Title: 1, 3, 4-Oxadiazole Derivatives as DGAT1 Inhibitors

Abstract: Compounds of formula (I), or salts thereof, which inhibit acetyl CoA:(acyl coenzyme A):diacylglycerol acyltransferase (DGAT1) activity are provided, wherein: n is 1, 2 or 3 and each R is independently selected from fluoro, chloro, cyano, methyl, ethyl, methoxy, ethoxy, trifluoromethyl, trifluoromethoxy and difluoromethoxy; together with processes for their preparation, pharmaceutical compositions containing them and their use as medicaments.
CHEMICAL COMPOUNDS

The present invention relates to compounds which inhibit acetyl CoA:acyl CoA:diacylglycerol acyltransferase (DGAT1) activity, processes for their preparation, pharmaceutical compositions containing them as the active ingredient, methods for the treatment of disease states associated with DGAT1 activity, to their use as medicaments and to their use in the manufacture of medicaments for use in the inhibition of DGAT1 in warm-blooded animals such as humans. In particular this invention relates to compounds useful for the treatment of type II diabetes, insulin resistance, impaired glucose tolerance and obesity in warm-blooded animals such as humans, more particularly to the use of these compounds in the manufacture of medicaments for use in the treatment of type II diabetes, insulin resistance, impaired glucose tolerance and obesity in warm-blooded animals such as humans.

Acyl CoA:diacylglycerol acyltransferase (DGAT) is found in the microsomal fraction of cells. It catalyzes the final reaction in the glycerol phosphate pathway, considered to be the main pathway of triglyceride synthesis in cells by facilitating the joining of a diacylglycerol with a fatty acyl CoA, resulting in the formation of triglyceride. Although it is unclear whether DGAT is rate-limiting for triglyceride synthesis, it catalyzes the only step in the pathway that is committed to producing this type of molecule [Lehner & Kuksis (1996) Biosynthesis of triacylglycerols. Prog. Lipid Res. 35: 169-201].

Two DGAT genes have been cloned and characterised. Both of the encoded proteins catalyse the same reaction although they share no sequence homology. The DGAT1 gene was identified from sequence database searches because of its similarity to acyl CoA:cholesterol acyltransferase (ACAT) genes. [Cases et al (1998) Identification of a gene encoding an acyl CoA:diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis. Proc. Natl. Acad. Sci. USA 95: 13018-13023]. DGAT1 activity has been found in many mammalian tissues, including adipocytes. Because of the previous lack of molecular probes, little is known about the regulation of DGAT1. DGAT1 is known to be significantly up-regulated during adipocyte differentiation.

Studies in gene knockout mice has indicated that modulators of the activity of DGAT1 would be of value in the treatment of type II diabetes and obesity. DGAT1
knockout ($Dgat1^{−/−}$) mice, are viable and capable of synthesizing triglycerides, as evidenced by normal fasting serum triglyceride levels and normal adipose tissue composition. $Dgat1^{−/−}$ mice have less adipose tissue than wild-type mice at baseline and are resistant to diet-induced obesity. Metabolic rate is \sim20% higher in $Dgat1^{−/−}$ mice than in wild-type mice on both regular and high-fat diets [Smith et al (2000) Obesity resistance and multiple mechanisms of triglyceride synthesis in mice lacking DGAT. Nature Genetics 25: 87-90]. Increased physical activity in $Dgat1^{−/−}$ mice partially accounts for their increased energy expenditure. The $Dgat1^{−/−}$ mice also exhibit increased insulin sensitivity and a 20% increase in glucose disposal rate. Leptin levels are 50% decreased in the $Dgat1^{−/−}$ mice in line with the 50% decrease in fat mass.

When $Dgat1^{−/−}$ mice are crossed with ob/ob mice, these mice exhibit the ob/ob phenotype [Chen et al (2002) Increased insulin and leptin sensitivity in mice lacking acyl CoA:diacylglycerol acyltransferase J. Clin. Invest. 109:1049-1055] indicating that the $Dgat1^{−/−}$ phenotype requires an intact leptin pathway. When $Dgat1^{−/−}$ mice are crossed with Agouti mice a decrease in body weight is seen with normal glucose levels and 70% reduced insulin levels compared to wild type, agouti or ob/ob $Dgat1^{−/−}$ mice.

Transplantation of adipose tissue from $Dgat1^{−/−}$ mice to wild type mice confers resistance to diet-induced obesity and improved glucose metabolism in these mice [Chen et al (2003) Obesity resistance and enhanced glucose metabolism in mice transplanted with white adipose tissue lacking acyl CoA:diacylglycerol acyltransferase J. Clin. Invest. 111: 1715-1722].

International Patent Applications WO2004/047755 (Tularik and Japan Tobacco) and WO2005/013907 (Japan Tobacco and Amgen) describe fused bicyclic nitrogen-containing heterocycles which are inhibitors of DGAT-1. JP2004-67635 (Otsuka Pharmaceuticals) describes thiazoleamido substituted phenyl compounds which are further substituted with alkylphosphonates and which inhibit DGAT-1. WO2004/100881 (Bayer) describes biphenylamino compounds substituted with imidazole, oxazole or thiazole which inhibit DGAT-1.

Our co-pending International Application PCT/GB2005/004726 describes oxadiazole compounds which inhibit DGAT-1, including two compounds similar to the compounds of formula (I) below. Some of the compounds in PCT/GB2005/004726 also show activity against the ACAT enzyme.
Accordingly, the present invention provides a compound of formula (I)

\[
\begin{align*}
\text{HO} & \quad \text{O} \quad \text{F} \\
\text{O} & \quad \text{N} \quad \text{N} \\
\text{R} & \quad \text{N} \quad \text{N} \\
& \quad \text{O} \\
\end{align*}
\]

(I)

or a salt thereof, wherein:

5 each R is independently selected from fluoro, chloro, cyano, methyl, ethyl, methoxy, ethoxy, trifluoromethyl, trifluoromethoxy and difluoromethoxy;

n is 1, 2 or 3.

We have found that compounds such as those of formula (I) above have good DGAT activity and advantageous physicochemical properties (for example solubility) and/or advantageous pharmacokinetic properties.

It will be appreciated that formula (I) includes compounds wherein the carboxy group and the oxy link are in either a cis or a trans arrangement across the cyclohexyl ring, in relation to each other.

For the avoidance of doubt it is to be understood that where in this specification a group is qualified by ‘hereinbefore defined’ or ‘defined hereinbefore’ the said group encompasses the first occurring and broadest definition as well as each and all of the particular definitions for that group.

If not stated elsewhere, suitable optional substituents for a particular group are those as stated for similar groups herein.

20 A compound of formula (I) may form stable acid or basic salts, and in such cases administration of a compound as a salt may be appropriate, and pharmaceutically acceptable salts may be made by conventional methods such as those described following.

Suitable pharmaceutically-acceptable salts include acid addition salts such as methanesulfonate, tosylate, \(\alpha \)-glycerophosphate, fumarate, hydrochloride, citrate, maleate, tartrate and (less preferably) hydrobromide. Also suitable are salts formed with phosphoric and sulfuric acid. In another aspect suitable salts are base salts such as a Group (I) (alkali metal) salt, a Group (II) (alkaline earth) metal salt, an organic amine salt for example triethylamine, morpholine, \(N \)-methylpiperidine, \(N \)-ethylpiperidine, procaine,
dibenzylamine, \(N,N\)-dibenzylethylamine, tris-(2-hydroxyethyl)amine, \(N\)-methyl
\(d\)-glucamine and amino acids such as lysine. There may be more than one cation or anion
depending on the number of charged functions and the valency of the cations or anions.
However, to facilitate isolation of the salt during preparation, salts which are less
soluble in the chosen solvent may be preferred whether pharmaceutically-acceptable or
not.

Within the present invention it is to be understood that a compound of the formula
(I) or a salt thereof may exhibit the phenomenon of tautomerism and that the formulae
drawings within this specification can represent only one of the possible tautomeric forms.
It is to be understood that the invention encompasses any tautomeric form which inhibits
DGAT1 activity and is not to be limited merely to any one tautomeric form utilised within
the formulae drawings.

Prodrugs of compounds of formula (I), or salts thereof, are also within the scope of
the invention.

Various forms of prodrugs are known in the art. For examples of such prodrug
derivatives, see:
a) Design of Prodrugs, edited by H. Bundgaard, (Elsevier, 1985) and Methods in
and
H. Bundgaard, Chapter 5 “Design and Application of Prodrugs”, by H. Bundgaard
p. 113-191 (1991);
c) H. Bundgaard, Advanced Drug Delivery Reviews, 8, 1-38 (1992);
d) H. Bundgaard, et al., Journal of Pharmaceutical Sciences, 77, 285 (1988); and

Examples of such prodrugs are \(in vivo\) cleavable esters of a compound of the
invention. An \(in vivo\) cleavable ester of a compound of the invention containing a
carboxy group is, for example, a pharmaceutically-acceptable ester which is cleaved in
the human or animal body to produce the parent acid. Suitable
pharmaceutically-acceptable esters for carboxy include (1-6\(C\))alkyl esters, for example
methyl or ethyl; (1-6\(C\))alkoxymethyl esters, for example methoxymethyl; (1-
6\(C\))alkanoyloxyethyl esters, for example pivaloyloxyethyl; phthalidyl esters; (3-
8C)cycloalkoxycarbonyloxy(1-6C)alkyl esters, for example
1-cyclohexylcarbonyloxyethyl; 1,3-dioxolan-2-ylmethyl esters, for example
5-methyl-1,3-dioxolan-2-ylmethyl; (1-6C)alkoxycarbonyloxyethyl esters, for example
1-methoxycarbonyloxyethyl; aminocarbonylmethyl esters and mono- or di- N-((1-
6C)alkyl) versions thereof, for example N,N-dimethylaminocarbonylmethyl esters and
N-ethylaminocarbonylmethyl esters; and may be formed at any carboxy group in the
compounds of this invention. An in vivo cleavable ester of a compound of the invention
containing a hydroxy group is, for example, a pharmaceutically-acceptable ester which
is cleaved in the human or animal body to produce the parent hydroxy group. Suitable
pharmaceutically acceptable esters for hydroxy include (1-6C)alkanoyl esters, for
example acetyl esters; and benzoyl esters wherein the phenyl group may be substituted
with aminomethyl or N- substituted mono- or di- (1-6C)alkyl aminomethyl, for
example 4-aminomethylbenzoyl esters and 4-N,N-dimethylaminomethylbenzoyl esters.

