

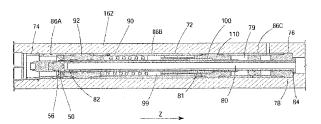
República Federativa do Brasil Ministério do Desenvolvimento, Indústria e do Comércio Exterior Instituto Nacional da Propriedade Industrial.

(21) PI 1004062-5 A2

(22) Data de Depósito: 25/10/2010 **(43) Data da Publicação: 19/02/2013**

(RPI 2198)

(51) Int.CI.: E21B 21/10


(54) Título: VÁLVULA DE COLUNA DE PERFURAÇÃO CONFIGURADA PARA SER AFIXADA A UM REVESTIMENTO PARA CONECTAR A PERFURAÇÃO A UMA SONDA, MÉTODO PARA PREPARAR UMA VÁLVULA DE COLUNA DE PERFURAÇÃO PARA SER CONECTADA A UM REVESTIMENTO PARA CONECTAR UMA PERFURAÇÃO A UMA SONDA, VÁLVULA DE COLUNA DE PERFURAÇÃO CNFIGURADA PARA SER AFIXADA A UM REVESTIMENTO PARA CONECTAR UMA PERFURÇÃO A UMA SONDA E MÉTODO PARA CONTROLAR UMA VÁLVULA DE COLUNA DE PERFURAÇÃO

(73) Titular(es): HYDRIL USA MANUFACTURING LLC

(72) Inventor(es): DERRYL SCHROEDER, MICHAEL FRIEDRICHS

(57) Resumo: VÁLVULA DE COLUNA DE PERFURAÇÃO CONFIGURADA PARA SER AFIXADA A UM REVESTIMENTO PARA CONECTAR A PERFURAÇÃO A UMA SONDA, MÉTODO PARA PREPARAR UMA VÁLVULÁ DE COLUNA DE PERFURAÇÃO PARA SER CONECTADA A UM REVESTIMENTO PARA CONECTAR UMA PERFURAÇÃO A UMA SONDA, VÁLVULA DE COLUNA DE PERFURAÇÃO CONFIGURADA PARA SER AFIXADA A UM REVESTIMENTO PARA CONECTAR UMA PERFURAÇÃO A UMA SONDA E MÉTODO PARA CONTROLAR UMA VÁLVULA DE COLUNA DE PERFURAÇÃO. Trata-se de um método e uma válvula de coluna de perfuração (70, 160) para fechar um conduto através do qual um fluido de pressão alta flui. A válvula de coluna de perfuração (70, 160) inclui um alojamento alongado (162) que tem uma cavidade interna (79), um elemento de vedação (56) afixado a uma primeira extremidade (74) do alojamento alongado (162), sendo que o elemento de vedação (56) fica disposto dentro da cavidade interna (79) para que um fluxo de liquido (80) através da cavidade interna (79) a partir da primeira extremidade (74) para uma segunda extremidade (76) seja permitido,uma válvula de deslizamento (50) configurada para deslizar para e partir do elemento de vedação (56) para que quando a válvula de deslizamento (50) entrar em contato com o elemento de vedação (56) o fluxo de liquido seja suprimido, um cartucho de propensão (90) configurado para aplicar uma primeira força sobre a válvula de deslizamento (50), e um mecanismo de carga (110) configurado para aplicar uma segunda força sobre o cartucho de propensão (90).

70

"VÁLVULA DE COLUNA DE PERFURAÇÃO CONFIGURADA PARA SER AFIXADA A UM REVESTIMENTO PARA CONECTAR A PERFURAÇÃO A UMA SONDA, MÉTODO PARA PREPARAR UMA VÁLVULA DE COLUNA DE PERFURAÇÃO PARA SER CONECTADA A UM REVESTIMENTO PARA CONECTAR UMA PERFURAÇÃO A UMA SONDA, VÁLVULA DE COLUNA DE PERFURAÇÃO CONFIGURADA PARA SER AFIXADA A UM REVESTIMENTO PARA CONECTAR UMA PERFURAÇÃO A UMA SONDA E MÉTODO PARA CONTROLAR UMA VÁLVULA DE COLUNA DE PERFURAÇÃO"

ANTECEDENTES DA INVENÇÃO

CAMPO DA TÉCNICA

As modalidades do assunto descritas neste documento referemse, em geral, aos métodos e válvulas e, mais particularmente, aos mecanismos e às técnicas para interromper um fluxo de líquido através de uma válvula.

DISCUSSÃO DOS ANTECEDENTES DA INVENÇÃO

Anteriormente, com o aumento no preço dos combustíveis fósseis, o interesse no desenvolvimento de novos campos de produção de petróleo tem crescido dramaticamente. Entretanto, a disponibilidade de campos de produção baseados em terra é limitada. Desse modo, a indústria tem perfuração estendida para localizações marítimas, que parecem manter uma quantidade vasta de reservas de petróleo. Uma característica das localizações marítimas é a pressão alta ao que o equipamento de perfuração é submetido. Por exemplo, é convencional ter partes do equipamento de perfuração designadas para resistirem pressõ es entre 344,7 3 a 2.068,42 ba (5.000 a 30.000 psi). Além disso, os materiais usados para os diversos componentes do equipamento de perfuração são desejados para serem resistentes à corrosão e para resistirem a temperaturas altas.

As tecnologias existentes para extração de petróleo a partir de

10

15

20

25

5

campos marítimos usam um sistema 10 conforme mostrado na Figura 1. Mais especificamente, o sistema 10 inclui um recipiente (ou sonda) 12 que tem um carretel 14 que fornece cabos de comunicação/força 16 a um controlador 18. O controlador 18 fica disposto submarinamente, próximo a ou sobre o leito do mar 20. Nesse contexto, nota-se que os elementos mostrados na Figura 1 não são desenhados por escala e nenhuma dimensão deve ser inferida a partir da Figura 1.

5

10

15

20

25

A Figura 1 também mostra que a coluna de perfuração 24 é fornecida no interior de um *riser* 40, que se estende a partir do recipiente 12 a um BOP 28. Uma cabeça de poço 22 do poço submarino é conectada a um revestimento 44, que é configurado para acomodar a coluna de perfuração 24 que entra no poço submarino. Na extremidade da coluna de perfuração 24 existe uma broca de perfuração (não mostrada). Diversos mecanismos, também não mostrados, são empregados para girarem a coluna de perfuração 24, e, implicitamente, a broca de perfuração, para estender o poço submarino.

Entretanto, durante a operação de perfuração normal, eventos inesperados podem ocorrer, o que poderia danificar o poço e/ou o equipamento usado para perfuração. Um evento é o fluxo não controlado de gás, petróleo ou outros fluidos de poço a partir de uma formação subterrânea no interior do poço. Tal evento é denominado, algumas vezes, de um "kick" ou um "blowout" e pode ocorrer quando a pressão de formação no interior do poço excede a pressão aplicada ao mesmo por meio da coluna de fluido de perfuração (lama). Esse evento é imprevisível e, se nenhuma medição for obtida para impedi-lo, o poço e/ou o equipamento pode ser danificado. Embora a discussão acima tenha sido direcionada à exploração de petróleo submarina, o mesmo é verdadeiro para a exploração de petróleo em terra.

Desse modo, um conjunto de preventores (blowout preventer, BOP) pode ser instalado no topo do poço para vedar o poço no caso em que

um dos eventos acima esteja ameaçando a integridade do poço. O BOP é implementado convencionalmente como uma válvula para impedir a liberação da pressão em cada espaço anular, isto é, entre o revestimento e o tubo de perfuração, ou no poço aberto (isto é, poço com nenhum tubo de perfuração) durante as operações de completação ou perfuração. Recentemente, uma pluralidade de BOPs é instalada no topo do poço por diversas razões. A Figura 1 mostra dois BOPs 26 ou 28 que são controlados por meio do controlador 18.

Entretanto, a exploração em águas ultra-profundas apresenta uma grande quantidade de outros problemas de perfuração, como zonas de circulação de perda substancial, incidentes de controle de poço, fluxos para águas pouco profundas, etc. Desse modo, muitos desses poços são perdidos devido a problemas de perfuração mecânicos significativos. Esses eventos aumentam o custo da perfuração e reduzem as chances de que o petróleo seria extraído a partir daqueles poços, o que é indesejável.

Uma tecnologia nova para exploração em águas profundas, que é discutida com relação à Figura 2, foi desenvolvida em resposta a esses problemas. Ao mesmo tempo em que a tecnologia tradicional usou perfuração com gradiente único, a tecnologia nova usa perfuração com gradiente para controlar melhor uma pressão do fundo do poço, isto é, a pressão na região em torno da broca de perfuração 30 mostrada na Figura 2. Com a perfuração de gradiente único, a pressão do fundo do poço é controlada por meio de uma coluna de lama (mistura dedicada de líquidos usada na indústria de extração de petróleo) que se estende a partir do fundo do poço 32 para a sonda 12, conforme mostrado na Figura 2. Entretanto, com a perfuração de gradiente duplo, um controle de pressão melhor é alcançado através de uma combinação de (i) lama a partir do fundo 32 do poço para uma bomba aspirante de lama 34 e (ii) lama a partir da bomba aspirante de lama 34 para a sonda 12. A Figura 2 mostra que a tecnologia nova emprega uma linha de retorno de lama 36 e uma

linha de energia elétrica de água do mar 38 para a bomba aspirante de lama 34 ao lado do *riser* 40. A lama é fornecida através da coluna de perfuração 24 para a broca de perfuração 30. Um dispositivo de rotação submarino 42 é fornecido próximo ao BOP 26 para manter a separação entre a água do mar no *riser* acima do dispositivo de rotação submarino 42 e a lama retorna abaixo. Desse modo, o sistema de perfuração de gradiente duplo mostrado na Figura 2 fornece a lama bombeada através da coluna de perfuração 24 para a broca de perfuração 30 e então bombeada de volta acima de um anular entre a coluna de perfuração 24 e o revestimento 44 por meio da bomba aspirante de lama 34.

