Title: METHOD AND FURNACE FOR HEAT TREATMENT

Abstract: A linear furnace body of a heat treatment furnace (1) has in its inside a preheating chamber (3), a heat treatment chamber (4), and a uniformly heating chamber (5) with partitioning doors (1, 2) provided between them. Independently driven hearth roller groups (6, 7, 8) are respectively provided in each of the chambers. At the time of preheating heating of work (W), two (6, 8) of the hearth roller groups of the preheating chamber (3) and uniformly heating chamber (5) are rotated in a normal direction and a reverse direction to oscillate the work (W). At the time of heating the work (W), one (7) of the hearth roller groups in the heat treatment chamber (4) is stopped.

via Japanese Patent Office
添付公開書類:
— 国際調査報告書

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

(57) 要約：直線状の炉本体内部に、仕切扉(1,2)を介して予熱室(3)、熱処理室(4)及び焼熱室(5)が設けられ、前記各室にそれぞれ独立駆動のハースローラ(6,7,8)が設けられた熱処理炉(1)において、ワーク(W)の予熱時及び焼熱時には、前記予熱室(3)及び前記焼熱室(5)の前記ハースローラ(6,8)を正回転及び逆回転させてワーク(W)を振動させ、該ワーク(W)の加熱処理時には前記熱処理室(4)の前記ハースローラ(7)を停止する。
明細書

熱処理方法及び熱処理炉

5 技術分野

本発明は、金属の熱処理方法及び熱処理炉に関し、詳しくは、ハースローラータイプの熱処理炉及び熱処理方法に関する。

背景技術

従来、炉内レールタイプ熱処理炉として、図5に示す構成の炉が提供されている。同図において、10は、装入テーブル、11は、熱処理室、12は、油槽、13は、出口コンベア、Wはワークである（例えば、特許第3103905号公報参照。）。

前記の炉内レールタイプのバッチ炉は、例えば、浸炭処理の場合、同じ室で浸炭（930〜1050℃）及び降溫均熱（830〜850℃）を繰り返すため、昇温、降溫均熱に時間がかかり、生産効率及び熱効率が悪いという問題がある。また、炉内レール受けがレンガであり、脆く、蓄熱量が大きいため、シーズンング時間が大きいという問題も残されている。

その他、ハースローラータイプのバッチ炉として、図6に示す構成の炉が提供されている。なお、同図において、図5と同一部分には同一符号を付してある。図6中、14は、ハースローラである（例えば、特開昭63-33552号公報参照）。

前記ハースローラータイプのバッチ炉も前記炉内レールタイプのバッチ炉と同様に、例えば、浸炭処理の場合、同じ室で浸炭（930〜105
0℃）及び降溫均熱（830～850℃）を繰り返すため、昇温、降溫均熱に時間がかかり、生産効率及び熱効率が悪いという問題がある。また、高温の熱処理室における前記ハースローラ14の変形を防止するため、ワークWが供給された状態で前記ハースローラ14を常時正回転及び逆回転させるスペースが必要であり、さらに、ハースローラ14の両端が炉壁を貫通しているため、熱放射が大きいという問題がある。

本発明は、前記構成の炉内レールタイプ及びハースローラタイプのバッチ炉の問題を解決し、生産効率及び熱効率を高めた経済的な熱処理方法を提供することを目的としている。

本発明はまた、前記熱処理方法を実施するのに用いて好適な、コンパクトで経済的な熱処理炉を提供することを目的としている。

発明の開示

本発明に係る熱処理方法は、直線状の炉本体内部に、仕切扉を介して予熱室、熱処理室及び均熱室が設けられ、前記各室にそれぞれ独立駆動のハースローラが設けられた熱処理炉において、ワークの加熱処理時には前記熱処理室のハースローラを停止することを特徴とする。

前記熱処理方法によれば、炉本体内部が仕切扉により予熱室、熱処理室及び均熱室に区画されているため、各種熱処理における雰囲気及び温度制御を正確に行うことができる。

また、従来のローラハース炉においては、高温加熱によるハースローラの変形を防止するため、熱処理室において、前記ハースローラを正回転及び逆回転させていたが、本発明では、前記熱処理室においては前記ハースローラを逆回転させない。すなわち、正回転あるいはインチングのみを行うことを特徴とする。
上記の結果、ワークを往復動させるためのスペースが不要になり、前記熱処理室及び炉本体全体のコンパクト化が可能になる。また、摺拌ファンによる霧団気ガスの摺拌効果も向上する。すなわち、霧団気ガスの流速分布がより均一になり、熱処理室内の均熱の向上が確認された。例えば、前記従来のハースローラを正回転及び逆回転させる炉では±7.5℃であったのに対して、本発明に係るコンパクト化された炉では±6.0℃以内になったことが確認され、前記従来の炉に比べて、処理品の品質向上が可能となった。

