
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2015/0341247 A1

CURTS et al.

US 2015 0341247A1

(43) Pub. Date: Nov. 26, 2015

(54)

(71)

(72)

(21)

(22)

(63)

ELEPHANTFLOW DETECTION INA
COMPUTING DEVICE

Applicant: Hewlett-Packard Development
Company, L.P., Houston, TX (US)

Inventors: Andrew Robert CURTIS, Mountain
View, CA (US); Praveen
YALAGANDULA, Redwood City, CA
(US)

Appl. No.: 14/810,389

Filed: Jul. 27, 2015

Related U.S. Application Data
Continuation of application No. 12/951.748, filed on
Nov. 22, 2010, now Pat. No. 9,124,515.

1OO
y

Publication Classification

(51) Int. Cl.
H04L 2/26 (2006.01)
H04L 12/80 (2006.01)
H04L 29/06 (2006.01)

(52) U.S. Cl.
CPC H04L 43/0882 (2013.01); H04L 69/16

(2013.01); H04L 47/II (2013.01)

(57) ABSTRACT

Example embodiments relate to elephant flow detection in a
computing device. In example embodiments, a computing
device may monitor a socket for a given flow. The computing
device may then determine whether the flow is an elephant
flow based on the monitoring of the socket. If so, the com
puting device may signal the network that transmits the flow
that the flow is an elephant flow.

PROCESSOR

COMPUTING DEVICE

MACHINE-READABLE
STORAGEMEDIUM

SOCKET MONITORING
NSTRUCTIONS 130

ELEPHANTFLOW
DETERMINING INSTRUCTIONS

ELEPHANTFLOW
SIGNALNG INSTRUCTIONS

TO
NETWORK

SIGNALNG
PACKET

Patent Application Publication Nov. 26, 2015 Sheet 1 of 4 US 2015/0341247 A1

COMPUTING DEVICE

MACHINE-READABE
STORAGE MEDUM

130

SIGNALNG TO
PACKET NETWORK

WOOD 305

MONITOR DATAPROVIDED TO A
SOCKET BY AN APPLICATION N.WHICH

A FLOW ORIGINATES

31 O

35

320

Patent Application Publication

400
were START) 402

DETECT PROvision of DATA To A 405
SOCKET FOR A FLOW

DETERMINEAMOUNT OF DATA L-410
PROVIDED TO THE SOCKET

PERIOD HAS
ELAPSED?

YES

SE HEADER OF NEXT PACKET TO 425
PREDETERMINED PATTERNOR

GENERATE NEW SIGNALNG PACKET

430
TRANSM SIGNALNG PACKET

435

SOCKET
CLOSED

NO

YES

FIG 4A

Nov. 26, 2015 Sheet 3 of 4

452

SETBUFFERSIZEBASED ON FLOW 455
CHARACTERISTICS IN THE NETWORK

DETECT INSERTION OF DATA INTO 460
THE SOCKE BUFFER FOR A FLOW

DETERMINE CURRENT FIL EVE OF 65
THE SOCKET BUFFER

4

470

FILL LEVE 2
THRESHOLD?/

NO

Es
475

AGGNG
PERIOD HAS
ELAPSED2/

NO

YES
sETHEADER OF NEXTPACKETTo
PREDETERMINED PATTERNOR

GENERATE NEW SIGNALNG PACKET

TRANSMT SIGNALNG PACKET - 485

490

480

SOCKET
CLOSED? /

NO

FIG. 4B

US 2015/0341247 A1

US 2015/0341247 A1

ELEPHANTFLOW DETECTION INA
COMPUTING DEVICE

BACKGROUND

0001 Modern communication networks are capable of
transferring a massive amount of data in a small period of
time. For example, a typical data center may include hundreds
or even thousands of servers, each capable of transmitting
numerous gigabits of data per second. Although the capabili
ties of networks are ever increasing, so too is the amount of
data transferred by applications that utilize these networks.
Traffic management is therefore important in ensuring effi
cient utilization of the available network bandwidth.

BRIEF DESCRIPTION OF THE DRAWINGS

0002 The following detailed description references the
drawings, wherein:
0003 FIG. 1 is a block diagram of an example computing
device for detection of elephant flows:
0004 FIG. 2 is a block diagram of an example system for
detection of elephant flows based on monitoring of a socket
buffer by a shim layer included in an operating system of a
computing device;
0005 FIG. 3 is a block diagram of an example method for
detection of elephant flows:
0006 FIG. 4A is a block diagram of an example method
for detection of elephant flows based on monitoring of an
amount or rate of data provided to a socket;
0007 FIG. 4B is a block diagram of an example method
for detection of elephant flows based on monitoring of a fill
level of a socket buffer; and
0008 FIG. 5 is a block diagram of an example operation
flow illustrating the processing of example packets by a com
puting device.

