
Then the Sylvester equation 

- (A - bdc)X + XA1 + bdc1 = 0, (7.8) 
has a unique Solution X, and f := IIqt(B)f has the state-space representation. 

a A b(d- - did) - Xb 
f o C did (7.9) 

where 

d := -d'c(A-bdc)(bdid, + Xb). (7.10) 
Proof. We first note that B (2) has the state-space description 

with Ao = A -bdic, bo = bd, co = -d'c and do = d and with Ao having all its 
eigenvalues outside the unit disc. Consider the Lyapunov equation 

X - Ao XA - Aoboc = 0, 
which has a unique solution since both A1 and Ao have eigenvalues inside the unit 
disc 23. But then so does 

- Ao X -- XA1 -- boC1 O, 

which is the same as (7.8). Using standard Inanipulations (see, e.g., 22, p.IX), it 
follows that Bf has the state space form 

Ao O bod + Xb1 
Bf = | 0 A1 b1 

Co doc1 - Co-X dod 

Next, consider f(z) = II Bif., which has the representation 
f = Ao bod1 + Xb1 CO d d := CoA (body -- Xb1), 

where the nontrivial d-term is due to the fact that f(z) being in (; must vanish at 
the origin. The final step needed to obtain a canonical realization for f := Bo f, is 
standard and involves cancellation of the unobservable modes at the poles off. Note 
that these poles coincide with the zeros of Bo. D 
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The state-space version of Step 2 in Section 6 is developed along the same lines as 
in Step 1 by instead representing relevant functions in C(B). Then a Newton step 
is taken as described in Step 3. Alternatively, a gradient method is used, in which 
case Step 2 can be deleted. 

Finally, Step 4, i.e., determining f from q, amounts to Solving a matrix Riccati 
equation and a Lyapunov equation, as seen from the following proposition. 

Proposition 7.5. Suppose that g, he JC(B) are strictly positive real with Markov pa 
rameters (a, aco) and (y, yo), respectively. Let P be the unique solution to the algebraic 
Riccati equation 

P = APA' + (a - APc) (2ao - cFe)' (c-APc)", (7.11) 
d := (2aco - cFe)', 
bi = (a, - APc)d', 

having the property that 

T = A -bid, 'c' (7.12) 
is stable, and let X be the unique solution of the Lyapunov equation 

X = TXT-- yyo'y'- (y – bid 'yo) yo' (y-bid 'yo)", (7.13) 

by := ((y – Aacc) - bidd. 
Then f = J(q + q"), defined as in (6.4), has the state-space representation 

f = T bid, 'd, - b. 
-d'c d'd 

Proof. Observe that determining a (2) from q + q = aa" is a standard spectral factor 
ization problem 2, 20 with the unique minimum-phase solution given by 

a = 5. 
Then b(2) is determined from the linear equation 

= b + b = ab' + ba' 
which, in the state-space formulation, becomes (7.13). Since T is stable, it has a 
unique solution X. Finally, the state space description of f = ab is obtained by 
direct computation, using the formalism in, e.g., 22, p.IX. O 

8. Applications 
In this section we describe a number of application for which our theory appears to 
be especially relevant. We touch upon problems in robust control, in circuit theory 
and in modeling of stochastic processes. The examples chosen are simple and basic 
since our aim is only to indicate the spectrum of potential applications of our theory. 
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Figure 8.1: Feedback system. 
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Therefore, for any a > aort, there are admissible sensitivity functions S such that 
w 1. 

= --S S(z)=S(2) 
maps the exterior of the disc into the unit disc. Such a function, which has its zeros 
outside the unit disc as required, will be called bounded real. 

In the context of classical control, it is then very convenient to formulate this as a 
Nevanlinna-Pick interpolation problem, since one could also formulate the Nevanlinna 
Pick theory for bounded real functions. In fact, since the linear fractional transfor 
mation S = t maps the unit disc into the right half plane, one is lead to finding 
positive real rational functions 

a + S(2) 
f(2) - C - S(z) 

of degree at most n := r + 6-1, which satisfy the interpolation conditions 
1 f(p) = 1, j = 1,2,..,e and f(z)=H, i=1,2,..., r. 

To satisfy additional design specifications, by the Spectral Zero Assignability Theorem 
(Corollary 4.2), we may then choose the zeros of 

o” - S(z)S'(z) (8.3) 
arbitrarily in the open unit disc. 

