発明の名称: 車外音検出装置

Title: DEVICE FOR DETECTING SOUNDS OUTSIDE VEHICLE

Abstract: Disclosed is a device that is for detecting sounds that are outside a vehicle, and that can detect external or sounds that are outside the vehicle with good precision, even in a variety of surrounding environments. A sound-source direction detection ECU (1) acquires collected sound information relating to sound outside the vehicle that has been collected by means of microphones (2A-2G). The sound-source direction detection ECU (1) acquires traveling path information of the surroundings of the vehicle on the basis of the acquired collected sound information. Also, when the traveling path information has been acquired, the sound collection properties of the microphones (2A-2G) are adjusted on the basis of the traveling path traveling path information.
添付公開書類:
- 国際調査報告（条約第21条(3)）

明細書

発明の名称：車外音検出装置

技術分野

本発明は、車両に設けられ、車両の外側の音である車外音を検出す車外音検出装置に関する。

背景技術

車両の外側の音である車外音を検出す装置として、従来、複数のマイクロホンを備え、他の車両の走行音などの所定の車外音を検出す音源の方向推定装置がある（たとえば、特許文献1参照）。この音源の方向推定装置は、複数のマイクロホンの入力信号を、時間窓について切り出し、それぞれの時間窓において複数の周波数について音源の方向推定値を算出するものである。

ここで、音源の方向を検出すにあたり、音源の方向として予想される方向範囲を諸条件に基づいて予め設定しておき、この方向範囲から外れた位置については、方向推定値を算出する際には、方向範囲から外れた位置の検出結果を除外するようにしている。このように、予め予想される方向範囲から外れた位置の検出結果を除外することにより、音源方向がおおよそ判明している場合に、所定音の音源となっている方向の検出精度を高めることができるというものである。

先行技術文献

特許文献

特許文献1：特開2001-166025号公報
特許文献2：実開平5-92767号公報
発明の概要
発明が解決しようとする課題
[0006] 上記特許文献１に開示された音源の方向推定装置では、音源の方向を推定するにあたり、音源の特性に主に着目している。しかし、音源の特性は、車両の周囲環境等の変化によって変化することがあるため、車両の周囲環境によっては検出精度が低くなってしまう可能性があるという問題があった。また、特許文献２に開示された接近車両認識装置においても、同様の問題がある。

[0007] そこで、本発明の課題は、様々な周囲環境の下であっても、精度よく車両の外側の車外音を検出することができる車両音検出装置を提供することにある。

課題を解決するための手段
[0008] 上記課題を解決した本発明は車両音検出装置は、車両に設けられ、車外の音声を集音する集音手段と、集音手段で検出した車外の音声から、検出対象音を検出する対象音検出手段と、車両が走行する走行路に関する走行路情報検出手段と、走行路情報検出手段の検出結果に基づいて、集音手段の集音特性を調整する集音特性調整手段と、を備えることを特徴とする。

[0009] 本発明に係る車両音検出装置は、走行路情報検出手段の検出結果に基づいて、集音手段の集音特性を調整する集音特性調整手段を備えている。このため、車両が走行する走行路の走行路情報に応じて集音手段の集音特性を調整することができる。したがって、様々な周囲環境の下であっても、精度よく車両の外側の車外音を検出することができる。

[0010] また、対象音検出手段の検出結果に基づいて、検出対象音の方向を検出する方向検出手段を更に備えることができる。

[0011] ここで、検出対象音が、車両に接近する接近車両の走行音である様子とすることができる。

[0012] このように、車両に接近する接近車両を検出することにより、接近車両の
存在をドライバに認識させることができるので、接近車両の存在に応じた対応を予めドライバに対して準備させることができる。

また、走行路情報検出手段は、走行路情報として、車両が走行する走行路の形状を検出する態様とすることができる。この場合、集音特性調整手段は、走行路の形状に基づいて、集音手段の特性として、集音手段の指向性を調整する態様とすることができる。そして、集音特性調整手段は、走行路の形状に基づいて車両が進行する道路の方向が確定すると判断される場合に、走行路の形状に基づいて、集音手段の特性として、集音手段の指向性を調整する態様とすることができる。

このように、走行路情報として車両走行する走行路の形状を検出することにより、接近車両が近づく接近方向を推定することができる。その結果、集音手段の指向性を音源の方向に合わせることができるので、接近車両の走行音を検出する精度を高めることができる。ここで、走行路の形状としては、直進道路、カーブ、交差点、一方通行の有無などが含まれ、走行路が交差点である場合の交差点形状、交差点の道路本数、その向きなどを挙げることが可能である。

さらに、走行路情報検出手段は、走行路情報として、車両が走行する走行路に近接し、接近車両が走行する走行路の路面種類を検出する態様とすることができる。この場合、集音特性調整手段は、接近車両が走行する走行路の路面種類に基づいて、集音手段の特性として、集音手段の使用帯域を調整する態様とすることができる。

走行路の路面種類が異なると、集音特性も異なってくる。具体的には、路面種類により、接近車両の走行音を検出する際の演算に使用する周波数の使用帯域となる周波数帯域などが異なってくる。このため、接近車両が走行する走行路の路面種類に基づいて、集音手段の特性として、集音手段の使用帯域を調整し、走行路の路面種類に応じた集音特性を利用することにより、接近車両の走行音を検出する精度を高めることができる。