DETAILED DESCRIPTION

0009. As detailed above, traffic management is important
in ensuring that a network operates in an efficient manner by
optimizing performance and minimizing congestion. For
example, when a network includes multiple available paths
for a given flow of data, an effective traffic management
strategy ensures that the flow uses the most efficient path. In
a typical network, a small percentage of flows consumes the
large majority of bandwidth and therefore has the greatest
impact on performance of the network. It is therefore a central
problem of any traffic management strategy to identify and
manage the flows that consume a large amount of bandwidth,
Sometimes known as "elephant flows. In particular, because
elephant flows typically account for the majority of the data,
proper management of these flows will have the greatest
effect on the performance of the network.
00.10 Existing solutions for identifying elephant flows are
deficient in a number of ways. For example, in some solu
tions, each application is responsible for marking flows that
consume a significant amount of bandwidth. Although effi
cient, this approach can be problematic, as every application
must be modified to support this behavior. Furthermore, this
Solution may be subject to abuse, as the application may be
modified to mark flows in a manner inconsistent with the
purpose of the traffic management strategy.
0011. In other solutions, a switch in the network monitors
each flow that passes through to gather statistics. The Switch
may then transfer these statistics to a central controller on a

Nov. 26, 2015

periodic basis to enable the controller to classify flows. This
approach is not scalable to large networks for several reasons.
First, the process of monitoring each flow at a given Switch
consumes a significant amount of resources, as it generally
requires a Ternary Content-Addressable Memory (TCAM)
entry for each flow. In addition, transfers of statistics may
consume a significant amount of bandwidth between each
switch and the central controller, such that the transfer of
statistics becomes the bottleneck in the network.
0012. In yet another solution, a central controller samples
a Small percentage of packet headers from all ports of the
switches in a network (e.g., 1 out of every 1,000 packets). In
this approach, the central controller analyzes the sampled
packet headers to classify flows. While this approach uses
little bandwidth, it is also slow to detect elephant flows, some
times requiring a flow to transfer upwards of 15 megabytes
before it is detected as an elephant flow. Furthermore, this
approach imposes a significant amount of overhead on the
central controller, since the controller must process each
sampled packet.
0013 Thus, in summary, current solutions require modi
fication of each application, require a large amount of band
width or switch processing, or are too slow to be effective. To
address the problems with current solutions, example
embodiments disclosed herein implement elephant flow
detection by monitoring outgoing data provided to a socket in
the computing device by an application in which the flow
originates. For example, the computing device may monitor
outgoing data provided to a socket by a User Datagram Pro
tocol (UDP) flow or monitor outgoing data provided to a
Socket buffer used to queue packets belonging to a Transmis
sion Control Protocol (TCP) flow. If the computing device
determines that the flow is an elephant flow based on the
monitoring, the computing device may then signal the net
work that transmits the flow that the flow is an elephant flow.
0014. By identifying elephant flows based on examination
of the data provided to a socket in the source computing
device, example embodiments minimize or eliminate the
need for modification of applications in the computing
device. Furthermore, because the elephant flow determina
tion may be performed at the source of the flow, rather than in
the network, example embodiments minimize the overhead
required for transmission of statistics and/or sampled pack
ets. In this manner, example embodiments allow for faster
identification of elephant flows with low overhead and mini
mal or no modification of applications. Additional embodi
ments and applications of such embodiments will be apparent
to those of skill in the art upon reading and understanding the
following description.
0015 Referring now to the drawings, FIG. 1 is a block
diagram of an example computing device 100 for detection of
elephant flows. Computing device 100 may be, for example,
a notebook computer, a desktop computer, a slate computing
device, a wireless email device, a mobile phone, a server in a
data center or other network, or any other computing device.
In the embodiment of FIG. 1, computing device 100 includes
processor 110 and machine-readable storage medium 120.
0016 Processor 110 may be one or more central process
ing units (CPUs), semiconductor-based microprocessors,
and/or other hardware devices suitable for retrieval and
execution of instructions stored in machine-readable storage
medium 120. Processor 110 may fetch, decode, and execute
instructions 122, 124, 126 to implement the elephant flow
detection procedure described in detail below. As an alterna