5

10

15

20

25

O sistema mostrado na Figura 2, que precisa equilibrar as pressões diferentes entre a lama e a água do mar quando a bomba aspirante de lama 34 não está ativa, pode empregar uma válvula de coluna de perfuração 46, disposta abaixo do BOP 26 e próxima à broca de perfuração 30. A pressão não equilibrada formada por causa do efeito de tubo em U da lama poderia alcançar 344,73 ba (5.000 psi), dependendo do peso da lama e da profundidade da água. Essa é uma grande pressão que destruiria normalmente as válvulas usadas em torneiras, sistemas de irrigação, diálise sanguínea e outros campos da técnica que usam válvulas. Devido a essas grandes pressões e aos problemas de erosão apresentados por meio da água salgada e da lama, aquele versado na técnica não procuraria ou importaria componentes a partir das válvulas usadas nesses outros campos da técnica porque essas válvulas não são designadas para resistirem grandes pressões submarinas. Além disso, as exigências de vedação para a indústria de perfuração t ornam aquelas válvulas usada s nos campos de pressão baixa impróprias para a indústria de perfuração.

A válvula de coluna de perfuração convencional 46 é colocada no interior do revestimento 44, próxima à broca de perfuração 30. Desse modo, a válvula de coluna de perfuração 46 é uma ferramenta de fundo de poço e essa

válvula é ilustrada na Figura 3. A válvula de coluna de perfuração 46 tem uma válvula de deslizamento 50 que é configurada para vedar uma passagem 52 a partir de uma passagem 54 no interior do transportador de mola 48. A válvula de deslizamento 50 alcança a vedação de acordo com vedação cônica 56. A vedação cônica 56 pode ser feita de um metal resistente e fixada relativa à válvula de coluna de perfuração 46. A válvula de deslizamento 50 fica móvel ao longo de um eixo geométrico Z e fica propendida por meio de uma mola 58. A válvula de deslizamento 50 fica fechada em uma posição padrão. Quando a lama é bombeada a partir do recipiente 12 em direção à broca de perfuração 30 (ao longo do eixo geométrico Z na Figura 2), a pressão alta da lama abre a válvula de deslizamento 50 (pressionando para baixo a válvula de deslizamento 50) e comprime a mola 58. Quando o bombeamento a partir do recipiente 12 pára, a mola comprimida 58 fecha a válvula de deslizamento 50, fechando, assim, a válvula de coluna de perfuração 46.

Algumas desvantagens da válvula de coluna de perfuração 46 mostrada na Figura 3 serão discutidas. Um comando da válvula foi designado em duas seções. As duas seções incluem um colar longo inferior 62 para alojar a mola espiral longa 58 e um colar superior curto 64 para alojar o mecanismo de válvula. Esse projeto exige comandos de usinagem para alta precisão, fazendo das concentricidades e dos diâmetros de preensão, especialmente em furos profundos, um desafio. Devido ao fato de ser um colar de duas peças, a montagem e a desmontagem exigem o uso de "chave flutuante" pesada ou *iron roughneck* para constituir e romper a conexão de comando. Esse equipamento não está disponível nas lojas e precisa ser constituído e rompido sobre o piso de perfuração.

Um p acote de mola inclui a mola espiral longa 58, ou molas conjugadas que constituem uma mola longa, e essas molas são fornecidas em uma câmara de mola 66. A flambagem das molas longas 58 foi observada. A

flambagem aumenta uma fricção entre as molas e o pacote na medida em que as bobinas entram em contato com um diâmetro externo e um diâmetro interno da câmara de mola 66. Além disso, o pacote de mola fica aberto para os fluidos de poço nesse projeto. Mesmo se a área de mola for envolvida em graxa, a graxa eventualmente é substituída por lama durante a perfuração. Desse modo, as molas são corroídas por meio dos fluidos de poço, que aumenta adicionalmente a fricção entre as molas e as paredes da câmara de molas e também encurtam a vida das molas.

5

10

15

20

25

Outra desvantagem do sistema mostrado na Figura 3 é relacionada à maneira na qual a válvula de coluna de perfuração 46 é montada. A mola espiral 58 e o transportador de mola 48 são instalados no colar longo 62, onde a rosca macho de transportador de mola 48 é atarraxada no interior de uma rosca de união 63 na extremidade inferior do colar. Uma vez instalado, o transportador de mola 48 é estendido fora do topo do colar inferior 62. A extensão de mola para além do colar depende da mola usada, mas poderia ser de até 30,48 cm (12 polegadas). Essa condição extrema teria o comprimento livre da mola pendendo 7,62 cm (3 polegadas) para além do transportador de mola 48 com nenhuma sustentação. O desafio é lidar com o colar superior pesado 64, desgastando uma extremidade de mola não sustentada e tendo que comprimir a mola enquanto estiver se alinhando para o engate com a rosca de colar inferior 65. A carga de extremidade induzida de mola durante essas manobras poderia alcançar alguns milhares de libras no engate de rosca. Isso é uma preocupação de segurança para o operador de sonda devido a lesões potenciais à equipe.

Assim sendo, seria desejável apresentar sistemas e métodos que evitam os problemas e as desvantagens acima mencionados.

SUMÁRIO DA INVENÇÃO

De acordo com uma modalidade exemplificadora, existe uma

válvula de coluna de perfuração configurada para ser afixada a um revestimento para conectar uma perfuração a uma sonda. A válvula de coluna de perfuração inclui um alojamento alongado que tem uma cavidade interna, sendo que o alojamento se estende ao longo de um eixo geométrico e tem um diâmetro externo substancialmente constante; um elemento de vedação afixado a uma primeira extremidade do alojamento alongado, sendo que o elemento de vedação tem um diâmetro externo menor do que um diâmetro interno do alojamento alongado, e o elemento de vedação fica disposto dentro da cavidade interna para que um fluxo de líquido através da cavidade interna a partir da primeira extremidade para uma segunda extremidade do alojamento alongado seja permitido; uma válvula de deslizamento disposta dentro da cavidade interna e configurada para deslizar para e partir do elemento de vedação ao longo do eixo geométrico de vedação para que o fluxo de líquido seja suprimido; um cartucho de propensão disposto dentro da cavidade interna, entre o elemento de vedação e a segunda extremidade do alojamento alongado, e configurado para aplicar uma primeira força sobre a válvula de deslizamento para que a válvula de deslizamento entre em contato com o elemento de vedação; e um mecanismo de carga disposto dentro da cavidade interna, entre o cartucho de propensão e a segunda extremidade do alojamento alongado, e configurado para aplicar uma segunda força sobre o cartucho de propensão.

5

10

15

20

25

De acordo com outra modalidade exemplificadora, existe um método para preparar uma válvula de coluna de perfuração para ser conectada a um revestimento para conectar uma perfuração a uma sonda. O método inclui uma etapa de conectar uma fonte de energia a um orifício de um cartucho de propensão da válvula de coluna de perfuração, sendo que a válvula de coluna de perfuração inclui (i) um alojamento alongado que tem uma cavidade interna, sendo que o alojamento se estende ao longo de um eixo geométrico e

5

10

15

20

25

tem um diâmetro externo substancialmente constante, (ii) um elemento de vedação afixado a uma primeira extremidade do alojamento alongado, sendo que o elemento de vedação tem um diâmetro externo menor do que um diâmetro interno do alojamento alongado, e o elemento de vedação que fica disposto dentro da cavidade interna para que um fluxo de líquido através da cavidade interna a partir da primeira extremidade para uma segunda extremidade do alojamento alongado seja permitido, (iii) uma válvula de deslizamento disposta dentro da cavidade interna e configurada para deslizar para e partir do elemento de vedação ao longo do eixo geométrico para que quando a válvula de deslizamento entrar em contato com o elemento de vedação o fluxo de líquido seja suprimido, e (iv) o cartucho de propensão disposto dentro da cavidade interna, entre o elemento de vedação e a segunda extremidade do alojamento alongado e configurado para aplicar uma primeira força sobre a válvula de deslizamento para que a válvula de deslizamento entre em contato com o elemento de vedação, e (v) um mecanismo de carga disposto dentro da cavidade interna, entre o cartucho de propensão e a segunda extremidade do alojamento alongado, e configurado para aplicar uma segunda força sobre o cartucho de propensão; uma etapa de aplicar uma pressão ao mecanismo de carga para gerar a segunda força; uma etapa de comprimir uma mola de ondas do cartucho de propensão; uma etapa de travar um elemento de interrupção para manter a mola de ondas em um estado comprimido; e uma etapa de aliviar a pressão aplicada.

Ainda de acordo com outra modalidade exemplificadora, existe uma válvula de coluna de perfuração configurada para ser afixada a um revestimento para conectar uma perfuração a uma sonda. A válvula de coluna de perfuração inclui um alojamento alongado que tem uma cavidade interna, sendo que o alojamento se estende ao longo de um eixo geométrico; um módulo de motor disposto dentro da cavidade interna; um elemento de vedação

conectado ao módulo de motor e configurado para se mover dentro da cavidade interna ao longo do eixo geométrico; um apoio disposto dentro da cavidade intern a e configurado para receber o elemento de vedação para interromper um fluxo de fluido através da válvula de coluna de perfuração quando o apoio tocar o elemento de vedação; e um elemento de controle disposto dentro da cavidade interna e configurado para controlar um fechamento e uma abertura do elemento de vedação.

De acordo com outra modalidade exemplificadora, existe um método para controlar uma válvula de coluna de perfuração. O método inclui uma etapa de receber a partir de uma unidade de medida de fluxo uma taxa de fluxo de um fluido através da válvula de coluna de perfuração, uma etapa de determinar em um processador uma posição de um elemento de vedação que é configurado para se mover para e a partir de um apoio para suprimir um fluxo de fluido através da válvula de coluna de perfuração, e uma etapa de pesquisar uma tabela de pesquisa armazenada na memória conectada ao processador para determinar se u m motor tem que ser ativado para fechar ou abrir o elemento de vedação.