For example, in weighted sensitivity optimization, low sensitivity is required for 
certain frequencies, and, to account for this in the design, S is replaced by WS for 
some rational shaping filter W(z). (cf. 22, Chapter 9, 55, Chapter 8). This results 
in an increase in the complexity of the problem and an increase in the dimension of 
the relevant feedback operators by an amount equal to the dimension of the shaping 
filter. An alternative approach, as suggested above, is to tune the free parameters 
of our parameterization (i.e., the spectral zeros) to shape the appropriate frequency 
curve of the system (i.e., loop shape, sensitivity function, etc.). This idea is illustrated 
in the following example. 
Example 1. Consider the discrete-time linear system, shown in Figure 8.1, where 
P(z) = i, and C(2) is a suitable stabilizing controller such that the sensitivity 
function (8.1) is first-order and high-pass. The transfer function P(2) has one pole 
and one zero outside the unit disc, namely a pole at 2 and a zero at co. Following 
notation in previous sections, we set 20 = Cxo and 21 = 2. The sensitivity function 
S(2) must satisfy the interpolation conditions S(zo) = 1 and S(2,) = 0. It can be 
shown that Copt = 2, so we take a = 2.5. 
The standard approach is to choose a weighting filter W(2) describing the in 

verse of the desired shape for S(2) and considering the new sensitivity function 
S(z) = W(z)S(2). The central solution S(z) to the Nevanlinna-Pick problem with 
new interpolation conditions S(zo) = W(co) and S(21) = 0 is then solved, after which 
S = WS is reconstructed. While this strategy allows for direct control of the shape 
of S, it causes its dimension to be enlarged accordingly. In particular, in this example 
the dimension of S will generically equal the dimension of W(s) plus one. However, 
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Figure 8.2: S(e') as a function of 6 
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Figure 8.3: Two port connection. 
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Thus, the problem of maximizing the transducer power gain amounts to minimizing 
the H-norm of p(s) subject to the constraints (8.6). 

Since the transducer power gain is rarely required to be uniform across frequencies, 
the usual approach to the problem is to specify a desired transcucer power gain shape 
and then to determine whether a solution is feasible. (See 15, Chapter 4. Also see 
Helton (34 for an alternative formulation generalizing Youla's theory.) However, in 
the context of the theory developed in the present paper, we may instead select the 
zeros of 

G(s) := 1 - p(s)p(-s), 
i.e., the zeros of the power gain. 
Example 2. Consider a passive load with impedance 

Ze(s) = 1 - R1CS -- R2 - LS 
as 1 (1 RCs "1 + R. L. 

where R = 0.5S2, R2 = 0.1S2, L = 0.5H, and C = 0.01F. (This is a cascade 
connection of two filters, which are the parallel connections of a resistor R = 1S2 with 
a lossy capacitor and a lossy inductor respectively.) The transmission zeros of Ze(s) 
are computed as the zeros of Ze(s) + Ze (-s) to be -81.6429, 1.6249. The Blaschke 
factor 

(1 + R - Ls) (1 - (1 + R1)Cs) 
(1 + R2 + Ls) (1 + (1 + R1)Cs) 

evaluated at the transmission zeros provides the interpolation data 
p(81.6429) = 0.0957, p(1,6249) = 0.1432. 

As mentioned in the previous example, the theory of the paper applies to any class of 
functions which is conformally equivalent to positive real functions. Thus we begin by 
translating the problem to the "discrete-time setting” via the conformal mapping s = 
2-1 it, which maps the right-half-plane bijectively onto the complement of the unit disc. 
Then a function g in the example corresponds, via the transformation g(2) := g(l), 
to a function 6 in the new setting. In this representation, the transducer power gain 
relates to the magnitude of a suitable bounded real function via 

6(e) = 1 - 16(e). 
Translating the interpolation data, to the 2 domain we obtain 

f(-1.0248) = 0.0957, f(-4.2003) = 0.1432. 

B(s) = 

Next, the conformal mapping 
1 - p(z) 
1 + f(z) 

transforms the bounded real function f to to the positive real function f. Thus, we 
seek a positive real function f such that 

f(-1.0248) = 1.2116 f(-4.2003) = 1.3342. 
It is important to note that the zeros off--if" are identical to the zeros of 1-6f). These 
are usually called spectral zeros. Finally, it remains to move the point 20 = -1.0248 to 
oo. This is done via the linear fractional transformation 2 - E, thus defining 
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Figure 8.4: |G(e') as a function of 0 
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Figure 8.5: Filter bank. 
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Figure 8.6: d(e) as a function of 6 
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defined by the coprime factorizations 
No (2) N. (2) 
Do(2) D1 (2) 

where N, D., k = 0, 1, are stable, proper rational functions. Then the problem at 
hand is to find a compensator 