US 2015/0341247 A1

tive or in addition to retrieving and executing instructions,
processor 110 may include one or more integrated circuits
(ICs) or other electronic circuits that include a number of
electronic components for performing the functionality of
one or more of instructions 122, 124, 126.
0017 Machine-readable storage medium 120 may be any
electronic, magnetic, optical, or other physical storage device
that contains or stores executable instructions. Thus,
machine-readable storage medium may be, for example, Ran
dom. Access Memory (RAM), an Electrically Erasable Pro
grammable Read-Only Memory (EEPROM), a storage drive,
a Compact Disc Read Only Memory (CD-ROM), and the
like. As described in detail below, machine-readable storage
medium 120 may be encoded with a series of executable
instructions 122, 124, 126 for detecting elephant flows based
on Sockets corresponding to flows that originate in computing
device 100. In some embodiments, instructions 122, 124,126
may be implemented in the operating system of computing
device 100, thus minimizing the need to modify the applica
tions of computing device 100.
0018 Machine-readable storage medium 120 may include
Socket monitoring instructions 122, which may monitor data
provided to a socket in computing device 100 by an applica
tion in which a particular data flow originates (e.g., the Source
endpoint of a flow). The socket may be a mechanism provided
by the operating system for use by the application when
transmitting outgoing data packets or other protocol data
units. For example, the operating system may create a socket
upon receipt of a request from an application or thread via an
Application Programming Interface (API). The application
may be any application that exchanges data with a remote
device (e.g., a web server or browser, a Peer-to-Peer applica
tion, a File Transfer Protocol (FTP) server, a storage server,
etc.). When the application has a data packet ready for trans
mission to the destination, the source application may provide
the data packet to the Socket and the operating system may
then manage transmission of the data packet toward the des
tination.
0019. Because the operating system manages the socket
buffer, monitoring instructions 122 may be implemented as a
shim layer in the operating system of computing device 100.
The shim layer may be logic configured to examine data
transmitted between two layers of the network protocol stack
(e.g., between the transport and network layers), thereby leav
ing the structure of the existing network protocol stack intact.
Thus, monitoring instructions 122 may have visibility of all
data provided to each Socket by each application. Monitoring
instructions 122 may therefore observe the amount of data
provided to a socket and, as detailed below, determining
instructions 124 may analyze this data to identify elephant
flows.

0020. The mechanism used to monitor the socket may vary
according to the protocol to be used for transmission of the
data. For example, the operating system may provide a socket
buffer for some protocols, such as the Transmission Control
Protocol (TCP). The socket buffer may be a portion of
memory in storage medium 120 or another storage medium
accessible to computing device 100 that temporarily queues
data belonging to a particular flow prior to transmission.
Thus, the socket buffer may be, for example, a Transmission
Control Protocol (TCP) buffer to temporarily store packets to
be transmitted over a TCP connection from a source applica
tion in computing device 100 to a destination application in
another computing device. In implementations in which the

Nov. 26, 2015

protocol uses a socket buffer, monitoring instructions 122
may monitor a fill level of the buffer, a total amount of data
added to the buffer, or a rate at which data is added to the
buffer.
0021. On the other hand, the operating system of comput
ing device 100 may not provide a buffer for some protocols.
For example, the User Data Protocol (UDP) typically does
not utilize a buffer in the operating system. In Such imple
mentations, monitoring instructions 122 may directly moni
tor the data provided to the socket via the API or other inter
face from the application to the operating system. For
example, monitoring instructions 122 may monitor a total
amount of data provided to the Socket or a rate at which data
is provided to the socket. It should be noted that, in some
implementations, monitoring instructions 122 may directly
monitor the data provided to the socket, rather than the buffer,
even if the operating system provides a buffer for a particular
protocol. Several example approaches for monitoring data
provided to a socket are described below in connection with
FIGS 4A & 4B.

0022 Machine-readable storage medium 120 may further
include elephant flow determining instructions 124, which
may determine, based on the amount of data provided to a
particular socket by a particular application, whether the cor
responding flow is an elephant flow. The determination of
whether a given flow is an elephant flow may depend on the
particular network. For example, in a high-bandwidth net
work, such as a data center, the size of a typical elephant flow
is greater than in a lower-bandwidth network, such as a cel
lular network. The sizes of typical elephant flows will be
apparent to those of skill in the art based on the particular
network utilized by computing device 100.
0023. As one example implementation of determining
instructions 124, when monitoring instructions 122 provide
information regarding the total amount of data or the rate at
which data belonging to the flow is provided to the socket,
instructions 124 may compare this amount or rate to a prede
termined threshold. When the total amount of data or rate at
which the source application is providing data to the Socket
exceeds the threshold, determining instructions 124 may
determine that the corresponding flow is an elephant flow.
0024. As another example, when monitoring instructions
122 provide information regarding the current fill level of a
Socket buffer corresponding to the Socket, determining
instructions 124 may compare the fill level to a predetermined
threshold (e.g., 50% full, 75% full, completely full). When
the current fill level reaches the predetermined threshold fill
level, determining instructions 124 may determine that the
corresponding flow is an elephant flow.
0025 Finally, machine-readable storage medium 120 may
include elephant flow signaling instructions 126, which may
signal a network used for transmission of the particular flow
when it is determined that the particular flow is in fact an
elephant flow. For example, signaling instructions 126 may
utilize an in-band signaling mechanism to notify one or more
switches, routers, controllers, or other network nodes that the
flow is an elephant flow.
0026. The particular signaling mechanism utilized for
notifying the network of an elephant flow may vary by
embodiment. In some embodiments, signaling instructions
126 may utilize a portion of the header of a packet belonging
to the flow. For example, signaling instructions 126 may add
a predetermined pattern of bits to the Differentiated Services
Code Point (DSCP) field, a Virtual Local Area Network