ここでは、路面の種類としては、たとえばアスファルト、コンクリート、砂
利道などを挙げることができる。また、車両が走行する走行路に近接する走行路としては、車両が走行する走行路と交差する走行路、車両が走行する走行路に隣接する走行路などを挙げることができる。さらには、車両が走行する走行路に近接する走行路としては、車両が走行する走行路から集音手段によって接近車両の走行音を集音可能とされる領域内の走行路を挙げることもできる。

[0024]本発明に係る車外音検出装置によれば、様々な周囲環境の下であっても、
精度よく車両の外側の車外音を検出すことができる。

図面の簡単な説明

[0025] [図1] 本発明に係る車外音検出装置のブロック構成図である。

[図2] (a) ～ (c) とも、車両におけるマイクホンアレーの搭載例を示す斜視図である。

[図3] 車外音検出装置における処理手順を示すフローチャートである。

[図4] 車両の走行路の一例を平面図にして示す概略図である。

[図5] (a) は、車両の走行路（アスファルト）の一例を平面図にして示す概略図、(b) は、ここで集音された走行音の周波数を示すグラフである。

[図6] (a) は、車両の走行路（砂利道）の一例を平面図にして示す概略図、(b) は、ここで集音された走行音の周波数を示すグラフである。

[図7] 集音時の指向性調整装置を示す概略説明図である。

[図8] 集音時の指向性調整時に用いるマイクホンを説明する概略説明図である。

[図9] 集音時の指向性調整時に用いるマイクホンの他の例を説明する概略説明図である。

発明を実施するための形態

[0026] 以下、添付図面を参照して本発明の実施形態について説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。また、図示の便宜上、図面の寸法比率は説明のものと必ずしも一致しない。

[0027] 図1は、本発明に係る車外音検出装置のブロック構成図である。図1に示すように、本実施形態に係る車外音検出装置Mは、音源方向検出ECU（Electronic Control Unit）1を備えている。音源方向検出ECU1は、CPU（Central Processing Unit）、ROM（Read Only Memory）、RAM（Random Access Memory）（図示せず）などからなる電子制御ユニットである。音源方向検出ECU1には、マイクホンアレー2、ナビゲーション装置3、通信装置4、撮像装置5、およびレーダーセンサ6が接続されている。また、音源方
向検出 ECU 1 には、表示器 7 が接続されている。

さらに、音源方向検出 ECU 1 は、マルチチャンネル A D 变換部 11、マイクロホンアレー処理部 12、判定処理部 13、および特性変更部 14 を備えている。また、音源方向検出 ECU 1 は、車両検出処理部 15、および出力変更部 16 を備えている。

マイクロホンアレー 2 は、複数、本実施形態では 7 個のマイクロホン 2 A 〜 2 G を備えている。マイクロホンアレー 2 におけるマイクロホン 2 A 〜 2 G は、車両の周囲における音声を集音している。マイクロホン 2 A 〜 2 G は、集音した音声に関する集音情報を音源方向検出 ECU 1 に送信している。マイクロホン 2 A 〜 2 G は、本発明の集音手段に相当する。

マイクロホンアレー 2 は、図 2 に示すように、車両 P の幅方向に並ぶように配置されている。マイクロホンアレー 2 は、図 2 (a) に示すように、車両 P におけるバンパ部に設置されていてもよいし、図 2 (b) に示すようにポンネット B N 内部におけるウィンドシールドの近傍に設置されていてもよい。あるいは、図 2 (c) に示すように、車両 P の天井部に設けられたルーフキヤリア R 内に設置されていてもよい。

ナビゲーション装置 3 は、全世界測位システム (GPS、Global Positioning System) 等を利用して自車両の現在の走行位置を検出するとともに、走行目的地までの各種案内を行う。また、ナビゲーション装置 3 は、自車両の現在位置周辺に関する地図情報を持ち合わせている。このナビゲーション装置 3 は、保持している地図情報に基づいて、自車両の現在の走行位置における道路の形状や路面種類、あるいは周辺の建物や停車している他車両などの周辺環境情報を含む走行路周边情報を取得する。ここで周囲環境情報には、道路の周辺における建物や駐車中の車両に関する情報などが含まれる。ナビゲーション装置 3 は、取得した自車両の現在の走行位置における走行路周辺に関する走行路周边情報を音源方向検出 ECU 1 に送信する。

通信装置 4 は、交通情報を送受信する交通情報センサや交差点近く的道路等に設けられる路側装置などとの通信が可能とされている。通信装置 4 は、
交通情報センターや路側装置から送信される各種の道路情報や天候情報を受信する。ここでの道路情報には、上記の走行路周辺情報にも含まれる道路形状、路面種類、周辺の建物情報などが含まれる。通信装置4は、受信した道路情報を音源方向検出ECU1に送信する。

撮像装置5は、車両の前方に取り付けられており、車両の周囲を撮像する。撮像装置5は、撮像して得られた画像に基づいて、車両が走行する道路の走行路周辺情報を取得する。ここで走行路周辺情報としては、周囲環境情報や道路の形状や路面種類などの情報が含まれる。撮像装置5は、取得した走行路周辺情報を音源方向検出ECU1に送信する。