さらに、前記熱処理室のコンパクト化は、該熱処理室が高温であることから、特に効果が大きい。すなわち、加熱に要するヒーターやバーナー、その電力やガスの消費量及びその経費削減、さらには断熱材等の大幅な経費削減になる。

本発明の他の実施の形態に係る熱処理方法は、直線状の炉本体内部に、仕切扉を介して予熱室、熱処理室及び均熱室が設けられ、前記各室にそれぞれ独立駆動のハースローラが設けられた熱処理炉において、ワークの予熱時及び均熱時には、前記予熱室及び均熱室のハースローラを正回転及び逆回転させてワークを揺動させ、ワークの加熱処理時には前記熱処理室のハースローラを停止することを特徴とする。

前記熱処理方法によれば、前記ワークの加熱処理時に前記熱処理室のハースローラを停止させる熱処理方法において、均一に予熱したワークを前記熱処理室に供給でき、さらに熱処理完了ワークの正確な均熱化が可能である。

本発明に係る熱処理炉は、直線状の炉本体内部に、仕切扉を介して予熱室、熱処理室及び均熱室が設けられ、前記各室に独立駆動のハースローラが設けられ、前記予熱室及び前記均熱室のハースローラが正
回転及び逆回転自在に、前記加熱室のハースローラが正回転のみ可能に構成されてなることを特徴とする。したがって、前記処理室においては、前記ハースローラの正回転あるいはインチングのみが行われる。

前記熱処理炉によれば、本発明に係る前記熱処理方法を容易に実施することができる。また、前記熱処理室においてワークを往復動させることがないため、前記熱処理室及び炉本体全体のコンパクト化が可能となる。この熱処理室のコンパクト化により、大幅な経費削減も可能となる。

本発明の他の実施の形態に係る熱処理炉は、前記熱処理室の前記ハースローラが、超耐熱鋼に微量のタンガステン、コバルト、チタンを添加してクリーブ特性を高めた素材で形成されていることを特徴とする。

前記熱処理炉によれば、前記熱処理室内において、従来のように、ハースローラを正回転及び逆回転させてその変形を防止する必要がなく、ハースローラを停止させたままワークの熱処理を行うことができる。したがって、ワークを往復動させるためのスペースが不要であり、炉本体全体のコンパクト化が図られる。また、ハースローラの径を小さくできるため、炉壁を貫通している両端からの放熱量を減少させることができる。

本発明の他の実施の形態に係る熱処理炉は、前記炉本体の炉壁が、炉内側からレンガ層、シリカ層、酸化チタン及び無機ファイバーの圧縮成形体層で構成されていることを特徴とする。この熱処理炉によれば、炉壁の断熱効果の向上に伴い、炉表面からの熱放射が低減させられ、加熱エネルギーの節減による経済的効果が得られる。また、炉壁厚の縮小が可能であり、同時に、ハースローラの短縮及び該短縮に伴うハースローラの変形防止効果の向上を図ることができる。
図面の簡単な説明

図1は、本発明に係る熱処理炉の概略側面図及び浸炭処理実施例を示す図である。

図2は、本発明に係る熱処理炉の概略側面図及び軟窒化処理実施例を示す図である。

図3は、本発明に係る熱処理炉の概略側面図及び調質処理実施例を示す図である。

図4は、本発明に係る熱処理炉の炉壁断面図及び断熱温度曲線図である。

図5は、従来のレールタイプバッチ炉の概略側面図である。

図6は、従来のハースローラータイプバッチ炉の概略側面図である。

発明を実施するための最良の形態

本発明の好適な実施の一形態に係る熱処理炉1は、図1乃至図3に示すように、直線状の炉本体の内部に、仕切扉1及び2を介して、予熱室3、熱処理室4及び均熱室5が設けられている。図中、10は、装置テーブル、12は、油槽、13は、出口コンベアである。さらに、好ましい例として、図面実施例では、前記予熱室3と前記熱処理室4の大きさの比率が1：3とされ、前記均熱室5と前記熱処理室4の大きさの比率も1：3とされ、全長を従来の熱処理炉とほぼ同様にして、約3倍の生産量を可能にしている。

