(54) 发明名称
2,2-二甲基-3-羟基丙酰的制备方法

(57) 摘要
本发明涉及2,2-二甲基-3-羟基丙酰的制备方法，主要解决现有技术中存在的HPA选择性低的问题，本发明通过采用2,2-二甲基-3-羟基丙酰的制备方法，包括以下步骤：在溶剂存在下，以碱金属碳酸盐和有机胺中的至少一种为催化剂，甲酸和异丁醛反应得到2,2-二甲基-3-羟基丙酰；所述的溶剂选自水或者水与极性有机溶剂的混合物的技术方案，较好地解决了该技术问题，可用于HPA的工业生产中。
1. 2,2-二甲基-3-羟基丙醛的制备方法,包括以下步骤：
在溶剂存在下,以碱金属碳酸盐和有机胺中的至少一种为催化剂,甲醛和异丁醛反应得到2,2-二甲基-3-羟基丙醛;所述的溶剂选自水或者水与极性有机溶剂的混合物。
2. 根据权利要求1所述的制备方法,其特征是反应的温度为30～80℃。
3. 根据权利要求1所述的制备方法,其特征是反应的时间为1～10小时。
4. 根据权利要求1所述的制备方法,其特征是异丁醛与甲醛的摩尔比为0.75～1.2。
5. 根据权利要求1所述的制备方法,其特征是所述的极性有机溶剂选自丙酮、DMSO、DMF、C₁～C₆的醇、丙酮、乙醚和乙酸乙酯中的至少一种。
6. 根据权利要求5所述的制备方法,其特征是所述的醇选自甲醇、乙醇、正丙醇、异丙醇、正丁醇、异丁醇、仲丁醇、叔丁醇、乙二醇、1,3-丙二醇和1,2-丙二醇中的至少一种。
7. 根据权利要求1所述的制备方法,其特征是所述碱金属碳酸盐是碳酸钾或碳酸钠中的至少一种。
8. 根据权利要求1所述的制备方法,其特征是所述的有机胺为叔胺。
9. 根据权利要求8所述的制备方法,其特征是所述的有机胺为三甲胺、三乙胺、三乙醇胺和三异丙醇胺中的至少一种。
2,2-二甲基-3-羟基丙醛的制备方法

技术领域
[0001] 本发明涉及2,2-二甲基-3-羟基丙醛的制备方法。

背景技术
[0002] 2,2-二甲基-3-羟基丙醛（简称HPA）是一种合成多种精细化学品重要的有机化工中间体，通常下为白色针状结晶体。其独特的新型结构使其衍生物具有良好的抗氧性、耐候性、热稳定性、抗水解性和耐紫外线照射等性能，主要用来合成新戊二醇，螺二醇、聚酯、聚氨酯及丙烯酸酯的原料及改性剂和人造橡胶等。
[0003] 目前，合成HPA的方法主要是甲醛和异丁醛在一定条件下酸性或碱性催化剂催化下的均相或非均相反应，在工业上主要使用液碱催化，如强碱NaOH、KOH，中强碱Na₂CO₃、K₂CO₃，NaHCO₃，二甲胺，三乙胺、三甲胺等，无机碱催化时用量少，反应温度较低，选择性高，但存在转化率低，副反应多，容易腐蚀设备且生成酸钠等在反应体系中不易脱除；有机胺催化剂在反应体系中，反应率高，是现阶段国外企业主要使用的催化剂，但也存在选择性不及无机碱的缺点；阴离子交换树脂作为催化剂虽产物容易分离，但活性周期低，催化效果不高。
[0004] 美国专利US3808280采用有机胺催化甲醛和异丁醛的反应，5h反应结束时，催化剂活性和选择性都较好，但生成的胺盐如果不脱除会影响新戊醛下游产品的生产，如加氢生产新戊二醇时使加氢催化剂失效等。
[0005] CN101219939使用一种碱性离子液体作为羟醛缩合催化剂，该离子液体催化剂的阳离子为1,3-二烷基咪唑阳离子，阴离子为氢氧根、碳酸根、碳酸氢根或醋酸根中的一种，最后得到羟醛缩合选择性在89％左右。该方法具有腐蚀性小，反应性能好，催化剂易于分离、可重复使用等特点，但是由于离子液体制备成本较高而使其工业化应用遭到限制；CN1286673A使用阴离子交换树脂对缩合反应进行催化，存在树脂活性周期短，原料的转化率和转化选择性较低等缺点。
[0006] 刘丽秀等（刘丽秀，孟宪庆，鲁琳琳等）新戊二醇合成工艺研究[J].山东化工，2008，37（8）：1-6）在缩合阶段采用碱性缓冲盐作催化剂，得到最佳反应温度为40～50℃，研究表明碱性缓冲盐催化剂反应平稳，选择性高，同时降低了异丁醛的自身缩合的副反应，合成的羟基新戊醛收率在96％左右。
[0007] 但现有制备方法对HPA的选择性低。