レーダーセンサ6は、車両の前方位置に設けられており、車両の周囲における他車両や建物などの周囲環境情報を検出する。レーダーセンサ6は、検出した他車両などの周囲環境情報を音源方向検出ECU1に送信する。

マルチチャンネルA~D変換部11には、マイクロホンアレーパー2におけるマイクロホン2A~2Gがそれぞれ接続されている。マルチチャンネルA~D変換部11は、マイクロホン2A~2Gから送信される音情報を各チャンネルのデジタル信号にA~D変換する。マルチチャンネルA~D変換部11は、A~D変換した音情報をマイクロホンアレーパー処理部12に出力する。

マイクロホンアレーパー処理部12は、マルチチャンネルA~D変換部11から出力された各チャンネルのデジタル信号に基づいて、音源方向分布データを生成する。ここでは、走行音を発生させる接近車両の走行音やその他の音などが音源となっている。マイクロホンアレーパー処理部12は、生成した音源方向分布データを車両検出処理部15に出力する。

判定処理部13は、ナビゲーション装置3、通信装置4、撮像装置5、およびレーダーセンサ6から送信される各種情報に基づいて、音源方向の判定を行う際ににおけるデジタル信号の周波数や音響手段の指向性といった音響特性を変更して調整するか否かの特性判定を行う。判定処理部13は、特性変更判定の結果に基づく特性変更判定信号を特性変更部14および出力変更部16に出力する。
特性変更部14は、判定処理部13から出力される特性変更判定信号が、音源方向を推定する際の特性を変更するものである場合に、変更させる特性を判断する。特性変更部14では、特性を変更させる場合に、変更させる特性に応じた特性変更信号をマイクロホンアレー処理部12に出力する。

マイクロホンアレー処理部12では、特性変更部14から特性変更信号が出力された際には、音源方向分布データを生成する際に、マルチチャンネルA/D変換部11から出力された各チャンネルのデジタル信号の処理を調整する。たとえば、周波数特性を変更する場合には、変更態様に応じた周波数特性に基づいて音源方向分布データを生成する。

車両検出処理部15は、マイクロホンアレー処理部12によって取得される音源方向分布データにおいてピークを取る方位の系列を算出する。車両検出処理部15では、算出した音源方向分布データにおけるピークを取る方位の系列を記憶しておく。この方位の系列に基づいて、接近車両が存在するおよびその接近方向（方位）を検出する。

このとき、車両検出処理部15は、記憶している音源方向分布データにおいてピーク値が高い上位数位（ここでは3位）の方位の系列に対してクラスタリング処理を行うことにより、音源方向分布データにおいてピークを取る方位をクラスごとにグループ化する。さらに、車両検出処理部15は、クラスごとにセントロイド（クラスの重心）から各方位までの平均距離を計算し、その平均距離に基づいて当該方位の範囲内から接近車両が到来してくる可能性を判断する。

セントロイドから各方位までの平均距離は、各方位がどの程度の広がりを持っているかを示している。各方位の広がり（ばらつき度）が小さくなるほど、当該方位の範囲内から接近車両が到来してくる可能性が高くなる。こうして、接近車両の有無およびその接近方向（方位）を検出する。車両検出処理部15は、接近車両が到来してくる可能性がある方向に基づく接近車両到来情報を出力変更部16に出力する。

出力変更部16は、車両検出処理部15から出力された接近車両到来情報を，
に基づいて、警報を出力するための出力処理を行う。また、出力変更部16は、判定処理部13から出力される特性変更判定信号に基づいて、出力の態様を変更する。出力変更部16は、出力処理に伴う警報信号を表示器7に送信する。

また、音源方向検出ECU1は、マイクロホン2A〜2Gで検出した車外の音声から、検出対象音となる接近車両の走行音を検出する。音源方向検出ECU1は、本発明の対象音検出手段を構成している。さらに、音源方向検出ECU1は、車両が走行する走行路に関する走行路情報を検出し、その検出結果に基づいて、マイクロホン2A〜2Gの集音特性を調整する。音源方向検出ECU1は、本発明の走行路情報検出手段および集音特性調整手段を構成する。また、音源方向検出ECU1は、接近車両が存在するおよびその接近方向（方位）を検出するため、本発明の方向検出手段を構成する。

表示器7は、音声を出力するスピーカや警報表示を行うモニタなどを備えている。表示器7は、出力変更部16から送信される警報信号により、接近車両がある場合に、接近車両に関する情報を出力する。ここでは、たとえば接近車両の方向などをスピーカから出力したりモニタに表示したりする。

次に、本実施形態に係る車外音検出装置における処理手順について説明する。図3は、本実施形態に係る車外音検出装置における処理手順を示すフローチャートである。図3に示すように、本実施形態に係る車外音検出装置においては、まず、自車両の位置を取得する（S1）。自車両の位置は、判定処理部13において、ナビゲーシヨン装置3から送信される走行路周辺情報に基づいて取得する。

自車両の位置を取得したら、走行路情報として、自車両が走行している道路の道路種別を取得する（S2）。自車両が走行している道路の道路種別は、判定処理部13において、ナビゲーシヨン装置3から送信される走行路周辺情報、通信装置4から送信される道路情報、撮像装置5およびレーダセンサ6から送信される走行路周辺情報等に基づいて取得される。