Po(z) = and P (2) = 

which simultaneously stabilizes not only these two plants but the one-parameter fam 
ily 

(8.7) 

AN, (2) + (1 - A) No (2) 
--- XD (2) -- (1 - X)Do(2) 

of plants. It is easy to see that the compensator (8.7) stabilizes P. for all X e 0,1 if 
and only if there are stable, minimum-phase transfer functions Ao and Al such that 

(i) the factors N., De satisfy the equations 
D. (2) D.(2) - N. (2) N.(2) = A(2) k = 0,1 (8.8) 

(ii) the rational function 

P X e 0, 1) 

XA1 + (1 - X) Ao 
is stable and minimum-phase for all X e (0,1). 

Starting with condition (i), we solve the system (8.8) for N, De to obtain 
N = A0D1 - A1 Do D = AoN - A1 No 
TND - NoD T NDo-NoD 

Suppose that N1 Do - No D1 has zeros at 20, 21, ..., 2, Outside the unit disc, and set 

w = 2 = 1), k = 0, 1,...,n. (8.9) T DoCz) No(z) 
Then, for De and Ne to be stable as required, 2o, 21,..., 2, must also be zeros of 
AoD - A1 Do and AoN1 - A1 No, which happens if and only if 

A1(2) = wik, k = 0, 1,..., n. 8.10 Ao(z) Uk ( ) 

Next, condition (ii) requires that XA1(2) + (1 - X)Ao(z) 7 0 for all 2 e D, or 
equivalently 

A1(2) X - 1 ---, X DC Ao(2) X e (0,1), 2 e ID, (8.11) 

which excludes the whole negative real line. 
Consequently, the problem is reduced to finding a rational function 

F(s) = 3 
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mapping D into the complex plane minus the negative real line and satisfying the 
interpolation conditions (8.10). Then 

Di(z) - F(z) Do(z) C(-) - N - F. Ni 
is an admissible compensator. However, f(z) = (F(z)) /maps Dinto the open right 
half plane and is therefore positive real. Hence, we may instead apply the methods of 
this paper to determine a positive real function f of degree at most in satisfying the 
interpolation conditions 

f(z) = (we)', k = 0, 1,...,n, 
and then take F(z) = f(z). The different solutions are parameterizes by the spectral 
zeros of f, i.e., the zeros off -- f'. 
9. Conclusions 

In this paper, we have given a method for finding all solutions to the Scalar, rational 
Nevanlinna-Pick interpolation problem, having degree less than or equal to n, in 
terms of the minima of a parameterized family of convex Optimization problems. 
While the problem has been posed for positive real interpolants, as would arise for 
the control of discrete-time systems, standard linear fractional transformations can 
adapt this generalized entropy criterion approach to positive real, or bounded-real, 
transfer functions for both continuous and discrete-time linear systems. 

Appendix A. Proofs of Propositions 5.1, 5.2 and 5.4 
Proof of Proposition 5.1. We want to prove that p(q) is finite when g 70. Then the 
rest follows by inspection. Clearly, p(q) cannot take the value -oxo; hence it remains 
to prove that p(q) < co. Since q 7 0. 

11 := max Q(e") > 0. 
Then, setting P(z) := u Q(z), 

log P(e") < 0 (A.1) 
and 

1. Tt 1 i. i (a) = p(a)-log u? (e")dd-i Ilog P(e") (e").d6, 27 J 
and hence the question of whether p(q) < oxo is reduced to determining whether 

But, since (e) < M for some bound M, this follows from 

f log P(e').d6 > -oc, (A.2) 
which is the well-known Szego condition: (A.2) is a necessary and sufficient condition 
for P(e") to have a stable spectral factor (29). But, since the rational function P(2) 
belongs to S, satisfies P(2) = P(2) and is nonnegative on the unit circle, there is a 
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function T(2) e JC(B) such that T(2)7t" (2) = P(2). But then T(2) is a stable spectral 
factor of P(2), and hence (A.2) holds. O 
Proof of Proposition 5.2. Suppose q is a sequence in M, := p(-co, r). It suffices 
to show that q has a convergent subsequence. The sequence q defines a sequence 
of unordered n-tuples of Zeros lying in the the unit disc, and a sequence of scalar 
multipliers. We wish to prove that both of these sequences cluster. To this end, each 
Q may be factored as 