10

15

20

25

Breve Descrição dos Desenhos

Os desenhos anexos, que são incorporados na e constituem uma parte da especificação, ilustram uma ou mais modalidades e, juntamente com a descrição, explicam essas modalidades. Nos desenhos:

- a Figura 1 é um diagrama esquemático de um a sonda marítima convencional;
- a Figura 2 é um diagrama esquemático de um sistema de perfuração com gradiente duplo convencional;
 - a Figura 3 é um diagrama esquemático de um mecanismo de válvula de coluna de perfuração convencional;
 - a Figura 4 é um diagrama esquemático de uma válvula de coluna

de perfuração inovadora de acordo com uma modalidade exemplificadora;

5

10

15

20

25

a Figura 5 é uma vista mais detalhada de uma porção de topo da válvula de coluna de perfuração da Figura 4 de acordo com uma modalidade exemplificadora;

a Figura 6 é um diagrama esquemático de uma mola de ondas;

a Figura 7 é uma vista mais detalhada de uma porção inferior da válvula de coluna de perfuração da Figura 4 de acordo com uma modalidade exemplificadora;

a Figura 8 é um fluxograma que ilustra etapas de um método para ativar uma válvula de coluna de perfuração de acordo com uma modalidade exemplificadora;

a Figura 9 é um diagrama esquemático de outra válvula de coluna de perfuração inovadora de acordo com uma modalidade exemplificadora;

a Figura 10 é um diagrama esquemático de um módulo de motor que é parte da válvula de coluna de perfuração da Figura 9 de acordo com uma modalidade exemplificadora; e

a Figura 11 é um diagrama esquemático da válvula de coluna de perfuração da Figura 9 que ilustra diversas pressões presentes na válvula de acordo com uma modalidade exemplificadora; e

a Figura 12 é um fluxograma que ilustra etapas de um método para controlar uma válvula de coluna de perfuração de acordo com uma modalidade exemplificadora.

DESCRIÇÃO DETALHADA

A seguinte descrição das modalidades exemplificadoras refere-se aos desenhos em anexo. Os mesmos números de referência em desenhos diferentes identificam os mesmos desenhos ou desenhos similares. A seguinte descrição detalhada não limita a invenção. Alternativamente, o escopo da invenção é definido por meio das reivindicações anexas. As seguintes

modalidades serão discutidas, por uma questão de simplicidade, com relação à terminologia e à estrutura de uma válvula de coluna de perfuração. Entretanto, as modalidades a serem discutidas em seguida não são limitadas a esse tipo de válvula, mas podem ser aplicadas a outros sistemas que são configurados para interromperem um fluxo de fluido.

A referência ao longo da especificação a "uma modalidade" significa que uma característica, estrutura ou um aspecto particular descrito em associação com uma modalidade é incluída em pelo menos uma modalidade do assunto descrito. Desse modo, a aparência da frase "em uma modalidade" em diversos lugares ao longo da especificação não está se referindo necessariamente à mesma modalidade. Além disso, as características, estruturas e os aspectos particulares, ou podem ser combinados de qualquer maneira adequada ou em uma ou mais modalidades.

10

15

20

25

De acordo com uma modalidade exemplificadora, uma válvula de coluna de perfuração inovadora tem um diâmetro externo substancialmente constante, inclui um mecanismo de carga para carregar uma mola de válvula de um pacote de mola, a mola de válvula inclui uma mola de ondas, o pacote de mola fica imerso em uma câmara preenchida com petróleo e a pressão da câmara preenchida com petróleo é compensada a partir de uma pressão anular. Os aspectos acima notados serão discutidos a seguir em mais detalhes. Nota-se que as seguintes modalidades exemplificadoras podem incluir um ou mais desses aspectos ou outros aspectos e nenhuma modalidade exemplificadora deve ser interpretada como exigente de todos esses aspectos ou uma combinação específica dos aspectos notados acima.

De acordo com uma modalidade exemplificadora, a Figura 4 mostra uma vista como um todo de uma válvula de coluna de perfuração inovadora 70. Conforme mostrado na Figura 4, um diâmetro externo 72 da válvula de coluna de perfuração 70 tem uma válvula substancialmente

constante ao longo de todo um comprimento da válvula de coluna de perfuração 70. A válvula de coluna de perfuração 70 tem uma vedação cônica 56 afixada a uma primeira extremidade 74 da válvula de coluna de perfuração 70. A vedação cônica 56 coopera com uma válvula de deslizamento 50 para desligar um fluxo de líquido através da válvula de coluna de perfuração 70.

5

10

15

20

25

Uma segunda extremidade 76 da válvula de coluna de perfuração 70 é configurada para ter um tampão inferior 78. O tampão inferior 78 veda uma cavidade 79 da válvula de coluna de perfuração 70 a partir da lama existente no revestimento 44. A cavidade 79 deve ser compreendida como se estendendo a partir da primeira extremidade 74 para a segunda extremidade 76. A cavidade 79 inclui diversas câmaras, conforme será discutido mais tarde. Um fluido 80 pode fluir através de um conduto 81, fornecido no interior da cavidade 79 da válvula de coluna de perfuração 70. O conduto 81 se estende no interior da cavidade 79, a partir de um bocal de fluxo superior 82 para um bocal de fluxo inferior 84. Na operação, a válvula de coluna de perfuração 70 dessa modalidade pode ficar posicionada verticalmente ou substancialmente de forma vertical e tem a primeira extremidade 74 deslocada acima da segunda extremidade 76, para que a lama a partir da sonda entre, nessa ordem, primeira extremidade 74, bocal de fluxo superior 82, conduto 81, tampão inferior 78, e bocal de fluxo inferior 84. Nota-se que a válvula de coluna de perfuração 70 é parte da coluna de perfuração 24, sendo fornecida, assim, no interior do revestimento 44.

De acordo com uma modalidade exemplificadora, um corpo da válvula de coluna de perfuração 70 pode incluir três porções, a primeira porção 86A, a segunda porção 86B, e a terceira porção 86C. As primeiras duas porções 86A e 86B podem ser conectadas juntamente via um corpo de válvula 92 e a segunda porção 86B pode ser conectada à terceira porção 86C via um cartucho de carga de mola 110.

A Figura 4 também mostra um cartucho de propensão 90 disposto no interior da cavidade 79 e configurado para aplicar uma primeira força sobre a válvula de deslizamento 50 para que a válvula de deslizamento 50 entre em contato com a vedação cônica 56. A vedação cônica 56 pode ser substituída por uma vedação que tem outro formato. Um batente rosqueado 100 é fornecido no interior da cavidade interna 79, entre o cartucho de propensão 90 e a segunda extremidade 76. O batente rosqueado 100 é configurado, conforme será discutido mais tarde, para aplicar uma segunda força sobre o cartucho de propensão 90.

10

15

20

25

A válvula de deslizamento 50 é configurada para deslizar para a e a partir da vedação cônica 56, ao longo de uma direção Z, conforme mostrado na Figura 5. A válvula de deslizamento 50 é ativada por meio do atuador 94, que é configurado para se mover no interior de uma câmara de propensão 96. O atuador 94 se estende a partir da câmara de propensão 96, via corpo de válvula 92 em direção à vedação cônica 56 para que um diverter de fluxo 93 possa se estender em paralelo com a válvula de deslizamento 50. O diverter de fluxo 93 pode direcionar o fluxo de fluido 80, quando sob uma pressão maior do que uma pressão criada por meio do cartucho de propensão 90, para empurrar de volta o atuador 94 e abrir a válvula de deslizamento 50. Uma ou mais molas de ondas 98 também são fornecidas na câmara de propensão 96 para fornecer a primeira força sobre o atuador 94. Uma extremidade da câmara de propensão 96 é limitada por meio de um corpo de válvula 92 e a outra extremidade da câmara de propensão 96 é limitada por meio de um espaçador de mola 99, conforme mostrado na Figura 4. A válvula de coluna de perfuração 70 pode ser incluída no interior de um colar 162 (vide Figura 4).

Em uma modalidade exemplificadora, a mola de ondas 98 não é uma mola, mas, de preferência, tem um ou mais dos formatos mostrados na Figura 6. Desse modo, de acordo com uma modalidade exemplificadora, o

cartucho de propensão 90 inclui o atuador 94, a câmara de propensão 96, e a mola de ondas 98. Opcionalmente, o cartucho de propensão 90 pode incluir um fluido no interior da câmara de propensão 96, por exemplo, petróleo. Para confinar o fluido no interior da câmara de propensão 96, vedações apropriadas são fornecidas nas extremidades da câmara de propensão 96 para impedir vazamentos de fluido.

5

10

15

20

25

Quando implantada submarinamente, a válvula de deslizamento 50 da válvula de coluna de perfuração 70 fica propendida por meio do atuador 94 para engatar ativamente a vedação cônica 56, vedando, desse modo, o conduto 81. A propensão aplicada por meio do atuador 94 à válvula de deslizamento 50 é um resultado da compressão da mola de ondas 98. Conforme será discutido em seguida, a mola de ondas 98 é implantada inicialmente de forma não comprimida no interior da válvula de coluna de perfuração 70, com a finalidade de evitar condições nocivas possíveis. Uma vantagem da mola de ondas 98 é seu comprimento reduzido em comparação a uma mola espiral convencional para gerar uma mesma força de mola.

O batente rosqueado 100 configurado para carregar o cartucho de propensão 90 será discutido em seguida com relação à Figura 7. O espaçador de mola 99 separa o cartucho de propensão 90 do batente rosqueado 100.