It will be appreciated by those skilled in the art that certain compounds of formula
(I) contain asymmetrically substituted carbon and/or sulfur atoms, and accordingly may
exist in, and be isolated in, optically-active and racemic forms. Some compounds may
exhibit polymorphism. It is to be understood that the present invention encompasses any
racemic, optically-active, polymorphic or stereoisomeric form, or mixtures thereof, which
form possesses properties useful in the inhibition of DGAT1 activity, it being well known
in the art how to prepare optically-active forms (for example, by resolution of the racemic
form by recrystallization techniques, by synthesis from optically-active starting materials,
by chiral synthesis, by enzymatic resolution, by biotransformation, or by chromatographic
separation using a chiral stationary phase) and how to determine efficacy for the inhibition
of DGAT1 activity by the standard tests described hereinafter.

It is also to be understood that certain compounds of the formula (I) and salts
thereof can exist in solvated as well as unsolvated forms such as, for example, hydrated
forms. It is to be understood that the invention encompasses all such solvated forms which
inhibit DGAT1 activity.

As stated before, we have discovered a range of compounds that have good
DGAT1 inhibitory activity. They have good physical and/or pharmacokinetic properties in
general. The following compounds possess preferred pharmaceutical and/or physical
and/or pharmacokinetic properties. They may also possess good selectivity over ACAT.
In one aspect, the carboxy group and oxy links are in a cis configuration across the
cyclohexyl ring, to give a compound of formula (IA):

(IA)

In another aspect, the carboxy group and oxy links are in a trans configuration
across the cyclohexyl ring, to give a compound of formula (IB):

(IB)

References hereinbefore or hereinafter to a compound of formula (I) should be
taken to apply also to compounds of formulae (IA) and (IB).

In one embodiment of the invention there are provided compounds of formulae (I),
(IA) and (IB), in an alternative embodiment there are provided salts, particularly
pharmaceutically-acceptable salts of compounds of formulae (I), (IA) and (IB). In a further
embodiment, there are provided pro-drugs, particularly in-vivo cleavable esters, of
compounds of formulae (I), (IA) and (IB). In a further embodiment, there are provided
salts, particularly pharmaceutically-acceptable salts of pro-drugs of compounds of
formulae (I), (IA) and (IB). Particular values of substituents in compounds of formulae (I),
(IA) and (IB) are as follows. Such values may be used where appropriate with any of the
other values, definitions, claims or embodiments defined hereinbefore or hereinafter.

1) n is 1, 2 or 3 and each R is fluoro.
2) when n >1, at least one R is fluoro.
3) R is selected from fluoro and trifluoromethyl
4) n is 1
5) n is 2
6) n is 3

Further preferred compounds of the invention are each of the Examples, each of which provides a further independent aspect of the invention. In further aspects, the present invention also comprises any two or more compounds of the Examples.

In a further aspect of the invention, there is provided any one or more of the following, or salts thereof:

4-(3-fluoro-4-{{5-(2,4,5-trifluoro-phenylamino)-[1,3,4]oxadiazole-2-carbonyl]-amino}-phenoxy)cyclohexanecarboxylic acid;
4-(3-fluoro-4-{{5-(3,4,5-trifluoro-phenylamino)-[1,3,4]oxadiazole-2-carbonyl]-amino}-phenoxy)cyclohexanecarboxylic acid;
or any of the compounds named in Examples 1 to 5.

Process
A compound of formula (I) and its salts may be prepared by any process known to be applicable to the preparation of chemically related compounds. Such processes, when used to prepare a compound of the formula (I), or a pharmaceutically-acceptable salt thereof, are provided as a further feature of the invention.

In a further aspect the present invention also provides that the compounds of the formula (I) and salts thereof, can be prepared by a process a) to b) as follows (wherein all variables are as hereinbefore defined for a compound of formula (I) unless otherwise stated):

a) reaction of an amine of formula (2) with a carboxylate salt of formula (3),

wherein R^p is (1-4)alkyl group (such as methyl, ethyl, isopropyl, or tert-butyl), followed by hydrolysis of the R^p group;

![Diagram](2)

![Diagram](3)
b) cyclisation of a compound of formula (4) (where X is S or O) wherein R is (1-4C)alkyl group followed by hydrolysis of the R² group;

![Chemical Structure](image)

(4)

and thereafter if necessary:
1) removing any protecting groups; and/or
2) forming a (pharmaceutically-acceptable) salt.

Process a)

Compounds of formula (2) may be made by application of standard synthetic methods well known in the art. In particular, compounds of formula (2) may be prepared by reduction of a compound of formula (2A).

![Chemical Structure](image)

(2A)

Compounds of formula (2A) may be made by S₉Ar chemistry as illustrated in Scheme 1, wherein R² is for example an alkyl group and X is for example fluoro. When X is fluoro competitive displacement of the 2- and 4-fluoro substituents may result in a mixture of products. However, the required product can be readily separated by standard techniques.
Scheme 1

Compounds of formula (3) may be made by alkaline hydrolysis of ester (5a) as prepared using a published procedure (J. Het. Chem. 1977, 14, 1385-1388). Ester (5a) may be made by cyclisation of a compound of formula (5b) (where X is O or S) in a similar manner as described in process b) for compounds of formula (4).

An alternative method for making compounds of formula (5a) is illustrated below:

Compounds of formula (2) may be coupled with compounds of formula (3) under standard conditions for formation of amide bonds. For example using an appropriate coupling reaction, such as a carbodiimide coupling reaction performed with EDAC,
optionally in the presence of DMAP, in a suitable solvent such as DCM, chloroform or DMF at room temperature.

The \(R^P \) group may be removed by any process known in the art for ester hydrolysis.

Process b)

Compounds of formula (4) and (5b) where X is S may be made by reaction of an aminocarbonyl acylhydrazine or ethoxycarbonyl acylhydrazine with a thioisocyanate or thioisocyanate equivalent such as aminothiocarbonylimidazole in a suitable solvent such as DMF or MeCN at a temperature between 0 and 100 °C. The preparation of aminocarbonyl acylhydrazines from anilines and of ethoxycarbonyl acylhydrazines is well known in the art. For example reaction of an aniline with methyl chlorooxocacetate in the presence of pyridine in a suitable solvent such as DCM followed by reaction with hydrazine in a suitable solvent such as ethanol at a temperature between 0 and 100 °C.

The compound of formula (4) may then be cyclised using, for example agents such as carbonyldiimidazole, or tosyl chloride and a suitable base (such as triethylamine), under conditions known in the art.

Iso(thio)cyanates \(R^1 \)-NCX (where X is O or S) are commercially available or may be made by reaction of the acid chlorides \(R^1 \)-NH\(_2\) with for example (thio)phosgene or a (thio)phosgene equivalent followed by a suitable base (such as triethylamine). The \(R^P \) group may be removed by any process known in the art for ester hydrolysis.

It will be appreciated that certain of the various ring substituents in the compounds of the present invention, for example R, may be introduced by standard aromatic substitution reactions or generated by conventional functional group modifications either prior to or immediately following the processes mentioned above, and as such are included in the process aspect of the invention. Such reactions may convert one compound of the formula (I) into another compound of the formula (I). Such reactions and modifications include, for example, introduction of a substituent by means of an aromatic substitution reaction, reduction of substituents, alkylation of substituents and oxidation of substituents. The reagents and reaction conditions for such procedures are well known in the chemical art. Particular examples of aromatic substitution reactions include the introduction of a nitro group using concentrated nitric acid, the introduction of an acyl group using, for example, an acyl halide and Lewis acid (such as aluminium trichloride) under Friedel Crafts conditions; the introduction of an alkyl group using an alkyl halide and Lewis acid
(such as aluminium trichloride) under Friedel Crafts conditions; and the introduction of a halogen group. Particular examples of modifications include the reduction of a nitro group to an amino group by for example, catalytic hydrogenation with a nickel catalyst or treatment with iron in the presence of hydrochloric acid with heating; oxidation of alkylthio to alkanesulfanyl or alkanesulfonyl.

If not commercially available, the necessary starting materials for the procedures such as those described above may be made by procedures which are selected from standard organic chemical techniques, techniques which are analogous to the synthesis of known, structurally similar compounds, techniques which are described or illustrated in the references given above, or techniques which are analogous to the above described procedure or the procedures described in the examples. The reader is further referred to Advanced Organic Chemistry, 5th Edition, by Jerry March and Michael Smith, published by John Wiley & Sons 2001, for general guidance on reaction conditions and reagents.