US 2015/0341247 A1

(VLAN) Priority Code Point (PCP), or another field of the
Internet Protocol (IP) header of a packet belonging to the
flow. As a specific example, signaling instructions 126 may
set the DSCP field to "000011” as the code point space
corresponding to “XXXX11 is generally reserved for experi
mental or local usage. In other embodiments, signaling
instructions 126 may utilize one or more packets to transmit
a separate elephant flow notification message into the net
work, provided that these packets include information suffi
cient to uniquely identify the flow.
0027. In response to receipt of a notification of an elephant
flow, the network may utilize the signal to, for example,
assign the flow to the best available path in the network.
Additional details regarding the use of the elephant flow
signal to reconfigure the network are provided below in con
nection with network nodes 225, 230, 240 of FIG. 2.
0028 FIG. 2 is a block diagram of an example system 200
for detection of elephant flows based on monitoring of a
socket buffer 217 by a shim layer 213 included in an operating
system 212 of a computing device 210. As detailed below,
system 200 may include a computing device 210 that trans
mits data to a destination device 250 via network nodes 225,
240 and networks 235, 245.
0029. As with computing device 100 of FIG. 1, computing
device 210 may be a notebook computer, a desktop computer,
a slate computing device, a wireless email device, a mobile
phone, a server, or any other computing device. Computing
device 210 may include a processor (not shown). Such as a
processor 110 described above in connection with FIG. 1.
Computing device 210 may also include a machine-readable
storage medium encoded with executable instructions. For
example, operating system 212 and instructions 214, 215, 216
included in shim layer 213 may be encoded on the machine
readable storage medium and executed by the processor.
0030 Operating system 212 may include a series of
executable instructions for managing the hardware of com
puting device 210. Furthermore, operating system 212 may
provide an interface to applications executing on computing
device 210 (e.g., an API). Such that the applications may
access the hardware. For example, operating system 212 may
provide one or more sockets to each application for transmis
sion of data packets from computing device 210 to a destina
tion device 250. After an application provides data packets to
the sockets, the operating system may then manage transmis
sion of the data using a corresponding hardware interface,
Such as a network interface card. In some embodiments,
operating system 212 may provide a socket buffer 217 for
each flow to temporarily queue data packets prior to trans
mission via the appropriate interface.
0031. Because operating system 212 has a view of the data
packets transmitted by each application via the Sockets, a
shim layer 213 may be included in operating system 212 to
inspect the data provided to the Sockets or corresponding
socket buffers 217. For example, shim layer 213 may include
logic for examining data transmitted between two layers of
the network stack to identify elephant flows. Thus, shim layer
213 may include monitoring instructions 214, determining
instructions 215, and signaling instructions 216, each
described in turn below.
0032 Monitoring instructions 214 may monitor outgoing
data provided from an application to a socket provided by
operating system 212. This outgoing data may be associated
with a particular flow originating in the application. For
example, the flow may include data transmitted by a server

Nov. 26, 2015

(e.g., a web server or storage server), a peer-to-peer file shar
ing program, a web browser, or any other application that
transmits data belonging to a flow to a destination device 250.
0033. In operation, monitoring instructions 214 may
monitor the data provided to a socket and, in Some cases, to a
socket buffer 217 corresponding to a flow. For example,
monitoring instructions 214 may monitor an amount of data
provided by an application to the socket or socket buffer 217
over a predetermined period of time. Alternatively, monitor
ing instructions 214 may tracka total amount of data provided
to the socket or socket buffer 217 since the socket was opened
by the application for the particular flow. As another alterna
tive, monitoring instructions 214 may monitor the fill level of
a socket buffer 217 with respect to the total capacity of the
buffer 217.
0034. Determining instructions 215 may determine, based
on the monitoring performed by instructions 214, whether the
particular flow is an elephant flow. For example, determining
instructions 215 may determine that a flow is an elephant flow
when the total amount of data provided to the Socket during a
predetermined period of time exceeds a given threshold
value. The threshold may be, for example, a total number of
bytes or a rate at which the data was transmitted during the
period in, for example, bytes per second. Similarly, determin
ing instructions 215 may determine that a flow is an elephant
flow when the total amount of data transmitted since the
Socket was opened exceeds a given threshold value. As
another example, determining instructions 215 may deter
mine that the flow is an elephant flow when the fill level of the
socket buffer 217 corresponding to the particular flow meets
or exceeds a given level (e.g., 75% or more full).
0035. It should be noted that the thresholds used by deter
mining instructions may vary depending on the application,
the network used for transmission of the flow, and other
factors. For example, when the network is a high-bandwidth
network, Such as those used in a data center, the threshold for
the amount of data or the transfer rate may be higher than
when the network is a cellular or wireless network. Suitable
data amounts and transfer rates will be apparent to those of
skill in the art.