De acordo com uma modalidade exemplificadora, o cartucho de carga de mola 110 inclui um pistão hidráulico 102 e um batente rosqueado 100. Um orifício 106 no interior da câmara de carga 108 fornece acesso para bombear fluido hidráulico no interior da câmara de carga 108 para ativar o pistão hidráulico 102. Desse modo, o pistão hidráulico 102 se move a partir da direita para a esquerda na Figura 7, com a finalidade de carregar a mola de ondas 98. Mais especificamente, o pistão hidráulico 102 entra em contato com o espaçador de mola 99 e pressiona o espaçador de mola 99 contra a mola de ondas 98, comprimindo (carregando) a mola de ondas 98. Dessa maneira, a

mola de ondas 98 pode ser carregada a uma pressão pré-determinada desejada sem causar nenhum perigo à segurança da equipe de operação na medida em que a mola de ondas 98 fica contida totalmente no interior da câmara de propensão 96. Um sensor de pressão (não mostrado) pode ser incluído com a bomba hidráulica para que uma pressão de fluxo hidráulico na câmara de carga 108 possa ser correlacionada a uma força desejada gerada por meio da mola de ondas 98 (isto é, uma primeira força). Desse modo, a pressão aplicada pode ser parada quando a mola de ondas 98 tiver alcançado a força de mola desejada. Uma força correspondente à pressão aplicada é considerada para ser uma segunda força.

Uma vez que a primeira força desejada na mola de ondas 98 é alcançada, a pressão hidráulica aplicada à câmara de carga 108 é mantida constante e o batente rosqueado 100 é avançado em direção à mola até que o batente rosqueado 100 capte a carga da mola de ondas 98, isto é, o batente rosqueado 100 fixa o espaçador de mola 99. Nesse ponto, a pressão hidráulica aplicada pode ser liberada a partir da câmara de carga 108. O orifício 106 pode ser conectado a uma bomba que bombeia, por exemplo, petróleo para ativar o pistão hidráulico 102. Outro mecanismo para o pistão hidráulico 102 pode ser usado na medida em que tal fato seria compreendido por aqueles versados na técnica.

O cartucho de carga de mola 110 define a borda para câmara de carga 108 e também fornece uma rosca de união ao batente rosqueado 100. Uma vez que a propensão de carga de mola foi ajustada, a seção inferior 86C é montada, e a ferramenta está pronta para ser instalada em seu colar.

De acordo com uma modalidade exemplificadora, o cartucho de carga de mola 110 rompe a continuidade dos tubos externos 86B e 86C que constituem a parede externa da válvula de mola de perfuração 70. Em outras palavras, a parede externa da válvula de mola de perfuração pode ser

25

5

10

15

20

constituída de diversos tubos. Por exemplo, a modalidade mostrada na Figura 4 mostra três tubos diferentes 86A, 86B e 86C que constituem a parede externa da válvula de mola de perfuração 70. Mais ou menos componentes de tubo podem ser usados dependendo das unidades a serem distribuídas no interior da válvula de mola de perfuração 70.

5

10

15

20

25

Ainda com relação à Figura 7, um pistão de compensação 120 pode ser fornecido, de acordo com uma modalidade exemplificadora, no interior de uma câmara de compensação 118, entre o cartucho de carga de mola 110 e o tampão inferior 78. Embora a Figura 7 mostre ambos os sinais de referência 79 e 118 apontando para a mesma câmara, conforme já discutido acima, a cavidade 79 inclui diversas câmaras, dentre as quais, a câmara de compensação 118. Em outras palavras, a cavidade 79 se estende ao longo de toda a válvula de coluna de perfuração 70 e inclui, pelo menos, a câmara de propensão 96, a câmara de carga 108 e a câmara de compensação 118.

A câmara de compensação 118 se comunica via um orifício 122 com um espaço anular em torno da válvula de coluna de perfuração 70 para fornecer pressão anular 112 no interior de uma câmara 124 da câmara de compensação 118, entre o pistão de compensação 120 e o tampão inferior 78. Dessa maneira, os fluidos de poço ficam separados a partir do petróleo limpo presente na câmara de propensão 96 e parte da câmara de carga 108.

Os próximos parágrafos resumirão alguns dos aspectos e/ou das vantagens das modalidades exemplificadoras discutidas acima. Ao mesmo tempo em que uma modalidade exemplificadora pode incluir um (a) ou mais desses (as) aspectos/vantagens, existem modalidades exemplificadoras que não incluem nenhum desses (as) aspectos/vantagens. A montagem de corpo de válvula de coluna de perfuração tem um diâmetro externo constante que possibilita a inserçã o vertical ou horizontal no interior do furo do colar de válvula de coluna de perfuração.

O colar da válvula de coluna de perfuração é simples no projeto com um furo rebaixado longo encerrando em um ombro próximo ao fundo e uma rosca interna próxima a um topo para um anel-trava. O comprimento geral pode ser curto, por exemplo, 13 pés (4 m). O corpo pode ser inserido no colar e pode se assentar sobre um ombro na parte inferior da válvula. Em uma aplicação, não existe orientação fixa. A válvula de coluna de perfuração pode ser retida e travada no lugar na extremidade superior com um anel-trava rosqueado 74 (vide Figura 5). O corpo de válvula de coluna de perfuração modular fornece reviravolta rápida após ativação. Um corpo de válvula de coluna de perfuração de substituição pode ser rapidamente trocado pelo corpo de retorno, ou se carregado em um colar de reserva, pode ser trocado pelo colar de retorno. Esse aspecto eliminará o risco de lesões durante a montagem, montagem contínua e uniforme, e fornece precisão e repetibilidade das ajustagens de mola.

A mola é instalada no corpo de válvula de coluna de perfuração em seu comprimento livre (nenhuma carga de mola). Um mecanismo (mecanismo de carga) para carregar a mola é instalado abaixo do pacote de mola. O mecanismo para carregar a mola é integral ao corpo de válvula de coluna de perfuração, não uma ferramenta auxiliar. O restante do corpo de válvula de coluna de perfuração é montado após a força de mola ser ajustada.

O tipo de mola usada para a válvula de coluna de perfuração tem um comprimento livre eficaz que é mais curto do que o comprimento livre de uma mola espiral, por exemplo, metade do comprimento livre de uma mola espiral com a mesma taxa de mola. Esse aspecto reduz a fricção de sistema. O pacote de mola, as vedações dinâmicas inferiores, e os mancais ficam imersos em um sistema de petróleo de pressão equilibrada. O equilíbrio de pressão é alcançado com um orifício através da parede de colar que toca o anular de furo de poço. Um orifício de união no tampão inferior do corpo de válvula de coluna

de perfuração ca naliza a pressão anular para um pistão de compensação separando os fluidos de poço a partir do sistema de petróleo limpo.

De acordo com outra modalidade exemplificadora, diversas ferramentas analíticas, por exemplo, sensores, podem ser fornecidas no interior da válvula de coluna de perfuração. Tais ferramentas podem incluir sensores de pressão, sensores de câmara celular de armazenamento de carga, sensores de temperatura e sensores para determinarem uma posição da válvula de deslizamento 50. Esse aspecto otimizaria a operação de válvula. Na medida em que esse tipo de válvula se abre muito rapidamente, deseja-se que a válvula se abra em um molde controlado, mais lento para reduzir o efeito dos choques de pressão sobre a formação de poço. Desse modo, os sensores discutidos acima podem auxiliar no monitoramento e controle da válvula de coluna de perfuração. De acordo com uma modalidade exemplificadora, um processador com capacidades de memória pode ser implantado no interior da válvula de coluna de perfuração para coletar e processar os dados a partir dos sensores acima discutidos ou outros conhecidos na técnica. Tal capacidade pode oferecer controle estendido da válvula de coluna de perfuração.

10

15

20

25

As ferramentas analíticas fornecem a capacidade de otimizar um mola determinada para uso em um faixa ampla de operação. Isso irá diminuir a frequência de hardware de mola de troca durante o curso do programa de perfuração. O software de simulação f ornece a capacidade par a ativar as condições de operação de alteração e para determinar os efeitos dos mesmos em uma sequência de tempo. Essa capacidade é desejada para o projeto de mola personalizada.

Esse aspecto inclui a adição de instrumentação de diagnóstico de fundo de poço, por exemplo, um sistema de aquisição de dados pode ser embalado em um recipiente de pressão eletrônico à montante do corpo de válvula de coluna de perfuração. A aquisição de dados sincronizados de tempo

pode gravar dados de pressões, aceleração, carga de mola, posição de válvula, e temperatura. Os orifícios de transdutores de pressão podem ficar posicionados à montante e à jusante do apoio de válvula para medir pressões dinâmicas e estáticas locais.

Uma unidade de aquisição de dados sincronizados de tempo pode ser embalada com um transdutor de medição linear para gravar a posição de válvula. As portas de dados podem ser construídas no interior do corpo de válvula de coluna de perfuração para transferência por download de dados, monitoramento de dados em tempo real durante teste de laboratório, teste de loop de fluxo, e diagnóstico de pré-checagem antes da implantação. Orifícios de acesso hidráulicos também podem ser construídos no interior do corpo de válvula de coluna de perfuração para teste de laboratório, teste de loop de fluxo e checagens de pré-implantação.