It will be appreciated that some intermediates to compounds of the formula (I) are also novel and these are provided as separate independent aspects of the invention. In particular, compounds of formula (4) form a further aspect of the invention. Furthermore, ester derivatives of compounds of formula (I) form a further aspect of the invention.

It will also be appreciated that in some of the reactions mentioned herein it may be necessary/desirable to protect any sensitive groups in compounds. The instances where protection is necessary or desirable are known to those skilled in the art, as are suitable methods for such protection. Conventional protecting groups may be used in accordance with standard practice (for illustration see T.W. Greene, Protective Groups in Organic Synthesis, John Wiley and Sons, 1991).

Protecting groups may be removed by any convenient method as described in the literature or known to the skilled chemist as appropriate for the removal of the protecting group in question, such methods being chosen so as to effect removal of the protecting group with minimum disturbance of groups elsewhere in the molecule.

Thus, if reactants include, for example, groups such as amino, carboxy or hydroxy it may be desirable to protect the group in some of the reactions mentioned herein.

Examples of a suitable protecting group for a hydroxy group is, for example, an acyl group, for example an alkanoyl group such as acetyl, an aroyl group, for example benzoyl, a silyl group such as trimethylsilyl or an arylmethyl group, for example benzyl.
The deprotection conditions for the above protecting groups will necessarily vary with the choice of protecting group. Thus, for example, an acyl group such as an alkanoyl or an aroyl group may be removed, for example, by hydrolysis with a suitable base such as an alkali metal hydroxide, for example lithium or sodium hydroxide. Alternatively a silyl group such as trimethylsilyl or SEM may be removed, for example, by fluoride or by aqueous acid; or an arylmethoxycarbonyl group may be removed, for example, by hydrogenation in the presence of a catalyst such as palladium-on-carbon.

A suitable protecting group for an amino group is, for example, an acyl group, for example an alkanoyl group such as acetyl, an alkoxy carbonyl group, for example a methoxycarbonyl, ethoxycarbonyl or tert-butoxy carbonyl group, an arylmethoxycarbonyl group, for example benzyloxycarbonyl, or an aroyl group, for example benzoyl. The deprotection conditions for the above protecting groups necessarily vary with the choice of protecting group. Thus, for example, an acyl group such as an alkanoyl or alkoxy carbonyl group or an aroyl group may be removed for example, by hydrolysis with a suitable base such as an alkali metal hydroxide, for example lithium or sodium hydroxide. Alternatively an acyl group such as a tert-butoxycarbonyl group may be removed, for example, by treatment with a suitable acid as hydrochloric, sulfuric or phosphoric acid or trifluoroacetic acid and an arylmethoxycarbonyl group such as a benzyloxycarbonyl group may be removed, for example, by hydrogenation over a catalyst such as palladium-on-carbon, or by treatment with a Lewis acid for example boron tris(trifluoroacetate). A suitable alternative protecting group for a primary amino group is, for example, a phthaloyl group which may be removed by treatment with an alkylamine, for example dimethylaminopropylamine or 2-hydroxyethylamine, or with hydrazine.

A suitable protecting group for a carboxy group is, for example, an esterifying group, for example a methyl or an ethyl group which may be removed, for example, by hydrolysis with a base such as sodium hydroxide, or for example a t-buty1 group which may be removed, for example, by treatment with an acid, for example an organic acid such as trifluoroacetic acid, or for example a benzyl group which may be removed, for example, by hydrogenation over a catalyst such as palladium-on-carbon.

Resins may also be used as a protecting group.
The protecting groups may be removed at any convenient stage in the synthesis using conventional techniques well known in the chemical art, or they may be removed during a later reaction step or work-up.

The skilled organic chemist will be able to use and adapt the information contained and referenced within the above references, and accompanying Examples therein and also the examples herein, to obtain necessary starting materials, and products.

The removal of any protecting groups and the formation of a pharmaceutically-acceptable salt are within the skill of an ordinary organic chemist using standard techniques. Furthermore, details on the these steps has been provided hereinbefore.

When an optically active form of a compound of the invention is required, it may be obtained by carrying out one of the above procedures using an optically active starting material (formed, for example, by asymmetric induction of a suitable reaction step), or by resolution of a racemic form of the compound or intermediate using a standard procedure, or by chromatographic separation of diastereoisomers (when produced). Enzymatic techniques may also be useful for the preparation of optically active compounds and/or intermediates.

Similarly, when a pure regioisomer of a compound of the invention is required, it may be obtained by carrying out one of the above procedures using a pure regioisomer as a starting material, or by resolution of a mixture of the regioisomers or intermediates using a standard procedure.

According to a further aspect of the invention there is provided a pharmaceutical composition which comprises a compound of formula (I) as defined hereinbefore or a pharmaceutically-acceptable salt thereof, in association with a pharmaceutically-acceptable excipient or carrier.

The compositions of the invention may be in a form suitable for oral use (for example as tablets, lozenges, hard or soft capsules, aqueous or oily suspensions, emulsions, dispersible powders or granules, syrups or elixirs), for topical use (for example as creams, ointments, gels, or aqueous or oily solutions or suspensions), for administration by inhalation (for example as a finely divided powder or a liquid aerosol), for administration by insufflation (for example as a finely divided powder) or for parenteral administration.
(for example as a sterile aqueous or oily solution for intravenous, subcutaneous, intramuscular or intramuscular dosing or as a suppository for rectal dosing).

The compositions of the invention may be obtained by conventional procedures using conventional pharmaceutical excipients, well known in the art. Thus, compositions intended for oral use may contain, for example, one or more colouring, sweetening, flavouring and/or preservative agents.

Suitable pharmaceutically acceptable excipients for a tablet formulation include, for example, inert diluents such as lactose, sodium carbonate, calcium phosphate or calcium carbonate, granulating and disintegrating agents such as corn starch or algenic acid; binding agents such as starch; lubricating agents such as magnesium stearate, stearic acid or tcalc; preservative agents such as ethyl or propyl p-hydroxybenzoate, and anti-oxidants, such as ascorbic acid. Tablet formulations may be uncoated or coated either to modify their disintegration and the subsequent absorption of the active ingredient within the gastrointestinal tract, or to improve their stability and/or appearance, in either case, using conventional coating agents and procedures well known in the art.

Compositions for oral use may be in the form of hard gelatin capsules in which the active ingredient is mixed with an inert solid diluent, for example, calcium carbonate, calcium phosphate or kaolin, or as soft gelatin capsules in which the active ingredient is mixed with water or an oil such as peanut oil, liquid paraffin, or olive oil.

Aqueous suspensions generally contain the active ingredient in finely powdered form together with one or more suspending agents, such as sodium carboxymethylcellulose, methylcellulose, hydroxypropylmethylcellulose, sodium alginate, polyvinyl-pyrrolidone, gum tragacanth and gum acacia; dispersing or wetting agents such as lecithin or condensation products of an alkylene oxide with fatty acids (for example polyoxethylene stearate), or condensation products of ethylene oxide with long chain aliphatic alcohols, for example heptadecaethyleneoxycetanol, or condensation products of ethylene oxide with partial esters derived from fatty acids and a hexitol such as polyoxyethylene sorbitol monooleate, or condensation products of ethylene oxide with long chain aliphatic alcohols, for example heptadecaethyleneoxycetanol, or condensation products of ethylene oxide with partial esters derived from fatty acids and a hexitol such as polyoxyethylene sorbitol monooleate, or condensation products of ethylene oxide with partial esters derived from fatty acids and hexitol anhydrides, for example polyethylene
sorbitan monooleate. The aqueous suspensions may also contain one or more preservatives (such as ethyl or propyl p-hydroxybenzoate, anti-oxidants (such as ascorbic acid), colouring agents, flavouring agents, and/or sweetening agents (such as sucrose, saccharine or aspartame).

Oily suspensions may be formulated by suspending the active ingredient in a vegetable oil (such as arachis oil, olive oil, sesame oil or coconut oil) or in a mineral oil (such as liquid paraffin). The oily suspensions may also contain a thickening agent such as beeswax, hard paraffin or cetyl alcohol. Sweetening agents such as those set out above, and flavouring agents may be added to provide a palatable oral preparation. These compositions may be preserved by the addition of an anti-oxidant such as ascorbic acid.

Dispersible powders and granules suitable for preparation of an aqueous suspension by the addition of water generally contain the active ingredient together with a dispersing or wetting agent, suspending agent and one or more preservatives. Suitable dispersing or wetting agents and suspending agents are exemplified by those already mentioned above. Additional excipients such as sweetening, flavouring and colouring agents, may also be present.

The pharmaceutical compositions of the invention may also be in the form of oil-in-water emulsions. The oily phase may be a vegetable oil, such as olive oil or arachis oil, or a mineral oil, such as for example liquid paraffin or a mixture of any of these. Suitable emulsifying agents may be, for example, naturally-occurring gums such as gum acacia or gum tragacanth, naturally-occurring phosphatides such as soya bean, lecithin, an esters or partial esters derived from fatty acids and hexitol anhydrides (for example sorbitan monooleate) and condensation products of the said partial esters with ethylene oxide such as polyoxyethylene sorbitan monooleate. The emulsions may also contain sweetening, flavouring and preservative agents.

Syrups and elixirs may be formulated with sweetening agents such as glycerol, propylene glycol, sorbitol, aspartame or sucrose, and may also contain a demulcent, preservative, flavouring and/or colouring agent.