さらに、走行路情報として、自車両が走行する走行路周辺の天候情報を取
得する（S 3）。天候情報は、判定処理部 1 3 において、通信装置 4 から送信される走行路周辺情報から取得する。続いて、判定処理部 1 3 において、周囲環境情報を取得する（S 4）。周囲環境情報は、ナビゲーション装置 3、通信装置 4、撮像装置 5、レーダーセンサ 6 から送信される各種情報から取得する。

その後、自車両が進行する道路の方向が確定しているか否かを判断する（S 5）。自車両が進行する道路の方向が確定しているか否かは、自車両が進行する走行路の形状等に基づいて判断される。たとえば、自車両が交差点のない直進を走行している場合には自車両は直進することが確定する。また、自車両が右折路のみがある L 字路や T 字路であって、突き当たる道路が左方向から右方向への一方通行に差し掛かる場合には、自車両は右折することが確定する。

その結果、自車両が進行する方向が確定している場合には、マイクロホン 2 A ～ 2 G の集音特性としての指向性を変更して（S 6）、調整する。マイクロホン 2 A ～ 2 G の指向性を変更する際には、マイクロホン 2 A ～ 2 G の指向性を変更する内容の特性変更判定信号を特性変更部 1 4 に送る。特性変更部 1 4 では、マイクロホン 2 A ～ 2 G の指向性を変更する特性変更信号をマイクロホンアレイ処理部 1 2 に出力し、マイクロホンアレイ処理部 1 2 において、マイクロホン 2 A ～ 2 G の指向性を変更する（S 6）。

マイクロホン 2 A ～ 2 G の指向性を調整する手段としては、たとえば、マイクロホン 2 A ～ 2 G のうち、接近車両がある可能性がある道路に近い側、ここでは右側のマイクロホン 2 F, 2 G から送信される集音情報の感度を高くし、他のマイクロホン 2 A ～ 2 E から送信される集音情報の感度を低くすることができる。

さらに、たとえば、図 4 に示すように、自車両 P が五差路に差し掛かり、この五差路が自車両 P の走行路に直交する交互通行路のほか、直進路が直進可能な一方通行路、右斜め手前に進入禁止となる一方通行路であるとする。なお、図 4 では、車両の進行可能方向を矢印で示している。この場合、接近
車両がある可能性がある道路は、自車両 P の走行路に直交する道路および右斜め手前方向からの道路となる。したがって、図 4 に示す領域 H のように、自車両 P の走行路に直交する道路および右斜め手前方向からの道路を含む範囲に合わせて、マイクロホン 2 A ～ 2 G の指向性を調整する。

こうして指向性の調整が済んだ後、またはステップ S 5 で自車両 P が進行する道路の方向が確定していないと判断した場合には、自車両の走行路に近接し、接近車両が走行する走行路の路面種類が確定しているか否かを判断する （S 7）。路面種類が確定しているか否かは、ナビゲーション装置 3 から送信される走行路周辺情報に路面種類に関する情報が含まれているか、あるいは、通信装置 4 からの道路情報、撮像装置 5 からの走行路周辺情報に路面種類を確定する情報が含まれているか否かにより判断する。

その結果、路面種類を確定できると判断した場合には、マイクロホンアレーネュリラ 1 2 において、出力された集音情報のうち、音源方向分布データを生成する際の演算に用いる集音情報から収集する集音特性としての周波数特性を変更して （S 8）、調整する。路面種類が異なると、集音情報における接近車両を示す周波数の周波数帯域が変化する。このため、ここでは、周波数特性の調整態様として、演算に用いる集音情報の周波数帯域を調整する。

たとえば、図 5 （a）に示すように、自車両 P が走行する道路と交差する交差点の道路であり、接近車両が走行する道路がアスファルト道路 A R である場合、図 5 （b）に示すように、接近車両を示す周波数帯域は、第 1 周波数 A ～ 第 2 周波数 B までの低周波数帯域 L A で顕著となる。また、図 6 （a）に示すように、自車両 P が走行する道路と交差する交差点の道路であり、接近車両が走行する道路が砂利道路 J R である場合、図 6 （b）に示すように、接近車両を示す周波数帯域は、第 2 周波数 B ～ 第 3 周波数 C までの高周波数帯域 H A で顕著となる。

このため、接近車両が走行する道路がアスファルト道路 A R である場合には、第 1 周波数 A ～ 第 2 周波数 B までの低周波数帯域 L A における集音情報の影響を大きくして判断する。また、接近車両が走行する道路が砂利道路 J R
ある場合には、第2周波数B〜第3周波数Cまでの高周波数帯域HAにおける集音情報を主に利用する。

また、周波数特性を変更した後、またはステップS7で路面種類を特定できないと判断した場合には、天候が雨天であるか否かを判断する（S9）。天候が雨であるか否かの判断は、通信装置4から送信される天候情報や撮像装置5で撮像した画像から抽出される雨粒の存在などを利用して行われる。