where X is positive and a (2) is a function in JC(B) which is normalized so that 
ak (oo) = 1. 
We shall first show that the sequence of zeros clusters. The corresponding sequence 

of the (unordered) set of n zeros of each a (2) has a convergent subsequence, since 
all (unordered) sets of zeros lie in the closed unit disc. Denote by a (2) the function 
in H(B) which vanishes at this limit set of zeros and which is normalized so that 
a(OO) = 1. By reordering the sequence if necessary, we may assume the sequence 
ak (2) tends to a (2). Therefore the sequence q has a convergent subsequence if and 
only if the sequence X does. 
We now show that the sequence of multipliers, X, clusters. It suffices to prove that 

the sequence X is bounded from above and from below away from zero. This will 
follow by analyzing the linear and the logarithmic growth in 

7t 2(q) = p(a)--loga, ? (e")de- ? log(G()(e)(e)de 
27t - 27 J 

with respect to the sequence X. Here p1 (q) is the linear term (5.1) of p(q). We first 
note that the sequence pi (G), where g is the vector corresponding to the pseudo 
polynomial Q, is bounded from above because the normalized functions a (2) lie in 
a bounded set. Similarly, by the proof of Lemma 5.3, the sequence (p1(G) is bounded 
from below, away from zero. In particular, the coefficient of X in the first term for 
this expression for p(q) is bounded away from 0 and away from Co. We also note 
that the coefficient of log Xk in this expression for p(q) is independent of k. Next, 
the term 

if log Q() (e) u(e).d6 (A.3) 
in this expression for p(q) is independent of A, and we claim that it remains 
bounded as a function of k. Indeed, are both bounded from above and from below 
respectively away from zero and -oxo. The upper bounds come from the fact that 
Re(w+1, g) are Schur polynomials and hence have their coefficients in the bounded 
Schur region. In fact, 

Q()(e) - la (e) = Q(z) 
where a(z) has all its zeros in the closed unit disc. In particular, if q in O, corresponds 
to q, then the third term in the expression for p(q) converges to p(g), which is finite 
since a is not identically zero. 
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Finally, observe that if a subsequence of X were to tend to zero, then p(q) would 
exceed r. Likewise, if a subsequence of X were to tend to infinity, p would exceed r, 
since linear growth dominates logarithmic growth. D 
Proof of Proposition 5.4. Denoting by Dp(q) the directional derivative of p at g in 
the direction p, it is easy to see that 

(p(q + ep) - p(q) 
D. p(q) := in E 

7, P(e.8 = e(p) - I've")do, (A.4) 
where P(2) is the pseudo-polynomial 

P(z) = png, (2) + ... + pig (2) + pogo (2) + p191(2) + ... + pagn (2) 
corresponding to the vector p e C'''. In fact, 

log(Q -- e.P) -log Q P P : P SS - - - S - = -lo 1 -- e.) P - 6. a log(1+(3) Q 
as e - +0, and hence (A.4) follows by dominated convergence. 
Now, let q e Q and q e OQ be arbitrary. Then the corresponding pseudo 

polynomials Q and Q have the properties 
Q(e') > 0 for all 8 e-T, 7) 

and 
Q(e') > 0 for all 6 and Q(eito) = 0 for some Go. 

Since q := g + X(q - g) e Q for Xe (0,1), we also have for Xe (0,1) that 
Q(e') := Q(e") + XQ(e') - Q(e") > 0, for all t e -t, t), 

and we may form the directional derivative 

Di-gp(q) = p1(g - g) + i. I ha(0).d6, (A.5) 

where Q( id) Q( i0) e) - O(e 
ha(6) -adri (e 9). 

Now, 
d ei?) - O(ei)2 sha(0)=197) dX Q(e) 

and hence hy(0) is a monotonely nondecreasing function of X for all 6 e -t, Tr. 
Consequently hy tends pointwise to ho as X - 0. Therefore, 

U (e") > 0, 

i ha(0).d6 - +oo as X - 0. (A.6) 

In fact, if 

i. hy(0).d6 - a < co as X - 0, (A.7) 
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then {h} is a Cauchy sequence in L' (-tt, 7t) and hence has a limit in L' (-tt, 7t) which 
must equal ho a.e. But ho, having poles in -7, T, is not summable and hence, as 
claimed, (A.7) cannot hold. 