The pharmaceutical compositions may also be in the form of a sterile injectable aqueous or oily suspension, which may be formulated according to known procedures using one or more of the appropriate dispersing or wetting agents and suspending agents, which have been mentioned above. A sterile injectable preparation may also be a sterile
injectable solution or suspension in a non-toxic parenterally-acceptable diluent or solvent, for example a solution in 1,3-butanediol.

Compositions for administration by inhalation may be in the form of a conventional pressurised aerosol arranged to dispense the active ingredient either as an aerosol containing finely divided solid or liquid droplets. Conventional aerosol propellants such as volatile fluorinated hydrocarbons or hydrocarbons may be used and the aerosol device is conveniently arranged to dispense a metered quantity of active ingredient.

For further information on formulation the reader is referred to Chapter 25.2 in Volume 5 of Comprehensive Medicinal Chemistry (Corwin Hansch; Chairman of Editorial Board), Pergamon Press 1990.

The amount of active ingredient that is combined with one or more excipients to produce a single dosage form will necessarily vary depending upon the host treated and the particular route of administration. For example, a formulation intended for oral administration to humans will generally contain, for example, from 0.5 mg to 2 g of active agent compounded with an appropriate and convenient amount of excipients which may vary from about 5 to about 98 percent by weight of the total composition. Dosage unit forms will generally contain about 1 mg to about 500 mg of an active ingredient. For further information on Routes of Administration and Dosage Regimes the reader is referred to Chapter 25.3 in Volume 5 of Comprehensive Medicinal Chemistry (Corwin Hansch; Chairman of Editorial Board), Pergamon Press 1990.

According to a further aspect of the present invention there is provided a compound of formula (I), (IA) and/or (IB) or a pharmaceutically acceptable salt thereof as defined hereinbefore for use in a method of treatment of the human or animal body by therapy.

We have found that compounds of the present invention inhibit DGAT1 activity and are therefore of interest for their blood glucose-lowering effects.

A further feature of the present invention is a compound of formula (I), (IA) and/or (IB) or a pharmaceutically-acceptable salt thereof for use as a medicament.

Conveniently this is a compound of formula (I), (IA) and/or (IB) or a pharmaceutically-acceptable salt thereof, for use as a medicament for producing an inhibition of DGAT1 activity in a warm-blooded animal such as a human being.

Particularly this is a compound of formula (I), (IA) and/or (IB) or a pharmaceutically-acceptable salt thereof, for use as a medicament for treating diabetes
mellitus and/or obesity in a warm-blooded animal such as a human being.

Thus according to a further aspect of the invention there is provided the use of a compound of formula (I), (IA) and/or (IB) or a pharmaceutically-acceptable salt thereof in the manufacture of a medicament for use in the production of an inhibition of DGAT1 activity in a warm-blooded animal such as a human being.

According to a further aspect of the invention there is provided the use of a compound of formula (I), (IA) and/or (IB) or a pharmaceutically-acceptable salt thereof in the manufacture of a medicament for use in the treatment of diabetes mellitus and/or obesity in a warm-blooded animal such as a human being.

According to a further aspect of the invention there is provided a pharmaceutical composition which comprises a compound of formula (I), (IA) and/or (IB) as defined hereinbefore or a pharmaceutically-acceptable salt thereof, in association with a pharmaceutically-acceptable excipient or carrier for use in producing an inhibition of DGAT1 activity in an warm-blooded animal, such as a human being.

According to a further aspect of the invention there is provided a pharmaceutical composition which comprises a compound of formula (I), (IA) and/or (IB) as defined hereinbefore or a pharmaceutically-acceptable salt thereof, in association with a pharmaceutically-acceptable excipient or carrier for use in the treatment of diabetes mellitus and/or obesity in an warm-blooded animal, such as a human being.

According to a further feature of the invention there is provided a method for producing an inhibition of DGAT1 activity in a warm-blooded animal, such as a human being, in need of such treatment which comprises administering to said animal an effective amount of a compound of formula (I), (IA) and/or (IB) or a pharmaceutically-acceptable salt thereof as defined hereinbefore.

According to a further feature of the invention there is provided a method of treating diabetes mellitus and/or obesity in a warm-blooded animal, such as a human being, in need of such treatment which comprises administering to said animal an effective amount of a compound of formula (I), (IA) and/or (IB) or a pharmaceutically-acceptable salt thereof as defined hereinbefore.

As stated above the size of the dose required for the therapeutic or prophylactic treatment of a particular disease state will necessarily be varied depending on the host treated, the route of administration and the severity of the illness being treated. Preferably a
daily dose in the range of 1-50 mg/kg is employed. However the daily dose will necessarily be varied depending upon the host treated, the particular route of administration, and the severity of the illness being treated. Accordingly the optimum dosage may be determined by the practitioner who is treating any particular patient.

As stated above compounds defined in the present invention are of interest for their ability to inhibit the activity of DGAT1. A compound of the invention may therefore be useful for the prevention, delay or treatment of a range of disease states including diabetes mellitus, more specifically type 2 diabetes mellitus (T2DM) and complications arising there from (for example retinopathy, neuropathy and nephropathy), impaired glucose tolerance (IGT), conditions of impaired fasting glucose, metabolic acidosis, ketosis, dysmetabolic syndrome, arthritis, osteoporosis, obesity and obesity related disorders, (which include peripheral vascular disease, (including intermittent claudication), cardiac failure and certain cardiac myopathies, myocardial ischaemia, cerebral ischaemia and reperfusion, hyperlipidaemias, atherosclerosis, infertility and polycystic ovary syndrome); the compounds of the invention may also be useful for muscle weakness, diseases of the skin such as acne, various immunomodulatory diseases (such as psoriasis), HIV infection, inflammatory bowel syndrome and inflammatory bowel disease such as Crohn’s disease and ulcerative colitis.

In particular, the compounds of the present invention are of interest for the prevention, delay or treatment of diabetes mellitus and/or obesity and/or obesity related disorders. In one aspect, the compounds of the invention are used for prevention, delay or treatment of diabetes mellitus. In another aspect, the compounds of the invention are used for prevention, delay or treatment of obesity. In a further aspect, the compounds of the invention are used for prevention, delay or treatment of obesity related disorders.

The inhibition of DGAT1 activity described herein may be applied as a sole therapy or in combination with one or more other substances and/or treatments for the indication being treated. Such conjoint treatment may be achieved by way of the simultaneous, sequential or separate administration of the individual components of the treatment. Simultaneous treatment may be in a single tablet or in separate tablets. For example such conjoint treatment may be beneficial in the treatment of metabolic syndrome [defined as abdominal obesity (as measured by waist circumference against ethnic and gender specific cut-points) plus any two of the following: hypertriglyceridemia (> 150
mg/dl; 1.7mmol/l); low HDLc (<40 mg/dl or <1.03mmol/l for men and <50 mg/dl or 1.29 mmol/l for women) or on treatment for low HDL (high density lipoprotein); hypertension (SBP ≥ 130 mmHg DBP ≥ 85 mmHg) or on treatment for hypertension; and hyperglycemia (fasting plasma glucose ≥ 100 mg/dl or 5.6 mmol/l or impaired glucose tolerance or pre-existing diabetes mellitus) - International Diabetes Federation & input from IAS/NCEP].

Such conjoint treatments may include the following main categories:

1) Anti-obesity therapies such as those that cause weight loss by effects on food intake, nutrient absorption or energy expenditure, such as orlistat, sibutramine and the like.

2) Insulin secretagogues including sulphonylureas (for example glibenclamide, glipizide), prandial glucose regulators (for example repaglinide, nateglinide);

3) Agents that improve incretin action (for example dipeptidyl peptidase IV inhibitors, and GLP-1 agonists);

4) Insulin sensitising agents including PPARgamma agonists (for example pioglitazone and rosiglitazone), and agents with combined PPARalpha and gamma activity;

5) Agents that modulate hepatic glucose balance (for example metformin, fructose 1, 6 bisphosphatase inhibitors, glycogen phopsphorylase inhibitors, glycogen synthase kinase inhibitors, glucokinase activators);

6) Agents designed to reduce the absorption of glucose from the intestine (for example acarbose);

7) Agents that prevent the reabsorption of glucose by the kidney (SGLT inhibitors);

8) Agents designed to treat the complications of prolonged hyperglycaemia (for example aldose reductase inhibitors);

9) Anti-dyslipidaemia agents such as, HMG-CoA reductase inhibitors (eg statins); PPARα-agonists (fibrates, eg gemfibrozil); bile acid sequestrants (cholestyramine); cholesterol absorption inhibitors (plant stanols, synthetic inhibitors); bile acid absorption inhibitors (IBATi) and nicotinic acid and analogues (niacin and slow release formulations);

10) Antihypertensive agents such as, β-blockers (eg atenolol, inderal); ACE inhibitors (eg lisinopril); Calcium antagonists (eg. nifedipine); Angiotensin receptor antagonists (eg candesartan), α antagonists and diuretic agents (eg. furosemide, benzthiazide);
11) Haemostasis modulators such as, antithrombotics, activators of fibrinolysis and antiplatelet agents; thrombin antagonists; factor Xa inhibitors; factor VIIa inhibitors; antiplatelet agents (eg. aspirin, clopidogrel); anticoagulants (heparin and Low molecular weight analogues, hirudin) and warfarin;

12) Agents which antagonise the actions of glucagon; and

13) Anti-inflammatory agents, such as non-steroidal anti-inflammatory drugs (eg. aspirin) and steroidal anti-inflammatory agents (eg. cortisone).

