6/006613 A1 I} 10 0 00 AR A

WO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization f d”Ij

International Bureau

(43) International Publication Date
19 January 2006 (19.01.2006)

) IO O T D 0 O

(10) International Publication Number

WO 2006/006613 Al

GOGF 9/38

(51) International Patent Classification7:

(21) International Application Number:
PCT/JP2005/012881

(22) International Filing Date: 6 July 2005 (06.07.2005)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:

10/886,723 8 July 2004 (08.07.2004) US

(71) Applicant: SONY COMPUTER ENTERTAINMENT
INC. [JPAP]; 2-6-21, Minami-Aoyama, Minato-ku,
Tokyo, 1070062 (JP).

(72) Inventor: OSAWA, Masaki; c/o SONY COMPUTER
ENTERTAINMENT INC., 2-6-21, Minami-Aoyama,
Minato-ku, Tokyo, 1070062 (JP).

(74) Agent: MORISHITA, Sakaki; 2-11-12, Ebisu-Nishi,
Shibuya-ku, Tokyo, 1500021 (JP).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ,
OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL,
SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC,
VN, YU, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, S, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
with international search report

Fortwo-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

(54) Title: METHODS AND APPARATUS FOR UPDATING OF A BRANCH HISTORY TABLE

RAM

10

/112

/ 102

Instruction
Cache

/106

CPU

/ 109

110/

Fetch Engine

104

/ 108

Branch History

L‘111

Table

(57) Abstract: Methods and apparatus are provided for enhanced instruction handling in processing environments. If branch mis-
@ prediction occurs during instruction processing, a branch history table may be updated based upon the number of instructions to be
& fetched. The branch history table may be updated in accordance with a first mode if at least two instructions are available, and may
O be updated in accordance with a second mode if less than two instructions are available. A compiler can assist the processing by
aligning instructions for processing. The instructions can be aligned across multiple instruction fetch groups so that instructions are
available for fetching and the branch history table is updated prior to performing a branching operation.

10

15

20

25

WO 2006/006613 PCT/JP2005/012881
1

DESCRIPTION

METHODS AND APPARATUS FOR UPDATING OF A BRANCH HISTORY TABLE

TECHNICAL FIELD

The present invention relates generally to the field of
computing systems, and methods for improving instruction
execution, for example, in updating a branch history table
("BHT") used for predictive branching and improving

throughput in pipelined processors.

RELATED ART

Computer processors often use fetch engine architectures
to speed up the execution of programs. The.fetch engine
architectures utilize fetch engines, instruction buffers and
instruction caches to gueue several instructions in a
pipeline for future execution while the processor is
simultaneously executing another instruction. Thus, when the
processor finishes executing an instruction, the next
instruction is available and ready for execution. Many modern
computing systems utilize a processor having a pipelined
architecture to increase instruction throughput.

Pipelining of instructions in an instruction cache may
not be effective, however, when it comes to conditional Jjumps
or branches. When a conditional jump is encountered, the next

set of instructions to be executed will typically be either

10

15

20

25

WO 2006/006613 PCT/JP2005/012881
2

the instructions immediately following the conditional jump
instruction in sequence, which is currently stored in the
instruction cache, or a set of instructions at a different
address, which may not be stored in the cache. If the next
instruction to be executed is not located at an address
within the instruction cache, the processor will be
effectively paused (e.g., by executing no operations,
commonly referred to as "NOP" instructions) for a number of
clock cycles while the necessary instructions are loaded into
the instruction cache.

Accordingly, when a conditional branch or jump is made,
the processor is likely to have to wait a number of clock
cycles while a new set of instructions are retrieved. This
branch instruction delay is also known as a "branch penalty."”
A branch penalty will typically be shorter when branching to
an instruction already contained within the cache, and longer
when the instruction must be loaded into the cache.

Several methods have been developed in an attempt to
minimize the branch penalty. These methods include both
hardware and software approaches. Hardware methods have
included the development of processor instruction pipeline
architectures that attempt to predict whether an upcoming
branch in an instruction set will be taken, and pre-fetch or
pre-load the necessary instructions into the processor's
instruction buffer.

In one pipeline architecture approach, a branch history

10

15

20

25

WO 2006/006613 PCT/JP2005/012881
3

table ("BHT") is used to predict when a branch may be taken.
A BHT may be in the form of a table of bits, wherein each
entry corresponds to a branch instruction for the executing
program, and each bit represents a single branch or no-branch
decision. The contents of the BHT could indicate what
happened on the last branch decision, and functions to
predict what will happen on the next branch. Some BHT's
provide only a single bit for each branch instruction, thus
the prediction for each occurrence of the branch instruction
corresponds to whatever happened last time. This is also
known as 1l-bit dynamic prediction. Using 1-bit prediction, if
a conditional branch is taken, it is predicted to be taken
the next time. Otherwise, if the conditional branch is not
taken, it is predicted to not be taken the next time.

A BHT can also be used to perform 2-bit dynamic
prediction. In 2-bit dynamic prediction, if a given
conditional branch is taken twice in succession, it is
predicted to be taken next time. Likewise, i1f the branch is
not taken twice in succession, it is predicted to not be
taken the next time. If the branch is both taken once and not
taken once in the prior two instances, then the prediction
for the next instance is the same as the last time.
Generally, if the branch is used for loop, 2-bit dynamic
prediction using a BHT is better than 1-bit because the
branch is NOT taken only once per loop. A BHT uses a

significant amount of processor hardware resources, and may

10

15

20

25

WO 2006/006613 PCT/JP2005/012881
4

still result in significant branch penalties.

When a BHT predicts branching incorrectly, also known as
"branch misdirection,"” the BHT should be updated. This
involves rewriting the bitmap for the particular branch
instruction that is being executed in accordance with the
particular prediction scheme being used.

Instruction pipelines or instruction caches often use 2-
port random access memory ("RAM"), which allows for
simultaneous "fetches" (reads) and "updates" (writes),
thereby improving processor throughput in general. Processor
architectures using 2-port RAM can be expensive, however,
both in terms of actual cost and in design time. Using a 2-
port RAM simplifies the situation that occurs when a BHT is
used and a conditional jump instruction causes a jump to an
instruction that is in the instruction cache. In this case,
the 2-port RAM permits a new instruction to be fetched at the
same time fhe BHT is updated.

Use of l-port RAM instead of a 2-port RAM can be
preferred because of lower cost and design time. A l-port
RAM, however, does not allow simultaneous fetches (reads) and
updates (writes). Use of l-port RAM has several potential
drawbacks, such as reducing processor pipeline throughput as
well as the BHT "hit ratio,™ i.e., the proportion of
"correct" branching predictions made due to the BHT. As an
example, in the previously mentioned condition, when a BHT is

used and a conditional jump instruction causes a jump to an

10

15

20

25

WO 2006/006613 PCT/JP2005/012881
5

instruction that is within the instruction cache, a problem
arises. In this case, the fetching of the next instruction
and the updating of the BHT cannot occur at the same time.
This can adversely affect processor performance.

Since BHT updating and instruction fetching both require
RAM access, it is possible to significantly slow system
performance by selection of an incorrect mode of updating the
BHT. Such a system slowdown can be particularly severe in the
case of l-port RAM, since updates and fetches cannot be

performed simultaneously.

DISCLOSURE OF THE INVENTION

The present invention addresses these and other
drawbacks.

In one embodiment according to the present invention, a
method is provided for updating a branch history table to
assist in processing branch instructions by a processor that
holds a plurality of instructions. The method determined a
number of instructions to be fetched. A first mode is
selected to update the branch history table when there are at
least two instructions to be fetched. A second mode is
selected to update the branch history table when there are
less than two instructions to be fetched.

In one alternative, if the first mode is selected, the
method further includes fetching at least two instructions

into the instruction pipeline to be executed, updating the

10

15

20

25

WO 2006/006613 PCT/JP2005/012881
6

branch history table, and then fetching one or more
additional instructions into the instruction pipeline to be
executed. If the second mode is selected, the method further
includes fetching a first instruction into the instruction
pipeline to be executed, fetching another instruction into
the instruction pipeline to be executed, and then updating
the branch history table. In an example, at least some of the
plurality of instructions are stored in a memory, and
selected ones of the instructions are fetched from the

memory.