前記予熱室3、前記熱処理室4及び前記均熱室5には、それぞれ独立駆動のハースローラ6、7及び8が設けられている。さらに、前記予熱室3及び前記均熱室5内のハースローラ6、8が正回転及び逆回転自在に構成され、前記熱処理室4内のハースローラ7が正回転あるいはイン
チングのみ可能に構成されている。

前記熱処理炉１においては、超耐熱鋼に微量のタンズテン、コパルト、チタンを添加してクリープ特性を高めた素材を用いて、前記熱処理室４の前記ハースローラ７を形成している。このため、従来のごとく、前記熱処理室４内において、正回転及び逆回転を繰り返してその変形を防止する必要がない。したがって、前記熱処理室４内においてワークWを往復動させるためのスペースが必要であり、熱処理室及び炉本体全体のコンパクト化が可能となる。また、前記ハースローラの径を、例えば、従来の１０４mmから９０mmに小さくできるため、炉壁を貫通している両端からの放熱量を減少させることもできる。

なお、前記予熱室３及び前記均熱室５の前記各ハースローラ６、８も、前記熱処理室４の前記ハースローラ７と同じ前記素材で形成しても良い。

前記ハースローラの変形、具体的には、曲がりには、該ハースローラの強度とともに、ワークWの温度と炉内温度との温度差が大きく影響する。前記ワークWの温度と炉内温度との温度差が大きいのは予熱室３であり、したがって、予熱室３において、ハースローラ６を正回転及び逆回転させ、前記温度差を小さくした後、前記熱処理室４に供給することにより、該熱処理室４におけるハースローラ７の変形を最小限に抑えることができる。

なお、浸炭炉における熱処理室において、従来のハースローラと本実施の形態におけるハースローラとを比較したところ、従来品の場合、受入れ時、２mm以下の曲がりであったものが、３ヶ月の使用後には、5mm以上の曲がりとなり、交換の必要が発生したものに対し、本実施の形態におけるハースローラは、受入れ時、0.3mmの曲がりであったものが、８ヶ月の使用後においても、曲がりが１mm以下の状態であり、
交換の必要はなかった。

なお、前記数値は、ハースローラ両端のフランジ部からそれぞれ内側に75 mmの地点と中央地点間をダイヤルゲージによって測定したものであり、前記従来品のハースローラは、正回転及び逆回転を繰り返した場合であり、本実施の形態におけるハースローラは、インチング（停止及び正回転）のみを行った場合である。

図4には、本発明に係る熱処理炉の炉壁構造及び断熱温度曲線図が示されている。すなわち、炉壁が、炉内側から、厚さ115 mmのレンガ層15、厚さ85 mmのシリカ層16、厚さ50 mmの酸化チタン及び無機ファイバーの圧縮成形体層17で構成されている。また、断熱温度曲線を見ると、炉内温度950℃に維持した炉本体の表面温度は50℃以下である。また、炉壁厚が大幅に削減されるとともに省エネルギー化が可能となった。

前記熱処理炉1は、金属の各種熱処理に使用することができる。図1は浸炭処理の一実施例である。すなわち、前記装入テーブル10に供給されたワークWが、図示しない装入扉を介して予熱室3に供給され、該予熱室3内のハースローラ6が、正回転及び逆回転させられて均一予熱が行われる。

その後、前記予熱室3と前記熱処理室4との間の仕切扉1が開かれ、前記ハースローラ6、7が駆動させられ、ワークWが前記熱処理室4へ搬送され、例えば、所定雰囲気のカーボンポテンシャル1.0%及び所定温度の940℃にて、所定時間の540分間の浸炭処理が行われる。図1乃至図3に示す熱処理炉では、前記熱処理室4内における浸炭処理は、前記ハースローラ7を逆回転させることなく、停止して行われる。

すなわち、前記熱処理室4内に設けた前記ハースローラ7を正回転ある
いはインチングさせてワークWを前記熱処理室4内の所定位置に順次移動させ、前記ハースローラ7を逆回転させることなく浸炭処理が行われる。

具体的には、前記の浸炭処理条件の場合には、前記熱処理室4内へ搬送及び収容可能な三ブロックのワークWが前記熱処理室4内に、それぞれ540分間滞在させられて浸炭処理が行われるように、前記熱処理4内のハースローラ7が正回転あるいはインチング及び停止させられて浸炭処理が行われる。同時に浸炭処理を完了したワークWが均熱室5へ搬送され、さらに予熱室3から浸炭処理すべき次のワークWの搬入が行われる。