In addition to their use in therapeutic medicine, compounds of formula (I) and their pharmaceutically-acceptable salts are also useful as pharmacological tools in the development and standardisation of in vitro and in vivo test systems for the evaluation of the effects of inhibitors of DGAT1 activity in laboratory animals such as cats, dogs, rabbits, monkeys, rats and mice, as part of the search for new therapeutic agents.

As indicated above, all of the compounds, and their corresponding pharmaceutically-acceptable salts, are useful in inhibiting DGAT1. The ability of the compounds of formula (I), and their corresponding pharmaceutically-acceptable acid addition salts, to inhibit DGAT1 may be demonstrated employing the following enzyme assay:

Human Enzyme Assay

The *in vitro* assay to identify DGAT1 inhibitors uses human DGAT1 expressed in insect cell membranes as the enzyme source (Proc. Natl. Acad. Sci. 1998, 95, 13018-13023). Briefly, sf9 cells were infected with recombinant baculovirus containing human DGAT1 coding sequences and harvested after 48 h. Cells were lysed by sonication and membranes isolated by centrifuging at 28000 rpm for 1 h at 4 °C on a 41% sucrose gradient. The membrane fraction at the interphase was collected, washed, and stored in liquid nitrogen.

DGAT1 activity was assayed by a modification of the method described by Coleman (Methods in Enzymology 1992, 209, 98-102). Compound at 1-10 µM was incubated with 0.4 µg membrane protein, 5 mM MgCl₂, and 10 0µM 1,2 dioleoyl-sn-glycerol in a total assay volume of 200 µl in plastic tubes. The reaction was started by adding ¹⁴C oleoyl coenzyme A (30µM final concentration) and incubated at room temperature for 30 minutes. The reaction was stopped by adding 1.5 mL 2-propanol:heptane:water (80:20:2). Radioactive triolein product was separated into the
organic phase by adding 1mL heptane and 0.5 mL 0.1 M carbonate buffer pH 9.5. DGAT1 activity was quantified by counting aliquots of the upper heptane layer by liquid scintillation.

Using this assay the compounds generally show activity with IC\textsubscript{50} <100nM, preferably < 50 nM, more preferably <10 nM. Example 1 showed an IC\textsubscript{50} = 4 nM.

The ability of the compounds of formula (I), and their corresponding pharmaceutically-acceptable acid salts, to inhibit DGAT1 may further be demonstrated employing the following whole cell assays 1) and 2):

1) Measurement of Triglyceride Synthesis in 3T3 Cells

Mouse adipocyte 3T3 cells were cultured to confluence in 6 well plates in new born calf serum containing media. Differentiation of the cells was induced by incubating in medium containing 10% foetal calf serum, 1 µg/mL insulin, 0.25 µM dexamethasone and 0.5 mM isobutylmethyl xanthine. After 48 h the cells were maintained in medium containing 10% foetal calf serum and 1 µg/mL insulin for a further 4-6 days. For the experiment, the medium was changed to serum-free medium and the cells pre-incubated with compound solubilised in DMSO (final concentration 0.1%) for 30 minutes. De novo lipogenesis was measured by the addition of 0.25 mM sodium acetate plus 1 µCi/mL 14C-sodium acetate to each well for a further 2 h (J. Biol. Chem., 1976, 251, 6462-6464). The cells were washed in phosphate buffered saline and solubilised in 1% sodium dodecyl sulfate. An aliquot was removed for protein determination using a protein estimation kit (Perbio) based on the method of Lowry (J. Biol. Chem., 1951, 193, 265-275). The lipids were extracted into the organic phase using a heptane:propan-2-ol:water (80:20:2) mixture followed by aliquots of water and heptane according to the method of Coleman (Methods in Enzymology, 1992, 209, 98-104). The organic phase was collected and the solvent evaporated under a stream of nitrogen. The extracts solubilised in iso-hexane:acetic acid (99:1) and lipids separated via normal phase high performance liquid chromatography (HPLC) using a Lichrospher diol-5, 4 x 250 mm column and a gradient solvent system of iso-hexane:acetic acid (99:1) and iso-hexane:propan-2-ol:acetic acid (85:15:1), flow rate of 1 mL/minute according to the method of Silversand and Haux (1997). Incorporation of radiolabel into the triglyceride fraction was analysed using a Radiomatic Flo-one Detector (Packard) connected to the HPLC machine.
2) Measurement of Triglyceride Synthesis in MCF7 Cells

Human mammary epithelial (MCF7) cells were cultured to confluence in 6 well plates in foetal calf serum containing media. For the experiment, the medium was changed to serum-free medium and the cells pre-incubated with compound solubilised in DMSO (final concentration 0.1%) for 30 minutes. De novo lipogenesis was measured by the addition of 50 µM sodium acetate plus 3 µCi/mL 14C-sodium acetate to each well for a further 3 h (J. Biol. Chem., 1976, 251, 6462-6464). The cells were washed in phosphate buffered saline and solubilised in 1% sodium dodecyl sulfate. An aliquot was removed for protein determination using a protein estimation kit (Perbio) based on the method of Lowry (J. Biol. Chem., 1951, 193, 265-275). The lipids were extracted into the organic phase using a heptane:propan-2-ol:water (80:20:2) mixture followed by aliquots of water and heptane according to the method of Coleman (Methods in Enzymology, 1992, 209, 98-104). The organic phase was collected and the solvent evaporated under a stream of nitrogen. The extracts solubilised in iso-hexane:acetic acid (99:1) and lipids separated via normal phase high performance liquid chromatography (HPLC) using a Lichrospher diol-5, 4 × 250 mm column and a gradient solvent system of iso-hexane:acetic acid (99:1) and iso-hexane:propan-2-ol:acetic acid (85:15:1), flow rate of 1 mL/minute according to the method of Silversand and Haux (J. Chromat. B, 1997, 703, 7-14). Incorporation of radiolabel into the triglyceride fraction was analysed using a Radiomatic Flo-one Detector (Packard) connected to the HPLC machine.

3) The ability of compounds to inhibit ACAT can be measured using a modification of the enzyme assay described in Billheimer (1985) Methods in Enzymology, 111, 286-293. The test assesses the ability of a test compound to inhibit the esterification of cholesterol by measuring the amount of radiolabeled cholesteryl oleate formed from radiolabeled oleoyl CoA. Compound was incubated with 10 µg membrane protein and 267µM cholesterol. After a 5 minute pre-incubation at 37°C the reaction was started by adding 14C oleoyl coenzyme A (50µM final concentration) and incubated at 37°C for a further 30 minutes. The reaction was stopped by adding 2-propanol:heptane (12:1). Radioactive cholesteryl ester product was separated into the organic phase by adding heptane and 1M carbonate buffer pH 9.5. ACAT activity was quantified by counting aliquots of the upper heptane layer by liquid scintillography.
The selectivity of a compound to inhibit DGAT over inhibition of ACAT may be defined as the ratio of IC\textsubscript{50} values generated in the DGAT and ACAT enzyme assays for a particular compound. For example, Example 1 demonstrated 70 fold selectivity.

In the above other pharmaceutical composition, process, method, use and medicament manufacture features, the alternative and preferred embodiments of the compounds of the invention described herein also apply.

Examples

The invention will now be illustrated by the following Examples in which, unless stated otherwise:

(i) temperatures are given in degrees Celsius (\(^{\circ}\)C); operations were carried out at room or ambient temperature, that is, at a temperature in the range of 18-25 \(^{\circ}\)C and under an atmosphere of an inert gas such as argon;

(ii) organic solutions were dried over anhydrous magnesium sulfate; evaporation of solvent was carried out using a rotary evaporator under reduced pressure (600-4000 Pa; 4.5-30 mmHg) with a bath temperature of up to 60 \(^{\circ}\)C;

(iii) chromatography means flash chromatography on silica gel; where a Biotage cartridge is referred to this means a cartridge containing KP-SILTM silica, 60Å, particle size 32-63 mM, supplied by Biotage, a division of Dyax Corp., 1500 Avon Street Extended, Charlottesville, VA 22902, USA;

(iv) in general, the course of reactions was followed by TLC and reaction times are given for illustration only;

(v) yields are given for illustration only and are not necessarily those which can be obtained by diligent process development; preparations were repeated if more material was required;