0036 Based on the determination made by instructions
215, signaling instructions 216 may generate and transmit a
signal 220, 222 into the network used for transmission of the
particular flow. This signal 220, 222 may notify the network
that the flow is an elephant, such that the network may prop
erly route the flow. As with signaling instructions 126 of FIG.
1, signaling instructions 216 may utilize a portion of the
header of a packet belonging to the flow or may instead use a
dedicated signaling packet.
0037. The type of signaling packet and the corresponding
response in the network may vary based on the type of net
work. For example, in networks operating according to the
OpenFlow specification, a central controller 230 is respon
sible for managing the routing tables stored on each Open
Flow node 225. In particular, upon receipt of a packet, if an
OpenFlow node 225 does not have an entry in the routing
table matching the packet, the node 225 forwards the packet
to the central controller 230, which responds with a routing
table entry. OpenFlow nodes 225 may also contain table
entries specifying particular packets to be forwarded to the
central controller 230, such as packets with a particular pat
tern in the header.
0038 Signaling instructions 216 may utilize the Open
Flow architecture to ensure that elephant flows are properly

US 2015/0341247 A1

routed. When the network is initialized, central controller 230
may instruct all nodes 225 to forward all packets containing a
particular pattern in the header (e.g., a DSCP value of
“000011') to central controller 230. Subsequently, when
computing device 210 detects an elephant flow, signaling
instructions 216 may set the header of a packet to the pattern
and transmit the signaling packet 220 to an appropriate Open
Flow node 225.

0039. Upon receipt of the signaling packet 220 identifying
an elephant flow, the OpenFlow node 225 may forward the
packet 227 to central controller 230, which will respond to
one or more nodes 225 with table entries 229 specifying how
the elephant flow is to be routed through network 235. For
example, controller 230 may compute the best available path
through network 235 and the table entries 229 may define this
path. Each node 225 may then install these table entries 229
into its routing table. As a result, upon receipt of Subsequent
packets in the flow, the OpenFlow node 225 may forward the
packet to destination device 250 via the next node in the path
computed by the central controller 230 (e.g., Path A-1, A-2, or
A-3).
0040. In some embodiments, central controller 230 may
implement a mechanism to control the number of packets
forwarded by the nodes 225 based on its processing load. For
example, setting the elephant flow threshold in computing
device 210 to a value that is too low may result in controller
230 being inundated with signaling packets 227. Accord
ingly, when controller 230 is receiving too many signaling
packets 227, controller 230 may transmit a signal to each
computing device 210, instructing the computing device 210
to raise its threshold. As an alternative, multiple packet header
values may correspond to different levels of thresholds. For
example, when using DSCP values, a value of XXXX11 may
denote a flow that has more than 100 kilobytes (KB) of data,
a value of XXX111 may denote more than 1 megabyte (MB) of
data, a value of XX1111 may denote more than 10MBs of data,
etc. In such embodiments, central controller 230 may
dynamically regulate the number of signaling packets 227 it
receives based on its load by modifying the table entries in
each node 225 to correspond to a particular threshold value.
0041. In other networks, a network node 240 may select a
path for a flow based on a priority or bandwidth-requirements
of the flow. For example, network node 240 may associate a
predetermined Quality of Service (QoS) with each of a num
ber of paths, B-1, B-2, B-3, in network 245 and may utilize
these paths according to the requirements of each flow.
Accordingly, in Some implementations, signaling instruc
tions 216 may generate and transmit a signaling packet 222
indicating that the flow is an elephant and, in response, net
work node 240 may select the best-available path for trans
mission of the elephant flow. Upon receipt of subsequent
packets belonging to the elephant flow, network node 240
may then transmit the packets to destination device 250 via
the identified path.
0042 FIG.3 is a block diagram of an example method 300
for detection of elephant flows. Although execution of
method 300 is described below with reference to computing
device 100, other suitable components for execution of
method 300 will be apparent to those of skill in the art (e.g.,
computing device 210). Method 300 may be implemented in
the form of executable instructions stored on a machine
readable storage medium, Such as storage medium 120, and/
or in the form of electronic circuitry.