发明内容
[0008] 本发明所要解决的技术问题是现有技术中存在的HPA选择性低的问题，提供一种2,2-二甲基-3-羟基丙醛的制备方法，该方法具有对HPA选择性高的优点。
[0009] 为解决上述技术问题，本发明的技术方案如下：2,2-二甲基-3-羟基丙醛的制备方法，包括以下步骤：
[0010] 在溶剂存在下，以碱金属碳酸盐和有机胺中的至少一种为催化剂，甲醛和异丁醛
反应得到 2,2-二甲基-3-羟基丙醛；所述的溶剂选自水或者水与极性有机溶剂的混合物。
所述催化剂优选同时包括碱金属碳酸盐和有机胺。更优选碱金属碳酸盐与有机胺的摩尔比为 0.1 ～ 2，最优选为 0.4 ～ 1。

【0011】上述技术方案中，所述反应的温度优选为 30 ～ 80℃。
【0012】上述技术方案中，反应的时间优选为 1 ～ 10 小时，更优选 2 ～ 5 小时。
【0013】上述技术方案中，异丁醇与甲醛的摩尔比优选为 0.75 ～ 1.2。
【0014】上述技术方案中，所述的极性有机溶剂优选选自丙酮、DMSO、DMF、C₆H₄-的醇、丙酮、乙醚和乙酸乙酯中的至少一种。
【0015】上述技术方案中，所述的醇优选选自甲醇、乙醇、正丙醇、异丙醇、正丁醇、异丁醇、仲丁醇、叔丁醇、乙二醇、1,3-丙二醇和 1,2-丙二醇中的至少一种。
【0016】上述技术方案中，所述碱金属碳酸盐优选是碳酸钾或碳酸钠中的至少一种。
【0017】上述技术方案中，本发明所述的有机胺被利用的是分子的碱性，所述的有机胺的分子中至少含有伯氨基、仲氨基和叔氨基中的至少一种即可。但是 -NH 会与甲醇反应，最终起催化作用的是 -NH 与甲醇的缩合产物，因此所述的有机胺优选胺。
【0018】所述有机胺常见的例子有二甲胺、二乙胺、三甲胺、三乙胺、三乙醇胺、二乙醇胺、乙二胺、二乙烯三胺、三乙烯四胺、三异丙醇胺等中的至少一种。其中优选的有机胺为三甲胺、三乙胺、三乙醇胺和三异丙醇胺中的至少一种。
【0019】本发明具体实施方式中转化率和选择性以反应原料中的异丁醛为计算基准。反应的转化率和选择性计算公式分别如下：
【0020】转化率（％） = [（原料中异丁醛的摩尔数 - 产物中未反应异丁醛的摩尔数）/ 原料中异丁醛的摩尔数] × 100％。
【0021】选择性（％） = [产物中 HPA 的摩尔数 /（原料中异丁醛的摩尔数 - 产物未反应的异丁醛的摩尔数）] × 100％。
【0022】采用本发明的方法后 HPA 的选择性大于 82％，尤其同时采用碱金属碳酸盐和有机胺为催化剂时，HPA 的选择性高于 91％，取得了较好的技术效果，可用于 HPA 的工业生产中。

具体实施方式
【0023】实施例 1
【0024】将 250ml 带有搅拌装置的三口烧瓶中加入浓度为 37wt%的甲醛水溶液 20.3g（以甲醛计 0.25mol），异丁醛 16.2g(0.225mol)，异丙醇 11g，搅拌用氮气置换 15min，升温至 62℃时，加入催化剂（组成：水 5 5g、无水碳酸钠 0.005mol 和三乙胺 0.0075mol），于该温度下反应 3h 结束，用 Agilent GC7890C 型气相色谱仪进行定量分析，分析方法为内标法，内标为 1,2-丙二醇，GC 检测器为氢火焰离子检测器 (FID)，色谱柱为 HP-FFAP (50m × 0.2mm × 0.3 μm) 毛细管柱。运行参数为：检测器和进样口温度 250℃，柱箱初始温度 50℃，进样量 0.1 μL，分流比 60:1。采用程序升温的方法分离各物质（柱箱初始温度为 50℃，保留 2min，然后以 15℃·min⁻¹的温升值升至 240℃，保留 5min），结果见表 1。
[0026] 将 250ml 带有搅拌装置的三口烧瓶中加入浓度为 37wt%的甲醛水溶液 18.7g（以甲醛计 0.23mol），异丁醛 16.2g（0.225mol），异丙醇 11g，搅拌用氨气置换 15min，升温至 62℃时，加入催化剂（组成为：水 2.5 克，无水碳酸钠 0.0025mol 和三乙胺 0.0075mol）。于该温度下反应 3h 结束，用 Agilent GC7890C 型气相色谱仪进行定量分析，分析方法为内标法，内标为 1,2 丙二醇，GC 检测器为氢火焰离子检测器（FID），色谱柱为 HP-FFAP（50m×0.2mm×0.3 μm）毛细管柱。运行参数为：检测器和进样口温度 250℃，柱箱初始温度 50℃，进样量 0.1 μL，分流比 60:1。采用程序升温的办法分离各物质（柱箱初始温度为 50℃，保留 2min，然后以 15℃·min⁻¹ 的升温速率升至 240℃，保留 5min）。结果见表 1。