(vi) where given, NMR data (\(^{1}\)H) is in the form of delta values for major diagnostic protons, given in parts per million (ppm) relative to tetramethylsilane (TMS), determined at 300 or 400 MHz (unless otherwise stated) using perdeuterio dimethyl sulfoxide (DMSO-\textsubscript{d}_6) as solvent, unless otherwise stated; peak multiplicities are shown thus: s, singlet; d, doublet; dd, doublet of doublets; dt, doublet of triplets; dm, doublet of multiplets; t, triplet, q, quartet; m, multiplet; br, broad;
(vii) chemical symbols have their usual meanings; SI units and symbols are used;
(viii) solvent ratios are given in volume:volume (v/v) terms;
(ix) mass spectra (MS) (loop) were recorded on a Micromass Platform LC equipped with HP 1100 detector; unless otherwise stated the mass ion quoted is (MH⁺);
(x) LCMS (liquid chromatography-mass spectrometry) were recorded on a system comprising Waters 2790 LC equipped with a Waters 996 Photodiode array detector and Micromass ZMD MS, using a Phenomenex® Gemini 5u C18 110A 50x2 mm column and eluting with a flow rate of 1.1 ml/min with 5% (Water/ACNitrile (1:1) + 1% formic acid) and a gradient increasing from 0-95% of acetonitrile over the first 4 minutes, the balance (95-0%) being water and where HPLC Retention Times are reported these are in minutes in this system unless otherwise stated; unless otherwise stated the mass ion quoted is (MH⁺);
(xi) where phase separation cartridges are stated then ISOLUTE Phase Separator 70ml columns, supplied by Argonaut Technologies, New Road, Hengoed, Mid Glamorgan, CF82 8AU, United Kingdom, were used;
(xii) where a SiliCycle cartridge is referred to this means a cartridge containing Ultra Pure Silica Gel particle size 230-400 mesh, 40-63 µm pore size, supplied by SiliCycle Chemical Division, 1200 Ave St-Jean-Baptiste, Suite 114, Quebec City, Quebec, G2E 5E8, CANADA;
(xiii) where an Isco Companion is referred to then a Combiflash companion chromatography instrument, supplied by ISOC Inc. Address Teledyne ISOC Inc, 4700 Superior Street, Lincoln, NE 68504, USA, was used;
(xiv) where a microwave is referred to this means a Biotage Initiator sixty or Smith Creator microwave, supplied by Biotage, a division of Dyax Corp., 1500 Avon Street Extended, Charlottesville, VA 22902, USA;
(xv) where GCMS is referred to then a Gas Chromatography–Mass Spectrometry analysis was carried out on a QP-2010 GC-MS system fitted with an AOC 20i autosampler and controlled by ‘GCMS solutions’ software, version 2.0, supplied by Shimadzu, Milton Keynes, MK12 5RE, UK; the GC column was a DB-5MS of length 25 m, 0.32 mm i.d. with a film thickness of 0.52 µm supplied by J & W Scientific, Folsom, CA, USA;
(xvi) where a centrifuge is referred to this means a Genevac EZ-2plus, supplied by Genevac Limited, The Sovereign Centre, Farthing Road, Ipswich, IP1 5AP, UK;
(xvii) where chiral chromatography is referred to this is carried generally out using a 20 μm Merck 50mm Chiralpak AD column, (Chiral Stationary Phase supplied by Chiral Technologies Europe, Parc d’Innovation, Bd. Gonthier d’Andernach, 67404 Illkirch Cedex, France), using MeCN/2-propanol/AcOH (90/10/0.1) as eluent, flow rate 80 mL/min, wavelength 300 nm, using a Gilson prep HPLC instrument (200 ml heads);
(xviii) melting points were determined using a Buchi 530 apparatus and are uncorrected;
(xix) The following abbreviations may be used below or in the process section hereinbefore:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMF</td>
<td>dimethylformamide</td>
</tr>
<tr>
<td>DCM</td>
<td>dichloromethane</td>
</tr>
<tr>
<td>MeOH</td>
<td>methanol</td>
</tr>
<tr>
<td>THF</td>
<td>tetrahydrofuran</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethylsulfoxide</td>
</tr>
<tr>
<td>EDCI (EDAC)</td>
<td>1-ethyl-3-(3-dimethylaminopropyl)carbodi-imide</td>
</tr>
<tr>
<td>CH₃CN or MeCN</td>
<td>acetonitrile</td>
</tr>
<tr>
<td>h</td>
<td>hour</td>
</tr>
<tr>
<td>min</td>
<td>minute</td>
</tr>
<tr>
<td>NaOH</td>
<td>sodium hydroxide</td>
</tr>
<tr>
<td>AcOH</td>
<td>acetic acid</td>
</tr>
<tr>
<td>DMA</td>
<td>dimethyl acetamide</td>
</tr>
<tr>
<td>MgSO₄</td>
<td>magnesium sulfate</td>
</tr>
<tr>
<td>HCl</td>
<td>hydrochloric acid</td>
</tr>
</tbody>
</table>

All final example names were derived using ACD NAME computer package.
Example 1: cis-4-(3-Fluoro-4-[[5-(2,4,5-trifluoro-phenylamino)-[1,3,4]oxadiazole-2-carbonyl]-amino]-phenoxy)-cyclohexanecarboxylic acid

A solution of lithium hydroxide (965 mg, 23.0 mmol) in water (5 mL) was added in one portion to a solution of 4-(3-fluoro-4-[[5-(2,4,5-trifluoro-phenylamino)-[1,3,4]oxadiazole-2-carbonyl]-amino]-phenoxy)-cyclohexanecarboxylic acid ethyl ester (Intermediate 1, 1.2 g, 2.3 mmol) in a 1:1 mixture of THF and methanol (50 mL) and the mixture was stirred at ambient temperature for 4 h. The mixture was concentrated in vacuo, acidified with a 1M aqueous solution of citric acid and then filtered to leave a solid. The solid was washed with water, dried and recrystallised from ethanol (30 mL) to give the title compound as a white solid (700 mg, 64%).

1H NMR δ 1.6-1.9 (8H, m), 2.35-2.44 (1H, m), 4.5-4.63 (1H, m), 6.85 (1H, dd), 6.98 (1H, dd), 7.35-7.46 (1H, m), 7.65-7.78 (1H, m), 8.1-8.26 (1H, m), 10.6 (1H, s), 11.05 (1H, s), 12.08 (1H, s); MS m/e MH$^+$ 495.

Intermediate 1: cis-4-(3-Fluoro-4-[[5-(2,4,5-trifluoro-phenylamino)-[1,3,4]-oxadiazole-2-carbonyl]-amino]-phenoxy)-cyclohexanecarboxylic acid ethyl ester

i) cis-4-(3-Fluoro-4-nitro-phenoxy)-cyclohexanecarboxylic acid ethyl ester

Sodium hydride (60% dispersion in mineral oil, 5.05 g, 126 mmol) was added in one portion to a stirred solution of ethyl 4-hydroxycyclohexanecarboxylate (20.7 g, 120 mmol) and 2,4-difluoronitrobenzene (19.1g, 120.2 mmol) in DMA (100 mL) at 4°C and the
mixture was stirred at 4°C for 1 h and then the reaction mixture was warmed to ambient
temperature and stirred for 24 h. The reaction mixture was cooled to 0°C and then water
and ethyl acetate were added. The layers were separated and the organic layer was washed
with brine, dried (MgSO₄) and concentrated in vacuo to leave a yellow oil. The oil was
purified by column chromatography, using a gradient of 20-50% ethyl acetate in isohexane
as eluent, to give the title compound as a pale yellow solid (4.1 g, 11%).
\[^1H \text{NMR } \delta 1.19 (3H, t), 1.63-1.9 (9H, m), 4.07 (2H, q), 4.72-4.8 (1H, m), 6.99 (1H, dd), \]
7.22 (1H, dd), 8.13 (1H, dd); MS m/e MH⁺ 312.

ii) cis-4-(4-Amino-3-fluoro-phenoxy)-cyclohexanecarboxylic acid ethyl ester.

![Chemical structure]

Palladium (10 wt. %) on carbon (500 mg) was added in one portion to a solution of 4-(3-
fluoro-4-nitro-phenoxy)-cyclohexanecarboxylic acid ethyl ester (2.6 g, 8.35 mmol) in
ethanol (75 mL) and the mixture was stirred under a hydrogen atmosphere for 6 h. The
reaction mixture was filtered and concentrated in vacuo to leave a residue. The residue
was purified by column chromatography, using a gradient of 20-50% EtOAc and
isohexane as eluent, to give the title compound as a pale yellow solid (2.0 g, 85%)
\[^1H \text{NMR } \delta 1.18 (3H, t), 1.53-1.67 (4H, m), 1.69-1.82 (4H, m), 2.38-2.48 (1H, m), 4.07 \]
2.46-4.33 (1H, m), 4.65 (2H, s), 6.54 (1H, dd), 6.69 (1H, dd), 7.0 (1H, dd); MS
m/e MH⁺ 282.

iii) cis-4-[3-Fluoro-4-(methoxyoxalyl-amino)-phenoxy]-cyclohexanecarboxylic acid
ethyl ester

![Chemical structure]
Methyl chlorooxocacetate (1.18 g, 9.6 mmol) was added in one portion to a stirred solution of 4-(4-amino-3-fluoro-phenoxy)-cyclohexanecarboxylic acid ethyl ester (1.8 g, 6.4 mmol) and pyridine (1.55 mL, 19.2 mmol) in DCM (50 mL) at 4°C and the reaction mixture was stirred at ambient temperature for 2 h. The reaction mixture was evaporated in vacuo to leave a residue and ethyl acetate was added. Water was added and the layers were separated. The organic layer was washed with brine, dried (MgSO₄) and concentrated in vacuo to give the title compound as a colourless oil that was used without further purification; MS m/e (M-H)⁻ 366.

iv) cis-4-[3-Fluoro-4-(hydrazinoxalyl-amino)-phenoxy]-cyclohexanecarboxylic acid ethyl ester

\[\text{Structure Image} \]

Hydrazine monohydrate (458 mg, 9.15 mmol) was added in one portion to a solution of 4-[3-fluoro-4-(methoxyxalyl-amino)-phenoxy]-cyclohexanecarboxylic acid ethyl ester (2.8 g, 7.62 mmol) in ethanol (75 mL) and the mixture was stirred at ambient temperature for 2h. The mixture was filtered, washed with ethanol and dried to give the title compound as a white solid (2.35 g, 84%).