前記熱処理室4において浸炭処理が完了したワークWは、前記熱処理室4と均熱室5との間の仕切扉2が開かれ、前記ハースローラ7、8が駆動させられて前記均熱室5へ搬送され、該均熱室5内の前記ハースローラ8が正回転及び逆回転させられて、所定の均熱温度、例えば、850℃に降温、均熱保持される。

その後、図示しない均熱室5と油槽12との間の開閉扉が開かれて、均熱ワークWの焼入れが行われ、焼入れ完了とともに、図示しない出口扉が開かれて、ワークWが前記出口コンベア13へ搬出される。

前記のごとく、図1乃至図3に示す熱処理炉では、前記予熱室3へのワークWの装入、該予熱室3から前記熱処理室4へのワークWの搬送、該熱処理室4から前記均熱室5へのワークWの搬送、さらには該均熱室5から油槽12へのワークWの搬送、該油槽12から前記出口コンベア13へのワークWの搬出が、効率よく連続的に行われ、生産効率が高められる。

図2は、前記熱処理炉1を用いて行った軟窒化処理の一実施例である。
すなわち、前記装入テープル１０に供給されたワークＷが、図示しない装入扉を介して前記予熱室３に供給され、該予熱室３内のハースローラ６が正回転及び逆回転させられて均一予熱が行われる。その後、前記予熱室３と前記熱処理室４との間の前記仕切扉１が開かれ、前記ハースローラ６、７が駆動させられ、ワークＷが前記熱処理室４へ搬送され、所定雰囲気のＲ×ガス及びアンモニアガス中で、例えば、所定温度の５５０℃、所定時間の１２０分間の軟窒化処理が行われる。

前記熱処理室４において所定時間の軟窒化処理が完了すると、前記熱処理室４と、前記均熱室５間との間の仕切扉２が開かれ、前記ハースローラ７、８が駆動させられ、ワークＷが前記均熱室５に搬送され、均熱工程を経ることなく、前記均熱室５と前記油槽１２との間の図示しない開閉扉が開かれてワークＷの焼入れが行われ、該焼入れ完了とともに、図示しない出口扉が開かれて、ワークＷが前記出口コンベア１３へ搬送される。

図３は、前記熱処理炉１を用いて行った調質処理の一実施例である。

すなわち、前記装入テープル１０に供給されたワークＷが、図示しない装入扉を介して前記予熱室３に供給され、該予熱室３内のハースローラ６が正回転及び逆回転させられて均一予熱が行われる。その後、前記予熱室３と前記熱処理室４との間の仕切扉１が開かれ、前記ハースローラ６、７が駆動させられ、ワークＷが前記熱処理室４へ搬送され、所定雰囲気のカーボンポテンシャル０．３～０．５％中で、例えば、所定温度の８８０℃、所定時間の３０分の調質処理が行われる。

その後の工程は、前記軟窒化処理の場合と同様であり、均熱工程を経ることなく、焼入れが行われる。

本発明によれば、生産効率及び熱効率を高めた熱処理方法及び該熱処
10
理方法を実施するためのコンパクトで経済的な熱処理炉を提供することができる。
請求の範囲

1. 直線状の妒本体内部に、仕切扉（1, 2）を介して予熱室（3）、熱処理室（4）及び均熱室（5）が設けられ、前記各室にそれぞれ独立駆動のハースローラ（6, 7, 8）が設けられた熱処理炉（1）において、ワーク（W）の加熱処理時には前記熱処理室（4）の前記ハースローラ（7）を停止することを特徴とする熱処理方法。

2. 直線状の妒本体内部に、仕切扉（1, 2）を介して予熱室（3）、熱処理室（4）及び均熱室（5）が設けられ、前記各室にそれぞれ独立駆動のハースローラ（6, 7, 8）が設けられた熱処理炉（1）において、ワーク（W）の予熱時及び均熱時には、前記予熱室（3）及び前記均熱室（5）の前記ハースローラ（6, 8）を正回転及び逆回転させてワーク（W）を振動させ、該ワーク（W）の加熱処理時には前記熱処理室（4）の前記ハースローラ（7）を停止することを特徴とする熱処理方法。