De acordo com uma modalidade exemplificadora, as etapas de um método para ativar a válvula de coluna de perfuração 70 são ilustradas na Figura 8. O método inclui uma etapa 800 de conexão de uma fonte de energia a um orifício de um cartucho de propensão da válvula de coluna de perfuração. A válvula de coluna de perfuração inclui (i) um alojamento alongado que tem uma cavidade interna, sendo que o alojamento se estende ao longo de um eixo geométrico e tem um diâmetro externo substancialmente constante, (ii) um elemento de vedação afixado a uma primeira extremidade do alojamento alongado, sendo que o elemento de vedação tem um diâmetro externo menor do que um diâmetro interno do alojamento alongado, e o elemento de vedação que fica disposto dentro da cavidade interna para que um fluxo de líquido através da cavidade interna a partir da primeira extremidade para uma segunda extremidade do alojamento alongado seja permitido, (iii) uma válvula de deslizamento disposta dentro da cavidade interna e configurada para deslizar para e partir do elemento de vedação ao longo do eixo geométrico para que

quando a válvula de deslizamento entrar em contato com o elemento de vedação o fluxo de líquido seja suprimido, (iv) o cartucho de propensão disposto dentro da cavidade interna, entre o elemento de vedação e a segunda extremidade do alojamento alongado e configurado para aplicar uma primeira força sobre a válvula de deslizamento para que a válvula de deslizamento entre em contato com o elemento de vedação, e (v) um mecanismo de carga disposto dentro da cavidade interna, entre o cartucho de propensão e a segunda extremidade do alojamento alongado, e configurado para aplicar uma segunda força sobre o cartucho de propensão. O método também inclui uma etapa 802 de aplicação de uma pressão ao mecanismo de carga para gerar a segunda força, uma etapa 804 de compressão de uma mola de ondas do cartucho de propensão, uma etapa 806 de travamento de um elemento de interrupção para manter a mola de ondas em um estado comprimido, e uma etapa 808 de liberação da pressão aplicada.

De acordo com outra modalidade exemplificadora, uma válvula de coluna de perfuração 160, diferente da válvula de coluna de perfuração 70 ou outras válvulas discutidas acima será discutida com relação à Figura 9. A válvula de coluna de perfuração da Figura 9 tem uma ou mais das seguintes vantagens sobre uma válvula convencional. A válvula convencional se abre quando as bombas de lama estão ligadas e se fecha quando as bombas de lama estão desligadas. Um aspecto de limitação com base em uma quantidade de abertura da válvula de coluna de perfuração fornece transições de fluxo suaves. O projeto convencional usa uma mola espiral para fechar a válvula. A força de mola no fechamento foi designada para a sustentação do peso da coluna de lama. A força foi usada principalmente sobre o peso e a profundidade da lama da água bem como outros parâmetros bem planejados. Uma vez que as combinações de peso da lama e profundidade da água constituem uma matriz em 3-D, uma grande quantidade de projetos de pacote

de mola é exigida.

A válvula de coluna de perfuração inovadora mostrada na Figura 9 substitui, dentre outras, a mola com um sistem a de atuação de válvula acionado por motor tendo controle de retroalimentação. Essa nova válvula elimina propensão de pressão sobre a válvula de haste e prato para que uma haste de atuação não receba uma carga axial grande. Um pacote eletrônico que controla a abertura e o fechamento da válvula pode incluir um controle de microprocessador com aquisição de dados. A válvula de coluna de perfuração instrumentada pode incluir transdutores de pressão para monitorar pressão absoluta e pressões diferenciais através da abertura de válvula e um codificador para monitorar a posição de cabeçote móvel. Uma bateria de lítio pode fornecer a energia necessária para o pacote eletrônico. O módulo de válvula de coluna de perfuração pode ser montado em um comando curto de 8 pés (2,5 m).

De acordo com uma modalidade exemplificadora, a válvula de coluna de perfuração 160 inclui um colar 162 dentro do qual diversos componentes são fornecidos. Por exemplo, um módulo de motor 180 é fornecido em contato com um cabeçote móvel 200. O cabeçote móvel 200 veda uma câmara de motor 182, em que o módulo de motor é fixado, a partir de uma câmara de comunicação 210. A Figura 9 mostra que o módulo de motor 180 inclui um motor 184 que é afixado à e configurado para girar um parafuso de esfera 186. O parafuso de esfera 186 gira em uma porca de parafuso de esfera 188. A porca de parafuso de esfera 188 se conecta a uma luva guia 189 que é fixada a uma haste de atuação 190 para ativar o cabeçote móvel 200. O motor 184, o parafuso de esfera 186 e a porca de parafuso de esfera 188 podem ser distribuídos dentro de uma cavidade metálica 192, para impedirem que qualquer líquido que passa através da válvula de coluna de perfuração 160 entre no módulo de motor 180. O módulo de motor 180 pode ser controlado por

meio de um microprocessador 230 com uma placa de aquisição de dados 220. Uma fonte de energia para os eletrônicos, sensores e motor pode ser uma bateria ou uma fonte hidráulica.

5

10

15

20

25

A atuação do motor 184 determina a extensão ou a retração do parafuso de esfera 186 e da haste de atuação 190, que determinam o movimento do c abeçote móvel 200 em direção a e afastado do apoio de cabeçote móvel 202. Quando o cabeçote móvel 200 está em contato com o apoio de cabeçote móvel 202, nenhum fluido (ou uma quantidade insignificante) passa através da válvula de coluna de perfuração 160. A cavidade metálica 192 que acomoda o módulo de motor 180 pode ser conectada a um adaptador de cunha 204, que é configurado para acomodar o cabeçote móvel 200. Conforme seria reconhecido por aquele versado na técnica, as vedações apropriadas são formadas em torno de diversos elementos discutidos acima para impedir que o fluido entre no módulo de motor.

Uma pressão no interior da válvula de coluna de perfuração 160 pode ser monitorada por meio dos sensores de pressão 222 e 224. Uma posição do cabeçote móvel 200 pode ser monitorada com um sensor apropriado 228. Tal sensor de posição 228 e o mecanismo em anexo podem ser um LVDT, conforme descrito em Young et al., *Position Instrumented Blowout Preventer*, Patente Nº U. S. 5.320.325, Young et al., *Position Instrumented Blowout Preventer*, Patente Nº U. S. 5.407.172, e Judge et al., *RAM BOP Position Sensor*, Publicação de Pedido de Patente Nº U. S. 2008/0196888, cujos conteúdos se encontram incorporados integralmente ao presente a título de referência.

Com base nos dados fornecidos por meio dos sensores de pressão 222 e 224, e opcionalmente por meio do sensor de posição 228, o microprocessador 230 pode determinar quando fechar ou abrir o cabeçote

móvel 200. O microprocessador 230 pode ser fornecido em uma câmara feita personalizada no corpo da válvula de coluna de perfuração 160. De acordo com uma modalidade exemplificadora, o microprocessador 230 é configurado para ajustar o fechamento da válvula de coluna de perfuração 160 dependendo se o cabeçote móvel 200 está completamente fechado, se o cabeçote móvel 200 está começando a abrir ou fechar, e/ou se o cabeçote móvel 200 está aberto. Nota-se que uma pressão no anular (isto é, fora do módulo de motor 180) é maior quando a válvula de coluna de perfuração fica fechada do que quando a válvula de coluna de perfuração fica aberta. Desse modo, com base nas medições de pressão e/ou posição do cabeçote móvel, a quantidade de abertura do cabeçote móvel 200 pode ser controlada, alcançando, assim, uma válvula de coluna de perfuração controlada por retroalimentação.

5

10

15

20

25

Com relação à Figura 10, diversas pressões no interior da válvula de coluna de perfuração são ilustradas. Uma pressão no local 300 no tubo pode ser diferente a partir de uma pressão no local 310 em torno da haste de atuação 19 0, que é equalizada para uma pressão anular no local 320. A cavidade anular entre o adaptador de cunha 204 e o cabeçote móvel 200 é preenchida com um gás 322 em pressão baixa. As alterações na pressão de gás 322 durante a implantação são insignificantes se comparada à pressão no local 300 e à pressão no local 320. Essa pressão equilibrada em ambas as extremidades do cabeçote móvel 200 assegura que o motor 184 necessita aplicar uma força pequena para a atuaç ão da haste 190, comparativa às pressões grandes existentes no anular, para deslocar o cabeçote móvel 200. A pressão no local 310 em torno da haste de atuação 190 é feita igual à pressão anular 320 selecionando os diâmetros A 1, A2, A3 e A4. Dess e modo, as exigências de torque de motor mínimas são necessárias para um funcionamento apropriado do cabeçote móvel e a válvula de coluna de perfuração 160 trabalha para todas as profundidades e pesos da lama.

A seguir, a operação da válvula de coluna de perfuração será discutida. A válvula de coluna de perfuração é uma válvula de checagem de regulagem de pressão que usa um fluxo para compensação. A válvula tem dois modos de operação, que são o modo de perfuração com bombas ligadas e o modo de não-perfuração com bombas desligadas. Durante o modo de perfuração, a válvula de coluna de perfuração se torna uma válvula de checagem compensada de fluxo. Durante o modo de não-perfuração, a válvula de coluna de perfuração impede que a coluna de lama acima da válvula caia livremente quando as bombas de lama estão desligadas.

A válvula de coluna de perfuração 70 emprega uma mola para controlar a abertura de válvula. De acordo com uma modalidade exemplificadora, o projeto da mola de válvula é dependente da carga de mola, da taxa de mola, da taxa de fluxo, do peso da lama, da contrapressão das tubeiras de jato da broca, e das perdas de fluxo no poço a partir da fricção de tubo, da fricção de revestimento, e de quaisquer ferramentas de fundo de poço na coluna de perfuração. Devido ao arranho das variáveis de operação, o desempenho de limitação de uma válvula atuada por mola é indeterminado.

A válvula de coluna de perfuração 160 pode usar dados de sensor e microprocessador a partir de sensores on-board para controlar a posição de válvula. O modo de perfuração é determinado medindo a aceleração de faixa ampla da válvula de coluna de perfuração. Existe uma aceleração distinta na faixa ampla quando as bombas de lama estão desligadas e ligadas. O microprocessador pode ler a aceleração, a taxa de fluxo de lama, a posição de válvula, e as pressões diferenciais. Antes de a ferramenta estar em execução, as entradas para controle e as tabelas de pesquisa para a abertura de válvula contra o tempo são transferidas por download via um dispositivo de comunicação, por exemplo, um computador. As tabelas de pesquisa são construídas para reunirem as exigências do plano de poço e podem variar de

aplicação a aplicação. Quando o microprocessador detecta que existe resposta de faixa ampla a partir do acelerômetro, o microprocessador começa a modular a válvula e controlar a abertura de válvula com base em pelo menos parte da informação na tabela de pesquisa.