\(^1\)H NMR δ: 1.19 (3H, t), 1.61-1.86 (8H, m), 4.08 (2H, q), 4.43-4.53 (1H, m), 4.64 (2H, s), 6.81 (1H, dd), 6.98 (1H, dd), 7.46 (1H, dd), 10.1 (1H, s), 10.27 (1H, s); MS m/e (M-H)⁻ 366.
v) cis-4-(3-Fluoro-4-[[5-(2,4,5-trifluoro-phenylamino)-1,3,4]oxadiazole-2-carbonyl]-amino)-phenoxy)-cyclohexanecarboxylic acid ethyl ester

2,4,5-Trifluorophenyl isothiocyanate (600 mg, 3.0 mmol) was added in one portion to a stirred suspension of 4-[3-fluoro-4-(hydrazinooxalyl-amino)-phenoxy]-cyclohexanecarboxylic acid ethyl ester (920 mg, 2.5 mmol) in DMA (10 mL) and the reaction mixture was stirred at ambient temperature for 1 h. EDCI (720 mg, 3.76 mmol) was added and the mixture was heated at 90°C for 10 mins in a microwave. The reaction mixture was concentrated in vacuo to leave a residue. Water was added and the mixture was filtered and dried under high vacuum to leave the title compound (Intermediate 1) as a pale yellow powder (1.2 g, 92%).

^1H NMR δ 1.2 (3H, t), 1.62-1.88 (8H, m), 2.4-2.5 (1H, m), 4.08 (2H, q), 4.55-4.63 (1H, m), 6.83 (1H, dd), 6.99 (1H, dd), 7.38 (1H, dd), 7.68-7.79 (1H, m), 8.12-8.26 (1H, m), 10.6 (1H, s), 11.1 (1H, s); MS m/e MH^+ 523.

Example 2: cis-4-(3-Fluoro-4-[[5-(3,4,5-trifluoro-phenylamino)-1,3,4]oxadiazole-2-carbonyl]-amino)-phenoxy)-cyclohexanecarboxylic acid

A solution of lithium hydroxide (1.61 g, 38.3 mmol) in water (10 mL) was added in one portion to a solution of 4-(3-fluoro-4-[[5-(3,4,5-trifluoro-phenylamino)-1,3,4]oxadiazole-
2-carbonyl]-amino]-phenoxy)-cyclohexanecarboxylic acid ethyl ester (Intermediate 2, 2.0 g, 3.83 mmol) in a 1:1 mixture of THF and methanol (60 mL) was added and the mixture stirred at ambient temperature for 4 h. The mixture was concentrated in vacuo, acidified with a 1M aqueous solution of citric acid and then filtered to leave a solid. The solid was washed with water, dried and recrystallised from ethanol (30 mL) to give the title compound as a white solid (1.1 g, 58%).

\(^1\)H NMR \(\delta\) 1.66-1.95 (8H, m), 2.38-2.53 (1H, m), 4.58-4.68 (1H, m), 6.9 (1H, dd), 7.04 (1H, dd), 7.47 (1H, dd), 7.49-7.6 (2H, m), 10.7 (1H, s), 11.5 (1H, s), 12.1 (1H, s); MS m/e MH\(^+\) 495.

Intermediate 2: *cis*-4-(3-Fluoro-4-[[5-(3,4,5-trifluoro-phenylamino)-1,3,4-oxadiazole-2-carbonyl]-amino]-phenoxy)-cyclohexanecarboxylic acid ethyl ester

\[\text{O} \quad \text{O} \quad \text{F} \quad \text{H} \quad \text{N} \quad \text{N} \quad \text{N} \quad \text{O} \quad \text{F} \quad \text{F} \quad \text{F} \quad \text{H} \quad \text{N} \quad \text{O} \quad \text{C} \quad \text{C} \quad \text{C} \]

3,4,5-Trifluorophenyl isothiocyanate (897 mg, 4.74 mmol) was added in one portion to a stirred suspension of 4-[3-fluoro-4-(hydrazinooxalyl-amino)-phenoxy]-cyclohexanecarboxylic acid ethyl ester (1.45 g, 3.95 mmol) in DMA (20 mL) and the reaction mixture was stirred at ambient temperature for 1 h. EDCI (1.14 g, 5.92 mmol) was then added and the mixture stirred at ambient temperature for 2 h. The reaction mixture was concentrated in vacuo to leave a residue. Water was added and the mixture was filtered and dried under high vacuum to give the title compound (Intermediate 2) as a pale yellow powder (2.0 g, 95%).

\(^1\)H NMR \(\delta\) 1.2 (3H, t), 1.64-1.88 (8H, m), 2.45-2.6 (1H, m), 4.1 (2H, q), 4.54-4.6 (1H, m), 6.84 (1H, dd), 7.0 (1H, dd), 7.36-7.53 (3H, m), 10.62 (1H, s), 11.45 (1H, s); MS m/e MH\(^+\) 523.
Example 3: cis-4-[3-Fluoro-4-[[5-[(4-fluorophenyl)amino]1,3,4-oxadiazole-2- carbonyl]amino]phenoxy]cyclohexane-1-carboxylic acid

Prepared from intermediate 3 in an analogous manner to that described for Example 1.

\(^1\)H NMR: δ 1.6-1.9 (8H, m), 2.35-2.45 (1H, m), 4.54-4.62 (1H, m), 6.83 (1H, dd), 6.99 (1H, dd), 7.2-7.3 (2H, m), 7.4 (1H, dd), 7.58-7.68 (2H, m), 10.75 (1H, s), 11.05 (1H, s), 12.2 (1H, s); MS m/e MH⁺ 457.

Intermediate 3: Ethyl cis-4-[3-fluoro-4-[[5-[(4-fluorophenyl)amino]1,3,4-oxadiazole-2-carbonyl]amino]phenoxy]cyclohexane-1-carboxylate

Prepared in an analogous manner to that described for Intermediate 1 part v).

\(^1\)H NMR: δ 1.09 (3H, t), 1.6-1.9 (8H, m), 2.4-2.5 (1H, m), 4.07 (2H, q), 4.5-4.62 (1H, m), 6.81 (1H, dd), 6.96 (1H, dd), 7.2-7.3 (2H, m), 7.39 (1H, dd), 7.57-7.69 (2H, m), 10.56 (1H, s), 10.94 (1H, s); MS m/e MH⁺ 487.
Example 4: trans-4-[3-Fluoro-4-[[5-[(2,4,5-trifluorophenyl)amino]1,3,4-oxadiazole-2-carbonyl]amino]phenoxy]cyclohexane-1-carboxylic acid

Prepared from intermediate 4 in an analogous manner to that described for Example 1.
\(^1\)H NMR: δ 1.08 (3H, t), 1.32-1.62 (4H, m), 1.89-2.0 (2H, m), 2.02-2.14 (2H, m), 2.2-2.32 (1H, m), 4.27-4.4 (1H, m), 6.83 (1H, dd), 6.97 (1H, dd), 7.33-7.44 (1H, m), 7.63-7.75 (1H, m), 8.09-8.24 (1H, m), 10.6 (1H, s), 11.05 (1H, s), 12.1 (1H, s); MS m/e MH\(^+\) 495.

i) Ethyl trans-4-(3-fluoro-4-nitro-phenoxy)cyclohexane-1-carboxylate

To a stirred solution of ethyl 4-hydroxycyclohexanecarboxylate (20.7 g, 120.19 mmol) and 2,4-difluoronitrobenzene (19.125 g, 120.19 mmol) in DMF at ~5 °C was added NaH (5.05 g, 126.2 mmol) in one portion, resulting in a slow exotherm to ~10 °C. The reaction was stirred at 5 °C for 1 hour then allowed to warm to ambient temperature and stirred for 24 hr. The reaction was cooled to 0 °C and quenched with water (~400 mL). The mixture was extracted with EtOAc (3 x ~150 mL), the organic layers combined, washed with brine (2 x ~100 mL), dried (MgSO\(_4\)), filtered and evaporated to an orange oil (36g). The crude residue was purified by preparative HPLC (silica, 4:1 ethyl acetate:isoctane) to give the title compound (4.5 g, 12 %) as a pale orange oil.
\(^1\)H NMR: δ 1.19 (3H, t), 1.39-1.53 (4H, m), 1.9-2.0 (2H, m), 2.04-2.13 (2H, m), 2.31-2.41 (1H, m), 4.08 (2H, q), 4.51-4.61 (1H, m), 6.99 (1H, dd), 7.25 (1H, dd), 8.12 (1H, dd); MS m/e MH\(^+\) 312.
ii) Ethyl \textit{trans}-4-(4-amino-3-fluoro-phenoxy)cyclohexane-1-carboxylate

\begin{center}
\includegraphics[width=0.5\textwidth]{structure1}
\end{center}

Prepared in an analogous manner to that described for Intermediate 1 part ii).

1H NMR: δ 1.19 (3H, t), 1.27-1.4 (2H, m), 1.42-1.55 (2H, m), 1.86-1.95 (2H, m), 1.96-2.05 (2H, m), 2.25-2.38 (1H, m), 4.01-4.13 (1H, m), 4.07 (2H, q), 4.63 (2H, s), 6.54 (1H, dd), 6.69 (1H, dd), 6.7 (1H, dd).

iii) Ethyl \textit{trans}-4-[3-fluoro-4-[(methoxycarbonylformyl)amino]phenoxy]cyclohexane-1-carboxylate

\begin{center}
\includegraphics[width=0.5\textwidth]{structure2}
\end{center}

Prepared in an analogous manner to that described for intermediate 1 part iii).