In another alternative, determining the number of
instructions comprises examining a value associated with an
address location of the instructions. In this case, the value
can be contained in a register or located at an address in a
Memory.

The value may be a one-bit binary value. In this case,
the method preferably further comprises determining that
there is one instruction awaiting execution when the binary
value is a first number, and determining that there are two
or more instructions awaiting to be execution when the binary
value is a second number.

The value may be a two-bit binary value. In this case,
the method preferably further comprises determining that
there is one instruction awaiting execution when the binary
value is a first number, and determining that two or more

instructions are awaiting execution when the binary value is

10

15

20

25

WO 2006/006613 PCT/JP2005/012881

not the first number.

The value may also be a binary value having more than
two bits. In this case, the method preferably further
comprises determining that one instruction can be delivered
when the binary value satisfies a first condition, and
determining that two or more instructions can be delivered
when the binary value satisfies a second condition.

In yet another alternative, the value is an instruction
offset associated with a fetch group.

In a further alternative, the method is performed if the
branch history table incorrectly predicts whether a branch
instruction would or would not be taken.

In another embodiment according to the present
invention, a method of operating a processor 1is provided. The
processor employs an instruction cache, a branch history
table, and a fetch engine for fetching instructions. The
branch history table has a selectable update mode. The method
comprises examining a value associated with a current branch
redirection address of the fetch engine; determining if at
least two of the instructions can be delivered by the fetch
engine and selecting a first mode for the branch history
table when the value satisfies a first condition; and
determining if less than two instructions can be delivered by
the fetch engine and selecting a second mode for the branch
history table when the value satisfies a second condition.

In one alternative, if the first mode is selected, the

10

15

20

25

WO 2006/006613 PCT/JP2005/012881
8

method further comprises fetching at least two instructions
into the instruction pipeline to be executed, updating the
branch history table, and then fetching one or more
additional instructions into the instruction pipeline to be
executed. If the second mode is selected, the method further
comprises fetching a first instruction into the instruction
pipeline to be executed, fetching another instruction into
the instruction pipeline to be executed, and then updating
the branch history table. Preferably, at least some of the
instructions may be stored in a memory. In this case,
selected instructions may be fetched from the memory.

In yet another embodiment according to the present
invention, a processor is provided. The processor includes an
instruction pipeline and a branch history table. The branch
history table is capable of managing a program containing
instructions that can be executed by the processor. If the
branch history table incorrectly predicts whether a
conditional branch instruction sﬁould be taken, a first mode
;f operation is selected if the instruction pipeline has at
least two instructions that can be executed by the processor,
and a second mode of operation is selected if the instruction
pipeline has less than two instructions that can be executed
by the processor.

In one alternative, upon selecting the first mode, the
processor fetches at least two instructions into the

instruction pipeline to be executed, updates the branch

10

15

20

25

WO 2006/006613 PCT/JP2005/012881
9

history table, and then fetches one or more additional
instructions into the instruction pipeline to be executed.
Upon selecting the second mode, the processor fetches a first
instruction into the instruction pipeline to be executed,
fetches another instruction into the instruction pipeline to
be executed, and then updates the branch history table.

In a further embodiment according to the present
invention, a recording medium is provided. The recording
medium is recorded with a computer program for use by a
processor having an instruction pipeline and using a branch
history table (BHT) to assist in processing instructions. The
BHT has a selectable update mode. The computer program
comprises determining the number of instructions in the
instruction pipeline that can be executed by the processor;
selecting a first mode of operation to fetch at least some of
the instructions and update the BHT when there are at least
two instructions in the instruction pipeline that can be
executed by the processor; and selecting a second mode of
operation to fetch at least some of the instructions and
update the BHT when there are less than two instructions in
the instruction pipeline that can be executed by the
processor.

In one alternative, if the first mode is elected, the
computer program further comprises fetching at least two
instructions into the instruction pipeline to be executed,

updating the BHT, and fetching one or more additional

10

15

20

25

WO 2006/006613 PCT/JP2005/012881
10

instructions into the instruction pipeline to be executed. If
the second mode is selected, the computer program further
comprises fetching a first instruction into the instruction
pipeline to be executed, fetching another instruction into
the instruction pipeline to be executed, and then updating
the BHT. Preferably, at least some of the instructions are
stored in a memory and selected ones of the instructions are
fetched from the memory.

In another alternative, determining the number of
instructions in the pipeline that can be executed by the
processor is performed by examining a binary value.

In a further alternative, the binary value is either a
one~bit binary value or a two-bit binary wvalue.

In another embodiment according to the present
invention, a compiler is provided. The compiler is for
generating object code instructions from computer source code
for execution on a processor. The processor employs a fetch

engine using fetch groups including the object code -

.instructions. The object code instructions include at least

one set of looping instructions having a beginning
instruction and a branching instruction. The compiler
performing the steps comprising (a) when the looping
instructions span first and second fetch groups, aligning the
beginning instruction of the set in a position that is not
the last instruction in the first fetch group; and (b) when

the looping instructions are contained within the first fetch

10

15

20

25

WO 2006/006613 PCT/JP2005/012881
11

group, aligning the beginning instruction in the first fetch
group and the branching instruction in the second fetch
group.

In yet another embodiment according to the present
invention, a method of updating a branch history table is
provided. The method comprises determining a number of
instructions ready for delivery to a processor; selecting a
first mode for updating the branch history table when the
number of determined instructions exceeds a minimum value;
selecting a second mode for updating the branch history table
when the number of determined instructions does not exceed
the minimum value; and updating the branch history table
according to the first mode or the second mode.

In one alternative, the first mode is selected if there
are at least two instructions for processing by the
processor, and the second mode is selected if there are less
than two instructions for processing by the processor.

In another alternative, the first mode includes an
ordered process of fetching at least two instructions,
updating the branch history table, and fetching one or more
additional instructions. In this alternative, the second mode
includes an ordered process of fetching a first instruction,
fetching another instruction, and updating the branch history
table.

In yet another embodiment according to the present

invention, a method of processing instructions having a loop

10

15

20

25

WO 2006/006613 PCT/JP2005/012881
12

is provided. The method comprises determining a beginning of
a loop iteration of the loop, determining a number of
instructions in the loop between the beginning of the loop
iteration and a branching instruction, and aligning the loop
instructions within at least one fetch group of instructions
based on the beginning of the loop iteration and the number
of determined instructions so that a branch history table is
updated prior to executing the branching instruction.

In one alternative, if the loop instructions are
contained within one fetch group, aligning the instructions
includes spreading the loop instructions across at least two
fetch groups so that the beginning of the loop iteration is
in a first one of the fetch groups and the branching
instruction is contained within a second one of the fetch
groups. In this case, the method preferably further comprises
inserting at least one NOP instruction between the beginning
of the loop iteration and the branching instruction.

In another alternative, if the loop instructions are
contained within two fetch groups, aligning the instructions
includes moving the beginning of the loop iteration so that
the beginning of the loop iteration is not the last
instruction in a first one of the two fetch groups. In this
case, the beginning of the loop iteration is preferably moved
to the beginning of the first fetch group.

In a further embodiment according to the present

invention, a method of processing instructions having a loop

10

15

20

25

WO 2006/006613 PCT/JP2005/012881
13

is provided. The method comprises determining the beginning
of a loop iteration of the loop, determining the number of
instructions in the loop iteration between the beginning of
the loop iteration and a branching instruction, and aligning
the loop instructions within at least two fetch groups based
on the beginning of the loop iteration and the number of
determined instructions so that a first mode for updating a
branch history table is selected. Preferably, the first mode
comprises fetching at least two of the loop instructions for
execution, then updating the branch history table, and then
fetching at least an additional one of the loop instructions
for execution.

In another embodiment according to the present
invention, a processing system for processing operations is
provided. The processing system comprises a plurality of
processing devices operable to execute instructions using a
branch history table. A first one of the processing devices
comprises a processing element, a processing unit or a sub-
processing unit. If the branch history table incorrectly
predicts whether a conditional branch instruction should be
processed, a first mode of operation is selected for
execution by the first processing device at least two
instructions are available for the first processing device. A
second mode 1s selected for execution by the first processing
device if less than two instructions are available for the

first processing device.