5

10

15

20

25

A Figura 11 é um esquema da válvula de coluna de perfuração 160 e mostra a instrumentação usada para controlar a válvula. O medidor de fluxo 226 e o sensor de posição de válvula 228 fornecem os dados ao microprocessador 230 via aquisição de dados 220. O algoritmo de software de microprocessador é baseado em uma relação definida por usuário entre taxa de fluxo e posição de válvula (taxa de fluxo contra posição). O processador compara a posição de válvula real com a posição de válvula desejada com base na taxa de fluxo em tempo real. O processador envia um comando à placa de controlador de motor 227 para ter o motor 184 reposicionando o cabeçote móvel 200. De acordo com uma modalidade exemplificadora, uma tabela de pesquisa pode ser armazenada em uma memória (não mostrada) conectada ao microprocessador 230 e inclui um limite de taxa de fluxo para que para qualquer taxa de fluxo medida acima do limite, o microprocessador 230 seja configurado para fechar o elemento de vedação para suprimir o fluxo de fluido.

De acordo com uma modalidade exemplificadora, o elemento de vedação e o apoio das modalidades acima discutidas são configurados, quando fechados, para resistirem entre 344,73 a 2.068,42 ba (5.000 e 30.000 psi) e/ou para trabalharem no fundo do oceano quando expostos à corrosão.

De acordo com uma modalidade exemplificadora mostrada n a Figura 12, existe um método para controlar uma válvula de coluna de perfuração. O método inclui uma etapa 1.200 de recebimento, a partir de uma unidade de medida de fluxo, uma taxa de fluxo de um fluido através da válvula de coluna de perfuração, uma etapa 1.202 de determinação, em um

processador, de uma posição de um elemento de vedação que é configurado para se mover para e a partir de um apoio para suprimir um fluxo de fluido através da válvula de coluna de perfuração, e uma etapa 1.204 de pesquisa de uma tabela de pesquisa armazenada na memória conectada ao processador para determinar se u m motor tem que ser ativado para fechar ou abrir o elemento de vedação.

5

10

15

20

25

As modalidades exemplificadoras descritas apresentam um sistema e um método para fechar e abrir um duto através do que um fluido pode fluir. As modalidades exemplificadoras são previstas a cobrirem alternativas, modificações e equivalentes, que são incluídas no caráter e escopo da invenção, conforme definido por meio das reivindicações anexas. Além disso, na descrição detalhada das modalidades exemplificadoras, detalhes específicos numerosos são expostos com a finalidade de apresentar uma compreensão abrangente da invenção reivindicada. Entretanto, aquele versado na técnica compreenderia que diversas modalidades podem ser praticadas sem tais detalhes específicos.

Embora os aspectos e elementos das presentes modalidades exemplificadoras sejam descritos nas modalidades em combinações particulares, cada aspecto ou elemento pode ser usado sozinho sem os outros aspectos e elementos das modalidades ou em diversas combinações com ou sem os outros aspectos e elementos descritos neste documento.

Essa descrição escrita usa exemplos do assunto descrito para possibilitar que qualquer indivíduo versado na técnica pratique a mesma, incluindo fazer e usar quaisquer dispositivos ou sistemas e desempenhar quaisquer métodos incorporados. O escopo patenteável do assunto é definido por meio das reivindicações, e pode incluir outros exemplos que ocorrem para aqueles versados na técnica. Tais outros exemplos são previstos a estarem dentro do escopo das reivindicações.

REIVINDICAÇÕES

1. VÁLVULA DE COLUNA DE PERFURAÇÃO (70) CONFIGURADA PARA SER AFIXADA A UM REVESTIMENTO (44) PARA CONECTAR A PERFURAÇÃO A UMA SONDA, sendo que a válvula de coluna de perfuração (70) compreende:

5

10

15

20

25

um alojamento alongado (162) que tem uma cavidade in terna (79), sendo que o alojamento (162) se estende ao longo de um eixo geométrico e tem um diâmetro externo substancialmente constante;

um elemento de vedação (56) afixado a uma primeira extremidade (74) do alojamento alongado, sendo que o elemento de vedação (56) tem um diâmetro externo menor do que um diâmetro interno do alojamento alongado, e o elemento de vedação (56) fica disposto dentro da cavidade interna (79) para que um fluxo de líquido (80) através da cavidade interna (79) a partir da primeira extremidade (74) para uma segunda extremidade (76) do alojamento alongado seja permitido;

uma válvula de deslizamento (50) disposta dentro da cavidade interna (79) e configurada para deslizar para e partir do elemento de vedação (56) ao longo do eixo geométrico para que quando a válvula de deslizamento (50) entrar em contato com o elemento de vedação (56) o fluxo de líquido (80) seja suprimido;

um cartucho de propensão (90) disposto dentro da cavidade interna (79), entre o elemento de vedação (56) e a segunda extremidade (76) do alojamento alongado (162), e configurado para aplicar uma primeira força sobre a válvula de deslizamento (50) para que a válvula de deslizamento (50) entre em contato com o elemento de vedação (56); e

um mecanismo de carga (110) disposto dentro da cavidade interna (79), entre o cartucho de propensão (90) e a segunda extremidade (76) do alojamento alongado, e configurado para aplicar uma segunda força sobre o

cartucho de propensão (90).

5

10

15

20

25

- VÁLVULA DE COLUNA DE PERFURAÇÃO de acordo com a Reivindicação 1, sendo que o cartucho de propensão fica disposto no interior de uma câmara de propensão configurada para ser preenchida com petróleo.
- 3. VÁLVULA DE COLUNA DE PERFURAÇÃO de acordo com a Reivindicação 2, sendo que o cartucho de propensão compreende:

um colar de deslizamento configurado para deslizar no interior da câmara de propensão e para entrar em contato com a válvula de deslizamento, sendo que uma face de uma parte de projeção do colar de deslizamento se estende substancialmente paralela a uma face do elemento de vedação; e

uma mola de ondas fornecida dentro da câmara de propensão e configurada para aplicar a primeira força sobre o colar de deslizamento.

- 4. VÁLVULA DE COLUNA DE PERFURAÇÃO de acordo com a Reivindicação 3, sendo que a mola de ondas é diferente de uma mola espiral.
- 5. VÁLVULA DE COLUNA DE PERFURAÇÃO de acordo com a Reivindicação 1, sendo que o mecanismo de carga compreende:

uma câmara de carga que tem um orifício de pressão;

um pistão hidráulico fornecido na câmara de carga e configurado para atuar sobre um elemento de espaçador configurado para separar de forma vedante o cartucho de propensão do mecanismo de carga, sendo que o pistão hidráulico é configurado para se mover quando um fluido sob uma pressão entra no orifício de pressão; e

um elemento de interrupção configurado para engatar e fixar o elemento de espaçador após a pressão ter sido removida da câmara de carga.

6. VÁLVULA DE COLUNA DE PERFURAÇÃO de acordo com a Reivindicação 1, que compreende adicionalmente:

uma câmara de compensação formada entre o mecanismo de carga e a segunda extremidade do alojamento alongado e configurada para se

comunicar com uma parte exterior da válvula de coluna de perfuração; e

5

10

15

20

25

um pistão de compensação fornecido no interior da câmara de compensação e configurado para receber uma pressão anular a partir da parte exterior da válvula de coluna de perfuração.

- 7. VÁLVULA DE COLUNA DE PERFURAÇÃO de acordo com a Reivindicação 1, sendo que o elemento deslizante e o elemento de vedação são configurados, quando fechados, para resistirem pressões entre cerca de 344,73 e cerca de 2.068,42 ba (cerca de 5.000 e cerca de 30.000 psi).
- 8. MÉTODO PARA PREPARAR UMA VÁLVULA DE COLUNA DE PERFURAÇÃO (70) PARA SER CONECTADA A UM REVESTIMENTO PARA CONECTAR UMA PERFURAÇÃO A UMA SONDA, sendo que o método compreende:

conectar uma fonte de energia a um orifício de um cartucho de propensão da válvula de coluna de perfuração, sendo que a válvula de coluna de perfuração inclui (i) um alojamento alongado (162) que tem uma cavidade interna (79), sendo que o alojamento se estende ao longo de um eixo geométrico (Z) e tem um diâmetro externo substancialmente constante, (ii) um elemento de vedação (56) afixado a uma primeira extremidade (74) do alojamento alongado, sendo que o elemento de vedação (56) tem um diâmetro externo menor do que um diâmetro interno do alojamento alongado, e o elemento de vedação (56) fica disposto dentro da cavidade interna (79) para que um fluxo de líquido (80) através da cavidade int erna (79) a partir da primeira extremidade (74) para uma segunda extremidade (76) do alojamento alongado seja permitido, (iii) uma válvula de deslizamento (50) disposta dentro da cavidade interna (79) e configurada para deslizar para e partir do elemento de vedação (56) ao longo do eixo geométrico (Z) para que quando a válvula de deslizamento (50) entrar em contato com o elemento de vedação (56) o fluxo de líquido (80) seja suprimido, e (iv) um cartucho de propensão (90) disposto dentro da cavidade interna (79), entre o elemento de vedação (56) e a segunda extremidade (76) do alojamento alongado e configurado para aplicar uma primeira força sobre a válvula de deslizamento (50) para que a válvula de deslizamento (50) entre em contato com o elemento de vedação (56), e (v) um mecanismo de carga (110) disposto dentro da cavidade interna (79), entre o cartucho de propensão (90) e a segunda extremidade (76) do alojamento alongado, e configurado para aplicar uma segunda força sobre o cartucho de propensão (90);

aplicar uma pressão ao mecanismo de carga (110) para gerar a segunda força;

comprimir uma mola de ondas (98) do cartucho de propensão (90);

travar um elemento de interrupção (100) para manter a mola de ondas (98) em um estado comprimido; e

liberar a pressão aplicada.