その結果、天候が雨天であると判断した場合には、マイクロホンアレイ処理部12において、音源方向分布データを生成する際に用いる集音特性とその集音情報の検出感度を変更して（S10）、調整する。ここでの集音情報の検出感度とは、集音情報から接近車両の走行音を検出する際の検出感度を意味する。天候が雨天であると、晴天時よりも接近車両の走行音が大きくなる。このため、天候が雨天の場合には、接近車両が遠い位置にあるときでも晴天時に接近車両が近い位置にあるときと同様に検出してしまうことがある。

そこで、天気が雨天である場合には、集音情報の検出感度を低くするようにしている。集音情報の検出感度を低くすることにより、雨天時の比較的大きな走行音と、晴天時の比較的小さな走行音とを同レベルで検出することが可能。したがって、たとえば接近車両がある時に警報を出力する場合に、晴天時と雨天時とで警報を出力するタイミングを同程度とすることができる。

ここで、集音情報の検出感度を低くする態様に代えて、マイクロホンアレイ2における検出感度を低くする態様とすることもできる。この場合には、特性変更部14からマイクロホンアレイ2に検出感度低下信号を送信し、マイクロホンアレイ2における各マイクロホン2A〜2Gの検出感度を低下させることができる。

さらに、集音情報の検出感度を低くする態様に代えて、出力変更部16において、警報出力を遅らせる態様をすることができる。この場合、特性変更部14から出力変更部16に対して警報出力を遅らせる内容の特性変更判
定信号を出力する。出力変更部 16 では、警報出力を遅らせることにより、晴天時と雨天時とで警報を出力するタイミングの整合を図ることができる。

また、集音情報の感度を変更した後、またはステップ S 9 で天候が雨天でないと判断した場合には、自車両の走行環境が接近車両の走行音の検出を行う際に不適切な環境である検出不適環境であるか否かを判断する (S 1 1)。たとえば、自車両が走行する道路がビルの谷間やトンネル内などの大型障害物などの反射物がある場合や音の反響が大きい環境にある場合に、検出不適環境であると判断する。検出不適環境については、ナビゲーション装置 3 、通信装置 4 、撮像装置 5 、レーダーセンサ 6 から送信される各種情報から取得した周囲環境情報に基づいて判断する。

その結果、自車両の走行環境が検出不適環境であると判断した場合には、接近車両の検出を中止すべく、マイクロホンアレーハ処理部 1 2 における音源方向分布データの生成による検出処理を O F F することにより (S 1 2)、マイクロホン 2 A ～ 2 G の集音特性を変更する。検出不適環境では、接近車両を精度よく検出することが困難である。このため、検出不適環境下において検出処理を O F F にすることにより、表示器 7 における不要な警報や誤警報などを防止することができる。

ここで、マイクロホンアレーハ処理部 1 2 における音源方向分布データの生成による検出処理を O F F にする処理に代えて、出力変更部 1 6 において、警報出力を中止する処理をすることができる。この場合、特性変更部 1 4 から出力変更部 1 6 に対して警報出力を中止する処理を特性変更判定信号を出力する。出力変更部 1 6 では、警報出力を中止することにより、表示器 7 における不要な警報や誤警報などを防止することができる。

こうして、検出処理を O F F にした後、またはステップ S 1 1 で自車両の走行環境が検出不適環境でないと判断した場合には、接近車両の走行音の検出を行う (S 1 3)。接近車両の走行音の検出は、マイクロホンアレーハ処理部 1 2 において生成され、車両検出処理部 1 5 において、記憶している音源方向分布データに演算処理を施すことによって行われる。
それから、接近車両の走行音を検出したら、接近車両判定を行う（S14）。接近車両判定は、検出した接近車両の走行音に基づいて算出される接近車両が到来している可能性に基づいて行われる。接近車両が到来してくる可能性が所定のしきい値を超えるときに、接近車両があるとの判定し、接近車両が到来してくる可能性が所定のしきい値以下の場合は、接近車両はないと判定する。

その後、情報提示処理を行う（S15）。情報提示処理では、接近車両があると判定した場合に、接近車両の存在およびその接近方向に関する接近車両到来情報を出力変更部16に出力することによって行われる。出力変更部16では、接近車両到来情報に基づいて、警報を出力するための出力処理を行う。ここでの出力処理では、表示器7に接近車両の存在する旨および接近車両の接近方向を出力させる処理を行う。

また、出力変更部16では、特性変更部14から特性変更判定信号が出力されている場合には、出力された特性変更判定信号に応じて出力内容の変更を行う。たとえば、警報出力を遅らせる内容の特性変更判定信号が出力された場合には、警報出力を遅らせる。また、警報出力を中止する内容の特性変更判定信号が出力された場合には、警報出力を中止する。こうして、車外音検出装置における処理を終了する。

このように、本実施形態に係る車外音検出装置においては、周囲環境に応じて、接近車両の走行音を検出す際の検出特性を調整している。具体的に、自車両が進行する方向が確定している場合に、自車両が走行する道路の形状に応じてマイクロホン2A～2Gの指向性を調整している。このため、道路形状や交差点の本数などの走行路の形状に応じて接近車両の走行音を検出することができるので、接近車両の走行音を精度よく検出することができる。