10

15

20

25

WO 2006/006613 PCT/JP2005/012881
14

In one alternative, the first processing device
comprises a processing element including the branch history
table. The processing element may further include a fetch
engine connected to the branch history table. In another
alternative, a second one of the processing devices comprises
a processing unit that is part of the processing element. In
this case, the processing unit preferably includes the branch
history table. Here, the processing unit may further include
a fetch engine connected to the branch history table.

In a further alternative, a second one of the processing
devices comprises a processing unit that is part of the
processing element, and a third one of the processing devices
comprises a sub-processing unit that is part of the
processing element and is connected to the processing unit by
a bus. In this case, the sub-processing unit may include the
branch history table. Here, the sub-processing unit may
further include a fetch engine connected to the branch
history table.

In yet another alternative, a second one of the
processing devices comprises a processing unit. The first
processing device comprises a first sub-processing unit, and
at least a third one of the processing devices comprises a
second sub-processing unit. The first and second sub-
processing units are connected to the processing unit by a
bus. At least the first sub-processing unit is connected to a

memory and is operable to execute instructions using the

10

15

20

25

WO 2006/006613 PCT/JP2005/012881
15

branch history table.

In one example for this alternative, upon selecting the
first mode, the first sub-processing unit fetches at least
two instructions for execution, updates the branch history
table, and then fetches one or more additional instructions
for execution. Upon selecting the second mode, the first sub-
processing unit fetches a first instruction for execution,
fetches another instruction for execution, and then updates
the branch history table. In another alternative, the
processing system further comprises a memory for storing
instructions available to the processing devices. In this
case, the memory is preferably integrally provided with the
processing devices.

In a further embodiment according to the present
invention, a processor for processing operations is provided.
The processor comprises a processing element including a bus,
a processing unit and a plurality of sub-processing units
connected to the processing unit by the bus. The processing
element is connected to memory and is operable to execute
instructions having a loop. The processing element determines
a beginning of a loop iteration of the loop, determines a
number of instructions in the loop between the beginning of
the loop iteration and a branching instruction, and aligns
the loop instructions within at least one fetch group of
instructions based on the beginning of the loop iteration and

the number of determined instructions so that a branch

10

15

20

25

WO 2006/006613 PCT/JP2005/012881
16

history table is updated prior to executing the branching
instruction.

In an alternative, if the loop instructions are
contained within one fetch group, aligning the instructions
includes spreading the loop instructions across at least two
fetch groups so that the beginning of the loop iteration is
in a first one of the fetch groups and the bfanching
instruction is contained within a second one of the fetch
groups.

In another alternative, if the loop instructions are
contained within two fetch groups, aligning the instructions
includes moving the beginning of the loop iteration so that
the beginning of the loop iteration is not the last
instruction in a first one of the two fetch groups.

"Compiler" as used herein refers generally to any
software, firmware and/or hardware used to convert computer
source code to machine-readable code. A compiler may include
any software, including but not limited to compilers,
interpreters, and object linkers. Specifically, the term
"compiler" as used herein is not limited to any particular
dictionary definition, but is to be broadly construed to
include anything that can generate machine object language to
be executed on a processor from source code, Or cause a
processor to run the generated code. For example, any
compiler for a programming language, including but not

limited to any assembly language, any compiled language, such

10

15

20

25

WO 2006/006613 PCT/JP2005/012881
17

as "C", "C++", Cobol, Fortran, Ada, Pascal, etc., or any
interpretive language, such as BASIC, JAVA, XML, or any other
language may be used.

Similarly, "compilation" as used herein includes any and
all process steps for generating machine object code and
running it on a processor. "Compilation" as used herein is

also not limited to any particular dictionary definition.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic block diagram of a system in
accordance with an embodiment of the present invention;

FIG. 2 is a schematic block diagram of a system in
accordance with an embodiment of the present invention;

FIG. 3A is a diagram illustrating an exemplary structure
of a processing element (PE) in accordance with aspects of
the present invention;

FIG. 3B is a diagram illustrating an exemplary structure
of a multiprocessing system of PEs in accordance with aépects
of the present invention;

FIG. 3C is a diagram illustrating another exemplary
structure of a PE in accordance with aspects of the present
invention;

FIG. 4A is a diagram illustrating an exemplary structure
of a sub-processing unit (SPU) in accordance with aspects of
the present invention;

FIG. 4B is another diagram illustrating an exemplary

WO 2006/006613 PCT/JP2005/012881
18

structure of an SPU in accordance with aspects of the present
invention;

FIG. 5 illustrates the various modes of updating a
Branch History Table in accordance with a preferred
embodiment of the present invention;

FIG. 6 is a flow chart of a method in accordance with an
embodiment of the present invention;

FIG. 7 is an exemplary table depicting the BHT mode
selection in accordance with a two-bit implementation
embodiment of the present invention; and

FIGS. 8(a)-(b) illustrate examples of compiler-assisted
instruction handling in accordance with aspects of the

present invention.

BEST MODE FOR CARRYING OUT THE INVENTION

As shown in FIG. 1, a computer system 100 uses a fetch
engine architecture to fetch instructions into a pipeline for
future execution by a CPU 102. The computer system 100
includes the central processing unit ("CPU") 102, a fetch
engine 104, an instruction cache 106, a BHT 108, RAM 112, a
CPU bus 109, and a data bus 110. Although only these
components are depicted in FIG. 1, it should be appreciated
that a typical system 100 can include a large number of
components, peripherals, and communications buses. Further,
the fetch engine 104 can have a number of different

architectures and components, as long as it functions to f£ill

10

15

20

25

WO 2006/006613 PCT/JP2005/012881
19

an instruction pipeline with instructions to be executed by a
processor. In a preferred embodiment, the computer system 100
is a general purpose computer or gaming machine such as a
Sony PLAYSTATION (trademark), having additional internal
components normally found in those computer systems such as,
for example, a display, a CD-ROM, a hard-drive, input devices
such as a mouse, joystick and/or keyboard, speakers, etc. and
all of the components used for connecting these elements to
one another. These components have not been depicted in FIG.
1 for clarity, but are well known to those skilled in the
art. Additionally, the computer system 100 may comprise any
workstation, personal digital assistant ("PDA"), or other
processor-controlled device or system capable of processing
instructions.

The CPU 102 may be a processor of any type. The
instruction cache 106, fetch engine 104 and BHT 108 are
preferably integrated within the CPU 102, although they may
also be implemented as one or more discrete components
external to the CPU 102. The CPU 102 may also be part of a
multiprocessor system, as will be discussed below.

The instruction cache 106 stores the instructions in the
pipeline waiting to be executed by the CPU 102. The
instruction cache 106 may also be of any sort and design. For
example, the instruction cache 106 can be a 32-kilo word (KW)
instruction cache using four word blocks. Alternatively, any

size instruction cache 106 using any size blocks may also be

10

15

20

25

WO 2006/006613 PCT/JP2005/012881
20

used. The instruction cache 106 generally is associated with
an instruction buffer, not shown in FIG. 1. The instruction
buffer typically holds the next instruction to be executed by
the processor 102.

A variety of fetch engine architectures can also be
used. For example, the instruction cache 106 can be omitted
and only an instruction buffer used. In any event, in
accordance with the present invention, it is important to
employ an architecture where the fetch engine 104 fetches a
number of instructions into a pipeline for future execution
by the CPU 102.

As depicted in FIG. 1, a preferred embodiment, the fetch
engine 104, the instruction cache 106, and the BHT 108 are
interconnected within the CPU 102, for example, via the CPU
bus 109. Such packaging advantageously provides close
proximity of the fetch engine 104, the instruction cache 106,
the BHT 108, the instruction pipeline and the CPU 102, which
minimizes power consumption and instruction transfer time.
The fetch engine 104 and the BHT 108 are preferably connected
via a direct link 111. Alternatively, the instruction cache
106 and the BHT 108 may be separate components, or each or
both may be implemented within the RAM 112. The fetch engine
104 comprises the hardware and/or the firmware used by the
computer system 100 to manage and move instructions from the
RAM 112 into the instruction cache 106 (and the instruction

buffer) for eventual execution by the CPU 102. For example,

10

15

20

25

WO 2006/006613 PCT/JP2005/012881
21

many CPUs have specialized circuitry to manage their
associated instruction pipelines and buffers, and many
different designs can be used.