5

10

15

20

25

9. VÁLVULA DE COLUNA DE PERFURAÇÃO (160) CONFIGURADA PARA SER AFIXADA A UM REVESTIMENTO PARA CONECTAR UMA PERFURAÇÃO A UMA SONDA, sendo que a válvula de coluna de perfuração (160) compreende:

um alojamento alongado (162) que tem uma cavidade in terna (182, 192), sendo que o alojamento se estende ao longo de um eixo geométrico (Z);

um módulo de motor (180) disposto dentro da cavidade interna (182, 192);

um elemento de vedação (200) conectado ao módulo de motor (180) e configurado para se mover dentro da cavidade interna (182, 192) ao longo do eixo geométrico (Z);

um apoio (202) disposto dentro da cavidade interna (182, 192) e

configurado para receber o elemento de vedação (200) para interromper um fluxo de fluido através da válvula de coluna de perfuração (160) quando o apoio (202) toca o elemento de vedação (200); e

um elemento de controle (230) disposto dentro da cavidade interna e configurado para controlar um fechamento e uma abertura do elemento de vedação (200).

10. VÁLVULA DE COLUNA DE PERFURAÇÃO de acordo com a Reivindicação 9, sendo que o módulo de motor compreende:

um motor; e

5

10

15

20

25

um elemento de conexão configurado para conectar o motor ao elemento de vedação e configurado para se estender ou retrair sob uma ação do motor para que o elemento de vedação se feche ou se abra.

11. VÁLVULA DE COLUNA DE PERFURAÇÃO de acordo com a Reivindicação 10, sendo que o elemento de conexão compreende:

um parafuso de esfera conectado ao motor, sendo que o parafuso de esfera é configurado para converter movimento rotacional a partir do motor para movimento linear de uma porca de esfera; e

uma haste de atuação conectada entre o parafuso de esfera e o elemento de vedação e configurada para aplicar o movimento linear ao elemento de vedação.

- 12. VÁLVULA DE COLUNA DE PERFURAÇÃO de acordo com a Reivindicação 10, sendo que uma pressão em torno do elemento de conexão é mantida substancialmente igual a uma pressão anular fora da válvula de coluna de perfuração.
- 13. VÁLVULA DE COLUNA DE PERFURAÇÃO de acordo com a Reivindicação 9, sendo que o elemento de controle compreende:

primeiro e segundo sensores de pressão dispostos dentro da cavidade interna e configurados para medirem primeira e segunda pressões,

sendo que o primeiro sensor de pressão fica disposto em uma extremidade do elemento de vedação e o segundo sensor de pressão fica disposto em outra extremidade do elemento de vedação; e

um microprocessador conectado ao primeiro e ao segundo sensores de pressão e ao motor e configurado para receber dados de pressão a partir do primeiro e do segundo sensores de pressão e para controlar o motor com base nos dados de pressão recebidos.

5

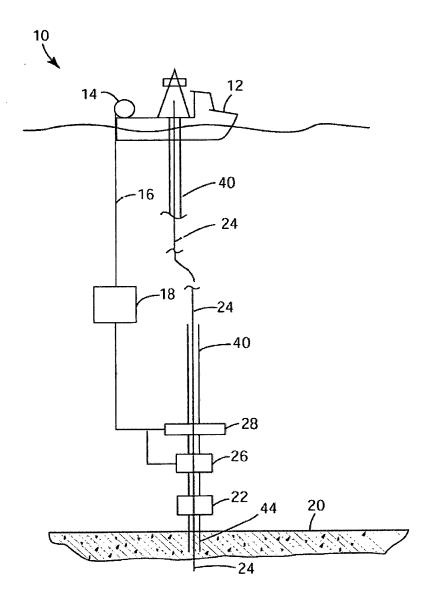
10

15

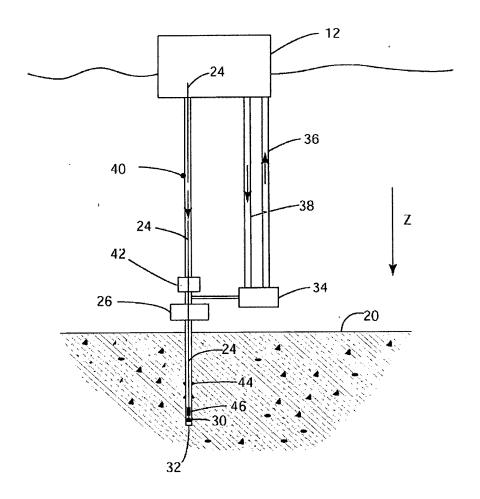
20

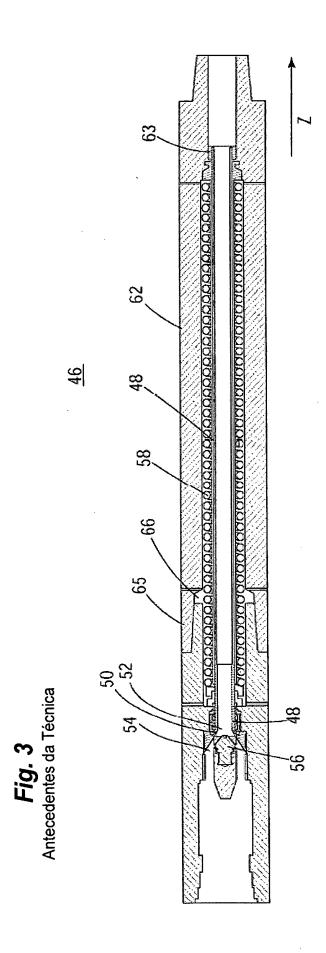
14. VÁLVULA DE COLUNA DE PERFURAÇÃO de acordo com a Reivindicação 13, sendo que o elemento de controle compreende adicionalmente:

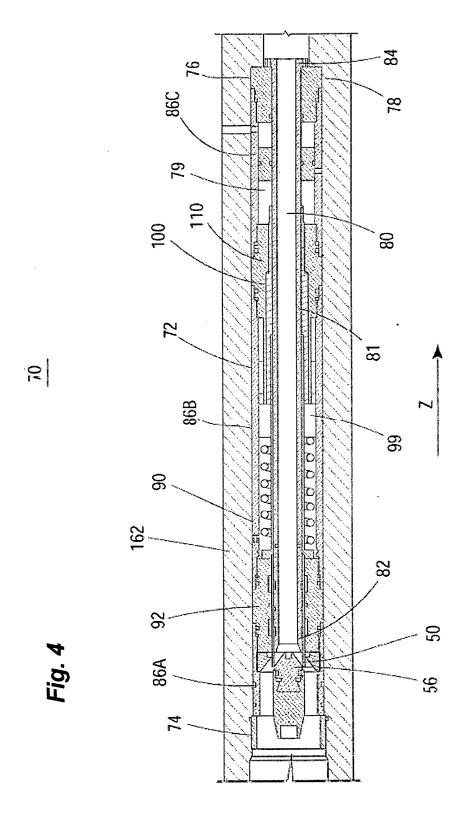
um sensor de posição conectado ao microprocessador e configurado para determinar uma posição do elemento de vedação.

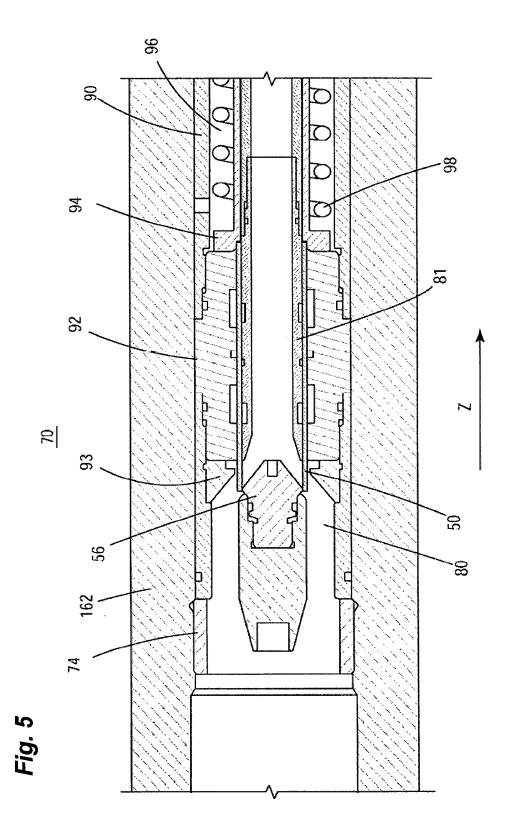

15. MÉTODO PARA CONTROLAR UMA VÁLVULA DE COLUNA DE PERFURAÇÃO (160), sendo que o método compreende:

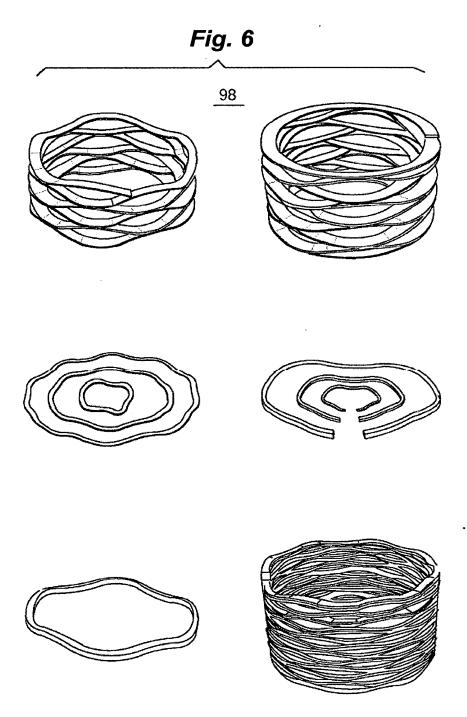
receber a partir de uma unidade de medida de fluxo (226) uma taxa de fluxo de um fluido através da válvula de coluna de perfuração (160);


determinar em um processador (230) uma posição de um elemento de vedação (200) que é configurado para se mover para e a partir de um apoio (202) para suprimir um fluxo de fluido através da válvula de coluna de perfuração (160); e


pesquisar uma tabela de pesquisa armazenada em uma memória conectada ao processador (230) para determinar se um motor (184) tem de ser ativado para fechar ou abrir o elemento de vedação (200).