また、自車両に接近車両の走行音を検出し、接近車両が近づいた場合等には、表示器7によって警報を出力するようにしている。このため、接近車両の存在をドライバに認識させることができる。したがって、ドライバに対し
て、接近車両の存在に応じた対応を準備させることができる。

さらに、周囲環境としては、自車両が走行する道路の形状を検出し、自車両が走行する道路の形状に応じてマイクロホン2 A～2 Gの指向性を調整している。このため、道路が交差点であったり、一方通行であったりした場合であっても、接近車両の走行音を精度よく検出することができる。

また、接近車両が走行する走行路の道路種類を検出し、検出した道路種類に応じて接近車両の走行音を検出する際に利用する周波数帯域を調整している。このため、接近車両が走行する走行路の道路種類に対応した周波数帯域の走行音を検出することができる。したがって、接近車両の走行音をさらに精度よく検出することができる。

しかも、天候に応じてマイクロホンアレー処理部1 2から出力される集音情報またはマイクロホン2 A～2 G自体の検出感度を調整している。具体的に、天候が雨天である場合には、マイクロホンアレー処理部1 2から出力される集音情報またはマイクロホン2 A～2 G自体の検出感度を低くするようにしている。雨天時には、通常、接近車両の走行音は晴天時の走行音よりも大きくなるが、マイクロホンアレー処理部1 2から出力される集音情報またはマイクロホン2 A～2 G自体の感度を低くすることにより、接近車両の誤検出を減少させることができる。

また、自車両の走行環境を検出し、自車両の走行環境が検出不適環境である場合には、接近車両の走行音の検出を中止している。このため、接近車両の走行音の検出ができない状態で接近車両の走行音の検出を行うという無駄を防止することができるとともに、誤作動を防止することもできる。さらに、接近車両の走行音の検出を行っていない旨をドライバに報知することができる。したがって、接近車両の走行音の検出を行っていないことをドライバは認識することができるので、目視等による接近車両の発見に注力させることができる。

以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。たとえば、マイクロホンの指向性を変更して
調整する際に、マイクホン2A〜2Gから送信される集音情報の感度を調整するようにしているが、マイクホン2A〜2G自体の指向性を変更して調整する態様とすることもできる。

[0076] マイクホン2A〜2G自体の指向性を変更する態様としては、図7に示すように、マイクホン2Aの集音部の手前位置に指向性調整装置20を設けることができる。なお、図7には不図示であるが、他のマイクホン2B〜2Gの手前位置にも、同様に指向性調整装置20を設けることができる。

[0077] 図7に示す指向性調整装置20では、マイクホン2Aの右側に開閉ゲート21が設けられている。この開閉ゲート21を開放することにより、マイクホン2Aにおける右側からの集音特性を高めることができる。また、図示はしないが、マイクホン2Aの左側に開閉ゲートを設けることにより、左側についても同様に集音特性を高めることができる。もちろん、マイクホン2Aの左右両側に開閉ゲートを設けることもできる。

[0078] また、図8に示すように、7本のマイクホン2A〜2Gのそれぞれ指向性を持たせておくこともできる。この場合、たとえば右側からの集音特性を高めるためには、マイクホンアレーの右側に設けられた2本のマイクホン2F, 2Gのみの検出感度を維持し、他のマイクホン2A〜2Eにおける検出感度を0とすることもできる。また、集音特性を高める位置に応じて、マイクホン2A〜2Gから検出感度を維持するマイクホンの位置や数を選択することができる。

[0079] さらに、図9（a）に示すように、マイクホン2A〜2Gにおける集音部の反対側の位置に振動軸Xを設け、図示しない駆動機構によってマイクホン2A〜2Gを振動させる態様とすることもできる。この場合、たとえば右側からの集音特性を高めるためには、図9（b）に示すように、振動軸Xを中心としてマイクホン2A〜2Gをその先端が右側に向けように振動させる。この場合も、集音特性を高める方向等に応じて、振動させるマイクホンの数や振動角度等を適宜決定することができる。さらには、右側では2本のマイクホン2F, 2Gを利用し、左側では1本のマイクホン2Aを
利用することもできる。

また、上記実施形態では、7 本のマイクロホン 2 A 〜 2 G を備えるマイクロホンアレーチ 2 としたが、他の数の複数のマイクロホンを備えるマイクロホンアレーチとすることもできる。さらには、マイクロホンアレーチに代えて、マイクロホン 1 本とした態様とすることもできる。

さらに、上記実施形態では、車外音として接近車両の走行音を挙げているが、他の車外音とすることもできる。たとえば、移動体の発生音である緊急車両のサイレン音、歩行者が発生する歩行者発生音などとすることもできる。この場合、移動体の種類等によっては、音源方向検出 ECU 1 を車両の外部に設置する態様とすることもできる。

また、上記実施形態では、ナビゲーション装置 3、通信装置 4、撮像装置 5、およびレーダセンサ 6 から送信される各種情報に基づいて、道路の形状に関する情報や路面種類情報などを取得しているが、他の態様とすることもできる。たとえば、走行路を走行する際に取得した走行路の形状や路面種類の情報を走行者とともに記憶しておき、再度その走行路に到達したときに記憶している情報をそのまま利用することもできる。