In an alternative embodiment of the invention, the
instruction cache 106, the fetch engine circuit 104, the BHT
108 and the CPU 102 are each in direct communication with the
data bus 110. The data bus 110 facilitates the transfer of
instructions and data to and from devices and memory.

Preferably, the instruction cache 106, the data bus 110,
the BHT 108, the CPU 102 and the fetch engine circuit 104 are
in communication with the system memory, e.g., RAM 112. In
certain implementations, the RAM 112 may be embedded in or
otherwise integrated as part of the processor chip containing
the CPU 102, as opposed to being a separate, external memory.
For instance, the RAM 112 can be in a separate location on
the chip or can be integrated with the CPU 102. RAM 112 may
be l-port RAM or 2-port RAM, or another architecture. Use of
a l-port RAM with the present invention is preferred since it
advantageously allows a reduction of cost, both in expense
and time needed for design, as compared with a similar system
using a 2-port RAM. Use of a l-port RAM, however, may include
several drawbacks, such as not being able to perform fetches
and updates at the same time. This inability to fetch and
update at the same time negatively impacts the use of a
branch history table. As previously described, the branch

history table must be updated every time it does not

10

15

20

25

WO 2006/006613 PCT/JP2005/012881
22

accurately predict whether a branch instruction is to be
taken or not. At the same time, the instruction pipeline may
not have the correct instructions for execution by the CPU
102, so that new instructions must be fetched. Not being able

to fetch and update at the same time can slow processor

' performance by reducing the BHT hit ratio and pipeline

throughput. The present invention, however, provides for
improved performance using either a 1-po;t or 2-port RAM
based system, and thus allows the use of a l-port RAM to
achieve a cost savings.

FIG. 2 is a schematic block diagram of a system 200 in
accordance with one embodiment of the present invention.
Preferably, the CPU (not depicted) executes instructions
sequentially.

A BHT 202 is used to keep a preferably 1l-bit or 2-bit
history of the results of the CPU executing branching
instructions, as previously described. A program counter 204
may be used to determine the BHT address for the branch
instruction to be executed next. For example, if the program
counter 204 currently contains a reference address to a non-
branching instruction, the corresponding BHT entry may
include the branching history for the next branching
instruction. In an alternatiﬁe embodiment, the BHT 202 may
itself incorporate instructions for determining the location
within the BHT 202 for the next branching instruction.

Regardless of how determined, the retrieved or fetched

10

15

20

25

WO 2006/006613 PCT/JP2005/012881
23

branching history is used by the CPU to determine what
predicted instructions are to be loaded into the instruction
cache 206. A fetching mechanism also referred to herein as a
"fetch engine" (e.g., the fetch engine 104), then moves the
appropriate group of instructions from the instruction cache
206 to the instruction buffer 208 of the CPU, from where they
may be executed.

Typically, a significant amount of hardware and/or
software processing may be needed whenever the BHT 202 is
accessed and the instruction cache 206 and instruction buffer
208 are updated. Thus, it is advantageous in an embodiment to
optimize the fetching and updating of the BHT entries. This
is particularly advantageous in the case of l-port RAM since
the limitations in accessing l-port RAMs may create a
bottleneck.

As stated above, the CPU 102 may be part of a
multiprocessor system. The instruction cache 106 or 206,
and/or the data bus 110 may employ a different architecture
in a multiprocessor system than those depicted above,
although the present invention is similarly applicable to
such systems. Specifically, if system hardware maintains
cache coherence, the instruction cache 106 or 206, and/or the
data bus 110 should be designed to maintain cache coherence
This is unnecessary for systems that use software to maintain
cache coherence.

Reference is now made to FIG. 3A, which is a block

10

15

20

25

WO 2006/006613 PCT/JP2005/012881
24

diagram of a basic processing module or processor element

(PE) 300 that can be employed in accordance with aspects of
the present invention. As shown in this figure, the PE 300
preferably comprises an I/O interface 302, a processing unit
(PU) 304, a direct memory access controller (DMAC) 306, and a
plurality of sub-processing units (SPUs) 308, namely SPUs
308a 308d. While four SPUs 308a-d are shown, the PE 300 may
include any number of such devices. A local (or internal) PE
bus 320 transmits data and applications among PU 304, the
SPUs 308, I/0 interface 302, DMAC 306 and a memory interface
310. Local PE bus 320 can have, e.g., a conventional
architecture or can be implemented as a packet switch
network. Implementation as a packet switch network, while
requiring more hardware, increases available bandwidth. The
I/0 interface 302 may connect to one or more external I/0
devices (not shown), such as frame buffers, disk drives, etc.
via an I/0 bus 124.

PE 300 can be constructed using various methods for
implementing digital logic. PE 300 preferably is constructed,
however, as a single integrated circuit employing CMOS on a
silicon substrate. PE 300 is closely associated with a memory
330 through a high bandwidth memory connection 322. The
memory 330 desirably functions as the main memory (system
memory) for PE 300. In certain implementations, the memory
330 may be embedded in or otherwise integrated as part of the

processor chip incorporating the PE 300, as opposed to being

10

15

20

25

WO 2006/006613 PCT/JP2005/012881
25

a separate, external memory. For instance, the memory 330 can
be in a separate location on the chip or can be integrated
with one or more of the processors that comprise the PE 300.
Although the memory 330 is preferably a dynamic random access
memory (DRAM), the memory 330 could be implemented using
other means, e.g., as a static random access memory (SRAM), a
magnetic random access memory (MRAM), an optical memory, a
holographic memory, etc. DMAC 306 and memory interface 310
facilitate the transfer of data between the memory 330 and
the SPUs 308 and PU 304 of the PE 300.

PU 304 can be, e.g., a standard processor capable of
stand-alone processing of data and applications. 1In
operation, the PU 304 schedules and orchestrates the
processing of data and applications by the SPUs 308. 1In an
alternative configuration, the PE 300 may include multiple‘
PUs 304. Each of the PUs 304 may include one, all, or some
designated group of the SPUs 308. The SPUs 308 preferably are
single instruction, multiple data (SIMD) processors. Under
the control of PU 304, the SPUs 308 may perform the
processing of the data and applications in a parallel and
independent manner. DMAC 306 controls accesses by PU 304 and
the SPUs 308 to the data and applications stored in the
shared memory 330. Preferably, a number of PEs, such as PE
300, may be joined or packed together, or otherwise logically
associated with one another, to provide enhanced processing

power.

10

15

20

25

WO 2006/006613 PCT/JP2005/012881

26

FIG. 3B illustrates a processing architecture comprised
of multiple PEs 350 (PE 1, PE 2, PE 3, and PE 4) that can be
operated in accordance with aspects of the present invention.
Preferably, the PEs 350 are on a single chip. The PEs 350 may
or may not include the subsystems such as the PU and/or SPUs
discussed above with regard to the PE 300 of FIG. 3A. The PEs
350 may be of the same or different types, depending upon the
types of processing required. For example, the PEs 350 may be
generic microprocessors, digital signal processors, graphics
processors, etc.

The PEs 350 are preferably tied to a shared bus 352. A
memory controller or DMAC 356 may be connected to the shared
bus 352 through a memory bus 354. The DMAC 356 connects to a
memory 358, which may be of one of the types discussed above
with regard to memory 330. In certain implementations, the
memory 358 may be embedded in or otherwise integrated as part
of the processor chip containing one or more of the PEs 350,
as opposed to being a separate, external memory. For
instance, the memory 358 can be in a separate location on the
chip or can be integrated with one or more of the PEs 350. An
I/0 controller 362 may also be connected to the shared bus
352 through an I/0 bus 360. The I/O controller 362 may
connect to one or more I/O devices 364, such as frame
buffers, disk drives, etc.

Tt should be understood that the above processing

modules and architectures are merely exemplary, and the

10

15

20

25

WO 2006/006613 PCT/JP2005/012881
27

various aspects of the present invention may be employed with
other structures, including, but not limited to
multiprocessor systems of the types disclosed in U. S. Patent
No. 6,526,491, entitled "Memory Protection System and Method
for Computer Architecture for Broadband Networks," issued on
February 25, 2003, and U.S. Application No. 09/816,004,
entitled "Computer Architecture and Software Cells for
Broadband Networks," filed on March 22, 2001, which are
hereby expressly incorporated by reference herein.