[0027] 实施例 3

[0028] 将 250ml 带有搅拌装置的三口烧瓶中加入浓度为 37wt%的甲醛水溶液 20.3g（以甲醛计 0.25mol），异丁醛 22.4g（0.231mol），甲醇 11g，搅拌用氨气置换 15min，升温至 62℃时，加入催化剂（组成为：水 5 克，无水碳酸钠 0.005mol 和三乙胺 0.0075mol），于该温度下反应 3h 结束，用 Agilent GC7890C 型气相色谱仪进行定量分析，分析方法为内标法，内标为 1,2 丙二醇，GC 检测器为氢火焰离子检测器（FID），色谱柱为 HP-FFAP（50m×0.2mm×0.3 μm）毛细管柱。运行参数为：检测器和进样口温度 250℃，柱箱初始温度 50℃，进样量 0.1 μL，分流比 60:1。采用程序升温的办法分离各物质（柱箱初始温度为 50℃，保留 2min，然后以 15℃·min⁻¹ 的升温速率升至 240℃，保留 5min）。结果见表 1。

[0029] 实施例 4

[0030] 将 250ml 带有搅拌装置的三口烧瓶中加入浓度为 37wt%的甲醛水溶液 20.3g（以甲醛计 0.25mol），异丁醛 14.4g（0.2mol），异丙醇 11g，搅拌用氨气置换 15min，升温至 62℃时，加入催化剂（组成为：水 5 克，无水碳酸钠 0.005mol 和三乙胺 0.0075mol），于该温度下反应 3h 结束，用 Agilent GC7890C 型气相色谱仪进行定量分析，分析方法为内标法，内标为 1,2 丙二醇，GC 检测器为氢火焰离子检测器（FID），色谱柱为 HP-FFAP（50m×0.2mm×0.3 μm）毛细管柱。运行参数为：检测器和进样口温度 250℃，柱箱初始温度 50℃，进样量 0.1 μL，分流比 60:1。采用程序升温的办法分离各物质（柱箱初始温度为 50℃，保留 2min，然后以 15℃·min⁻¹ 的升温速率升至 240℃，保留 5min）。结果见表 1。

[0031] 实施例 5

[0032] 将 250ml 带有搅拌装置的三口烧瓶中加入浓度为 37wt%的甲醛水溶液 20.3g（以甲醛计 0.25mol），异丁醛 18g（0.25mol），异丙醇 11g，搅拌用氨气置换 15min，升温至 62℃时，加入催化剂（组成为：水 5 克，无水碳酸钠 0.005mol 和三乙胺 0.0075mol），于该温度下反应 3h 结束，用 Agilent GC7890C 型气相色谱仪进行定量分析，分析方法为内标法，内标为 1,2 丙二醇，GC 检测器为氢火焰离子检测器（FID），色谱柱为 HP-FFAP（50m×0.2mm×0.3 μm）毛细管柱。运行参数为：检测器和进样口温度 250℃，柱箱初始温度 50℃，进样量 0.1 μL，分流比 60:1。采用程序升温的办法分离各物质（柱箱初始温度为 50℃，保留 2min，然后以 15℃·min⁻¹ 的升温速率升至 240℃，保留 5min）。结果见表 1。
实施例6

将250ml带有搅拌装置的三口烧瓶中加入浓度为37wt%的甲醛水溶液20.3g（以甲醛计0.25mol），异丁酸16.2g（0.225mol），丙酮11g，搅拌用氮气置换15min，升温至62℃，加入催化剂（组成为：水5.0克、无水硫酸钠0.006mol和三乙胺0.0075mol），于该温度下反应3h，结束。用Agilent GC7890C型气相色谱仪进行定量分析，分析方法为内标法，内标为1,2-丙二醇，GC检测器为氢火焰离子检测器（FID），检测柱为HP-FFAP（50m×0.2mm×0.3μm）毛细管柱。运行参数为：检测器和进样口温度250℃，柱箱初始温度60℃，进样量0.1μL，分流比60:1。采用程序升温的办法分离各物质（柱箱初始温度为50℃，保留2min，然后以15℃·min⁻¹的升温速率升至240℃，保留5min）。结果见表1。