3. 直線状の妒本体内部に、仕切扉（1, 2）を介して予熱室（3）、熱処理室（4）及び均熱室（5）が設けられ、前記各室にそれぞれ独立駆動のハースローラ（6, 7, 8）が設けられており、前記予熱室（3）及び前記均熱室（5）の前記ハースローラ（6, 8）が正回転及び逆回転自在に構成され、前記熱処理室（4）の前記ハースローラ（7）が正回転のみ可能に構成されてることを特徴とする熱処理炉。
4. 前記熱處理室（4）の前記ハースローラ（7）が、超耐熱鋼に微量のタングステン、コバルト、チタンを添加してクリープ特性を高めた素材で形成されていることを特徴とする請求の範囲第3項に記載の熱処理炉。

5. 前記炉本体の炉壁が、炉内側から、レンガ層（15）、シリカ層（16）、酸化チタン及び無機ファイバーの圧縮成形体層（17）で構成されていることを特徴とする請求の範囲第3項または第4項に記載の熱処理炉。
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
Int.Cl1 C21D1/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
Int.Cl1 C21D1/00, F27B9/00-9/40, F27D1/00-1/18

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>JP 6-22358 U (Ishikawajima-Harima Heavy Industries Co., Ltd.), 22 March, 1994 (22.03.94), Par. No. [0013] (Family: none)</td>
<td>1-5</td>
</tr>
<tr>
<td>A</td>
<td>JP 2001-200311 A (Nippon Steel Corp.), 24 July, 2001 (24.07.01), Full text (Family: none)</td>
<td>1-5</td>
</tr>
</tbody>
</table>

[X] Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
*"A" document defining the general state of the art which is not considered to be of particular relevance
*"E" earlier document but published on or after the international filing date
*"I" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
*"O" document relating to an oral disclosure, use, exhibition or other means
*"P" document published prior to the international filing date but later than the priority date claimed

"R" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
document member of the same patent family

Date of the actual completion of the international search 18 February, 2004 (18.02.04)
Date of mailing of the international search report 09 March, 2004 (09.03.04)

Name and mailing address of the ISA/ Japanese Patent Office
Authorized officer
Facsimile No.
Telephone No.

Form PCT/ISA/210 (second sheet) (July 1998)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP 55-6686 B2 (Daido Steel Co., Ltd.), 19 February, 1980 (19.02.80), Full text (Family: none)</td>
<td>1-5</td>
</tr>
</tbody>
</table>
A. 発明の属する分野の分類（国際特許分類（IPC））

Int. C17 C21D 1/00

B. 調査を行った分野

調査を行った最小限資料（国際特許分類（IPC））

Int. C17 C21D 1/00, F27B 9/00～9/40, F27D 1/00～1/18

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報 1922～1996年
日本国公開実用新案公報 1971～2004年
日本国登録実用新案公報 1994～2004年
日本国実用新案登録公報 1996～2004年

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

C. 関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献のカテゴリー</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求の範囲の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>EP 168788 B1 (Chugai Ro Co., Ltd.) 1990.06.27, 全文</td>
<td>1-5</td>
</tr>
<tr>
<td></td>
<td>& US 4627814 A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>& JP 61-16910 B2</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>JP 62-22358 U (石川島播磨重工業株式会社) 1994.03.22, 【0013】（ファミリーなし）</td>
<td>1-5</td>
</tr>
</tbody>
</table>

引文文献のカテゴリー

「A」特に関連のある文献ではなく、一般的な技術水準を示すもの

「E」国際出願日以前の出願または特許であるが、国際出願日以後に公表されたもの

「L」優先権主張に疑義を抱いた文書又は他の文献の発行日若しくは他の特別な理由を挙げるために引用する文献（理由を付す）

「O」口頭による開示、使用、展示等に言及する文献

「P」国際出願日まで、かつ優先権の主張の基礎となる出願の日後には公表された文献

「T」国際出願日又は優先日後に公表された文献であって出願日と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの

「X」特に関連のある文書であって、当該文書のみで発明の新規性又は進歩性がないと考えられるもの

「Y」特に関連のある文書であって、当該文書と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの

「&」同一パートファミリー文献

国際調査結果

日本国特許庁（ISA/JP）

〒100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官（権限のある職員）

鈴木 橋

電話番号 03-3581-1101 本部 3435

株式PCT／ISA／210（第2ページ）（1998年7月）
<table>
<thead>
<tr>
<th>引用文献のカテゴリー</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求の範囲の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP 2001-200311 A (新日本製鐵株式会社) 2001.07.24, 全文 (ファミリーなし)</td>
<td>1-5</td>
</tr>
<tr>
<td>A</td>
<td>JP 55-6686 B2 (大同特殊鋼株式会社) 1980.02.19, 全文 (ファミリーなし)</td>
<td>1-5</td>
</tr>
</tbody>
</table>