Fig. 1Antecedentes da Técnica




Fig. 2Antecedentes da Técnica

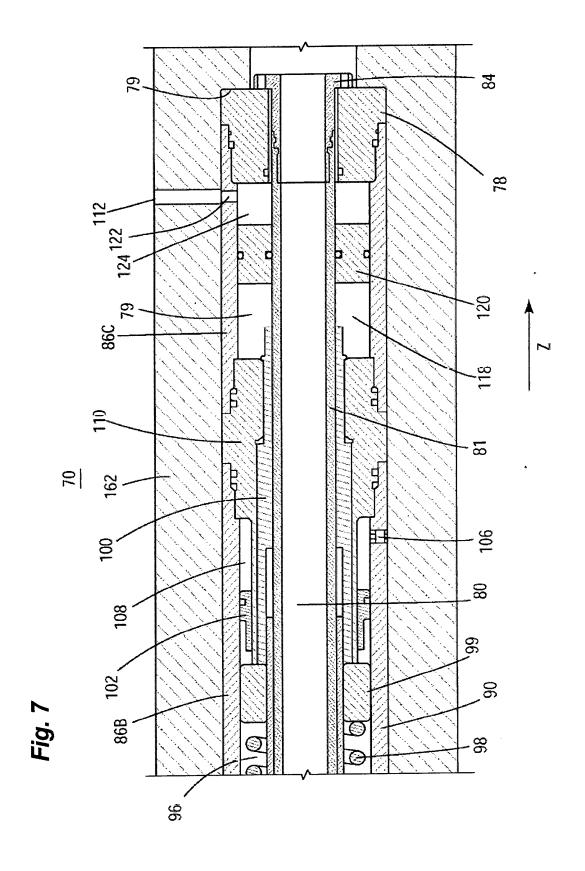
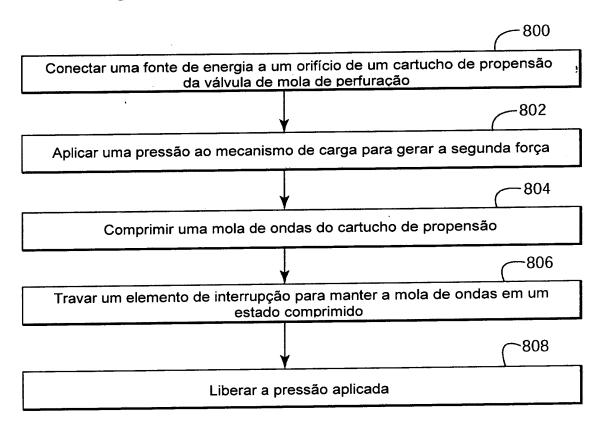
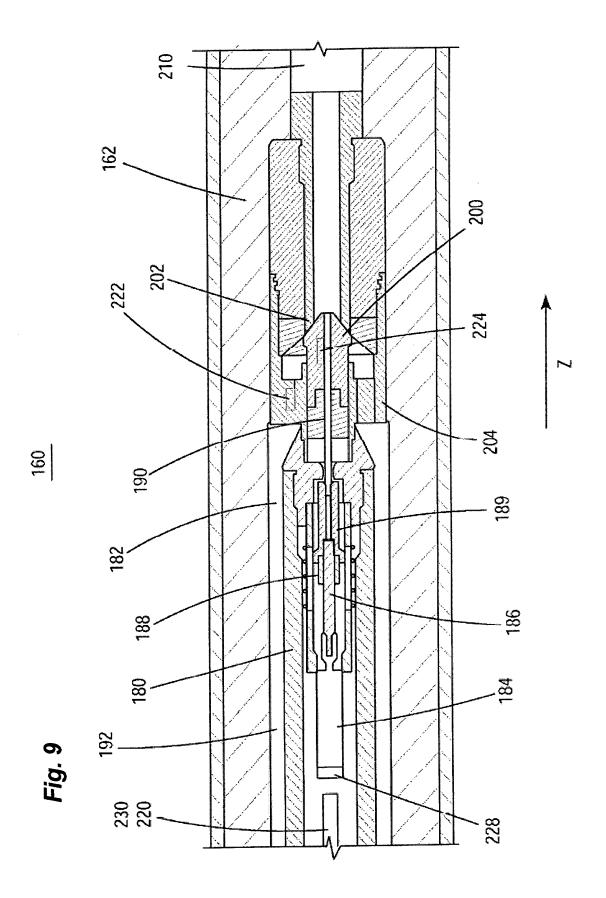
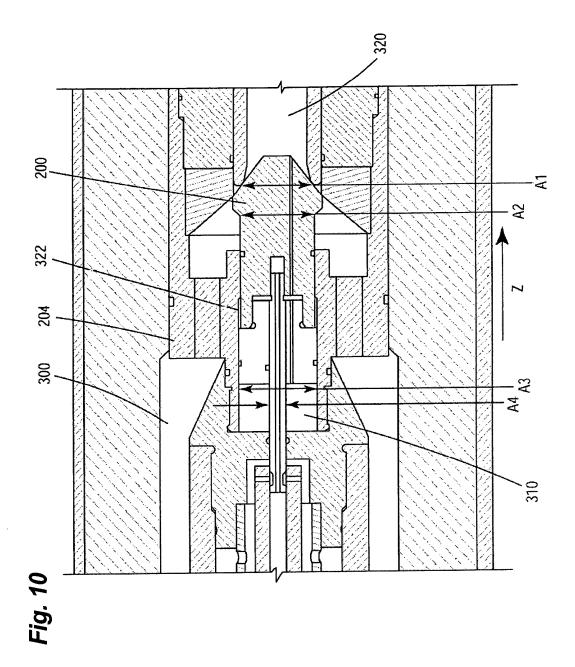





Fig. 8

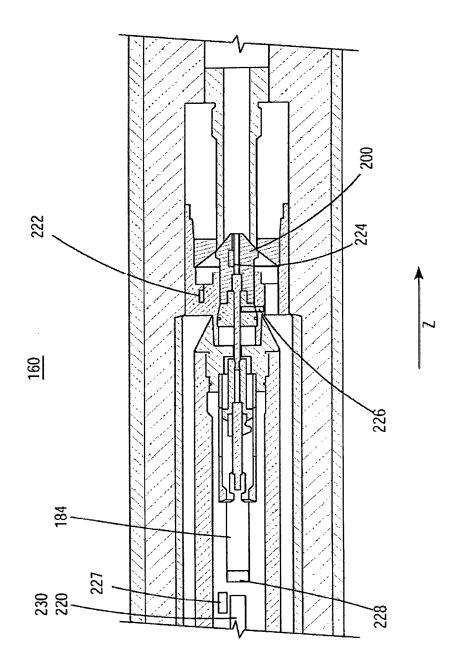


Fig. 1

Receber a partir de uma unidade de medidor de fluxo uma taxa de fluxo de um fluido através da válvula de mola de perfuração

Determinar em um processador uma posição de um elemento de vedação que é configurado para se mover para e a partir de uma vedação para suprimir um fluxo de fluido através da válvula de mola de perfuração

Pesquisar uma tabela de pesquisa armazenada na memória conectada ao processador para determinar se um motor tem que ser ativado para fechar ou abrir o elemento de vedação

RESUMO

"VÁLVULA DE COLUNA DE PERFURAÇÃO CONFIGURADA PARA SER AFIXADA A UM REVESTIMENTO PARA CONECTAR A PERFURAÇÃO A UMA SONDA, MÉTODO PARA PREPARAR UMA VÁLVULA DE COLUNA DE PERFURAÇÃO PARA SER CONECTADA A UM REVESTIMENTO PARA CONECTAR UMA PERFURAÇÃO A UMA SONDA, VÁLVULA DE COLUNA DE PERFURAÇÃO CONFIGURADA PARA SER AFIXADA A UM REVESTIMENTO PARA CONECTAR UMA PERFURAÇÃO A UMA SONDA E MÉTODO PARA CONTROLAR UMA VÁLVULA DE COLUNA DE

10 PERFURAÇÃO"

,}

5

15

20

25

Trata-se de um método e uma válvula de coluna de perfuração (70, 160) para fechar um conduto através do qual um fluido de pressão alta flui. A válvula de coluna de perfuração (70, 160) inclui um alojamento alongado (162) que tem uma cavidade interna (79), um elemento de vedação (56) afixado a uma primeira extremidade (74) do alojamento alongado (162), sendo que o elemento de vedação (56) fica disposto dentro da cavidade interna (79) para que um fluxo de líquido (80) através da cavidade interna (79) a partir da primeira extremidade (74) para uma segunda extremidade (76) seja permitido, uma válvula de deslizamento (50) configurada para deslizar para e partir do elemento de vedação (56) para que quando a válvula de deslizamento (50) entrar em contato com o elemento de vedação (56) o fluxo de líquido seja suprimido, um cartucho de propensão (90) configurado para aplicar uma primeira força sobre a válvula de deslizamento (50), e um mecanismo de carga (110) configurado para aplicar uma segunda força sobre o cartucho de propensão (90).