FIG. 4A illustrates an SPU 400 that can be employed in
accordance with aspects of the present invention. One or more
SPUs 400 may be integrated in the PE 300. In a case where the
PE 300'includes multiple PUs 304 or 400, each of the PUs 304
may control one, all, or some designated group of the SPUs.

SPU 400 preferably includes local store (LS) 402,
registers 404, one or more floating point units (FPUs) 406
and one or more integer units (IUs) 408. The components of
SPU 400 are, in turn, comprised of subcomponents, as will be
described below. Depending upon the processing power
required, a greater or lesser number of FPUs 406 and IUs 408
may be employed. In a preferred embodiment, LS 402 contains
at least 128 kilobytes of storage, and the capacity of
registers 404 is 128 X 128 bits. FPUs 406 preferably operate
at a speed of at least 32 billion floating point operations
per second (32 GFLOPS), and IUs 408 preferably operate at a

speed of at least 32 billion operations per second (32 GOPS) .

10

15

20

25

WO 2006/006613 PCT/JP2005/012881
28

LS 402 is preferably not a cache memory. Cache coherency
support for the SPU 400 is unnecessary. Instead, the LS 402
is preferably constructed as an SRAM. A PU 304 may require
cache coherency support for direct memory access initiated by
the PU 304. Cache coherency support is not required, however,
for direct memory access initiated by the SPU 400 or for
accesses to and from external devices.

SPU 400 further includes bus 410 for transmitting
applications and data to and from the SPU 400 through a bus
interface (Bus I/F) 412. In a preferred embodiment, bus 410
is 1,024 bits wide. SPU 400 further includes internal busses
414, 416 and 418. In a preferred embodiment, bus 414 has a
width of 256 bits and provides communication between LS 402
and registers 404. Busses 416 and 418 provide communications
between, respectively,‘registers 404 and FPUs 406, and
registers 404 and IUs 408. In a preferred embodiment, the
width of busses 416 and 418 from registers 404 to the FPUs
406 or IUs 408 is 384 bits, and the width of the busses 416
and 418 from the FPUs 406 or IUs 408 to the registers 404 is
128 bits. The larger width of the busses from the registers
404 to the FPUs 406 and the IUs 408 accommodates the larger
data flow from the registers 404 during processing. In one
example, a maximum of three words are needed for each
calculation. The result of each calculation, however, is
normally only one word.

In the multiprocessor system of FIG. 3C, BHT 340 may be

10

15

20

25

WO 2006/006613 PCT/JP2005/012881
29

implemented as part of the PE 300 or 350. The BHT may be
implemented as BHT 342, which is part of the PU 304. The BHT
may also be implemented as one or more BHTs 344, which are
part of the SPU 308 or 400, or as part of other circuitry in
the multiprocessor system. As with the architecture of FIG.
1, the BHT 340, 342 or 344 is desirably implemented in
association with the fetch engine 104. Therefore, the BHT and
the fetch engine 104 are preferably implemented as part of
the same device, e.g., the PE 300, PU 304 or SPU 308. As seen
in FIG. 3C, the fetch engine 104 and the BHT 340 are both
connected to the local PE bus 320. If the BHT 342 is
implemented as part of the PU 304, the fetch engine 104 may
also be integrated as part of the PU 304 (not shown). If
implemented as part of the SPU 308 or 400, the BHT 344 may be
implemented using the LS 402 and/or the registers 404, as
seen in FIG. 4B. The fetch engine 104 may be implemented
between the LS 402 and the registers 404, or elsewhere in the
SPU 308 or 400. The instruction cache 106 may also be
implemented in the same device(s) as the BHT 340, 342 or 344
and the fetch engine 104.

In accordance with a preferred aspect of the present
invention, a determination as to when to update a BHT to
optimize processor performance is made by deducing the number
of instructions in the processor pipelines that can be
delivered for execution, and optimizing code execution to

align instructions based on this scenario.

- 10

15

20

25

WO 2006/006613 PCT/JP2005/012881
30

In a preferred embodiment, the fetch engine determines
how many instructions can be delivered by querying a "branch
redirection address," which is a finite number of binary
bits, e.g., two bits at a known memory address (the "two-bit"
case). The number of instructions to be delivered may be
determined by analyzing these bits, which range from one
(corresponding to bits '1ll' in the two-bit case) to four
(corresponding to bits '00' in the two-bit case).

In a preferred embodiment, there are three possible
modes of updating the BHT 202 after a branch misdirection.
These modes are depicted in FIG. 5 and are referred to as:
Update-Fetch-Fetch 502, Fetch-Update-Fetch 504, and Fetch-
Fetch-Update 506 modes.

As illustrated in FIG. 5, in the Update-Fetch-Fetch 502
mode, the fetch engine 104 first updates the BHT 108, then
two instruction groups are fetched, one after the other. In
the Fetch-Update-Fetch 504 mode,\the fetch engine 104 first
fetches an instruction group, then the BHT 108 is updated and
then another instruction group is fetched. In the Fetch-
Fetch-Update 506 mode, two instruction groups are fetched and
then the BHT 108 is updated. After a branch misdirection, in
which the prediction of whether a branch of a branching
instruction is taken using the BHT 108 is incorrect, a new
instruction group should be fetched or loaded, so the BHT
mode preferably is either be Fetch-Update-Fetch 504 or Fetch-

Fetch-Update 506.

10

15

20

25

WO 2006/006613 PCT/JP2005/012881
31

In accordance with a preferred embodiment of the
invention, if the instruction pipeline or the fetch engine
104 delivers two or more instructions, the Fetch-Update-Fetch
504 mode of operation is implemented. Otherwise, if the
instruction pipeline or the fetch engine 104 delivers less
than two instructions, the Fetch-Fetch-Update mode 506 of
operation is preferably implemented.

A flowchart 600 of an exemplary method in accordance
with an embodiment of the invention is shown in FIG. 6. The
start 602 as indicated in the flowchart 600 may represent any
point in execution of code on the processor. In step 604, the
fetch engine 104 determines whether the next instruction to
be executed is the last instruction of the currently fetched
group. If it is, then in step 610 the fetch engine 104 can
deliver no more than one instruction to the processor. In
this case, the Fetch-Fetch-Update 506 mode of operation is
selected at step 612. Thus, the BHT 108 would be updated only
after these instructions or instruction groups are fetched.
The process then returns to point A at step 614 in
preparation for the next instruction.

Otherwise, if the next instruction to be executed is not
the last instruction of the fetch group, the fetch engine 104
can deliver two or more instructions to the processor at step
606. In this case, the Fetch-Update-Fetch mode 504 of
operation is selected at step 608. In this case, the BHT 108

would be updated after a single instruction or instruction

10

15

20

25

WO 2006/006613 PCT/JP2005/012881
32

group is fetched. The process then returns to point A at step
614 in preparation for the next instruction.

In the table 700 shown in FIG. 7, a two-bit
implementation of BHT update mode selections is depicted in
accordance with one aspect of the present invention. In this
embodiment, a memory address, referred to as the branch
redirection address ("R ADDR"), as given by column 702,
contains two binary bits, e.g., the two least significant
address bits. The pair of bits can be '00', '01', '10' or
'11', as represented by rows 710, 712, 714 and 716,
respectively. In a preferred embodiment, the two binary bits
also represent an offset into the current fetch group of
instructions. In this exemplary case, each fetch group may
hold up to four instructions. In practice and in accordance
with the present invention, fetch groups holding any number
of instructions may be employed.

Again referring to FIG. 7, when the branch redirection
address or offset is '00', meaning an offset of 0
instructions into the current fetch group, following along
row 710 of the table 700 indicates that the number of
instructions in the current fetch group that the fetch engine
104 can deliver, as indicated in column 704, is four (i.e.,
instructions located at memory addresses 00, 01, 10 and 11).
Continuing along row 710, the BHT update mode column 706
indicates that the Fetch-Update-Fetch mode 504 is selected

for the BHT 108.