Nov. 26, 2015

0043 Method 300 may start in block 305 and proceed to
block 310, where computing device 100 may monitor data
provided to a socket by an application in which a particular
flow originates. For example, a shim layer included in the
operating system of computing device 100 may monitor an
amount of data provided from the application to the Socket.
The amount of data may be, for example, a total amount of
data provided since the application opened the socket, an
amount or rate of data provided to the Socket during a prede
termined period of time, or a fill level of a socket buffer
corresponding to the Socket. Additional details regarding two
example methods for monitoring a socket are provided below
in connection with FIGS. 4A & 4B.
0044. In block 315, computing device 100 may determine
whether the flow is an elephant flow based on the amount of
data provided to the operating system. For example, comput
ing device 100 may determine that the flow is an elephant flow
when the amount of data provided to the socket exceeds a
predetermined threshold.
0045. When computing device 100 determines in block
315that the flow is an elephant flow, method 300 may proceed
to block 320, where computing device 100 may transmit a
signal indicating that the particular flow is an elephant flow.
For example, computing device 100 may set one or more
fields in the header of a packet belonging to the flow to a
predetermined pattern. Alternatively, computing device 100
may generate and transmit a dedicated signaling packet into
the network. After appropriately notifying the network of the
presence of an elephant flow, method 300 may proceed to
block 325, where method 300 may stop. It should be noted
that method 300 may be repeated multiple times for a given
flow while the socket remains open, since a flow may switch
between being an elephant and a non-elephant flow while the
flow is transmitting data.
0046 FIGS. 4A & 4B, each described below, are methods
400, 450 that detect an elephant flow based on data provided
from an application to a socket or socket buffer. Although
methods 400, 450 are described below with reference to com
puting device 210, other suitable components for execution of
methods 400, 450 will be apparent to those of skill in the art.
Methods 400, 450 may be implemented in the form of execut
able instructions stored on a machine-readable storage
medium and/or in the form of electronic circuitry.
0047 FIG. 4A is a block diagram of an example method
400 for detection of elephant flows based on monitoring of an
amount or rate of data provided to a socket. Method 400 may
start in block 402 and proceed to block 405, where computing
device 210 may detect provision of data to a socket opened by
an application in which a particular flow originates. For
example, a shim layer 213 included in an operating system
212 of computing device 210 may detect the provision of data
from the application to the Socket. As detailed above, in some
implementations, computing device 210 may monitor a
socket buffer used to queue data provided to the socket by the
application.
0048. Upon detection of the provision of data to the
socket, method 400 may then proceed to block 410, where
computing device 210 may determine the amount of data
provided to the Socket as, for example, a number of bytes.
Computing device 210 may then add the determined number
of bytes to a running total, which may track a total amount of
data provided to the socket since it was opened. Alternatively,
the total may track a total amount of data provided to the
Socket in a given period of time. In such implementations,

US 2015/0341247 A1

computing device 210 may determine a rate at which data is
provided to the socket by dividing the total amount of data for
the time period by the duration of the time period.
0049. After computing device 210 determines the total
amount of data or a corresponding rate, method 400 may
proceed to block 415, where computing device 210 may
determine whether the amount of data or the determined rate
is greater than or equal to a threshold level. The threshold
level may vary based, for example, on the characteristics of
the network used for transmission of the flow, such that the
threshold is higher in networks with a greater amount of
bandwidth.
0050. When computing device 210 determines that the
amount of data or the rate is greater than or equal to the
threshold, method 400 may proceed to block 420. In block
420, computing device 210 may determine whether a mini
mal amount of time has elapsed since the elephant flow was
last tagged. In other words, to ensure that a central controller
230 or other node 240 is not overly burdened with elephant
flow signals, computing device 210 may only send out a
signal once every t seconds, where t may vary by implemen
tation.
0051. When computing device 210 determines that the
tagging period has elapsed, method 400 may continue to
block 425, where computing device 210 may generate the
signaling packet. For example, computing device 210 may
either set the header of the next packet to a predetermined
pattern or generate a dedicated signaling packet. In block 430,
computing device 210 may transmit the signaling packet to
the next hop in the network, which may be, for example, an
OpenFlow node 225 or another network node 240.
0052 Method 400 may then proceed to block 435. Alter
natively, if computing device 210 determines in block 415
that the amount or rate is less than the threshold or determines
in block 420 that the tagging period has not elapsed, method
400 may skip directly to block 435. In block 435, computing
device 210 may determine whether the socket corresponding
to the particular flow has been closed. If not, method 400 may
return to block 405, where computing device 210 may con
tinue monitoring the Socket for provision of data. Otherwise,
method 400 may proceed to block 437, where method 400
may stop.
0053 FIG. 4B is a block diagram of an example method
450 for detection of elephant flows based on monitoring of a
fill level of a socket buffer. Method 450 may startin block 452
and proceed to block 455, where computing device 210 may
configure the size of the socket buffer based on flow charac
teristics of the target network. For example, in a high-band
width network, Such as a data center, a typical flow is rela
tively large, so computing device 210 may set the buffer to a
large size (e.g., 1 megabyte). In contrast, in a lower-band
width network, such as a cellular or wireless network, where
typical flows are much smaller, computing device 210 may
set the buffer to a smaller size (e.g., 64 kilobytes).
0054 Method 450 may then proceed to block 460, where
computing device 210 may detect insertion of data into the
Socket buffer corresponding to a flow. For example, a shim
layer 213 in the operating system 212 of computing device
210 may detect insertion of data into the socket buffer by the
application in which the flow originates.
0055. After detection of the insertion of data into the
socket buffer, method 450 may proceed to block 465, where
computing device 210 may determine the current fill level of
the buffer. For example, computing device 210 may deter