实施例7

将250ml带有搅拌装置的三口烧瓶中加入浓度为37wt%的甲醛水溶液20.3g（以甲醛计0.25mol），异丁酸16.2g（0.225mol），乙醇11g，搅拌用氮气置换15min，升温至55℃，加入催化剂（组成为：水5克、无水硫酸钠0.005mol和三乙胺0.0075mol），于该温度下反应3h，结束。用Agilent GC7890C型气相色谱仪进行定量分析，分析方法为内标法，内标为1,2-丙二醇，GC检测器为氢火焰离子检测器（FID），检测柱为HP-FFAP（50m×0.2mm×0.3μm）毛细管柱。运行参数为：检测器和进样口温度250℃，柱箱初始温度60℃，进样量0.1μL，分流比60:1。采用程序升温的办法分离各物质（柱箱初始温度为50℃，保留2min，然后以15℃·min⁻¹的升温速率升至240℃，保留5min）。结果见表1。

实施例8

与实施例1不同的是只用碳酸钠做催化剂，具体为：

将250ml带有搅拌装置的三口烧瓶中加入浓度为37wt%的甲醛水溶液20.3g（以甲醛计0.25mol），异丁酸16.2g（0.225mol），丙酮11g，搅拌用氮气置换15min，升温至62℃，加入催化剂（组成为：水5克、无水硫酸钠0.0125mol），于该温度下反应3h，结束。用Agilent GC7890C型气相色谱仪进行定量分析，分析方法为内标法，内标为1,2-丙二醇，GC检测器为氢火焰离子检测器（FID），检测柱为HP-FFAP（50m×0.2mm×0.3μm）毛细管柱。运行参数为：检测器和进样口温度250℃，柱箱初始温度60℃，进样量0.1μL，分流比60:1。采用程序升温的办法分离各物质（柱箱初始温度为50℃，保留2min，然后以15℃·min⁻¹的升温速率升至240℃，保留5min）。结果见表1。

实施例9

与实施例1不同的是只用三乙胺，具体为：

将250ml带有搅拌装置的三口烧瓶中加入浓度为37wt%的甲醛水溶液20.3g（以甲醛计0.25mol），异丁酸16.2g（0.225mol），丙酮11g，搅拌用氮气置换15min，升温至62℃，加入催化剂（组成为：水5克、三乙胺0.0125mol），于该温度下反应3h，结束。用Agilent GC7890C型气相色谱仪进行定量分析，分析方法为内标法，内标为1,2-丙二醇，GC检测器为氢火焰离子检测器（FID），检测柱为HP-FFAP（50m×0.2mm×0.3μm）毛细管柱。运行参数为：检测器和进样口温度250℃，柱箱初始温度60℃，进样量0.1μL，分流比60:1。采用程序升温的办法分离各物质（柱箱初始温度为50℃，保留2min，然后以15℃·min⁻¹的升温速率升至240℃，保留5min）。
温升速率为至 240°C，保留 5min）。结果见表 1。

[0043] 本申请的发明人发现，碱金属碳酸盐与有机胺对提高 HPA 的选择性具有协同作用，这从实施例 1 与实施例 8 和实施例 9 的对比中也可以看出。

[0044] 表 1 不同实施例的反应条件及结果

<table>
<thead>
<tr>
<th>实施例</th>
<th>异丁醛: 甲醛摩尔比</th>
<th>碳酸盐: 有机胺摩尔比</th>
<th>转化率%</th>
<th>选择性%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>异丁醛</td>
<td>HPA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.9</td>
<td>0.67</td>
<td>93.25</td>
<td>97.88</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0.33</td>
<td>92.62</td>
<td>91.59</td>
</tr>
<tr>
<td>3</td>
<td>1.2</td>
<td>0.67</td>
<td>89.20</td>
<td>96.47</td>
</tr>
<tr>
<td>4</td>
<td>0.8</td>
<td>0.67</td>
<td>94.96</td>
<td>93.02</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0.67</td>
<td>86.59</td>
<td>98.49</td>
</tr>
<tr>
<td>6</td>
<td>0.8</td>
<td>0.08</td>
<td>76.51</td>
<td>91.93</td>
</tr>
<tr>
<td>7</td>
<td>0.9</td>
<td>0.7</td>
<td>71.51</td>
<td>96.97</td>
</tr>
<tr>
<td>8</td>
<td>0.9</td>
<td>仅碳酸钠</td>
<td>87.6</td>
<td>82.1</td>
</tr>
<tr>
<td>9</td>
<td>0.9</td>
<td>仅三乙胺</td>
<td>79.9</td>
<td>85.3</td>
</tr>
</tbody>
</table>