産業上の利用可能性

本発明は、車両に設けられ、車両の外側の音である車外音を検出する車外音検出装置として利用可能である。

符号の説明

1 …音源方向検出 ECU、2 …マイクロホンアレーチ、2 A 〜 2 G …マイクロホン、3 …ナビゲーション装置、4 …通信装置、5 …撮像装置、6 …レーダセンサ、7 …指示器、1 1 A …D 変換部、1 2 …マイクロホンアレーチ処理部、1 3 …判定処理部、1 4 …特性変更部、1 5 …車両検出処理部、1 6 …出力変更部、2 0 …指向性調整装置、2 1 …関閉ゲート、M …車外音検出装置、P …車両（自車両）。
請求の範囲

[請求項1] 車両に設けられ、車外の音声を集音する集音手段と、

前記集音手段で検出した車外の音声から、検出対象音を検出する対
象音検出手段と、

前記車両が走行する走行路に関する走行路情報の検出する走行路情
報検出手段に、

前記走行路情報検出手段の検出結果に基づいて、前記車両の集
音特性を調整する集音特性調整手段と、

を備えることを特徴とする車外音検出装置。

[請求項2] 前記対象音検出手段の検出結果に基づいて、前記検出対象音の方向
を検出する方向検出手段を、更に備える請求項1に記載の車外音検出装
置。

[請求項3] 前記検出対象音が、前記車両に接近する接近車両の走行音である請
求項1又は2に記載の車外音検出装置。

[請求項4] 前記走行路情報検出手段は、前記走行路情報として、前記車両が走
行する走行路の形状を検出する請求項3に記載の車外音検出装置。

[請求項5] 前記集音特性調整手段は、前記車両の走行路の形状に基づいて、前記集音
手段の特性として、前記集音手段の指向性を調整する請求項4に記載
の車外音検出装置。

[請求項6] 前記集音特性調整手段は、前記車両の走行路の形状に基づいて前記車両が
進行する道路の方向が確定すると判断される場合に、前記走行路の形
状に基づいて、前記集音手段の特性として、前記集音手段の指向性を
調整する請求項5に記載の車外音検出装置。

[請求項7] 前記走行路情報検出手段は、前記走行路情報として、前記車両が走
行する走行路に近接し、前記接近車両が走行する走行路の路面種類を
検出する請求項3～6の何れか一項に記載の車外音検出装置。

[請求項8] 前記集音特性調整手段は、前記接近車両が走行する走行路の路面種
類に基づいて、前記集音手段の特性として、前記集音手段の使用帯域
を調整する請求項7に記載の車外音検出装置。

[請求項9] 前記走行路情報検出手段は、前記走行路情報として、前記車両が走行する走行路周辺の天候情報を検出する請求項3〜8の何れか一項に記載の車外音検出装置。

[請求項10] 前記集音特性調整手段は、前記天候情報に基づいて、前記集音手段の感度を変更する請求項9に記載の車外音検出装置。

[請求項11] 前記対象音検出手段の検出結果に基づいて前記接近車両が存在すると判断される場合に、警報を出力する出力手段を更に備え、

前記集音特性調整手段は、前記天候情報に基づいて、前記出力手段からの警報の出力タイミングを変更する請求項9に記載の車外音検出装置。

[請求項12] 前記走行路情報検出手段は、前記走行路情報として、前記車両の周囲の周囲環境情報を検出する請求項3〜11の何れか一項に記載の車外音検出装置。

[請求項13] 前記対象音検出手段は、前記周囲環境情報から前記車両の走行環境が前記接近車両の走行音の検出を行う際に不適切な環境であると判断される場合に、前記接近車両の走行音の検出を中止する請求項12に記載の車外音検出装置。

[請求項14] 前記接近車両の走行音の検出を中止する場合に、前記接近車両の走行音の検出を行っていない旨を報知する請求項13に記載の車外音検出装置。

[請求項15] 前記対象音検出手段の検出結果に基づいて前記接近車両が存在すると判断される場合に、警報を出力する出力手段を更に備え、

前記出力手段は、前記周囲環境情報から前記車両の走行環境が前記接近車両の走行音の検出を行う際に不適切な環境であると判断される場合に、前記出力手段からの警報の出力を中止する請求項12に記載の車外音検出装置。
[図3]

START

自車両位置取得

S1

道路種別取得

S2

天候取得

S3

周囲環境取得

S4

S5

道路方向確定？

YES

指向性変更

S6

NO

S7

路面種確定？

YES

周波数変更

S8

NO

S9

天候雨？

YES

検出感度変更

S10

NO

S11

検出不適環境？

YES

検出処理OFF

S12

NO

S13

走行音検出

S14

接近車両判定

S15

情報を提示

RETURN
[図8]
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
 G01 H3/0 0 (2006.01)i, G01 S7/ 523 (2006.01)i, G01 S3/8 03 (2006.01)n

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
 Minimum documentation searched (classification system followed by classification symbols)
 G01 H3/00, G01 S7/523, G01 S3/803

 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
 Jitsuyo Shinan Koho 1922-1 996 Jitsuyo Shinan Toroku Koho 1996-2011

 Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

 C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Aki r a OGA [WA, Kens aku ASAH! , "On the Scheme s for Recogni t ion of Approachi ng Vehi cle s through Acous tic Sens ing", I E I CE Techni cal Report, 2 1 July 2 008 (21.07.2008), vol .108, n o.171 (I T S2008 8-19), page s 49 to 54</td>
<td>1-15</td>
</tr>
<tr>
<td>Y</td>
<td>Hi royuki HOSH INO , "Approachi ng vehi cle s detecti on system by using vehi cle noise for drive r support ", Journal of the Acou stical Society of Japan, 0 1 March 2 006 (01.03.2006), vol .62, no .3, page s 265 t o 274</td>
<td>1-15</td>
</tr>
</tbody>
</table>

 X Further documents are listed in the continuation of Box C.