10

15

20

25

WO 2006/006613 PCT/JP2005/012881
33

In the exemplary case, a similar selection is made for
branch redirection offsets '01' and '10', given by rows 712
and 714, and corresponding to offsets into the current fetch
group of 1 and 2 instructions, respectively. For the '01'
case, the fetch engine 104 can deliver three instructions
(i.e., instructions located at memory addresses 01, 10 and
11). For the '10' case, the fetch engine 104 can deliver two
instructions (i.e., instructions located at memory addrgsses
10 and 11).

When the branch redirection address in this example is
'11', given by row 716 and corresponding to an offset into
the current fetch group of 3, the number of instructions that
the fetch engine 104 can deliver is then only one (i.e., the
instruction at address 11), and so the Fetch-Fetch-Update
mode 506 is selected for the BHT 108 such that two or more
instructions are fetched prior to updating.

In accordance with another aspect of the invention, a
compiler or other element can be used to assist overall
performance of a BHT-based processor system by realigning
instructions to be executed by the processor. The following
examples illustrate, for exemplary purposes, a fetch group
having up to four instructions and a two-bit branch
redirection address. It should be understood that the
invention can be employed with any number of instructions and
is not limited to two-bit addressing. FIG. 8(a) illustrates a

case when a loop occurs within one fetch group. FIG. 8(b)

10

15

20

25

WO 2006/006613 PCT/JP2005/012881
34

illustrates a case when a loop crosses a fetch group boundary
and occurs within two fetch groups. The "LOOP:" label in
these examples indicates the instruction address at which
each loop iteration begins.

Referring to FIG. 8(a), a loop having two instructions
is shown in box 800. The loop begins at Instruction 1, which
has the two-bit address 01. The next instruction in the fetch
group, "Branch to Loop," has the two-bit address 10. If
branch misdirection occurs, it is desirable to update the BHT
as well as to fetch instructions in order to execute the
loop. It is preferable to fetch instructions before updating
the BHT. While either the Fetch-Update-Fetch or Fetch-Fetch-
Update modes 504, 506 could be selected, operating in the
Fetch-Update-Fetch mode 504 is more desirable because the BHT
can be updated befofe refetching a "branch to loop"
instruction. Therefore, in a preferred example, the loop is
extended (or shifted) across two fetch groups. The change in
the alignment of the instructions may include adding one or
more instructions, such as NOP instructions, as (or if)
needed.

Thus, as seen in box 802, the loop still begins at
Instruction 1, which has been realigned to be within a first
fetch group at the two-bit address 10. In this example, an
NOP instruction is inserted having the two-bit address 11,
after Instruction 1. The NOP instruction in this case is the

last instruction in the first fetch group. The "Branch to

10

15

20

25

WO 2006/006613 PCT/JP2005/012881
35

Loop" instruction is realigned to a second fetch group at the
two-bit address 00. Because the loop begins at an address
location other than 11, the Fetch-Update-Fetch mode 504 will
be selected. Thus, the first fetch obtains Instruction 1 and
the NOP instruction. Then the BHT is updated. Finally, the
second fetch obtains the Branch to Loop instruction, which
will utilize the updated BHT information.

Referring to FIG. 8(b), a loop spanning two fetch groups
is shown in box 804. The loop begins in the first fetch group
at Instruction 1, which has the two-bit address 11. The
remaining instructions are within the second fetch group. If
the instructions were not realigned, then the Fetch-Fetch-
Update mode 506 would be selected based upon the address 11
of Instruction 1. However, as indicated above, it is more
desirable to operate in the Fetch-Update-Fetch mode 504.
Therefore, the instructions are preferably realigned in the
loop so that the Fetch-Update-Fetch mode 504 is selected.
This can be done by realigning the instructions within the
fetch groups. Thus, as shown in box 806, Instructions 1-4 can
be placed in the first fetch group and the Branch to Loop
instruction can remain in the second fetch group. Now,
because the loop begins at an address other than 11, the
Fetch-Update-Fetch mode 504 is selected. Thus, the first
fetch obtains Instructions 1-4. Then the BHT is updated.
Finally, the second fetch obtains the Branch to Loop

instruction, which will utilize the updated BHT information.

10

WO 2006/006613 PCT/JP2005/012881
36

For situations where the loop spans three or more fetch
groups, even if the loop begins with an instruction having
the two-bit address 11, it is not necessary to realign the
instructions. This is the case because even in the Fetch-
Fetch-Update mode 506, the BHT will be updated before the
Branch to Loop instruction is performed.

The foregoing alternative embodiments are not mutually
exclusive, but may be implemented in various combinations to
achieve unique advantages. As these and other variations and
combinations of the features discussed above can be utilized
without departing from the invention as defined by the
claims, the foregoing description of the embodiments should
be taken by way of illustration rather than by way of

limitation of the invention as defined by the claims.

WO 2006/006613 PCT/JP2005/012881
37

CLATIMS

1. A method of updating a branch history table to assist
in processing branch instructions by a processor employing an
instruction pipeline that holds a plurality of instructions,
comprising:

(a) determining a number of instructions to be fetched;

(b) selecting a first mode to update the branch history
table when there are at least two instructions to be fetched;
and

(c) selecting a second mode to update the branch history
table when there are less than two instructions to be

fetched.

2. The method according to claim 1, further comprising:

fetching at least two instructions into the instruction
pipeline to be executed, updating the branch history table,
and then fetching one or more additional instructions into
the instruction pipeline to be executed upon selecting the
first mode; and

fetching a first instruction into the instruction
pipeline to be executed, fetching another instruction into
the instruction pipeline to be executed, and then updating

the branch history table upon selecting the second mode.

3. The method according to claim 2, wherein at least

WO 2006/006613 PCT/JP2005/012881
38

some of the plurality of instructions are stored in a memory
and selected ones of the instructions are fetched from the

memory.

4. The method according to claim 1, wherein determining
the number of instructions comprises examining a value

associated with an address location of the instructions.

5. The method according to claim 4, wherein the value is

contained in a register.

6. The method according to claim 4, wherein the value is

located at an address in a memory.

7. The method according to claim 4, wherein the value is
a one-bit binary value, the method further comprising:

determining that there is one instruction awaiting
execution when the binary vaiue is a first number; and

determining that there are two or more instructions
awaiting to be execution when the binary value is a second

number.

8. The method according to claim 4, wherein the value is
a two-bit binary value, the method further comprising:
determining that there is one instruction awaiting

execution when the binary value is a first number; and

WO 2006/006613 PCT/JP2005/012881
39 :

determining that two or more instructions are awaiting

execution when the binary value is not the first number.

9. The method according to claim 4, wherein the value is
a binary value having more than two bits, the method further
comprising:

determining that one instruction can be delivered when
the binary value satisfies a first condition; and

determining that two or more instructions can be

delivered when the binary value satisfies a second condition.

10. The method according to claim 4, wherein the value

is an instruction offset associated with a fetch group.

11. The method according to claim 1, wherein the method
is performed if the branch history table incorrectly predicts

whether a branch instruction would or would not be taken.

12. A method of operating a processor employing an
instruction cache, a branch history table, and a fetch engine
for fetching instructions, the branch history table having a
selectable update mode, comprising:

(a) examining a value associated with a current branch
redirection address of the fetch engine;

(b) determining if at least two of the instructions can

be delivered by the fetch engine and selecting a first mode

WO 2006/006613 PCT/JP2005/012881
40

for the branch history table when the value satisfies a first
condition; and

(c) determining if less than two instructions can be
delivered by the fetch engine and selecting a second mode for
the branch history table when the value satisfies a second

condition.

13. The method according to claim 12, further
comprising:

fetching at least two instructions into the instruction
pipeline to be executed, updating the branch history table,
and then fetching one or more additional instructions into
the instruption pipeline to be executed upon selecting the
first mode; and

fetching a first instruction into the instruction
pipeline to be executed, fetching another instruction into
the instruction pipeline to be executed, and then updating

the branch history table upon selecting the second mode.

14. The method according to claim 13, wherein at least
some of the instructions are stored in a memory and selected

ones of the instructions are fetched from the memory.