Consequently, by virtue of (A.5), 
D-gp(q) -} +CO as X - 0 

for all q e O and d e 60, and hence, in view of Lemma. 26.2 in 44, p is essentially 
Smooth. Then it follows from Theorem 26.3 in 44 that the subdifferential of p is 
empty on the boundary of Q, and therefore p cannot have a minimum there. O 
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A NEW APPROACH TO SPECTRAL ESTIMATION: 
A TUNABLE HIGH-RESOLUTION SPECTRAL ESTIMATOR* 

CHRISTOPHER I. BYRNES, TRYPHON T. GEORGIOUS, AND ANDERS LINDQUISTi. 

August 17, 1998 

ABSTRACT. Traditional maximum entropy spectral estimation determines a power 
spectrum from covariance estimates. The approach presented here is based on the 

: use of general filter banks as a means of obtaining spectral interpolation data. Such 
data encompass standard covariance estimates. A constructive approach for ob 
taining suitable pole-zero (ARMA) models from such data is presented. The choice 
of the zeros (MA-part) of the model is completely arbitrary. By suitably choices 
of filter-bank poles and spectral zeros the estimator can be tuned to exhibit high 
resolution in targeted regions of the spectrum. 

1. Introduction 

In this paper we present a novel approach to spectral estimation. The paper is a 
companion publication to 11 where the mathematical aspects of our theory have 
been worked out, and is the culmination of efforts by the authors over a number of 
years 3-11), and 17-20). 
The approach leads to a Tunable High REsolution Estimator (THREE), based 

on three elements, namely (i) a bank of filters, (ii) a theory for parameterizing the 
complete set of spectra which are consistent with the "filter measurements” and have 
bounded complexity, and (iii) a convex-optimization approach for constructing spectra, 
described in (ii). 
The bank of filters is used to process, in parallel, the observation record and obtain 

estimates of the power spectrum at desired points. These points relate to the filter 
bank poles and can be selected to give increased resolution over desired frequency 
bands. The theory in (ii) implies that a second set of tunable parameters are given 
by so-called spectral zeros which determine the Moving-Average (MA) parts of the 
solutions. The solutions turn out to be spectra of Auto-Regressive/Moving-Average 

- - - - - - -(ARMA) filters of complexity at most equal to the dimension of the filter bank. 
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THREE is especially suitable for being applied to short observation records. We 
demonstrate the applicability of the approach by several case studies, including iden 
tifying spectral lines and estimating power spectra with steep variations. 
The structure of the paper is as follows. In Section 2 we introduce the bank of fil 

ters, and discuss how the covariances of their outputs provide estimates of the power 
spectrum at the reflected pole positions. The variability of such statistical estimates 
and how they are affected by the position of the poles is briefly considered. The 
section concludes with a motivating example which present a simulation study com 
paring THREE with traditional AR filtering and with periodogram analysis. Section 
3 presents the basic elements of analytic interpolation that are relevant to the current 
problem. The classical results are reviewed first, and then our recent theory of ana 
lytic interpolation with degree constraint is explained. This is continued in Section 4, 
where the convex optimization approach is presented. This is based on a generalized 
concept of entropy and leads to state-space formulae for the bounded-complexity in 
terpolants. We conclude the section with a derivation of the special (linear) case of 
the central interpolant of the classical theory. Section 5 contains several case studies. 
Certain mathematical facts are discussed in the appendix. 

2. Framework for spectral estimation 
Let 

{y(t) t = ..., -1, 0, 1,...} 
denote a real-valued, zero-mean, stationary (Gaussian) stochastic process with power 
spectral density d(e) for 6 e -t, t). Throughout this work we assume that y 
is a scalar process. The vector-case will be the subject of a future study. We shall 
consider the basic problem of estimating the spectrum d based on finite observation 
records 

{yo, y1, y2, a JN} (2.1) 
of the process. 

Traditional modern spectral estimation techniques rely on estimates of a number 
of covariance lags 

Co, C1, C2, . . . . Cn, where c := E{y(t)y(t+ k), (2.2) 

and E} denotes mathematical expectation. Typically, these are estimated either 
by suitable averaging over time of the products ytyk, or through estimating the 
partial autocorrelation coefficients first, by different averaging schemes such as Burg 
algorithm. In either case, the statistical reliability of Such estimates decreases for 
higher order lags due to the fact that averaging takes place Over a shorter list of such 
Cross-products. - 

The primal object of this paper is the function 

st do, (2.3) 
- it 

about which much is known. It is analytic in 2 > 1 and has positive real part there 
- such functions are called positive-real. In fact, the spectral density is 
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Figure 1: First-order filter. 
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Figure 2: Bank of filters. 

  


























