 * Special categories of cited documents:
 A document defining the general state of the art which is not considered to be of particular relevance
 E earlier application or patent but published on or after the international filing date
 L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 O document referring to an oral disclosure, use, exhibition or other means
 P document published prior to the international filing date but later than the priority date claimed
 T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 S document member of the same patent family

Date of the actual completion of the international search
 14 July , 2011 (14.07.11)

Date of mailing of the international search report
 26 July , 2011 (26.07.11)

Name and mailing address of the ISA /
 Japane se Patent Office

Facsimile No. Authorized officer

Telephone No.

Form PCT/ISA/210 (second sheet) (July 2009)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>JP 2002-243535 A (Omron Corp.), 28 August 2002 (28.08.2002), entire text; all drawings (Family: none)</td>
<td>4–8</td>
</tr>
<tr>
<td>Y</td>
<td>JP 2007-309832 A (Fujitsu Ten Ltd.), 29 November 2007 (29.11.2007), entire text; all drawings (Family: none)</td>
<td>4–8</td>
</tr>
<tr>
<td>A</td>
<td>JP 2006-125997 A (Fuj Heavy Industries Ltd.), 18 May 2006 (18.05.2006), entire text; all drawings (Family: none)</td>
<td>1–15</td>
</tr>
</tbody>
</table>
A. 発明の属する分野の分類（国際特許分類（IPC））
 Int.Cl. G01H3/00 (2006.01 i), G01S7/523 (2006.01 i), G01S3/803 (2006.01 n)

B. 調査を行った分野
 調査を行った最小限資料（国際特許分類（IPC））
 Int.Cl. G01H3/00, G01S7/523, G01S3/803

最小限資料以外の資料で調査を行った分野に含まれるもの
 日本国実用新案公報 1922-1
 日本国公開実用新案公報 1971-2
 日本国実用新案登録公報 1996-1
 日本国登録実用新案公報 1994-2

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

C. 関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献のカテゴリー</th>
<th>引用文献名及一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求書の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>星野博之, ドライバ支援のための走行音による接近車両検知システム, 日本音響学会誌, 2006. 03. 01, Vol. 62, No. 3, Page. 265-274</td>
<td>1 - 15</td>
</tr>
</tbody>
</table>

C 棟の続きにも文献が掲載されている。

 shore パートントファミリーに関する別紙を参照。

国際調査を完了した日
14. 07. 2011

国際調査報告の発送日
26. 07. 2011

国際調査機関の名称及び住所等
日本国特許庁（JPA／JP）
郵便番号 100－8915
東京都千代田区霞が関三丁目 4 番 3 号

特許庁審査官（権限のある職員）

* 高 ■ 見 重

電話番号 03-3581-1101 内線 3252

様式 PCT／ISA／210（第2ページ）（2009年7月）
<table>
<thead>
<tr>
<th>引用文献のカテゴリ</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求項の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>JP 2002-243535 A (オムロン株式会社) 2002年8月 28日、全文、全図 (ファミリーなし)</td>
<td>4 - 8</td>
</tr>
<tr>
<td>Y</td>
<td>JP 2007-309832 A (富士通テン株式会社) 2007年11月 29日、全文、全図 (ファミリーなし)</td>
<td>4 - 8</td>
</tr>
<tr>
<td>A</td>
<td>JP 2006-125997 A (富士重工業株式会社) 2006年5月 18日、全文、全図 (ファミリーなし)</td>
<td>1 - 15</td>
</tr>
<tr>
<td>A</td>
<td>旭健作、三好史泰、小川明、音響による接近車両検出における自車エンジン音の低減手法について、電子情報通信学会論文誌 A. 2008年01月01日、Vol. J91-A、No. 1、Page. 68-77</td>
<td>1 - 15</td>
</tr>
<tr>
<td>A</td>
<td>小寺謙司、板井陽俊、安川博、自動車走行音による接近車両の速度と到来時間の推定、電子情報通信学会技術研究報告、2007年9月20日、Vol. 107、No. 238 (SP2007 45-56)、Page. 13-18</td>
<td>1 - 15</td>
</tr>
<tr>
<td>A</td>
<td>小寺謙司、安川博、等間隔マイクロホンアレーを用いた接近車両方向の推定、電子情報通信学会技術研究報告、2007年3月01日、Vol. 106、No. 575 (SIS2006 7ト80)、Page. 1-6</td>
<td>1 - 15</td>
</tr>
<tr>
<td>A</td>
<td>星野博之、走行音による接近車両の検知と方位推定、自動車技術学会講演会前刷集、1993年10月、No. 936、Page. 145-148</td>
<td>1 - 15</td>
</tr>
</tbody>
</table>