MS m/e MH$^+$ 366.

\begin{center}
\includegraphics[width=0.5\textwidth]{structure3}
\end{center}

Prepared in an analogous manner to that described for intermediate 1 part iv).

1H NMR: δ 1.2 (3H, t), 1.34-1.46 (2H, m), 1.48-1.61 (2H, m), 1.88-1.98 (2H, m), 2.01-2.11 (2H, m), 2.3-2.4 (1H, m), 4.07 (2H, q), 4.3-4.4 (1H, m), 4.64 (2H, s), 6.8 (1H, dd), 6.98 (1H, dd), 7.45 (1H, dd), 10.1 (1H, s), 10.3 (1H, s); MS m/e MH$^+$ 366.
v) Ethyl trans-4-[3-fluoro-4-[[5-[(2,4,5-trifluorophenyl)amino]1,3,4-oxadiazole-2-carbonyl]amino]phenoxy]cyclohexane-1-carboxylate

\[
\text{\includegraphics[width=0.5\textwidth]{structure1.png}}
\]

Prepared in an analogous manner to that described for intermediate 1 part v).

\(^1\)H NMR: \(\delta\) 1.08 (3H, t), 1.13-1.55 (4H, m), 1.79-1.91 (2H, m), 1.92-2.05 (2H, m), 2.16-2.37 (1H, m), 3.98 (2H, q), 4.2-3.35 (1H, m), 6.73 (1H, dd), 6.9 (1H, dd), 7.28 (1H, dd), 7.55-7.65 (1H, m), 8.0-8.15 (1H, m), 10.52 (1H, s); MS m/e MH\(^+\) 523.

Example 5: trans-4-[3-fluoro-4-[[5-[(4-fluorophenyl)amino]1,3,4-oxadiazole-2-carbonyl]amino]phenoxy]cyclohexane-1-carboxylic acid

\[
\text{\includegraphics[width=0.5\textwidth]{structure2.png}}
\]

Prepared from intermediate 5 in an analogous manner to that described for Example 1.

\(^1\)H NMR: \(\delta\) 1.3-1.62 (4H, m), 1.85-2.12 (4H, m), 2.17-2.33 (1H, m), 4.24-4.4 (1H, m), 6.8 (1H, dd), 6.97 (1H, dd), 7.2-7.3 (2H, m), 7.37 (1H, dd), 7.54-7.68 (2H, m), 10.53 (1H, s), 10.97 (1H, s), 12.07 (1H, s); MS m/e MH\(^+\) 457.

Intermediate 5: Ethyl trans-4-[3-fluoro-4-[[5-[(4-fluorophenyl)amino]1,3,4-oxadiazole-2-carbonyl]amino]phenoxy]cyclohexane-1-carboxylate
Prepared in an analogous manner to that described for intermediate 4 part v).

1H NMR: δ 1.19 (3H, t), 1.32-1.43 (4H, m), 1.88-2.12 (4H, m), 2.28-2.41 (1H, m), 4.05 (2H, q), 4.28-4.42 (1H, m), 6.81 (1H, dd), 6.96 (1H, dd), 7.2-7.3 (2H, m), 7.39 (1H, dd), 7.57-7.69 (2H, m), 10.56 (1H, s), 10.94 (1H, s); MS m/e M$^+$ 487.
Claims

1. A compound of formula (I)

 ![Chemical Structure](image)

 (I)

 or a salt thereof, wherein:
 each R is independently selected from fluoro, chloro, cyano, methyl, ethyl, methoxy, ethoxy, trifluoromethyl, trifluoromethoxy and difluoromethoxy;
 n is 1, 2 or 3.

2. A compound of formula (I) as claimed in claim 1, or a salt thereof, which is a compound of formula (IA).

 ![Chemical Structure](image)

 (IA)

3. A compound of formula (I) as claimed in claim 1, or a salt thereof, which is a compound of formula (IB).

 ![Chemical Structure](image)

 (IB)
4. A compound as claimed in claim 1 which is selected from
\textit{cis}-4-(3-Fluoro-4-\{5-(2,4,5-trifluoro-phenylamino)\-[1,3,4]oxadiazole-2-carbonyl]-amino\}-phenoxy)-cyclohexanecarboxylic acid;
\textit{cis}-4-(3-Fluoro-4-\{5-(3,4,5-trifluoro-phenylamino)\-[1,3,4]oxadiazole-2-carbonyl]-amino\}-phenoxy)-cyclohexanecarboxylic acid;
\textit{cis}-4-[3-Fluoro-4-\{5-[(4-fluorophenyl)amino]1,3,4-oxadiazole-2-carbonyl]amino\}phenoxy)cyclohexane-1-carboxylic acid;
\textit{trans}-4-[3-Fluoro-4-\{5-[(2,4,5-trifluorophenyl)amino]1,3,4-oxadiazole-2-carbonyl]amino\}phenoxy)cyclohexane-1-carboxylic acid;
\textit{trans}-4-[3-fluoro-4-\{5-[(4-fluorophenyl)amino]1,3,4-oxadiazole-2-carbonyl]amino\}phenoxy)cyclohexane-1-carboxylic acid;
or a pharmaceutically-acceptable salt of any of these.

5. A compound according to any one of the preceding claims or a pharmaceutically-acceptable salt thereof for use as a medicament.

6. A compound according to any one of the preceding claims or a pharmaceutically-acceptable salt thereof for use as a medicament for treating diabetes mellitus and/or obesity in a warm-blooded animal such as a human being

7. A method for producing an inhibition of DGAT1 activity in a warm-blooded animal, such as a human being, in need of such treatment which comprises administering to said animal an effective amount of a compound of formula (I) as claimed in any one of claims 1 to 4 or a pharmaceutically-acceptable salt thereof.

8. A method of treating diabetes mellitus and/or obesity in a warm-blooded animal, such as a human being, in need of such treatment which comprises administering to said animal an effective amount of a compound of formula (I) as claimed in any one of claims 1 to 4 or a pharmaceutically-acceptable salt thereof.

9. The use of a compound according to any one of claims 1 to 4 or a pharmaceutically-acceptable salt or prodrug thereof in the manufacture of a medicament for
use in the production of an inhibition of DGAT1 activity in a warm-blooded animal such as a human being.

10. The use as claimed in Claim 9 wherein the medicament is for use in the treatment of diabetes mellitus and/or obesity in a warm-blooded animal such as a human being.

11. A pharmaceutical composition which comprises a compound of formula (I) as claimed in any one of claims 1 to 4 or a pharmaceutically-acceptable salt thereof, in association with a pharmaceutically-acceptable excipient or carrier.

12. A process for preparing a compound according to claim 1 which comprises one of the following steps (wherein all variables are as hereinbefore defined for a compound of formula (I) unless otherwise stated):

 a) reaction of an amine of formula (2) with a carboxylate salt of formula (3), wherein \(R^p \) is (1-4C)alkyl group (such as methyl, ethyl, isopropyl, or tert-butyl), followed by hydrolysis of the \(R^p \) group;

\[
\begin{align*}
\text{(2)} & \quad \text{(3)} \\
R^pO_2C-\text{cyclohexyl} & \quad \text{Na}^+\text{O}^\text{N}^\text{N}O^\text{N}^\text{O}^\text{N}^\text{
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. C07D271/10 A61K31/4245 A61P3/04 A61P3/10

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C07D A61K A61P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, BEILSTEIN Data, CHEM ABS Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P,X</td>
<td>WO 2006/064189 A (ASTRAZENECA AB [SE]; ASTRazeneca UK LTD [GB]; BIRCH ALAN MARTIN [GB];) 22 June 2006 (2006-06-22) cited in the application claims 1,15-20; examples 456,646</td>
<td>1-12</td>
</tr>
</tbody>
</table>

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered to be of particular relevance
"E" earlier document but published on or after the international filing date
"L" document which may throw doubt on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"O" document referring to an oral disclosure, use, exhibition or other means
"P" document published prior to the international filing date but later than the priority date claimed

**"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"X" document member of the same patent family

Date of the actual completion of the international search 7 August 2007

Date of mailing of the international search report 13/08/2007

Name and mailing address of the ISA/ European Patent Office, P.B. 5819 Patentlaan 2 NL-2280 HG Hilvärk Tel. (+31-70) 340-3040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016

Authorized officer VAN VOORST TOT VOORS

Form PCT/ISA/210 (second sheet) (April 2006)
INTERNATIONAL SEARCH REPORT

Box II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. [X] Claims Nos.: 7, 8
 - Because they relate to subject matter not required to be searched by this Authority, namely:

 Although claims 7 and 8 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.

2. [] Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:

3. [] Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this International application, as follows:

1. [] As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.

2. [] As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. [] As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:

4. [] No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

- [] The additional search fees were accompanied by the applicant's protest.
- [] No protest accompanied the payment of additional search fees.
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>BR PI0410170 A</td>
<td>16-05-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2524470 A1</td>
<td>25-11-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1816531 A</td>
<td>09-08-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EF 1633722 A2</td>
<td>15-03-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2007502862 T</td>
<td>15-02-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20060009916 A</td>
<td>01-02-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MA 27843 A1</td>
<td>03-04-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX PA05012061 A</td>
<td>22-02-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2005315430 A1</td>
<td>22-06-2006</td>
</tr>
</tbody>
</table>