15. A processor, comprising:
an instruction pipeline; and

a branch history table capable of managing a program

WO 2006/006613 PCT/JP2005/012881
41

containing instructions that can be executed by the
processor;

wherein if the branch history table incorrectly predicts
whether a conditional branch instruction should be taken, a
first mode of operation is selected if the instruction
pipeline has at least two instructions that can be executed
by the processor, and a second mode of operation is selected
if the instruction pipeline has less than two instructions

that can be executed by the processor.

16. The processor according to claim 15, wherein:

the processor fetches at least two instructions into the
instruction pipeline to be executed, updates the branch
history table, and then fetches one or more additional
instructions into the instruction pipeline to be executed
upon selecting the first mode; and

the processor fetches a first instruction into the
instruction pipeline to be executed, fetches another
instruction into the instruction pipeline to be executed, and
then updates the branch history table upon selecting the

second mode.

17. A recording medium recorded with a computer program
for use by a processor having an instruction pipeline and
using a branch history table (BHT) to assist in processing

instructions, the BHT having a selectable update mode, the

WO 2006/006613 PCT/JP2005/012881
42

computer program comprising:

(a) determining the number of instructions in the
instruction pipeline that can be executed by the processor;

(b) selecting a first mode of operation to fetch at
least some of the instructions and update the BHT when there
are at least two instructions in the instruction pipeline
that can be executed by the processor; and

(c) selecting a second mode of operation to fetch at
least some of the instructions and update the BHT when there
are less than two instructions in the instruction pipeline

that can be executed by the processor.

18. The recording medium according to claim 17, the
computer program further comprising:

fetching at least two instructions into the instruction
pipeline to be executed, updating the BHT, and fetching one
or more additional instructions into the instruction pipeline
to be executed upon selecting the first mode; and

fetching a first instruction into the instruction
pipeline to be executed, fetching another instruction into
the instruction pipeline to be executed, and then updating

the BHT upon selecting the second mode.

19. The recording medium according to claim 18, wherein
at least some of the instructions are stored in a memory and

selected ones of the instructions are fetched from the

WO 2006/006613 PCT/JP2005/012881
43

memory.

20. The recording medium according to claim 17, wherein
determining the number of instructions in the pipeline that
can be executed by the processor is performed by examining a

binary value.

21. The recording medium according to claim 20, wherein
the binary value is either a one-bit binary value or a two-

bit binary value.

22. A compiler for generating object code instructions
from computer source code for execution on a processor, the
processor employing a fetch engine using fetch groups
including the object code instructions, the object code
instructions including at least one set of looping
instructions having a beginning instruction and a branching
instruction, the compiler performing the steps comprising:

(a) when the looping instructions span first and second
fetch groups, aligning the beginning instruction of the set
in a position that is not the last instruction in the first
fetch group; and

(b) when the looping instructions are contained within
the first fetch group, aligning the beginning instruction in
the first fetch group and the branching instruction in the

second fetch group.

WO 2006/006613 PCT/JP2005/012881
44

23. A method of updating a branch history table,
comprising:

determining a number of instructions ready for delivery
to a processor;

selecting a first mode for updating the branch history
table when the number of determined instructions exceeds a
minimum value;

selecting a second mode for updating the branch history
table when the number of determined instructions does not
exceed the minimum value; and

updating the branch history table according to the first

mode or the second mode.

24 . The method according to claim 23, wherein the first
mode is selected if there are at least two instructions for
processing by the processor, and the second mode is selected
if there are less than two instructions for processing by the

processor.

25. The method of claim 23, wherein:

the first mode includes an ordered process of:
fetching at least two instructions,
updating the branch history table, and
fetching one or more additional instructions; and

the second mode includes an ordered process of:

WO 2006/006613 PCT/JP2005/012881
45

fetching a first instruction,
fetching another instruction, and

updating the branch history table.

26. A method of processing instructions having a loop,
comprising:

determining a beginning of a loop iteration of the loop;

determining a number of instructions in the loop between
the beginning of the loop iteration and a branching
instruction; and

aligning the loop instructions within at least one fetch
group of instructions based on the beginning of the loop
iteration and the number of determined instructions so that a
branch history table is updated prior to executing the

branching instruction.

27. The method of claim 26, wherein if the loop
instructions are contained within one fetch group, aligning
the instructions includes spreading the loop instructions
across at least two fetch groups so that the beginning of the
loop iteration is in a first one of the fetch groups and the
branching instruction is contained within a second one of the

fetch groups.

28. The method of claim 27, further comprising inserting

at least one NOP instruction between the beginning of the

WO 2006/006613 PCT/JP2005/012881
46

loop iteration and the branching instruction.

29. The method of claim 26, wherein if the loop
instructions are contained within two fetch groups, aligning
the instructions includes moving the beginning of the loop
iteration so that the beginning of the loop iteration is not

the last instruction in a first one of the two fetch groups.

30. The method of claim 22, wherein the beginning of the
loop iteration is moved to the beginning of the first fetch

group.

31. A method of processing instructions having a loop,
comprising:

determining the beginning of a loop iteration of the
loop:;

determining the number of instructions in the loop
iteration between the beginning of the loop iteration and a
branching instruction; and

aligning the loop instructions within at least two fetch
groups based on the beginning of the loop iteration and the
number of determined instructions so that a first mode for

updating a branch history table is selected.

32. The method of claim 31, wherein the first mode

comprises fetching at least two of the loop instructions for

WO 2006/006613 PCT/JP2005/012881
47

execution, then updating the branch history table, and then
fetching at least an additional one of the loop instructions

for execution.

33. A processing system for processing operations,
comprising:

a plurality of processing devices operable to execute
instructions using a branch history table; a first one of the
processing devices comprising a processing element, a
processing unit or a sub-processing unit;

wherein if the branch history table incorrectly predicts
whether a conditional branch instruction should be processed,
a first mode of operation is selected for execution by the
first processing device if at least two instructions are
avaiiable for the first processing device, and a second mode
is selected for execution by the first processing device if
less than two instructions are available for the first

processing device.

34. The processing system of claim 33, wherein the first
processing device comprises a processing element including

the branch history table.

35. The processing system of claim 34, wherein the
processing element further includes a fetch engine connected

to the branch history table.

WO 2006/006613 PCT/JP2005/012881
48

36. The processing system of claim 34, wherein a second
one of the processing devices comprises a processing unit

that is part of the processing element.

37. The processing system of claim 36, wherein the

processing unit includes the branch history table.

38. The processing system of claim 37, wherein the
processing unit further includes a fetch engine connected to

the branch history table.

39. The processing system of claim 34, wherein a second
one of the processing devices comprises a processing unit
that is part of the processing element, and a third one of
the processing devices comprises a sub-processing unit that
is part of the processing element and is connected to the

processing unit by a bus.

40. The processing system of claim 39, wherein the sub-

processing unit includes the branch history table.

41. The processing system of claim 40, wherein the sub-
processing unit further includes a fetch engine connected to

the branch history table.

WO 2006/006613 PCT/JP2005/012881
49

42. The processing system of claim 33, wherein:

a second one of the processing devices comprises a
processing unit;

the first processing device comprises a first sub-
processing unit; and at least a third one of the processing
devices comprises a second sub-processing unit, the first and
second sub-processing units being connected to the processing
unit by a bus, and at least the first sub-processing unit
being connected to a memory and being operable to execute

instructions using the branch history table.

43. The processing system of claim 42, wherein:

the first sub-processing unit fetches at least two
instructions for execution, updates the branch history table,
and then fetches one or more additional instructions for
execution upon selecting the first mode; and

the first sub-processing unit fetches a first
instruction for execution, fetches another instruction for
execution, and then updates the branch history table upon

selecting the second mode.

44, The processing system of claim 33, further

comprising a memory for storing instructions available to the

processing devices.

45. The processing system of claim 44, wherein the

WO 2006/006613 PCT/JP2005/012881
50

memory is integrally provided with the processing devices.

46. A processor for processing operations, comprising:

a processing element including a bus, a processing unit
and a plurality of sub-processing units connected to the
processing unit by the bus, the processing element being
connected to memory and being operable to execute
instructions having a loop;

wherein the processing element determines a beginning of
a loop iteration of the loop, determines a number of
instructions in the loop between the beginning of the loop
iteration and a branching instruction, and aligns the loop
instructions within at least one fetch group of instructions
based on the beginning of the loop iteration and the number
of determined instructions so that a branch history table is

updated prior to executing the branching instruction.