Nov. 26, 2015

mine the total number of bytes of data queued in the buffer or,
alternatively, may determine the percentage of the buffer that
is occupied.
0056. In block 470, computing device 210 may determine
whether the fill level of the socket buffer has reached a thresh
old level. The threshold may be, for example, a percentage
(e.g., 75% full) or an amount of data (e.g., 64 kilobytes, 1
megabyte, etc.). If the socket buffer has reached the fill level,
method 450 may continue to block 475, where, as with block
420 of FIG. 4A, computing device 210 may determine
whether a tagging period has elapsed. If so, method 450 may
proceed to blocks 480 and 485, where computing device 210
may generate and transmit a signaling packet, as described
above in connection with blocks 425 and 430 of FIG. 4A.

0057 Method 450 may then proceed to block 490. Alter
natively, if computing device 210 determines in block 470
that the fill level is lower than the threshold or determines in
block 475 that the tagging period has not elapsed, method 450
may skip directly to block 490. In block 490, computing
device 210 may determine whether the socket corresponding
to the particular flow has been closed. If not, method 450 may
return to block 460, where computing device 210 may con
tinue monitoring the socket buffer for insertion of data. Oth
erwise, method 450 may proceed to block 492, where method
400 may stop.
0.058 FIG. 5 is a block diagram of an example operation
flow 500 illustrating the processing of example packets by a
computing device 510. As illustrated, computing device 510
includes an application 512 that provides data to a socket
buffer 514 that temporarily stores data for a particular flow. A
shim layer 516 included in the operating system of computing
device 510 monitors the fill level of Socket buffer 514 to
determine whether the flow associated with application 512 is
an elephant flow.
0059. It should be noted that, although operation flow 500

is described below with reference to a shim layer 516 that
monitors the fill level of a socket buffer 514, operation flow
500 is equally applicable to implementations in which a
buffer is not utilized (e.g., when device 510 transmits a UDP
flow). Furthermore, although described in connection with a
network that complies with the OpenFlow specification,
operation flow 500 is applicable to any network.
0060 Referring now to block 1A of operation flow 500,
application 512 initially generates a first data packet, P1, and
provides the packet to socket buffer 514 using, for example,
an API provided by the operating system of computing device
510. As shown by block 1B, packet P1 is inserted into the
socket buffer. Shimlayer 516 detects this insertion, but takes
no action, as the fill level of socket buffer 514 has not reached
the predetermined threshold (illustrated by the dotted line). In
block 2A, application 512 generates a second data packet, P2,
and inserts the packet into buffer 514, as shown by block 2B.
Again, shim layer 516 detects this insertion, but takes no
action.

0061 Next, in block 3A, application 512 generates a third
data packet, P3, and inserts P3 into buffer 514. As illustrated
by block 3B, the fill level of buffer 514 has now exceeded the
threshold. Accordingly, shim layer 516 detects this condition
and, in block 3C, generates a header for P3 that includes a
marking indicating that the flow is an elephant flow.
0062. In block 4, computing device 510 begins emptying
socket buffer 514 and, in the process, transmits packets P1,
P2, and P3 to the next hop, OpenFlow node 520. Upon receipt

US 2015/0341247 A1

of the unmarked packets, P1 and P2, node 520 forwards the
packets along path 1, as illustrated by block 5.
0063. Upon receipt of P3, however, node 520 detects the
modified header with the elephant flow marking and therefore
forwards P3 to central controller 530, as shown by block 6A.
In response, central controller 530 determines the most effi
cient path for the flow (here, Path 2) and, as shown by block
6B, transmits a forwarding table entry to node 520. In
response, node 520 updates its forwarding table and, as
shown by block 7, begins transmitting packets belonging to
the elephant flow over Path 2, starting with packet P3.
0064. According to the foregoing, example embodiments
disclosed herein allow for fast detection of elephant flows in
a manner that minimizes bandwidth usage in the network.
Furthermore, because the flow detection process may be
implemented in the operating system of the source of a flow,
example embodiments minimize or eliminate the need to
modify individual applications. Additional advantages of
embodiments disclosed herein will be apparent based on the
foregoing description.

1. A source computing device for detection of elephant
flows, the source computing device comprising:

a processor to:
monitor outgoing data provided from an application to a

socket provided by an operating system (OS) of the
Source computing device, the outgoing data associated
with a particular flow originating in the application,

determine, at the Source computing device, based on the
monitoring of the outgoing data provided to the socket,
whether the particular flow is an elephant flow, and

send a signal into a network that transmits the particular
flow, the signal indicating that the particular flow is an
elephant flow.

2. The Source computing device of claim 1, wherein, to
monitor, determine, and send, the processor executes logic
included in a shim layer of the OS of the computing device.

3. The source computing device of claim 1, wherein:
the processor monitors an amount of data provided to the

Socket during a given period of time,
the processor determines a rate at which the data was

provided to the socket based on the amount of data and
a duration of the given period of time, and

the processor determines that the particular flow is an
elephant flow when the determined rate exceeds a given
value.

4. The Source computing device of claim 1, wherein:
the processor monitors a total amount of data provided to

the socket since the Socket was opened for the particular
flow, and

the processor determines that the particular flow is an
elephant flow when the total amount of data provided to
the Socket exceeds a given value.

5. The source computing device of claim 1, wherein:
the processor monitors a current fill level of a socket buffer

corresponding to the Socket, and
the processor determines that the particular flow is an

elephant flow when the current fill level of the socket
buffer reaches a given level.

6. The source computing device of claim 5, wherein the
processor is further configured to size the socket buffer based
on characteristics of a plurality of flows in the network used
for transmission of the particular flow.

7. The source computing device of claim 1, wherein the
signal sent by the processor comprises one of:

Nov. 26, 2015

a packet belonging to the particular flow in which the
processor sets at least one bit in a header of the packet,
the at least one bit indicating that the particular flow is an
elephant flow, and

a separate signaling packet indicating that the particular
flow is an elephant flow.

8. The source computing device of claim 1, wherein:
in sending the signal into the network, the processor tags a

signaling packet for transmission to a central controller
in the network.

9. A non-transitory machine-readable storage medium
encoded with instructions executable by a processor of a
Source computing device for detection of elephant flows, the
machine-readable storage medium comprising:

instructions for monitoring data provided from an applica
tion in which a particular flow originates to a socket
provided in an operating system hosting the application
in the source computing device;

instructions for determining, at the source computing
device, based on an amount of data provided to the
socket by the application determined from the monitor
ing, whether the particular flow is an elephant flow; and

instructions for signaling a network used for transmission
of the particular flow when it is determined that the
particular flow is an elephant flow.

10. The non-transitory machine-readable storage medium
of claim 9, wherein the instructions for monitoring, the
instructions for determining, and the instructions for signal
ing are included in instructions of an operating system (OS) of
the source computing device.

11. The non-transitory machine-readable storage medium
of claim 10, wherein the instructions for monitoring monitor
a socket buffer provided by the OS of the source computing
device to queue the data provided to the socket by the appli
cation.

12. The non-transitory machine-readable storage medium
of claim 9, wherein the instructions for monitoring comprise
one of:

instructions for monitoring a rate at which data is provided
to the socket,

instructions for monitoring a total amount of data provided
to the socket, and

instructions for monitoring a current fill level of a socket
buffer provided to queue the data provided to the socket.

13. A method for detection of elephant flows in a source
computing device, the method comprising:

monitoring, by a shim layer included in an operating sys
tem (OS) of the Source computing device, an amount of
data provided from an application in which a particular
flow originates to a socket in the operating system;

determining, at the Source computing device, that the par
ticular flow is an elephant flow when the amount of data
provided to the operating system exceeds a given thresh
old; and

transmitting a signal indicating that the particular flow is an
elephant flow when it is determined that the particular
flow is an elephant flow.

14. The method of claim 13, wherein the monitoring com
prises one of:

monitoring the amount of data as a rate at which data is
added to a socket buffer provided by the operating sys
tem;

US 2015/0341247 A1

monitoring the amount of data as a total amount of data
added to the socket buffer since the particular originated;
and

monitoring the amount of data as a current fill level of the
socket buffer.

15. The method of claim 14, wherein the socket buffer is a
Transmission Control Protocol (TCP) buffer provided by the
operating system for transmission of the particular flow.

k k k k k

Nov. 26, 2015