47. The processor of claim 46, wherein if the loop
instructions are contained within one fetch group, aligning
the instructions includes spreading the loop instructions
across at least two fetch groups so that the beginning of the
loop iteration is in a first one of the fetch groups and the
branching instruction is contained within a second one of the

fetch groups.

48. The processor of claim 46, wherein if the loop

WO 2006/006613 PCT/JP2005/012881
51

instructions are contained within two fetch groups, aligning
the instructions includes moving the beginning of the loop
iteration so that the beginning of the loop iteration is not

the last instruction in a first one of the two fetch groups.

WO 2006/006613 PCT/JP2005/012881
1/11

FIG. 1

|

/ 112
RAM

/ 102

/ 106 | CPU

/ 109

/ 104 108
Branch History /

Fetch Engine L111 Table

Instruction
Cache

110/

WO 2006/006613

Branch History
Table

/ 202

2/11 °

FIG. 2

N
(o]
O

|

204

Program
Counter

S

PCT/JP2005/012881

Instruction
Cache (1%)

/ 206

Instruction
Buffer (IBUF)

/ 208

WO 2006/006613

311

FIG. 3A 300
Processor Element (PE) / 204
302 — //
N /O Interface I /,
— 320
304 —
N PU | —
306 —|
N DMAC
3082 —
, N_| SPU 1 | —
N SPU 2 e
308c —
N SPU 3 —
308d —|
N SPU 4 L
310 —
N Memory Interface — se—————t

e 322

330
N\

Memory

PCT/JP2005/012881

WO 2006/006613

FIG. 3B

[350

f 350

PCT/JP2005/012881

f 350

PE 1 PE 2 PE 3 PE 4
f 352 -
354 | 360
356 \ Memory Control/ /O Control _/ 362

DMAC

358
N

Memory

/O

364
/

WO 2006/006613

511t

FIG. 3C
324 Processor Element (PE) s 340
// | BHT 300
02~ IO Interface e
s 342 — 320
304 —| TBHT o
N PU T
306 — . ‘
N_| DMAC E—
344
» 308a — | BHT
N SPU1 T
344
308b— [' BHT
No SPU2 T
344
308c — | BHT
N SPU3 77T O
344
308d —~ [BHT
N SPU4 T
104 —
N Fetch Engine
N Memory Interface vt

322

Memory

PCT/JP2005/012881

WO 2006/006613 PCT/JP2005/012881
6/11 *

FIG. 4A

N
o

/ 412
320
402 _\ (410
Local Store Bus I/F 1 /

414
N
404 .
\ Registers -

416
N\

406
\ Floating Point Unit(s)

/—418

408
\ Integer Unit(s)

SPU

WO 2006/006613

PCT/JP2005/012881

412
/ 320

404
N

BHT

Registers

416
N\

406
N

Floating Point Un

it(s)

408
N

Integer Unit(s)

<711
FIG. 4B
400
344
402 BHT (410
\- Local Store
104 \
Fetch Engine
344

/ 418

SPU

Bus I/F -_;/

WO 2006/006613 PCT/JP2005/012881
8/11 °

FIG. 5

502
\ Update Fetch Fetch
(Write) (Read) (Read)

504
\ Fetch Update Fetch
(Read) (Write) (Read)

506
1 Fetch Fetch Update

(Read) (Read) (Write)

WO 2006/006613

604

Is next
instruction last of
the current fetch
group?

PCT/JP2005/012881

Fetch engine 610
delivers one I
instruction

v

606
\ Fetch engine
delivers at least

two instructions

612
Select Fetch- f

Fetch-Update
mode

A

608 \‘ Select Fetch-
Update-Fetich
mode

614

Y
>

WO 2006/006613 PCT/JP2005/012881
10/11* *

FIG. 7

700
/, 702 / 704 f 706
Number of
R_ADDR Instructions BHT Update Mode
710
AN 00 4 Fetch-Update-Fetch
712
\ 01- ' 3 Fetch-Update-Fetch
714 \
10 2 Fetch-Update-Fetch
716 \
11 1 Fetch-Fetch-Update

PCT/JP2005/012881

WO 2006/006613
11/11°
FIG. 8(a)
Fetch group boundary
XXX 00 .
800 \ Loop: Instruction 1 01
Branch to Loop 10
XXX 11
Fetch group boundary
802 Loop: Instruction 1 10
\ NOP 11
Fetch group boundary
Branch to Loop 00
FIG. 8(b)
Fetch group boundary
XXX 00
XXX 01
XXX 10
804 l Loop: Instruction 1 11
: Fetch group boundary
Instruction 2 00
Instruction 3 01
Instruction 4 10
Branch to Loop 11
Fetch group boundary
Y
Fetch group boundary
Loop: Instruction 1 00
instruction 2 01
Instruction 3 10
806 \ Instruction 4 11
. Fetch group boundary
Branch to Loop 00
XXX 01
XXX 10
XXX 11

Fetch group boundary

International application No.

INTERNATIONALSEARCHREPORT
' PCT/JP2005/012881

A.” CLASSIFICATION OF SUBJECT MATTER
Int.Cl.7GOGF 9/38

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
Int.CL” GO6F 9/30-9/38

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Published examined utility model applications of Japan 1922-1996
Published unexamined utility model applications of Japan 1971-2005
Registered utility moadel specifications of Japan 1996-2005
Published registered utility model applications of Japan 1994-2005

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSﬂ)ERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of tﬁe relevant passages Relevant to claim No.
Y | Jp 59-2148 A (FUJITSU LIMITED) 1984.01.07 26,29,30,46,
(no family) 48
A 22,27,28,31,
' ' 32,47

Y JP 3-212734 A (MITSUBISHI DENKI KABUSHIKI KAISHA) | 26,29, 30,46,

1991.09.18, page 14-16 {(no family) 48
A _ 1-25,27,28,3
1,32,33-45,
47
¥ Further documents arc listed in the continuation of Box C. i~ Secpatent family annex.
* Special categories of cited documents: L «T* later document published after the international filing date or
“A” document defining the peneral state of the art which is not priority date and not in conflict with the application but cited to
congidcrcd to bg of particular relevance. i understand the principle or theory underlying the invention
E” catlier application or patent but published on or afier the inter- “X” document of particular relevance; the claimed invention cannot

national filing date
“L” document which may throw doubts on priority claim(s) or which
is cited to establish the publication date of another citation or other

be considered novel or cannot be considered to involve an
inventive step when the document is taken alone

special reason (as specified) “Y” document of particular relevance; the claimed invention cannot
“Q” document referring to an oral disclosure, use, exhibition or other be considered to involve an inventive step when the document is
means combined with one or more other such documents, such
“P” document published prior to the international filing date but later combination being obvious to a person sl.ulled in the art
than the priority date claimed “&” document member of the same patent family
Date of the actual completion of the international search Date of mailing of the international search report
02.08.2005 16.08.200%
Name and mailing address of the ISA/IP . Authorized officer 5Bl4226
Japan Patent Office Akira Goto
3-4-3, Kasumigaseki, Chiyoda-ku, Tokyo 100-8915, Japan | Telephone No. +81-3-3581-1101 Ext. 3545

Form PCT/ISA/210 (second sheet) (January 2004)

INTERNATIONALSEARCHREPORT International application No.

PCT/JP2005/012881
C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y JP 61-145645 A (NEC CORPORATION) 1986.07.03 (no |26,29,30,46,
family) 48
A 22,27,28,31,
32,47
A JP 10-333908 A (MITSUBISHI DENKI KABUSHIKI 1-48
KAISHA) 1998.12.18 & US 6332190 Bl
A Jp 5-158689. A (KABUSHIKI KAISHA TOSHIBA) 1-48
1993.06.25 & US 5414822 A ’
A JP 2002-358289 A (SONY COMPUTER ENTERTAINMENT 1-48

INC.) 2002.12.13 & US 2002/0135582 Al

Form PCT/ISA/210 (continuation of second sheet) (January 2004)

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS
	SEARCH_REPORT

